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Abstract. The design and implementation of the four-rotor aerial mobile robot 
called quadrotor is described in this paper. The beginning is focused on the me-
chanical construction of the robot body and the hardware implementation of the 
main control board. The next part describes the simplified mathematical model 
of the quadrotor. On the base of the created model, a state space controller was 
designed and implemented. As a result, every quadrotor axis is controlled inde-
pendently as in the case of the use of separated PI or PD controllers. The last 
part of the paper deals with a software solution. This can be divided into three 
parts: the first part describes the application for the onboard microcontroller, the 
second part focuses on the solution of the base station. The special part of soft-
ware which solves the localization of the quadrotor using a camera is described 
at the end of the article. 

1 Introduction 

The quadrotors are a very popular type of unmanned aerial vehicles because of their 
mechanic simplicity in comparison with other flying robots. The construction shown 
on Fig. 1 is very simple. It is formed by four beams which are orthogonal to each 
other. At the end of each beam, there is a BLDC (Brushless DC) engine with a propel-
ler. Common helicopters have very similar flight characteristics as quadrotors, but 
quadrotors have different methods of flight control. 

The paper deals with the modelling and realization of quadrotor. This robot is used 
for many purposes. It can be used in civil or military applications. This type of robot 
allows for very fast takeoff and its operation is very low-cost. It can carry many de-
vices, e.g. chemical sensors for inspection of air pollution during fire.  

This work is divided into several parts. First of all, necessary electronics are de-
scribed. This section is followed by the description of the mathematical model of the 
robot. This model describes a relation between forces and torques affecting the 
quadrotor body. Following parts deal with the design of the state space controller. The 
next chapter explains software solution and implementation of the microcontroller.  
A computer vision system for automated landing is described at the end of the  
paper. 
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Fig. 1. Quadrotor prototype 

2 Hardware 

The auxiliary stabilization must be done by electronics because this robot cannot be 
controlled only by man. For this reason a necessary control unit was created. The 
control unit was developed just for this application. It can be divided into several 
parts. The main part is the microcontroller and power supply modules. Another part of 
the control unit is the wireless communication module. On Fig. 2, there is a block 
diagram of the control unit and ground station with wireless modules and a laptop 
computer. 

All electronic devices on this robot are powered by the Li-Pol accumulator. In this 
construction a 3-cell accumulator with a nominal voltage 11.1 V is used. All engines 
use this voltage, while other electronics are supplied by 3.3 V and 5 V. Voltage level 
reduction is done by switching and LDO (Low-dropout Regulator) stabilizers.  

The base of the control unit is the microcontroller LM3S8269. It is a 32-bit ARM 
with Cortex M3 architecture and operating up to 50 MHz. This device provides rela-
tively high performance in comparison with similar projects (e.g. [1]), which is useful 
for testing various control algorithms. The microcontroller is also equipped with re-
quired communication buses (SPI, UART, I2C) and internal A/D converters. 

The main sensor is an IMU (Inertial Measurement Unit) module Vectornav VN-
100. This device provides us  data about acceleration, angular speed and magnetic 
field in each axis, required for orientation determination [2]. Its advantage is the inte-
grated Kalman filter. Next, an ultrasonic sensor SRF10 is used for measuring the 
distance to the ground in low altitudes. 

 

Fig. 2. The block diagram of control unit and ground station with user interface 
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3 Quadrotor Model 

The mathematical model of the quadrotor was divided into two parts. The first part 
handles relations between the speed of rotors and forces and torques affecting the 
quadrotor rigid body. The second one handles the dynamics of the rigid body includ-
ing the transformation between frames and the effect of gravity force. This separation 
allows to design the controller with better dynamics, because the first part can be 
easily linearized in the controller.  

The forces and torques caused by propellers of rotors affecting the quadrotor rigid 
body were noted as ݑଵ to ݑସ. The meaning is following: ݑଵ - torque around x axis 
caused by different thrusts of rotors 2 and 4,ݑଶ - torque around y axis caused by dif-
ferent thrusts of rotors 1 and 3, ݑଷ - torque around z axis caused by different reaction 
torques from rotors rotating in the opposite direction, ݑସ - force in z axis caused by 
the common thrust of all rotors.  

