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Abstract. The most common way to learn the structure of Bayesian
networks is to use a score function together with an optimization pro-
cess. When no prior knowledge is available over the structure, score func-
tions based on information theory are used to balance the entropy of
the conditional probability tables with network complexity. Clearly, this
complexity has a high impact on the uncertainty about the estimation of
the conditional distributions. However, this complexity is estimated inde-
pendently of the computation of the entropy and thus does not faithfully
handle the uncertainty about the estimation. In this paper we propose
a new entropy function based on a “possibilistic upper entropy” which
relies on the entropy of a possibility distribution that encodes an upper
bound of the estimation of the frequencies. Since the network structure
has a direct effect on the number of pieces of data available for probabil-
ity estimation, the possibilistic upper entropy is of an effective interest
for learning the structure of the network. We also show that possibilistic
upper entropy can be used for obtaining an incremental algorithm for
the online learning of Bayesian network.

1 Introduction

Bayesian networks [8] are compact representations of probabilistic dependencies
over a set of variables. A Bayesian networks (BN) is composed of a directed
acyclic graph (DAG) which encodes the dependency relations, and of tables
which describe the conditional probability distributions. Given a DAG and a set
of complete vectors over variables, the tables can be easily obtained by com-
puting conditional frequencies (which can be refined with a smoothing process).
Thus, given a set of complete vectors over variables, a challenge is to identify the
best structure for the BN. The best structure is theoretically the one in which
the entropy of the conditional probabilities is the lowest. However, adding an
edge (and then a dependency) in the graph always decreases the entropy, but it
also decreases the amount of data used for estimating the conditional probability
distributions. Learning the structure of a BN thus consists in finding the best
trade-off between the global entropy of the BN and the uncertainty around the
estimation of the conditional probabilities. Since the uncertainty is related to
the complexity of the DAG (i.e. the size of the tables), score functions based on
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information theory, such as Akaike information criterion (AIC) or minimum de-
scription length (MDL), have been currently used (other measures based on prior
knowledge over structure have also be proposed in [7], but we do not consider
them in this paper since we assume that we have no prior knowledge). These
score functions balance the entropy values with the complexity of the graph.
Their major limitation is that they consider the computations of entropy and of
structure complexity in an independent way. Thus, it does not reflect the manner
how the information is dispatched in the table. In this paper we propose to use
the upper bound of the frequency estimates for defining a so-called possibilistic
upper entropy (π-up entropy). The approach relies on the building of a possibility
distribution. Quantitative possibility measures can be viewed as upper bounds of
probabilities. Then, a possibility distribution represents a family of probability
distributions [5]. This view was first implicitly suggested in [10] when empha-
sizing the idea that what is probable must be possible. Following this intuition,
a probability-possibility transformation has been proposed [6]. This transforma-
tion associates a probability distribution with the maximally specific (restrictive)
possibility distribution which is such that the possibility of any event is an upper
bound of the corresponding probability. Possibility distributions are then able to
describe epistemic uncertainty and to represent knowledge states such as total
ignorance, partial ignorance, or complete knowledge. In the spirit of [9], we pro-
pose a log-based loss function for possibility distributions. We derive an entropy
function for a possibility distribution associated to a frequency distribution. In
order to obtain the π-up entropy for a frequency distribution, we build a possi-
bility distribution that upper bounds the confidence intervals of the frequency
values (according to the amount of data available and a confidence degree) and
we compute its relative possibilistic entropy. This π-up entropy has a nice be-
havior. For instance, it respects the entropy order for a fixed level of information
and it increases the entropy value for a fixed frequency distribution when the
amount of data decreases. Our π-up entropy shares similar ideas (handling the
uncertainty around the estimation of the probability values) with a proposal by
Abelan et al. [1] for credal sets. Our approach is simpler and easier to compute.
Their entropy function is based on the worst entropy value for the probabilities
in the credal set obtained by the computation of confidence intervals. Thus, in
order to have discriminant values, they have to use very optimistic confidence
intervals (while we compute faithful confidence intervals). Moreover, the compu-
tation of entropy based on credal sets requires the solving of a simplex problem
and would make this approach time consuming.

