
Chapter 6
Feedback Control Designs

A. Schirrer, M. Kozek, F. Demourant and G. Ferreres

6.1 Introduction

A. Schirrer and M. Kozek

6.1.1 General Properties of Feedback Control

The general concept of feedback control is characterized by utilizing system output
signals (measurements) to determine the control signal, thus closing a control loop
by a feedback interconnection. For linear systems, this generally alters the system’s
eigendynamics, and this is in fact the central feature that feedback systems pos-
sess in contrast to feed-forward (input-shaping) concepts. Consequently, the main
conceptual goals of feedback control concepts for linear dynamic systems are the
following:

Stabilization: If stabilizability conditions are met, unstable systems can be stabi-
lized by a suitable control law when the control loop is closed.
Shaping of the eigendynamics: The system’s eigendynamics can be altered in terms
of a shift of eigenvalues and/or a change of the eigenvectors, which corresponds
for example, to changing system time constants or to decoupling responses.
Increase robustness: Feedback control has the potential to decrease the effects of
unknown model errors or perturbations or unknown disturbances to the system’s
responses. This is commonly known as disturbance rejection. As an example,
a feedback controller could achieve accurate tracking of reference signals even
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though the system gain may be uncertain or disturbance input signals unknown to
the controller. A purely feed-forward input-shaping concept cannot address these
uncertainties by design.

Note, however, that these properties can also produce disadvantages because a
feedback controller could also destabilize an otherwise stable system, for example,
if critical model errors occur and if the feedback control law is not suitable under
these conditions. Thus, the design of a feedback controller requires in-depth system
analysis, design tuning, and validation to ensure that the critical requirements (sta-
bility, signal magnitude bounds, validity region of the model) are also met in reality.

Additionally, feedback control can address time- and frequency-domain specifi-
cations (rise time, overshoot, bandwidth, response magnitudes), which can also be
affected by feed-forward concepts. Depending on the application and on the avail-
able design methods, the control engineer needs to be decide on the most efficient
concept(s) to address these requirements. Often, a combination of methods which
exploits their benefits yields high-performance, modular solutions.

6.1.2 Feedback Design Methods in the Flight Control Context

Flexible aircraft control is subject of broad research (see for example [41, 46, 48, 90],
or [92]) and it bears the potential of additional weight savings and thus increased fuel
efficiency. Novel concepts in civil aviation such as BWB aircraft introduce numerous
new challenges to this class of multiobjective control design problems (see [57]):
potential (cross-)coupling of longitudinal and lateral motion (and low-frequency
flexible modes), possible open-loop instability, as well as high-performance demands
in loads alleviation, vibration reduction, and maneuver shaping.

This chapter presents several state-of-the-art feedback flight control design meth-
ods for the lateral as well as the longitudinal dynamics of the considered large, flexible
BWB transport aircraft model. Numerous stringent constraints and goals are given
in terms of eigendynamic requirements and specifications in the time and frequency
domains. The considered design methods typically address a subset of the design
specifications given in Chap. 5. The control performance is validated and discussed
for each approach. The following design methods are considered:

• Partial eigenstructure assignment (ACFA 2020 BWB configuration, lateral control,
see Sect. 6.2).

• μ synthesis via DGK-iteration based on a parametrized linear fractional trans-
formation (LFT) model (ACFA 2020 BWB configuration, lateral control, see
Sect. 6.3).

• Convex control design via the Youla parametrization and a parametrized observer
(ACFA 2020 BWB configuration, longitudinal control, see Sect. 6.4).

• Linear parameter-varying (LPV) feedback control design by a linear matrix
inequality (LMI) approach (ACFA 2020 BWB configuration, longitudinal con-
trol, see Sect. 6.5).

http://dx.doi.org/10.1007/978-3-319-10792-9_5
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• Structured low-order H∞ design (NACRE BWB lateral control in Sects. 6.6.1–
6.6.3; ACFA 2020 BWB longitudinal control in Sect. 6.6.4).

Partial eigenstructure assignment is utilized as an initial controller for the lateral
control task (see robust modal control design [54, 73]) to achieve some of the lat-
eral control goals most efficiently addressed by eigenstructure assignment, including
basic damping of flexible modes. Based on this pre-shaping, the linear fractional rep-
resentations (LFRs) of the parametrized, pre-shaped aircraft dynamics are obtained
as shown in Sect. 4.2 and a μ synthesis design is carried out to maximize robust
damping performance for the relevant flexible modes by exploiting the structured
change of system dynamics as functions of the physical parameters.

The longitudinal control task is addressed by convex controller synthesis, which
starts out from an linear quadratic Gaussian (LQG)-controlled plant in which rigid-
body (RB) requirements are addressed. The observer-based realization is directly
suited to put the system into a Youla-parametrized form, that is, to express closed-loop
transfers affinely in the Youla controller parameter. A convex optimization problem
for heterogenous time- and frequency-domain objectives and constraints can now
be formulated and solved efficiently. Finally, the plant model within the observer
is parametrized, yielding a globally LPV control law. The controller achieves high
performance in terms of handling qualities, critical loads, and comfort.

Next, longitudinal control is once again addressed, however, via a direct design
of an LPV controller for an LPV plant description. After a thorough open-loop
analysis, the design weighting functions are prepared and optimized by considering
a series of standard H∞ designs at fixed parameter values. This also allows to
directly tune robustness of the controller family. Then these design data are utilized
in a direct LPV control design to obtain an optimized LPV controller. This allows
to consider parameter rate of change bounds and to exploit the structure of the
parameter dependency already in the control design and yields excellent performance
in validation.

Finally, both lateral and longitudinal control tasks are addressed in the investiga-
tion of design methods of H∞ and H2/H∞ controllers with prescribed controller
structure and (arbitrarily) low dynamic order. The involved optimization problems
are generally difficult to solve (non-smooth, non-convex). However, well-performing
results could be achieved via the H∞ fixed-order optimization toolbox (H∞ fixed-
order optimization) in MATLAB®. These designs have been developed for the
NACRE BWB configuration (lateral design) and for the ACFA BWB configuration
(longitudinal design).

The multitude of control design studies in this context yields the important conclu-
sion that multistage design approaches that combine the benefits of several different
design methods allow to address a multitude of heterogenous specifications effi-
ciently. These composite control concepts typically contain feedback control laws,
but also complementary feed-forward controller blocks to address command shaping
or (measurable) disturbance compensation. These concepts are often referred to as
two degrees of freedom control architecture. Here, several such concepts have been
developed:

http://dx.doi.org/10.1007/978-3-319-10792-9_4
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• Design of a lateral comprehensive load alleviation control system as a combination
of eigenstructure assignment, robustH∞-control feedback design and a scheduled
feed-forward command shaper.

• Design of a longitudinal gust loads alleviation by LQG pre-shaping and convex
controller synthesis.

• Design of a longitudinal comprehensive load alleviation control concept com-
bining H∞ designs/LPV feedback control design with an H∞ full-information
feed-forward concept.

6.1.3 State of the Art

Flight and structural control laws are commonly built using optimal or robust control
design methods to maximize control performance also in the presence of plant uncer-
tainties. The DK-iteration and more recently the DGK-iteration or mixed-μ-synthesis
are well-known design tools to generate robust control laws when the plant’s uncer-
tainty or possible perturbations can be modeled well by structured uncertainties [5,
76, 95].

An additional, central challenge for a control engineer is to translate the given spec-
ifications efficiently and effectively into design parameters for the utilized synthesis
methods (usually from optimal or robust control). Typically, these constraints are
either stated as weighting functions in the frequency-domain (H∞/H2 control, DK-
iterations) or as objective function weightings (as in linear quadratic (LQ) control).
One design method with the capability of considering both time- and frequency-
domain constraints and objectives at the same time is convex synthesis.

Convex design for the control of conventional flexible aircraft has been stud-
ied, among others, in the PhD thesis of [20] as well as by [64] (with subsequent
controller order reduction), and [84] (a self-scheduling approach). In robust control
applications, robust stability (RS) of the closed loop is usually the most fundamental
requirement. One additional, important requirement for reliable control is the stabil-
ity of the controller itself (referred to as strong stabilization, see for example [45,
86]), which is not guaranteed by standard optimal and robust design methods. This
is however imperative in the case of potential actuator or sensor faults, and simple
tuning often does not suffice to obtain stable controllers.

Convex synthesis of a feedback controller using the Youla parameterization has
been designed based on the large 750-passenger NACRE BWB aircraft predesign
model in [72]. An linear matrix inequality (LMI) formulation is taken to optimize
directly for the time- and frequency-domain goals not addressed by the initial con-
troller. A heuristic algorithm to achieve strong stabilization is proposed and allows to
obtain a stable feedback law which is validated successfully on all considered para-
meter cases (mass cases). High control performance is achieved, including direct
time-domain specifications.

A general integrated methodology for multiobjective robust control design has
been presented in [69]. Previous, closely related studies have been carried out on the
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large 750-passenger NACRE BWB aircraft predesign model: for LQ-based lateral
control designs see [70], the application of a genetic algorithm for parameter opti-
mization of a multiobjective H∞ DK-iteration design has been treated in [71]. Using
a Youla parameterization of the feedback control loop, a convex controller synthesis
for lateral BWB control has been performed in [73] with a subsequent scheduled
feed-forward control design in [72]. Longitudinal BWB control using LPV control
concepts has been studied in [89]. All these works investigate control designs on the
large 750-passenger NACRE BWB aircraft predesign model and represent the early
results achieved in the ACFA 2020 project.

The subsequent feedback control designs reported in this chapter have initially
been published in the following papers: the lateral designs in Sects. 6.2 and 6.3 are
adopted from [74], the longitudinal convex synthesis design in Sect. 6.4 has been
shown in [24], and the LPV feedback design approach in Sect. 6.4 is detailed in [88].
Finally, the structured longitudinal design in Sect. 6.6.4 has been published in [42].

6.2 Robust Eigenstructure Assignment

A. Schirrer and M. Kozek

6.2.1 Methodology

Methods of robust eigenstructure assignment extend classical pole placement control
design in several ways [54]: First, only a partial eigenstructure assignment of a few,
relevant system poles to desired closed-loop positions is possible. The remaining
system poles will generally be shifted slightly as well, but this can be met by an
iterative design procedure. The advantage is that no artificial design requirements
(for example, pole pinning) need to be introduced, and that the remaining degrees
of freedom can be utilized to improve insensitivity to model errors. Also, no full
state vector estimation may be necessary and methods exist to derive only those
elementary estimates necessary to perform the partial assignment, yielding low-
complexity dynamic output feedback controllers.

In the following, an initial controller in the form of an output feedback control
law is designed by robust eigenstructure assignment using the techniques and tools
given in [54].

Given a state-space system P as in (5.15) and (5.16) (subscript i omitted for
brevity), q triplets (λi , vi , wi ) (eigenvalue, input, and output directions, respectively)
are assigned in closed loop (with q ≤ p where p is the number of measurements).
Let X = CV + DW, V = [v1, . . . , vq ], and W = [w1, . . . , wq ] hold. The output
feedback gain to assign the given eigenstructure is

http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_5
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K = WX† (6.1)

where the pseudo-inverse (·)† of X yields the norm-minimal feedback gain for q < p.
If q = p and X is non-singular, the inverse of X can be used instead.

6.2.2 Control Goals

The specific control goals for this lateral inner-loop control design are a subset of
the goals in Table 5.4:

1. stabilize the aircraft,
2. obtain high damping ζ ≥ 0.7 of the Dutch Roll mode (DR mode) while keeping

the mode’s undamped eigenfrequency unchanged,
3. obtain sufficiently fast real/aperiodic remaining system dynamics to fulfill rise-

time requirements on roll/side-slip responses in 7 and 5 s, respectively, and
4. improve damping of the first flexible mode.

Note that in the present setting, goal 1 also includes a significant shift of the spiral
mode’s pole to the left which otherwise is realized by an outer (auto-)pilot control
loop.

These requirements all have to be fulfilled robustly for all 30 considered parameter
cases in the viewed parameter space. They will all be addressed, as far as possible, by
the control law which is designed through robust/insensitive eigenstructure assign-
ment.

6.2.3 Feedback Control Design

To fulfill the listed control goals, an initial controller is designed by robust partial
eigenstructure assignment (utilizing the MATLAB® Robust Modal Control Toolbox
supplied with the book [54]). This is done in two steps:

1. Assign low-frequency (rigid-body) dynamics using low-pass output feedback,
2. Increase the damping of high-frequency flexible modes via a bandpass-filtered

output feedback through eigenvector projection.

For step 1, an input/output (I/O)- and state-reduced RB model was extracted from
the design ROMs at a chosen parameter case:

• Input reduction to 1 combined rudder command and 1 combined anti-symmetric
command on flaps 3 and 4 (“inner” and “middle” ailerons). This was chosen
because flaps 3, 4 do not reverse their effect on the aircraft over the envelope and
they are fast enough for RB control.

http://dx.doi.org/10.1007/978-3-319-10792-9_5
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• Output reduction to measurements of β (side-slip angle), ϕ (roll angle), p (roll
rate), and r (yaw rate).

• State reduction by truncation of all flexible modes and lag states, leaving only
states β (side-slip angle), p (roll rate), r (yaw rate), ϕ (roll angle), and the rudder-
and flap 3, 4 second-order dynamics. The actuator dynamics of flaps 3 and 4 were
modeled by a single filter because they behave sufficiently similarly.

• Augmentation of each of the 4 measurements by a fourth-order dynamics (second-
order Padé approximation of 160 ms delay and a second-order low-pass filter).

The relevant plant open-loop poles lie close to the respective poles of the full-
order model. The RB poles can be identified as a low-damped (in some parameter
cases unstable) DR mode (frequency between 0.7 and 1 rad/s), a marginally stable or
unstable real spiral mode and a stable real pole at around −2. The desired DR pole
location is obtained by increasing its damping ζ to

√
2/2 with constant frequency.

The DR mode damping requirement and the decoupling specifications (and
partially the performance specifications) are cast into eigenstructure constraints,
see [54]:

prig,des,1 = −0.6 v1 = [0, ∗, 0, ∗, . . .]T (6.2)

prig,des,2,3 = pDR,des,1,2 v2,3 = [∗, 0, ∗, 0, . . .]T (6.3)

prig,des,4 = −1.3 v4 = [0, ∗, 0, ∗, . . .]T, (6.4)

where the remaining eigenvector elements (marked by ∗ in (6.2)–(6.4)) are uncon-
strained. The computed feedback gain robustly assigns a high DR mode damping.
The loop is closed with the resulting static output feedback law, and this shaped plant
comprises the design plant for step 2.

Design step 2 aims to increase the damping of the first (low-damped) flexible
mode at around 10 rad/s. The controller takes the modal measurement Nzlat.law and
generates a combined flap 3, 4 and a separately actuated flap 5 control signal. In
order to obtain enough degrees of freedom to shift the two flexible mode (complex-
conjugated) poles, a first-order observer is necessary. The mentioned toolbox offers
a robust observer design method for this task. The observation dynamics is chosen
real and near the relevant modes’ frequency at pobs = −10. After such observer
is synthesized, a static output feedback gain is computed to shift the flexible mode
poles to the left. Hence, they are reassigned at the location

pflex,desired,1,2 = pflex,actual,1,2 − 0.5 (6.5)

using a minimal-energy criterion, yielding a Bode magnitude peak reduction of about
6 dB in the closed-loop transfer path from lateral gust to Nzlat.law.

