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Abstract. A multiple interval-valued linear regression model consid-
ering all the cross-relationships between the mids and spreads of the
intervals has been introduced recently. A least-squares estimation of the
regression parameters has been carried out by transforming a quadratic
optimization problem with inequality constraints into a linear comple-
mentary problem and using Lemke’s algorithm to solve it. Due to the
irrelevance of certain cross-relationships, an alternative estimation pro-
cess, the LASSO (Least Absolut Shrinkage and Selection Operator), is
developed. A comparative study showing the differences between the
proposed estimators is provided.
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1 Introduction

Intervals represent a powerful tool to capture the imprecision of certain char-
acteristics that cannot be fully described with a real number. For example, the
measures provided by instruments which have some errors in their measure-
ments [1]. Moreover, intervals also model some features which are inherently
interval-valued. For instance, the range of variation of the blood preasure of a
patient along a day [2] or the tidal fluctuation [9].

The statistical study of regression models for interval data has been exten-
sively addressed lately in the literature [2–5,7], deriving into several alternatives
to tackle this problem. On one hand, the estimators proposed in [4, 7] account
the non-negativity constraints satisfied by the spread variables, but do not as-
sure the existence of the residuals. Hence, they can lead to ill-defined estimated
models. On the other hand, the models proposed in [2, 3, 5] are formalized ac-
cording to the natural interval arithmetic and their estimators lead to models
that are always well-defined over the sample range.

The multiple linear regression model [3] considered belongs to the latter ap-
proach and its main advantage is the flexibility derived from its way to split the
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regressors, allowing us to account for all the cross-relationships between the cen-
ters and the radius of the interval-valued variables. Nevertheless, this fact entails
an increase in the number of regression parameters and thus, a Lasso estimation
is considered in order to shrink some of these coefficients towards zero. The Lasso
estimation of an interval-valued regression model has been previously addressed
in [4], but it is a more restrictive model formalized in the first framework, where
residuals might not exist.

The paper is organized as follows. Section 2 presents some preliminary con-
cepts about the interval framework and section 3 contains the formalization of
the model. The Least-Squares and Lasso estimations of the proposed model are
developed in subsections 3.1 and 3.2. Section 4 briefly describes the Lasso model
proposed by Giordani [4]. The empirical performance of the estimators proposed
in sections 3 and 4 is compared in section 5 by means of a ilustrative real-life
example. Section 6 finishes with some conclusions.

2 Preliminaries

Interval data are defined as elements belonging to the space Kc(R) = {[a1, a2] :
a1, a2 ∈ R, a1 ≤ a2}. Given an interval A ∈ Kc(R), it can be parametrized
in terms of its center or midpoint, midA = (supA + inf A)/2, and its radius
or spread, sprA = (supA − inf A)/2. Nonetheless, intervals can alternatively
be expressed by means of the so-called canonical decomposition [2] defined as
A = midA[1 ± 0] + sprA[0± 1], where [1± 0] = [1, 1] and [0± 1] = [−1, 1]. This
decomposition allows us to consider separately the mid and spr components of
A, which will lead into a more flexible model. The interval arithmetic on Kc(R)
consists of the Minkowski addition and the product by scalars defined as follows
by the jointly expression: A+ δB = [(midA+ δmidB) ± (sprA+ |δ| sprB)] for
any A,B ∈ Kc(R) and δ ∈ R.

The space (Kc(R),+, · ) is not linear but semilinear, as the existence of sym-
metric element with respect to the addition is not guaranteed in general. An
additional operation is introduced, the so-called Hukuhara difference between
the intervals A and B. The difference C is defined as C = A −H B ∈ Kc(R)
verifying that A = B +C. The existence of C is subject to the fulfilment of the
expression sprB ≤ sprA.