In this paper, we show that we can directly use π-up entropy as a score
function for learning the structure of Bayesian networks. In addition to the
classical learning approach based on optimization, we propose a very simple
incremental learning method. The paper is organized as follows. First we provide
a short background on possibility distributions and possibility measures and their
use as upper bound of families of probability distributions. Second, we describe
probabilistic entropy and π-up entropy and their properties. Section 4 is devoted
to the presentation of the algorithms for learning the structure of BN’s. In the
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last section, we compare our score function with state of the art ones on 10
benchmark databases, which shows a clear benefit for the approach.

2 Possibility Theory

Possibility theory, introduced in [10], was initially proposed in order to deal with
imprecision and uncertainty due to incomplete information as the one provided
by linguistic statements. This kind of epistemic uncertainty cannot be handled
by a single probability distribution, especially when a priori knowledge about the
nature of the probability distribution is lacking. A possibility distribution π is a
mapping from Ω to [0, 1]. We only consider the case where Ω = {C1, . . . , Cq} is a
discrete universe (of classes in this paper). The value π(x) denotes the possibility
degree of x. For any subset of Ω, the possibility measure is defined as follows :

∀A ∈ 2Ω, Π(A) = max{π(x), x ∈ A}.
If it exists at least one singleton x ∈ Ω for which we have π(x) = 1, the distribu-
tion is normalized. We can distinguish two extreme cases of knowledge situation:
complete knowledge when ∃x ∈ Ω such as π(x) = 1 and ∀y ∈ Ω, y �= x, π(y) = 0
and total ignorance when ∀x ∈ Ω, π(x) = 1.

The natural pre-order over possibility distributions (named specificity) is de-
fined by the classical function pre-order. Namely, a distribution π is more specific
than π′, denoted π � π′, if and only if ∀x ∈ Ω, π(x) ≤ π′(x) ⇔ ∀A ∈ 2Ω, Π(A) ≤
Π ′(A).

One view of possibility theory is to consider a possibility distribution as a
family of probability distributions (see [3] for an overview). Thus, a possibility
distribution π will represent the family of the probability distributions for which
the measure of each subset of Ω will be respectively lower and upper bounded by
its necessity and its possibility measures. More formally, if P is the set of all prob-
ability distributions defined on Ω, the family of probability distributions P(π)
associated with π is defined as P(π) = {p ∈ P , ∀A ∈ Ω,N(A) ≤ P (A) ≤ Π(A)},
where P is the probability measure associated with p. In this scope, the situation
of total ignorance corresponds to the case where all probability distributions are
possible. According to this probabilistic interpretation, Dubois et al. [6] propose
to transform a probability distribution into a possibility distribution by choosing
the most informative possibility measure that upper bounds the considered prob-
ability measure. This possibility measure corresponds to the tightest possibility
distribution. Let us consider a probability distribution p on Ω = {C1, . . . , Cq}.
We note σ ∈ Sq a permutation of the set 1, . . . , q. For each permutation σ ∈ Sq

we can build a possibility distribution πσ
p which encodes p as follows:

∀j ∈ {1, . . . , q}, πσ
p (Cj) =

∑

k,σ(k)≤σ(j)

p(Ck). (1)

Then, each πσ
p corresponds to a cumulative distribution of p according to the

order defined by σ. We have ∀σ ∈ Sq, p ∈ P(πσ
p ). The probability-possibility
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transformation [4] uses one of these particular possibility distributions. Given
a probability distribution p on Ω = {C1, . . . , Cq} and a permutation σ∗ ∈ Sq

such as p(Cσ∗(1)) ≤ . . . ≤ p(Cσ∗(q)), the probability possibility of p is noted

π∗
p and is defined as π∗

p = πσ∗
p . π∗

p is the cumulative distribution of p built by
considering the increasing order of p. For this order, π∗

p is the most specific
possibility distribution that encodes p.