The final partial eigenstructure assignment controller is combined into a single
linear time-invariant (LTI) system of first order, 3 outputs (combined flap 3, 4; flap 5;
rudder), and 5 inputs (measurements of side-slip angle, roll angle, roll rate, yaw rate,
and Nzlat.law) and is successfully validated on all fuel and center of gravity (CG)
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Fig. 6.1 Step responses of the pre-shaped plants from rudder and ailerons to side-slip and roll
angles at random CG and fuel parameter values

parameter cases of the design flight condition (fixed Mach and dynamic pressure
case).

6.2.4 Basic Feed-Forward Decoupling Design

For basic pilot input shaping, a simple feed-forward control law of PT1-structure is
synthesized that

• maximizes decoupling of the two reference signals (roll reference ϕref and side-slip
reference βref ) and

• ensures that rate limits on the control surface inputs are obeyed for the test maneu-
vers (−30◦ → +30◦ roll reference step, 0 → 0.1 rad side-slip reference step).

This is solved by a linear programing (LP) problem that directly shapes the feed-
forward controller coefficients to optimize decoupling Decouplingover all fuel and
CG cases and a suitable choice of the PT1 time constants.
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Fig. 6.2 Bode magnitude plot of gust-wing cut moment for all mass cases (black open loop; red
closed loop with initial controller)

6.2.5 Initial Control Law Validation

Figures 6.1 and 6.2 validate the performance of the designed initial control law for all
CG and fuel cases for the high-speed central flight case (cruise conditions). Figure 6.1
shows that the closed-loop validation step responses fulfill the required RB speci-
fications robustly. Moreover, the aircraft is robustly stabilized, and the damping
ratios of the DR mode and the first flexible (wing bending) modes are increased as
shown in Fig. 6.2, but also an overall increase in the low-frequency magnitude of the
disturbance-loads transfer becomes evident. The first flexible mode can be robustly
attenuated by about 6 dB in all CG/fuel cases with this simple control law.

Further studies on the issue of the increased low-frequency disturbance-load mag-
nitude shows that this effect mainly occurs at parameter configurations far from the
design point. When solely assigning one aircraft mode to the desired location while
keeping the others fixed at their open-loop locations, it is unveiled that shifting the
roll mode and the flexible mode does not affect low-frequency loads; however, both
DR mode shaping as well as shifting the spiral mode are responsible to a similar
degree to the observed increase in loads. Further optimization of the low-frequency
disturbance behavior of the aircraft is not studied in this work, but represents an
interesting area for follow-up studies.
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6.3 DK-Iteration Design

A. Schirrer and M. Kozek

6.3.1 Methodology

Based on the pre-shaped plant obtained by closing the loop with the initial con-
troller from Sect. 6.2, a parameterized high-accuracy parameterized linear fractional
representation (LFR) is built (see Sect. 4.2.3.3), which serves as basis for robust
feedback control design by DGK-iteration [74]. Due to high-dimensional parame-
ter dependency and loose bounds in current μ analysis tools, this synthesis task
faces computational difficulties given today’s workstation computing performance
and numeric properties of the algorithms. Thus, ways to reduce design complexity
and improve resulting robust control performance are tested and assessed in terms of
performance, robustness, tractability, and problem size. A high-accuracy parametric
LFR as well as various simplified LFR formulations are utilized in subsequent design
attempts.

6.3.1.1 Initial Controller

The output feedback controller Kinit of dynamic order 1 is obtained as shown in
Sect. 6.2. The initial controller is interconnected to the aircraft system models, form-
ing a set of pre-shaped plants (each of dynamic order 48). As described in Sect. 6.2.5,
this initial controller achieves a robust reduction of the first anti-symmetric wing
bending mode amplitude by about 6 dB. Note that it is not possible to directly and
robustly increase flexible mode damping further with the eigenstructure assignment
design methodology.

6.3.1.2 Linear Fractional Representation of the Parametrized,
Pre-shaped Plants

By exploiting the structure of the parameter dependency of the plant, the damping
of the first flexible modes is attempted to be further increased, without altering the
other already satisfied control goals (RB response, stability). Therefore, an LFR
description of this set of pre-shaped plants in the two parameters CG and fuel filling
has been generated from the model grid (5.15) and (5.16) and validated by the authors’
project partners analogous to the procedure in [43], see Sect. 4.2.3.3. The lag states
were removed for the LFR generation. A first, high-accuracy LFR has been generated
which has 41 states and a Δ block size of 40 × 40 (in which the two real-valued

http://dx.doi.org/10.1007/978-3-319-10792-9_4
http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_4
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parameters are 9 and 31 times repeated, respectively). Later, due to computational
difficulties with this level of complexity, a simplified parameterization has been
generated which leads to a reduced-accuracy LFR with 33 states and a 13 × 13 Δ

block (8 and 5 times repeated, respectively).
Figure 6.1 shows scaled, typical step responses (as modeled by the high-accuracy

LFR) for several randomly sampled parameter values. The RB response is considered
satisfactorily shaped by the initial controller.

6.3.2 Control Goals

In addition to the initial control law designed in Sect. 5.4, a lateral inner-loop control
design should be carried out to are:

1. retain the achieved goals from Table 5.4 (stabilization, RB control), and
2. maximize damping of the first two flexible modes.

Note that the initial control law already provides vibration damping functionality;
however, further improvement of the vibration damping performance (goal 2) is
possible only when exploiting knowledge on the parameter dependency. Thus, the
μ synthesis method (via the D(G)K-iteration algorithm) is employed to address this
goal.

6.3.3 Control Design

DGK-iteration is employed with the aim to generate a robust controller that fulfills
the targeted control goals: to attenuate the first and second flexible modes, and thus
reduce the gust-induced wing loads. For details on the involved robust control theory,
fundamental definitions of linear fractional transforms/representation (LFTs/LFRs),
the structured singular value (μ), robust stability (RS), robust performance (RP), or
the DK- and DGK-iteration algorithms, the reader is referred to [5, 37, 76, 95].

The control design architecture for control design via DGK-iteration is outlined
in Fig. 6.3 (left). The system LFR GLFR is augmented by the design weights Wa,
Wn, Wu, and Wz to obtain the augmented plant Gaug, and K is the robust feedback
LTI controller to be designed. The modeled signals are disturbance input d = vlat,
feedback control commands u = [uRU,FB, uTE12,FB, uTE3,FB]T, the performance
outputs z = [Mywing, Nzlat.law]T, the measured outputs y = [β, φ, p, r, Nzlat.law]T

with measurement noise n, as well as the weighted output signals zu and z p. The
measurement noise weighted Wn and the additive uncertainty weight Wa serve as
problem regularization terms and are chosen small and constant. The remaining
weights are chosen with the aim to

http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_5
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• ensure well-scaled I/O magnitudes (via scaling inside GLFR),
• emphasize the first and second wing bending modes in the performance path (via

Wz), and to
• limit the control input magnitudes to the admissible input range (via Wu).

6.3.3.1 DGK-Design Attempt with High-Accuracy LFR

The results of a DGK-iteration run based on the high-accuracy LFR are shown in
Fig. 6.3 (right). The RP μ value is much larger than 1 at all considered frequencies—
it is clearly evident that the closed loop fails to achieve satisfactory control perfor-
mance. In further studies, it becomes evident that the bounds of the open-loop robust
stability (RS) μ value are very loose. This problem of convergence and the resulting
conservativeness in the D- and G-scalings yield unsatisfactory results of the design.
Note that only static scalings could be utilized in DGK-iteration design due to the
problem size: The Δ-block contains 40 × 40 = 1,600 entries. Fitting these with
dynamic G- and D-scalings inflates the controller order quickly well above 1,000
which is numerically and computationally infeasible.

One common heuristics to improve mixed-μ convergence is to add small, complex
uncertainties to the existing real uncertainties. This was attempted first, however no
improvement in μ bound convergence could be observed.

To overcome the encountered computational difficulties, two simplification
approaches will be taken and compared in the following.

6.3.3.2 DGK-Design Attempt with AdHoc Uncertainty Model

Based on the observation that the perturbations of the flexible mode parameters are
the main source of uncertainty, an adhoc uncertainty parameterization is attempted
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(see [8, 90, 95] for similar attempts). The aircraft models are close to a modal form
[36] in which a low-damped flexible mode is represented by a 2 × 2 submatrix of
the system matrix A:

Ami =
[

0 1
−ω2

i −2ζiωi

]
. (6.6)

By replacing the (2, 1) and (2, 2) matrix elements with real-valued uncertain para-
meters which are confined to the intervals occurring across the model set, an efficient
uncertainty representation with a small uncertainty matrix Δ of size 2 × 2 per mode
is obtained. Note that no other variations in the plant are considered, hence the uncer-
tainty model is rather crude. The architecture shown in Fig. 6.3 is reused, but the plant
LFR is replaced by its simplified version (with a Δ-block of 4 × 4). The achieved
RP μ value is 2.7.

The obtained controller is of dynamic order 117 (due to dynamic D- and G-
scalings) after few minutes of computation time on a standard office PC. This con-
troller complexity is in general too high for implementation, so controller order
reduction is needed subsequently.

Figure 6.4 shows the performance singular values of the open- and closed-loop
systems with the validation plants. An input turbulence model according to a 1D von-
Kármán vertical turbulence model has been utilized to include information on the
expected low-pass characteristics of turbulence excitation, assuming that a similar
turbulence characteristics can be observed in a lateral direction. It is evident that for
most models the obtained controller performs well and achieves strong attenuation
(about −7 dB) of the first and second flexible modes. However, in two (extremal)
parameter cases, the second flexible mode of the respective validation plant is desta-
bilized. No simple means are available to ensure stability with these plants except
for enlarging the uncertainty ranges, which quickly destroys the obtained nominal
performance.

6.3.3.3 DGK-Design with Reduced-Accuracy LFR

In order to obtain a computationally manageable problem size, but still to obtain a
robustly stabilizing and performing control law, a reduced-accuracy parameterized
LFR has been generated. The weight shapes are chosen as depicted in Fig. 6.5 to
emphasize the control effect on the first flexible mode. After several design iterations,
it became clear that the large variation of the second flexible mode is a limiting factor
in the design—therefore, the weightings are adapted to avoid control action at the
second flexible mode’s frequency range.

Figure 6.6 shows the unweighted and the weighted performance singular values of
the unweighted (scaled) LFR and of the weighted design plant, randomly sampled in
the uncertain set. The effect of the chosen weightings is clearly visible—the strongly
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Fig. 6.5 Weight shapes of Wu (left) and Wz (right) the control action is focused on the first wing
bending mode (notch in Wu , peak in Wz). Additionally, the 2nd flexible mode must be attenuated
in the performance path to obtain RP
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Fig. 6.6 Scaled, unweighted (left), and weighted (right) magnitude plot of lateral gust—
performance outputs as modeled by the reduced-complexity LFR, sampled at 20 random parameter
points

varying second mode is decreased in importance; the control design task focuses on
the first flexible mode.

After the DGK-iteration run (20 iterations, D- and G-scalings up to order 4, grid
of 284 frequencies, augmented design plant Paug of order 59, 135 min computation
time), an RP μ of 1.44 is obtained (as compared to an open-loop RP μ of 2.0),
which is still larger than 1, but, as shown in Fig. 6.7, the RS μ value is less than 1.
The figure shows also the nominal performance singular values (single weighted load
performance outputs and all outputs combined) of the nominal closed loop M and thus
shows the closed-loop system variation bounds as gap between the nominal singular
values and the RP μ bound. The controller dynamic order is very high with 253
states. For implementation, (robust) controller order reduction must be performed,
see [21] for a μ-based approach. The high-order control law can be reduced by the
reduce command of MATLAB® [5] with the option ‘ErrorType’,‘mult’ to
order 30 virtually without performance loss. The underlying algorithm is a balanced
stochastic model truncation (BST) via Schur’s method [67].
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6.3.4 Validation and Discussion

6.3.4.1 Validation of Control Performance and Robustness

The control law obtained in Sect. 6.3.3.3 is validated with all grid models (5.15) and
(5.16). All closed-loop systems are stable. While the μ analysis results in Fig. 6.7
proves RS for the utilized LFR formulation of the problem (up to LFR approximation
errors), this enumeration of the set of all closed-loop systems proves RS in terms of
the provided model set.

Figure 6.8 shows the magnitude plots of the disturbance—performance paths: the
first flexible mode can robustly be reduced to 2–3 dB below the level provided by
the initial control law. Note that this does not contradict the evident lack of RP in the
LFR sense (which is based on the performance formulation according to Fig. 6.3).

The controller obtained by DGK-iteration does not interfere with low-frequency
roll and side-slip behavior of the BWB aircraft, so the final closed-loop responses
are virtually unchanged compared to Fig. 6.1 and control goals 2 and 3 in Sect. 6.2
remain fulfilled.

http://dx.doi.org/10.1007/978-3-319-10792-9_5
http://dx.doi.org/10.1007/978-3-319-10792-9_5
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6.3.4.2 Discussion

A highly detailed modeling process yields accurate system models for a parameter
grid of relevant system parameters. For high parameterization accuracy, the obtained
parameterized linear fractional representation turns out to be prohibitively complex
for current μ analysis and synthesis algorithms. Several ways to solve the design
task have been attempted, including well-known problem regularization techniques
(“complexification” of the uncertainty description) and simplification of the linear
fractional representation.

Adhoc uncertainty modeling yields simple LFRs and high control performance for
the design plant, but it destabilizes some parameter-extremal validation plant cases
in closed loop. No straightforward remedy is found without compromising control
performance significantly.

Subsequently, a reduced-accuracy parameterized LFR is generated which leads
to a successful, albeit computationally demanding design. The obtained control law
can be reduced to order 30 without performance degradation and yields stable closed
loops with all validation cases. Its performance is significantly lower than the nominal
performance achieved through the adhoc approach, but in turn it provides an actually
robust solution. Considering that significant damping is already introduced by the
initial control law it is plausible that further improvement comes at high cost—both
in terms of design complexity and numeric complexity of the control law.

As an outlook to possible future research, several other approaches could be
attempted in such high-complexity designs. To meet the numeric challenges associ-
ated with μ bounds calculation, especially in the present case where a low number of
parameters is repeated often, it seems reasonable to attempt numeric search methods
to empirically find improved μ bounds. Also, μ computation algorithms without the
need of fine frequency gridding could alleviate the encountered difficulties [34].
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This study considers only the lateral motion of the BWB aircraft which is decou-
pled from the longitudinal motion as long as the deviation of the flight mechanic vari-
ables remain sufficiently close to trimmed level flight conditions and the linearized
system models remain valid. However, even without longitudinal/lateral coupling in
the underlying system models, it is important to simulate both dynamics simulta-
neously in order to verify that control surface deflection/rate limitations are obeyed
also in combined maneuvers (such as in coordinated turns).

In conclusion, the findings of this work underline the importance of efficient LFR
modeling for DK-/DGK-iteration-based control design. The encountered challenges
demonstrate the need for algorithms which allow to generate efficient LFRs whose
parameterization accuracy is optimized for the envisaged control task, for example
through frequency-weighted error minimization.

6.3.4.3 Conclusions

This section presents results for an incremental robust feedback control design of a
lateral inner-loop control law for the 450-passenger ACFA BWB aircraft predesign
model. Starting with an initial control law that already provides basic response shap-
ing and flexible mode damping, the main design goal of this work is to further
increase the damping of the flexible modes robustly despite the presence of strong
parameter-dependent plant variation. The DGK-iteration synthesis procedure is uti-
lized and several LFR formulations of the aircraft model parameter dependency are
tested. The highest-complexity attempt involving a high-accuracy parametric LFR
cannot be handled computationally. A simple, manual adhoc uncertainty formulation
leads to quick results with high nominal performance but fails to provide robustness
in validation. Finally, a reduced-accuracy parametric LFR is utilized which leads
to a computationally demanding design, but yields a control law that robustly sta-
bilizes and attenuates the flexible dynamics above the level provided by the initial
control law. High-fidelity validation studies of these control laws via simulations are
necessary at a later stage of control design in order to quantify the effects of model
uncertainties and errors as well as longitudinal and lateral coupling.

