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Abstract. In statistics, compositional data are defined as multivari-
ate observations that quantitatively describe contributions of parts on a
whole, carrying exclusively relative information. As a consequence, com-
positions can be represented as proportions or percentages without loss
of information (contained in ratios between parts). Nevertheless, in the
practice parts of compositional data are frequently formed by intervals;
for example, concentrations of chemical elements are provided not as
exact numbers, but rather in an interval range. Intuitively, a natural
question arises, whether the relative information is preserved, when the
original compositional data with interval-valued parts are represented in
proportions. Namely, from the arithmetic properties of interval data, nor-
malizing of intervals does not simply follow the case of real values, but a
special procedure according to constrained interval arithmetic is needed.
The aim of the contribution is to discuss possibilities of representing the
interval compositional data in proportions.

Keywords: compositional data, Aitchison geometry, interval arithmetic,
descriptive statistics.

1 Introduction

The concept of compositional data frequently occurs in many applications, cov-
ering such situations, where not the absolute values of variables, but rather
relative information they contain is of primary interest [1,8]. Typical examples
are formed by concentrations of chemical elements in a rock (in mg/kg), pro-
portional representation of political parties resulting from elections, but also
household expenditures on various costs (like foodstuff, housing, clothing, cul-
ture, etc.), when the relative structure of costs is to be analyzed. Consequently,
compositional data are popularly represented as multivariate observations with
a constant sum constraint (like in proportions or percentages). Nevertheless, the
above examples clearly imply that compositions themselves are not necessarily
induced by any such constraint (household expenditures can be represented both
in the original units, like EUR or USD, and in proportions, the ratios between
parts remain the same).
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In the practice also such situations occur that compositional parts are rep-
resented by intervals rather than by precise values. One natural source of such
data comes from aggregation of information over individuals in symbolic data
analysis [2] in order to obtain representants of specified sets of individuals (like
household expenditures in different parts of a certain region) that capture vari-
ability of the aggregation process. Another source of interval compositional data
is formed by measurement process itself that leads naturally to unprecise values.
Such situations arise usually in analytical chemistry or geochemistry, e.g. due
rounding effects of values near to detection limit. In contrast to symbolic data
analysis case, here the interval values of variables are often combined with pre-
cise ones what makes the use of procedures based on logarithmic transformation
[3] conceptually not possible.

To illustrate the methodology, presented further, we use a small real-world
data set, obtained from The National Institute of Public Health of Czech Re-
public (2011), where chemical composition of seven popular mineral waters was
analyzed. For our purposes, just four chemical elements were chosen (calcium,
sodium, magnesium and potassium), and the resulting values (measured in mg/l
and already collected in form of interval values with lower and upper boundary)
are presented in Table 1 (the mineral waters are listed with their original Czech
names). We can observe that the interval values in the data set occur in all vari-
ables, except for the first mineral water (called Hanácká kyselka) and potassium
in case of Magnesia.

Table 1. Interval concentrations of chemical elements (in mg/l) in Czech mineral
waters

Mineral waters Calcium Sodium Magnesium Potasium

Hanácká kyselka 275.0 275.0 68.0 68.0 251.0 251.0 17.7 17.7

Korunńı 78.3 86.5 29.5 30.9 98.0 111.1 23.0 25.5

Magnesia 35.3 41.3 179.0 200.0 4.3 6.8 1.4 1.4

Mattoni 87.6 88.6 24.8 24.9 71.9 79.8 18.0 19.0

Ondrášovka 192.0 199.4 19.4 19.8 29.2 30.9 1.4 1.6

Poděbradka 142.2 145.5 45.4 49.3 344.0 360.0 47.0 49.8

Dobrá voda 8.7 10.7 9.5 9.7 9.5 10.0 9.3 9.4

Obviously, also for interval compositional data, analogously as for composi-
tions with precise values, not absolute values of single element concentrations,
but rather their relative contributions to the overall chemical composition of
mineral waters is of primary interest. In other words, also here the ratios be-
tween (interval) compositional parts form the source of relevant information.
Nevertheless, due to limitations of interval arithmetics, treatment of interval
compositional data is more complex than in the standard (precise) case. The
aim of this contribution is to draw up possible problems and challenges, related
to geometrical properties and subsequent statistical analysis of interval compo-
sitional data, that might lead to a concise methodology in the future.
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The paper is organized as follows. In the next section, basics of interval arith-
metics are refreshed, with a focus on positive interval data (forming the com-
positional parts). Section 3 is devoted to the problem of forming the ratios of
compositional data. In Section 4, problems related to proportional representa-
tion of interval compositional data are analyzed. Consequently, implications for
descriptive statistics of interval compositions are briefly discussed. Finally, pos-
sibilities of further development are collected in the last section.