3 Possibilistic Upper Entropy

In section we explain how particular possibility distributions can be used to take
into account the amount of data used for estimating the frequencies into the
computation of the entropy. Probabilistic loss functions are used for evaluating
the adequateness of a probability distribution with respect to data. We consider
a set of realizations X = {x1, . . . , xn} of a random variable over a discrete
universe Ω = {C1, . . . , Cq}. Let α1, . . . , αq be the frequency of the elements of
X that belong respectively to {C1, . . . , Cq}. The log-likelihood is a natural loss
function for estimating the adequateness between a probability distribution p on
the discrete space Ω = {C1, . . . , Cq} and an event xi. Formally the likelihood
coincides with a probability value. The logarithmic-based likelihood is defined
as follows:

Llog(p|xi) = −
q∑

j=1

1j(xi)log(p(Cj)), (2)

where 1j(xi) = 1 if xi = Cj , and 1j(xi) = 0 otherwise. When we consider
the whole set of data we obtain Llog(p|X) = −∑q

j=1 αj log(p(Cj)). When p is
estimated with respect to frequencies, we obtain the entropy of the distribution.

H(p) = −
q∑

j=1

p(Cj)log(p(Cj)). (3)

The entropy measures the amount of information of the distribution. The higher
the entropy, the lower the amount of information (uniform distribution). We now
show how to use Llog in order to define a loss function, and the related entropy,
for possibility distributions that agree with the interpretation of a possibility
distribution in terms of a family of probability distributions. Proofs and detailed
discussion about possibilistic loss function can be found in [9]. We expect three
properties:

(a) the loss function is minimal for the possibility distribution that results from
the probability-possibility transformation of the frequencies

(b) the possibilistic entropy is the sum of the independent loss functions for each
event as for probabilistic entropy

(c) the possibilistic entropy of the results of the probability-possibility transfor-
mations agree with the probabilistic entropy order.
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Since a possibility distribution π can be viewed as an upper bound of a cumula-
tive function, for all j, the pair πj = (π(Cσ(j)), 1−π(Cσ(j))) (σ is the permutation
of Sq such that π(Cσ(1)) ≤ . . . ≤ π(Cσ(q))) can be seen as a binomial probability

distribution for the sets of events BCj =
⋃j

i=1 Cσ(i) and BCj . Then, the loga-
rithmic loss of a possibility distribution for an event will be the average of the
log loss of each binomial distribution πj .

Lpos(π|xi) =

∑q
j=1 Llog(πj |xi)

q
(4)

When we consider the whole set of data, we obtain:

Lpos(π|X) = −
∑q

j=1(cdfj ∗ log(π(Cj) + (1− cdfj) ∗ log(1− π(Cj)))

q
(5)

where cdfj =
∑

k,σ(k)≤σ(j) αk. The property (a) has been proven in [9]. We
remark that cdfj corresponds to the cumulative probability distribution of the
frequencies with respect to σ (Eq. 1). Then, we can derive a definition of the
entropy of a possibility distribution π relative to a probability distribution p by
considering the cumulative distribution of p according to the order σ (πσ

p ):

Hpos(p, π) = −
∑q

j=1 π
σ
p (Cj) ∗ log(π(Cj))

q
−

∑q
j=1(1− πσ

p (Cj)) ∗ log(1− π(Cj))

q
(6)

The expected property (b) is obvious if we consider the probability distribution
p such as p(Ci) = αi. We can establish some properties of possibilistic entropy
which validate the property (c) and show that the possibility entropy is fully
compatible with the interpretation of a possibility distribution as a family of
probability distributions:

• Given two probability distributions p and p′ on Ω = {C1, . . . , Cq} we have
H(p) ≤ H(p′) ⇒ Hpos(p, π

∗
p) ≤ Hpos(p

′, π∗
p′),

• Given a probability distribution p and two possibility distributions π and π′

on Ω = {C1, . . . , Cq} we have π∗
p � π � π′ ⇒ Hpos(p, π

∗
p) ≤ Hpos(p, π) ≤

Hpos(p, π
′).