6.4 Convex Synthesis Design

F. Demourant, G. Ferreres and A. Schirrer

6.4.1 Introduction

Numerous requirements are to be fulfilled to control a flexible aircraft. The corre-
sponding specifications can be very different: handling qualities, load alleviation
in the frequency- and/or time-domain representations, command effort including
saturation and rate limiters, comfort and robustness [23, 33, 84]. To meet these
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different kinds of specifications the Youla parameter design, namely the convex syn-
thesis [12] is involved. This approach is very interesting for several reasons. All
stabilizing controllers can be parametrized thanks to the Youla parameter and the
closed-loop transfer functions are affine with respect to the Youla parameter. Then
all specifications that correspond to constraints on closed-loop transfer functions can
be rewritten as convex optimization problem. Finally, the problem solved is convex
which guarantees the globality of the optimum found and good tractability of the
optimization algorithm. This last point is all the more important in that a specific
property of a flexible aircraft is the high dynamic order of the models. In brief,
the convex synthesis is clearly a multiobjective/multicriterion control law design
approach.

The second important point is to ensure achieving the required performance level
for the full flight domain and different mass/fuel cases. This point leads to schedule a
control law with measurable parameters which impact the behavior of the aircraft. An
useful representation to make the Youla parameter appear naturally is the estimated
state feedback structure. By this representation, a natural LPV controller is obtained
since a parametrized model is embedded in the observer. A typical parametrization is
an LFR of the model to control, whereby the Δ block contains scheduling parameters.
Let us point out two important points. Firstly, it is not necessary to schedule the
observer and state gains and/or the Youla parameter if the closed-loop behavior
is satisfactory. Secondly, the LFR, which can be difficult to determine with high-
order models and/or numerous scheduling/robustness parameters [83], is one possible
representation, but other parametrizations such as a polynomial parametrization, can
be used for the observer.

The studied control design task for the flexible ACFA BWB aircraft is aimed at 3
sets of specifications. The first set of specifications concerns the handling qualities,
that is, the behavior of the aircraft with pilot and flight control law. Thereby, it is
important to note that it is not expected that all handling qualities specifications
are satisfied by the feedback. If the feedback design is considered satisfactory, it
is possible and necessary to use a feed-forward control law to shape time-domain
responses in order to fully meet handling qualities specifications. The second set
of specifications concerns the load alleviation in critical load outputs. Typically,
the main objective is to decrease the load level for the wing root bending moment
(WRMX) under the constraint to satisfy actuators saturations and rate limiters and not
to increase the wing root vertical force (WRFz). The last specification set concerns
the improvement of passenger comfort. Here, this specification is formulated as
reduction of the H2 norm of cabin accelerations.

For the rigid part, an LQG methodology is involved. This methodology is very
interesting in our context because it makes the structure of the estimated state feed-
back appear naturally. Of course, from theoretical point of view, any dynamic feed-
back output can be put under an estimated state-feedback form [1]. However, this
additional step is not straightforward to carry out and can lead, in the context of an
LPV control law, to controllers which are not interpolable with a suitable behavior.
Results obtained in terms of closed-loop pole placement and time-domain simulations
are satisfactory without scheduling observer and state gains. Still, this controller is
an LPV controller due to the fact that the observer is parametrized. This controller
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represents the initial stabilizing LPV controller. Now the Youla parameter is designed
to meet specification on the flexible part. Finally, the load alleviation, which is
the main objective, is obtained while satisfying constraints on WRFz and actu-
ators together with a comfort improvement. Finally, after the feedback has been
synthesized, a feed-forward is designed to satisfy handling qualities specifications
completely.

The results of this control design strategy are taken from [24].

6.4.2 Methodology

A convex representation of the feedback control design problem is obtained via
the Youla parameterization [94]. This allows one to express closed-loop transfer
functions affinely in basis functions of the Youla parameter and thus allows direct
convex optimization of closed-loop time- or frequency-domain responses. This so-
called convex synthesis [12, 20], as a Youla-parameter-based technique, is similar to
the H∞ synthesis in the sense that it allows to weigh closed-loop transfer matrices.
Additionally, mixed frequency- and time-domain constraints or objectives (H∞,
L∞, H2, etc.) can be considered simultaneously. However, closed-loop plant poles
become immobile under this parametrization, so an initial stabilizing controller is
required which already has to produce a well-placed closed-loop plant pole structure.

6.4.2.1 Affinity of Closed-Loop Transfer Functions

Let us consider the classical standard form where y(t) and u(t) are the inputs/outputs
of the control law and w(t) and z(t) are the closed-loop inputs/outputs to control.
Typically, w(t) are reference inputs, measure noise and non-measured perturbations.
Outputs z(t) represent any closed-loop weighted signals which must be controlled
by the control law. P(s) represents the synthesis model with weighting functions and
K0 represents an available control law. Two hypothesizes are necessary to use of
convex synthesis methodology:

• the transfer matrix P(s) should be proper;
• the initial controller K0 should ensure closed-loop stability.

Let us split transfer matrix P in the following way:

P =
[

P11 P12
P21 P22

]
(6.7)

It is possible to write the transfer matrix between w and z as a function of P and
any controller K by the lower linear fractional transformation Fl(P, K):

Tw→z = Fl(P, K) = P11 + P12K(I − P22K)−1P21 (6.8)
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In our synthesis problem, it is necessary to write the set of time- and frequency-
domain specifications under mathematical criteria. For instance, frequency-domain
specifications can be written as the minimization of γi, j under the frequency-domain
constraint:

‖ Twi →z j ( jω) ‖∞≤ γi, j ⇔‖ Fl(P, K)i, j ‖∞≤ γi, j (6.9)

The problem is to determine the control law K which satisfies specifications (6.9),
which is deeply nonlinear in K. We will now show that the Q-parameterization allows
to express the closed-loop constraints as a linear expression in Q:

Fl(P, K) = T1 − T2QT3 (6.10)

where Q becomes the synthesis parameter and T1, T2 and T3 contain the poles of
the initial closed-loop system. In fact, the Q-parameterization allows to substitute Q
to K to make the optimization problem convex. The Q-parameterization allows to
describe all the K(s) which stabilize the closed loop: if a control law satisfying the
specifications exists then it is possible to find it by optimizing the Q parameter.

We have shown that the closed-loop transfer matrix is affine in Q for an (LFT).
Q can be parameterized as follows:

Q =
n∑

i=1

θi Qi (6.11)

Qi are filters whose poles are determined a priori and θi are optimization para-
meters. The set of these filters is a base which is used to build Q. Then the (LFT)
can be written in the following way:

Fl(P, K) = T1 −
n∑

i=1

θi T2Qi T3 (6.12)

Let us assume Fl0 = T1 and Fli = −T2Qi T3, we obtain:

Fl(P, K) = Fl0 +
n∑

i=1

Fli θi = Fl0 + FtΘ (6.13)

where the closed-loop transfer matrix is affine in Θ , vector of the decomposition
of Q over the base. We can show that frequency- and time-domain responses are
also affine in Θ . The problem can then be efficiently solved with the cutting-planes
method.
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6.4.2.2 Choice of a Base

To choose a base for Q comes down to determine poles. Is important to note that poles
of filters are poles of the final closed loop by property of Q-parameterization. In the
field of system identification, numerous studies exist about the generation of these
bases. Theoretically, an infinite number of base elements is needed, but as the control
law order depends on the base order, a base which order is compatible with spec-
ifications is chosen. An orthonormal base is used, called Takenaka and Malmquist
base, which combines properties of Laguerre and Kautz base. The decomposition of
Qi (s) is given by (6.14).

Qi (s) =
√

2 Re(ai )

s + ai

i−1∏
k=1

s − ak

s + ak
, Q0(s) = 1, ak ∈ C+ (6.14)

where ak are the filters poles and are determined a priori to cover the frequency
domain of the bandwidth, and Q = ∑N

i=1 θi Qi .

6.4.2.3 A Structure for the Youla Parameter

One method to obtain a Youla parametrization is to design an initial stabilizing
observer-based state feedback which is a posteriori augmented with the inputs e and
outputs v of Q(s):

˙̂x = Ax̂ + Bu + L(y − Cx̂ − Du)

u = −Kx̂ + v (6.15)

e = y − Cx̂ − Du

where K and L respectively represent the state feedback and the observer gain.
Finally, the control law order K(Q) is the sum of the order of the initial control law
K0 and the order of Q.

6.4.3 Control Design

The utilized longitudinal model of the ACFA 2020 BWB aircraft (a variant of the
reduced-order model (ROM) as generated in Sect. 4.1) is of order 23. This model
includes 4 rigid states (pitch oscillation and phugoid modes), 6 flexible modes, hence
12 flexible states and 7 lag states. This model is composed of 2 parts: A rigid part
which corresponds to the handling qualities model and a flexible part which corre-
sponds to the aeroelastic model.

http://dx.doi.org/10.1007/978-3-319-10792-9_4
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The structure of the closed loop for the longitudinal control of a civil aircraft is the
following one. The measurement signals used by the controller are Nzlong.law, q, and
NzCG. The signals q and NzCG, respectively, represent the pitch rate and the vertical
acceleration on the center of gravity. These two outputs are used to obtain satisfactory
results for the handling qualities. Nzlong.law = (Nzl.wingtip + Nzr.wingtip)/2 − NzCG
where Nzl.wingtip and Nzr.wingtip represent respectively the vertical acceleration on the
left and right wing allows to catch the symmetric flexible modes of the wing in order
to control them and then to decrease the load level and to improve the comfort for
passengers. The outputs used by the controller correspond to the elevators (inner and
outer) and the outer ailerons. The elevators allow to obtain good handling qualities and
the ailerons allow to control the symmetric flexible modes. As just the longitudinal
dynamics is investigated ailerons and elevators are deflected in a symmetric way.
The last input, Nzcom, corresponds to the reference input.

A second-order actuator is used for each input. Besides, a second-order Padé
model of a 160 ms delay with an additional low-pass second-order filter is added on
q and NzCG. A second-order Padé model of a 60 ms delay is added on Nzlong.law.
These actuators have specific characteristics since the dynamics of these actuators are
very slow as indicated by Table 6.1. This kind of dynamics leads to a high amplitude
of controller output signals. Besides, as rate limiters and saturations are situated
before actuators on the controller outputs, rate limiters represent strong constraints
for the command effort. Data about saturations and rate limiters are given in Table 6.1.

Globally the system to control is of order 37 (aircraft 23+actuators 4+ sensors
10). Of course, it is necessary to add other inputs and outputs which are not used by
the controller but essential to satisfy specifications such as the wind and derivative
wind inputs, WRMX and WRFz outputs, and cabin accelerations to improve comfort.

The considered flight domain is defined by 3 Mach numbers and 3 dynamic
pressures. Tables 6.2 and 6.3 provide the different flight cases in altitudes and true
air speed. Eight fuel cases have been considered from the case 20 % to the case full
fuel tank by step of 10 %. Finally, 9 flight cases and 9 fuel/mass cases are obtained
which correspond to 81 models.

To evaluate the load level, two kinds of signal for perturbations can be considered.
The first one is the turbulence which is usually represented by a linearized von-
Kármán filter. In our application, this perturbation does not represent the critical
perturbation in the sense that it does not lead to a high load level. The second one is
the discrete gust which is modeled by the following relation:

Table 6.1 Actuators characteristics

Damping Frequency (rad/s) Position limits (°) Velocity limits (°/s)

Elevators 0.707 2.71 [−30, +15] [−30, +30]

Outer ailerons 0.707 7.77 [−25, +25] [−40, +40]
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Table 6.2 True air speed
VTAS in m/s

Mach case 1 Mach case 2 Mach case 3

V1 243.6 251.6 259.8

V2 248.6 256.1 263.7

V3 252.9 260.3 267.7

Table 6.3 Altitude in m Mach case 1 Mach case 2 Mach case 3

H1 10,871 11,335 11,777

H2 9,031 9,513 9,973

H3 7,793 8,287 8,761

U = Uds

2
×

[
1 − cos

(
π VTAS

H
t

)]
(6.16)

where VTAS is the true airspeed of the aircraft, Uds the amplitude which varies from
11.9 to 19 m/s and H the scale which lies between 9 and 152.4 m. This kind of
perturbation leads to sizing load levels.

6.4.3.1 The Initial Stabilizing Controller

The initial stabilizing controller has been designed by a classical LQG approach. Let
us remind that this approach is based on the minimization of the following criterion:

+∞∫
−∞

(
xTQx + uTRu

)
dt (6.17)

where x is the state vector and u is the input signal of the system to control such as:

ẋ = Ax + Bu

y = Cx + Du (6.18)

Matrices Q and R are design parameters and are chosen to satisfy specifications.
Finally, a state feedback K such as u = −Kx is obtained. A similar formulation
exists to synthesize the observer gain L.

6.4.4 Validation and Discussion

As indicated previously, convex synthesis is done in two steps. The first one is to
obtain an initial stabilizing LPV controller. From methodological point of view, this
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initial controller is designed to satisfy specifications on the rigid part. The rigid part
is a fourth-order model with two dynamics: the pitch oscillation and the phugoid
modes.

6.4.4.1 Handling Qualities

Specifications concern the pitch oscillation since the phugoid is treated thanks to an
auto-throttle which is not the objective here. But a hard constraint must be respected
since the pitch oscillation control do not make the phugoid too unstable, that is, the
phugoid must remain real and the possible instability inferior to +0.1 rad/s. In other
words, the phugoid can be unstable but real and very slow to be controllable by the
pilot. Specifications are the following ones:

• A static error null between the Nz command Nzcom and NzCG for a step input;
• Perturbation rejection must be ensured;
• A correct closed-loop pole placement, that is, the control law is able to reject a

non-measured perturbation in 5 or 6 s;
• A first-order behavior for NzCG with a step reference input on Nzcom. A rising

time of 3–6 s is expected with a very limited overshoot on Nz and an overshoot
maximum of 30 % on q.

The first three specifications can be and must be satisfied only by the feedback. In
fact, it is necessary to have an integrator in the controller to ensure the perturbation
rejection and the null static error. Besides, the closed-loop pole placement cannot be
modified by a feed-forward, hence it is necessary to satisfy with the feedback the
specification concerning the perturbation rejection in 5 or 6 s. The last specification
is treated thanks to a feed-forward. However, to make easier the design of the feed-
forward, it is interesting to have, with only the feedback, time-domain response as
closed as possible to this specification.

The structure of the 2DOF controller is given by Fig. 6.9. Let us notice the integra-
tor pole in the controller to ensure a perturbation rejection, the feed-forward which
acts on only the elevators to satisfy handling qualities specifications and the Youla
parameter which uses the estimation error.

Design of the State-Feedback Controller

The design model corresponds to the most unstable model with pitch oscillation
and phugoid modes. The phugoid mode is unstable (−0.133 and +0.206), while the
damping ratio of the short-period mode, namely 0.527, is close to the minimum value
over the operating range.

The design model for the state-feedback controller is the 21 state integral model
(with a second-order rigid part only corresponding to the pitch oscillation)+actuator
and sensor models+an integrator on the NzCG output. Only the elevators are used.