2 Computing with Intervals

Before we proceed to introduce interval compositional data and their geometrical
concepts, let us briefly refresh basic possibilities of computing with intervals. Due
to definition of compositional data, it is sufficient to restrict the general case for
positive intervals only. We will distinguish two cases: First, we will assume that
the input intervals are independent, i.e. all combinations of values belonging to
the intervals are admissible. Second, we will consider interactive input intervals,
where the set of all admissible combinations of values is given.

Let I1, . . . , In be independent intervals and f : R
n → R be a continuous

function. Then
f(I1, . . . , In) =

[
y, y

]
,

where

y = min{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n},
y = max{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n}.

If f stands for one of the basic arithmetic operations, we get the well-known
concept of standard interval arithmetic. Let [a, b], 0 < a ≤ b, and [c, d], 0 < c ≤ d,
be independent intervals. Then arithmetic operations are extended as follows:

[a, b] + [c, d] = [a+ c, b+ d] ,

[a, b]− [c, d] = [a− d, b− c] ,

[a, b] · [c, d] = [a · c, b · d] ,
[a, b]

[c, d]
=

[
a

d
,
b

c

]
.

However, the above concept cannot be applied in the case when it is given a
constraint set Q ⊂ R

n that represents all admissible combinations of the values
of x1, . . . , xn (see e.g. [5]). If Q ∩ (I1 × . . .× In) is a nonempty convex set, then

f(I1, . . . , In;Q) =
[
y, y

]
,

where

y = min{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n, (x1, . . . , xn) ∈ Q}
y = max{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n, (x1, . . . , xn) ∈ Q}.

In our case, the role of a constraint set Q will play, for instance, the set
representing proportional representation of interval compositional data.



32 O. Pavlačka and K. Hron

3 Ratios of Compositional Parts

Following the Introduction section, a sample of D-part compositional data are
positive vectors xi := (xi1, . . . , xiD), i = 1, . . . , n, that describe quantitatively
contributions of parts on a whole, carrying exclusively relative information. This
means that the relevant information is expressed by the ratios rijk := xij/xik,
j, k = 1, . . . , D, j �= k.

Now, let us consider the case of interval compositional data

Xi := ([xi1, xi1] , . . . , [xiD, xiD]) , i = 1, . . . , n,

where

0 < xij ≤ xij , j = 1, . . . , D.

For the sake of simplicity, let us assume further that
[
xij , xij

]
and [xlk, xlk] are

independent intervals for any i, l = 1, . . . , n, and j, k = 1, . . . , D, j �= k.
According to the assumption, we can apply the concept of standard interval

arithmetics for computing the ratios between the compositional parts:

Ri
jk :=

[
xij , xij

]

[xik, xik]
=

[
xij

xik
,
xij

xik

]
, i = 1, . . . , n, j, k = 1, . . . , D, j �= k. (1)

For illustration, the ratios between concentrations of chemical elements presented
in Table 1 are shown in Table 2.

Table 2. Ratios between concentrations of chemical elements in Czech mineral waters

Mineral waters Calcium/Sodium Calcium/Magnesium Calcium/Potasium

Hanácká kyselka 4.044 4.044 1.096 1.096 15.537 15.537

Korunńı 2.534 2.932 0.705 0.883 3.071 3.761

Magnesia 0.177 0.231 5.191 9.605 25.214 29.500

Mattoni 3.518 3.573 1.098 1.232 4.611 4.922

Ondrášovka 9.697 10.278 6.214 6.829 120.0 142.429

Poděbradka 2.884 3.205 0.395 0.4236 2.855 3.096

Dobrá voda 0.897 1.126 0.870 1.126 0.926 1.151

For possible further dealing with interval ratios Ri
jk obtained by (1), it is

worth to note that Ri
jk and Ri

jl, k �= l, are not independent intervals since the

same interval
[
xij , xij

]
is used for their calculation.

