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Abstract. In 1943, a paper by Warren McCulloch & Walter Pitts [6] entitled “A 
logical calculus of the ideas immanent to nervous activity“ was published, 
which is now considered as one of the seminal papers that initiated the 
formation of artificial intelligence and cognitive science. In this paper concepts 
of logical (threshold) neurons and neural networks were introduced. It was 
proved that an arbitrary Boolean function may be represented by a feedforward 
(acyclic) neural network composed of threshold neurons, i.e. this type of neural 
network is a universal approximator in the domain of Boolean functions. The 
present paper recalls the core achievements of this paper and puts it into 
perspective from the point of view of further achievements based on their 
approach. Particularly, S. Kleene [5] and M. Minsky [7] extended this theory by 
their study of relationships between neural networks and finite state machines. 
The present paper is not a standard research article where new ideas or 
approaches would be presented. However, the 70th anniversary of publication of 
the McCulloch and Pitts paper should be sufficiently important to recall this 
core event in computer science and artificial intelligence. In particular, the main 
concept of their paper opened unexpected ways to study processes in the human 
brain. Their approach offers a way to treat a core philosophical mind/body 
problem in such a way that the brain is considered as a neural network and the 
mind is interpreted as a product of its functional properties. 

1 Introduction and Basic Concepts  

Logical neurons and neural networks were initially introduced in Warren 
McCulloch´s and Walter Pitts´s paper [6]. This paper demonstrated that neural 
networks are universal approximators for a domain of Boolean functions; i.e. an 
arbitrary Boolean function can be represented by a feedforward neural network 
composed of threshold neurons. We have to mention from the very beginning that this 
work is very difficult to read; its mathematical-logical part was probably written by 
Walter Pitts, who was in both sciences a total autodidact. Thanks to logician S. 
Kleene [5] and computer scientist M. Minsky [7], this work has been “translated” at 
the end of the fifties into a form using standard language of contemporary logic and 
mathematics and its important ideas became generally available and accepted.  
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An elementary unit of neural networks is threshold (logical) neuron of McCulloch 
and Pitts. It has two binary values (i.e. either state 1 or state 0). It may be interpreted 
as a simple electrical device - relay. Let us postulate that a dendritic system of 
threshold neuron is composed of excitation inputs (described by binary variables x1, 
x2, ..., xn which amplify an output response) and inhibition inputs (described by binary 
variables xn+1, xn+2, ..., xm which are weakening an output response), see Fig. 1. 

An activity of threshold neuron is set to one if the difference between a sum of 
excitation input activities and a sum of inhibition activities is greater than or equal to 
the threshold coefficient ϑ, otherwise it is set to zero.  
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Fig. 1. Diagrammatic visualization of McCulloch and Pitts neuron which is composed of the 
dendritic system for information input (excitation or inhibition) activities and axon for 
information output. A body of neuron is called the soma, it is specified by a threshold 
coefficient ϑ. 

If we introduce a simple step function  

 ( ) ( )
( )
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then an output activity may be expressed as follows: 

 1 1n n my s x ... x x ... x+

ξ

 
 = + + − − − − ϑ
 
 
  (2b) 

An entity ξ is called the internal potential. Simple implementations of elementary 
Boolean functions of disjunctions, conjunctions, implication and negation are 
presented in Fig. 2. 
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Let us note that the above mentioned simple principles (1-2) “all or none” for 
neurons have been introduced in the late twenties and early thirties of the former 
century by English physician and electro-physiologist Sir Edgar Adrian [1] when he 
studied output neural activities by making use of very modern (for that time) 
electronic equipment based on electron-tube amplifiers and cathode-ray tubes for a 
visualization of measurements.   
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Fig. 2. Four different implementations of threshold neurons which specify Boolean functions of 
disjunction, conjunction, implication and negation, respectively. Excitatory connections are 
terminated by a black dot whereas inhibition connections by open circles. 

In the original paper [6] McCulloch and Pitts have discussed a possibility that 
inhibition is absolute, i.e. any active inhibitory connection forces the neuron into the 
inactive state (with zero output state). The paper itself shows that this form of 
inhibition is not necessary and that “subtractive inhibition“ based on formulae (1-2) 
gives the same results.    