As said previously, the entropy calculus does not take into account the amount
of information used for estimating the frequencies. The idea behind π-up entropy
is to consider the confidence intervals around the estimation of the frequencies to
have an entropy measure that increases when the size of the confidence interval
increases. Applying directly the entropy to the upper-bounds of the frequency is
not satisfactory since entropy only applies to genuine probability distributions.
Similarly, using the probability distribution that has values in the confidence
interval and that has the maximum value of entropy is too restrictive. Thus we
propose to build the most specific possibility distribution that upper bounds the
confidence interval and compute its possibilistic entropy relative to the frequency
distribution.
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We use the Agresti-Coull interval (see [2] for a review of confidence intervals for
binomial distributions) for computing the upper bound value of the probability
of an event. Given p(c) the probability of the event estimated from n pieces of
data, the upper bound p∗γ,n of the (1−γ)% confidence interval of the distribution
is obtained as follows:

p∗γ,n(c) = p̃+ z

√
1

ñ
p̃(1 − p̃) (7)

where ñ = n + z2, p̃ = 1
ñ (p(c) ∗ n + 1

2̃
z2), and z is the 1 − 1

2γ percentile of
a standard normal distribution. The most specific πγ

p,n that upper bounds the
(1−γ)% confidence interval of the probability distribution p onΩ = {C1, . . . , Cq}
estimated from n pieces of data is computed as πγ

p,n(Cj) = P ∗
γ,n(

⋃j
i=1 Cσ(i))

where σ ∈ Sq is the permutation such as p(Cσ(1)) ≤ . . . ≤ p(Cσ(q)). Then πγ
p,n is

built in the same way as π∗
p except that it also takes into account the uncertainty

around the estimation of p. Obviously, we have p ∈ P(πγ
p,n), ∀n > 0, π∗

p � πγ
p,n

and lim
n→∞πγ

p,n = π∗
p . Having πγ

p,n, we can now define the π-up entropy of a

probability distribution:

Hπ-up(p, n, γ) = Hposs(p, π
γ
p,n) (8)

Hπ-up has the following properties:

• Given a probability distribution p on Ω = {C1, . . . , Cq} and n′ ≤ n we have
∀γ ∈]0, 1[,Hπ-up(p, n, γ) ≤ Hπ-up(p, n

′, γ),
• Given two probability distributions p and p′ on Ω = {C1, . . . , Cq} we have
∀γ ∈]0, 1[,H(p) ≤ H(p′) ⇒ Hπ-up(p, n, γ) ≤ Hπ-up(p

′, n, γ).

4 Learning a Bayesian Network Structure

We consider a BN over a set of m random variables V = {V1, . . . , Vm} (each
random variable Vi can take ri possible values). D is a set of n complete val-
uations of V . Given a Bayesian network B, we note qi the numbers of lines in
the conditional table for the variable Vi. Given B and D we define the AIC and
MDL score functions as follows:

AIC(B,D) = LogP (B,D)−Dim(B), (9)

MDL(B,D) = LogP (B,D)− 1

2
Dim(B) ∗ log(n), (10)

where Dim(B) = ∑m
i=1(1 − ri) ∗ qi. The terms LogP (B,D) is closely related to

the entropy of the conditional distribution (thanks to the decomposability of the
entropy) when they are evaluated by considering the frequencies:

LogP (B,D) =
m∑

i=1

qi∑

j=1

ri∑

k=1

Ni,j,k ∗ log(Ni,j,k

Ni,j
) = −

m∑

i=1

qi∑

j=1

Ni,j ∗ H(pi,j) (11)
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where Ni,j,k is the number of examples in D which fall in the jth line of the
table of Vi and for which Vi takes the kth possible value, Ni,j =

∑ri
k=1 Ni,j,k,

and pi,j is the conditional probability distribution in the jth line of the table of
Vi. Since Hπ-up is also decomposable, we propose the following score function

POSS(B,D) = −
m∑

i=1

qi∑

j=1

Ni,j ∗ Hπ-up(pi,j , Ni,j , γ) (12)

It is easy to remark that in AIC and MDL, the accuracy of the BN (described by
LogP (B,D)) is computed independently of the complexity of the graph. Thus,
even if it is clear that the number of examples used for evaluating the different
lines of the tables decreases when Dim(B) increases, it does not reflect all the
possible situations (very homogeneous distributions of the data over the lines,
or on the contrary very heterogeneous distributions, for instance). POSS(B,D)
evaluates the amount of uncertainty on each conditional distribution and auto-
matically gives a trade-off between uncertainty (related to the complexity of the
graph) and the accuracy of the model.

In order to obtain the structure of the BN, a classical steepest hill climbing
approach is used. However, we also propose a very simple incremental learning
approach. For each new example, we apply the following process:

1. Update the score of each nodes
2. Update the score for each possible addition of an edge
3. If the addition of at least one edge increase the global score then add the

edge that performs the best increase.

