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Abstract. This paper means an introduction to analyze whether the
choice of the shape for fuzzy data in their statistical analysis can or can-
not affect the conclusions of such an analysis. More concretely, samples of
fuzzy data are simulated in accordance with different assumptions (dis-
tributions) concerning four relevant points (namely, those determining
their core and support), and later, by preserving core and support, the
‘arms’ are changed by considering trapezoidal, Π-curves, and some LR
fuzzy numbers. For the simulations obtained with each of the considered
shapes, several characteristics have been estimated: Aumann-type mean,
1-norm and wabl/ldev/rdev medians and Fréchet’s variance. A compar-
ative analysis with the bias, mean squared distance and variance of the
estimates is finally included.

Keywords: fuzzy data, estimation, statistical measures, sensitivity
analysis.

1 Introduction

Along the last years a distance-based methodology has been developed to analyze
fuzzy number-valued data from a statistical perspective (see Blanco-Fernández
et al. [2] for a recent review). The methodology assumes that data are generated
from random elements taking on fuzzy numbers values (the so-called random
fuzzy numbers or -one dimensional- fuzzy random variables in Puri and Ralescu’s
sense [10]).

Almost all the already developed methods refer to the estimation or to the
hypothesis testing about some summary measures of the distributions of the
random elements producing fuzzy-valued data. These methods are mostly the-
oretically supported, but empirical studies have been also conducted either to
corroborate some of their generally stated properties or as an alternative when
formal general results or conclusions cannot be stated.
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Most of these empirical developments have been based on simulations from
random mechanisms leading to trapezoidal fuzzy number values. This assump-
tion is often considered in practice to ease both the drawing and the comput-
ing processes (see, as a recent example the studies in De la Rosa de Sáa et
al. [4]) although this is not at all mandatory from a formal viewpoint. Actually,
Pedrycz [9], Grzegorzewski [6], [7], Grzegorzewski and Pasternak-Winiarska [8],
Ban et al. [1], and others, have provided with different arguments to employ tri-
angular or trapezoidal fuzzy numbers or approximations preserving ambiguity,
expected interval, and so on.

An open problem that has been often commented in the papers related to
the aforementioned distance-based methodology is that of discussing whether or
not the shape of the fuzzy data influences the statistical conclusions. Since fuzzy
data are essentially subjective in this respect, it is convenient to know whether
this subjectivity can importantly affect the outputs from the methods.

This paper aims to analyze such a possible influence in which concerns the es-
timation of some summary measures, namely, three location ones (Aumann-type
mean, and two L1-type medians), and the Fréchet variance of the fuzzy dataset.
For this purpose, simulations have been carried out from random mechanisms
generating different types of fuzzy values, but data of different type sharing the
core (i.e., the 1-level) and the closure of the support (0-level).

2 The Simulation Procedures

To analyze how sensitive the considered summary measures are w.r.t. changes in
shape, the simulations we have carried out refer to the four key points character-
izing the involved fuzzy numbers (more concretely, those determining their core
and support). Six different shapes (T1 to T6, see Figure 1) based on the same
four-tuple are separately employed. It is known that for any fuzzy number A
there exist four numbers a1, a2, a3, a4 ∈ R and two functions lA, rA : R → [0, 1],
where lA is nondecreasing and rA is nonincreasing, such that we can describe A
with its membership function in the following manner,

A(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a1

lA(x) if a1 ≤ x < a2

1 if a2 ≤ x ≤ a3

rA(x) if a3 < x ≤ a4

0 if a4 < x.

The corresponding fuzzy numbers have been obtained by using different lA
and rA functions: linear functions in T1 (trapezoidal fuzzy numbers), quadratic
functions with T2 (Π-curves, see, for instance, [3]) and shape functions handling
parametric monotonic Hermite-type interpolation in T3-T4 (LR fuzzy numbers
using (2,2)-rational splines) and T5-T6 (LR fuzzy numbers using mixed expo-
nential splines). For more details about the considered LR fuzzy numbers see,
for instance, [13].
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Fig. 1. Six types of fuzzy numbers sharing core and support and differing in shape. On
the left, trapezoidal (top) and Π-curve (bottom), along with four different LR fuzzy
numbers on the middle and the right

