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Abstract. We provide (in a finite setting) a closed form expression for
the lower envelope of the set of all the possible Bayesian posteriors deriv-
able from a possibly incomplete or imprecise prior distribution (giving
rise to a 2-monotone capacity) and a likelihood function.
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1 Introduction

The classical Bayesian paradigm relies on a precise and complete probabilis-
tic prior and likelihood assessment {P(H;), P(E|H;)}i=1,...» and gives rise to a
unique posterior distribution {P(H;|E)}i=1,... n, whenever P(E) > 0. However,
in real applications (e.g., medical diagnosis, forensic analysis and legal processes,
to cite some) the prior knowledge could be imprecise (e.g., a belief function) or,
even if precise, it could be only partially specified or defined on different hy-
potheses. At the same time, the expert could be interested in Bayesian queries
on events more complex than the H;|E’s.

The cases described above induce a (convex) set of prior probabilities whose
lower envelope turns out to be a belief function [12,20,14,6]. Hence, the problem
of non-unicity of the posterior needs to be dealt referring to the entire class of
probabilistic extensions, and a characterization of the envelopes of such set is
desirable, especially with a sensitivity analysis in view.

The main aim of this paper is to prove a generalized version of Bayes’ theo-
rem for finite spaces when the prior information is expressed by a 2-monotone
capacity on the algebra spanned by the H;’s and the statistical model is still a
likelihood function on the events F|H;’s. Actually, our results can be generalized
(see [5]) in order to extend results proved in [25,26], by allowing conditioning to
any event in the algebra A spanned by F and the H;’s, without any positivity
assumption on the corresponding (lower or upper) probability. This aim is in
line with that of Walley [24].

Our contribution consists in providing a closed form expression for the lower
envelope of the set of full conditional probabilities on A extending a complete
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and precise prior probability and a likelihood function. Then we characterize
the lower envelope of the coherent conditional probability extensions of a prior
probability referring to events different from those where the likelihood is given.
Finally, a generalization of the first result is proved, by considering a prior 2-
monotone capacity and a likelihood function. We show that the “lower posterior
probability” may fail 2-monotonicity: in the case the lower posterior probability
is a 2-monotone capacity, then the updating procedure can be iterated.

2 Framework of Reference

Let A be a Boolean algebra of events, endowed with the usual Boolean opera-
tions of contrary (-)¢, disjunction V, and conjunction A, and the partial order
of implication C. We denote with 2 and ), respectively, the sure event and the
impossible event which coincide with the top and the bottom elements of A,
respectively. A subset H C A% = A\ {0} is said an additive class if it is closed
under finite disjunctions.

We refer to the following axiomatic definition of conditional probability [7]
which is equivalent to [10,9].

Definition 1. Let A be a Boolean algebra and H C A° an additive class. A
function P : A x H — [0,1] is a conditional probability if it satisfies the
following conditions:

(i) P(E|H)=P(EANH|H), for every E € A and H € H;
(i) P(-|H) is a finitely additive probability on A, for any H € H;
(iii) P(ENF|H) = P(E|H)-P(F|ENH), for any H,EANH € H and B, F € A.

Following [13], we say that a conditional probability P(-|-) is full on A if H =
A®. Tn order to deal with an assessment P on an arbitrary set G of conditional
events we need to resort to the concept of coherence [7] (equivalent to [27,17]).

Definition 2. Given an arbitrary set G = {E;|H;}ics of conditional events, an
assessment P : G — [0,1] is a coherent conditional probability if and only
if there is a conditional probability P : Ax H — [0,1] with Ax H D G extending
the assessment P (i.e., Js‘g =P).

By the conditional version [27,17] of de Finetti’s fundamental theorem for
probabilities [11], any coherent conditional probability P on G can be extended
coherently to any further set G’ O G of conditional events. In general, the exten-
sion on G’ is not unique thus we consider the set P = {P(|-)} of all the coherent
extensions of P. Such set is a compact subset of the space [0, 1]g’ endowed with
the product topology of pointwise convergence and is the Cartesian product of
(possibly degenerate) closed intervals, which determine the lower and upper en-
velopes P = minP and P = maxP, where the minimum and the maximum
are intended pointwise on the elements of G’. The functions P and P on G’ are
coherent lower and upper conditional probabilities [7], respectively.
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Notice that P and P are dual, i.e., P(E|H) =1-P(E°|H) if E|H,E°|H € G,
thus, when G’ is a structured set A x H the knowledge of P (simply called lower
conditional probability in this case) is sufficient to recover P.