4 Proportional Representation

The original compositions xi, i = 1, . . . , n, are often represented so that the
sums of the components for each composition are equal to an arbitrary (but
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fixed) constant κ > 0. Such a representation is formally expressed by the closure
operation

C(xi) :=

(
κ · xi1

∑D
j=1 xij

, . . . ,
κ · xiD

∑D
j=1 xij

)

, i = 1, . . . , n.

The constant κ is popularly taken as 1 (or 100) in case of proportional (percent-
age) representation. It is essential that the proportional representation keeps the
ratios between the compositional parts as

κ·xik∑D
j=1 xij

κ·xil∑
D
j=1 xij

=
xik

xil
, k, l = 1, . . . , D.

Note that the resulting scale invariance is one of the basic properties of compo-
sitional data, reflected also by the Aitchison geometry [8] that forms a natural
algebraic-geometrical structure of compositions. Without the loss of generality,
we will assume κ = 1 further in the paper.

For the interval compositional data Xi, i = 1, . . . , n, the situation becomes
more complex. Observe that in the proportions

C(xi)k :=
xik

∑D
j=1 xij

, k = 1, . . . , D,

the variable xik appears both in the numerator and the denominator. Hence, we
cannot apply the concept of standard interval arithmetic and compute the k-th
interval proportion in the following way:

[xik, xik]
∑D

j=1

[
xij , xij

] =
[xik, xik][∑D

j=1 xij ,
∑D

j=1 xij

] =

[
xik∑D
j=1 xij

,
xik

∑D
j=1 xij

]

,

as the numerator and the denominator are not independent intervals. The correct
procedure for computing the intervals [cik, cik], k = 1, . . . , D, that express the
ranges of particular proportions from C(Xi) is given in the following way (the
formulas were developed for the first time in [4] for normalizing interval weights):

cik = min

{
xik

∑D
j=1 xij

| xij ∈
[
xij , xij

]
, j = 1, . . . , D

}

=
xik

xik +
∑D

j=1, j �=k xij

,

cik = max

{
xik

∑D
j=1 xij

| xij ∈
[
xij , xij

]
, j = 1, . . . , D

}

=
xik

xik +
∑D

j=1, j �=k xij

.

The interval proportions of concentrations of chemical elements presented in
Table 1 are given in Table 3.

However, the obtained intervals [cik, cik], k = 1, . . . , D, are not independent,
so it is not correct to compute their ratios by means of standard interval arith-
metic. Applying the results concerning normalization of interval weights that
were proved in [7], we find out that the following general relations hold:
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Table 3. Interval proportions of concentrations of chemical elements from Table 1

Mineral waters Calcium Sodium Magnesium Potasium

Hanácká kyselka 0.45 0.45 0.111 0.111 0.41 0.41 0.029 0.029

Korunńı 0.319 0.365 0.117 0.134 0.407 0.459 0.092 0.011

Magnesia 0.145 0.183 0.783 0.823 0.017 0.031 0.006 0.006

Mattoni 0.415 0.436 0.117 0.123 0.352 0.38 0.085 0.094

Ondrášovka 0.786 0.8 0.077 0.082 0.117 0.127 0.006 0.007

Poděbradka 0.237 0.25 0.076 0.085 0.584 0.605 0.078 0.086

Dobrá voda 0.23 0.274 0.24 0.261 0.242 0.267 0.234 0.253

Ri
jk ⊆

[
cij , cij

]

[cik, cik]
j, k = 1, . . . , D, j �= k.

Example 1. Let us consider the interval ratio between concentrations of calcium
and sodium in mineral water Korunńı [2.534, 2.932] (see Table 2). If we com-
pute, by means of the standard interval arithmetic operations, the ratio between
interval proportions of calcium and sodium on the whole presented in Table 3,
we obtain the following result:

[0.319, 0.365]

[0.117, 0.134]
= [2.373, 3.125] .

We can see that the interval ratio [2.534, 2.932] is indeed a strict subset of
[2.373, 3.125].