Relation between the thrust and propeller speed of the rotor is ܶܨ = ݇ܶ ⋅ ݊2                                                               (1) 

and the relation between the reaction torque and propeller speed of the rotor is ܴܯ = ܯ݇ ⋅ ݊2.                                                             (2) ்݇ and ݇ெ are constantly determined by measurement. The first part of the model:  1ݑ = (−݊22 + 2ݑ (3)                                                    ݈ܶ݇(42݊ = (݊12 − 3ݑ (4)                                                     ݈ܶ݇(32݊ = (−݊1 + ݊2 −݊3+݊ସ)݇ெ                                        (5) 4ݑ = (−݊12 + ݊22 − ݊32 + ݊42)݇ܶ                                                     (6) 

l denotes the distance between the rotors and the center of the gravity of the 
quadrotor. The second part of the model can be further divided into three parts: Equa-
tions that describe rotational movement, equations of linear movement, equations 
describing transformation between frames and equations expressing the effect of 
gravity force.  

Rotational movement:  ሶ߱ ݔ = 1ݑ + ݕݕܫ) − ݖ߱ݕ߱(ݖݖܫ + ݔݔܫ1ݑ                                     (7) 

ሶ߱ ݕ = 2ݑ + ݖݖܫ) − ݖ߱ݔ߱(ݔݔܫ + ݕݕܫ2ݑ                                       (8) 

ሶ߱ ݖ = 3ݑ + ݔݔܫ) − ݕ߱ݖ߱(ݕݕܫ + ݖݖܫ3ݑ                                     (9) 
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௫௫ܫ   .௭௭ represent moments of inertia around given axisܫ ௬௬ andܫ ,
Translation movement:  

ሶݒ ݔ = ݖݒݕ߱݉ + ݕݒݖ߱݉ + ݉ݔܩ                                         (10) 

ሶݒ ݕ = ݖݒݔ߱݉ + ݔݒݖ߱݉ + ݉ݕܩ                                       (11) 

ሶݒ ݖ = ݕݒݔ߱݉ + ݔݒݕ߱݉ + ݖܩ − 4݉ݑ                                (12) 

ݔܩ  :௭ are gravity forces component in given axisܩ ௬ andܩ ,௫ܩ  = −݉݃ sin ݕܩ (13)                                                ߠ = ݉݃ cos ߠ sin ߶ ݖܩ (14)                                            = ݉݃ cos ߠ cos ߶                                            (15) 

 
Transformation between robot frame and inertial frame [3]:  ߶ሶ = ݔ߱ + ݕ߱ sin ߶ tan ߠ + ݖ߱ cos ߠ tan ߠ (16)               ߠሶ = ݕ߱ cos ߠ − ݖ߱ sin ߶                            (17) ሶ߰ = ݕ߱ ߠ ݏ݋ܿ߶ ݊݅ݏ + ݖ߱ ሶݔ (18)                                   ߠ ݏ݋ܿ߶ ݏ݋ܿ = ߶ sin)ݖݒ sin ߰ + cos ߶ cos ߰ sin ߠ) ߶ ௬(cosݒ−  − sin ߰ − cos ߰ sin ߶ sin ߠ) + ௫ݒ cos ߠ cos ߰                       (19) ݕሶ = ߶ cos)ݕݒ cos ߰ + sin ߶ sin ߠ sin ߰) ߰ ௭(cosݒ−  − sin ߶ − cos ߶ sin ߠ sin ߰) + ௫ݒ cos ߠ cos ߰                       (20) ݖሶ = ݖݒ cos ߶ cos ߠ − ݔݒ sin ߠ + ݕݒ cos ߠ sin ߶               (21) 

4 Controller Design 

To stabilize the quadrotor, the controller based on the state space representation of the 
quadrotor was designed.  

As it was shown in Sect. 3, the model of the quadrotor was divided into 2 parts. 
The first part handles the non-linear relation between the rotation speed of the propel-
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lers and introduced variables ݑଵ - ݑସwith the meaning of forces and torques affecting 
the rigid body. Because in this part of model there are no dynamics, this relation can 
be expressed by purely static Equations (3). In the controller there is an inserted block 
with inverse function (8).  

݊1 = ඨ2݇2ݑܯ − 3ݑ݈ܶ݇ + ݈ܶ݇ܯ44݇ݑ݈ܯ݇                                             (22) 

݊2 = ඨ−2݇1ݑܯ + 3ݑ݈ܶ݇ + ݈ܶ݇ܯ44݇ݑ݈ܯ݇                                           (23) 

݊3 = ඨ−2݇2ݑܯ − 3ݑ݈ܶ݇ + ݈ܶ݇ܯ44݇ݑ݈ܯ݇                                             (24) 

݊4 = ඨ2݇1ݑܯ + 3ݑ݈ܶ݇ + ݈ܶ݇ܯ4݇ 4ݑ݈ܯ݇                                                  (25) 

This block together with the first part of the model will act as the linear section 
with the unitary transfer function (while operating in the working range of rotor driv-
ers). This allows direct use of variables ݑଵ - ݑସ as inputs to the system and treats those 
parts of system as linear.  

