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Abstract. This article deals with the methodology of processing direct 
kinematics for a robotic arm. The paper describes basic matrices of direct 
kinematics and basic relations. A method of application and calculation of 
direct kinematics for industrial robot is also presented. The last part is the 
application of general inverse kinematics algorithm. This mathematical model 
is verified in the article. 

1 Introduction 

The article examines the mathematical model of the robotic arm MELFA RV-2SDB, 
it describes the general methodology of creating the robotic arm’s mathematical 
model. The second chapter reminds basic matrices which are dedicated for calculation 
of the direct kinematics model. The next chapter describes the procedure of creating 
the mathematical model in steps. The fourth chapter describes the general algorithm 
for the inverse kinematics of the robotic arm. The fifth chapter compares the 
mathematical model and the real model of the robotic arm experimentally.  

2 Direct Kinematics 

This chapter reminds basic matrices for the calculation of direct kinematics. 
Mathematical descriptions of these matrices are described in [1]. This chapter 
summarizes all of the basic matrices only. Basic kinematics matrix: 
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Fig. 1. Basic kinematics 
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Rotation around axis X: 
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Fig. 2. Rotation around axis X 

Rotation around axis Y: 
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Fig. 3. Rotation around axis Y 

Rotation around axis Z: 
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Fig. 4. Rotation around axis Z 

Translation: 
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Fig. 5. Translation 
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3 Industrial Robot 

This chapter describes the methodology of the creating and calculation of the direct 
kinematics mathematical model. This methodology is applied on the industrial robot 
MELFA RV-2SDB made by Mitsubishi corporation. We propose this methodology. 

The First Step: Present Technological Parameters of the Robotic Arm: 
Direct kinematics calculation needs to know accurate dimensions of the robotic arm 
and its maximal rotation: 

 
Fig. 6. Dimensions of robotic arm MELFA RV-2SDB 

The Second Step: Kinematics Structure of the Robotic Arm: 
Calculation also needs to know the kinematics structure of the robotic arm. This 3D 
kinematics structure is drawn with respect to the figure of the industrial robot and then 
the figure is removed and leaving only 3D kinematics structure of the robotic arm: 

  
Fig. 7. 3D kinematics structure of industrial robot MELFA RV-2SDB 

The 3D kinematics structure is redrawn to the classic kinematics structure for its 
simplification. The classic kinematics structure has arms marked with letters from a to 
f and joints R1 - R6 marked with Greeks letters (representing the angles) α, β, γ, δ, ε, φ 
in the following figure: 
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Fig. 8. Classic kinematics structure of the industrial robot MELFA RV-2SDB 

Important information can be read from the scheme in Figure 8 and the dimensions 
of the robotic arm in Figure 6 (dimension a can be ignored because the nearest 
kinematics mechanism is rotary in axis z):  

 a = 0  mm d = 50  mm 
 b = 295 mm  e = 270  mm 
 c = 270  mm  f = 70  mm 

The next important information is the maximum range of joints: 

 α ϵ < -240°; 240° > δ ϵ < -200°; 200°> 
 β ϵ < -120°; 120° > ε ϵ < -120°; 120°> 
 γ ϵ <       0°; 160°> φ ϵ < -360°; 360°> 

The third step: Determining the zero position of the robotic arm: 

    
Fig. 9. Kinematics scheme of robotic arm if all angles have size 0° 

The Fourth Step: Transformation Matrices: 
Transformation matrices can be determined by the main information from the first 
three steps. They are created according to Figure 9 from the beginning of coordination 
system to the robot’s end point.  
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Joint R1 is resolved to the first (because dimension a is ignored), this is the rotary 
motion around axis z (1), then the matrix calculation moves under joint R2 (2): 
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Joint R2 causes rotary motion around axis y (3), then it moves under joint R3 (4): 
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Joint R3 rotates around axis y (5) and calculation moves under joint R4 (6): 
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Joint R4 rotates around axis z (7) and it moves under joint R5 (8): 
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Joint R5 causes rotary motion around axis y (9), then it moves to last joint R6 (10): 
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Last joint R6 causes rotary motion around axis z (11): 
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The fifth step: The composite homogeneous transformation matrix:  
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The composite homogeneous transformation matrix is calculated from all 
transformations matrices, which is calculated in the fourth step: 

 KJIHGFEDCBAT ..........=   (12) 

