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Abstract. The question of probability of a system of fuzzy equations
solvability in a max–t-norm fuzzy algebra for several t-norms and 2 × 2
matrices is considered. We derive that the probability of solving such
a system is very low, namely 1

10
for Gödel norm, 11

60
for �Lukasiewicz

norm, 5
36

for product norm and zero for drastic norm. These results
are surprising compared to the case of a finite vector space, where the
probability is one.
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1 Introduction

Since the pioneer work [1] of fuzzy relation equations, many results on finding
minimal and maximal elements and solvability of such systems have been devel-
oped (e.g. [2,3,4,5,6,7]). However, to the author’s knowledge, there is no result
describing something like probability of solving such a system. By probability
is understood a situation, when one picks up uniformly randomly a matrix A
together with a right-hand side b with coefficients from [0; 1], then how often will
the composed system A⊗ x = b have a solution with respect to x?

This paper aims to make a first step in answering such kind of questions. To do
this, we have restricted ourselves only to 2 × 2 matrices and four fuzzy algebras
with t-norms minimum, �Lukasiewicz, product and drastic. The derivation of
conditional probabilities in these cases is presented. However, generalization to
higher dimensions is the task of our future work.

After introduction, we continue by definitions of t-norms, fuzzy algebras and
formulating rigorously the question of our concern. Then we answer the question
in the case of finite vector spaces to have a classical result to which the results of
fuzzy cases can be compared. The main section starts with results common for
all t-norms. Then the respective cases are studied. The last section summarizes
obtained results.

� This work was supported by grant SGS13/PřF/2014 of the University of Ostrava.
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2 Preliminaries

In this section, basic definitions, problem formulation and result for classical
case are given.

Definition 1. A mapping T : [0; 1] × [0; 1] �→ [0; 1] is called a t-norm, if the
following conditions are satisfied for all a, b, c ∈ [0; 1]:

1. aT(bT c) = (aT b) T c (associativity),
2. aT b = bTa (commutativity),
3. if a ≤ b, then aT c ≤ bT c (monotonicity),
4. aT 1 = a (1 as neutral element).

From all continuous t-norms (w.r.t. usual definition of continuity of a map-
ping), the following three play a prominent role, since every other continuous
t-norm is their ordinal sum [9]:

aTG b := min{a, b}, aT�L b := max{0, a + b− 1}, aTΠ b := ab.

The fourth one studied in this paper is the drastic norm:

aTD b =

{
0 if max(a, b) < 1,

min(a, b) otherwise,

which is not continuous, but plays an important theoretical role, since it is the
smallest possible t-norm.

Definition 2. Given the unit interval [0; 1] together with a t-norm T, by max–
t-norm algebra we understand an algebra A = ([0; 1],max,T, 0, 1) of a type
(2, 2, 0, 0).

Fuzzy algebras are usually viewed as complete residuated lattices (as e.g. in
[8]). The chosen definition 2 is fully sufficient in what follows, since only the
properties of t-norms are utilized.

We denote ⊕ := max and ⊗ := T. The respective t-norm will be clear from
the context. In notation, multiplication ⊗ is given precedence over addition ⊕,
i.e., a ⊗ b ⊕ c means the same as (a ⊗ b) ⊕ c.

Note, that ([0; 1],⊕, 0) and ([0; 1],⊗, 1) constitute commutative monoids and
that T is distributive w.r.t. max: a⊗ b⊕ a⊗ c = a⊗ (b⊕ c).

We extend the algebra A to a vector space-like structure An by formally re-
placing operations in standard matrix multiplication (matrix addition and mul-
tiplication by elements from a ring) by our operations ⊕ and ⊗. For example,(

a11 a12

a21 a22

)
⊗
(
x1

x2

)
=

(
a11 ⊗ x1 ⊕ a12 ⊗ x2

a21 ⊗ x1 ⊕ a22 ⊗ x2

)
.