An LQ method is used as written previously to design the initial stabilizing con-
troller. R = 1 for the weighting matrix on u1 and the weighting matrix Q for the
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Fig. 6.9 Structure of the 2DOF controller

states corresponds to Q = μ1c1cT
1 + μ2c2cT

2 . The output y1 = cT
1 x corresponds to

the integrator on the NzCG output, while y2 = cT
2 x corresponds to the NzCG output

itself. For the application, μ1 = μ2 = 0.01.
Finally, the results in terms of closed-loop pole placement are the following ones

for all models over the operating range with only the pitch oscillation:

• The integrator pole remains real in closed loop;
• The open-loop real lag pole remains real in closed loop;
• The pitch oscillation mode, with a damping ratio of about 0.5 in open loop, is

accelerated and a bit more damped.

The previous results are not modified by the phugoid, that is, with a 23rd-order
model. Besides for all models over the operating range, the worst-case stability degree
for the phugoid is +0.007, which is very satisfactory since widely inferior to 0.1 rad/s
which is the limit imposed by specifications.

To illustrate these results, time-domain responses of the closed loop between
Nzcom and NzCG are given by Fig. 6.10a, b. Let us notice that results without phugoid
are rather close to the final specifications expected with a feed-forward. Then it is
reasonable to assume that it will be possible to satisfy specifications on all models
with a simple multi-model feed-forward. The state-feedback controller is globally
(very) satisfactory.

Design of the Observer Gain

The model embedded inside the observed state-feedback controller is chosen to be the
integral 21 state model (with only a second-order rigid part corresponding to the pitch
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Fig. 6.10 Time-domain response of NzCG for a step input on Nzcom. a Time-domain response
without phugoid. b Time-domain response with phugoid

Fig. 6.11 Step response to the filtered wind input on all models without phugoid

oscillation mode) as well as actuator and sensor models. There is no integrator on
the NzCG output since this state is directly available for the state-feedback controller.
Remember that the pitch oscillation mode is correctly damped, so that the observer
gain is simply chosen as zero. The resulting observed state-feedback controller is
first tested on all models without phugoid mode, for the step response to a filtered
wind input. More precisely, a filter 1/(1+0.05s) is applied to the wind input w and a
filter s/(1+0.05s) is applied to dw/dt . The result seems satisfactory (see Figs. 6.11
and 6.12). The step response to a reference acceleration input is the same as the one
obtained with the state-feedback controller, and the closed-loop poles correspond to
those obtained with the state feedback and observer gains, so that they need not be
checked. Then the estimated state-feedback controller is applied to all models with
phugoid mode:

• As for the closed-loop poles, the worst-case stability degree is +1.951e−02, which
means that the phugoid mode has been essentially stabilized (remember its worst-
case open loop value is +0.206).

• The step responses to a reference acceleration input are displayed in Fig. 6.13.
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Fig. 6.12 Step response to the filtered wind input on all models with phugoid

Fig. 6.13 Time-domain response of NzCG for a step input on Nzcom with phugoid mode for all
models

6.4.4.2 Control of the Flexible Part

Specifications on the flexible part are treated thanks the Youla parameter design. Let
us remind that the closed-loop transfer functions are parametrized with respect to
the Youla parameter of the following way:

Tw→z = T1 + T2QT3 (6.19)

where Tw→z represents the closed-loop transfer function to minimize or to constrain,
T1 the initial closed-loop transfer function, T2 and T3 closed-loop transfer functions
which depend on the initial stabilizing controller. Specifications on the flexible model
are the following ones:

• To minimize the WRMX load level for sizing cases with critical perturbations;
• A command effort to minimize the WRMX compatible with saturations and rate

limiters;
• A WRFz preserved with minimization of the WRMX load level;
• Improvement of the passengers comfort.

Load Level Alleviation

The first specification is the main specification and the most difficult one. Typically,
the perturbation is either a turbulence or a discrete gust. However, generally speaking,
the discrete gust is the perturbation which leads to the maximum load level for the
WRMX. For discrete gusts, the load level is evaluated as an L∞ norm on the output
WRMX for a specific discrete gust. For each flight and mass case, 10 different discrete
gusts, which correspond to 10 different amplitudes Uds and scales H , are applied.
Besides when the WRMX load level is decreased for one discrete gust, one mass
and one flight case, the load level must represent the maximum load level for all
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other discrete gusts and flight/fuel cases. In other words, it is difficult to guarantee a
maximum load level for all cases. Of course, as indicated previously, it must be done
while satisfying saturations and rate limiters with a limited WRFz load level.

Another and last point is to take into account the 1 g load. This static load is
specific to the longitudinal dynamic and perfectly natural since it corresponds to the
compensation of the weight of the aircraft. In brief, the total load level is the result
of a static part and a dynamic part. But if the dynamic load is obtained by the linear
time-domain simulations, it is not the case of the 1 g load. For all that it is the total
load which must be minimized and if the same constraint is imposed for all dynamic
load it is not relevant because the total load can be very different due to the 1 g load.
A solution is to impose a constraint different for each dynamic load in order to have
the same constraint for the total load level.

To decrease the WRMX load level sizing fuel and flight cases have been deter-
mined. Besides discrete gusts which lead to the highest WRMX load level are deter-
mined too. These discrete gusts are called critical discrete gusts. In brief, just sizing
flight and fuel cases with critical discrete gusts are used in the optimization problem.
But the analysis a posteriori is done with all fuel and flight cases and all discrete
gusts.

For all figures, constraints are represented by red lines, static load levels by green
lines and dynamic or total load levels by blue lines. For a upward discrete gust , the
bending moment is negative, so the sizing value is represented by the negative part.
A constraint on the dynamic load is evaluated for each fuel and flight sizing case
(Fig. 6.14a). The Youla parameter is designed and finally the result on the dynamic
load level is given by Fig. 6.14b. Results on total load level are given by Fig. 6.15b
where we notice that the constraint is the same for all cases (Fig. 6.15a, b) since the
constraint on the dynamic part has been evaluated for this. Finally, a load alleviation
of 17 % is obtained on the total load level (Fig. 6.15b). An important point is to check
that WRMX load level for all flight and mass cases and all discrete gusts satisfy
constraints, which represent 81 models × 10 discrete gusts totalling 810 time-domain
simulations for each figure. These responses are presented in Fig. 6.16a, b. Thanks
to these figures we notice that the constraints are satisfied for all cases.

Command Effort

Let us remind that in the nonlinear scheme, saturations and rate limiters are situated
before the actuators and consequently on the controller outputs. Then the signals
which are considered for the synthesis and the analysis are controller outputs. Critical
constraints are imposed by rate limiters since the deflection velocity before actuator
is very high due to limited actuators bandwidth.
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Fig. 6.14 Time-domain response of the WRMX dynamic load level with discrete gust. a WRMX
time-domain response without Youla parameter. b WRMX time-domain response with Youla para-
meter
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Fig. 6.15 Time-domain response of the WRMX total load level with discrete gust. a WRMX time-
domain response without Youla parameter. b WRMX time-domain response with Youla parameter
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Fig. 6.16 Time-domain response of the WRMX total load level with all discrete gusts and all fuel
and mass cases. a WRMX time-domain response without Youla parameter. b WRMX time-domain
response with Youla parameter
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Fig. 6.17 Deflection velocity of elevators for sizing mass and flight cases and critical discrete gusts.
a Deflection velocity of elevators without Youla parameter. b Deflection velocity of elevators with
Youla parameter
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Fig. 6.18 Deflection velocity of outer ailerons for sizing mass and flight cases and critical discrete
gusts. a Deflection velocity of outer ailerons without Youla parameter. b Deflection velocity of
outer ailerons with Youla parameter

Figures 6.17, 6.18, 6.19 and 6.20 represent deflections (in rad) and deflection
velocity (in rad/s) of outer ailerons and elevators for sizing flight and mass cases
and critical gusts with respect to time in seconds. We notice that the constraints
represented by red lines are satisfied. These constraints are given by Table 6.1. Let us
notice that the initial stabilizing controllers whose the objective is to satisfy handling
qualities does not use ailerons, so the result without Youla parameter is 0.

Wing Root Vertical Force Load Level

A specification concerns the WRFz which must be preserved with minimization of
the WRMX load level.

In Fig. 6.21, the WRFz load level has been represented for all discrete gusts, mass
and flight cases. The red lines on these figures represent the maximal positive and
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Fig. 6.19 Deflection of elevators for sizing mass and flight cases and critical discrete gusts. a Deflec-
tion of elevators without Youla parameter. b Deflection of elevators with Youla parameter

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time in s

(a) (b)

de
fle

ct
io

n
in

ra
d

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time in s

de
fle

ct
io

n
in

ra
d

Fig. 6.20 Deflection of outer ailerons for sizing mass and flight cases and critical discrete gusts.
a Deflection of outer ailerons without Youla parameter. b Deflection of outer ailerons with Youla
parameter
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Fig. 6.21 Time-domain response of the WRFz load level with all discrete gusts and all fuel and
mass cases. a WRFz load level without Youla parameter. b WRFz load level with Youla parameter
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negative value without Youla parameter. We notice that results with Youla parameter
are satisfactory because not only the WRFz is preserved, but also it is decreased for
the positive value. The absolute value of the negative part increases but it is not a
problem since the 1 g force is positive.

Passenger Comfort

Figures 6.22 and 6.23 represent comfort cabin with two kinds of filters: seasickness
and vibration filters. The comfort criterion is based on the H2 norm of the transfer
function. Only result with one comfort cabin output has been represented but 5
comfort cabin outputs have been used in the design scheme. On each figure, the 81
fuel and flight cases have been represented. The input signal is a white noise filtered
by a linearized von-Kármán filter. Globally, since 5 comfort cabin outputs are used,
the H2 norm of 5 ∗ 81 = 405 transfer functions are considered. Of course, it is not
possible to represent all these transfer functions but the global reduction of the H2
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Fig. 6.22 Comfort cabin with seasickness filters. a Transfer functions of comfort cabin without
Youla parameter. b Transfer functions of comfort cabin with Youla parameter
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Fig. 6.23 Comfort cabin with vibration filters. a Transfer functions of comfort cabin without Youla
parameter. b Transfer functions of comfort cabin with Youla parameter
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norm is 20 %, that is, the comfort has been improved by 20 %. This global reduction
can lead to a rise in some transfer functions as it is possible to see in Fig. 6.23b.

6.4.4.3 Feed-Forward

Let us remind handling qualities specifications that we have to satisfy with the feed-
forward:

• A rise time of 3–6 s is expected with a very limited overshoot on Nz;
• A maximum overshoot of 30 % on q.

Figure 6.24 represents handling qualities when the feed-forward law is designed
and implemented. We can notice that specifications are fully satisfied now since:

• The overshoot on NzCG is limited to 1 % for the worst case with a mean of 0.45 %;
• The rising time on NzCG is 5.95 s at 95 % of the wanted value or 4.95 s at 90 % of

the wanted value for the worst case. Mean values are respectively of 4.0 and 3.4 s.
• The overshoot on q is limited to 21.5 % for the worst case with a mean value of

5.7 %.

Besides, this feed-forward law is multi-model, that is, a simple transfer function
of order 4 allows to satisfy specifications for all fuel and flight cases. Of course, all
these results on NzCG and q are obtained with a limited command effort since we can
see in Fig. 6.25 that firstly, only elevators are used by the feed-forward law as shown
by Fig. 6.9 and secondly that deflection and deflection velocity are widely inferior to
constraints represented by saturations and rate limiters.

Fig. 6.24 Step response for
N z and q
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Fig. 6.25 Elevator and
aileron responses to step
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6.5 LPV Feedback Design

C. Westermayer, A. Schirrer and M. Kozek

The LPV feedback control design presented in this section has been developed in
[88] for the longitudinal dynamics of the ACFA 2020 BWB aircraft. Over the design
steps, including preliminary and optimized H∞ LTI designs, as well as the overall
LPV design, both, a linearization family of the ROMs (Sect. 4.1) and a parametrized
model in an LFR obtained in Sect. 4.2 has been utilized for analysis, design, and
validation tasks.

6.5.1 Methodology—LPV Design Using Parameter-Dependent
Lyapunov Functions

In this section, the theoretical background for controller design using parameter-
dependent Lyapunov functions is outlined. It follows the derivations in [93], where
the information given by upper bounds on parameter variation rates are utilized for
controller design of parameter-varying systems in order to obtain less conservative
results. An outline of this methodology can also be found in [66], where also the con-
nection to other scheduling approaches is provided. The methodology was already
successfully applied to some practical applications [4, 61, 85, 89], which was deci-
sive to use it also for the given problem formulation. More specifically, an LPV
design toolbox developed by and kindly provided by Prof. Gary Balas [4], which is
based on the methodology of parameter-dependent Lyapunov functions, is utilized
for feedback control design of the aeroelastic BWB aircraft.

http://dx.doi.org/10.1007/978-3-319-10792-9_4
http://dx.doi.org/10.1007/978-3-319-10792-9_4
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6.5.1.1 Stability and Performance Analysis of Parameter-Dependent Systems

Starting point for the following considerations is the description of the nonlinear
plant

ẋ(t) = f (x(t), u(t), d(t), ρ(t))

y(t) = g (x(t), d(t), ρ(t)) (6.20)

z(t) = h (x(t), u(t), d(t), ρ(t))

where x(t) denotes the state vector, u is the control input, d is the disturbance input,
y is the measurement output, z is the error output. Additionally, ρ(t) is the exogenous
variable, or also denoted as the parameter vector. This vector is assumed piecewise
continuously differentiable and is defined over the compact set P ⊂ Rs :

ρ(t) = [ρ1(t) ρ2(t) · · · ρs(t)]T ρ ∈ P ⊂ Rs . (6.21)

Moreover, the parameter vector rate of variation is bounded such that

|ρ̇i (t)| ≤ νi , i = 1, . . . , s. (6.22)

holds. Linearization of (6.20) for a set of fixed parameters in an equilibrium point
with respect to x, u and d leads to a linear parameter-dependent description for the
nonlinear plant ⎡

⎣ ẋ
z
y

⎤
⎦ =

⎡
⎣ A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)

⎤
⎦

⎡
⎣ x

d
u

⎤
⎦ (6.23)

Utilizing the assumptions that D22(ρ) = 0, D12(ρ) has full column rank and D21(ρ)

full row rank for all ρ ∈ P , the open-loop system representation (6.23) can without
loss of generality be transformed in a simplified form for synthesis:

⎡
⎢⎢⎣

ẋ
z1
z2
y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A(ρ) B11(ρ) B12(ρ) B2(ρ)

C11(ρ) D1111(ρ) D1112(ρ) 0
C12(ρ) D1121(ρ) D1122(ρ) Inz2

C2(ρ) 0 Ind2 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
d1
d2
u

⎤
⎥⎥⎦ . (6.24)

The parameter vector ρ and its derivative ρ̇ are assumed to be measurable in real
time and therefore can be used as an additional information for the controller. This
leads to the system representation of the controller

[
ẋK
u

]
=

[
AK(ρ, ρ̇) BK(ρ, ρ̇)

CK(ρ, ρ̇) DK(ρ, ρ̇)

] [
xK
y

]
, (6.25)

which is also parameter-dependent. Using a lower (LFT), the closed loop can be built
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[
ẋcl
z

]
=

[
Acl(ρ, ρ̇) Bcl(ρ, ρ̇)

Ccl(ρ, ρ̇) Dcl(ρ, ρ̇)

] [
xcl
d

]
, (6.26)

with

Acl =
[

A(ρ) + B2(ρ)DK(ρ, ρ̇)C2(ρ) B2(ρ)CK(ρ, ρ̇)

BK(ρ, ρ̇)C2(ρ) AK(ρ, ρ̇)

]
, (6.27)

Bcl =
[

B11(ρ) B12(ρ) + B2(ρ)DK(ρ, ρ̇)

0 BK(ρ, ρ̇)

]
, (6.28)

Ccl =
[

C11(ρ) 0
C12(ρ) + DK(ρ, ρ̇)C2(ρ) CK(ρ, ρ̇)

]
, (6.29)

Dcl =
[

D1111(ρ) D1112(ρ)

D1121 D1122(ρ)DK(ρ, ρ̇)

]
. (6.30)

In order to test stability of the parameter-dependent systems such as (6.24) or (6.26),
the Lyapunov stability test [40] can be used. However, this test is based on a quadratic,
parameter-independent Lyapunov function

V(x) = xTXx, X = XT (6.31)

and proves stability for arbitrarily fast changing parameters. Therefore, utilizing this
analysis test as a basis for controller synthesis of parameter-varying systems leads to
either conservative results or in terms of an LMI optimization even to infeasibility
although a feasible result could exist. Instead of the quadratic Lyapunov function, a
parameter-dependent Lyapunov function of the form

V(x, ρ) = xTX(ρ)x, X(ρ) = XT(ρ) (6.32)

can be introduced. Its time derivative is given by

d

dt
V(x, ρ) = ẋTX(ρ)x + xTX(ρ)ẋ + d

dt
X(ρ)

= ẋTX(ρ)x + xTX(ρ)ẋ +
s∑

i=1

(
ρ̇i

∂X(ρ)

∂ρi

)
. (6.33)

Using this Lyapunov function, the stability test for parameter-dependent systems can
be defined as follows.

