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Abstract. A simple two-variate linear regression model with fuzzy ran-
dom sets under concepts of functional data analysis is considered. The
support function of a fuzzy random set establishes a useful embedding of
the space of fuzzy random sets into a cone of a functional Hilbert space.
Treating the fuzzy random sets as special functional data, we estimate
the linear model within the cone. An example of the case of LR fuzzy
random sets is given.
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1 Introduction

In investigating the relationship between random elements, regression analysis
enables to seek for some complex effect of several random elements upon another.
Regression techniques have long been relevant to many fields [1]. The random
elements considered actually in many practical application in public health, med-
ical science, ecology, social or economic and financial problems sometimes involve
vagueness, so the regression problems have to face with such a mixture of fuzzi-
ness and randomness. There are two main lines concerning regression modeling
with fuzzy data in literature: namely, the so-called fuzzy or possibilistic regres-
sion proposed by Tanaka [11] and widely analyzed since then [4,5,11] and the
so-called least squares problems of linear models [1,7,9,8,14] with fuzzy random
sets [2,10,12,13]). In the former research line, the regression models are estab-
lished based on possibilistic inclusion relationship between input and output of
the systems rather than stochastic statistical settings. The last research line is
based on statistical nonparametric settings, to consider both effects of random-
ness and fuzziness to the systems in the regression modeling, and the parameters
(vector valued or fuzzy sets valued) estimation of the linear models are solved
with least squares methods under metric between sets (see [1,2,7,9,8,14] and
literature therein), and some concrete computational formulas for parameter es-
timation for simple linear regression model have been given. However, the same
problems remain to be further investigated for the case of multivariate linear
regression with fuzzy random sets.
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In this paper, we focus on a simple two-variate linear regression model with
fuzzy random sets under concepts of functional data analysis. Based on the sup-
port function of the fuzzy random sets, we treat the fuzzy random sets as special
functional data, and estimate the linear model within the support functional
space. An example of the case of LR fuzzy random sets is given.

2 Preliminaries

2.1 Fuzzy Set on R
n

A fuzzy set ũ of Rn equivalents to its membership function ũ : Rn → [0, 1], where
the number ũ(x) represents the degree of membership that x belongs to ũ. By
F (Rn) we denote the collection of all normal, convex and compact fuzzy sets on
R

n, i.e. for ũ ∈ F (Rn), (1) There exists x0 ∈ R
n such that ũ(x0) = 1; (2) The

α−cut of ũ, ũα := {x ∈ R
n : ũ(x) ≥ α}, α ∈ (0, 1], is a convex and compact set

of Rn; (3) ũ0 := cl{x ∈ R
n : ũ(x) > 0}, the support of ũ, is compact.

Zadeh’s extension principle [4] allows us to define addition and scalar multi-
plication on F (Rn):

(ũ⊕ ṽ)(x) = sup
s+t=x

min(ũ(s), ṽ(t)), x ∈ R
n.

(a� ũ)(x) =

{
ũ(xa ), a �= 0
0, a = 0

a ∈ R.

and [9] for any a, b ∈ R, it holds

(ab)� ũ = a� (b � ũ), a� (ũ⊕ ṽ) = (a� ũ)⊕ (a� ṽ).

But it holds only for ab ≥ 0, a, b ∈ R

(a+ b)� ũ = (a� ũ)⊕ (b� ũ).

It indicates that (F (Rn),⊕,�) is not a linear space. With Minkowski’s sets
operation it holds

(ũ⊕ ṽ)α = ũα ⊕ ṽα, α ∈ (0, 1].

(a� ũ)α = a� ũα, α ∈ (0, 1].

Definition 2.1 [14,2]. For ũ, ṽ ∈ F (Rn), if there exists h̃ ∈ F (Rn) such that
ũ = ṽ ⊕ h̃, then h̃ is said to be Hukuhara difference between ũ, ṽ and denoted
by h̃ := ũ�H ṽ.

The support function of ũ ∈ F (Rn) is defined as

Sũα(x) =

{
supt∈ũα

{x · t}, α ∈ (0, 1],
0, α = 0.

x ∈ Sn−1 = {x :‖ x ‖= 1}.

where · denotes the inner product in the Euclidean space R
n. It holds that for

ũ, ṽ ∈ F (Rn) and a ∈ R,
Sũ⊕ṽ = Sũ + Sṽ.
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Sa�ũ(x) = aSũ(x), a > 0;Sa�ũ(x) = −aSũ(−x), a < 0.

thus, it holds that

S((a�ũ)⊕(b�ṽ))α(x) =

{
(aSũα + bSṽα)(x), a, b > 0

−(aSũα + bSṽα)(−x), a, b < 0.

where α ∈ [0, 1]. Thus, the map S : F (Rn) → L2(Sn−1 × [0, 1]), ũ 
→ Sũα(x)
enables us to view the fuzzy set ũ as a support function equivalently, i.e. the
map S embeds F (Rn) into a cone of functional Hilbert space [7].

