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4.1 Model Order Reduction

M. Valášek, Z. Šika and T. Vampola

4.1.1 General Process of Generation of Parameterized
Reduced-Order Models for Control Design

The output of the complex modeling process without reduction is the full model
of the ACFA BWB aircraft predesign model in the original unreduced number of
coordinates that is known for many discrete values of parameters pd. It is supposed
that the original models are linear and represented in the state-space form

ẋF = AF(pd)xF + BF(pd)u

y = CF(pd)xF + DF(pd)u. (4.1)

The differential equations over structural and aerodynamic degrees of freedom
(states) are given by the systemmatrix A. The state variables x are related to an input
vector u containing input quantities, for example, control surface actuationmoments,
by the control matrix B. The transformation from states to outputs y is achieved by
the observation matrix C. In case, inputs have a direct effect on the outputs, the
feedthrough matrix D can be included. The index F indicates the full set of degrees
of freedom.
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Nevertheless, the unreduced version of the parameterized model is totally unus-
able for the control law synthesis. The suitable reduction can be done generally in two
main steps. First, the full structural model is reduced based on the modal coordinates
taken into account the relatively wide frequency range. The upper preserved frequen-
cies after the first step of the reduction should be sufficiently high (for example, about
30Hz). The rejected modes can either be completely neglected or partially taken into
account by singular perturbation approximation (SPA), without enlarging the model
order. All rigid body (RB) modes of the structure as a whole have to be preserved,
since they are base for the flight mechanics states. Performing this first reduction
step with the purely structural equations more radically (with low-frequency limit
or using balanced reduction) can lead into errors due to subsequent modal aerody-
namic coupling effects. Modes that are unimportant for inputs and outputs, that is,
with low controllability and observability measures, may be important later for the
aeroelasticity.

The model after the first reduction step is used for the derivation of general-
ized aerodynamic forces, including gust forces. Consequently, the complex model
includes all flight mechanics states, all lag states, and the states of the preserved elas-
tic modes. This complex model is further reduced based on the balanced reduction
or using other methods as described within the further paragraphs. The final process
of reduction is significantly influenced by the necessity of generation of the widely
parameterized model, where the unambiguous continuation and tracking of particu-
lar states in the process of parameters variation is problematic. This inconvenience
is especially substantial for the states corresponding to the elastic modes.

In any case, the result is the set of reduced models for the discrete values of
parameters pd in the state-space form.

ẋF = A(pd)x + B(pd)u

y = C(pd)x + D(pd)u (4.2)

Finally, a set of reduced models is replaced by one model with system parameters
that are continuous functions of the parameter vector p. The system parameters will
be functions of parameters p in a form of rational functions.

ẋF = A(p)x + B(p)u

y = C(p)x + D(p)u (4.3)

Such parameterized ROM can be processed by the Linear Fractional Transforma-
tion (LFT).
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4.1.2 First Level of Model Reduction—Modal Reduction of Full
Structural Model

4.1.2.1 Modal Decomposition

The basic operation of this decomposition is the well-known modal transformation
and sequencing of the eigenfrequencies and corresponding modal coordinates. Start-
ing from

Mẍ + Bẋ + Kx = f, (4.4)

the correspondingmodal transformation x = Vq and left multiplication by themodal
matrix VT of (4.4) leads to

VTMVq̈ + VTBVq̇ + VTKVq = VTf . (4.5)

The elastic part (which belongs to nonzero eigenfrequencies) of the modal matrix
Velast has been evaluated concerning the mass matrix normalization

VT
elastMVelast = I. (4.6)

The diagonalmatrix of the structures eigenfrequencies� in rad/s is then computed
as

VT
elastKVelast = �2. (4.7)

Concerning proportional damping, also the third part of the equation system is
diagonalized

VT
elastBVelast = 2bd�, (4.8)

where bd is the diagonal matrix of the modal damping ratios of separate eigenfre-
quencies. Concerning the flexible modes reduction, the first step of reduction simply
preserves the eigenmodes corresponding to lowest eigenfrequencies bellow some
chosen limit.

