
 

© Springer International Publishing Switzerland 2015 
P. Sinčák et al. (eds.), Emergent Trends in Robotics and Intelligent Systems, 

113

Advances in Intelligent Systems and Computing 316, DOI: 10.1007/978-3-319-10783-7_12 
 

Usage of ZCS Evolutionary Classifier System as a Rule 
Maker for Cleaning Robot Task 

Tomáš Cádrik and Marian Mach 

Department of Cybernetics and Artificial Intelligence, Technical University of Košice 
tomas.cadrik@gmail.com, Marian.Mach@tuke.sk 

Abstract. This paper introduces the Cleaning robot task which is a simulation 
of the cleaning of a room by a robot. The robot must collect all the junk in the 
room and put it into a container. It must take out the junk sequentially, because 
the amount of carried trash is limited. The actions of this robot are selected by 
using the Michigan style classifier system ZCS. This paper shows the capability 
of this system to select good rules for the robot to perform the cleaning task.  

1 Introduction 

Learning classifier systems were introduced by John Holland in 1986 [1]. It is a 
technique which creates classifiers using evolutionary algorithms [2]. Later, Wilson 
created two successful classifier systems. They were named ZCS [3] and XCS [4] [5]. 
In these systems, each individual (also called classifier) represents only one rule. This 
style is called the Michigan style. Another style is called the Pittsburgh style, where 
each individual contains all rules. The learning classifier systems also have close links 
to reinforcement learning because they use fitness calculating algorithms which are 
similar to reinforcement learning techniques. 

Classifier systems were tested on many problems. Some of them were single-step 
problems like the k-multiplexor problem [4]. But these systems show good results 
especially on multi-step problems like Animat [4] or Corridor problem [6]. This paper 
focuses on ZCS (Zeroth level classifier system) and on a simple multi-step task which 
was mentioned in the cleaning robot task (CR) introduced in this paper. The CR task 
consists of a room which must be cleaned by the robot and all of the junk scattered in 
the room must be put into a container. The usage of ZCS to solve the CR task can 
show the ability of this method on a multi-step problem which is more difficult than 
the Animat problem, because the robot must pick up junk and simultaneously take out 
this junk periodically and put it into the container, because the robot can carry only a 
limited amount of it. 

This paper is organized as follows: First, the ZCS classifier system is described. In 
section III the CR task is introduced. Section IV contains experiments which show the 
capability of ZCS to solve the CR task. 



114 T. Cádrik and M. Mach 

 

2 Description of ZCS 

ZCS was introduced in [3]. Each ZCS individual contains a rule consisting of 
conditions and action parts. The condition part reflects a particular state(s) of the 
environment. It is coded with symbols {0, 1, #}, where # means ‘does not care’, it is 
equal to 0 and 1 at the same time. The action part can be coded with any symbols. 

ZCS also contains a genetic algorithm that is used to discover new individuals and 
a covering operator that is employed when no condition part matches the input. The 
following figure shows the schematic illustration of ZCS. 

 

Fig. 1. Schematic illustration of ZCS by Wilson [2] 

The ZCS starts with a randomly generated population [P]. Each individual starts 
with fitness equal to S0. First, the environment returns string corresponding to the 
current state. Then, ZCS makes a match set [M] to the input string. If [M] does not 
contain any classifier, the covering operator is activated. The covering operator 
creates a new classifier which matches the input and has a random action part. Then, 
each element in the condition part is changed with probability P # to # symbol. The 
initialization value of fitness is set to the average of fitness in the population. This 
classifier is inserted into the population and into [M]. Then, a classifier is deleted 
from the population according to the conversion of the fitness (1/fitness).  

According to the fitness, a roulette wheel  is used to choose an action from [M]. 
Then, each classifier from [M], which action is equal to the selected action, is copied 
to action set [A]. Each classifier in [M] that is not in [A] will update its fitness 
according to formula 1. 

௝ݏݏ݁݊ݐ݂݅  = ௝ݏݏ݁݊ݐ݂݅ − ௝ݏݏ݁݊ݐ݂݅ ∗ ߬ (1) 



Usage of ZCS Evolutionary Classifier System as a Rule Maker for Cleaning Robot Task 115 

 

τ is a parameter that contains values from interval (0, 1>. Then, for each classifier in 
[A], a value will be calculated according to formula 2. 

