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Abstract. We study interval-valued fuzzy sets as a model for the impre-
cise knowledge of the membership function of a fuzzy set. We compare
three models for the probabilistic information about this membership
function: the set of distributions of the measurable selections, the upper
and lower probabilities of the associated random interval, and its p-box.
We give sufficient conditions for the equality between these sets, and
establish a connection with the notion of probability induced by an in-
tuitionistic fuzzy set. An alternative approach to the problem by means
of sets of finitely additive distributions is also considered.

Keywords: Interval-valued fuzzy sets, random intervals, measurable se-
lections, upper and lower probabilities, p-boxes.

1 Introduction

Interval-valued fuzzy sets [18] (IVF-sets, for short) were introduced as an ex-
tension of fuzzy sets [16] to model situations in which the “true” membership
function is in some sense unknown. Then, instead of providing a precise member-
ship degree, IVF-sets assign an interval of possible membership degrees. Thus,
given an universe Ω, an IVF-set A is defined, for any ω ∈ Ω, by [lA(ω), uA(ω)],
and it is given the epistemic interpretation that all we know about the “true”
membership degree of ω is that it belongs to that interval.

A related extension of fuzzy sets is given by intuitionistic fuzzy sets [1,2] (IF-
sets, for short). For them, the interpretation is slightly different: they assign
a membership and a non-membership degree to any element of the possibility
space. Thus, an IF-set A is defined by two functions μA, νA : Ω → [0, 1], so
that for any ω ∈ Ω, μA(ω) and νA(ω) model the degree in which ω satisfies and
does not satisfy the notion encompassed by the fuzzy set A, with the restric-
tion μA(ω) + νA(ω) ≤ 1. In this sense, they constitute an instance of bipolar
models [8]. Although IF-sets and IVF-sets model different situations, they are
mathematically equivalent [4].

In this work, we shall assume that the IVF-set is defined on a probability space
and that the unknown membership function is measurable, and shall investigate
the probabilistic information about its associated distribution. In Section 3, we
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compare three possible models, from the most to the least informative: the set of
distributions of the measurable selections, those bounded between the upper and
lower probabilities of the IVF-set, and those determined by the associated p-box.
The advantage of these less informative models is that they are determined by
a set and a point function, respectively.

We shall establish sufficient conditions for the equality between these three
models, and give examples showing that they are not equivalent in general.
Our results shall provide moreover a connection with the notion of probability
induced by an intuitionistic fuzzy set from [10]. Finally, in Section 4 we shall
investigate the problem without the assumption of measurability. In that case,
we shall work with sets of finitely additive probabilities and with the theory of
coherent lower previsions of Walley [15]. We shall see that the equivalences above
do not always hold in this case. We conclude the paper with some additional
remarks in Section 5. Due to the space restrictions, proofs have been omitted.

2 Preliminary Concepts

2.1 Random Sets

Since in this paper we shall deal with the probabilistic information of IVF-sets,
it is interesting to recall a few notions of the sets of probabilities associated with
multi-valued mappings. Given a probabilistic space (Ω,A, P ) and a measurable
space (Ω′,A′), a random set [6] is a multi-valued mapping Γ : Ω → P(Ω′) such
that Γ ∗(A) = {ω ∈ Ω : Γ (ω) ∩ A �= ∅} ∈ A for any A ∈ A′.

A random set Γ can be used to model the imprecise knowledge about a random
variable X , in the sense that for every ω ∈ Ω all we know about X(ω) is that it
belongs to Γ (ω). Then, X belongs to the set of measurable selections of Γ :

S(Γ ) = {U : Ω → Ω′ random variable | U(ω) ∈ Γ (ω) ∀ω ∈ Ω}, (1)

and the probability measure it induces on A′ belongs to

P(Γ ) = {PU : U ∈ S(Γ )}. (2)

Another way of summarizing the information given by a random set is by
means of its associated upper and lower probabilities:

Definition 1 ([6]). Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable
space and Γ : Ω → P(Ω′) a random set. Then its upper and lower probabilities
P ∗
Γ , P∗Γ : A′ → [0, 1] are given by:

P ∗
Γ (A) = P ({ω : Γ (ω) ∩ A �= ∅}) and P∗Γ (A) = P ({ω : Γ (ω) ⊆ A}) ∀A ∈ A′.

(3)

These upper and lower probabilities define a credal set M(P ∗
Γ ) by:

M(P ∗
Γ ) = {P probability : P∗Γ (A) ≤ P (A) ≤ P ∗

Γ (A) ∀A ∈ A′}.
It is easy to see that P(Γ ) ⊆ M(P ∗

Γ ), and that the two sets do not coincide
in general. The equality between them was investigated in [11] for the particular
case of random closed intervals we shall consider later on.
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2.2 P-Boxes

In these notes, we shall also work with one particular imprecise probability
model: p-boxes.