4.1.2.2 Computation of Rigid Body Modes

Asmentioned above, all RBmodes of the structure have to be included, since they are
base for the flight mechanics states. The simplest version of the RB modes includes
vertical (z-direction) and lateral (y- and x-direction) translations as well as roll, yaw
and pitch rotation. Additional RB modes of the model are the deflections of control
surfaces. Global RBM (structure as a whole), included in the modal basis, neither
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have structural stiffness nor structural damping. The local RBmodes (flaps, ailerons)
may receive structural stiffness and damping if required. The RBmodes describe the
motion of the whole body without deformation. The correct RB modes applied to
system coordinates must not induce elastic forces. This crucial property can simply
be written in matrix form

KVrigid = 0. (4.9)

The RB modes are actually a special case of static constraint modes rather than
the eigenmodes [2]. Based on this consideration, the RB modes can be evaluated
based on

[
Ki i Kir

Kri Krr

] [
Vir

Vrr

]
=

[
0ir

0rr

]
. (4.10)

The index r denotes an arbitrary set of coordinates zrigid that is just sufficient
to restrain RB motion of the system. The RB modes can be computed equating
Vrr = Irr (each mode corresponds to particular coordinate from the set zrigid). The
rest of RB mode elements can be evaluated afterwards from (4.10) as

Vir = K−1
i i (−Kir Vrr ) = K−1

i i (−Kir ) (4.11)

The complete motion in physical coordinates can be evaluated using the super-
position of RB motion and flexible modes vibrations

x = xr + xe = Vrigidzrigid + Velastqelast. (4.12)

Concerning condition of RB motion (4.9) the dynamic equations for the RB
coordinates accelerations are

VT
rigidMVrigidz̈rigid = VT

rigidf (4.13)

z̈rigid = μ−1
rigidVT

rigidf, μrigid = VT
rigidMVrigid. (4.14)

4.1.2.3 Computation of Residual Modes

The cutoff eigenmodes which are not included in the ROM can be represented by the
residual mode, which represents the feedthrough components. Strictly speaking, it
is the application of the general SPA for the system described by the modal coordi-
nates. The including of the residual mode is important for better preservation of the
frequency value of the original system zeros (antiresonances). The reliability of the
antiresonances is important for the feedback loop properties [18]. The structural part
of the aircraft model is a free body including 6 RBmodes, accordingly the flexibility
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matrix G = K−1 does not exist and the residual mode must be computed using the
inertia-relief projection matrix [2, 18]. Concerning decomposition (4.12) and RB
motion condition (4.9) the complete dynamic equation is

MVrigidz̈rigid + MVelastq̈elast + BVelastq̇elast + KVelastqelast = f (4.15)

substitution from (4.14) the equation can be rewritten into the form

MVelastq̈elast + BVelastq̇elast + KVelastqelast = f − MVrigidμ
−1
rigidVT

rigidf (4.16)

=
(
I − MVrigidμ

−1
rigidVT

rigid

)
f

The matrix PT = I − MVrigidμ
−1
rigidVT

rigid is the so-called inertia-relief projection
matrix. The matrix P operates as a filter which leaves unchanged the flexible modes

and destroys RB modes.
(
I − MVrigidμ

−1
rigidVT

rigid

)
f = PTf is self-equilibrated

superposition of the external forces and inertia forces from RB motion of the body.
Thanks to the self-equilibrium and filter properties ofP, the self-equilibrium position
in elastic physical coordinates can be written as

xe = PGi i PTf (4.17)

Gi i is the flexibility matrix corresponding to arbitrary virtual suspension which
restrain the RB motion. In our Nacre model, we have used again the suspension
described in previous paragraph, Gi i = K−1

i i .
The resulting residual matrix can be evaluated as

R =
∞∑

k=m+1

Velast,kVT
elast,k

�2
k

= PGi i PT −
m∑

j=1

Velast, j Velast, j

�2
j

(4.18)

where m is the number of nonzero eigenfrequencies retained in the ROM.

4.1.3 Second Level of Model Reduction—Reduction of Complete
Aeroelastic Model

As mentioned above, the model after the first level of reduction is used for the
preparation of the complete aeroelastic model including all flight mechanics states,
all lag states, the states of the preserved elastic modes, and possibly also the residual
mode. Preparation of this complex model is described in the Sects. 3.3–3.5. The
second level of reduction is realized on this complex model.

