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Abstract. The α-trimmed mean, a statistic commonly used in robust-
ness studies, has an intractable small sample distribution. For this rea-
son, an asymptotic normal distribution or a Student t distribution are
commonly used as approximations when the sample size is small. In this
article we obtain an approximation for the small sample distribution of
the α-trimmed mean, based on the von Mises expansion of a functional,
which is valid for the case in which the observations come from a Gaus-
sian Mixture Model.
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1 Introduction

The α-trimmed mean is a very popular robust statistic used for location prob-
lems. If we trim the 100 · α% of the smallest and the 100 · α% of the largest
ordered sample data X(i), the symmetrically α-trimmed mean is defined by

Xα =
1

n− 2k

(
X(k+1) + ...+X(n−k)

)

where k = [nα] if [ . ] stands for the integer part.
Its exact distribution is intractable (see for instance [13] pp. 31). Its large-

sample approximation is asymptotically normal under some conditions although
more complicated than for other L-estimates; see for instance [12] pp. 361, [13]
pp. 31, [1] or [15].

When the sample size is small and the data are normally distributed, a Stu-
dent’s t distribution is used as an approximation for the standardized trimmed
mean; see for instance [14] pp. 105 or pp. 156-157, or [16]. In fact, if it is

Wi =

⎧
⎨

⎩

X(k+1) , Xi ≤ X(k+1)

Xi , X(k+1) < Xi ≤ X(n−k)

X(n−k) , Xi ≥ X(n−k)
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and xW
α is the α-Winsorized mean

xW
α =

1

n

n∑

i=1

Wi

being also the α-Winsorized quasi-variance

S2
W =

1

n− 1

n∑

i=1

(
Wi − xW

α

)2

then it is

Xα − μα√
V̂ (Xα)

=
(1− 2α)

√
n (Xα − μα)

SW
≈ tn−2k−1

where

μα =
1

1− 2α

∫ 1−α

α

F−1(p) dp =
1

1− 2α

∫ F−1(1−α)

F−1(α)

y dF (y)

is the functional associated with the trimmed mean Xα.
Nevertheless, if the data are supposed to come from a normal distribution

(i.e., no contamination is assumed) the trimmed mean is not really needed.
There are some Edgeworth expansions used as approximations, [10], but it

is well known that these approximations are accurate only in the center of the
distribution and not in the tails where they can even be negative.

The only accurate approximations for the distribution ofXα, when the sample
size is small and the distribution not normal, are the saddlepoint approximations
given in [11] or [2], although these are almost impossible to apply and the ele-
ments involved in them, difficult to interpret.

In some articles, [3], [4], [5], [6], [7], [8] and [9], a linear approximation, based
on a vonMises expansion plus an iterative procedure, was used to obtain accurate
approximations of some classical statistics when the underlying model is close to
the normal distribution. In these articles a saddlepoint approximation was used
in the computation of the Tail Area Influence Function (TAIF) that appears in
the von Mises expansion. But, in two recent articles, [8] and [9], a new expression
to compute exactly the TAIF was obtained, formula that can be used in the von
Mises expansion instead of the saddlepoint approximation.

We shall use the von Mises expansion in combination with the exact expres-
sion of the TAIF, to obtain an accurate approximation to the small sample
distribution of the trimmed mean when the underlying model is close to the
normal.

2 Definitions and Computations

Although the random variables Xi in the sample (X1, ..., Xn) are independent
and identically distributed (iid), in this section we shall consider statistics
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(e.g., the trimmed mean) for which it could be Tn(X1 + c,X2, ..., Xn) �= Tn(X1,
X2+c, ..., Xn) for a constant c. For this reason, in the following we shall consider
statistics Tn(X1, ..., Xn) based on independent but not necessarily identically dis-
tributed univariate random variables Xi, being Xi ≡ Gi, i = 1, ..., n (X ≡ H
stands for “X is distributed as H”), statistics that, in the case of a hypothe-
sis testing problem, will reject the null hypothesis (usually about a parameter
θ ∈ Θ) for large values of Tn, although the results can easily be extended to
other situations.

Under very general conditions (Section 2 in [17]) we can use the first-order
von Mises expansion (see Corollary 2 in [9]) to compute the tail probability
functional under a model F = (F1, ..., Fn) as

PF{Tn(X1, X2, ..., Xn) > t} = PF1,...,Fn{Tn(X1, X2, ..., Xn) > t} =

= PG{Tn(X1, X2, ..., Xn) > t}+
n∑

i=1

∫

X
TAIFi (x; t;Tn,G) dFi(x) +Rem

where TAIFi is the i-th Partial Tail Area Influence Function of Tn at G =
(G1, ..., Gn) with relation to Gi, i = 1, ..., n, defined in [9] by

TAIFi(x; t;Tn,G) =
∂

∂ε
PGε,x

i
{Tn(X1, ..., Xn) > t}

∣∣
∣
∣
ε=0

in those x ∈ X where the right hand side exists, being Gε,x
i = (1 − ε)Gi +

ε δx , i = 1, ..., n, and δx the probability measure which assigns mass 1 at the
point x ∈ X ⊂ R .