Definition 2 ([9]). A distribution function on Ω = [0, 1] is a monotone map-
ping F : [0, 1] → [0, 1] that is right-continuous and satisfies F (1) = 1. Given two
monotone functions F , F : [0, 1] → [0, 1] satisfying F (1) = F (1) = 1 and F ≤ F ,
its associated probability box (p-box, for short) (F , F ) is the set of distribution
functions bounded between F and F .

The assumption of right-continuity of distribution functions guarantees that
they are in a one-to-one correspondence with σ-additive probability measures.
More generally, a monotone and normalized function F : [0, 1] → [0, 1] repre-
sents the cumulative probabilities associated with an infinite number of different
finitely additive probability measures. See [14] for a study of p-boxes from the
point of view of finitely additive probability measures.

The credal set associated with the p-box (F , F ) is given by

M(F , F ) := {P probability : F ≤ FP ≤ F},
where FP denotes the distribution function of P .

3 Probabilistic Information of Interval-Valued Fuzzy Sets

In this section, we detail a number of ways in which IVF-sets can be related to
imprecise probability models.

3.1 IVFS as Random Intervals

As we mentioned in the introduction, an interval-valued fuzzy set can be re-
garded as a model for the imprecise knowledge of the membership function of
a fuzzy set. In this section, we shall assume that the IVF-set is defined on
the probability space ([0, 1], β[0,1], λ[0,1]), and that the multi-valued mapping
ΓA : [0, 1] → P([0, 1]), given by

ΓA(ω) := [lA(ω), uA(ω)] (4)

is a random set. This means [11, Theorem 3.1] that the mappings lA, uA : [0, 1] →
[0, 1] must be β[0,1] − β[0,1]-measurable.

If we assume that the ‘true’ membership function imprecisely specified by
means of the IVF-set is β[0,1] − β[0,1]-measurable, then it must belong to the set
S(ΓA) given by Eq. (1), and its associated probability measure will belong to the
set P(ΓA) given by Eq. (2). As we have seen in Section 2.1, P(ΓA) is included in
the set M(P ∗

ΓA
) of probability measures that are dominated by P ∗

ΓA
, but the two

sets do not coincide in general. The equality between these two sets for random
closed intervals was studied in [11]. Using the results from that paper, it is easy
to establish the following:
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Proposition 1. M(P ∗
ΓA

) = P(ΓA) under any of the following conditions:

(C1) lA, uA are increasing.
(C2) lA(ω) = 0 for any ω ∈ [0, 1].
(C3) lA, uA are strictly comonotone1.

This result is interesting because it allows us to summarize the available infor-
mation about the distribution of the membership function (the set of probability
measures P(ΓA)) by means of the set function P ∗

ΓA
. The conditions above may

be interpreted in the following way:

(C1) As ω increases in [0,1], the evidence in favor of ω satisfying A increases.
(C2) There is no evidence supporting that any element satisfies A.
(C3) The intervals associated with the elements are ordered. In particular, this

holds when the length of the intervals is constant.

On the other hand, the equality P(Γ ) = M(P ∗
Γ ) does not necessarily hold for

all random closed intervals Γ [11, Example 3.3]. It is easy to adapt this example
to our context and deduce that there are IVF-sets where the information about
the membership function is not completely determined by the upper probability
P ∗
ΓA

: it would suffice to take ΓA : [0, 1] → P([0, 1]) given by

ΓA(ω) =
[
0.5− ω

2
, 0.5 +

ω

2

]
for every ω ∈ [0, 1]. (5)

3.2 P-Boxes Induced by an IVF-Set

Now we take one step forward and study under which conditions the upper and
lower probabilities P ∗

ΓA
, P∗ΓA of the random interval associated with the IVF-

set A can be summarized by means of two point functions: its lower and upper
distribution functions FA, FA : [0, 1] → [0, 1], given by

FA(x) := P∗ΓA([0, x]) = PuA([0, x]) and FA(x) := P ∗
ΓA

([0, x]) = PlA([0, x]).
(6)

We shall refer to (FA, FA) as the p-box associated with the IVF-set A. The credal
set associated with this p-box is given by:

M(FA, FA) := {Q : β[0,1] → [0, 1] : FA(x) ≤ FQ(x) ≤ FA(x) ∀x ∈ [0, 1]},

where FQ is the distribution function associated with the probability measure
Q. It is immediate to see that the set M(FA, FA) includes M(P ∗

ΓA
). However,

the two sets do not coincide in general, and as a consequence the use of the lower
and upper distribution functions may produce a loss of information. This was
shown in [5, Example 3.3] for arbitrary random sets. Next, we give an example
with random closed intervals associated with an IVF-set:

1 We say that two functions A,B : [0, 1] → [0, 1] are strictly comonotone when (A(ω)−
A(ω′)) ≥ 0 ⇔ (B(ω)−B(ω′)) ≥ 0 for any ω, ω′ ∈ [0, 1].
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Example 1. Consider the random set of Eq. (5), and let (FA, FA) be its associ-
ated p-box. Given the distribution function F defined by:

F (x) =

⎧
⎪⎨
⎪⎩

FA(x) if x ≤ 1
4 ,

1
2 if x ∈ (

1
4 ,

3
4

]
,

FA(x) if x > 3
4 ,

its associated probability, PF , belongs to M(FA, FA). However, PF does not
belong to M(P ∗

ΓA
), because

PF

([
1

4
,
3

4

])
= 0 < P∗ΓA

([
1

4
,
3

4

])
=

1

2
. �

Our next result shows that the sufficient conditions we have established in
Proposition 1 for the equality M(P ∗

ΓA
) = P(ΓA) also guarantee the equality

between M(P ∗
ΓA

) and M(FA, FA); thus, in those cases the p-box associated
with the IVF-set keeps all the information about the probability distribution of
the membership function.

Proposition 2. Let A be a IVF-set on ([0, 1], β[0,1], λ[0,1]), and let ΓA be its

associated random interval, given by Eq. (4). Then P(ΓA) = M(FA, FA) =
M(P ∗

ΓA
) under any of the following conditions:

(C1) lA, uA are increasing.
(C2) lA(ω) = 0 for every ω ∈ [0, 1].
(C3) lA and uA are strictly comonotone.

3.3 Probabilities Associated with IFS

Another connection between probability theory and intuitionistic fuzzy sets was
established in [10] by means of the probabilities induced by IF-sets. Given a
probability space (Ω,A, P ), the probability associated with an IF-set A is an
element of the interval

[∫

Ω

μAdP,

∫

Ω

1− νAdP

]
. (7)

This definition generalizes an earlier one by Zadeh [17]. Using this notion, in
[10] a link is established with probability theory by considering the appropriate
operators in the spaces of real intervals and of intuitionistic fuzzy sets. Note that
it is assumed that we have a structure of probability space on Ω and that the
functions μA, νA are measurable, as we have done in this paper. From [4], it is
known that IF-sets and IVF-sets are mathematically equivalent. In fact, given
an IF-set with membership and non-membership functions μA and νA, it defines
an IVF-set by considering [μA(ω), 1− νA(ω)] for every ω ∈ Ω.

If we assume that (Ω,A, P ) = ([0, 1], β[0,1], λ[0,1]) and consider the random
interval associated with the intuitionistic fuzzy set A interpreted as an IVF-
set, we can see that the interval in Eq. (7) corresponds simply to the set of
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expectations of the measurable selections of ΓA: it follows from [12, Thm. 14]
that the Aumann integral [3] of (id ◦ ΓA) satisfies

[
inf(A)

∫
(id ◦ ΓA)dP, sup(A)

∫
(id ◦ ΓA)dP

]
=

[
(C)

∫
id dP ∗

ΓA
, (C)

∫
id dP∗ΓA

]

where (C) denotes the Choquet integral [7] with respect to the non-additive
measures P∗ΓA , P

∗
ΓA

, respectively. Since on the other hand it is immediate to see
that

sup(A)

∫
(id ◦ ΓA)dP =

∫
(1− νA)dP and inf(A)

∫
(id ◦ ΓA)dP =

∫
μAdP,

we deduce that the probabilistic information about the intuitionistic fuzzy set
A can be determined in particular by the lower and upper probabilities of its
associated random interval.

4 A Non-measurable Approach

The previous developments assume that the IVF-set is defined on the probability
space ([0, 1], β[0,1], λ[0,1]) and that the functions lA, uA : [0, 1] → [0, 1], as well
as the ‘true’ membership function of the fuzzy set modeled by A are β[0,1] −
β[0,1] measurable. Although this is a standard assumption when considering the
probabilities associated with fuzzy events, it is arguably done for mathematical
convenience only. In this section, we present an alternative approach where we
get rid of the measurability assumptions by using finitely additive probabilities.