There are several methods how to prepare the ROM of the system suitable for
the control algorithm design [4, 13, 22]. Despite different reduction concepts being

http://dx.doi.org/10.1007/978-3-319-10792-9_3
http://dx.doi.org/10.1007/978-3-319-10792-9_3
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used, there are always two basic possibilities: the state truncation (ST) or the SPA.
Let the original state-space model be divided as follows (states corresponding to
index 1 are the preserved ones, 2 are the eliminated ones):

SSorig =
⎡
⎣A11 A12 B1

A21 A22 B2
C1 C2 D

⎤
⎦ . (4.19)

Then, the reduced-order state-space model obtained by ST of any type is

SStrunc =
[

A11 B1
C1 D

]
. (4.20)

The SPA variant of the reduced model preserves the static gains (DC gain) of an
original system and generally can be written as

SSspa =
[

A11 − A12A−1
22 A21 B1 − A12A−1

22 B2

C1 − C2A−1
22 A21 D − C2A−1

22 B2

]
. (4.21)

The preserving of the transfer functions for DC gain and for the low frequencies
is important in the context of the low-order model approximation and consequently
preserving of the RB and flight dynamics motion components. Therefore, the SPA
[21] variant of the reduction has been preferentially chosen.

4.1.4 Balanced Reduction

The important concept of the generation of the ROM is the balanced reduction [13]
based on the given inputs and outputswith the chosenmodel dimension. The balanced
reduction has been used as the reference one. The general methods of the balanced
reduction are based on solution of Lyapunov equation [4, 13]. The basic algorithm
of the balanced ROM generation is as follows [4]. The unstable part of the original
system must be included also in the ROM. The reduction is applied only to stable
part of the system. Let the original system in the state-space form be

SS =
[

A B
C D

]
. (4.22)

SSb =
[

Z−1AZ Z−1B
CZ D

]
=

⎡
⎣A11 A12 B1

A21 A22 B2
C1 C2 D

⎤
⎦ . (4.23)
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The similarity transformation matrix Z is formally decomposed with regard to
partitioning of the state matrix

Z = [
T, U

]
, Z−1 =

[
L
V

]
(4.24)

The balancing-related model reduction methods are connected with the so-called
controllability and observability gramians P and Q which can be computed from a
pair of Lyapunov equations

AP + PAT + BBT = 0

ATQ + QA + CTC = 0 (4.25)

The gramians of a stable system are positive semidefinite matrices which can be
decomposed by Cholesky factorization P = SST and Q = RTR. So-called Hankel
singular values of the system are obtained by singular value decomposition

RS = [
U1 U2

] [
�1 0
0 �2

] [
V1
V2

]
(4.26)

The singular values are ordered, first r largest singular values in �1 correspond
to retained states, the rest �2 correspond to neglected states.

L = �
−1/2
1 UT

1R, T = SV1�
−1/2
1 (4.27)

The balanced reduction is very straightforward especially for the pure structural
models with the proportional damping. The airplane model, however, also consists
of the states with the high damping and even real poles. The evaluation of the final
damping values of particular modes is relatively complex. The computational exper-
iments show that the pure balanced reduction can discard some important states, like
the first bending mode, some of the lag states, or even some flight mechanics states.
Consequently, the combined reduction approaches have been tested.

4.1.4.1 Combined Model Reduction

Based on the control design requirements, the second level model has been reduced
in two main versions. The first (control design) ROM contains all flight mechanics
states, lag states and states of the first (lowest) 4 elastic modes. The SPA variant
of the reduction has been chosen. The set of the small (4 elastic modes) models is
prepared in the grid version and also in the parameterized version as described in
the next paragraph about parameterization. In concrete, the 5th order of polynomial
parameterization has been chosen. Besides the small model with 4 elastic modes,
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Fig. 4.1 TF from global vertical gust to z cockpit acceleration

also the larger testing model with selected set of 12 elastic modes or 19 elastic modes
has been tested.

The choice starts from the balanced reduction and is modified based on the
inspection of comparisons of many transfer functions for different levels of reduction
(with first 4 elastic modes, first 9 elastic modes, first 14 elastic modes, first 19 elastic
modes, first 24 elastic modes). The SPA variant of reduction has been chosen. The
examples of the transfer functions are in Figs. 4.1 and 4.2. The larger model has been
primarily prepared only in the grid version, the problems of tracking, and the final
solution is described in next paragraphs.

4.1.5 Parameterization of Aircraft Models

The result of the reduction process is the set of reduced models (4.3) that are known
for the values of parameterspd. Thesemodels for the discrete values of parameters are
to be replaced by onemodel the system parameters of which are some approximation
continuous functions of the parameters. The system parameters are the elements of
the system matrices A, B, C, D. The form of the approximation function must be
a rational function, that is, a fraction of two polynomial functions. There are two
groups of methods for construction of such approximations.