Definition 6.1 (Parameter-dependent stability [93]) For a given compact parameter
set ρ ∈ P ⊂ Rs and non-negative upper bounds of parameter variation rates {νi }s

i=1,
consider a linear parameter-varying system

ẋ = A(ρ, ρ̇)x, x(t0) = x0, (6.34)
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which is called parametrically dependent stable if limt→∞ x(t) = 0 for all x0. Using
the parameter-dependent Lyapunov function (6.32), then A(ρ, ρ̇) is parametrically
dependent stable over P if there exists a continuously differentiable function X(ρ):
Rs → Sn×n , such that X(ρ) = XT(ρ) > 0 and

AT(ρ, ρ̇)X(ρ) + X(ρ)A(ρ, ρ̇) +
s∑

i=1

(
ρ̇i

∂X
∂ρi

)
< 0 (6.35)

for all ρ ∈ P and |ρ̇i | ≤ νi holds.

The proof is given in [93]. This parameter-dependent stability criterion incor-
porates bounds on the maximum parameter rates of variation and therefore is less
conservative than the quadratic stability criterion. In order to obtain a similar sta-
bility and performance test as given by the classical Bounded Real Lemma [68] for
LTI systems, this lemma has to be generalized for parameter-varying systems using
the parameter-dependent Lyapunov function (6.32). An appropriate corresponding
performance measure for LPV systems is given by the induced L2-norm which is
defined for the performance transfer path as

||Tzd ||i,2 = sup
ρ∈P
|ρ̇|≤ν

sup
‖d‖2 =0

||z||2
||d||2 . (6.36)

This norm is equivalent to the largest amplification of the disturbance norm ||d||2
to the error norm ||z||2 for all parameter trajectories that satisfy ρ ∈ P and hence
represents a generalization of the H∞-norm for LTI systems to LPV systems [93].
Consequently, the following theorem is derived which provides a sufficient condition
for parameter-dependent stability and a prescribed bound for the induced L2-norm
of a linear parameter-dependent system.

Theorem 6.1 [93] For a given compact parameter set ρ ∈ P ⊂ Rs and non-
negative upper magnitude bounds of parameter variation rates {νi }s

i=1, consider the
linear parameter-varying system (6.26). If there exists a continuously differentiable
matrix function X(ρ) = XT(ρ) such that

X(ρ) > 0,⎡
⎣ AT

cl(ρ, ρ̇)X(ρ) + X(ρ)Acl(ρ, ρ̇) +
s∑

i=1

(
ρ̇i

∂X
∂βi

)
X(ρ)Bcl(ρ, ρ̇)

BT
cl(ρ, ρ̇)X(ρ) 0

⎤
⎦

+
[

0 I
Ccl(ρ, ρ̇) Dcl(ρ, ρ̇)

]T [ −γ 2I 0
0 I

] [
0 I

Ccl(ρ, ρ̇) Dcl(ρ, ρ̇)

]
< 0 (6.37)

holds for all ρ ∈ P and |βi | ≤ νi , then

1. the function Acl(ρ, ρ̇) is parametrically dependent stable over P and
2. the closed-loop performance transfer fulfills ||Tzd ||i,2 < γ .
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In Theorem 6.1 purposely the closed-loop system as given by (6.26) was considered,
indicating that this theorem serves as a basis for controller design. Using the Schur
complement, the LMI (6.37) can be also written in compact form as

⎡
⎢⎢⎣

AT
cl(ρ, ρ̇)X(ρ) + X(ρ)Acl(ρ, ρ̇) +

s∑
i=1

(
βi

∂X
∂ρi

)
X(ρ)Bcl(ρ, ρ̇) γ −1Ccl

T(ρ, ρ̇)

Bcl
T(ρ, ρ̇)X(ρ) −I γ −1 Dcl

T(ρ, ρ̇)

γ −1Ccl(ρ, ρ̇) γ −1 Dcl(ρ, ρ̇) −I

⎤
⎥⎥⎦< 0.

(6.38)

This LMI (6.38) can be used as starting point for the derivation of an adequate
controller synthesis formulation. For the sake of brevity, the solvability condition
for the parameter-dependent γ -performance problem is not presented here and the
reader is kindly referred to [93].

The matrix functions X(ρ) represent an infinite-dimensional function space which
has to be approximated by a finite-dimensional subspace using a set of continuously
differentiable basis functions fi :

X(ρ) :=
N∑

i=1
fi (ρ)Xi . (6.39)

A guideline for the selection of the basis functions is to choose functions that reflect
the parameter dependency of the open-loop plant as close as possible [4, 61, 85].
Moreover, the synthesis LMIs have to be satisfied for all ρ ∈ P which would require
to solve an infinite number of LMIs. Hence, for computational tractability, the entire
parameter space has to be approximated by a representative finite set of grid point
models. It is important to keep in mind that both, the selection of basis functions and
the gridding density strongly affects computational complexity, since the number of
decision variables increases with a higher number of basis functions and grid point
models.

6.5.1.2 Design Process

Based on the theoretical aspects outlined above and the information that needs to
be gathered from nominal H∞ grid point design as will be shown in Sect. 6.5.3, the
LPV design process can be described by the following steps:

1. Derive the linearized models from the nonlinear system parameterized by the
scheduling variables ρ (see Sect. 4.2). Thereby, attention should be paid on the
model order to simplify the subsequent LMI optimization process.

2. Analyze the open-loop model with special emphasis on the effect of varying
parameters on the system properties (see Sect. 5.1).

http://dx.doi.org/10.1007/978-3-319-10792-9_4
http://dx.doi.org/10.1007/978-3-319-10792-9_5


186 A. Schirrer et al.

3. Select an appropriate H∞ controller design architecture which addresses the
required design specifications and define appropriate weighting functions (see
Sect. 6.5.3.1).

4. Optimize LTI H∞ controllers over the entire parameter space by adjusting the
performance weighting functions (see Sect. 6.5.3.2). Preferably, this is done in an
automatic way by defining a cost function based on relevant design specifications
which have to be optimized (see Sect. 6.5.3.3).

5. Validate the LTI controllers on a representative validation model. If specifications
are not satisfied, go back to step 3 and try a different design architecture or
different frequency weighting functions.

6. Scale the determined performance weighting functions for each parameter grid
point by corresponding obtained γLTI values in order to avoid over-emphasizing
of some grid points in the LPV optimization. At the same time, the finally
obtained γLPV value provides information about the performance degradation in
comparison to the LTI design.

7. Select suitable basis functions according to the plant dynamics dependency on
scheduling parameters [93], and determine a grid of fixed parameter settings
representing the parameter space (see Sect. 6.5.4.1).

8. Define lower and upper bounds for the parameter variation rates representative
for the considered application (see Sect. 6.5.4.2).

9. Run of LMI optimization using the linearized models, the design architecture,
and the scaled performance weighting functions determined in the previous steps.

10. Split the entire parameter space into smaller subspaces, if the entire parameter
space is too large for controller optimization in one step or strong discontinuities
in a certain parameter region are present.

If more than one scheduling parameter has to be considered at once, it is to recommend
that a priori designs for a single parameter are carried out to develop an understanding
about the necessary density of the parameter grid and the effect of various basis
functions. With the information gathered, a stepwise enlargement of the parameter
space is preferable.

If the LMI optimization leads to a feasible solution, the following steps are nec-
essary to obtain the final LPV control law:

1. Preparation of a fine gridding of linearized models such that several grid points
in between the design grid points are available.

2. Linear interpolation of the performance weightings and the γLTI values between
the design grid points.

3. Interconnection of the finely gridded linearized models with the corresponding
interpolated and scaled performance weightings.

4. The LPV controller matrices for the fine gridding are obtained as presented in
[93], where the system matrix ALTI depends on the parameter rate.

5. Optional removal of parameter rate dependency according to [66].
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In order to obtain a control law representation which continuously depends on the
parameter vector, the finely gridded controller matrices can be linearly interpolated
element-wise as in [4].

6.5.2 Design Goals

In this feedback design, the feedback control goals as a subset of the goals listed in
Sect. 5.2 are addressed. Especially, robust stabilization, pole placement, and rejection
of turbulence or gust disturbances are focused on. Partially, the maneuverability is
addressed to improve maneuver performance with the final feed-forward command
shaping.

6.5.3 Preceding H∞ Design Optimization

6.5.3.1 Design Model and Closed-Loop Interconnection Architecture

As described in Sect. 6.5.1.2, the overall complexity of the feedback control process
demands a stepwise design procedure starting with nominal H∞ designs. Using the
results gathered during the open-loop analysis as presented in Sect. 5.1, an adequate
control design architecture needs to be defined.

Initial preliminary designs have revealed that the architecture as proposed in
Fig. 6.26 is suitable to successfully address the design goals as formulated in
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Sect. 6.5.2 in an highly efficient manner. In this architecture, G is the state-space
model of the aircraft

⎡
⎣ ẋ(t)

e(t)
y(t)

⎤
⎦ =

⎡
⎣ A B1 B2

C1 D11 D12
C2 D21 D22

⎤
⎦

︸ ︷︷ ︸
G

⎡
⎣ x(t)

d(t)
u(t)

⎤
⎦ , (6.40)

and K is the feedback controller to be designed. The corresponding state vector x of
G is given by

x = [
u w Θ q ξ1 ξ̇1 . . . ξs ξ̇s xl1 . . . xlt

]T
, (6.41)

where the first four states represent the RB states body forward velocity u, body
downward velocity w, pitch angle Θ and pitch rate q. Neglecting the states u and Θ

in (6.41) results in the short-period mode approximation of the aircraft. Using this
approximation prevents the H∞ optimization algorithm from directly stabilizing
the phugoid mode in favor of overall improved closed-loop performance. The states
ξ j and ξ̇ j ( j = 1, . . . , s) are the modal deflections and modal deflection rates of
aeroelastic modes, respectively, and xlk (k = 1, . . . , t) are the lag states. The number
of flexible modes and lag states are different for validation and design models:

• Validation model Gval: s = 19, t = 14
• Design model Gdes: s = 2, t = 4

The number of flexible modes in the design model is set to a comparatively low
number due to the limited bandwidth of about 20 rad/s of the investigated control
surfaces. However, within this range, the first two symmetrical flexible modes are
located which are important in terms of structural loads and vibrations. Moreover,
keeping only four lag states for the design turned out to have only marginal effect on
the considered system dynamics.

The utilized control inputs u of G are the combined elevator ηELt and the fast
actuating outer flap ηFL3 . The first is the control surface most efficient for pitch
motion control, while the latter is mainly used for aeroelastics control. In terms of
aeroelastics control, the exogenous input ηv is a further important input to the system,
representing the global vertical gust velocity input positioned at the CG.

The measurement signals available to the controller to fulfill control goals that
are mainly related to the RB dynamics of the aircraft, are the vertical acceleration
at CG, NzCG, and the pitch rate qCG. Zero tracking error on NzCG is guaranteed
by an approach as presented in [50], where the open loop is directly augmented by
an integrator as indicated by the index i in Fig. 6.26. The qCG output turned out to
be an effective lever for tuning of the short-period mode damping. Initial designs
also revealed that NzCG and qCG feedback signals are able to significantly shift the
unstable phugoid mode. For that reason, an additional VTAS measurement signal was
not directly included in the H∞ design, but instead a static VTAS outer feedback loop
was added to further improve the phugoid mode. For aeroelastic control, the modal
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wing bending signal Nzlong.law is used to separate the vertical wing bending from the
RB motion:

Nzlong.law =
((

Nzlw,k + Nzrw,k
)

2
− NzCG

)
, (6.42)

The cut moment output My5 serves as the only performance output during design and
is selected to formulate performance specifications concerning load minimization in
turbulence gust and maneuvers.

The design architecture in Fig. 6.26 represents a standard H∞ mixed-sensitivity
problem [76], with the corresponding generalized closed-loop representation as
shown in Fig. 6.27. The main goal of the optimization is to minimize the cost function

∥∥Fl(P, K)
∥∥∞ < γ, (6.43)

where the transfer paths from the exogenous inputs d to the exogenous outputs z
correspond to the single elements of the cost function matrix (6.43) and represent
important performance paths of the closed loop. These are additionally weighted by
suitable weighting functions Wi as indicated in Fig. 6.26 and represent the tuning
knobs of the H∞ mixed-sensitivity design. Therefore, a good understanding of the
weighting functions and the actual closed-loop behavior is a prerequisite for a suc-
cessful LPV design over a large parameter space. However, the choice of weighting
function definition and the tuning process itself is extensive. Here, exemplarily the
optimization with respect to limited control energy and the tuning of aeroelastic
control is presented only.
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6.5.3.2 Performance Weighting Function Definition

When trying to improve disturbance attenuation or tracking performance, it is of
utmost importance to incorporate constraints concerning available control energy in
a similar degree. In terms of a mixed-sensitivity problem, this can easily be ensured
by including the control input u in the performance output vector [76]. Thereby,
the function KSo appears in the cost function (6.43), where So = (I + GK)−1 is
the output sensitivity function. In the low-frequency region, the singular value of
KSo must be limited in order to avoid large control signals beyond saturation limits
demanded by the controller K. On the other hand, the bandwidth of control inputs
must be constrained to avoid exceeding the corresponding rate limits. Since the output
sensitivity function So typically shows proportional behavior in the high-frequency
region, the controller roll-off itself determines the roll-off of the closed-loop transfer
function KSo. Appropriate controller roll-off is obtained using a high-pass filter as
performance weighting

Wu =
[

tu1
s+tu2·1

s+tu2·100 , 0

0 tu3
s+tu4·1

s+tu4·100 ,

]
, (6.44)

where tu1, tu3 and tu2, tu4 as the corresponding tuning factors to define the static gain
(DC gain) and the corner frequency. For the control input ηELt , the singular value plot
of KSo for a nominal plant as well as exemplarily the inverse of the corresponding
weighting function W−1

u is shown in Fig. 6.28 (left).
As evident from that figure, the low-pass behavior of W−1

u ensures the desired
roll-off behavior of the closed loop. Increasing tu1 leads to both reduced bandwidth
and reduced maximum control signals.
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The design requirements regarding reduction of structural loads and maximum
vertical accelerations due to vertical gusts has proven to be difficult to achieve by
frequency domain weighting without deterioration of the remaining specifications.
Therefore, instead of minimization, an increase of these quantities is tried to be
avoided by an appropriate selection of tuning weights. The damping of structural
vibrations, on the contrary, is effectively addressed by shaping the output sensitivity
function So from the disturbance input at the output dd to the measurement Nzlong.law
and the disturbance transfer path from the vertical gust input ηv to Nzlong.law. There-
fore, the output disturbance weighting function matrix Wd and the output weighting
function matrix Wy ,

Wd =
⎡
⎣ td1 0 0

0 td2 0
0 0 td3

⎤
⎦, Wy =

⎡
⎣ ty1 0 0

0 ty2 0
0 0 ty3

⎤
⎦, (6.45)

at the corresponding position are both defined as a constant weight td3 and ty3.
Constant weights have proven to be sufficient, due to the localized high gains of
the flexible modes in the corresponding transfer functions. For controller tuning,
the factors td3 and ty3 are both increased until a slight shift of WB1 respectively
WB2 is visible. Subsequently, td3 is kept constant and ty3 is used for tuning of
the structural damping of these two modes. This is presented in the singular value
plot from ηv to Nzlong.law in Fig. 6.28 (right), where the results for a varying tuning
factor ty3 are shown and ty3 = 1 represents a nominal setting. As can be seen, the
damping is extremely sensitive on variations of ty3. Considering WB1, variations of
the nominal setting ty3 = 1 by a factor of 2 respectively 0.5 leads to changes of the
relative damping of around ±50 %. However, as expected not only modifications in
the modes’ damping ratios but also in their frequencies are apparent.