The interactions among the proportions [cik, cik], k = 1, . . . , D, mean that
the proper proportional representation of interval compositional data Xi, i =
1, . . . , n, has to be given in the following way:

C(Xi) :=
{C(xi) ∈ [0, 1]D | xi ∈ [xi1, xi1]× . . .× [xiD, xiD]

}
. (2)

Employing the results proved in [6] concerning normalization of interval weights,
we can see that, unless D = 2, the interval proportions [cik, cik], k = 1, . . . , D,
alone do not carry the whole information about the proportional representation
of interval compositional data. From (2), we can see that we still have to know
the initial interval compositional data Xi, i = 1, . . . , n. For D = 2, it is on the
contrary sufficient to know only one interval proportion, e.g. [ci1, ci1], C(Xi) can
be then given as follows:

C(Xi) =
{
(ci1, ci2) ∈ [0, 1]2 | ci1 ∈ [ci1, ci1] , ci2 = 1− ci1

}
.

Remark 1. Note that if the ratios between two proportions are calculated prop-
erly, they are equal to the ratios between the corresponding original compo-
sitional parts (the following procedure is inspired by the procedure introduced
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in [7] for computing the ratios between normalized fuzzy weights). For j, k =
1, . . . , D, j �= k, let us denote the proper ratio between the j-th and k-th
proportions by [rijk, r

i
jk]. Then

rijk = min
{

cij
cik

| cij and cik express the j-th and k-th components

of at least one C(xi) ∈ C(Xi)
}
,

rijk = max
{

cij
cik

| cij and cik express the j-th and k-th components

of at least one C(xi) ∈ C(Xi)
}
.

It can be shown (see [7, Theorem 8]) that [rijk, r
i
jk] = Ri

jk for any j, k = 1, . . . , D,
j �= k.

5 Descriptive Statistics

Specific properties of (precise) compositional data, captured by the Aitchison ge-
ometry, should be reflected also by their descriptive statistics [1,9]. For instance,
the arithmetic mean as a measure of location needs to be replaced by the geo-
metric mean (centre) of compositional data, g(x) :=

(
g
(
x1

)
, . . . , g

(
xD

))
, where

xj := (x1j , . . . , xnj) and g
(
xj

)
:= n

√∏n
i=1 xij , j = 1, . . . , D. Note that the cen-

tre can be computed from an arbitrary representation of the input compositions
x1, . . . ,xn, the ratios between parts of g(C(x)) remain always the same, i.e.

g
(
xj

)

g (xk)
=

g
(C (

xj
))

g (C (xk))
, j, k = 1, . . . , D. (3)

Now, let us consider the case of interval compositional data Xi, i = 1, . . . , n,
introduced in Section 3. Since the particular intervals are assumed to be indepen-
dent, the centre of these data is given as a vector g(X) =

(
g
(
X1

)
, . . . , g

(
XD

))
,

where
Xj :=

([
x1j , x1j

]
, . . . ,

[
xnj , xnj

])
, j = 1, . . . , D,

and

g
(
Xj

)
:=

[
n

√∏n

i=1
xij ,

n

√∏n

i=1
xij

]

, j = 1, . . . , D.

Note that the particular intervals g
(
Xj

)
, j = 1, . . . , D, are independent. Hence,

their ratios have to be computed applying the concept of standard interval arith-
metic.

At the end of this section, let us verify the validity of equality (3) in the case
of interval compositional data. Let

C (Xj
)
:=

([
c1j , c1j

]
, . . . ,

[
cnj , cnj

])
, j = 1, . . . , D,
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and g(C(X)) =
(
g
(C (X1

))
, . . . , g

(C (
XD

)))
, where, for i = 1, . . . , n, j =

1, . . . , D,
[
cij , cij

]
expresses the range of proportion of the j-th part in Xi.

Since the intervals
[
cij , cij

]
, i = 1, . . . , n, j = 1, . . . , D, are not independent, also

the obtained intervals g
(C (X1

))
, . . . , g

(C (
XD

))
are not independent and their

ratios cannot be computed applying the concept of standard interval arithmetic.
If we do so, we obtain the following relation instead of equality (3):

g
(
Xj

)

g (Xk)
⊆ g

(C (
Xj

))

g (C (Xk))
, j, k = 1, . . . , D.

Therefore, for retaining the validity of equality (3), we have to respect the in-
teractions among g

(C (
X1

))
, . . . , g

(C (
XD

))
when computing their ratios.

6 Future Work

Interval compositional data form a natural extension of the precise case. We
have studied possible ways of dealing with such data. Future work will be aimed
at extension of other procedures developed for dealing with compositional data.
Another problem worth to study will be utilization of the information about
precise sum of compositional parts, that is frequently available in the practice.
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