Given the intervals A,B ∈ Kc(R), the metric dτ (A,B) = ((1 − τ) ((midA −
midB)2+τ (sprA−sprB)2))

1
2 , for an arbitrary τ ∈ (0, 1), is the L2-type distance

to be considered. dτ is based on the metric dθ defined in [11].
Given a probability space (Ω,A, P ) the mapping x : Ω → Kc(R) is a random

interval iff it is a measurable Borel mapping. The moments to be considered are
the classical Aumann expected value for intervals; the variance defined follow-
ing the usual Fréchet variance [8] associated with the Aumann expectation in
the interval space (Kc(R), dτ ); and the covariance defined in terms of mids and
spreads as σx,y = (1 − τ)σmidx,midy + τσsprx,spry.
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3 The Multiple Linear Regression Model

Let y be a response random interval and let x1, x2, . . . , xk be k explanatory
random intervals. The model is formalized in a matrix notation as follows:

y = XBl B + ε , (1)

where B = (b1|b2|b3|b4)t ∈ R
4k×1 with bi ∈ R

k (i ∈ {1, 2, 3, 4}), XBl =
(xM |xS|xC|xR) ∈ Kc(R)

1×4k where the elements are defined as xM =
midxt [1 ± 0], xS = sprxt [0 ± 1], xC = midxt [0 ± 1] and xR = spr xt [1 ± 0],
considering the canonical decomposition of the regressors. Superscripts represent
Bl=Block matrix, M=mid, S=spread, C=center and R=radius.

xt is the vector of k explanatory random intervals, i.e., xt = (x1, x2, . . . , xk).
Thus, midxt = (midx1,midx2, . . . ,midxk) ∈ R

k (analogously spr xt) and ε is
a random interval-valued error such that E(ε|x) = Δ ∈ Kc(R).

The following separate linear relationships for the mid and spr components of
the intervals are derived from (1):

midy = midxt b1 + sprxt b4 +mid ε , (2a)

spry = spr xt |b2|+ |midxt| |b3|+ spr ε . (2b)

Thus, the flexibility of the model arises from the possibility of considering all
the information provided by midx and sprx to model midy and spry, as follows
from (2a) and (2b). This represents an improvement with respect to previous
models that merely addressed the relationship between the mids of the variables
or between the spreads but never any cross-relationship (mid-spr).

Nevertheless, the inclusion of more coefficients entails an increase in the di-
mensionality of the estimation process. Some of these coefficients could be zero
as not all the new introduced variables might contribute. Therefore it is proposed
to estimate (1) by least-squares and by Lasso and compare the advantages and
disadvantages that each estimation process provides.

3.1 The Least-Squares Estimation

Given {(yj ,xi,j) : i = 1, . . . , k, j = 1, . . . , n} a simple random sample of intervals
obtained from (y,x1, . . . ,xk) in (1) the estimated model is

ŷ = Xebl
̂B + ε̂ (3)

where y = (y1, . . . , yn)
t, Xebl = (XM |XS|XC |XR) ∈ Kc(R)

n×4k (the super-
script ebl comes from estimated block matrix), ε = (ε1, . . . , εn)

t is such that
E(ε|x) = 1nΔ and B as in (1). XM is the (n × k)-interval-valued matrix such
that (XM )j,i = midxi,j [1 ± 0] (analogously XS , XC and XR). Given an arbi-
trary vector of regression coefficients A ∈ R

4k×1 and an interval of residuals
C ∈ Kc(R), the Least-Squares estimation looks for ̂B and ̂Δ minimizing the

distance d2τ (y,X
eblA + 1nC). ̂Δ can be obtained separately and firstly by the

expression ̂Δ = y−H Xebl ̂B.
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Recalling that, by definition, XS = −XS (and analogously XC = −XC) the
estimation process of the coefficients b2 and b3 accompanying these variables
can be simplified by searching only for non-negative estimates. By contrast,
coefficients b1 and b4 are not affected by any kind of restrictions so they can be
estimated directly by OLS. Moreover, it has to be assured the existence of the
residuals defined as the Hukuhara differences ε = y−H XeblB. For this purpose
the minimization problem ends up to be the following constrained quadratic
problem:

min
Am∈ R2k, As∈ Γ

(1 − τ) ‖vm − FmAm‖2 + τ ‖vs − FsAs‖2 (4)