2 Boolean Functions 

Each Boolean function [12, 13] is represented by a syntactic tree (derivation tree) 
which represents a way of its recurrent building, going bottom up, initiated by 
Boolean variables and then terminated (at the root of tree) by a composed Boolean 
function (formula of propositional logic), see Fig. 3, diagram A. Syntactic tree is a 
very important notion for a construction of its subformulae, each vertex of tree 
specifies sub formulae of the given formula: lowest placed vertices are assigned to 
trivial subformulae p and q, forthcoming two vertices are assigned subformulae 
p q  and  p q∧ , highest placed vertex – root of the tree – is represented by the 

given formula ( ) ( )p q p q  ∧ .    

We see that for an arbitrary Boolean function we may simply construct a neural 
network which simulates functional value of the Boolean function, see Fig. 3, where 

this process is outlined for formula ( ) ( )p q p q  ∧ . It means that these results 

may be summarized in a form of a theorem. 
 
Theorem 1. Each Boolean function, represented by a syntactic tree, can be 
alternatively expressed in a form of neural network composed of logical neurons that 
correspond to connectives from the given formula. 
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Fig. 3. (A) Syntactic tree of a Boolean function (propositional formula) ( ) ( )p q p q  ∧ . 

Bottom vertices correspond to Boolean variables (propositional variable) p and q, vertices from 
the next levels are assigned to connectives implication and conjunction, respectively. An 
evaluation of the syntactic tree runs bottom up. (B) Neural network composed of logical 
neurons of connectives which appear in a given vertex of the syntactic tree of diagram A. We 
see that between syntactic tree and neural network there exists a very close one-to-one 
correspondence, their topologies are identical, they differ only in vertices. Figuratively 
speaking, we may say that a neural network representing a Boolean function ϕ can be 
constructed from its syntactic tree by direct substitution of its vertices by proper logical 
neurons. 

This theorem belongs to basic results of the seminal paper by McCulloch and Pitts 
[6]. It claims that an arbitrary Boolean function represented by a syntactic tree may be 
expressed in a form of neural network composed of simple logical neurons that are 
assigned to logical connectives from the tree. It means that neural networks with 
logical neurons are endowed with an interesting property that these networks have a 
property of universal approximator in a domain of Boolean functions. The above 
outlined constructive approach based on existence of syntactic tree for each Boolean 
function is capable of accurate simulation of any given Boolean function. 

The architecture of neural network based on the syntactic tree which is assigned to 
an arbitrary Boolean function may be substantially simplified to the so-called 3-layer 
neural network composed of  

(1) a layer of input neurons (which copy input activities, they are not 
computational units),   

(2) a layer of hidden neurons and  
(3) a layer of output neurons;  

where neurons from two juxtaposed layers are connected by all possible ways by 
connections. This architecture is minimalistic and could not be further simplified. We 
demonstrate a constructive way of how to construct such a neural network for an 
arbitrary Boolean function. 

 



 70th Anniversary of Publication: Warren McCulloch & Walter Pitts 5 

 

 
Fig. 4. A logical neuron for simulation of an arbitrary conjunctive clause which is composed of 
propositional variables or their negations that are mutually connected by conjunctions, 

1 1n n my x ... x x ... x+= ∧ ∧ ∧ ¬ ∧ ∧ ¬  

Applying simple generalization of the concept of logical neuron, we may 
immediately show that a single logical neuron is capable of simulating a conjunctive 
clause 1 1n n mx ... x x ... x+∧ ∧ ∧ ¬ ∧ ∧ ¬ .  

In the theory of Boolean functions [12, 13], a very important theorem is proved that 
each Boolean function may be equivalently written in a form of disjunctive normal 
form 
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A final form of the Boolean function (3) is outlined in Fig. 4. Results of this 
illustrative example may be summarized in a form of the following theorem. 
 
Theorem 2. An arbitrary Boolean function f can be simulated by a 3-layer neural 
network. 

 
We have to note that, according to the theorem 2, the 3-layer neural networks 

composed of logical neurons are a universal computational device for a domain of 
Boolean functions; each Boolean function may be represented by this “neural device” 
called the neural network. This fundamental result of McCulloch`s and Pitts`s paper 
[6] preceded modern result, after which 3-layer feed-forward neural network with a 
continuous activation function is a universal approximator of continuous functions 
specified by a table of functional values [13].  