The schema of the system with the controller is on Fig. 3. The classical state con-
troller is modified with a few improvements. The first one has added bias (ݑସି଴) to 
input ݑସ that has the meaning of thrust needed to keep the quadrotor in hover flight. 
The next one is adding new state ܫ௓ which is integral of error in altitude z. The pur-
pose of this is to achieve a zero steady-state error while hovering, because it is almost 
impossible to set up the thrust that exactly compensates gravity force. 

The design of the state space controller was based on the linearized model of the 
rigid part of the quadrotor. Equations (6) and (7) were linearized around the working 
point which is hovering. Following equation applies for the equilibrium point  ߶ = ߠ = ߱௫ = ߱௬ = 0.                                              (26) 

To reach this state, the thrust of rotors must compensate the gravity force in hover 
flight acting in z axis. Thus  0−4ݑ = ݉݃.                                                       (27) 
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Fig. 3. Designed controller 

Matrix A derived from linearized Equations (4), (5), (6) and (7): ߱௫ ߱௬ ߱௭ ௫ݒ ௬ݒ ௭ݒ ߶ ߠ ߰ ݔ ݕ ௫߱ݖ 0 0 0 0 0 0 0 0 0 0 0 0߱௬ 0 0 0 0 0 0 0 0 0 0 0 0߱௭ 0 0 0 0 0 0 0 0 0 0 0 ௫ݒ0 0 0 0 0 0 0 0 −9.81 0 0 0 ௬ݒ0 0 0 0 0 0 0 9.81 0 0 0 0 ௭ݒ0 0 0 0 0 0 0 0 0 0 0 0 0߶ 1 0 0 0 0 0 0 0 0 0 0 ߠ0 0 1 0 0 0 0 0 0 0 0 0 0߰ 0 0 1 0 0 0 0 0 0 0 0 ݔ0 0 0 0 1 0 0 0 0 0 0 0 ݕ0 0 0 0 0 1 0 0 0 0 0 0 ݖ0 0 0 0 0 0 1 0 0 0 0 0 0

 

 
Matrix B: ݑଵ ଶݑ ଷݑ ସ߱௫ݑ 6.67 0 0 0߱௬ 0 6.67 0 0߱௭ 0 0 4.55 ௫ݒ0 0 0 0 ௬ݒ0 0 0 0 ௭ݒ0 0 0 0 −1.23߶ 0 0 0 ߠ0 0 0 0 0߰ 0 0 0 ݔ0 0 0 0 ݕ0 0 0 0 ݖ0 0 0 0 0
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Matrix C is identity matrix and matrix D is zero. Matrix K that determines control 
law was obtained experimentally by pole placement method. 

 
Matrix K: 1.05 0 0 0 0.29 0 2.66 0 0 0 0.12 0 00 1.05 0 −0.29 0 0 0 2.66 0 −0.12 0 0 00 0 0.66 0 0 0 0 0 0.44 0 0 0 00 0 0 0 0 −4.08 0 0 0 0 0 −6.32 −3.06 

As seen above, the linearized state space description of the system regarded the 
quadrotor as an independent system in every axis and the controller handles it in this 
manner. In fact, when looking at altitude control, the state space controller can be 
understood as a set of separated PI or PD controllers. The results prove that this ap-
proach using the space controller and PID controllers gives very comparable results in 
this mode of flight. 

5 Software Solution 

The software solution of the quadrotor can be divided into several parts (see Fig. 4). 
Stabilizing algorithms are computed onboard to preserve real-time control and due to 
operation with no radio signal. Base station, which standardly consists of a PC or 
laptop, is equipped with the Cassandra system. The system allows the remote control 
of the group of mobile robots and visualizes various information. Quadrotor can also 
communicate with another base station, for example for the need of image data pro-
cessing and other laboratory experiments. 

 

Fig. 4. Block diagram describing software solution 

5.1 ARM Application 

The main computing unit of the quadrotor is using the LM3S8962microcontroller 
which is based on the ARM Cortex-M3 architecture. The control program was written 
by the development environment Code Composer Studio v4 using C programming 
language. The microcontroller application does not use any operating system, but all 
tasks are handled in interrupt routines. To achieve a real-time behaviour, a system 
timer with the period of 1 ms was used, which is the shortest possible period to handle 
any application task.  