This approach can be done very efficiently for two reasons: i) each score
function (AIC, MDL, POSS ) can be decomposed into local score functions for
each line of the tables, only the lines that correspond to the new example are
updated, ii) the predicted score values for all the possible edge addition cans be
stored in each line of the table and efficiently updated as in i). For the sake of
efficiency, no more than one edge can be added when considering a new example.
This is reasonable since generally a BN contains far less nodes than the numbers
of examples used for learning the structure and the tables. Since the POSS score
considers the uncertainty of the conditional distributions locally, it appears to
be suitable for this approach.

The only parameter of the algorithm is γ. It represents the strength of the
constraint for uncertainty. This parameter can be automatically and effectively
tuned very quickly by choosing the best value of gamma for cross-validation in
a small sub-sample of the training set (100 examples in the experiments).

5 Experimentation

In order to check the effectiveness of the proposed algorithms, we used 10 bench-
marks from UCI1 (numerical values are discretized). HAIC, HMDL and HPOSS

1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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denote respectively a steepest hill climbing starting from an empty graph with
the AIC, MDL and the POSS score functions. OAIC, OMDL and OPOSS cor-
responds to their online counterparts. The results in the following table corre-
sponds to classification accuracy results for 10-cross validation. Departing from
the normal use of these datasets, here all the variables of the dataset are re-
garded in turn as classes to be predicted from the remaining variables. We thus
take into account the whole BN rather than only the nodes directly related to
the variable that is usually taken as the class. Values in bold corresponds to
statistically significant differences with the two other algorithms (Hill climbing
and online algorithm are considered independently).

Data set HAIC HMDL HPOSS OAIC OMDL OPOSS
wine 77.5±2.2 77.3±2.4 78.2±2.4 75.4±2.1 73.7±3.5 78.1±2.2
diabetes 65.7±2.4 65.8±2.3 66.3±2.5 64.3±2.6 65.3±1.6 66.1±1.7
breast 79.6±1.9 79.9±1.7 80.0±1.6 78.9±2.4 79.4±2.0 79.7±1.7
vehicle 82.7±1.6 80.9±1.4 83.0±1.4 81.2±1.3 78.5±1.5 82.3±1.1
zoo 90.0±2.2 88.8±2.2 90.2±2.2 87.6±3.4 85.2±3.6 90.6±1.7
soybean 85.7±0.8 84.3±0.7 88.6±0.5 84.2±0.8 82.1±0.7 87.6±0.4
segment 74.1±1.0 70.9±1.0 76.6±0.6 73.7±0.9 59.1±1.4 73.8±0.7
glass 79.0±3.1 78.1±2.8 83.7±2.2 75.7±2.3 74.7±2.7 82.0±3.4
yeast 79.1±1.3 78.6±1.4 79.2±1.4 78.5±1.3 76.3±1.3 78.8±1.2
blocks 81.0±0.7 78.3±0.8 83.4±0.7 79.1±0.6 78.3±0.5 81.3±0.4

HPOSS statistically overcomes HAIC and HMDL on 4 of the 10 databases
and is never overcome (statistically or not). When considering the online ver-
sion, OAIC and OMDL algorithms obtain less good results than their hill climb-
ing counterparts. On the opposite, OPOSS obtains similar results as HPOSS.
OPOSS takes generally more time than HPOSS to learn a BN (which is easily
understandable since it considers examples one by one) but the updating time
is less than 1 ms in most cases and 39 ms in the worst case.

6 Conclusion

In this paper we have proposed an extension of the log-based entropy that takes
into account the confidence intervals of the estimates of the frequencies with a
limited amount of data, thanks to the use of a possibility-based representation of
the family of probability distributions that agree with the data. We have shown
that we can use this entropy directly as a score function to learn the structure
of a Bayesian network. Experiments show that our algorithms perform very well
again the classical information score functions and confirms the reliability and
the efficiency of the online algorithm proposed. In the future, we shall compare
more precisely our entropy measure with π-up entropy on a credal set. We also
plan to investigate the learning of structures and conditional distributions when
the data are incomplete. Besides, the tuning of the γ parameters in OPOSS
could be made automatically during the updating process.
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