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Abstract. Fuzzy random variables are used when randomness is merged
with imprecision described by fuzzy sets. When we need to use computer
simulations for the comparison of a classical probabilistic approach with
that based on fuzzy random variables we need to establish the method
for the generation of crisp random variables compatible with existing
fuzzy data. In the paper we consider this problem, and propose some
practical solutions.
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1 Introduction

Random phenomena are usually modeled by classical probabilistic models. These
models are definitely appropriate when sample observations of random variables
are precisely reported, even if their actual values are not precisely known or may
substantially vary. However, real statistical data may be defined in imprecise way.
Firstly, the observed data may be reported using imprecise linguistic terms like
”about one hundred” etc. Moreover, in reality there is often no reason to assume
that the unknown values of observations are governed by the same probability
distribution. In contrast to the case of precisely known observations, there is no
method for the statistical verification of this important hypothesis.

To overcome the problems with the analysis of imprecisely reported statisti-
cal data two general approaches are used. First approach, still mainly used, is
entirely probabilistic. The supporters of this approach propose to use complex,
often multi-level, probabilistic models with many assumptions that are hardly
verifiable in practice. The second approach is based on the notion of fuzzy ran-
dom variables. In this approach imprecise observations are described by fuzzy
sets such as e.g. fuzzy numbers. Fuzzy random variables have been introduced
in order to merge this imprecision with pure randomness.

When we are dealing with complex problems whose formal description involves
random variables it is usually not possible to solve these problems in purely ana-
lytical way. Therefore, in such cases we use computer simulation methods, known
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as Monte Carlo methods. When fuzziness is additionally involved in the descrip-
tion of complex problems their solution requires the usage of simulation of fuzzy
random variables. The paper by Colubi et al. [1] serves as a very good exam-
ple how simulation techniques may be used for the analysis of the properties of
fuzzy random variables. There also exist numerous papers whose authors pro-
pose different methods for simulating fuzzy random variables for the solution
of practically oriented problems. However, only few of them provide more gen-
eral information about the methodology of simulation. The most general formal
model that can be used for the simulation of fuzzy random variable has been
proposed by Gonzalez-Rodriguez et al. [3]. The methodology presented in this
paper is based on the general definition of the fuzzy random variable proposed
by Puri and Ralescu [7], and the concept of the simulation of random elements
in the separable Hilbert space.

When fuzzy random variables are used for modeling imprecisely described
random phenomena an important question often arises about the advantage of
this methodology over the classical one. The adherents of purely probabilistic
approach claim that it is always possible to describe imprecision using classical
probabilistic methods. In this paper we claim that in general they are right if we
define a fuzzy random variable according to the definition firstly introduced by
Kwakernaak [6]. However, the purely probabilistic model of the fuzzy random
variable may be extremely complicated. Fuzzy methodology, in our opinion, pro-
vides tools for good approximations. It is interesting, however, to compare these
approximations with the results provided by restricted (simplified) purely prob-
abilistic models. It seems hardly possible to do such comparisons analytically,
but we could do it using Monte Carlo simulations. In order to do so we need
methods for the simulation of crisp random variables whose observed values are
compatible with existing imprecise information. The proposal of a useful method
for doing this is the main goal of this paper.

The remaining part of the paper is organized as follows. In Section 2 we discuss
some important problems related to the simulation of fuzzy random variables.
In Section 3 we present main original results of this paper. We use the concept of
the possibility distribution, understood according to the interpretation of Dubois
and Prade [2], for the construction of a random mechanism that generates crisp
random variables compatible with respective fuzzy ones. In the fourth section we
illustrate our results with some examples of simulation experiments. The paper
is concluded in the last section of the paper.