Consider thus a IVF-set A on [0, 1]. Given its bounds lA, uA, we can define the
multi-valued mapping ΓA : [0, 1] → [0, 1] by ΓA(ω) = [lA(ω), uA(ω)] ∀ω. Note
that we are not assuming anymore that this multi-valued mapping is a random
set. Our information about the ‘true’ membership function would be given by
the set of functions

{U : [0, 1] → [0, 1] : lA(ω) ≤ U(ω) ≤ uA(ω)}. (8)

Now, if we do not assume the measurability of lA, uA and consider then the
field P([0, 1]) of all events in the initial space, we may not be able to model our
uncertainty by means of a σ-additive probability measure. However, we can do
so by means of a finitely additive probability measure. Moreover, the notions of
lower and upper probabilities can be generalised to that case [13]. If for instance
we consider a finitely additive probability P on P([0, 1]), then reasoning as in
Section 3.1 we obtain that PU (C) ∈ [PΓ∗A(C), P ∗

ΓA
(C)] for all C ⊆ [0, 1], where

P ∗
ΓA

, P∗ΓA are defined by Eq. (3).
Then the information about PU is given by the set of finitely additive proba-

bilities dominated by P ∗
ΓA

, that coincides with the finitely additive probabilities
induced by the elements of the set of Eq. (8). Hence, and in contradistinction to
Section 3.1, when we work with finitely additive probabilities we do not need to
make the distinction between P(ΓA) and M(P ∗

ΓA
).
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The associated p-box is given now by the set of finitely additive distribution
functions (that is, monotone and normalized) that lie between FA and FA,
where again FA, FA are given by Eq. (6). Its associated set of finitely additive
probability measures M(FA, FA) is determined by its lower envelope E(F,F ),

that can be determined in the following way ([14]): if we denote by H the field
of subsets of [0, 1] generated by the sets {[0, x], (x, 1] : x ∈ [0, 1]}, then any set
in H is of the form

B1 := [0, x1] ∪ (x2, x3] ∪ . . . (x2n, x2n+1] or B2 := (x1, x2] ∪ . . . (x2n, x2n+1]

for some n ∈ N, x1 < x2 < · · · < xn ∈ [0, 1]. It holds that

EF,F (B1) = FA(x1) +
∑n

i=1 max{0, FA(x2i+1)− FA(x2i)},
EF,F (B2) =

∑n
i=1 max{0, FA(x2i)− FA(x2i−1)},

and also EF,F (C) = supB⊆C,B∈H EF,F (B) for any C ⊆ [0, 1].

Next, we investigate the equalityM(P ∗
ΓA

) = M(FA, FA) under the conditions
(C1)–(C3) considered in Proposition 1. We begin by showing that the two sets
may not coincide when condition (C1) is satisfied.

Example 2. Consider the random interval defined by:

ΓA(ω) =

⎧
⎪⎨
⎪⎩

[ω, 2ω] if ω ∈ [
0, 1

3

]
[
1
3 ,

2
3

]
if ω ∈ (

1
3 ,

2
3

]

[2ω − 1, ω] if ω ∈ (
2
3 , 1

]

where in the initial space ([0, 1],P([0, 1])) we consider a finitely additive prob-
ability P that agrees with λ[0,1] on β[0,1]. Then, P∗ΓA

([
1
3 ,

2
3

])
= 1

3 . However, it
holds that:

EFA,FA

([
1

3
,
2

3

])
= EFA,FA

((
1

3
,
2

3

])
= FA

(
2

3

)
− FA

(
1

3

)
=

2

3
− 2

3
= 0.�

With respect to condition (C2), we have proven the following:

Proposition 3. Let A be an IVF-set on ([0, 1],P([0, 1]), P ) with lA = 0, and let
P∗ΓA , (FA, FA) be its associated lower probability and p-box. Then, EFA,FA

=

P∗ΓA .

Finally, the equality does not hold for condition (C3), as we show next:

Example 3. Consider the random interval ΓA defined on ([0, 1],P([0, 1]), P ) by:

ΓA(ω) =

⎧
⎪⎨
⎪⎩

[
1
2 − ω, 1− ω

]
if ω ∈ [

0, 14
]

[
1
4 ,

3
4

]
if ω ∈ (

1
4 ,

3
4

]
[
ω − 1

2 , ω
]

if ω ∈ (
3
4 , 1

]
,

and where P is a finitely additive probability that agrees with λ[0,1] on β[0,1].

Since lA(ω) = uA(ω)− 1
2 , we see that lA and uA are strictly comonotone. If we

consider the set
[
1
4 ,

7
8

]
, we observe that

EFA,FA

([
1

4
,
7

8

])
= EFA,FA

((
1

4
,
7

8

])
=

1

4
<

3

4
= P∗ΓA

([
1

4
,
7

8

])
. �
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5 Conclusions

Our results show that the probabilistic information that an IVF-set holds about
the underlying membership function can be summarized under some conditions
by means of its associated p-box, although not in all cases. However, the corre-
spondence depends on the measurability assumption of this membership func-
tion, and does not hold when we work with finitely additive probabilities instead.

In the future, we intend to deepen in the study of the imprecise probability
models associated with an IVF-set, and to generalize our results to other possibil-
ity spaces. It would also be interesting to explore the alternative approach where
no probability structure is considered in the initial space, and our knowledge is
given instead by the set of possibility measures associated with the selections.
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