The first group is the approximation by splines and the second group is the approx-
imation by radial basis functions (RBF). It is considered four parameters pd
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• IPass—the number of the passenger variant (1, 2, 3)
• IFuel—the number of the fuel variant (1, 2, 3, 4, 5, 6, 7)
• IMach—the number of the Mach variant (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
• IAlti—the number of the altitude level variant (1, 2, 3, 4, 5, 6, 7, 8).

Values of considered altitude levels and Mach numbers are presented in Fig. 4.3.
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4.1.6 Spline Interpolation

The splines can be divided into polynomial splines and rational splines (fraction of
two polynomial splines). Each parameter pi has the span pi0 < pi < pini and the
span is divided into ni intervals [pi,k−1, pi,k] in such way that pi0 < pi1 < · · · <

pi,k−1 < pi,k < · · · < pi,ni . The Cartesian product of the span consists of the Carte-
sian product of subintervals and each such Cartesian product of subintervals is for
the system parameter S approximated by the Cartesian product of cubic polynomial
splines

S =
3∑

i1=0

3∑
i2=0

3∑
i3=0

3∑
i4=0

Si1,i2,i3,i4 pi1
1 pi2

2 pi3
3 pi4

4 (4.28)

or by the Cartesian product of cubic rational splines

S =
∑3

i1=0
∑3

i2=0
∑3

i3=0
∑3

i4=0 SN
i1,i2,i3,i4 pi1

1 pi2
2 pi3

3 pi4
4∑3

i1=0
∑3

i2=0
∑3

i3=0
∑3

i4=0 SD
i1,i2,i3,i4 pi1

1 pi2
2 pi3

3 pi4
4

(4.29)

The particular splines can be created using the theory of geometric parametric
splines for curves and surfaces like as B-splines and NURBS. The requirements on
the approximation properties are here much fewer than in geometry.

4.1.6.1 Radial Basis Functions

The approximation by the RBF is based on the idea that the approximated function is
approximated by the sumof its values (orweights)multiplied by the distance function
from the function input. In the case of the system parameter S the approximation is

S =
∑

K

SK Φ (‖pK − cK ‖) (4.30)

where Φ is the distance function, cK is the input center, SK the values or weights
of the function. The distance functions are usually Gaussian functions. This theory
has been developed specifically for system model approximations in the system
LOLIMOT [12]. This original system has been reimplemented and extended at CTU
[20] and modified by replacement of the Gaussian function by rational functions for
the distance

Φ (‖pK − cK ‖) =
∏
K

1
∑n

i=0

(
pK −cK√

2σK

)2n
1
n!

(4.31)
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The developed software CTU-MIMO-POLYNOMIAL-LOLIMOT has been used
for continuous multidimensional approximation of the grid point data. CTU-MIMO-
POLYNOMIAL-LOLIMOT in basic form generates approximation of any function
in parameters p by locally linear functions and globally rational functions. For exam-
ple, the formula for three dimensional parameterization (p = [p1, p2, p3]T) has a
form

S =
m∑

k=1

(wk,0 + wk,1 p1 + wk,2 p2 + wk,3 p3)Φ (‖p − ck‖)

=
m∑

k=1

(wk,0 + wk,1 p1 + wk,2 p2 + wk,3 p3)
3∏

j=1

1
∑n

i=0

(
p j −ck, j√

2σK

)2i
1
i !

(4.32)

The local linear function can be generalized to local polynomial n-dimensional
function

pol(p1, p2, p3) = wk,0 + wk,1 p1 + wk,2 p2 + wk,3 p3

+ wk,4 p21 + wk,5 p22 + wk,6 p23 + wk,7 p1 p2 + · · · (4.33)

and if possible from the point of view of accuracy, one polynomial function can
be used for the whole parameter interval. So, we can switch between these (ratio-
nal/polynomial) types of approximation. The inherent trade-off between accuracy
and complexity needs to be considered.

4.1.6.2 Parametrization Problems

The parametrization described in previous section can enter three kinds of problems.
Thefirst kind of problems iswith the continuity of reduced coordinates. The reduction
process can result into different coordinates for different values of parameters pd.
Such situation is presented in Fig. 4.4. The modal coordinates chosen to ROM by
balanced reduction are marked by circles. The choices for the variant 00 (no fuel, no
passengers) and for the variant 44 (full fuel tanks, all passengers) are different.

This results into discontinuities of the system parameters in model description
A, B, C, D. Such parameterized ROM cannot be controlled. The change of coor-
dinates within the reduction process for different values of parameters pd must be
avoided. This means that many reduction techniques that are very efficient from the
point of view of accurate reduction cannot be used.