2 Monte Carlo Generation of Fuzzy Random Variables

The notion of a fuzzy random variable has been defined in several papers, starting
from early works of Zadeh on the fuzzy probability. The first generally accepted
definition was introduced in the paper by Kwakernaak [6]. Statistical methods
based on Kwakernaak’s proposal have been developed in the works of Kruse (see
[5]), so nowadays this approach is often coined as Kwakernaak-Kruse approach.
The definition, we present below, is taken from [4], and is consistent with the
results of Kruse and Kwakernaak.
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Suppose that a random experiment is described as usual by a probability
space (Ω,A,P), where Ω is a set of all possible outcomes of the experiment,
A is a σ− algebra of subsets of Ω (the set of all possible events) and P is a
probability measure

Definition 1. A mapping X : Ω → FN is called a fuzzy random variable if it
satisfies the following properties:

(a) {Xα(ω) : α ∈ [0, 1]} is a set (α-cut) representation of X(ω) for all ω ∈ Ω,
(b) for each α ∈ [0, 1] both XL

α = XL
α (ω) = inf Xα(ω) and XU

α = XU
α (ω) =

= supXα(ω), are usual real-valued random variables on (Ω,A,P).

According to Kruse [5] a fuzzy random variable X may be considered as an
imprecise perception of an unknown usual random variable V : Ω → R, called
an original of X . There exists a more general definition proposed by Puri and
Ralescu [7], but in this paper we restrict our attention to the case of the fuzzy
random variable defined according to the Kwakernaak-Kruse approach.

Let us look at the definition of the fuzzy random variable from a point of view
of computer simulations. It seems to be quite obvious that the ordinary random
variables XL

α and XU
α must be dependent. Moreover, for all α-levels 0 ≤ α ≤ 1,

and for all pairs of α-levels 0 ≤ α′ ≤ α′′ ≤ 1 their joint probability distribution
must fulfill the following requirements that assure the nested structure of the
α-level subsets of the fuzzy observations.

P
(
xL
α < XL

α , X
U
α ≤ xU

α

)
:

{≥ 0 , xU
α > xL

α

= 0 , otherwise
(1)

P
(
xL
α′ < XL

α′ , XL
α′′ ≤ xL

α′′
)
:

{≥ 0 , xL
α′′ > xL

α′

= 0 , otherwise
(2)

P
(
xU
α′′ < XU

α′′ , XU
α′ ≤ xU

α′
)
:

{≥ 0 , xU
α′ > xU

α′′

= 0 , otherwise
(3)

Thus, we have the following proposition.

Proposition 1. Let the fuzzy random variable X̃ be defined on a finite set of
α levels 0 ≤ α(1) < α(2) < · · · < α(m) ≤ 1. Then, X̃ is fully described by a
2m-dimensional vector

(
XL

α(1) , . . . , X
L
α(m) , X

U
α(1) , . . . , X

U
α(m)

)
of ordinary random

variables whose joint probability distribution fulfills the conditions (1)-(3).

When the values of α are not discretized the random vector mentioned in Propo-
sition 1 becomes infinitely dimensional. Hence, any fuzzy random variable de-
fined according to the Kwakernaak-Kruse approach can be represented by a fully
probabilistic model described by dependent ordinary random variables whose
marginal probability distributions must fulfill conditions(1)-(3). This property
of the fuzzy random variables fully justifies the usage of Monte Carlo methods
for the generation of fuzzy random samples.
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3 Monte Carlo Simulation of Random Variables
Compatible with Fuzzy Data

Let us assume that we have a sample of imprecise fuzzy data x̃1, x̃2, . . . , x̃n ob-
served in a random experiment (or simulated as the realizations of fuzzy random
variable). If we want to compare fuzzy models and crisp probabilistic models us-
ing simulation methods we need to assume a certain probabilistic model in order
to generate possible “origins” of the observed fuzzy data. The most frequently
used approach consists in the transformation of the membership functions of the
fuzzy numbers x̃1, x̃2, . . . , x̃n into respective probability densities. For example,
let us suppose that the fuzzy observation x̃i is described by a triangular normal
fuzzy number (xi1, xi2, xi3) (i.e. such that μ(xi2) = 1). Then, its membership
function is easily transformed to the triangular probability density described by
the triangle (xi1, xi2, xi3) such that f(xi2) = 2/(xi3 − xi1).