We will employ the distance between ũ, ṽ proposed by [4] by the L2 metric
δ2,

δ2(ũ, ṽ) :=
(
n

∫ 1

0

∫
Sn−1

(Sũα(x)− Sṽα(x))
2μ(dx)dα

)1/2

,

where μ is a normalized Lebesgue measure. This distance has been widely used in
area of fuzzy set-valued analysis, and in recent years several alternative versions
of which as new metrics between fuzzy values have been proposed in literature,
see [2,13].

2.2 Fuzzy Random Sets (Fuzzy Random Variables)

Fuzzy random sets as an extension of the concept of random sets had been
introduced by Puri and Ralescu [10], and other definitions of fuzzy random sets
were also proposed by Kwakernaak, Kruse and Meyer and Krätschmer [9] in
different setting.

Definition 3.1 [10]. Let (Ω,B, P ) be a complete probability space. The mapping
X̃ : Ω → F (Rn) is said to be a fuzzy random set (frs) if X̃ is B−A measurable,
where we assume A is a σ-algebra induced by X̃ associated with δ2.

Let X̃ be a frs, then for α ∈ [0, 1], SX̃α
is a special random element, for a

fixed x ∈ Sn−1, SX̃α
(x) is random variable: Ω → R, ω 
→ SX̃α(ω)(x). A sample

x̃ from X̃ can be viewed as a fuzzy data, thus, Sx̃ is a special functional data,
an equivalence of x̃ [7].

Definition 3.2 [10]. Let X̃ be a frs. The Aumann expectation of X̃ is defined
as a fuzzy set EX̃ ∈ F (Rn) satisfying

∀α ∈ [0, 1] : (EX̃)α = E(X̃α),

Here E(X̃α) is the Aumann expectation of the random set X̃α defined by

E(X̃α) = {Eη : η(ω) ∈ X̃α(ω) P − a.e. and η ∈ L1(Ω,B, P )}.

Note that E(SX̃α
) = SE(X̃α) [13,14] if the expectation E(X̃α) exists, where

E(X̃α) is an Aumann expectation of (X̃α), α ∈ [0, 1] [10,9].
In the sequel, we assume that frs X̃ is with second order, i.e.

E(‖X̃‖) := E(δ22(X̃, {0})) < +∞,
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The Fréchet variance of X̃ w.r.t distance δ2 is given in [12] as

V ar(X̃) := E(δ22(X̃, E(X̃))) = n

∫ 1

0

∫
Sn−1

V ar(SX̃α
(x))μ(dx)dα.

and the Fréchet covariance of frs’s X̃, Ỹ is also given in [12] as

Cov(X̃, Ỹ ) := n

∫ 1

0

∫
Sn−1

Cov(SX̃α
(x), SỸα

(x))μ(dx)dα.

Note that,

Cov((a� X̃)⊕ (b � Ỹ ), c� Z̃) = acCov(X̃, Z̃) + bcCov(Ỹ , Z̃)

holds only for ac ≥ 0, bc ≥ 0, a, b, c ∈ R.
The independence of frs’s can be followed by the independence of the random

elements which is already defined by [13]. If two frs’s X̃ and Ỹ are indepen-
dent, then Cov(X̃, Ỹ ) = 0. However, if Cov(X̃, Ỹ ) �= 0, then X̃ and Ỹ will be
dependent in some sense of semi-linear or non-linear [3].

Remark 2.1. The Fréchet variance, covariance can be defined w.r.t. different
distances for frs (see [2,4,13]), and in general these distances such as d∞, δ2, D

ϕ
θ

[2,4,13] are not coincide each other except some special cases. We prefer to
employ Näther’s one since that the concerned distance δ2 is standard and simple
one used in functional analysis.

Fréchet Principle [12]. The E(X̃) is the solution of the optimization problem
inf Ỹ ∈F (Rn) E(δ22(X̃, Ỹ )).