For each of these six shapes, some simulations studies have been conducted,
generating the corresponding fuzzy numbers in two different ways:

Step 1. A sample of fuzzy numbers of the given shape has been obtained by
simulating from
• four real-valued random variables Xi (i = 1, 2, 3, 4), defining a random

fuzzy number X in Puri and Ralescu’s sense, namely, X1 = (inf X1 +
supX1)/2, X2 = (supX1 − inf X1)/2, X3 = inf X1 − inf X0, X4 =
supX0 − supX1 (whence inf X0 = X1 − X2 − X3, inf X1 = X1 − X2,
supX1 = X1 +X2, supX0 = X1 +X2 +X4);

• In the FIRST STUDY (similar to some ones considered by Sinova et
al., see [11], [12]), the sample size is n = 100 and two cases related to
these four random variables Xi have been considered: one in which Xi

are independent (CASE 1) and another one in which they are dependent
(CASE 2). More specifically, CASE 1 assumes that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2

1, all of them being independent
whereas CASE 2 assumes that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2

1 + 1)2 + 0.1 · χ2
1, where χ2

1 is
supposed to be independent of X1, and the three involved χ2

1 being
independent.

• In the SECOND STUDY (which follows the ideas by De la Rosa de Sáa
et al. [4] in developing comparative studies in connection with question-
naires based on the fuzzy rating scale, using the referential [0,10]), the
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simulation strategy has mimicked the human behavior by considering
a finite mixture of three different procedures. Concretely, 100000 fuzzy
values have been generated in the following way:
◦ 5% of the data have been obtained by first considering a simula-

tion from a simple random sample of size 4 (X1, X2, X3, X4) from
a beta population X ∼ β(1, 1), later scaling it in [0,10] and finally
considering the ordered sample (X(1), X(2), X(3), X(4)).

◦ 35% of the data have been obtained considering a simulation of four
random variables Xi as follows:

X1 ∼ β(1, 1),
X2 ∼ Uniform

[
0,min{1/10, X1, 1−X1}

]
,

X3 ∼ Uniform
[
0,min{1/5, X1 −X2}

]
,

X4 ∼ Uniform
[
0,min{1/5, 1−X1 −X2}

]
;

◦ 60% of the data have been obtained considering a simulation of four
random variables Xi as follows:

X1 ∼ β(1, 1),

X2 ∼
⎧
⎨

⎩

Exp(200) if X1 ∈ [0.25, 0.75]
Exp(100 + 4X1) if X1 < 0.25
Exp(500− 4X1) otherwise

X3 ∼
{
γ(4, 100) if X1 −X2 ≥ 0.25
γ(4, 100 + 4X1) otherwise

X4 ∼
{
γ(4, 100) if 1−X1 −X2 ≤ 0.75
γ(4, 500− 4X1) otherwise.

Step 2. N = 1000 replications of Step 1 in the first study have been consid-
ered and the 100000 fuzzy values from the second study have been divided
randomly (and without replacement) into 1000 samples of size n = 100. So
in both studies, there are 1000 available samples of size n = 100.

Step 3. The population summary measures have been approximated on the
basis of 35.000 replications.

Step 4. The estimates have been complemented with the average distance-
based bias along the 1000 samples, and some other associated mean errors.

Distances have been computed by considering three different metrics: the L2

metric ρ2, the L1 metric ρ1 (see Diamond and Kloeden [5]) and the L1 metric
D1 (a particular case of that introduced by Sinova et al. [11]), where for fuzzy
numbers Ũ , Ṽ they are given by

ρ2(Ũ , Ṽ ) =

√
1

2

∫

[0,1]

[
(inf Ũα − inf Ṽα)2 + (sup Ũα − sup Ṽα)2

]
dα,

ρ1(Ũ , Ṽ ) =
1

2

∫

[0,1]

[
| inf Ũα − inf Ṽα|+ | sup Ũα − sup Ṽα|

]
dα,

D1(Ũ , Ṽ ) = |wabl(Ũ)− wabl(Ũ)|
+
1

2

∫

[0,1]

[
|ldev Ũα − ldev Ṽα|+ |rdev Ũα − rdev Ṽα|

]
dα,

with wabl(Ũ) =
∫

[0,1]
(inf Ũα + sup Ũα) dα/2, ldev Ũα = wabl(Ũ) − inf Ũα,

rdev Ũα = sup Ũα − wabl(Ũ).
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The outputs for this first simulation study have been collected in Table 1
for the mean errors in estimating the summary measures and in Figure 2 and
Table 2 for their estimates.