This simple model has one serious disadvantage. As a matter of fact, it is a
purely probabilistic model that fits the imprecise data to one specific probability
distribution. We believe that this assumption is debatable. Consider, for exam-
ple, two random fuzzy variables X̃ and Ỹ whose observations are described by
intervals (i.e. by rectangular fuzzy numbers). According to the theory of fuzzy
sets the observations of their sum should be also described by intervals. However,
the probability distribution of the sum of their crisp “origins” simulated using
the aforementioned method is not uniform.

In this paper we propose to interpret the membership functions of the observed
fuzzy data as possibility distributions. The notion of the possibility distribution
was introduced by Zadeh, and has many different interpretations. According to
one of them, see [2], the possibility distribution can be understood as an upper
envelope for all ordinary discrete probability distributions compatible with our
imprecisely described value. Let μ[a,b](x) be the membership function of a fuzzy
number x̃ with the support [a, b]. Consider now a representation of [a, b] with a
finite set of m real numbers a ≤ x1 < x2 < . . . < xm ≤ b. Now, let us define on
this set the familyMN of all discrete distributionsMN(p1, p2, . . . , pm) such that
pj ≤ μ[a,b](xj), j = 1, . . . ,m, and

∑m
j=1 pi = 1. The discrete distribution that

belongs to the familyMN we will call compatible with the possibility distribution
μ[a,b](x). The value x

� randomly generated according to this distribution can be
considered as a possible crisp “origin” of the fuzzy observation x̃.

For every fuzzy number x̃ defined on a non-degenerate interval [a, b] there exist
uncountably many distributions defined in the aforementioned way. However,
for practical reasons we have to restrict the number of considered distributions.
First, we should set the fixed number of points m. When μ[a,b](a) > 0 and
μ[a,b](b) > 0 we set, respectively, x1 = a and xm = b, and the remaining m− 2
points we may generate according to a certain probability distribution defined on
(a, b). Otherwise, we generate all m points from this distribution. Note that any
non-random generation of these m points (e.g. equidistant) can be considered as
a special case of this general model.
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Now, let us define some distributions on the set {x1, . . . , xm} that belong
to the family MN . Let us consider three such distributions: the left concen-
trated (LC), the right concentrated (RC), and the random Dirichlet (RD). The
LC distribution is the distribution MN(p1, . . . , pk), where pj = μ[a,b](xj), j =

1, . . . , k − 1 and pk = 1 − ∑k−1
j=1 pj , 1 ≥ k ≤ m. The respective RC distribu-

tion is the distribution MN(pl, . . . , pm), where pj = μ[a,b](xj), j = l + 1, . . . ,m
and pl = 1 −∑m

j=l+1 pj , 1 ≥ l ≤ m. The interpretation of these distributions is
simple when we are interested in the inference about the location parameter of
the considered probability distribution or when the parameter of interest could
be transformed to a location parameter by the appropriate transformation of
the underlying random variable. For purely interval data the whole probability
mass of the LC distribution is concentrated at the left limiting value of the con-
sidered interval. Similarly,for the RC distribution the whole probability mass is
concentrated at the right limiting value of the considered interval.

Let us consider the LC distribution compatible with the triangular possibility
distribution defined by the triangular fuzzy number (A,B,C). Let s = |A,C| and
sL = |A,B| be, respectively, the support and the left spread of this possibility
distribution. We can now formulate the following proposition.

Proposition 2. The expected value of the LC distribution compatible with tri-
angular possibility distribution (A,B,C), and defined on the m evenly distributed
points on the interval (A,C) is equal to A when m tends to infinity.