Let X̃, Ỹ be frs’s, and let {X̃i}, {Ỹi}, i = 1, · · · ,m, be independent observa-
tions on X̃, Ỹ , respectively. Then equivalently we have r.v. SX̃α

(x), SỸα
(x) and

the functional data sets {SX̃iα
(x)}, {SỸiα

(x)}, i = 1, · · · ,m, and the estima-
tions of E(SX̃α

(x)), V ar(SX̃α
(x)) and Cov(SX̃α

(x), SỸα
(x)) are respectively as

follows,

̂E(SX̃α
(x)) =

1

m

m∑
i=1

SX̃iα
(x), ̂V ar(SX̃α

(x)) =
1

m

m∑
i=1

(SX̃iα
(x)− S

X̃α
)2,

̂Cov(SX̃α
(x), SỸα

(x)) =
1

m

m∑
i=1

(SX̃iα
(x)− S

X̃α
)(SỸiα

(x)− S
Ỹ α

).

So that ÊX̃ = n
∫ 1

0

∫
Sn−1

̂E(SX̃α
(x))μ(dx)dα, ̂V arX̃ = n

∫ 1

0

∫
Sn−1

̂V ar(SX̃α
(x))·

μ(dx)dα, ̂Cov(X̃, Ỹ ) = n
∫ 1

0

∫
Sn−1

̂Cov(SX̃α
(x), SỸα

(x))μ(dx)dα.

3 A Simple Multivariate Linear Regression Model with frs

Now we consider a new two-variate linear model with frs’s, i.e. the case where
the response frs Ỹ can be approximately linearly expressed by two explanatory
frs’s x̃1, x̃2 (compare with the considered models in [1,9,8,14]),

Ỹ = ã⊕ β1x̃1 ⊕ β2x̃2 ⊕ ε̃, (1)
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where ã is a fuzzy number to be estimated, β1, β2 are real number- valued param-
eters to be estimated, ε̃ is a uncertain disturbance frs with unknown probability
distribution, whose Aumann expectation is assumed to be E(ε̃) = 0̃, which
means that given the realization x̃0

1, x̃
0
2 of x̃1, x̃2

E(Ỹ |x̃0
1, x̃

0
2) = ã⊕ β1x̃

0
1 ⊕ β2x̃

0
2 ⊕ 0̃. (2)

We assume that for the model there exists Hukuhara difference Ỹ �H (ã⊕β1x̃1⊕
β2x̃2) and frs ε̃ can be formally expressed as

ε̃ = Ỹ �H (ã⊕ β1x̃1 ⊕ β2x̃2). (3)

such that Ỹ = (ã⊕ β1x̃1 ⊕ β2x̃2)⊕ (Ỹ �H (ã⊕ β1x̃1 ⊕ β2x̃2))).
Assume that we have independent observation {Ỹi},{x̃1i},{x̃2i} on Ỹ , x̃1, x̃2, re-

spectively, equivalently we have three functional data sets {SỸiα
(x)}, {Sx̃1iα(x)},

{Sx̃2iα(x)}, i = 1, · · · ,m.

Theorem 3.1. The least squares problem

min
ã∈F (Rn),β1,β2�0 or β1,β2�0

1

m

m∑
i=1

δ22(Ỹi, ã⊕ β1x̃1i ⊕ β2x̃2i)

has solutions (1) when β1, β2 � 0,

β̂1 = max
{
0,

̂Cov(Ỹ , x̃1)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ , x̃2)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

β̂2 = max
{
0,

̂Cov(Ỹ , x̃2)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ , x̃1)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

ˆ̃a = Ỹ �H (β̂1x̃1 ⊕ β̂2x̃2).

(2)when β1, β2 � 0,

β̂1 = min
{
0,−

̂Cov(Ỹ ,−x̃1)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ ,−x̃2)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

β̂2 = min
{
0,−

̂Cov(Ỹ ,−x̃2)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ ,−x̃1)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

ˆ̃a = Ỹ �H (β̂1(−x̃1)⊕ β̂2(−x̃2)).

Proof. (1) Based on Fréchet principle, we have 1
m

∑m
i=1 δ

2
2(Ỹi, ã⊕β1x̃1i⊕β2x̃2i) =

n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− S(ã⊕β1x̃1i⊕β2x̃2i)α(t))
2μ(dt)dα

=n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− Sãα(t)− β1Sx̃1iα(t)− β2Sx̃2iα(t))
2μ(dt)dα

� n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− β1Sx̃1iα(t)− β2Sx̃2iα(t)− (S
Ỹ α

(t)− β1SX̃1α
(t)−
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β2SX̃2α
(t)))2μ(dt)dα, which means ã = Ỹ�H(β1x̃1⊕β2x̃2) minimizes 1

m

∑m
i=1 δ

2
2 ·

(Ỹi, ã⊕β1x̃1i⊕β2x̃2i). Furthermore, set f(β1, β2) :=
1
m

∑m
i=1 δ

2
2(Ỹi, (Ỹ �H(β1x̃1⊕

β2x̃2)) ⊕ (β1x̃1i ⊕ β2x̃2i)) =̂V arỸ + β2
1 V̂ arx̃1 + β2

2 V̂ arx̃2 − 2β1
̂Cov(x̃1, Ỹ ) −

2β2
̂Cov(x̃2, Ỹ )+2β1β2

̂Cov(x̃1, x̃2), solving the equations ∂f
∂β1

= 0, ∂f
∂β2

= 0, then

we have the solutions β̂1, β̂2 of (1).
The proof of (2) is analogous to the proof of (1), but we should take β1x̃1 =