Γ = {(a2, a3) ∈ [0,∞)k × [0,∞)k : sprX a2 + |midX | a3 ≤ spr y},
being vm = midy − midy 1n, vs = spry − spry 1n ∈ R

n, Fm = midXebl −
1n(midXebl), Fs = sprXebl − 1n(sprXebl) ∈ R

n×2k, Am = (a1|a4)t ∈ R
2k×1 the

coefficients related to the midpoints and As = (a2|a3)t ∈ R
2k×1 the coefficients

related to the spreads, with al ∈ R
k, l = 1, . . . , 4.

There are several numerical ways to tackle the resolution of a quadratic prob-
lem as (4). Given the shape of the objective function, the minimization process
is solved separately over Am and As. Those coefficients related with the mids
(Am) are not affected by constraints and therefore, the OLS estimator can be

used directly. Thus ̂Am = (F t
mFm)−1F t

mvm. However, in order to proceed with
the constrained minimization over As, Karush-Kuhn-Tucker conditions guaran-
tee the existence of local optima solution, which can be computed with standard
numerical tool. Nevertheless, in order to obtain an exact solution and a more
handy estimator of As, (4) can be equivalent expressed as a Linear Complemen-
tary Problem with the shape:

ω = M λ+ q s.t. ω, λ ≥ 0 , ωjλj = 0 , j = 1, . . . , n+ 1 , (5)

with M = (RQ−1 Rt) and q = (−RQ−1 c− r) (details in [3]). Thereby, once λ

is obtained, the expression of the estimator is ̂As = Q−1 (Rt λ− c).

3.2 The Lasso Estimation

Least Absolute Shrinkage and Selection Operator (LASSO) is a regressionmethod
that penalizes the sum of the absolute values of the regression coefficients esti-
mates. For this purpose it involves a regularization parameter which affects di-
rectly the estimates: the larger the value of this parameter, the more estimates
that are shrunk towards zero. However, this coefficient cannot be estimated sta-
tistically, so a cross-validation process is usually applied.

As previously, (4) can be solved separately. On one hand, the classical Lasso
method will be used to obtain the estimator of the regression coefficients related
to the mids. Thus, the problem is expressed as:

1

2
‖vm −Am Fm‖22 + λ

2k
∑

j=1

|Amj |



Lasso Estimation of an Interval-Valued Multiple Regression Model 189

being λ the regularization parameter. There are different programs capable to
solve this problem (such as Matlab or R). The lasso.m Matlab function is the

one used to obtain ̂Am.
On the other hand, for those coefficients related with the spreads a constrained

Lasso algorithm has been developed as a modified version of the code proposed
by Mark Schmidt (2005) [10] and is available upon request. The problem is given
by:

1

2
‖vs −As Fs‖22 + λ

2k
∑

j=1

|Asj | s.t RAs ≥ r.

The most usual elections of λ are the value thanminimizes the Cross-Validation
Mean Square Error (λMSE) and the value that provides a simpler or more parsi-
monious model with respect to λMSE (in terms of more zero coefficients) but at
the same time with one-standard-error (λ1SE).

4 Giordani’s Lasso Estimation

The so-called Lasso-based Interval-valued Regression (Lasso-IR) proposed by
Giordani in [4] is another Lasso method to deal with a multiple linear regression
model for interval data. However, the later regression model is not formalized
following the interval arithmetic and can end up with an ill-defined estimated
model. Keeping the same notation as in (2b), it requires the non-negativity of
b2 and b3 but does not test if the Hukuhara’s difference ε = y−H XeblB exists.
The optimization problem can be written (analogously to (4)) as:

min
Am,As

(1− τ) ‖vm − Fm Am‖2 + τ‖vs − Fs(Am +Aa)‖2 (6)

Fs(Am +Aa) ≥ 0,

p
∑

j=0

|Aaj | ≤ t

The coefficients related to the spreads (As) are the ones for the mids (Am)
plus a vector of additive coefficients (Aa) showing the distance that they are
allowed to differ from Am. In this case (6) has been expressed as a constrained
quadratic problem, where there is a one-to-one correspondence between λ and t.
The value of t that minimizes the cross-validation mean square error is the one
considered. In order to solve the problem a stepwise algorithm based on [6] is
proposed.