Resultant composite homogeneous transformation matrix: 
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Equations (14) are simplified (sin(x) →   sx): 

x = f (cα cβ cγ cδ sε - cα sβ sγ cδ sε - sα sδ sε + cα cβ sγ cε + cα sβ cγ cε )+ 
+ e (cα cβ sγ + cα sβ cγ ) - d(cα cβ cγ - cα sβ sγ ) + c cα sβ 

y = f(sα cβ cγ cδ sε - sα sβ sγ cδ sε + cα sδ sε + sα cβ sγ cε + sα sβ cγ cε ) +  
+ e(sα cβ sγ + sα sβ cγ ) - d(sα cβ cγ - sα sβ sγ ) + c sα sβ 

z = f (cβ cγ cε - sβ cγ cδ sε - cβ sγ cδ sε - sβ sγ cε) + e(cβ cγ - sβ sγ) + d (sβ cγ + cβ sγ )  
+ c cβ + b 

 

nx = cα cβ cγ cδ cε cφ - cα sβ sγ cδ cε cφ - sα sδ cε cφ - cα cβ sγ sε cφ-cα sβ cγ sε cφ + 
+ cα sβ sγ sδ sφ - cα cβ cγ sδ sφ - sα cδ sφ 

ox = cα sβ sγ cδ cε sφ- cα cβ cγ cδ cε sφ+ sα sδ cε sφ+ cα cβ  sγ sε sφ+ cα sβ cγ sε sφ + 
+ cα sβ sγ sδ cφ - cα cβ cγ sδ cφ - sα cδ cφ 

ax = cα cβ cγ cδ sε - cα sβ sγ cδ sε - sα sδ sε + cα cβ sγ cε + cα sβ cγ cε 
 

ny = sα cβ cγ cδ cε cφ - sα sβ sγ cδ cε cφ+cα sδ cε cφ - sα cβ sγ sε cφ - sα sβ cγ sε cφ + 
+ sα sβ sγ sδ sφ - sα cβ cγ sδ sφ + cα cδ sφ 

oy = sα sβ sγ cδ cε sφ - sα cβ cγ cδ cε sφ - cα sδ cε sφ+sα cβ sγ sε sφ+sα sβ cγ sε sφ + 
+ sα sβ sγ sδ cφ - sα cβ cγ sδ cφ + cα cδ cφ 

ay = sα cβ  cγ cδ sε - sα sβ sγ cδ sε + cα sδ sε +sα cβ sγ cε + sα sβ cγ cε 
 

nz = sβ sγ sε cφ - sβ cγ cδ cε cφ - cβ  sγ cδ cε cφ - cβ cγ sε cφ + sβ cγ sδ sφ + cβ sγ sδ sφ 
oz = sβ cγ cδ cε sφ + cβ sγ cδ cε sφ - sβ sγ sε sφ + cβ cγ sε sφ + sβ cγ sδ cφ + cβ sγ sδ cφ 
az = cβ cγ cε - sβ cγ cδ sε - cβ sγ cδ sε - sβ sγ cε 

(14) 

Matrix components x, y and z are the end point coordinates of the industrial robot.         
Rotation matrix is assembled from vectors n, o and a. The rotation of the coordination 
system is calculated from this rotation matrix. Presented below are the general 
rotation matrixes (15) around all axes: 
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ω – Rotation around axis x 
ρ – Rotation around axis y 
τ – Rotation around axis z 

All axes rotations are deduced from equation (15): 
Rotation around axis y, angle ρ: 

ρsin−=zn                                             (16) 

)arcsin( zn−=ρ                                                (17) 

Rotation around axis z, angle τ: 

ρτ cos.sin=yn                                   (18) 
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Rotation around axis x, angle ω: 

ωρ sin.cos=zo                                    (20) 
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4 Inverse Kinematics 

Robot inverse kinematics is calculated by algorithm which we have proposed. This 
algorithm uses mathematical model of the robot’s direct kinematics and Newton 
approximation method with the use of Jacoby matrix. 

Inputs of the algorithm are an initial state, desired position and parameter δ.   The initial 
state is the actual rotation state of the joints. The desired position consists of coordinates 
and axes rotations which the robotic arm has to be in. Parameter δ is described below. The 
shift has to be defined as zero before the start of the main loop of the algorithm.   