Recall that a lower conditional probability P on A x H is such that for every
HeH, P(O|H)=0,P(R2H)=1, P(E|H) = P(EANH|H) and P(:|H) is super-
additive on A. Furthermore, for H € H, P(-|H) is said n-monotone (n > 2) on

A if
P (\/ E; H> > > (-pip (/\Ez H> (1)

0AIC{1,...,n} el

for every Ei,...,E, € A. In particular, for H € H, P(-|H) is said a belief
function [20] on A if it is n-monotone for every n > 2.

3 Precise and Complete Prior and Likelihood Function

Let £ ={Hy,...,H,} be a finite partition of {2, E an arbitrary possible event,
and A = ({E} U L) the algebra spanned by {E} U £, whose set of atoms is C 4.

A likelihood function f (see, e.g., [4]) is any map from {E} x L to [0,1],
with the only constraint that f(F|H;) = 0if EA H; = () and f(E|H;) = 1if
EAH; = H;.

Given a likelihood function f(E|-) and a prior probability distribution p(-)
on L, the joint assessment {p, f} is a coherent conditional probability on G =
{E|\H;, H;}i=1,....n [18,7,22] which determines a unique coherent extension P on
G' = Ax ({22} U L). Nevertheless, the further extension of P on A x AY is not
unique in general so we need to consider the set

P = {P : full conditional probability on A s.t. Js‘g/ = P}.
The following theorem provides a closed form expression for P = min P.

Theorem 1. Given a likelihood function f(E|-) and a prior probability distri-
bution p(-) on L, for every F|K € Ax A%, P(F|K) =1 when FAK = K, and
if FANK # K, then:

(i) if P(K) > 0 then
P(F AK)
; 2
(ii) if P(K) =0, then if I # 0 and Hi NFANK # 0 for all j € J and F° A
KA (\/z‘el Hi)C =0, where I,J C {1,...,n} are, respectively, the mazimum
and minimum index set such that \/;c; H; € K C vjeJ H;, then

P(F|K) =

P(FIK) =minq min  fEH), min (1=f(EH) 5 (3)
E°NH,CF°ANK EANH;CF°AK

otherwise P(F|K) = 0.
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Proof. The proof is trivial in the case F A K = K or P(K) > 0. Assume
FAK # K and P(K) = 0. Denote with E® either E or E° and let C; =
{E*NH; €Cyq : P(E* AN H;) =0}. The lower bound P(F|K) can be computed
by solving the optimization problem (see [7,1]) with non-negative unknowns z}

J
for EANH; €Cy, € J, andy]l for ENH; € Cq, j € J,

minimize E le + E yj1

ENH;CFAK E<NH;CFAK
eh = f(B|H))- (¢} +y})  HEAH;€C and E°AH; €Ciandje J,
> owmit+ Y yi=1

EAH;CK EAH;CK
The unknowns in the system are divided in independent groups corresponding
to each H; with j € J and are constrained together only by the last equation.
If I =0 or there exits j € J s.t. l;jAFAK =0 or FAKA (Ve Hi) # 0,

one can always build a solution such that > x} + > yi =0
EAH;CFAK EeAH;CFAK

1 1 T -
and EAHJ-%FC/\K x; + EC/\HJ-ZQFC/\K y; = 1, which implies P(F|K) = 0. In the
opposite case the minimum is achieved in correspondence of those solutions
such that x; +y} =1for E*AH; C FAK and (E*)° A H; C F¢ A K, thus the
conclusion follows. O

Let us note that if P(K) > 0, P(-|K) is a probability measure (and so a belief
function) on A. However the following example shows that for some K € A°
with P(K) = 0, the lower envelope P(:|K) can fail even 2-monotonicity.

Example 1. Let £ = {Hy, Hy, Hs, Hy} be a partition of 2 and E an event logi-
cally independent of £. Consider the likelihood f(E|H;) = ;, 1=1,2,3,4, and
the prior probability distribution p(H;) = 1 and p(H;) =0, i = 2, 3, 4.

Let K = HQ\/H3\/H4 and F = (E/\HQ)\/(EC/\H3)\/(E/\H4) It
holds P(E V F|K) = P(E|K) = P(F|K) = } and P(E A F|K) = 0, which
implies P(-|K) is not 2-monotone on A = ({E} U L) since it is P(E V F|K) <
P(E|K) + P(F|K) — P(E A F|K).