ݑ݈ܽݒ  ௝݁ = ௝ݏݏ݁݊ݐ݂݅ ∗  (2) ߚ

β can contain values from the same domain as τ. Each classifier in [A] will decrease 
its fitness with the calculated value. Then, the bucket B is calculated using the 
following formula. 

ܤ  = ∑ ݑ݈ܽݒ ௝݁௡௝ୀଵ  (3) 

When the environment returns a reward, each classifier in [A] will update his fitness 
according to formula 4. 

௝ݏݏ݁݊ݐ݂݅  = ௝ݏݏ݁݊ݐ݂݅ + ߚ ∗ ௥௘௪௔௥ௗ|஺|  (4) 

Where |A| is the number of classifiers in [A]. Each classifier in the previous action set 
updates its fitness according to formula 5. 

௝ݏݏ݁݊ݐ݂݅  = ௝ݏݏ݁݊ݐ݂݅ + ߛ ∗ ஻|஺௣௥௘௩| (5) 

B is the value in the bucket, |Aprev| is the cardinality of the previous action set and 
γ is a parameter and has value from interval (0, 1>.  

The last part of ZCS is the evolutionary algorithm. It is applied within each cycle 
with probability ψ. When it appears, two individuals are selected from the population 
by a roulette wheel according to their fitness. They are used as parents. Two new 
individuals are created using one point crossover (crossover starts with probability χ) 
and mutation (probability for each position in the string to mutate is µ). New 
individuals (children) start with fitness equal to the average fitness of their parents. 
Then, two individuals are deleted and these two new individuals are added to the 
population. 

3 The Cleaning Robot Problem 

 The environment in the CR problem consists of a robot, junk and a container. The 
goal is to collect the junk and put it into the container. The robot can carry only a 
limited amount of junk. So when the robot carries the maximal amount of junk, it 
must go to the container and then it can continue collecting more junk on the map. 

The robot can only see the surroundings and it knows how far the container is from 
it. The input from the environment is coded using 25 bits. The surrounding of the 
robot is coded in 16 bits. The first two bits represent the cell to the north from the 
robot. Each other pair of bits is the clockwise surrounding cells. The pair of bits “00” 
means that there is a wall.  “01” means that there is an empty cell. “10” means that 
there is some junk in this cell. “11” means that there is a container in this cell. For 
example, the 16 bits of a robot in Figure 2 will be 0000011010000000. 



116 T. Cádrik and M. Mach 

 

 

Fig. 2. Environment of a Cleaning robot problem  

The distance of the robot from the container is coded in 8 bits. The first four bits 
are for the x distance and the second group represents the y distance. The first bit in 
these four bits means that the container is left or right from the robot (up or down if it 
is the y distance). The other three bits are the absolute value of the distance (if the 
maximal absolute distance is more than 7, we need more bits). In Figure 2, the 
distance of the robot from the container is 10101011 in bit representation. The last bit 
of the input string shows whether the robot can carry more junk. 

When the robot steps on a cell with junk in it and it can take more junk, it will take 
it. Then the environment will return payoff 1000. When the robot steps on a cell with 
a container, it will put all junk it carries into it and the environment will return payoff 
1000. If not, the returned payoff is 0. 

The robot starts on a start cell (On Figure 2, the start cell is x=0, y=0). It can move 
in four directions (left, right, up, down). When the robot moves in a direction where 
there is a wall, it will stay on his position but he will lose one turn. When it puts all 
junk into the container, the environment will be restarted and the robot will start on its 
start cell. The goal of this problem is to take all the junk from the environment and 
put it into the container with usage of a minimum number of steps. The amount of 
junk doesn’t always need to be the same in the environment after each cleaning. 
Figures show where the junk can appear but whether it appears on this position is 
random. So after restarting the environment, the amount of trash can be different. 
ZCS needs to learn how the environment looks and which action is the best for the 
input returned from the environment even if the environment is not the same for every 
cleaning cycle. 

4 Experiments 

The experiments were made on the environment displayed in Figure 2. Parameters of 
ZCS were set to values found in [7]. These values are shown in Tab 1. 