6.5.3.3 Robustness Against Fuel Uncertainty and Automated Tuning

In the previous section, aspects of nominal design were considered mainly. A sub-
sequent step is to investigate the design optimization with respect to the robustness
requirement for fuel-mass uncertainty. Basically, two different approaches were con-
sidered. First, a μ-synthesis design was investigated using an (LFT) model with a
structured uncertainty block of order three. The high-accuracy and simultaneously
low-order (LFT) model was provided by the project partner DLR (see Sect. 4.2). The
obtained RP of the closed loop was compared to a second approach, a multi-model
H∞ approach. Despite the slightly deteriorated performance of the latter, the multi-
model approach is chosen due to the reduced optimization complexity. Moreover,
the closed-loop robustness against frequency and damping parameter uncertainty of
the first two flexible modes was analyzed. Thereby, it turned out that the sensitivity
to frequency uncertainty is higher than for damping parameter variations. However,
basically a good robustness against these two uncertain parameters was revealed.

http://dx.doi.org/10.1007/978-3-319-10792-9_4
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The manual tuning process is a time-consuming task for the large operating range
to be considered. Therefore, an automatic tuning approach based on quality functions
appropriate for performance specifications related to command response shaping and
pole placement were defined. The resulting optimization function was minimized
using the genetic algorithm of the optimization toolbox in MATLAB®. Using the
automatic tuning approach, the weighting functions over the entire considered para-
meter space required for the subsequent LPV optimization were effectively deter-
mined, see [88].

6.5.4 Preliminary LPV Feedback Design

With the information gathered from the nominal H∞ designs as described in the
previous Sect. 6.5.3, the LPV controller optimization can be started. The LPV design
is again divided into several sub-steps in order to improve the overall design process.
First, several preliminary designs with single scheduling parameters are necessary
in order to determine appropriate basis functions and an adequate gridding density,
both with respect to closed-loop performance and computational complexity. Fur-
thermore, closed-loop performance is investigated with respect to changing upper
bounds for parameter rates. Finally, the LPV design optimization over the entire
parameter space is presented and key items are discussed.

6.5.4.1 Basis Functions Selection and Gridding Density

For a successful LPV control optimization over a large parameter space, the effect
of gridding density and the selection of basis function are essential aspects of the
design. It is advantageous to consider always only one scheduling parameter for
the parameter range of interest at the beginning. Exemplarily, the θMa parameter is
investigated in the following.

The solution matrices X(ρ), Y(ρ) of the LPV synthesis problem as outlined in
Sect. 6.5.1.1 are matrix functions depending on the parameter vector ρ. This leads to
an infinite-dimensional optimization problem, so these matrices have to be approxi-
mated by a finite set of basis functions. Though much importance is attached to the
choice of basis functions, a clear analytical procedure is not available. A general
rule is to select the basis functions according to the parameter dependency of the
open-loop system to be considered [93]. In previous works [4, 61, 85], where the
LPV design methodology is applied to industrial applications, the matrix functions
were defined by constant, linear and quadratic basis functions as

X(ρ) = X1 + ρX2 + ρ2X3, Y(ρ) = Y1 + ρY2 + ρ2Y3. (6.46)

For a larger subproblem in [85], only a constant and a linear term are utilized.
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According to the results obtained from the open-loop analysis in Sect. 5.1, the
parameter dependency of the short-period mode (SPM) on the θMa parameter for
the given parameter range 0.82 ≤ θMa ≤ 0.88 is nearly linear. Therefore, in a first
step, constant and linear basis functions, X(θMa) = X1 + θMaX2 and Y(θMa) =
Y1 + θMaY2, were tested. Moreover, the parameter range was approximated by two
finite parameter vectors PθMa,i of different grid density:

PθMa,1 = [0.820, 0.832, 0.844, 0.856, 0.868, 0.880]
PθMa,2 = [0.820, 0.850, 0.880] (6.47)

The effect of the different gridding density on the controller is shown in Fig. 6.29,
where a frequency magnitude response plot of the controller from NzCG to ηELt

and the corresponding pole/zero map on a fine parameter validation grid PθMa,val =
[0.820, 0.826, . . . , 0.880] is presented. In the low-frequency region up until 5 rad/s,
the magnitude curves lie denser for the finer gridding indicating the advantage given
by the additional information of intermediate grid points. In the higher frequency
region, on the contrary, the magnitude curves are similar, which can be explained
by the restricted control authority of the elevator in this region. The pole/zero map
shows a smooth characteristics for poles and zeros along the parameter variation
for the fine gridding. For the rough gridding, however, sometimes poles and zeros
form a cluster. The obtained γ values are γLPV,fine = 1.15 and γLPV,rough = 1.25 for
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the fine and rough gridding, respectively, which emphasizes the advantage given by
denser gridding.

A similar investigation was conducted with the matrix functions extended by
the quadratic basis function terms θ2

MaX3 and θ2
MaY3. Thereby, it turned out that

the design is much more sensible to gridding density as in the linear case. Using a
gridding according to PθMa,2 did not lead to useful results for intermediate points
even though the design γ value γLPV,rough = 1.08 was significantly lower than
for the linear case. With PθMa,1, better results could be achieved, however, at few
intermediate points the obtained control law was still defective. The same analysis
was carried out for the θq parameter which lead to similar results.

6.5.4.2 Parameter Rate Setting

Additionally, the effect of the parameter rate setting on the optimization result
was tested. Therefore, starting from a nominal setting of |θ̇Ma| = 0.02 1/s and
|θ̇q| = 80 Pa/s was stepwise increased respectively decreased. Increasing the rate
values leads to more conservative results indicated by an increased γLPV value and
deteriorated overall performance. However, the basic characteristics of the control
law and the resulting closed-loop behavior did not change.

6.5.5 Final LPV Design

With the information gathered from preliminary LPV designs, the parameter space
was enlarged step-by-step. The H∞ multi-model approach as shown in Sect. 6.5.3.3
has shown good RP results for an uncertain fuel-mass parameter and fixed θMa and
θq parameters. However, for varying θMa and θq parameters, achieving robustness for
the entire fuel-mass range turned out to be hard. Therefore, the fuel-mass parameter
is included as additional parameter in the LPV design process, which is possible
according to the design specifications, leading to a three-dimensional parameter
space for the LMI optimization.

The associated high complexity of the optimization problem leads to either long
computation times or to infeasibility of the problem. Therefore, the entire parameter
space is split up into several subspaces. The rate of parameter variation is com-
paratively higher for θMa and θq in comparison with θfuel, which makes robustness
guarantees for those two parameters important. Moreover, the control law must pro-
vide sufficient robustness against fuel-mass uncertainty. Therefore, the fuel-mass
parameter range was divided into three subspaces, where each subspace of θfuel is
described by two grid points:

Pθfuel,1 = [38, 63] Pθfuel,2 = [63, 91] Pθfuel,3 = [96, 100] (6.48)
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Fig. 6.30 Gridding of the
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Those fuel parameter regions which are not included in the optimization have to be
robustly covered by the designed control laws Kθfuel,i (θMa, θq , θfuel), i = 1, 2, 3.
Especially in the low-fuel-mass region θfuel ≤ 50 %, it has been shown that Kθfuel,1
fulfills the RP requirements to full extent. A continuously scheduled control law
even for the fuel-mass parameter would have to be blended. However, blending of
the control laws was not carried out in this work.

The parameter ranges of θMa and θq parameter are described by three grid points,
where the grid point vectors Pi are defined as

PθMa = [0.820, 0.838, 0.880] Pθq = [8,000, 12,800, 17,238] (6.49)

Therefore, each subspace is described through 18 grid point models as can be also
seen in Fig. 6.30. The matrix functions X(θMa, θq , θfuel), Y(θMa, θq , θfuel) are approx-
imated by constant and linear basis functions in θMa, θq and θfuel according to:

X(θMa, θq , θfuel) = X1 + θMaX2 + θqX3 + θfuelX4
Y(θMa, θq , θfuel) = Y1 + θMaY2 + θqY3 + θfuelY4

(6.50)

The parameter rate of variation was set to |θ̇Ma| = 0.005 1/s, |θ̇q| = 240 Pa/s, and
|θ̇fuel| = 0.1 %/s. For the middle subspace represented by Kθfuel2 , it has been shown
that a reduction of the maximum rate for θ̇Ma and θ̇q to a quarter of the given value
is necessary. Basically, this subspace has shown to be the computationally most
demanding which could be relaxed through a further splitting.

With this optimization setup, one optimization run on an Intel® CoreTM i7 PC
takes between 6 and 17 h when using the LMI solver mincx from the Robust Control
Toolbox of MATLAB® [5].

The obtainedγ values areγLPV,θfuel1 = 6.9,γLPV,θfuel2 = 4.9 andγLPV,θfuel3 = 2.4.
Basically, an increase of the γ values in comparison with the LTI values is to be
expected due to the given rate bounds and the approximation of the function space
by the basis functions. However, these comparatively high values can be traced
back to chosen high-gain performance weights at distinct parameter regions in order
to enforce the desired performance specifications. Since the closed-loop validation
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results are satisfactory as will be shown in Sect. 6.5.6, no further attempts were taken
to reduce the obtained γLPV,θfuel i values.

6.5.6 Validation of LPV Feedback Design

Basically, the validation models feature the following characteristics:

• The linear aircraft model comprises 19 aeroelastic modes and 14 lag states.
• The actuator dynamics is given by a θq -dependent nonlinear model.
• Control inputs are limited by nonlinear saturation and rate limits.
• Second-order Padé approximations for sensor delays.
• Second-order Butterworth filters for control measurement signals.

6.5.6.1 Closed-Loop Poles

One of the key performance requirements is the stabilization of the partly unstable
SPM. Moreover, the open-loop poles must be shifted by the feedback law such that
they provide satisfactory absolute and relative stability in the closed loop, except for
the phugoid mode (PM), where an unstable real pole with a maximum real part of
max(Re(λPM)) < 0.1 is still acceptable.

6.5.6.2 Command Response Behavior

For evaluation of the pitch response to a reference step command, essential flight
mechanic data as well as the corresponding demanded control signals are presented
in this section for the system response to a r = 1.5 g reference command, where
g = 9.81 m/s2 is the gravity constant. Such large reference step represents a required
validation maneuver leading to operation off the linearization point used for design.

The final command response behavior is available only if the feedback loop is
connected with the feed-forward controller Kff where the results will be presented
in a later section. The following results show the attainable tracking performance
given by Kfb alone and highlight the requirements which are not fully satisfied and
therefore have to be improved by Kff .

First, the command response is presented in Fig. 6.31 where the validation model
does not contain the phugoid mode. Besides the outputs NzCG, qCG, and Nzf , the so-
called C∗ quantity is provided. This is a weighted linear combination of the vertical
acceleration at the pilot position Nzf and pitch rate qCG and can be defined according
to [13]:

C∗ = Nzf + q̇CG
xCG

g + qCG
Vm
g , (6.51)
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where Vm = 122 m/s [80] is an average velocity and xCG is the distance from the
CG to the pilot position.

Considering NzCG, which is the quantity to be tracked, in the upper left plot, it
turns out that differences in the rise time as well as the maximum overshoot appear
for the various parameter cases. Mainly the high Mach cases tend to yield slower
command response. As it can be seen, it takes up to t = 8 s for some systems to
reach the desired end value. However, a large part fulfills the requirement of a rise
time between 3 and 5 s with little overshoot.

The spread of the time characteristics of the pitch rate qCG is, on the contrary,
comparatively small over the parameter cases. The rise time is shorter than for NzCG
and the maximum overshoot of 50 % is higher than the given requirement of 30 %.
Considering the vertical acceleration at the cockpit position Nzf , only moderate
differences to the NzCG output appear. Also the C∗ response is dominated by the
shape of the Nzf response.

The control signals demanded by the controller corresponding to Fig. 6.31 are
provided in Fig. 6.32.

Comparing the obtained results with the actual limits for deflection and deflection
rates

− 30◦ ≤ ηELt ≤ 15◦ −25◦ ≤ ηFL12 ≤ 25◦ −25◦ ≤ ηFL3 ≤ 25◦ (6.52)
−30◦/s ≤ η̇ELt ≤ 30◦/s −40◦/s ≤ η̇FL12 ≤ 40◦/s −40◦/s ≤ η̇FL3 ≤ 40◦/s (6.53)
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sentative validation models chosen from the parameter envelope
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command for representative validation models chosen from the parameter envelope

it turns out that the demanded values stay below the limits except for a few outliers.
Especially the deflection rates are significantly lower for both actuators than the
given limits, indicating that there is still enough potential left to make the pitch
response faster. This was one of the main goals for feed-forward control law design,
see Sect. 7.3.

6.5.7 Disturbance Response Behavior

In this section, the system disturbance response is validated using two representa-
tive 1 − cos gusts input signals. In Fig. 6.33, the closed-loop and open-loop time
responses for the longest considered gust length Lgust = 152.4 m are compared.
This gust is the most important one in terms of maximum vertical accelerations and
structural loads. The maximum acceleration respectively maximum load is given
by their first peak in the time response. For a reduction of these peaks, it has been
shown that feedback control requires high control effort in terms of maximum deflec-
tions and rates. Moreover, due to the corresponding necessary higher bandwidth, the
robustness against high-frequency flexible modes deteriorates. Therefore, instead of
minimizing of these maximum values, closed-loop acceleration and structural load
levels equivalent to the open-loop level were aimed for.

http://dx.doi.org/10.1007/978-3-319-10792-9_7
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Fig. 6.33 Closed-loop and open-loop system time responses to gust number 10 for representative
validation models chosen from the envelope

Considering the vertical acceleration NzCG response in the lower right plot of
Fig. 6.33, it can be seen that the maximum closed-loop acceleration for various para-
meter cases is equivalent to those of the open-loop, represented by the dashed lines.
For evaluation of structural loads, the load outputs My3, My6, Fz3, and Fz6 are
exemplarily selected. Considering the responses it turns out that the design goal to
avoid an increase of the load level is satisfied for both, the wing bending moment
and the vertical force outputs.

