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Abstract. Probabilistic models, like the Mallows model, are commonly
used for label ranking. However, for incomplete preferences the existing
methods are exhaustive in the learning step and therefore the appli-
cations of the Mallows model in practical label ranking problems or in
recommender systems are limited. In this paper, we show how to improve
the Mallows model using IF-sets so it may become more simple and more
effective for analyzing vague preferences and creating recommendations.
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1 Introduction

Label ranking is an important task in many applications like information re-
trieval, rating products or recommender systems. It can be treated as a general-
ization of a classification problem, where, instead of a ranking of all labels, only
a single label is requested as a prediction for given observation. Thus, in brief,
the label ranking can be perceived as a problem of learning a mapping from
instances to rankings over a finite set of predefined labels.

This problem can be solved in different ways. Existing methods often use bi-
nary classification algorithms so the ranking is obtained by pairwise comparisons
(see [6]). Another approaches utilize probabilistic models defined on a class of
all rankings. As prominent example one can mention the Mallows model [7].

In recommender systems, due to the large amount of rated items, we typically
meet incomplete preferences for all users available in data bases. However, it is
not obvious, how to cope with such incomplete or vague preferences. Therefore,
we propose an algorithm that combines the Mallows model with IF-set theory
to get an effective method of label ranking and create recommendations in the
presence incomplete rankings.

The paper is organized as follows. In Sec. 2 we describe briefly the problem of
instance based label ranking and the Mallows model. Next, in Sec. 3 we show how
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to apply IF-sets for modeling incomplete preferences and then how to enrich the
classical Mallows model. Finally, in Sec. 4, we propose a new efficient algorithm
for instance based label ranking and present results of the experimental study
comparing our algorithm with other approaches.

2 Label Ranking and the Mallows Model

2.1 Basic Notions

Let X, called an instance space, denote a set of elements (users, patients etc.)
characterized by several attributes. Suppose that instead of classifying instances
into separate classes, we associate each instance x ∈ X with a total order of all
class labels Y = {y1, . . . , yM}. Moreover, we say that yi �x yj indicates that yi
is preferred to yj given the instance x.

A total order �x can be identified with a permutation πx of the set {1, . . . ,M},
where πx is defined such that πx(i) is the index j of the class label yj put on the
i-th position in the order. Hence, π−1

x (j) = i gives the position of the j-th label
(see [2]). The class of permutations of {1, . . . ,M} will be denoted by Ω.

We may assume that every instance is associated with a probability distribu-
tion over Ω, i.e. for each instance x ∈ X there exists a probability distribution
P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that πx = π.

The main goal in label ranking is to predict a ranking of labels y1, . . . , yM
for a new instance x, given some instances with known rankings of labels as a
learning set. In practical issues, especially in recommender systems where the
amount of available products is large, preference on instances known from the
learning set do not usually contain all labels, i.e our information is of the form
yπx(1) �x . . . �x yπx(k), where k < M .

To evaluate the predictive performance of a label ranker a suitable loss func-
tion on Ω is needed, e.g. based on Kendall’s tau (see [2]).

2.2 The Mallows Model

Going back to the above mentioned probability distribution P(·|x), we need a
probabilistic model suitable for our considerations. In [2] the Mallows model was
used in the context of an instance-based approach to label ranking.

The Mallows model is a distance-based probability model defined by

P(π|θ, π0) =
exp(−θD(π, π0))

φ(θ)
, (1)

where the ranking π0 ∈ Ω is the location parameter (center ranking), D is a
distance measure on rankings, φ = φ(θ) is a constant normalization factor and
θ stands for a spread parameter which determines how quickly the probability
decreases with the increasing distance between π and π0.

The label ranking problem is then solved by the maximum likelihood estima-
tion connected with (1). In [2] parameters θ, π0 are estimated using π1, . . . , πk



On Incomplete Label Ranking with IF-sets 57

rankings connected with k nearest neighbors of a new instance x in the train-
ing set. It works nicely when all rankings from the training set are complete.
Unfortunately, such situation is unusual in the real world problems.

To handle incomplete rankings in the training data it was proposed in [2] to
maximize the probability

P(π|θ, π0) =
∑

π∗∈E(π)

P(π∗|θ, π0), (2)

where E(π) - set of linear extensions of π. However, calculations with (2) are
rather exhaustive. Therefore, we suggest below another method based on IF-
modeling of incomplete rankings proposed by Grzegorzewski (see [3,4]).