The second kind of problems is with the parametrization of ROM between the
values of parameters pd. The parametrization can be separately very good, but the
parameterizedROMbetween the values of parameterspd can bewrong. For example,
the parameterized ROMmodel can be unstable between the values of parameters pd.
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Fig. 4.4 Choice of modes to ROM for different variants based on balanced reduction

It is necessary to test basic properties (eigenvalues, stability, controllability, observ-
ability) for the interpolated matrices between original grid points.

The third kind of problems is the unique tracking of corresponding states during
the parameters change. This problem is particularly problematic for the states cor-
responding to elastic modes. The modal assurance criterion can be used for testing
of proximity of eigenmodes in adjacent grid points, but the reliable identification
and tracking of all states across the wide parameter intervals is not easy. The final
solution used within the project test gradually the consistency of states across all
variants for the increasing number of preserved states.

4.1.7 Conclusion

The finally chosen solution of the reduction process comes from the testing of many
variants and is highly influenced by the request of internally consistent parameterized
model. The first level ROMs have been prepared with the 80 states. The second
level of reduction process ends with two variants of models. The first variant of the
control design ROM contains all flight mechanics states, all lag states, and states of
the first (lowest) 19 elastic modes. The simplified variant of the control design ROM
takes separately the symmetric and skew-symmetric component including all flight
mechanics states, all lag states, and states of the first (lowest) 4 elastic modes. The
example of comparison between original (80 states) and reduced input–output (only
2 symmetric modes) transfer function is in Fig. 4.5.
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4.2 Linear Fractional Representation of Parametrized Models

S. Hecker

Over the last 20years, a paradigm shift in the modeling of dynamic systems occurred
with the introduction of modern robust control theory and its associated model-
ing framework, the LFT [14, 15]. A Linear Fractional Representation (LFR) is a
representation of a nonlinear system as a linear system formed by a constant M
matrix in linear feedback with a structured matrix � . The process of extracting the
uncertainty into the structured matrix � of this so-called M − � form is called LFR
realization, also known as “pulling out the delta”, and is considered the fundamen-
tal LFR modeling step. From these initial LFT developments, it was immediately
recognized that they were part of the larger set of linear parameter-varying (LPV)
models but presenting a specific structure. This generated great interest and sparked
the development of the (LPV)/(LFT) field [10, 11, 14–16, 19, 24].
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4.2.1 Linear Fractional Transformation

A LFT is a matrix function based on two matrix components,

M =
[

M11 M12
M21 M22

]

and�, and a feedback interconnection. ThematrixM represents the nominal, known,
part of the system, while the matrix� contains the time-varying, unknown, or uncer-
tain components.

Depending on the feedback interconnection used, there are two possible types of
LFTs, upper [see Fig. 4.6-left and (4.34)] and upper [see Fig. 4.6-right and (4.35)].

Fu(M,�) = M22 + M21(I − �M11)
−1�M12 (4.34)

Fl(M,�) = M11 + M12(I − �M22)
−1�M21 (4.35)

Remark 1 The matrix � is typically norm-bounded ‖�‖∞ ≤ 1 for design and
analysis (without loss of generality by scaling of M), but otherwise unrestricted in
form (structured/unstructured) or type (nonlinear/time-varying/constant). If any of
the components in � is a scheduling parameter, an LPV system is obtained.

Remark 2 The order of the LFR is the number of parameters, including repetitions,
contained in � (for example, � = diag(p1I2, p2) → LFR order is 3). Since many
realistic robustness analysis problems can easily result in very-high-order LFRs, it
is vital to have efficient and automated tools which can compute minimal, or at least
close to minimal, representations of these systems.

Remark 3 A very important property of LFRs is that their interconnection results in
another LFR (for example, sum, concatenation, etc. of LFRs result in LFRs) [5, 10].
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4.2.2 Process of LFR Modeling

The most widespread, standard approach to obtain an LFR is based on the numerical
Jacobian LPV approach augmented with the final LFR realization step of “pulling
out the deltas”. Hence the basis for the LFRmodeling is a set of linear time-invariant
(LTI) models generated by trimming and linearizing a nonlinear aircraft model at
specific points within the flight envelope (Mach number and dynamic pressure) and
for different parameter values (inACFA2020 the fuelmass and center of gravity (CG)
position parameters). These grid-pointmodels are then interpolated using polynomial
functions to obtain one single LPV model describing the full set of LTI models.
Finally, the LPV model is transformed into an LFR.