We may question what kind of Boolean functions is a single logical neuron capable 
to classify correctly? According to Minsky and Papert, this question may be solved 
relatively quickly by geometric interpretation of computations running in logical 
neuron [8]. In fact, logical neuron divides input spaces into two half spaces by a 
hyperplane w1x1 + w2x2 +...+ wnxn = ϑ for weight coefficients wi=0,±1. Then, we say 
that a Boolean function f(x1, x2,..., xn) is linearly separable, if and only if there exists 
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such a hyperplane w1x1 + w2x2 + ...+ wnxn = ϑ which separates a space of input 
activities in such a way that objects evaluated by 0 are situated in the first part of the 
space, whereas objects evaluated by 1 are situated in the second part of the space. 
 
Theorem 3. Logical neurons are capable to simulate correctly only those Boolean 
functions that are linearly separable. 

 
A classical example of a Boolean function which is not linearly separable is a 

logical connective "exclusive disjunction" which may be formally specified as a 

negation of a connective of equivalence, ( ) ( )x y x y⊕ ⇔ ¬ ≡ , in computer-science 

literature this connective is usually called the XOR Boolean function, 

( )XOR x, y x yϕ = ⊕ . Applying the technique from the first part of this chapter, we may 

construct a neural network which simulates this inseparable Boolean function. From 
its functional values we may directly construct its equivalent form composed of two 
clauses  

 ( ) ( ) ( )1 2 1 2 1 2XOR x ,x x x x xϕ = ¬ ∧ ∨ ∧ ¬  (5) 

Then this Boolean function is simulated by the neural network displayed in Fig. 5. 
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Fig. 5. Diagrams A and B simulate single conjunctive clauses from (5). Diagram C represents 
3-layer neural network which hidden neurons are taken from diagrams A and B, respectively. 
An output neuron corresponds to a disjunctive connective. 

3 Formal Specification of Neural Networks 

From our previous discussion it follows that a concept of neural network [13] belongs 
to fundamental notions of artificial intelligence (not only those networks that are 
composed of logical neurons). Neural network is defined as an ordered triple  

 ( )G, ,= w ϑ  (6) 

where G is a connected oriented graph, w is a matrix of weight coefficients and ϑ is a 
vector of threshold coefficients. 

Until now, we did not use time information in an explicit form. We postulate that 
time t is a discrete entity and is represented by natural integers. Activities of neurons 
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in time t are represented by a vector x(t), in the time t = 0 a vector x(0)  specifies 
initial activities of a given neural network. Relation for an activity of the ith neuron in 
time t is specified by  

 ( ) ( )1t t
i ij j i

j

x s w x − 
= − ϑ 

 
  (7) 

where summation runs over all neurons that are predecessors of the ith neuron, 
activities of these neurons are taken in the time t-1. Neural network  may be 

understood as a function which maps an activity vector ( )1t −x  in the time t-1 onto an 

activity vector ( )tx  in the time t , 
( ) ( )( )1t tF ;−=x x  , where the function F contains 

the specification N of the given network as a parameter. 

4 Finite State Machine (Automaton)  

A finite state machine [4, 5, 7] works in discrete time events 1, 2,..., t, t+1,... .  It 
contains two tapes of input symbols and output symbols, respectively, where output 
symbols are determined by input symbols and internal states s of the machine  

 ( )1t t tstate f state ,input symbol+ =  (8a) 

 ( )1t t toutput symbol g state ,input symbol+ =   (8b) 

where functions f and g specify the given machine and are considered as its basic 
specification: 

1. Transition function  f  determines the next state; this is fully specified by an actual 
state and an input symbol, 

2. Output function g determines the output symbol, this is fully specified by an actual 
state and an input symbol. 

Definition 1. A finite state machine (with an output, called alternatively the Mealy 

automaton) is defined by an ordered 6-tuple , where 

is a finite set of internal states, is a finite state of input 

symbols, is a finite set of output symbols,  is a 

transition function,  is an output function, and  is an initial 

state. 

Transition and output functions may be used for a construction of a model of a 
finite state machine, see Fig. 6. 