Usage of ZCS Evolutionary Classifier System as a Rule Maker for Cleaning Robot Task 117 

 

Table 1. Parameter values of ZCS found in [7] 

Parameter S0 τ ψ µ χ P# β γ 
Value 20 0.1 0.25 0.02 0.5 0.33 0.2 0.4 

 
In the first experiment, the maximum of carried junk was set to 1 (optimum is 31).  

Population was set to 10000. The number of cycles was 3000. The result while using 
the maximum amount of carried trash set to one is shown in Figure 3. 

 

Fig. 3. Graph of dependence of the average number of steps of the robot while it cleans the 
environment and cycles. One cycle is one cleaning process, it ends when the environment 
contains no junk. The robot can carry only one piece of junk at a time. 

In the first cycles the robot moves randomly. It can be seen in the graph, because 
these cycles have a big amount of steps while it cleans the environment. When the 
ZCS starts to learn how the environment looks like, the average of steps begins to 
decrease and the decreasing does not stop until the end of the last cycle.   

The experiment shows the capability of ZCS to create rules in a more complicated 
problem than the animat problem is. It can gradually adapt to a changing environment 
(when the robot takes junk from a cell, the next time it visits that cell, it is clean) and 
choose good actions while the environment isn’t clean (does not contain any junk). 
The number of steps is not optimal but the system shows progress in each cycle. Even 
if the cycles have different numbers of junk, it wasn’t any problem for the ZCS. 

The robot in the next experiment can carry three pieces of junk at once. The result 
while using the maximum amount of carried trash set to three (optimum is 15) is 
shown in Figure 4.  

 



118 T. Cádrik and M. Mach 

 

 

Fig. 4. Graph of dependence of the average number of steps of the robot while it cleans the 
environment and cycles. One cycle is one cleaning process, it ends when the environment 
contains no junk. The robot can carry only three pieces of junk at a time. 

Figure 4 shows how ZCS adapts when the robot can carry more junk than in the 
first experiment. While the maximum pieces of carried junk was 1, the average 
number of steps was not less than 47. But if the maximum pieces of carried junk was 
three, the average number of steps was close to 28. This demonstrates how ZCS can 
utilize opportunities at the disposal.  

5 Conclusion 

This paper showed how ZCS can handle a multi-step problem named the Cleaning 
robot problem. Although this paper tested ZCS only on a simulation of a robot in a 
discrete world, it has a practical use. If we teach a cleaning robot where the most 
frequent places are, where junk or dirt can show up, we can use this robot to clean 
these places and it will clean only those where dirt is. Meanwhile, the robot will learn 
better rules. Some modifications can help ZCS to approve learning in larger and more 
complicated environments. 

References 

1. Holland, J.H.: Escaping brittleness: The possibilities of general-purpose learning algorithms 
applied to parallel rule-based systems. In: Michalski, R.S., Carbonell, J.G. (eds.) Machine 
Learning, an Artifiial Intelligence Approach, vol. II, Morgan Kaufmann, Los Altos (1986) 

2. Mach, M.: Evolutionary algorithms: Elements and principles. Elfa, Kosice (2009) 
3. Wilson, S.W.: ZCS: A Zeroth Level Classifier System. Evolutionary Computation 2(1), 1–

18 (1994) 



Usage of ZCS Evolutionary Classifier System as a Rule Maker for Cleaning Robot Task 119 

 

4. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2), 149–
175 (1995) 

5. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. In: Lanzi, P.L., Stolzmann, 
W., Wilson, S.W. (eds.) IWLCS 2000. LNCS (LNAI), vol. 1996, pp. 253–272. Springer, 
Heidelberg (2001) 

6. Tang, K.W., Jarvis, R.A.: Is XCS Suitable For Problems with Temporal Rewards? In: 
Proceedings of the International Conference on Computational Intelligence for Modelling, 
Control and Automation and International Conference on Intelligent Agents, Web 
Technologies and Internet Commerce (CIMCA-IAWTIC 2006), vol. 2. IEEE (2006) 

7. Computer Society, Washington, DC, pp. 258–264 (2005) 
8. Cádrik, T.: Evolučné klasifikačné systémy, Diplomová práca. Technická univerzita, Košice, 

74s (2013) 


	Usage of ZCS Evolutionary Classifier System as a Rule Maker for Cleaning Robot Task
	1 Introduction
	2 Description of ZCS
	3 The Cleaning Robot Problem
	4 Experiments
	5 Conclusion
	References