This approach has the advantages of relying on well-known numerical tech-
niques (to obtain equilibrium points and linearizations of plants) and of resulting
in purely LTI models (once the components in the � matrix are assigned numerical
values). These advantages are highly relevant since most engineers are acquainted
with numerical linearization and with linear analysis/synthesis techniques which are
applicable due to the underlying LTI nature of the LFR. The drawback is a loss of
modeling oversight as application of the numerical trim/linearization step transforms
the modeling problem into a numerical black box approach. Furthermore, the results
obtained from LTI synthesis/analysis need to be validated on the purely nonlinear
model and there may exist a wide gap between the latter and the linear models used
for design. The LFRmodeling can be summarized in the following five-step process:

1. Trimming and linearization: the nonlinear aircraft model is trimmed and lin-
earized at several values of the parameter vector p = (p1, . . . , p4), were the
uncertain parameters are the fuel case (p1 with 11 grid points), the position of
center of gravity (p2 with 3 grid points), the Mach number (p3 with 8 grid points)
and the dynamic pressure (p4 with 13 grid points). The result was a set of 3432
LTI models.

2. Model interpolation: in order to accurately approximate the grid point LTImodels
with an LPV model, a usual way is to generate multivariable polynomials for all
varying entries of the LTI state-space matrices A, B, C, D. This may result in
very complex polynomial LPV models, which then may yield high-order LFRs.
To avoid this, a general approach is presented in [17] to generate an LPV model,
which approximates a set of linearized grid-point models with high accuracy
and is optimally suited for LFT-based Robust Stability (RS) analysis and control
design. The idea is to combine the polynomial fitting with a global optimization
where the objective is to find an LPV model, which has the property to allow
a transformation into an LFR of lowest possible order. A gap metric constraint
is included during the optimization in order to guarantee a specified accuracy
of the transfer function of the LPV model. As a result, only the varying state-
space matrix entries that have a significant influence on the transfer function are
fitted with polynomials, whereas the others are taken constant. In addition, the
number of required monomials within each polynomial is optimized in order to
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reduce complexity. Some recent applications [9, 17] of the method have shown
its effectiveness.

3. Symbolic preprocessing: the role of symbolic preprocessing is to find equiva-
lent representations of individual matrix elements, entire rows/columns or even
the whole parametric state-space matrices, which lead to LFRs of lower order
when realized with the object-oriented LFT realization approach. There exist
many methods [8] such as the Horner form transformation, the structured tree
decomposition [1], and the variable splitting factorization [7].

4. Object-oriented LFR realization: the method is described in [10] and in [5] it is
extended to allow direct LFR realization of general rational parametric systems.
The basic idea is to realize elementary LFRs for each uncertain parameter and
to use basic LFR manipulation formulas for addition, subtraction, multiplication,
inversion and row/column concatenation to build an LFR for a rational parametric
matrix. The method is very flexible and can be easily automated, thus allowing an
efficient and reliable implementation, which is available within the LFR Toolbox
for MATLAB® Version 2 [6].

5. Numerical order reduction: in a last step it can be attempted to reduce the order
of the LFR by using numerical multidimensional order reduction algorithms [3,
10], which are also implemented in [6]. There are papers [3] that discuss LFR
minimality, but that is under the assumption that the uncertain parameters do not
commute. The idea behind the numerical 1-D reduction method is to repeatedly
perform standard 1-dimensional order reduction for each uncertain parameter.
The n-D technique [3] works in a similar way but considers all parameters at
once, and generally yields LFRs of lower orders compared to the 1D technique.

4.2.3 Generation of LFRs for the ACFA 2020 BWB Aircraft

In this section, the order and structure of the resulting LFRs that were used for
controller synthesis are described. As the methods for LFT-based robust controller
synthesis are computationally demanding, it is of prior interest to use LFRs of low
order. This usually requires to reduce the order and complexity (number of states,
inputs and outputs, number of uncertain parameters, number of LTI grid-pointmodels
covering a certain region of the flight envelope, …) of the underlying LTI grid-point
models that are used for LFR generation.