The demanded control input time responses are provided in Fig. 6.34. During the
design process, it has been shown that exceeding the rate limit of the elevator severely
deteriorates the disturbance response and can even lead to instability. Therefore,
special attention was paid to avoid too fast controller action of this control flap by
appropriate frequency weighting. As can be seen in this figure, the maximum rate
value for the elevator is |η̇ELt | = 28◦/s and for the majority of cases |η̇ELt | < 20◦/s
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Fig. 6.34 Control input deflection and deflection rate time response to gust number 10 for repre-
sentative validation models chosen from the envelope

holds, while |η̇FL3 | < 29◦/s holds. The maximum deflections |ηELt | ≤ 12◦, |ηFL3 | ≤
13◦ also stay well within the limits.

Finally, the performance of aeroelastic damping is evaluated in the frequency
domain. In Fig. 6.35, an open-loop/closed-loop comparison of the singular value plots
is presented for several load outputs as well as NzCG and Nzlong.law measurements.
As can be seen from these plots, the damping of WB1 is significantly increased
and its magnitude significantly reduced for all considered outputs. The damping of
WB2, on the contrary, is hardly changed. No spillover effects arise for the modes not
included in the design due to sufficient roll-off of the control law. There possibly exists
some potential to further increase the control law bandwidth which can also have a
positive effect on the damping performance for WB2. This could be investigated in
a subsequent design iteration step.
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Fig. 6.35 Evaluation of aeroelastic control performance based on singular value analysis plots for
several representative outputs

6.6 Low-Order Control Law Design

M. Hromčík and T. Haniš

6.6.1 Lateral H∞-Optimal Control Law

Two different design approaches for design of lateral control augmentation system
(CAS) for large BWB aircraft with flexible structure are elaborated and assessed in
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this section. The most challenging design issues are related to coupling of rigid-body
(RB) mechanics and flexible dynamics. First, a classical approach is employed giv-
ing rise to separate flight dynamics controller (H2-optimal, with sufficient roll-off
at higher frequencies to avoid spillover) and an active damper for most prominent
lateral flexible modes on top of that (mixed-sensitivity H∞ design). This approach
proves successful and has obvious advantages related to the design process complex-
ity and to implementation/verification/testing. On the other hand, there is always a
risk of potentially significant performance loss compared to a fully integrated design.
For this reason, a fully integrated design is also presented in the form of a fixed-order
multi-input multi-output (MIMO) H∞-optimal flight control system (FCS) con-
troller, obtained by means of direct non-convex non-smooth optimization using the
dedicated software package HIFOO. Performance of both approaches is discussed.
This design is carried out for the lateral motion of the NACRE BWB 750-passenger
aircraft predesign model.

6.6.1.1 Introduction

Large lightweight aircraft structures and novel concepts, such as the BWB air-
craft configurations, typically feature low-frequency structural vibrations modes,
and their coupling with the flight mechanics modes may occur. Combined with
significant dependency of the aircraft dynamics on flight parameters (Mach num-
ber / altitude / passengers / fuel volume and its distribution), severe flight control laws
design challenges are to be expected.

Traditional methods for flight control design typically use nested single-input
single-output (SISO) control loops and strongly structured control architectures [79].
These methods are based on detailed aircraft system analysis and exploit paths with
weak coupling to obtain good results for conventional flight control design. However,
multivariate methods, such as optimal control and particularly robust control design
methods, are state-of-the-art for more complex flight control designs nowadays,
especially useful for coupled and/or uncertain system dynamics. Two large groups
of control design methodologies are optimal control design methods (for example,
LQG control and the Kalman estimator [52]), as well as robust control design methods
(see [76, 95] for fundamentals, or [7] for an aerospace-specific overview).

Two different approaches to lateral MIMO feedback CAS for NACRE BWB
aircraft are presented in the following sections. They are namely a robust MIMO
H2/H∞ mixed-sensitivity controller and a low-order robust MIMO H∞-optimal
controller designed by direct fixed-order control design techniques. All controllers
are designed to guarantee the desired closed-loop RB response (namely rise time
and no-overshoot behavior to the reference change of the bank angle set point, atten-
uation of side-slip disturbance, and required damping ratio of the DR mode), and
to dampen the first two anti-symmetric wing bending flexible modes. Performance
and robustness of all controllers is demonstrated by means of MATLAB/Simulink®

simulations, and their advantages and drawbacks are discussed.
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6.6.1.2 BWB Aircraft Lateral Mathematical Model

The mathematical model of the BWB aircraft used for control law design consists
of the flight mechanics model combined with the models of actuators and sensors.
Actuator models are considered as second-order linear models augmented by satura-
tions and rate limiters. Sensors are modeled as second-order Butterworth filters with
time delays approximated by second-order Padé approximations. The mathematical
model of the aircraft consists of the RB description (modeled as a 12th-order linear
system separated into longitudinal and lateral dynamics), flexible modes (for design
purposes just four modes are considered, depicted by an eighth-order linear model)
and lag states. The overall model used for control law design is of order 52.

6.6.1.3 H2/H∞ Mixed-Sensitivity Controller

A two-stage control law is devised—a separate CAS taking care of the flight dynamics
(robust H2-optimal roll autopilot, with roll-off at higher frequencies), and an active
damper for selected flexible modes (H∞-optimal mixed-sensitivity controller tuned
to first two anti-symmetric wing bending modes). Such an arrangement has obvious
advantages—regarding tuning (both parts are designed/tuned independently), future
flight testing (the active damper can be tested after the roll autopilot is implemented
and approved, and it can be turned on/off at any time while keeping the aircraft well-
controlled), safety (loss of the damper’s functionality, for example, due to sensors
failure, does not take the airplane out of control). The drawback is the potential
reduction of performance compared to a fully integrated design where both flight
dynamics and vibrational issues are handled by a single large MIMO controller.

Design Method

The lateral CAS (roll autopilot) is designed by H2 norm minimization of the gener-
alized plant, encompassing the lateral RB dynamics itself (four states/outputs), two
integrators (to ensure perfect steady-state tracking of a roll angle set point command
and perfect steady-state attenuation of a side-slip disturbance), and two low-pass
filters (for the required roll-off at higher frequencies—so that the flexible modes are
left untouched and not excited by the controller). As all the RB states are measured,
no observer needs to be implemented in fact and the resulting order of this CAS can
be kept quite small (six states). Resulting controller features RS/RP for all considered
mass cases (three passengers and five fuel cases).

On top of that, a robust MIMO controller is built by minimization of the H∞
norm of the frequency-weighted mixed-sensitivity function. The wings’ modal anti-
symmetric sensor and anti-symmetric flaps make up the I/O groups. Loosely speak-
ing, the closed-loop sensitivity function is kept small at selected frequency regions (in
our case covering the wings’ anti-symmetric modes) to assure for good performance
(disturbance attenuation), while the complementary sensitivity function is kept small
everywhere else (to ensure robustness—the design model becomes invalid outside the
selected frequency region). A simple design model of eighth order was constructed
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Fig. 6.36 Control augmentation system for H2 controller design. Anti-symmetrically operated
wings ailerons are considered as control surfaces

Fig. 6.37 Control augmentation system for H2/H∞ controller design. Anti-symmetrically oper-
ated wings ailerons are considered as control surfaces

(modeling accurately the two modes and close region in the I/O channels). Two res-
onant weighting filters of second order are tuned to the frequencies and dampings
of the anti-symmetric wing bending modes of a selected representative case for this
purpose. The resulting H∞ controller has 20 states.

The resulting damper (and also the overall CAS/damper combination) provides
RS for all mass cases, significant improvement regarding damping of structural vibra-
tions for most mass cases (more than 5 dB attenuation), and no effect on vibration
damping for the remaining cases. These findings and the overall performance of the
designed controller and its respective parts are visualized in Figs. 6.36 and 6.37.

H2/H∞ Control Results

Brief assessment of the controller performance is given in the text above (regard-
ing robustness and performance). A set of selected characteristics is now given to
document these findings.

Note that very good performance is achieved for those cases that do not vary
much in the frequency of the targeted modes (Fig. 6.38 left). However, even for the
other cases (Fig. 6.38 right), some performance improvement is achieved, and RS is
assured (Figs. 6.39, 6.40, and 6.41).

Required response to bank angle set point is achieved. Note marginal improvement
of the response when the damping system is connected (though it was not intended
to influence the flight dynamics in fact). As stated above, the flight dynamics part
contains integrated yaw damper and side-slip compensator. Gain and phase margins
for the complete designed controller have been evaluated. RS of the closed loop for
all mass cases is achieved. For simultaneous, independent, worst-case variations in
the individual channels the gain margin ranges from 1.9 to 3.7 dB, and the phase
margin ranges from 12 to 23◦, depending on the mass case.
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Fig. 6.38 Wing bending modes attenuation. Open loop (green), H2 control (blue), and H2/H∞
control (red)

Fig. 6.39 Roll reference tracking. H2 control (blue) and H2/H∞ control (red)

6.6.2 Non-convex Non-smooth Optimization

In recent years, great progress has been made in the challenging area of non-convex
non-smooth optimization solvers. In contrast to more traditional setups, such prob-
lems are highly non-convex and no differentials or Jacobians can be used to navi-
gate the search for even a local optimum. The solvers rely on a Broyden–Fletcher–
Goldfarb–Shanno (BFGS) variable metric (quasi-Newton) method [16, 17, 51], or
non-smooth modifications of Virginia Torczon’s multidirectional search (MDS) [2,
81, 82].

Related numerical software has been soon delivered in the form of freeware
and commercial package like Hybrid Algorithm for Non-Smooth Optimization
(HANSO) based on the BFGS method.

As people from the systems and control community quickly realized, such algo-
rithms and tools can be successfully applied to resolve some control design challenges
that are otherwise almost untractable for real-life-size data. Didier Henrion and Mike
Overton seem to get furthest, proposing a new methodology for direct design of
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Fig. 6.40 Side-slip disturbance rejection. Open loop (green), H2 control (blue), and H2/H∞
control (red)

Fig. 6.41 Yaw rate damper. Open loop (green), H2 control (blue) and H2/H∞ control (red)

low-order H∞-optimal controllers in the 2000s [3, 15, 38, 39, 59], and delivering
a related freeware package HIFOO.

The HIFOO package has already attracted attention of controls designers in the
miscellaneous field [22, 25, 47, 63, 65, 87]. Regarding flight controls design, the
first attempt was made in master thesis [59], where the applicability of the package
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was approved by a means of a textbook example of a wing-leveler controller for an
F-16 aircraft.

In this section, this approach and software will be employed to design, at one-shot,
a robust, full-featured, H∞-optimal longitudinal control law for a BWB highly flex-
ible near-future airliner concept, following the recommended and industry-approved
structure for this CAS. Performance of the result is assessed by means of high-fidelity
simulations and classical, industry-standard robustness analysis results.

6.6.3 Direct Approach to Fixed-Order H∞-Optimal Control Design

For reader’s reference, the basic principles of the underlying algorithms used for
directH∞ fixed-order control design are summarized in brief in this section, adopted
from [38]. Interested readers are advised to consult the original paper for a more
detailed and rigorous treatment.

The aim of the HIFOO algorithm is to deliver a stabilizing H∞-optimal con-
troller for given n LTI systems. The criterion for H∞ optimization is expressed
by the generalized plant setup. The algorithm has two phases. In each phase, the
main workhorse is the BFGS optimization algorithm, which is surprisingly effective
for non-convex, non-smooth optimization. The user can provide an initial guess for
the desired controller; if this is not provided, HIFOO generates randomly generated
initial controllers, and even when an initial guess is provided, HIFOO generates
some additional randomly generated initial controllers in case they provide better
results. The first phase is stabilization: BFGS is used to minimize the maximum
of the spectral abscissa of the closed-loop plants. This process terminates as soon
as a controller is found that stabilizes these plants, thus providing a starting point
for which the objective function for the second phase is finite. The second phase is
optimization: BFGS is used to look for a local minimizer of the controllers found in
the first phase. The HIFOO control design method searches for locally optimal solu-
tions of a non-smooth optimization problem that is built to incorporate minimization
objectives and constraints for multiple plants. The optimization problem is intro-
duced as a set of augmented plants, see Fig. 6.42, commonly used in robust control
approaches. First, the controller order is fixed at the start, allowing for low-order con-
troller design. Second, Lyapunov or lifting variables are introduced to deal with the
conflicting specifications. The resulting optimization problem is formulated on the
controller coefficients only, resulting in a typically small-dimensional non-smooth
non-convex optimization problem that does not require the solution of large convex
sub-problems, relieving the computational burden typical for Lyapunov LMI tech-
niques. An algorithm that searches only for local minimization is used for the sake
of computational time. While no theoretical guarantee can be given on the result’s
quality, in practice it often yields surprisingly efficient control laws.
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Fig. 6.42 H∞ fixed-order optimization setup

6.6.3.1 Lateral Fixed-Order H∞-Optimal MIMO Robust Controller

Similar as in the previous section, the two different control goals are targeted, but this
time by one integrated controller. One job of the control law is to provide autopilot
functionality. The autopilot consists of a stability augmentation system (SAS) (a DR
mode damper) and a CAS (roll and side-slip angle reference tracking). Other roles
of the control law are related to vibrations and loads attenuation.

The lateral integrated CAS was designed as a 2DoF architecture using the fixed-
order optimization approach to keep control law order low. The resulting, extremely
simple controller (in this case, just third-order control law was used) was calculated
using the HIFOO toolbox. The overall lateral CAS consists of a RB autopilot (roll
and side-slip tracker with DR mode damper) and an active feedback damper for
structural modes. The lateral CAS setup can be seen from Fig. 6.43. Two reference
signals are used as inputs into the feed-forward part of the controller (roll and side-
slip setpoints). The side-slip reference signal is usually set to zero, and then the CAS
provides coordinated turn functionality.

Fig. 6.43 Control augmentation system for HIFOO
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The control surfaces used by the CAS are all ailerons (anti-symmetrically actu-
ated FL1–FL3), rudders (RU) and elevators (symmetrically actuated EL). Measured
signals are lateral RB variables at CG (side-slip angle, roll angle, roll rate and yaw
rate), for structural modes control we have selected a lateral wing bending accelera-
tion modal sensor in an anti-symmetrical setup. The resulting control law (autopilot
and structural modes controller) provides RS as well as RP for all 18 cruise condition
cases (six fuel and three passenger cases).

6.6.3.2 HIFOO Control Results

The achieved improvement of damping of the first and second wing bending modes
can be seen from Fig. 6.44. Simultaneously, the DC gain is preserved for all cases.
RP can be approved by the bank angle reference signal tracking response plotted in
Fig. 6.45 (left). Responses for a sequence of two steps are shown and one can see
sufficiently fast response with acceptably small overshoot.

Side-slip disturbance attenuation functionality is investigated in Fig. 6.46 (left).
One can see complete vanishing of side wing influence in a few second and without
inducing oscillation for major part of cases. DR mode damping is investigated in
Fig. 6.46 (right).

Gain and phase margins for the complete designed controller have been evaluated.
RS of the closed loop for all mass cases is achieved. For simultaneous, independent,

Fig. 6.44 Wing bending mode attenuation. Open loop (blue), closed loop (red)



210 A. Schirrer et al.

Fig. 6.45 Bank angle and roll rate reference signal tracking

Fig. 6.46 Side-slip angle disturbance attenuation (left) and Yaw rate damping (right). Open loop
(blue), closed loop (red)
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worst-case variations in the individual channels the gain margin ranges from 0.8 to
2.6 dB, and the phase margin ranges from 5 to 16◦, depending on the mass case.