Table 1. Mean errors in the estimation of some summary measures with the first
simulations (CASES 1 and 2) for the six different types of fuzzy numbers in Figure 1

CASE 1

ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.007 0.008 0.011 0.028 0.028 0.028T1
Variance 0.028 0.035 0.055 0.027 0.036 0.056 0.029 0.038 0.058 0.583 0.583 0.583
MSE 0.028 0.035 0.055 0.028 0.036 0.056 0.029 0.038 0.058 0.584 0.584 0.584

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.007 0.008 0.010 0.028 0.028 0.028T2
Variance 0.028 0.034 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.576 0.576 0.576
MSE 0.028 0.034 0.054 0.027 0.035 0.056 0.029 0.037 0.058 0.576 0.576 0.576

Bias 0.005 0.005 0.005 0.008 0.008 0.008 0.008 0.008 0.011 0.022 0.022 0.022T3
Variance 0.028 0.035 0.055 0.027 0.036 0.056 0.029 0.038 0.059 0.583 0.583 0.583
MSE 0.028 0.035 0.055 0.027 0.036 0.056 0.030 0.038 0.059 0.583 0.583 0.583

Bias 0.004 0.004 0.004 0.007 0.007 0.009 0.008 0.008 0.008 0.030 0.030 0.030T4
Variance 0.027 0.033 0.051 0.026 0.034 0.053 0.026 0.034 0.051 0.562 0.562 0.562
MSE 0.027 0.033 0.051 0.026 0.034 0.053 0.026 0.034 0.051 0.563 0.563 0.563

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.008 0.008 0.010 0.027 0.027 0.027T5
Variance 0.028 0.035 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.574 0.574 0.574
MSE 0.028 0.035 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.575 0.575 0.575

Bias 0.004 0.004 0.004 0.007 0.008 0.009 0.008 0.008 0.009 0.029 0.029 0.029T6
Variance 0.027 0.033 0.051 0.026 0.034 0.052 0.026 0.033 0.051 0.558 0.558 0.558
MSE 0.027 0.033 0.051 0.026 0.034 0.052 0.026 0.034 0.051 0.559 0.559 0.559

CASE 2
ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T1
Variance 0.011 0.013 0.020 0.005 0.007 0.012 0.021 0.026 0.041 0.023 0.023 0.023
MSE 0.011 0.013 0.020 0.005 0.007 0.012 0.021 0.026 0.041 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T2
Variance 0.011 0.013 0.020 0.005 0.006 0.011 0.021 0.026 0.041 0.023 0.023 0.023
MSE 0.011 0.013 0.020 0.005 0.006 0.011 0.021 0.026 0.041 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.001 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T3
Variance 0.011 0.013 0.019 0.006 0.008 0.014 0.021 0.025 0.040 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.006 0.008 0.014 0.021 0.025 0.040 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.003 0.004 0.004 0.005 0.004 0.004 0.004T4
Variance 0.011 0.013 0.019 0.007 0.009 0.015 0.020 0.024 0.038 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.007 0.009 0.015 0.020 0.024 0.038 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.004 0.005 0.006 0.004 0.004 0.004T5
Variance 0.011 0.013 0.019 0.005 0.007 0.012 0.021 0.025 0.040 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.005 0.007 0.012 0.021 0.025 0.040 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.003 0.004 0.004 0.005 0.004 0.004 0.004T6
Variance 0.011 0.012 0.018 0.007 0.009 0.016 0.020 0.024 0.037 0.022 0.022 0.022
MSE 0.011 0.012 0.018 0.007 0.009 0.016 0.020 0.024 0.037 0.023 0.023 0.023

On the basis of the outputs in Table 1 one can empirically conclude to some
extent that the shape of the considered data scarcely affects the bias, variance
and mean squared error of the summary measures estimates.
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Table 2. Monte Carlo estimate of the Fréchet ρ2-variance in the first simulations

Variance T1 T2 T3 T4 T5 T6

CASE 1 3.629 3.547 3.587 3.402 3.565 3.402

CASE 2 1.268 1.262 1.254 1.223 1.258 1.219

Fig. 2. Monte Carlo estimates of the (Aumann type) means and ρ1- and D1-medians
in CASE 1 (on the left) and CASE 2 (on the right) of the first simulations
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The same happens for the estimates of the ρ2-Fréchet variance in Table 2. The
estimates of the location measures, graphically displayed in Figure 2, are more
influenced by the shape of the involved fuzzy data. Nevertheless, the location
estimates are indeed closer than the original data.