Here, the ROMs created as outlined in Sect. 4.1 are the starting point to generate
LFRs for control design. In the following, longitudinal LFR models are generated
for the open-loop aircraft with and without modeled phugoid mode and utilized in
system analysis and in the LPV feedback design in Sect. 6.5. Lateral LFR models
of the open-loop dynamics controlled by a 1st-order initial stabilizing controller
(designed in Sect. 6.2) are generated and utilized in the robust feedback design in
Sect. 6.3.

http://dx.doi.org/10.1007/978-3-319-10792-9_6
http://dx.doi.org/10.1007/978-3-319-10792-9_6
http://dx.doi.org/10.1007/978-3-319-10792-9_6
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4.2.3.1 A Priori Model Simplifications

The first step in LFR modeling is the interpolation of a set of LTI state-space models
using polynomial functions for each element of the state-space system matrices
A, B, C, and D. Hence the number of states, inputs and outputs, which define the
dimension of these matrices play an important role in terms of the resulting LFR
order. A lower number of states, inputs and outputs usually results in a lower LFR
order. Therefore, in a first step, the overall aircraft model was split into two models
describing the longitudinal and lateral dynamics only. In addition, the longitudinal
model included only symmetric elastic modes and the lateral model included only
asymmetric and antisymmetric elastic modes.

The number of elastic modes that were considered for controller synthesis was
also drastically reduced and the LFRs usually included only between 2 and 6 elastic
modes of lowest frequencies. Elastic modes of higher frequencies were only used
for controller validation but due to the low bandwidth of the actuators and a roll-off
of the controller, the excitation of these modes from the controller was very small.

An accurate description of the gust affecting the aircraft dynamics resulted in a
large number of lag states that were included in the LTI aircraft models. For con-
trolling the elastic modes, the robust controllers mainly used acceleration sensors,
and no feed-forward system using a forward-looking sensor (for example, LIDAR)
was used. Therefore, the way (gust or maneuver) and accuracy of how the elastic
modes were excited was not of highest importance and most of the lag states could
be neglected. The controller synthesis models included two lag states.

Furthermore, the control allocation for the large number of model inputs was
usually fixed, that is, all controllers typically deflected several control surfaces in
the same way. Hence, these control surfaces can be combined and considered as a
single model input, which reduces the number of model inputs (columns in B and D
state-space matrices).

Finally, only six model outputs were chosen for the controller synthesis model
from the large number of outputs available from modeling.

The aircraft model includes four uncertain parameters, namely Mach number,
position of center of gravity, fuel case, and dynamic pressure. For the LFRs, the
Mach number and dynamic pressure were considered fixed and only the fuel case
and the position of center of gravity were considered uncertain, resulting in an LFR
with only two parameters. A reason for this simplification was that the Mach number
and dynamic pressure can me measured very accurately and to high safety levels.
Therefore, these parameters are used for gain scheduling, that is, several robust
controllers (robust with respect to fuel case and CG position) for different Mach
numbers and dynamic pressures will be synthesized and scheduled a posteriori.

4.2.3.2 LFRs for the Longitudinal Aircraft Model

The longitudinal aircraft model includes either 12- or 14- states: four states from two
actuator models, two lag states, four states describing the two first (lowest frequency)
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symmetric elastic modes and two RB states for the short-period mode. The 14-state
model includes two more RB states describing the phugoid mode.

The model has three inputs, where the symmetric deflection of flaps 1 and flaps 2
are combined as one input and the other inputs are the symmetric deflection of flaps
3 and the global vertical gust input.

As outputs we have chosen the vertical load factor NzCG at the center of gravity,
the pitch rate qCG at the center of gravity, the true airspeed VTAS, the combined output
Nzlong.law, the wing root bending moment Mx (here called My) and the vertical cut
force Fz at the wing root.

For thismodel a given cruise conditionwith fixedMach number, dynamic pressure
and position of center of gravity was chosen and the fuel case parameter is allowed to
vary within the full range. Therefore, the resulting LFRs include only one uncertain
parameter.

Using the automated generation process described in Sect. 4.2.2, two LFRs were
generated for the 14- states model. One accurate model with order 17, that is, � =
p4 I17, and one less accurate model with order 4. During the LFR generation process,
the accuracy of the LFR is measured using the ν-gap metric and is given by the
maximum ν-gap metric between all the LTI grid-point models (given in the relevant
flight domain) and the resulting LFR evaluated at the given grid points. Using the
MATLAB® command gapmetric.m one obtains a value between 0 and 1, where
0 means that the models are equal and 1 indicates a large difference between the
models. For the given LFRs, we obtained values of 0.08 for the accurate model and
0.15 for the less accurate model.