Our question can be formulated as follows: When randomly picking up a square
matrix A ∈ An×n and a column b ∈ An, what is the probability, that the equation

A⊗ x = b

is solvable in x ∈ An?
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By probability is meant the ratio of the volume of all solvable pairs (A, b) to
the volume of all pairs. Answers for n = 2 and four t-norms are given in section
3, but before proceeding to fuzzy algebras, we answer our question for the case
of finite vector spaces over a field R:

– for a regular matrix every system of linear equations (SLE) is solvable,
– determinant of such a matrix is nonzero,
– non-regular matrices satisfy equation detA = 0,
– the set of all non-regular matrices thus compose a set of a zero measure in

R
n2

,
– then the set of pairs (A, b) of SLE with A non-regular is of a zero measure

in R
n2+n, too.

Thence, in this case, the answer is PR = 1.

3 max–t-norm Algebras

We restrict ourselves to 2 × 2 dimensional squares A

A =

(
a11 a12

a21 a22

)
, (1)

from A2×2. Notation (
�1 �2

�3 �4

)
�5

represents the set of all such pairs (A, b) for which

a11�1b1, a12�2b1, a21�3b2, a22�4b2 and finally b1�5b2,

where b = (b1, b2)T is the right-hand side and �i ∈ {<,>} for i = 1, 2, . . .5.
We consider only strict inequalities, since coefficients are uniformly distributed
and the probability of obtaining just one exact value is zero. When �5 is omitted,
there is no relation between b1 and b2.

The following cases are either unsolvable due to the monotonicity of t-norms,
i.e., when a, b ∈ [0; 1], a < b then a ⊗ x < b for all x ∈ [0; 1], or their solvable
parts have a zero measure:(

< <
< <

)
, V = 1

9 ,(
> <
> <

)
,

(
< >
< >

)
, V = 1

36 ,(
> >
< <

)
,

(
< <
> >

)
, V = 1

9 ,(
> <
< <

)
>

,

(
< >
< <

)
>

,

(
< <
> <

)
<

,

(
< <
< >

)
<

, V = 1
90 ,(

> <
< <

)
<

,

(
< >
< <

)
<

,

(
< <
> <

)
>

,

(
< <
< >

)
>

, V = 4
90 .
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V denotes the volume of such a set, e.g.

V

((
< <
> <

)
<

)
=

∫ 1

0

db2

∫ b2

0

db1

∫ b1

0

da11

∫ b1

0

da12

∫ 1

b2

da21

∫ b2

0

da22 =

=

∫ 1

0

db2

∫ b2

0

db1 b2
1 b2 (1 − b2) =

1

90
.

We see, that the volume of unsolvable pairs must be strictly greater than

1

9
+ 2 · 1

36
+ 2 · 1

9
+ 4 · 1

90
+ 4 · 4

90
=

11

18
,

i.e., more than half of the whole volume of all pairs. On the other hand, the two
following sets are always solvable for continuous t-norms (excluding thus also
drastic norm): (

> <
< >

)
,

(
< >
> <

)
, V =

1

36
. (2)

Thence, for continuous t-norms, the probability of system solvability with two
equations and two variables is at least 1

18 . Solvability of other sets of pairs,
namely

I :

(
> >
> >

)
, V = 1

9 ,

II :

(
< >
> >

)
>

,

(
> <
> >

)
>

,

(
> >
< >

)
<

,

(
> >
> <

)
<

, V = 4
90 ,

III :

(
< >
> >

)
<

,

(
> <
> >

)
<

,

(
> >
< >

)
>

,

(
> >
> <

)
>

, V = 1
90 ,

substantially depends on the chosen t-norm, as is shown in next four subsections.

3.1 max−TG Algebra

Sets of type I and II are not solvable in max−TG algebra, since in the first case
one of bi’s is strictly greater than other, w.l.o.g. let b1 > b2, then solving this one
x1 = b1 leads to min(x1, a21) > b2 in the second equation. Similarly for x2 = b1.
Case II differs only in that there is just one possibility for choosing xi such that
the equation with greater right-hand side is solved. Consider for example

(A, b) ∈
(
> <
> >

)
>

,

then clearly x1 = b1 in order to solve the first equation. But then min(a21, x1) >
b2 and the second equation can not hold.