In the computation of the TAIFi only Gi is contaminated; the other distribu-
tions remain fixed, i = 1, ..., n.

Here we assume this situation and also that the Xi’s are univariate although
an extension to multivariate case would be straightforward (see [9]).

The remainder term

Rem =
1

2

∫ ∫
T

(2)
GF

(x1, x2) d[F(x1)−G(x1)] d[F(x2)−G(x2)]

is small if distributions F and G are close. (T
(2)
GF

is the second derivative of the
tail probability functional at the mixture distribution GF = (1− λ)G+ λF, for
some λ ∈ [0, 1].)

Hence, if F and G are close enough, we can write, using the exact expression
for the TAIFi obtained in [9]

PF{Tn(X1, X2, ...,Xn) > t} � PG{Tn(X1, X2, ...,Xn) > t} +
n∑

i=1

∫

X
TAIFi (x; t;Tn,G) dFi(x)

(1)

= (1− n)PG{Tn(X1, X2, ..., Xn) > t}+
∫
X
PG2,...,Gn{Tn(x,X2, ..., Xn) > t}dF1(x)+
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+

∫
X
PG1,G3,...,Gn{Tn(X1, x, ..., Xn) > t} dF2(x) + · · ·

+

∫

X
PG1,...Gn−1{Tn(X1, ..., Xn−1, x) > t} dFn(x) (2)

that allows an approximation of the tail probability PF{Tn > t} under mod-
els (F1, ..., Fn), knowing the value of this tail probability under near models
(G1, ..., Gn).

In order to value the influence of outliers, we shall consider as model F =
(1 − ε)G + εGs where Gs is a shift version of G and ε ∈ [0, 0.5] a parameter
which measures the contamination.

Namely, if G are location families with a common location parameter θ0, we
shall suppose that Gs have a common location parameter θ > θ0.

In this case, we shall have, for instance, in the last integral (2), if t = tn is
a possible value of Tn and ϕ the random function (test or critical function in a
hypothesis testing problem)

ϕ(x1, ..., xn) =

⎧
⎨

⎩

1 if Tn(x1, x2, ..., xn) > tn

0 if Tn(x1, x2, ..., xn) ≤ tn

that
∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dFn(x)

= (1− ε)

∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dGn;θ0(x)

+ε

∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dGn;θ(x)

= (1− ε)

∫
X

[∫
X
. . .

∫
X
ϕ(x1, ..., xn−1, x) dG1;θ0(x1) · · · dGn−1;θ0 (xn−1)

]
dGn;θ0(x)

+ε

∫
X

[∫
X
. . .

∫
X
ϕ(x1, ..., xn−1, x) dG1;θ0(x1) · · · dGn−1;θ0(xn−1)

]
dGn;θ(x)

= (1− ε)PGθ0
{Tn(X1, ..., Xn) > tn}+ εPGθ0

{Tn(X1, ..., Xn + (θ − θ0)) > tn}

moving the shift parameter in the last integral with a simple change of variable.
Hence, if F = (1− ε)Gθ0 + εGθ

PF{Tn(X1, X2, ...,Xn) > tn} � (1 − ε n)PGθ0
{Tn(X1, X2, ...,Xn) > tn}+

+ε
(
PGθ0

{Tn(X1 + (θ − θ0), X2, ...,Xn) > tn} + PGθ0
{Tn(X1, X2 + (θ − θ0), ...,Xn) > tn}
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+ · · ·+ PGθ0
{Tn(X1, X2, ..., Xn + (θ − θ0)) > tn}

)

= (1 − ε n)PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, x2, ..., xn)}+ ε

(
PGθ0

{Tn(X1, X2, ..., Xn) > tn(x1 − (θ − θ0), x2, ..., xn)}

+PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, x2 − (θ − θ0), ..., xn)}

+ · · ·+ PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, x2, ..., xn − (θ − θ0))}

)
.