6.6.4 Longitudinal H∞-Optimal Control Law of Prescribed
Structure

Advanced non-convex non-smooth optimization techniques for fixed-order H∞
robust control are proposed in this part for design of FCSs with prescribed structure.
Compared to classical techniques—tuning of and successive closures of particular
SISO loops like dampers, attitude stabilizers, etc.—all loops are designed simultane-
ously by means of quite intuitive weighting-filters selection. In contrast to standard
optimization techniques, such as H2 or H∞ optimization, the resulting controller
respects the prescribed structure in terms of engaged channels and orders (for exam-
ple, P, PI, PID controllers). In addition, robustness with respect to multi-model uncer-
tainty is also addressed which is of most importance for aerospace applications as
well. Such a way, robust controllers for various Mach numbers, altitudes, or mass
cases can be obtained directly, based only on particular mathematical models for
respective combinations of the flight parameters.

6.6.4.1 Introduction

The flight dynamics, exhibiting many oscillatory or unstable modes for a typical
aircraft, as well as the automatic or semi-automatic regimes of modern autopilots call
for control synthesis methods that can effectively address these issues. Traditionally,
classical tools for SISO loops tuning are used successively to deliver a complex FCS
composed of a few smartly pre-selected channels, such as pitch, roll, or yaw dampers
for suitable dynamics modifications (stability augmentation), subsequent attitude
hold autopilots, automatic navigation loops, etc. Typically, a significant number of
iterations and “backstepping” is required as the higher-level loops interact partially
with the lower-level predesigned parts. Historically, frequency response methods
were developed first in the 1930s and 1940s [11, 32, 56, 58, 60], and they remain
arguably the most commonly used methods until today [14].

Since the 1960s, results of optimal control theory have been used extensively for
aircraft control design as a powerful alternative to the classical approach. The meth-
ods are typically purely multi-input multi-output (MIMO) in nature, delivering all
channels of the resulting controller in “one shot”. The design procedure is controlled
indirectly by means of selection of some weightings, being it constant matrices for
LQ or LQG approach [53, 95], or LTI shaping filters for the H2 or H∞-optimal
control [7, 76, 95]. Nevertheless, the structure of the FCS is typically very hard
or impossible to imprint, and the order (complexity) of the resulting controller can
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become unacceptably large as well. In this regard, the classical methods still have
quite a lot to offer.

Robustness of the flight controller is of utmost importance. The flight dynamics
changes considerably as the aircraft properties vary over time (fuel amount, center
of gravity position) and as the flight parameters change (altitude, airspeed, attitude
angles). Classical and optimal controllers must fulfill the robustness requirements
which is typically acknowledged by means of stability margins analysis (gain mar-
gin, phase margin [10, 18, 19, 53, 76, 95]) and extensive simulations for selected
important points of the flight envelope. Nevertheless, neither of these methodolo-
gies supports incorporating the robustness requirements explicitly into the design
procedure. In contrast, the robust control design approach, developed in the 1980s
through the 2000s [26, 30, 31, 95] relies on the mathematical formulation of the
uncertainty as one of the control design parameters. Most prominent methods are
unstructuredH∞ optimization [7, 76, 95], structuredH∞ control (μ-synthesis, DK-
iterations [6, 27–29, 95], robust loopshaping [55], and others). They all have been
naturally accepted by the aerospace controls community, giving rise to significant
implementations [9, 35, 44, 62].

One may ask if there is not a way to combine the benefits of the classical, optimal,
and robust approaches—the convenient weighting-filters formulation of the optimal
control synthesis, hierarchical and comprehensive structure of the classical con-
trollers, and insensitivity to parameters uncertainties of the robust control designs.
Indeed, some attempts have been made, based either on linear quadratic optimization
(static output feedback design [77–79]), based on mixed-sensitivity H∞ optimiza-
tion with static output constraints [49, 75], or by designing a mixedH2/H∞-optimal
controller of fixed order based on a homotopy algorithm [91].

In this section, a completely different approach toward this goal is suggested,
though. Thanks to the practical availability of computer-aided control systems design
(CACSD) tools based on most recent non-convex non-smooth optimization tech-
niques, direct synthesis methods can be employed to deliver a complex FCS that is
structured (features pre-selected channels only), of fixed low order (consisting of,
for example, P, PI, or lead-lag controllers), optimal in the H∞ norm sense (for band-
width setting, reference tracking, disturbance attenuation requirements), and robust
with respect to a multi-model uncertainty (covering a selected number of airspeed,
mass, altitude, or other cases).

The rest of this section is structured as follows. In Sect. 6.6.4.2, the method of
formulating and solving a structured longitudinal CAS design process with HIFOO
is shown. The main result of the paper is the case study presented in Sect. 6.6.4.3
(where advanced case study is presented). The procedure toward a structured, low
complexity, and robust lateral FCS is elaborated in detail for a nonlinear model
of a BWB-type aircraft, as a proof of practical usefulness of the proposed modern
techniques for flight controls design purposes.
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6.6.4.2 Longitudinal Structured Control Law with HIFOO

We propose a systematic methodology for a one-shot, robust, full-featured, H∞-
optimal longitudinal control design, for a multi-model case covering substantial
points of the flight envelope. This methodology literally combines advantages from
modern controller design techniques involving H∞ or H2 optimization with a hier-
archical approach for aircraft control system design. The HIFOO toolbox allows to
preserve the property of physical meaning of each control system loop (which is one
reasonable argument of aircraft control system engineers) and removes disadvantages
of loop-by-loop tuning of control systems. On the other hand, the well-known robust
control design approach based on the generalized plant setup and a corresponding
criterion definition (for example, in the H∞ sense) in the frequency domain can be
followed also in the HIFOO formulation. Thereby, weighting filters like those used in
[70, 71, 89, 90] can be included to produce MIMO controllers. Still, the HIFOO tool-
box can be understood as an extension to the classical control design techniques. Due
to the local optimization carried out by HIFOO, providing a suitable starting point
in terms of an initial controller can significantly save computation time. Standard
hierarchical approaches can then be used as a promising initial control law.

Algorithm:
Given:

• Set of systems for control design
• Structure of resulting control law
• Optimization criterion.

Output:

• Robust LTI control law with predefined structure.

• Step 1: Specify generalized plant set up (define measurable outputs/actuated inputs
and criterion by performance inputs/outputs).

– Recommendations: It is needed to select measurable outputs/actuated inputs
in correspondence with structure to be designed.

• Step 2: Specify performance requirements by weighting filters.

– Recommendations: Depends on the control problem. Typically, low-pass filters
are used for reference signal tracking, and bandpass filters are used for vibration
modes attenuation.

• Step 3: Specify the control law structure.

– Recommendations: The structure needs to be defined by the controller’s Rosen-
brock matrix. There can be more than one representation, whereby a minimal
realization should be aimed for.

• Step 4: Specify the starting control law if any is available, otherwise it will be
generated randomly.
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Fig. 6.47 Longitudinal control augmentation system (adopted from [13])

Fig. 6.48 Normal
acceleration reference signal
tracking control augmentation
system with structure

– Recommendations: The suitable choice of a starting point is critical to save
optimization time. Control laws designed by classical approaches can be a suit-
able choice.

• Step 5: Solve the design problem using the HIFOO toolbox.

– Recommendations: The involved optimization does not guarantee global opti-
mality; therefore, it is usually required to run the optimization several times to
reduce the risk of getting caught in mediocre local optima.

A longitudinal CAS of extremely low order (first-order control law) with imprinted
structure was designed by the HIFOO toolbox. The structure of the control law is
shown in Fig. 6.47, respectively Fig. 6.48 (with mapping of constants (6.54)).

k1 = hη

k2 = jnz

k3 = jθ̇
k4 = knz

k5 = kθ̇

(6.54)

It is a common hierarchical control law used for an asymptotic tracking of the
aircraft normal acceleration reference signal (see [13, 79]). The hierarchical control
law design was usually done in an iterative manner, using background knowledge
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of the physical meaning of the single loop to reach the required performance. The
optimization technique is addressed now to design the overall control law in one
shot. H∞-performance criteria can be introduced to design robust control laws with
predefined structure and order. The extremely low-order and structural complexity of
the overall control law (with preserved robust behavior and control performance of
full MIMO high-order control laws) is very important for final on-board implemen-
tation. It reduces necessary computational effort and therefore hardware demands for
on-board equipment, which is closely connected with reliability and price of imple-
mentation. For other possibilities of high-order MIMO CAS designs, see [70, 71, 89,
90]. Control surfaces used by CAS are symmetrically actuated beaver tails (denoted
as BT) and elevator (denoted as EL), in our case both flaps are collectively actu-
ated as one. Measured signals are longitudinal RB variables at CG, namely normal
acceleration (denoted as NzCG) and pitch rate (q). Highly valuable feature of H∞
optimization is the possibility to introduce the concept of robustness. The HIFOO
toolbox will be used, in this particular case, to cover multiple plants, each represent-
ing different fueling points in the flight envelope to end up with a longitudinal CAS
robust with respect to fueling. The augmented plant used for control law design is
shown in Fig. 6.49.

The signals in the augmented plant are divided into exogenous inputs and outputs
(which represent control law performance by definition of the optimization criterion),
as well as measured outputs and actuated inputs according to Fig. 6.42. The plant G
represents aircraft longitudinal dynamics itself and weighting filters W represent the
definition of performance criterion in the frequency domain. At this point, the struc-
ture of the controller can be introduced into HIFOO by prescribing zero entries in the
controller’s Rosenbrock matrix. Let the state-space representation of the controller
be K · a, K · b, K · c, and K · d, then its Rosenbrock matrix is:

K =
[

K · a K · b
K · c K · d

]
, (6.55)

Fig. 6.49 Augmentation plant set up used for longitudinal control law design
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with the augmented plant setup shown in Fig. 6.49 and the desired structure of the
controller as shown in Figs. 6.47 and 6.48 the controller can be written in the form:

AK = 0 (6.56)

BK = [
1 −k2 k3

]
(6.57)

CK = [
1
]

(6.58)

DK = [
k1 k4 k5

]
. (6.59)

Consequently, the controller’s Rosenbrock matrix is

K =
[

0 1 −k2 k3
1 k1 k4 k5

]
. (6.60)

The HIFOO toolbox is applied now to carry out the fixed-order optimization
with a predefined structure of the controller. The final control law is an integrated
first-order multi-input single-output (MISO) controller with predefined structure and
can be used as an integrated longitudinal CAS. However, because of the structure
it is possible to disassemble it into a hierarchical structure of SISO loops, which
can be used one-by-one as a SAS itself (pitch rate damper and normal acceleration
damper) as it is known from text books and longitudinal CAS, in this case a normal
acceleration reference signal tracker.

6.6.4.3 BWB Case Study

Mathematical Model of Longitudinal Aircraft Dynamics

This longitudinal CAS control design is carried out for the ACFA 2020 BWB aircraft.
A variant of the longitudinal ROMs obtained in Sect. 4.1 are utilized in the following.
They contain both flight mechanics and aeroelastic effects as well as their coupling. A
set of linearized state-space systems for various parameter values of fuel and payload
mass (at fixed cruise altitude and airspeed) is available:

ẋ = A · x + B · u
y = C · x + D · u,

(6.61)

where the state vector x is composed of the six flight mechanic states (x-position X ,
body forward speed u, altitude Z , body down speed w (it is proportional to angle of
attack α), pitch angle θ and pitch rate q), 12 elastic states (six symmetrical structural

http://dx.doi.org/10.1007/978-3-319-10792-9_4
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modes), as well as seven aerodynamic lag states. The states X (x-position) and Z
(altitude) are neglected in this study. Utilized inputs u for control design are:

• Symmetric Extended Elevator deflection δEEL (in rad) and deflection rate δ̇EEL (in
rad/s).

• Symmetric Elevator deflection δEL (in rad) and deflection rate δ̇EL (in rad/s).

The Extended Elevator and Elevator control surfaces are coupled and actuated simul-
taneously (will be notated as δEL) in case of longitudinal control law. The actuator
dynamics are modeled via second-order low-pass filters.
Utilized outputs for control design are:

• Pitch rate q (in rad/s)
• Normal acceleration NzCG (in m/s2)

where in both sensor signals 160 ms time delay (due to signal processing latency,
modeled via a second-order Padé approximation) and low-pass Butterworth filters
of second order were considered.

Simulations

The resulting longitudinal control law performance is presented in this section.
First are presented linear model simulation in MATLAB® and than nonlinear
MATLAB/Simulink® model is involved to demonstrate longitudinal control law
capabilities. Position of the closed-loop poles is constrained by required relative
damping of 0.5 for all RB poles, the only exception is for the phugoid mode, which
can have even one real unstable pole with time period less than 0.1. The closed-loop
pole locations can be seen in Fig. 6.50.
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Fig. 6.50 Poles and zeros of NzCG reference signal to NzCG output signal channel (10 fueling cases
are plotted)
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Fig. 6.51 Normal acceleration step response—linear simulation (10 fueling cases are plotted)

The aircraft normal acceleration step response can be seen in Fig. 6.51, where the
design plant (without phugoid mode) response as well as the validation plant (with
phugoid mode) responses are plotted for all fuel cases (which is one of the robust
behavior requirements).

The robustness of control law with respect to unmodeled uncertainty is presented.
The uncertainty is here illustrated by diamonds in a Nichols charts, as standard
margins or robustness evaluation measures among aircraft controls designers for
decades. Uncertainty in this case should be understood as a phase lag and gain
variance insensitiveness. One Nichols chart is used for each opened loop (closed loop
is disconnected at controller inputs or its output) of the multiple inputs and single-
output control law to validate controller robustness. There are different robustness
requirements for predefined frequency regions of control law, bounded by phugoid
mode frequency (solid line diamond), short-period frequency (dot and dash line
diamond) and the first wing bending mode frequency (doted line diamond). First,
the robustness is investigated with respect to unmodeled uncertainty at system input,
represented by diamonds in a Nichols chart of open-loop transfer function from
system δEL input to controller δEL output, see Fig. 6.52 and its zoom in Fig. 6.53.
One can see that all curves are outside of the prescribed diamonds which guarantees
the required robustness.

Similarly, robustness with respect to output unmodeled uncertainty is investi-
gated. The open-loop system has two inputs pitch rate q and normal acceleration
Nz (controller inputs) and two measurements of the same notations (plant outputs).
Nichols charts of open-loop transfer functions are plotted in Fig. 6.54, and its zoom
for Nichols diamonds are plotted in Fig. 6.55.
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Fig. 6.52 Nichols charts of the closed loops (disconnected at actuators). Ten fueling cases are
depicted
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Fig. 6.53 Nichols charts of the closed loops (disconnected at actuators). Ten fueling cases are
depicted. Zoomed in for Nichols diamonds
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Fig. 6.54 Nichols charts of closed loop disconnected at sensors, pitch rate (left) and NzCG (right)
(10 fueling cases are plotted)
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Fig. 6.55 Nichols charts of closed loop disconnected at sensors, pitch rate (left) and NzCG (right),
zoomed for Nichols diamonds (10 fueling cases are plotted)
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Eventually, a MATLAB/Simulink® nonlinear model has been involved. Main
sources of nonlinearity come from a fully nonlinear model of actuators, which
considers control surface maximal deflections, maximal deflection rates, and aero-
dynamic effects. All nonlinear simulations are influenced by the unstable phugoid
mode, but with a time constant of instability of less than 0.1 s it does not violate con-
trol constraints or requirements. Time responses of the aircraft’s normal acceleration
for all considered aircraft fuel cases are plotted in Fig. 6.56. The pitch rate and angle
of attack responses are plotted in Figs. 6.57 and 6.58, again plotted for all considered
cases. Finally, control law effort needed for such a maneuver, for all fuel cases, is
plotted in Fig. 6.59.
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