The algorithm includes two functions. These functions are not shown in the 
flowchart for lack of space in this paper. These functions are AA (angle adjust) and 
DK (direct kinematics). AA function adjusts angles in the range from -360° to 360°. 
DK inputs are angles of the joints rotation and the output is vector with coordinates 
and axes rotation. The algorithms main loop includes two very important calculates: 
Jacoby matrix and shift. The classic formula for Jacoby matrix is (22):  
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We modified the formula (22) to a discrete form. The discretization of derivation is 
different. Discrete Jacoby matrix consist of vectors which  represent a difference 
between temporary positions and positions after minimal modification (δ) in the angle 
of one robotic joint. If the robot has 6 degrees of freedom and 6 joints, then the 
resultant Jacoby matrix has size 6x6. Discrete Jacoby matrix (Function DK is used in 
the formula for simplification): 

[ ]
[ ])),,,,,(()),,,,,(()),,,,,((

)),,,,,(()),,,,,(()),,,,,((

′Δ+′Δ+′Δ+−
−′Δ+′′=
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(23) 

Inverse kinematics algorithm: 

 

Fig. 10. Inverse kinematics algorithm 

Shift is calculated through the basic formula: 

dpJdq 1−=                                               (24) 

Discretization of this formula (DP – vector of desired position, TP – vector of 
temporary position, s - shift): 

))((1 ′−Δ= − TPDPJs                                   (25) 

α, β, γ, δ, ε, φ = initial state

x, y, z, ω, ρ, τ = desired position

Δ = discrete newton distance  

shift = [0 0 0 0 0 0]

While desired position ≠ temporary position

Start

i=i+1

[α β γ δ ε φ] = [α β γ δ ε φ] + shift

[α β γ δ ε φ ω ρ τ] = AA(α, β, γ, δ, ε, φ, ω, ρ, τ)

TP = DK(α, β, γ, δ, ε, φ)

J = [TP' TP' ...] - [(DK(α+Δ, β, γ, δ, ε, φ))' (DK(α, β+Δ, γ, δ, ε, φ))' ...]

shift = J' * ((DP - TP)*Δ)' 

α, β, γ, δ, ε, φ, i

End

+
-
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The algorithm output is the angles vector of joint rotation and the number of loop 
iterations. It is important to point out that the robot’s movement begins after the 
algorithm finishes; robot’s movement never begins while an algorithm is running. 
Temporary position is not a real position, only an auxiliary position necessary for 
calculation.  

5 Experimental Verification 

These results were verified on the real industrial robot. Direct kinematics is verified 
by entering a random motor (joint) rotation to the real model and after  the completion 
of the operation the actual position of the robot’s endpoint is read from the robot 
controller. The same random joint rotation is calculated by composite homogeneous 
transformation matrix in MATLAB. These results are compared in Table 1: 

Legend to table: 

α, β, γ, δ, ε, φ: joint rotation of industrial robot 

X, Y, Z:  real position (coordinate) of robot’s endpoint 
A, B, C:  real rotation of coordination system of robot’s endpoint 
x, y, z:  calculated position (coordinate) of robot’s endpoint 
ω, ρ, τ:  calculated rotation of coordination system of robot’s endpoint 

Table 1. Verification of calculated direct kinematics – selected measurement 

č. 
α[deg.] β[deg.] γ[deg.] δ[deg.] ε[deg.] φ[deg.] 
X[mm] Y[mm] Z[mm] A[deg.] B[deg.] C[deg.] 
x[mm] y[mm] z[mm] ω[deg.] ρ[deg.] τ[deg.] 

1. 
87,47 -45,92 98,93 85,70 58,00 121,00 
-56,81 55,22 676,16 11,46 -74,13 -43,06 

-56,8141 55,2198 676,1553 11,4617 -74,127 -43,057 

2. 
225 110 70 -90 -90 300 

-138,68 -237,68 -53,66 -90 30 -45 
-138,6844 -237,6793 -53.6646 -90 30 -45 

3. 
21,8 -1,32 102,84 0 78,48 21,8 
250 100 450 180 0 180 

249,9950 99,9951 450,0048 180 0 180 

 
On Table 1 it can be seen that the direct kinematics of an industrial robot MELFA 

RV-2SDB is calculated correctly. There is more verification but the results are same; 
this is the reason why the results are not in the table. Inverse kinematics is verified, 
too with excellent results (calculated joints rotation were the same as the real joints 
rotation). 
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6 Conclusion 

This paper describes the process of creating a mathematical model of robotic arms. 
This mathematical model refers to the direct and inverse kinematics model. The 
process of creating the direct kinematics model was tested on 4 robotic arms 
(Mitsubishi MELFA RV-2SDB – model DCAI, Robkovia – model DCAI, SEF – 
Model DCAI and OWI 535 Robotic Arm). The algorithm of inverse kinematics was 
tested on 2 robotic arms (Mitsubishi MELFA RV-2SDB and SEF). We use the 
Newton approximation method for the inverse kinematics calculation but there are 
many other methods, for example Taylor expansion of the transformation matrix, 
Analytic solution, BFS (Broyden, Fletcher, Shanno) method and Vector method of 
inverse transformation. We use the mentioned method because we considered this 
method reliable and result needs maximally 8 iterations.  
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