For the 12-state model, an accurate model of order 16 and a less accurate model
of order 3 was generated. The maximum errors in terms of the ν-gap metric were
given by 0.06 and 0.18.
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Fig. 4.7 Worst-case gain validation of 12-state model (LFR order 16, no phugoid)
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Fig. 4.8 Worst-case gain validation of 12-state model (LFR order 3, no phugoid)

Besides the ν-gap metrics, a further validation of the LFRs was performed by
calculating the worst-case gains (MATLAB® function wcgain.m) of the LFRs for
a given frequency range and comparing these values with the gains (maximum singu-
lar value over frequency) of the LTI models. Figures4.7 and 4.8 show the worst-case
gains (dashed gray line) and the gains of the LTI models for the 12-state models. It
can be clearly seen that the higher order LFR yield a better approximation/coverage,
especially at low and high frequencies the worst-case gain tightly covers the LTI
model gains. The low-order LFR overestimates the low-frequency gain and underes-
timates the gains at the frequency of the first flexible mode. For the 14- states models
shown in Figs. 4.9 and 4.10 a better approximation of the higher order LFR can be
seen for the low-frequency RB aircraft modes.

4.2.3.3 LFRs for the Lateral Aircraft Model

The lateral aircraft model includes 33- states: six states from three actuator models,
no lag states, 18 sensor states, four states describing the two first (lowest frequency)
antisymmetric elastic modes, four states for the RB modes and one state for a simple
controller that was already included in the model to stabilize the lateral RB modes
(designed in Sect. 6.2).

The model has three inputs, where the symmetric deflection of flaps 3 and flaps 4
are combined as one input, the second and third inputs are the rudder and flaps 5.

As outputs, we have chosen the sideslip angle β, the angle ϕ, the roll rate p, the
yaw rate r , the combined output nzlaw,lat and the wing root bending moment Mx (here
called My).

Two different cruise conditions with fixed Mach number and dynamic pressure
were chosen. For the first cruise case, one LFR was generated for the full variation

http://dx.doi.org/10.1007/978-3-319-10792-9_6
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Fig. 4.9 Worst-case gain validation of 14-state model (LFR order 17, with phugoid)
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Fig. 4.10 Worst-case gain validation of 14-state model (LFR order 4, with phugoid)

of fuel cases and positions of center of gravity and a second LFR was generated
covering all fuel cases but with fixed center of gravity position. For the model with
two uncertain parameters, an LFR of order 16 was obtained and for the simpler one-
parametric LFR, the order was 4. The corresponding ν-gap metric errors were 0.19
and 0.10. For the second cruise case only a two parametric LFR of order 13 covering
all fuel cases and center of gravity positions was generated. The maximum ν-gap
metric error of this model was 0.08. Figures4.11, 4.12 and 4.13 again show that
the LFRs tightly cover the LTI models in terms of the worst-case gain. All models
were of reasonable complexity to be used for robust control design methods like
μ-synthesis (in Sect. 6.3).

http://dx.doi.org/10.1007/978-3-319-10792-9_6
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Fig. 4.11 Worst-case gain validation of lateral 33-state model (LFR order 16, parametrized in fuel
and CG, cruise case A)
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Fig. 4.12 Worst-case gain validation of lateral 33-state model (LFR order 4, parametrized in fuel
only, cruise case A)

4.2.4 Summary

For the ACFA 2020 blended wing body (BWB) aircraft, parametric LFRs were
generated to be used for robust controller synthesis. During the modeling phase of
the project, much effort has been invested in findingmodels of reasonable complexity
which can be used in conjunction with modern robust control design techniques.

One important step toward control-oriented aircraft models was the application
of model reduction techniques to reduce the huge number of structural modes in the
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Fig. 4.13 Worst-case gain validation of lateral 33-state model (LFR order 13, parametrized in fuel
and CG, cruise case B)

thousands of grid-point LTI models representing the aircraft dynamics for all fuel
cases, CG positions, Mach numbers and dynamic pressures. As for LFR generation,
the reduced-order grid-point LTI models are interpolated, one has to be very careful
to guarantee consistency (number and physical meaning) of the states of the ROMs.
Here, it may easily happen that the signs of the elements of the A, B, and C state-
space matrices switch from grid point to grid point which does not affect the transfer
function of a single grid-point model but makes an interpolation of neighboring
grid-point models impossible. During the ACFA project, a fully automated process
delivering ROMs that can be interpolated was not available and many sign correction
had to be done manually. This is still an open problem and actual research tries to
find order-reduction methods that allow the a posteriori interpolation of a set of
reduced-order grid-point models [23].

As an alternative to the parametric uncertain models, one may also generate LFRs
including an unstructured uncertainty. In this case, the sign problem is not important,
however, a lot of structural information is lost and one may obtain more conservative
controllers with less performance.
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