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Preface

Probability and statistics were the only well-founded theories of uncertainty for a long
time. However, during last forty years, in such areas like decision theory, artificial in-
telligence or information processing, numerous approaches extending or orthogonal to
the existing theory of probability and mathematical statistics have been successfully
developed. These new approaches have appeared, either on their own like fuzzy set the-
ory, possibility theory, rough sets, or having their origin in probability theory itself, like
imprecise probability, belief functions, fuzzy random variables.

The common feature of all those attempts is to allow for a more flexible modeling
of imprecision, uncertainty, vagueness and ignorance. The proposed new methods are
softer than the traditional theories and techniques because being less rigid they more
easily adapt to the actual nature of information.

Wide range of applications still reveals the need for soft extensions of classical prob-
ability and statistical tools. For example, in data analysis and data mining it is becoming
increasingly clear that integrating fuzzy sets and probability can lead to more robust
and interpretable models which better capture all kinds of the information contained in
data. Also, in science and engineering the need to analyze and model the true uncer-
tainty associated with complex systems requires a more sophisticated representation of
ignorance than that provided by uninformative Bayesian priors.

Several years ago, the need was felt to establish a recurrent forum for exchanging
of ideas and discussing new trends that enlarge the statistical and uncertainty modeling
traditions, towards a flexible and more specific handling of incomplete or subjective
information. This idea resulted in a series of biannual international conferences on Soft
Methods in Probability and Statistics (SMPS), organized for the first time in Warsaw
in 2002. Subsequent events in this series took place in Oviedo (2004), Bristol (2006),
Toulouse (2008), Oviedo/Mieres (2010) and Konstanz (2012).

This volume is a collection of papers presented at the 7th International Conference
on Soft Methods in Probability and Statistics – SMPS 2014, held in Warsaw (Poland) on
September 22–24, 2014. The conference was organized by the Polish Operational and
Systems Research Society, Systems Research Institute of the Polish Academy of Sci-
ences and the Faculty of Mathematics and Information Science of Warsaw University
of Technology.



VI Preface

The volume contains three sections. The first one is dedicated to general aspects
of uncertainty modeling and processing – starting from some fundamental problems,
through various tools and approaches including Bayesian analysis, fuzzy sets and their
generalizations, fuzzy equations etc. Part two encloses contributions devoted to soft
methods in statistics emphasizing robust analysis and hypotheses testing in the pres-
ence of imprecise data. Part three consists of papers oriented on soft methods in data
analysis. Here we find contributions concentrated on statistical methods in data mining,
likewise combing statistical and soft computing perspectives – both more theoretical
and oriented on applications.

The editors are grateful to contributing authors, invited speakers, Program Commit-
tee members and additional referees who made it possible to put together the attractive
program of the conference. We thank the editor of the Springer series Advances in Soft
Computing, prof. Janusz Kacprzyk, and Springer-Verlag for the dedication to the pro-
duction of this volume.

Warsaw, June 23, 2014 Przemysław Grzegorzewski
Marek Gagolewski

Olgierd Hryniewicz
María Ángeles Gil
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Jiří Kupka, Pavel Rusnok

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



 
 
 
 
 
 
 
 
 
 

Part I 
Soft Methods in Uncertainty Modeling 

and Processing 
 
 
 
 
 
 
 
 
 
 



Deciding under Ignorance: In Search

of Meaningful Extensions of the Hurwicz
Criterion to Decision Trees

Didier Dubois, Hélène Fargier, Romain Guillaume, and Caroline Thierry

IRIT, CNRS and Université de Toulouse, France
{dubois,fargier,guillaum,thierry}@irit.fr

Abstract. The major paradigm for sequential decision under uncer-
tainty is expected utility. This approach has many good features that
qualify it for posing and solving decision problems, especially dynamic
consistency and computational efficiency via dynamic programming.
However, when uncertainty is due to sheer lack of information, and ex-
pected utility is no longer a realistic criterion, the approach collapses
because dynamic consistency becomes counterintuitive and the global
non-expected utility criteria are no longer amenable to dynamic pro-
gramming. In this paper we argue against Resolute Choice strategies,
following the path opened by Jaffray, and suggest that the dynamic pro-
gramming methodology may lead to more intuitive solutions respecting
the Consequentialism axiom, while a global evaluation of strategies rely-
ing on lottery reduction is questionable.