Systems from sets III are solvable; for instance for a pair (A, b) from

(A, b) ∈
(
> >
< >

)
>

take x = (b1, b2). The first equation is not corrupted, because b2 < b1, and
neither is the second, because a21 < b2 < b1 and thus min(a21, x1) = a21 < b2.

The overall probability is PG =
1

18
+ 4 · 1

90
=

1

10
, where 1

18 comes from (2).
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3.2 max−T�L Algebra

In this algebra even systems from I and II may be solvable. Assume for example,
that we would like to solve a system from I in variables a11 and a22, i.e.,

x1 = 1 + b1 − a11, x2 = 1 + b2 − a22,

where x1, x2 ≤ 1 because aii > bi for i = 1, 2. Following conditions ensure, that
neither of the equations will be corrupted

a21 + b1 − a11 ≤ b2, a12 + b2 − a22 ≤ b1. (3)

It is now convenient to divide case I into two parts b1 > b2 and b2 > b1. For the
first part, the conditions (3) can be rewritten to the form

a21 ≤ a11 + b2 − b1, a22 ≥ a12 + b2 − b1

and 1 ≥ a11 + b2 − b1 ≥ b2 holds since 1 ≥ a11 + b2 − b1︸ ︷︷ ︸
≤0

and a11 − b1︸ ︷︷ ︸
≥0

+b2 ≥ b2,

similarly for a22. Then the volume of solvable part can be computed as

V

((
(>) >
> (>)

)
>

)
=

=

∫ 1

0

db1

∫ b1

0

db2

∫ 1

b1

da11

∫ a11+b2−b1

b2

da21

∫ 1

b1

da12

∫ 1

a12+b2−b1

da22 =

=
1

80
.

Parenthesis indicate elements solving corresponding equation. Similarly can be
dealt with other cases. The volumes of solvable parts of respective cases are

I’ :

(
(>) >
> (>)

)
>

,

(
> (>)

(>) >

)
>

,

(
(>) >
> (>)

)
<

,

(
> (>)

(>) >

)
<

, V =
1

80
,

and V (II) = 1
80 , V (III) = 1

144 . The probability is then

P�L =
1

18
+ 4 · 1

80
+ 4 · 1

80
+ 4 · 1

144
=

11

60
.

3.3 max−TΠ Algebra

This algebra has very similar properties as the previous one, just replace sub-
traction by division and addition by multiplication, e.g. a11 + b2 − b1 now reads

a11
b2

b1
. Then the volumes of solvable parts are
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V

((
(>) >
> (>)

)
>

)
=

=

∫ 1

0

db1

∫ b1

0

db2

∫ 1

b1

da11

∫ a11
b2
b1

b2

da21

∫ 1

b1

da12

∫ 1

a12
b2
b1

da22 =

=
1

144
,

V (II) =
1

180
and V (III) =

1

120
. The probability in this case is

PΠ =
1

18
+ 4 · 1

144
+ 4 · 1

180
+ 4 · 1

120
=

5

36
.

3.4 max−TD Algebra

In this algebra the probability is zero, because in order to obtain a value bi from
a multiplication A⊗ x, there must be either a number 1 or bi in the matrix A.
However, the probability that this happens is zero.

4 Conclusions

In our contribution, we tried to make a first step in understanding what systems
of linear equations (SLE) in classical vector spaces and fuzzy relation equations
in fuzzy algebras have in common. We have shown computing with 2×2 matrices
has completely different properties and from the point of view of solvability has
nothing in common with SLE in vector spaces, since the probability of solvabil-
ity of random pair (A, b) is very low in fuzzy algebras whilst in vector spaces
it is certainly solvable. If we compare ordered t-norms with ordered obtained
probabilities

TD ≤ T�L ≤ TΠ ≤ TG,

PD < PG < PΠ < P�L,
0

180
<

18

180
<

25

180
<

33

180
,

we can conjecture, that for two comparable continuous t-norms the less one
(recall that T1 ≤ T2 if for all a, b ∈ [0; 1] holds that a T1 b ≤ a T2 b) will have
greater probability of solvability.

In our next research, we will aim to answer the question for a general
dimension.
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