4 Imprecise or Partial Prior Information

Consider two finite Boolean algebras of events A, A’, and a probability measure
P on A. If the algebra of interest is A’ we can consider the set of coherent
extensions on G’ = (A x {N2}) U (A’ x A")

P = {P : coherent conditional probability on G’ s.t. ]5|AX{Q} = P}
with its lower envelope P = min P. Next theorem provides a closed form expres-
sion for P on A’ x A, relying on the lower and upper probabilities P(-) = P(-|£2)

and P(-) = P(:|f2) on A’, obtained extending P on AU A’, which are known to
be, respectively, a belief function and a plausibility function [14].



Bayesian Updating under Incomplete or Imprecise Information 75

Theorem 2. Let A, A’ be two finite Boolean algebras, P a probability measure

on A, and P(-]-) the lower envelope of the set of coherent extensions of P on G'.

The following statements hold:

(i) P(-|K) is a belief function on A’, for every K € A°;

(ii) for every FIK € A’ x A, P(F|K) =1 when FAK = K, and if FAK # K,
then we have

P(FAK) if P(FAK)+ P(FAK) >0,

P(F|K) = {(I)D(F/\K)+P(FC/\K) (4)

otherwise.

Proof. We prove condition (i) first. If FAK = K, for every P € P, P(F|K) = 1,
so P(F|K) = 1. Hence assume F A K # K. By Proposition 3.1 in [14], P(-)
is a belief function on A’, so Theorem 7.2 in [23] implies equation (4) when
P(FAK)+ P(F°AK) > 0. Finally, in the case P(FAK)+ P(FCAK) =0
equation (4) follows by Proposition 3 in [1].

Now we prove condition (). Theorem 1 in [15] (or, equivalently, Theorem 4.1
in [21]) implies that P(:|K) is a belief function on A’ when P(K) > 0, which
implies P(FF A K) + P(F° A K) > 0. When P(K) = 0, the claim follows by the
monotonicity of P(:|K) and since P(F|K) > 0 only for events F' € A’ such that
FANK =K. ]

Previous theorem differs from Theorem 7.2 in [23], where P(F|K) is not de-
fined when P(K) = 0, moreover, in the case P(K) > 0 and P(F' A K)+ P(F°A
K) =0, P(F|K) is set equal to 1, which is not the minimum coherent value
for F|K (actually it is the maximum). The quoted result refers to the regular
extension for lower previsions [24]. On the other hand, by considering the natural
extension, a result equivalent to our Theorem 2 follows [24,16].

Let ¢ be a 2-monotone capacity on A’ together with its dual ¢ and consider

P, = {P : probability on A’ s.t. ¢ < P < }. (5)

If  is a belief function on a finite Boolean algebra A’, Corollary 3.6 in [14] assures
the existence of a finite algebra A and a probability measure P on A, such that ¢
is obtained as the lower envelope on A’ of the set of coherent extensions of P on
AUA’. In this case, Theorem 2 characterizes the lower envelope of the set of full
conditional probabilities obtained extending each P e P, on A" x A’®. Hence,
the same theorem characterizes also the lower envelope of the set of coherent
extensions on A’ x A’? of a belief function (viewed as a lower probability on A’).
Let £ ={H;,...,H,} be a finite partition, a partial prior probability distribu-
tion is a coherent probability P on a set of incompatible events { K7y, ..., K} C
(£)9. In [6] it has been shown that the lower envelope of the set of coherent
extensions of P on (L) is a belief function, thus also in this case Theorem 2
characterizes the lower envelope of the coherent extensions on (£) x (£)°.

5 2-monotone Prior Capacity and Likelihood Function

Given £ and E as in Section 3, here we assume that our knowledge a priori is
expressed by a 2-monotone capacity ¢ on (£) while the statistical model is still
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represented by a likelihood function f(E|-) on L. By Proposition 1 in [18] the
assessment {P, f} is a coherent conditional probability for every P Py, thus
the assessment {¢, f} is a coherent lower conditional probability. Our aim is to
provide a closed form expression for the lower envelope P of the set of coherent
extensions of {¢, f} on A x A%, with A = ({E} U L).

Next theorem characterizes the lower envelope P(:) = P(:|£2) on A x {2} as
a Choquet integral with respect to ¢ and it generalizes a result given in [3]. For
this aim, for every F' € A define the (£)-measurable function Gg : £ — [0, 1]

0 if FAH; =0,
N ! if FAH; =H,,
Gr(Hi) = f(E|H;) if FAENH; #0=F A E° A H;, (6)

1-f(E\H;) fFANE°NH; #0=FANEAH,.