Proof. Let X be a random variable defined on points xi =
2i−1
2

s
sL

+ A evenly

distributed on (A,C), and pi =
2i−1
2m

s
sL

be the corresponding probabilities of the

LC distribution, such that
∑k

i=1 pi ≤ 1 <
∑k+1

i=1 pi. One can prove that

Zk =

k∑

i=1

2i− 1

2m

s

sL
=

s

2msL
k2 (4)

Hence, we have pk+1 = 1 − Zk. If probabilities p1, p2, . . . , pk, pk+1 describe the
probability distribution defined on the set {x1, x2, . . . , xk, xk+1} the condition
Zk + pk+1 = 1 must be fulfilled. Note that pk+1 ≤ 2k+1

2m
s
sL

, and for m tending
to infinity this probability tends to zero. Thus, we have the following equation
that defines the relationship between k and m

s

2msL
k2 = 1 (5)

Now, let us calculate the expected value of X from the following formula

E(X) =
∑k

i=1 pixi =
∑k

i=1(
2i−1
2

s
m +A)(2i−1

2m
s
sL

)

= s2

sL
1

4m2
1
3k(4k

2 − 1) + A
2m

s
sL

k2.
(6)

From (5) we have k =
√
2msL/s, and hence

E(X) =
s3/2

s
1/2
L

√
2

12
(
8sL
s

m−1/2 −m−3/2) +A. (7)
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Thus, from (7) we see that for m → ∞ we have E(X) → A, and this ends the
proof. In the similar way we can prove a symmetric proposition concerning the
RC distribution

Proposition 3. The expected value of the RC distribution compatible with tri-
angular possibility distribution (A,B,C), and defined on the m evenly distributed
points on the interval (A,C) is equal to C when m tends to infinity.

In the general case, however, the values of the parameters p1, . . . , pm may
be also chosen in a random way. The Dirichlet distribution is defined by the
following density function

f(p1, . . . , pm;β1, . . . , βm) =

{
1

Bm

∏m
j=1 s

βj

j , (s1, . . . , pm) ∈ Sm

0 , otherwise
, (8)

where Sm is the closed m − 1-dimensional simplex and Bm is the normalizing
constant.

The Dirichlet distribution defined by (8) is very flexible, and allows to sim-
ulate very different “shapes” of the probability distribution compatible with a
fuzzy number x̃ which can be used for the generation of the “origin” value rep-
resentative for this fuzzy number. In the simulation algorithm the values of the
parameters β1, . . . , βm can be chosen randomly, for example from a predefined
interval (βmin, βmax). It gives an additional level of flexibility in the generation
of probabilities p1, . . . , pm. Then, the values of probabilities p1, . . . , pm can be
generated from the Dirichlet distribution (8). Finally, the MN(p1, . . . , pm) dis-
tribution can be used for the generation of the “origin” of the observed value of
the fuzzy random variable from among the set of (predefined or randomly gener-
ated) values {x1, . . . , xm}. We have called this distribution the random Dirichlet
(RD).

4 Properties of Probability Distributions Representing
Fuzzy Random Variables – Results of Experiments

From the discussion presented in Section 2 we know that a fuzzy random obser-
vation z̃ can be represented as the sum of the unobserved crisp random “origin”
y and a fuzzy number x̃ that represents our lack of knowledge about the “origin”.
In Monte Carlo experiments we can simulate “origins” from a given probabil-
ity distribution. Then, we can use a certain predefined random mechanism for
the generation of the membership function μ(x) of x̃. Thus, the simulated fuzzy
observation is a fuzzy number z̃ = y + x̃.

When we need to compare the approach based on random fuzzy numbers with
a classical approach based on crisp random numbers we should simulate crisp
random numbers that are compatible with our fuzzy observations. In this sec-
tion we present the results of simulation experiments that have been performed
in order to investigate the differences between different methods of the sim-
ulation of random variables compatible with given fuzzy observations. In this
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paper we describe only the results of experiments in which we assumed that
the observed fuzzy numbers are described by triangular membership functions
symmetric around zero with the randomly generated left and right spreads L
and R. Moreover, we assumed that both are described by the same probability
distribution characterized by its expected value w and a coefficient of variation v.