3 Iterative Procedure

The previous approximation is accurate if F = (1 − ε)Gθ0 + εGθ is close to
Gθ0 , i.e., if ε is small and/or θ is close to θ0. Nevertheless, in some situa-
tions, ε is not small or θ is far from θ0. In these cases we can use an alterna-
tive iterative procedure considering intermediate distributions between Gθ0 and
F = G(1−ε)θ0+εθ; namely, distributions Fj = (F1;θj , ..., Fn;θj ) = (F1j , ..., Fnj) =
Gθ0+(θ−θ0)εj/(k+1), j = 1, ..., k + 1, where F0 = Gθ0 = (G1;θ0 , ..., Gn;θ0) and
Fk+1 = F = Gθ0+(θ−θ0)ε. With k iterations, equation (1) now becomes

PF{Tn(X1, X2, ..., Xn) > tn} 
 PGθ0
{Tn(X1, X2, ..., Xn) > tn}+

+

k+1∑

j=1

∫

X

n∑

i=1

TAIFi (x; tn;Tn,Fj−1) dFij(x)

Moreover, since

TAIFi (x; tn;Tn,Fj−1) =

= P(F1,j−1,...,Fi−1,j−1,Fi+1,j−1,...,Fn,j−1) {Tn(X1, ..., Xi−1, x,Xi+1, ..., Xn) > tn}

−PFj−1 {Tn(X1, ..., Xn) > tn}
if we consider again a location family as underlying distribution, i.e., that Fj =
(F1;θj , ..., Fn;θj ) = (F1j , ..., Fnj) is a location family with location parameter
θj = θ0 + εj(θ − θ0)/(k + 1) and the random function ϕ, we can move again
the shift parameter in the distribution to the random variable with a change of
variable, obtaining

PF{Tn(X1, X2, ..., Xn) > tn} � PGθ0
{Tn(X1, X2, ..., Xn) > tn}+
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+
k+1∑
j=1

[PG0 {Tn(X1 + c2j , X2 + c1j , ..., Xn + c1j) > tn}

+PG0 {Tn(X1 + c1j , X2 + c2j , X3 + c1j , ..., Xn + c1j) > tn}

+...+ PG0 {Tn(X1 + c1j , ..., Xn−1 + c1j , Xn + c2j) > tn}

−nPG0 {Tn(X1 + c1j , ..., Xn + c1j) > tn}]

where c1j = ε(j − 1)(θ − θ0)/(k + 1) and c2j = εj(θ − θ0)/(k + 1). Hence,

PF{Tn(X1, X2, ..., Xn) > tn} � PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, ..., xn)}

+

k+1∑
j=1

[PG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c2j , x2 − c1j , ..., xn − c1j)}

+PG0 {Tn(X1, X2, ..., Xn) > tn(X1 − c1j , x2 − c2j , ..., xn − c1j)}

+...+ PG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c1j , ..., , xn − c2j)}

−nPG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c1j , ..., xn − c1j)}].
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Fig. 1. Simulated (solid line) and von Mises approximation given by (3) (dotted) dis-
tributions of Tn with a N((1− ε)θ0 + εθ, 1) model
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Fig. 2. Simulated (solid line) and von Mises approximation given by (3) (dotted) dis-
tributions of Tn with a (1− ε)N(θ0, 1) + εN(θ, 1) model

If we considere now the standardized trimmed mean

Tn =
Xα − μα√
V̂ (Xα)

=
(1− 2α)

√
n (Xα − μα)

SW
≈ tn−2k−1

and, asG0, standard normal distributions, for which we know that Tn ≈ tn−2k−1

we have

PG(1−ε)θ0+εθ
{Tn(X1, X2, ..., Xn) > tn} � P{W > tn(x1, ..., xn)}

+
k+1∑
j=1

[P{W > tn(x1−c2j , x2−c1j , ..., xn−c1j)}+P{W >tn(x1−c1j , x2−c2j , ..., xn−c1j)}

+ ...+ P{W > tn(x1 − c1j , ..., xn − c2j)} − nP{W > tn(x1 − c1j , ..., xn − c1j)}] (3)

where W is a random variable with a Student’s t distribution with n − 2k −
1 degrees of freedom. Hence, with this approximation, we transfer computa-
tions under the Gaussian Mixture Model F to computations of a Student’s t
distribution.

4 Simulations

If we consider a N((1 − ε)θ0 + εθ, 1) model as distribution G in the von Mises
approximation (3), we observe in Fig. 1 that this approximation (dotted) is
accurate considering n = 10, θ0 = 0, ε = 0.05, α = 0.1, θ = 1, only with k = 20
iterations and a simulation of B = 70 replications in the computations of the
simulated distribution of Tn.
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In Fig. 2 we see that, even in the case that the underlying model is a
(1 − ε)N(θ0, 1) + εN(θ, 1), the approximation is also accurate with the same
values in the parameters as before.
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