( )iniM S,I ,O, f ,g,s=

{ }1 mS s ,...,s= { }1 2 nI i ,i ,...,i=

{ }1 2 pO o ,o ,...,o= :f S I S× →
:g S I O× → inis S∈
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Fig. 6. An example of finite state machine composed of two states, { }1 2S s ,s= , two input 

symbols, { }0 1I ,= , two output symbols, { }O a,b=  and an initial state s1 

Finite state machines are determined as a mapping of input string of symbols onto 
output string of symbols  

1 0 0 1 1 1 0 1 0
in p u t s tr in g x o u tp u t s tr in g y

G .. . ; f , g a b a a a a b a a .. .
 

=  
 

    

where the symbol  in an output string means an “empty token”, symbols of output 
string are shifted by one-time step with respect to the input string. A mapping G is 
composed of functions f and g which specify a “topology“ of the finite state machine.  
 
Theorem 4 [5, 8]. Each neural network can be represented by an equivalent finite state 
machine with output. 
 

Existing proof of this theorem is simple and constructive, we can construct for a 

given neural network single elements from the definition 1, ( )iniM S,I ,O, f ,g,s= .  

For a given neural network we unambiguously specify a finite state machine which 
is equivalent to the given neural network. This means that any neural network may be 
represented by an equivalent finite state machine. 

A proof of inverse theorem with respect to theorem 4 (i.e. each finite state machine 
may be represented by an equivalent neural network) is not a trivial one, the first who 
proved this inverse form was Minsky in 1967 in his famous book "Computation: 
Finite and Infinite Machines" [7] by making use of a very sophisticated constructive 
approach. For a given finite state machine, an equivalent neural network can be 
constructed.  

 
Theorem 5 [7]. Each finite state machine with output (i.e. the Mealy automaton) can 
be represented by an equivalent recurrent neural network. 

 
To summarize our results, we have demonstrated that neural networks composed of 

logical neurons are powerful computational devices: (1) feedforward neural networks 
represented by the acyclic graph are universal approximators of Boolean functions 
and (2) there is a property of mutual equivalency between finite state machines and 
neural networks. An arbitrary finite state machine may be simulated by a recurrent 
neural network and, conversely, an arbitrary neural network (feedforward of 
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recurrent) may be simulated by a finite state machine. Further relation between finite 
automata and neural networks was further studied by many authors, e.g. Noga et al. 
[10] and Hsien a Honavar [3].  

5 Conclusions 

McCulloch and Pitts’s paper is very ostensibly ‘‘neural’’ in the sense that it used an 
approach for specification of neuron activities based on a simple rule all-or-none. 
However, McCulloch–Pitts neural networks are heavily simplified and idealized when 
compared to the then known properties of neurons and neural networks. Their theory 
did not offer testable predictions or explanations for observable neural phenomena. It 
was removed from what neurophysiologists could do in their labs. This may be why 
neuroscientists largely ignored McCulloch’s and Pitts’s theory. For this scientific 
community, its main power is not in a capability to produce verifiable hypothesis but in 
a fact that such extremely simple neural theory offers arguments of basal character for a 
discussion about “philosophical” problems concerning a brain and mind relationship. It 
cannot be expected that a further “sophistication” of this theory (e.g. the rule “all-or-
none” [1, 2] is substituted by another more realistic rule or “spiking” neurons are used, 
etc.) will negatively influence general results deduced from the model.  

One example of seminal papers influenced by results of McCulloch and Pitts was 
the work of well-known John von Neumann [9] who is known as a creator of the so-
called “von Neumann computer architecture“, which was outlined in his famous 1945 
technical report. He mentioned that various mechanical or electrical devices have 
been used as elements in existing digital computing devices. It is worth mentioning 
that the neurons are definitely elements in the above sense. From the early 1940s the 
McCulloch–Pitts neuron was considered by many non-neuroscientists to be the most 
appropriate way to approach neural computation, largely because the work of 
McCulloch and Pitts was so well known.  

McCulloch’s and Pitts’s views – that neural nets perform computations (in the 
sense of computability theory) and that neural computations explain mental 
phenomena – permanently belong to the mainstream theory of brain and mind. It may 
be time to rethink the extent to which those views are justified in light of current 
knowledge of neural mechanisms. The philosophical impact of the paper of 
McCulloch and Pitts is broadly discussed in many works oriented to the famous 
problem of connections between mind and brain [2, 11, 12]. 
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