The outputs for the second simulation study have been collected in Table 3
for the mean errors in estimating the summary measures and in Figure 3 and
Table 4 for their estimates. On the basis of the outputs in Table 3 one can
empirically conclude to some extent that the shape of the considered data does
not strongly affect the bias, variance and mean squared error of the summary
measures estimates.

Table 3. Mean errors in the estimation of the summary measures with the second
simulations for the six different types of fuzzy numbers in Figure 1

ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.002 0.002 0.003 0.009 0.009 0.012 0.005 0.005 0.005 0.016 0.016 0.016T1
Variance 0.083 0.086 0.106 0.220 0.238 0.323 0.213 0.217 0.252 0.523 0.523 0.523
MSE 0.083 0.086 0.106 0.220 0.238 0.323 0.213 0.217 0.252 0.524 0.524 0.524

Bias 0.002 0.002 0.003 0.008 0.009 0.012 0.005 0.005 0.005 0.016 0.016 0.016T2
Variance 0.083 0.085 0.105 0.220 0.237 0.322 0.213 0.217 0.253 0.524 0.524 0.524
MSE 0.083 0.085 0.105 0.221 0.237 0.322 0.213 0.217 0.253 0.525 0.525 0.525

Bias 0.002 0.002 0.002 0.010 0.011 0.013 0.005 0.005 0.006 0.018 0.018 0.018T3
Variance 0.083 0.086 0.105 0.219 0.236 0.317 0.211 0.214 0.248 0.533 0.533 0.533
MSE 0.083 0.086 0.105 0.219 0.236 0.318 0.211 0.214 0.248 0.534 0.534 0.534

Bias 0.002 0.002 0.003 0.007 0.008 0.009 0.002 0.002 0.003 0.016 0.016 0.016T4
Variance 0.084 0.086 0.105 0.218 0.234 0.316 0.219 0.221 0.254 0.537 0.537 0.537
MSE 0.084 0.086 0.105 0.218 0.235 0.316 0.219 0.221 0.254 0.537 0.537 0.537

Bias 0.002 0.002 0.003 0.009 0.009 0.012 0.004 0.004 0.004 0.017 0.017 0.017T5
Variance 0.083 0.086 0.106 0.219 0.236 0.320 0.214 0.217 0.252 0.527 0.527 0.527
MSE 0.083 0.086 0.106 0.219 0.237 0.320 0.214 0.217 0.252 0.527 0.527 0.527

Bias 0.002 0.002 0.003 0.008 0.008 0.009 0.001 0.001 0.002 0.016 0.016 0.016T6
Variance 0.084 0.086 0.105 0.217 0.234 0.315 0.218 0.221 0.253 0.539 0.539 0.539
MSE 0.084 0.086 0.105 0.217 0.234 0.315 0.218 0.221 0.253 0.539 0.539 0.539

Fig. 3. Approximated estimates of the (Aumann type) means and ρ1- and D1-medians
for the second simulations



130 M. Asunción Lubiano et al.

Table 4. Approximated estimate of the Fréchet ρ2-variance in the second simulations

T1 T2 T3 T4 T5 T6

Variance 7.921 7.902 7.950 7.971 7.926 7.983

The same happens for the estimates of the ρ2-Fréchet variance in Table 4,
although the shape difference influences slightly more than for the first study.
The estimates of the location measures, graphically displayed in Figure 3, are
more influenced by the shape of the involved fuzzy data, also slightly more than
for the first simulations. Again, the location estimates are indeed closer than the
original data.

As a clear extension of the study in this paper, it is a must to develop com-
parison concerning the influence on the power of hypothesis testing involving
fuzzy data.
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