1 Introduction

The traditional approach to multiple stage decision processes under the prob-
abilistic approach [9] is based on decision trees. A decision tree is a graphical
structure containing chance nodes and decision nodes. A strategy is the assign-
ment of a decision (i.e. a chance node) to each decision node and each strategy
turns the decision tree into a probability tree. This probability tree characterizes
a unique probability distribution on the space of final states, and the (global) ex-
pected utility of the strategy over the state space can be computed. The optimal
strategy is then the one with maximal expected utility.

This model has several features that make computations tractable [9]: Any
substrategy of an optimal strategy is optimal with respect to the corresponding
decision subtree, the optimal strategy can be computed by means of dynamic
programming from the leaves to the root of the decision tree.

The appeal of this approach is also due to three properties that it verifies:

– Dynamic Consistency: When reaching a decision node by following an opti-
mal strategy, the best decision at this node is the one that had been consid-
ered so when computing this strategy, i.e. prior to applying it.

– Consequentialism: the best decision at each step of the decision tree only
depends on potential consequences at this point.

c© Springer International Publishing Switzerland 2015 3
P. Grzegorzewski et al. (eds.), Strengthening Links between Data Analysis & Soft Computing,
Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_1
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– Tree Reduction: The result of the dynamic programming procedure on the
decision tree comes down to optimizing the criteria defined on the state
space via the probability distribution obtained from each strategy via the
reduction of lotteries.

More recently, with the emergence of non-additive uncertainty theories, the de-
cision tree approach has been adapted to new decision criteria that differ from
expected utility [10], but generalize known but less reputed criteria such as
Wald maximin criterion or Hurwicz criterion: for instance lower expected util-
ity with respect to a set of priors [2] or Jaffray’s belief function extension of
Hurwicz criterion [6]. These criteria turn out to be incompatible with the three
above assumptions in the sequential decision setting [4]. In particular, they vi-
olate Dynamic Consistency, and optimizing the non-expected utility criterion
cannot be carried out using dynamic programming [3]. Some authors tend to
privilege Dynamic Consistency and Tree Reduction and are ready to give up
Consequentialism (e.g., the Resolute Choice approach [1]). Another approach
called Veto-process has been proposed by Jaffray [7]. It insists on the fact that
Resolute Choice is not acceptable since a normally behaved decision-maker is
consequentialist.

The aim of this paper is to provide more arguments in favor of Consequen-
tialism as a natural property to be preserved when uncertainty accounts for
incomplete information rather than frequentist probability, while questioning
Resolute Choice. We follow the line initiated by Jaffray [7] who introduced the
so-called Veto-process in the frame of decision under total uncertainty. First,
we present the background on decision trees under pure uncertainty and the
Hurwicz criterion. Then, we illustrate Resolute Choice, showing its paradoxical
behavior on a example. Then we present and discuss two alternatives to Resolute
Choice, inspired by the Veto-process philosophy.

2 Background

In this section, we first recall the definition of the Hurwicz criterion and decision
trees under uncertainty.

Consider first simple, non sequential decision problems under complete un-
certainty: each decision δ is characterized by the multi set of consequences Eδ it
can lead to - or equivalently a simple, non probabilitistic lottery. Given a util-
ity function (u(s)) capturing the attractiveness of each of these consequences, a
usual way to taking into account the optimism of the decision-maker under total
uncertainty is to use the Hurwicz criterion [5]. The worth of a simple lottery δ
is then:

H(δ) = α× min
s∈Eδ

u(s) + (1− α)×max
s∈Eδ

u(s).

where α ∈ [0, 1] is the degree of optimism.
When the decision problem is sequential and fully observable, we shall use

decision trees [9] a graphical representations of the problem. This framework
proposes an explicit modeling, representing each possible scenario by a path
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from the root to the leaves of the tree. Formally, the graphical component of a
decision tree T is composed of a set of nodes N and a set of edges E such that
the set N contains three kinds of nodes:

– D = {d0, . . . , dm} is the set of decision nodes (represented by rectangles).
– LN = {ln1, . . . , lnk} is the set of leaves, that represent final states in S =
{s1, . . . , sk} ; such states can be evaluated thanks to a utility function: ∀si ∈
S, u(si) is the utility of being eventually in state si (in node lni). For the
sake of simplicity we assume that only leave nodes lead to utilities.