3 IF-sets and Incomplete Preferences

Let U denote a usual set, called the universe of discourse. An IF-set (Atanassov’s
intuitionistic fuzzy set, see [1]) is given by a set of ordered triples C̃ = {(u, μC̃(u),
νC̃(u)) : u ∈ U}, where μC̃ , νC̃ : U → [0, 1] stand for the membership and
nonmembership functions, respectively. It is assumed that 0 ≤ μC̃(u)+νC̃(u) ≤ 1
for each u ∈ U.

In [3,4,5] Grzegorzewski proposed how to model preference systems admitting
ties and missing ranks. The key idea is to represent a preference system by an
appropriate IF-set. Consider any finite set of labels Y = {y1, . . . , yM}. Given
any instance x ∈ X let us define two functions wx, bx : Y → {0, 1, . . . ,M − 1}
as follows: for each yi ∈ Y let wx(yi) denote a number of elements in Y surely
worse than yi, while bx(yi) let denote a number of elements surely better than
yi, with respect to the preference related to instance x. Next let

μx̃(yi) =
wx(yi)

M − 1
, νx̃(yi) =

bx(yi)

M − 1
. (3)

denote a membership and nonmembership function, respectively, of the IF-set
x̃ = {(yi, μx̃(yi), νx̃(yi)) : yi ∈ Y} describing the preference system connected
with instance x.

Having any two instances x1, x2 ∈ X we may compute a correlation between
preference systems x̃1, x̃1 generated by these instances, using the generalized
Kendall’s tau, admitting incomplete preferences (see [4]):

τ̃ =
1

2M(M − 1)

M∑

i=1

M∑

j=1

[sgn(μx̃1(yj) − μx̃1(yi)) · sgn(μx̃2(yj) − μx̃2(yi)) (4)

+sgn(νx̃1(yj) − νx̃1(yi)) · sgn(νx̃2(yj) − νx̃2(yi))].

In Sec. 2.1 we have identified preferences with an adequate permutation πx

of labels Y. For possibly incomplete preferences we get incomplete permutation
π̃ = π̃x which might be identified with the corresponding IF-set x̃. Thus for any
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two instances x1, x2 ∈ X we have τ̃ = τ̃ (x̃1, x̃2) = τ̃ (π̃1, π̃2). Hence, using (4), we
may consider the following measure

Dτ̃ (π̃1, π̃2) =
1 − τ̃ (π̃1, π̃2)

2
, (5)

which seems to be useful in the generalized Mallows model (1) admitting incom-
plete rankings and defined as follows

P̃(π̃|θ, π̃0) =
exp(−θDτ̃ (π̃, π̃0))

φ(θ)
. (6)

Of course, when modeling preferences by IF-sets one can also consider other
substitutes for the measure D in (1), including different distances, dissimilarity
measures or divergences (see, e.g., [8]). However, we have chosen a measure based
on the generalized Kendall’s tau because it is common to use distances utilizing
the classical Kendall’s coefficient in the Mallows model (see, e.g., [2]).

In the examples below we compare the suggested methodology with the results
obtained using the distance based on the classical Kendall’s tau for all linear
extensions of incomplete rankings.

Example 1. Consider M = 6 labels and the following two ranking: π0 : y1 �
y3 � y4 � y2 � y5 � y6 and π : y3 � y1 � y5 � y4 � y6. It is seen at once
that the first ranking is complete, while the second one is incomplete because of
unknown location of label y2.

To perform the classical Mallows model one may consider possible six different
locations of y2 with respect to other labels. Using notation introduced in Sec.
2.1 if we put, e.g. π−1(2) = k, which means that label y2 is located on the k-
th position in the complete ranking (k = 1, . . . , 6), then for all labels yj such
that π−1(j) ≥ k, their position in the new ranking shifts to the right, so we
get π−1(j) := π−1(j) + 1. The probabilities calculated for the classical Mallows
model according to formula (1) for all possible location of the unknown label y2
are given in Table 1. In these calculations the classical Kendall’s τ was applied
in (5) and the spread parameter θ = 1 was assumed.