Theorem 3. Given a likelihood function f(E|-) on L and a 2-monotone capacity
o(+) on (L), for every F' € A it holds

P(F)= %Gpdgo = /0+<><>¢ <\/{Hz eL: Gp(H;) > x}) dz.

Proof. For every F € Aand P € P, the probability of F' is the expectation of
G with respect to P, so P(F) coincides with the minimum of the expectations
varying P € P,. The proof follows by Proposition 3 in [19] which implies that the
lower expectation of G with respect to the class of probabilities PP, coincides
with the Choquet integral of G with respect to . |

Theorem 3 characterizes also the dual upper envelope P(-) = P(:|{2) on A x
{2} as a Choquet integral with respect to ¢. Given P(-), P(-) on A, for every
F|IK € Ax A° define

L(FAK) = min{/Gp/\KdP : Pc m,/GFCAKdP = P(FCAK)}, (7)
UF°ANK) = max{/GpcAde :Pe Pw,/GpAKdP = P(F/\K)}. (8)

Note that it holds in general P(FAK) < L(FAK) and U(F°AK) < P(F°ANK).
The min and max in equations (7) and (8) are attained in correspondence of
the extreme points of the set P, characterized in [2], whose number is at most
n! (i.e., the permutations of £).
Next theorem provides a complete characterization of P(:|-) on A x A° in
terms of P(-), P(-), L(-) and U(-).

Theorem 4. Given a likelihood function f(E|-) on L and a 2-monotone capacity
© on (L), for every FIK € Ax A, P(F|K) = 1 when FAK = K, and if
FAK#K, then:

(i) if P(K) > 0 then

P(FANK) L(FANK) } (9)

P(FK):min{p(FAK)+U(FCAK)’L(FAK)+P(FCAK)
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(i) if P(K )—O then if I #0 and Hi NF ANK # 0 for all j € J and F¢ N K A
(VzeI ) = (), where I,J C{1,...,n} are, respectively, the mazimum and

minimum index set such that \/Zel H CKC \/jeJ i, then
P(F|K) = mi f(E|H; i 1 - f(E|H; : (10
(FIK) = min E/\I-.Ifngll:‘/\K F(E] ’)’ECAE:IQHFAK( HEH)) 03 (10)
E°AH,CF°AK EAH,CF°AK

otherwise P(F|K) = 0.

Proof. Let P = {P(:|-)} be the set of full conditional probabilities on A x A°
such that Ifﬂ{E}Xc = fand ¢(-) < P(:|22) < ¢(-), with ¢ the dual capacity of
@. If FAK = K, then, for every P € P, it follows P(F|K) = 1, which implies
P(F|K) = 1. Hence assume F A K # K.

To prove condition (7), suppose P(K) > 0, which implies P(K) = P(K|Q) >0
for every P € P, and so P(F|K) = min{ﬁ(FA};()ig({}lw\K) :Pe 77}. The
is increasing in x and decreas-

P(FAK)
P(FAK)+U(FenK) ©

Finally, condition (7) is implied by the extension procedure

ing in y, so the minimum is attained in correspondence of
L(FAK)

L(FAK)+P(FeAK)'

described in [8] and Theorem 1. O

In particular, if P(E) > 0, then for every F' € A we have P(FAFE) = L(FAE)

and P(F°AE) = U(F°AE), thus Theorem 4 implies P(F|E) = P(F/\Z()i/z\f})«“C/\E) )

which coincides with the lower posterior probability defined in [25,26].

Note that for all F|K € (£) x (L)%, if ¢ is a belief function and P(K) =
©(K) > 0, then P(-|-) on (£) x (£)° has the same characterization given in
Theorem 2. As a further consequence, for all F|K € A x (£)°, P(F|K) can be
expressed as the Choquet integral of G with respect to the restriction of P(-|K)
on (L), that is P(F|K) = ¢Gp(-)dP(-|K).

Notice that also for the function P(:|K) studied in this section (in particular
for the lower posterior probability) 2-monotonicity may fail when P(K) = 0
(see, again, Example 1). In the case the lower posterior probability is 2-monotone,
previous results can be used in order to iterate the updating procedure by taking
as new prior a lower posterior probability and considering a likelihood function
related to another evidence.

conclusion follows since the real function
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