In our experiments we have considered four types of probability distributions
compatible with the given fuzzy observation: triangular, left(right) concentrated,
and random Dirichlet. Because the spreads L and R have been simulated from
the same distribution the average behavior of the LC and RC distributions was
the same. Therefore, we present here only the results for the RC distribution.
In the experiments we generated samples of n random fuzzy variables X̃, Then,
for each generated sample item we generated its “origin” from its compatible
probability distribution. In the next step we calculated the sample average of
the generated “origins”. The procedure has been repeated 100 000 times in order
to evaluate the properties of the simulated distributions of sample averages, such
as the expected value and the standard deviation.

In the first group of simulation experiments we investigated the dependence of
the expected value of the RC (LC) distribution on the number of discretization
points m when the triangular membership functions were generated from differ-
ent probability distributions. The convergence to the limiting values defined by
Proposition 3 (or 2) was rather slow. For example, when the spreads were gen-
erated from the uniform distribution defined on the interval (0, 4) the expected
value for the RC distribution for m = 500 was equal to 1, 88. Note however, that
according to Proposition 3 for m → ∞ this expected value should be equal to
2, i.e. to the expected length of the right spread. The results obtained in sim-
ilar experiments have shown that for a realistic discretization of the possibility
distribution described by a fuzzy number the observed average values of the left
and right concentrated distributions are not so far from their theoretical, but
rather improbable, values.

The important question may arise about the difference between the random
variables generated from the triangular (Tr) distribution and the random vari-
ables generated with the usage of the proposed random Dirichlet (RD) distri-
bution. Because of the way the triangular membership functions are generated
(maximum at zero, the same distribution of the both, left and right, spreads) the
expected value of the sample average for this distribution must be equal to zero.
However, in the case of the random Dirichlet distribution the similar behavior
of the sample average is somewhat unexpected. Only in the case of small values
of m the estimated average is slightly different than zero (e.g. for m = 10 it is
equal to −0.046 while σ is equal to 0.265). The situation is different when we
consider the standard deviation of x̄.

In all considered cases the variability of sample means generated from the ran-
dom Dirichlet distribution was greater than the similar variability in the case
of the triangular distribution. This difference becomes significant for moderate
and large values of m (e.g. larger than 200). This means that the random Dirich-
let distribution is less “informative”, and represents fuzziness in a better way.
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Moreover, for the large values of m the standard deviation of x̄ practically does
not depend upon the value of this parameter. Therefore, the maximal variabil-
ity of the generated crisp observations that are compatible with the given fuzzy
number can be obtained even for a moderate number of discretization points.
This property tells us that in real experiments the value of m need not be too
large, and thus, simulation experiments need not be time consuming. One should
also remember that in practice the variability of the distribution compatible with
fuzzy observations is equal to the sum of the variability of an unobserved “origin”
and the variability of the distribution representing observed fuzziness. When the
former is much larger than the latter the difference between the triangular and
the random Dirichlet distributions may be neglected.

5 Conclusions

The widely used methods of the generation of fuzzy random variables are fully
compatible with the Kwakernaak-Kruse definition of the fuzzy random variable.
The concept of the probability distribution compatible with a fuzzy observation
introduced in this paper provides a simple methodology for the comparison of
classical (non-fuzzy) and fuzzy approaches for dealing with imprecise data. In
the classical approach the lack of knowledge is modeled by a predefined and
difficult to identify probability distribution. When the fuzzy approach is used
this lack of knowledge may be modeled by several probability distributions that
are compatible, in the sense introduced in the paper, with imprecise observa-
tions. Therefore, this approach provides more flexibility in the description of
imprecisely observed random phenomena.
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