Another important difference, which entails less flexibility in the model, is
the limitation of being able to study separately the relationships between the
mids and the relationship between the spreads of the intervals but never any
cross-relationship.

Remark 1. There is a particular case of model (1), the so-called Model M ad-
dressed in [2], which is formalized in the interval framework but has the same
lack of flexibility as (6). In this case b3 and b4 = (0, . . . , 0), so the model has the
shape:

y = b1 x
M + b2 x

S + ε. (7)
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5 A Real-Life Illustrative Example

The following example contains the information of a sample of 59 patients (from
a population of 3000) hospitalized in the Hospital Valle del Nalón in Asturias,
Spain. The variables to be considered are the ranges of fluctuation of the diastolic
blood preasure over the day (y), the pulse rate (x1) and the systolic blood
preasure (x2). The dataset can be found in [2] and [5].

In order to make possible the comparison between the estimator proposed in
section 4 and those ones introduced in subsections 3.1 and 3.2, the example will
be developed for the simpler model explained in Remark 1.

Given the displayed model in (7), y = b1x
M
1 + b2x

M
2 + b3x

S
1 + b4x

S
2 + ε, the

estimates of the regression coefficients are summarized in Table 1:

Table 1. Estimates of the regression coefficients for the three estimators: LS, Lasso
(for the two more representatives values of λ) and Lasso-IR (for a fixed value of t=0.10
prefixed by the author). The last column contains the MSE of the models mimicking
its definition in the classical framework.

̂b1 ̂b2 ̂b3 ̂b4 MSE

LS − estimation (Sect. 3.1) 0.4497 0.0517 0.2588 0.1685 68.2072

Lasso− estimation (Sect. 3.2) 0.4202 0.0020 0.3379 0.2189 68.8477
λMSE (0.6094) ( 0.0259)

Lasso− estimation (Sect. 3.2) 0.2749 0 0.0815 0 76.9950
λ1SE (3.2521) (1.8736)

Lasso− IR (Sect.4) 0.5038 0.1261 0.4847 0.3605 71.2418

In view of the results in Table 1, those coefficients which take small values with
the LS-estimation (̂b2 and ̂b4) are schrunk towards zero with the most preferable
Lasso estimation (for λ1SE). However, this entails a significant increase of the
MSE. In the case of using our Lasso-estimator for λMSE , the MSE is smaller
but it does not provide a parsimonious model, being therefore its usefulness
questionable. The estimator proposed in section 4 reaches a high value of MSE
(worse in comparison with the lasso for λMSE) and does not end up with an
easy-to-interpret model.

6 Conclusions

On one hand, a recently studied regression model for interval data, allowing to
study all the cross-relationships between the mids and spreads of the interval-
valued variables involved, is considered. This flexibility derives into an increase of
the dimensionality of the model. Therefore a Lasso estimation seems appropiate
to tackle this problem by setting some of these coefficients to zero. Nonetheless,
a comparison study gathering the double estimation process conducted (first by
Least-Squares and after by Lasso) is provided.
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On the other hand, it is considered the Lasso-based interval-valued regression
model (Lasso-IR) proposed in [4]. This model is not constrained to guarantee the
existance of the residuals so it can provide misleading estimations. Moreover, it
has a lack of flexibility as it solely tackles the relationships of type mid-mid and
spr-spr but no cross-relationships mid-spr.

A real-life example illustrating the difference between the estimators in terms
of MSE and simplicity has been conducted.
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