Table 1. Values of P(π|θ, π0) for different locations of y2

π−1(2) 1 2 3 4 5 6

P(π|θ, π0) 0.09049159 0.09673 0.1033985 0.09673 0.1033985 0.09673

On the other hand, we may construct IF-sets x̃0 and x̃ describing preferences
generated by π0 and π, respectively. By (3) we get

x̃0 = {(y1, 1, 0), (y2, 0.4, 0.6), (y3, 0.8, 0.2), (y4, 0.6, 0.4), (y5, 0.2, 0.8), (y6, 0, 1)}
x̃ = {(y1, 0.6, 0.2), (y2, 0, 0), (y3, 0.8, 0), (y4, 0.2, 0.6), (y5, 0.4, 0.4), (y6, 0, 0.8)}
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If we calculate probability (6) for the complete ranking π0 and incomplete π using
formula (5) based on the generalized Kendall’s tau (4) then we get P̃(π|θ, π0) =
0.09673. As we can see, (6) approximates possible probabilities quite well. We
tried many other examples and the results were similarly good. �

Example 2. Now we will check what happen if there are more missing values
in label ranking. Let us consider M = 7 labels and the following two ranking:
π0 : y1 � y2 � y3 � y4 � y5 � y6 � y7 and π : y4 � y1 � y3 � y7 � y5. So now
the first ranking is complete, while the second one is incomplete because of two
unknown location of labels y2 and y6.

Using the suggested methodology based on IF-sets and the generalized Ken-
dall’s tau (4) the probability value of (6) for the complete ranking π0 and in-
complete π equals P̃(π|θ, π0) = 0.05330688.

However, if we apply the traditional approach based on possible linear exten-
sions π∗ ∈ E(π) (see Sec. 2.2) we get minπ∗∈E(π){P((π∗|θ, π0)} = 0.0451233 and
maxπ∗∈E(π){P((π∗|θ, π0)} = 0.0629746, while the arithmetic mean and the me-
dian for all possible linear extensions {P((π∗|θ, π0) : π∗ ∈ E(π)} equals 0.0551824
and 0.05459133, respectively. Hence again, IF-set based approach appears to be
helpful in approximating the probability (1) for incomplete rankings. �

4 Incomplete Knowledge and the Mallows Model in
Designing Recommendations

4.1 Main Idea

As we have mentioned above, our aim is to predict a ranking of labels for a
given new instance x. Unfortunately, estimation of π from (6) is not very simple.
However, in many applications it is not necessary to identify a whole ranking but
it suffices to indicate only those labels which are located on the highest positions
in the ranking. It is a typical case found in recommender systems.

In this contribution we apply the Mallows model to express the probability
corresponding to the best label, i.e.

P̃(ybestj |θ, π∗) =
exp(−θD∗(ybestj , yπ

∗
j ))

φ(θ)
, (7)

where D∗ is the Euclidean distance between IF-sets given by

D∗(ybestj , yπ
∗

j ) =

√√√√1

2

n∑

i=1

((μybest
j

− μπ∗(yj))2 + (νybest
j

− νπ∗(yj))2). (8)

In our case μybest
j

= 1 and νybest
j

= 0, as we want to calculate the probability that

yj is the best label for instance x. Then, as a final recommendation we assume

Y = argmax
yj

{
∑

π∗∈π̄kNN(x)

P̃(ybestj |θ, π∗)}, (9)
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where π̄kNN(x) is the set of preference systems connected with k instances nearest
to x. To predict the complete ranking for instance x we order labels y1, . . . , yM
according to the values of (7).

4.2 Algorithms

We propose two algorithms based on the ideas discussed above. The first one is
a direct implementation of the method proposed in Sec. 4.1.

Mallows Best Probability Algorithm (MBP)
{Input: x - new instance, X - learning set of instances, π̄ - labels connected with
instances, k - number of nearest neighbors}
1. Find k nearest neighbors of x in X.
2. For (j in 1 : M) calculate

∑
π∗∈π̄kNN(x)

P̃(ybest
j |θ, π∗)

3. MBP-rank < − Sort labels according to the values obtained in step 2 (in case of ties
a label with lower index is better in the ranking).
{Output: MBP-rank}

The second algorithm is a modification of MBP that replaces missing labels
in π̄kNN(x) by the most probable extension of π∗ ∈ π̄kNN(x) with respect to (1).
This replacement idea was suggested in IBLR algorithm given in [2].