(−β1)(−x̃1), β2x̃2 = (−β2)(−x̃1). �

4 Simulation Example

Assume that the observed human’s pulse, diastolic pressure and systolic pres-
sure can be comprehensively expressed by Ỹ = (μy , ly)L, x̃1 = (μ1, l1)L, x̃2 =
(μ2, l2)L, the symmetric triangular fuzzy numbers (see.[13]), respectively, as
shown in Table 1.

Table 1. Data of human’s pulse, diastolic pressure and systolic pressure

i (μy, ly)L (μ1, l1)L (μ2, l2)L
1 (74,16) (145.5, 27.5) (85.5, 19.5)
2 (57.5, 10.5) (132.5, 28.5) (94.5, 23.5)
3 (73, 41) (158.5, 27.5) (85.5, 27.5)
4 (85.5, 24.5) (131, 26) (90, 28)
5 (75.5, 13.5) (149.5, 29.5) (76.5, 17.5)
6 (91, 28) (147.5, 46.5) (82, 34)
7 (73, 22) (141.5, 32.5 ) (89.5, 29.5)
8 (63.5, 14.5) (169, 41) (100.5, 24.5)
9 (55,12) (119.5, 25.5) (75.5, 28.5)
10 (78.5,23.5) (174.5, 26.5) (109, 21)
11 (65,13) (165.5, 46.5) (70, 23)
12 (69.5,14.5) (150, 28) (89, 16)
13 (81,20) (158, 31) (99.5, 25.5)
14 (78.5,13.5) (163, 50) (82, 30)
15 (52,14) (173, 32) (101, 32)
16 (60.5,12.5) (134, 35) (81, 28)
17 (78.5,19.5) (158.5, 32.5) (79, 19)
18 (73,14) (150,51) (88, 33)
19 (65.5,16.5) (154.5, 66.5) (65.5, 28.5)
20 (62.5,14.5) (148,35) (70, 15)

We obtain

β̂1 = 0.0236, β̂2 = 0.0865, μ̂a = 59.6572, l̂a = 14.8489.

Then the concerned linear regression equation is

ˆ̃Y = (59.6572, 14.8489)L⊕ 0.0236x̃1 ⊕ 0.0865x̃2.
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However, for the obtained estimators of the model, the Hukuhara difference
based residuals ˆ̃ε = (με, lε) may not exist for some data. The residuals computed
with the Hukuhara difference formula [13] are shown in Table 2, where some
residuals (fuzzy data) with negative spreads appeared.

Table 2. Data of the residual ˆ̃ε

i (με, lε) i (με, lε) i (με, lε)

1 (3.7707, -1.1851) 8 (-8.8413, -3.4364) 15 (-20.479, -4.3728)
2 (-13.4607, -7.0548) 9 (-14.01, -5.9166) 16 (-9.3281, -5.5976)
3 (2.2043, 23.1227) 10 (5.2934, 6.2087) 17 (8.2666, 2.2401)
4 (14.964, 6.6149) 11 (-4.6199, -4.9364) 18 (2.1886, -4.9078)
5 (5.6954, -3.5593) 12 (-1.3979, -2.3941) 19 (-3.471, -2.3844)
6 (20.7667, 9.1119) 13 (9.0048, 2.2131) 20 (-6.7069, -2.4729)
7 (2.2595, 3.8317) 14 (7.9009, -5.1247)

Thus, there are only 7 values of the Hukuhara difference based residuals for
the observations of Table 1, that is,

B = {(2.2043, 23.1227), (14.964, 6.6149), (20.7667, 9.1119),
(2.2595, 3.8317), (5.2934, 6.2087), (9.0048, 2.2131), (8.2666, 2.2401)}.

In the following we give an example of distributional simulation for the distur-
bance term ε̃. Taking B as a bootstrap population [6] and randomly resampling
times of 10000. Using SAS on the bootstrap data, we output the histograms
for center variable and spread variable respctively. The hypotheses about the
distributions for center variable and spread variable remain to be tested in our
future research.

Fig. 1. The histogram for center variable of ε̃
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Fig. 2. The histograms histogram for spread variable of ε̃
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