The main quadrotor stabilization (angular rotations) is computed with a period of 5 
ms due to the maximum output frequency of the inertial measurement unit VN-100, 
which is 200 Hz. With the same frequency, actuators speeds are updated. The sample 
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period of altitude stabilization depends on the used sensor, for example it is period of 
25 ms for ultrasonic sensor.  

Data from the base station are asynchronously handled by UART interrupt routine 
and then they are stored in a software ring buffer. For the reason of data synchroniza-
tion and verification, data is transmitted in defined messages. The physical layer of 
communication is formed by asynchronous serial interface UART and Zig-Bee mod-
ules.  

The application also checks special states, for example radio signal lost detection 
or battery low voltage detection and it is able to perform pre-programmed actions. 

5.2 Base Station 

The base station typically consists of a PC or laptop with a Microsoft Windows TM 
operating system. The computer must be equipped with a controller (gamepad or joy-
stick), an appropriate communication interface and the Cassandra system [4]. 

Cassandra is a real-time robot control system for reconnaissance of previously un-
known environments through a group of heterogeneous robots. It represents a rela-
tively universal user interface program capable to control various robots in the similar 
way. 

The user interface was designed to allow the operator to concentrate on the mission 
and to show the relevant information. The operator must not be flooded by the not-so-
important data. The user interface, shown on Fig. 5, typically consists of the main 
camera image with a series of transparent overlay displays with important data. 

 

Fig. 5. The screen of the user interface of the Cassandra operator system 

5.3 Computer Vision System 

This project also deals with an automated landing system. The aim is a solution that 
allows landing on a target. This target can be placed, e.g., on another robot on the 
ground. The main objective is the recognition and localization of landing mark on the 
image from the camera. Found coordinates of the mark are used to subsequently com-
pute position stabilization.  

In this case a camera is mounted on the flying robot. The better solution is an ap-
plication with a mechanical stabilization system based on servos. The computer vision 
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system is realized on the board. In the laboratory it is possible to use a more simple 
configuration. The camera is on the ground, the recognition mark is on the quadrotor 
and the computer vision system is realized on classic PC. 

The landing mark must enable the system to find out a position, orientation and al-
titude.  

The selected mark is comprised of a big square with three sub-squares [5]. The po-
sition is calculated by the centre of the big square. Orientation is detectable by sub-
squares and the altitude is calculated by the size of the mark in the image. 

Image processing includes several operations with the image. It is considered land-
ing only during day. Pre-processing includes an elimination of a disturbance by a 
convolution mask. The next operation is thresholding. In this case the daylight causes 
the brightness value of white parts on the mark to reach up to 255. The global thresh-
old value is sufficed. After this, the edges pixels with high gradient are founded (Fig-
ure 6). An approximation of the edges causes linking of many lines with the same 
direction to one solid line. The desired square is described by four orthogonal lines. 
Lines that are orthogonal to each other are found and corners are stored as a potential 
area of the landing mark. The landing mark contains three small sub-squares. The 
method of search is the same as in the previous case, only the area of the application 
is inside the big square. Around the sub-squares are circumscribed circles. The centres 
of these circles are also the centres of the squares. The orientation point is the corner 
close to these squares.  

All necessary data are known and the desired information is calculated. The alti-
tude, x, y positions and the orientation are known. 

 

Fig. 6. Edges after image processing and sub-squares 

6 Conclusion 

This article described current results of the development of the quadrotor type aerial 
robot at the Department of Control and Instrumentation of BUT. The aim is to devel-
op a complete robot platform which will be independent from third party products and 
solutions.  

The applied aluminium construction is suitable for testing thanks to its strength and 
variability, but it will be replaced by a carbon construction in the final version be-
cause of its low weight. The created control board, equipped with the ARM Cortex-
M3 microcontroller, provides sufficient computing performance for various stabiliz-
ing algorithm testing and hardware resources to work with miscellaneous peripherals.  

The robot can be remotely controlled from the base station and integration to the 
robotic system Cassandra will allow it to participate in various robotic missions in the 
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group of mobile robots in the future. The camera position system which is currently 
tested in the laboratory should facilitate autonomous landings.  

The paper also briefly described the simplified mathematical model of the 
quadrotor which was divided into two parts. This allowed the linearization of the first 
part of the model and on its base the state space controller was designed. The com-
plete form of the matrixes A, B, C and D which describe quadrotor behaviour and the 
form of matrix K which determines control law are shown in the paper. The resulting 
altitude stabilization behaves very similarly as a set of separated PI or PD controllers.  
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