Multistep Mallows Best Probability Algorithm (MMBP)
{Input: x - new instance, X - learning set of instances, π̄ - labels connected with
instances, k - number of nearest neighbors}
1. Find k nearest neighbors of x in X.
2. For (j in 1 : M) calculate

∑
π∗∈π̄kNN(x)

P̃(ybest
j |θ, π∗)

3. MMBP-rank < − Sort labels according to the values obtained in step 2 (in case of
ties a label with lower index is better in the ranking).
4. π̄mod

kNN(x) < − Find the most probable extensions of π∗ ∈ π̄kNN(x) with respect to
(6).
5. For (j in 1 : M) calculate

∑
π∗
mod

∈π̄mod
kNN(x)

P̃(ybest
j |θ, π∗)

6. MMBP-rankmod < − Sort labels according to the values obtained in step 5 (in case
of ties a label with lower index is better in the ranking)
7. If (MMBP-rankmod �= MMBP-rank) then (MMBP-rank < − MMBP-rankmod, go
to step 4) else (output(MMBP-rank)).
{Output: MMBP-rank}

4.3 Experimental Results

To evaluate the proposed method we compared it with the IBLR algorithm given
in [2]. Two types of data sets were used in our experiment: (A) For classification
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data, we followed the procedure proposed in [2], i.e. the naive Bayes classifier
was first trained on the complete data set and then, for each example, all the
labels present in the data set were ordered with respect to the predicted class
probabilities. (B) For regression data a certain number of (numerical) attributes
was removed from the set of predictors and each one was considered as a label.
To obtain a ranking, the attributes were standardized and then ordered (see [2]).
To obtain incomplete ranks we changed some ranks in every ranking into NA
(non available). We considered different proportions p of missing values.

To compare algorithms we used two quality measures: their prediction accu-
racy and the evaluation times. As a measure of accuracy we used Kendall’s tau.
We evaluated the experiments using leave-one-out crossvalidation and according
to the random effect of removing labels from complete rankings we repeated the
evaluation 20 times for every chosen value of p. The results shown in Table 2
and Table 3 are the mean results for a given p.

All evaluations were performed using R package. We set the number of near-
est neighbors to 5 (function knn from FNN library). The evaluation times, i.e.
times of one full leave-one-out crossvalidation procedure for every algorithm, are
measured using proc.time(). In Table 2 and Table 3 we show the mean times
for all evaluations. To improve performance and parallelize our calculations, we
used library snowfall with parameters sfInit(cpus=4, parallel=TRUE) on Intel
core i5 2450M CPU. All data sets used for experiments were downloaded from
http://www.uni-marburg.de/fb12/kebi/research/repository/

Table 2. Comparison of label ranking algorithms for p = 30% missing labels in the
learning set

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.781 0.784 0.788 3.504 0.26 3.7
vowel (A) 0.817 0.795 0.819 102.03 1.05 102.26
housing (B) 0.670 0.665 0.670 8.44 0.70 8.95
elevators (B) 0.622 0.617 0.624 1371.86 225.83 1583.55
wisconsin (B) 0.432 0.420 0.427 316.12 0.40 319.54

average 0.664 0.656 0.665 360.39 45.65 403.60

Results given in Table 2 and Table 3 show that algorithms MBP, MMBP and
IBLR have similar accuracy on our experimental sets. More precisely, MBP is
usually slightly worse than the two other algorithms, but it is significantly faster.
MMBP algorithm, which can be perceived as the improved (in some sense) MBP,
behaves more or less like IBLR both with respect to the accuracy and evaluation
time. Therefore, one may conclude that our IF-set based method for handling
incomplete label ranking seems to be very promising: it might be as accurate as
IBLR (in MMBP version), but if we allow a slight lower accuracy then, using
MBP version, we get desired results much faster than using IBLR.

http://www.uni-marburg.de/fb12/kebi/research/repository/
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Table 3. Comparison of label ranking algorithms for p = 50% missing labels in the
learning set

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.688 0.685 0.687 5.12 0.29 5.42
vowel (A) 0.725 0.700 0.715 119.84 0.95 126.04
housing (B) 0.579 0.570 0.573 12.53 0.7 13.12
elevators (B) 0.540 0.530 0.535 2326.23 272.67 2598.56
wisconsin (B) 0.381 0.351 0.363 502.22 0.37 508.74

average 0.583 0.567 0.575 593.19 55.00 650.38

5 Conclusions

In practice, the choice of the best method should be determined by the data
structure. In recommender systems the 2% better accuracy is not as crucial as the
time performance. Moreover, obviously the time consumed by all this methods
increases with the number of labels and the number of missing values. The typical
situation in recommender systems is that the number of labeled products is very
large and therefore most of labels are missing for each user. Thus, the proposed
MBP algorithm seems to be a promising candidate for creating recommendations
especially in the presence of large number of labeled items.
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