– X = {x1, . . . , xn} is the set of chance nodes represented by circles.
For any node ni ∈ N , Succ(ni) ⊆ N denotes the set of its children. Moreover,
for any di ∈ D, Succ(di) ⊆ X : Succ(di) corresponds to the set of actions that
can be decided when di is observed. For any xi ∈ X , Succ(xi) ⊆ LN ∪ D:
Succ(xi) is indeed the set of outcomes of the action xi - either a leaf node
is observed, or a decision node is reached (and then a new action should be
executed).

In the present paper, we are interest in the simple case of total ignorance, where
information at chance nodes is just a list of potential outcomes without proba-
bility distribution.

Solving a decision tree amounts to building a strategy δ that selects an action
(i.e. a chance node) δ(di) ∈ Succ(di) for each reachable decision node di ∈ D
that associates a chance node δ(di) ∈ Succ(di) to each decision node di: δ(di) is
the action to be executed when a decision node di is reached.

Let Δ be the set of strategies that can be built from the decision tree. Any
strategy in Δ can be viewed as a connected subtree of the decision tree where
there is exactly one decision arc left at each decision node - skipping the deci-
sion nodes, we get a chance tree or, using von Neuwman and Morgernsterm’s
terminology, a coumpound lottery.

3 Resolute Choice

To evaluate/compare strategies with the Hurwicz criterion, we shall first follow
a resolute choice approach. The idea is that any compound lottery is equivalent
to a simple one, using a principe of lottery reduction. In our context of decision
under total ignorance, no probability distribution is available and reducing a
lottery Tδ of a strategy δ comes down to computing the multiset of possibly
reached states Eδ. We shall now simply compare the strategies by computing
H(δ) = α×mins∈Eδ

u(s)+(1−α)×maxs∈Eδ
u(s) for each of them. This decision-

maker behavior is called Resolute Choice and consists in making a strategic
decision now and keeping the same strategy over time.

In the literature, the Hurwicz criterion has been generalized to decision trees
pervaded with imprecise probabilities by applying it to the reduced lottery [8].
It follows that this criterion will violate Consequentialism in the probabilistic
case, and this is also the case in our simple non probabilistic framework. For
instance, consider the following decision tree under incomplete information:
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d0
s0 ⇒ 0

up

down

d1

up
s1 ⇒ 10

s7 ⇒ 20

down

s2 ⇒ 2

s8 ⇒ 25

d2

up
s3 ⇒ 1

s4 ⇒ 19

down

s5 ⇒ 0

s6 ⇒ 24

x1

x2

x3

x4

x5

Fig. 1. A Decision Tree

There are 5 strategies: (d0 = up), (d0 = down, d1 = up, d2 = down), (d0 =
down, d1 = down, d2 = up), (d0 = down, d1 = up, d2 = up), (d0 = down,
d1 = down, d2 = down))

The problem is to find the best strategy for a Hurwicz decision-maker with
degree of optimism α, if there is no other information at x1, x2, x3, x4, x5.

The Resolute Choice approach consists in noticing that each strategy yields
a different set of possible rewards and computing the best strategy using the
prescribed decision criterion.

– Reachable states: E(d0=down,d1=up,d2=up) = {s1, s7, s3, s4}: H(d0 = down,
d1 = up, d2 = up) = α+ 20(1− α)

– Reachable states: E(d0=down,d1=up,d2=down) = {s1, s7, s5, s6}: H(d0 = down,
d1 = up, d2 = down) = 24(1− α)

– Reachable states: E(d0=down,d1=down,d2=up) = {s2, s8, s3, s4}: H(d0 = down,
d1 = down, d2 = up) = α+ 25(1− α)

– Reachable states: E(d0=down,d1=down,d2=down)={s2, s8, s5, s6}:H(d0=down,
d1 = down, down) = 25(1− α)

– Reachable states: Ed0=up = {s0}: H(d0 = up) = 0

So the optimal strategy ex ante consists in deciding for ”down” at node d0,
for “down” at node d1 and ”up” at node d2 what ever α ∈ [0, 1].

However assume Consequentialism. Suppose the decision-maker reaches deci-
sion node d1, because she/he choses ”down” at d0: Now the sets of remaining
possible rewards and the corresponding evaluations are for each remaining strat-
egy (the boldface decision is a past one):

– E(d0=down,d1=up) = {s1, s7}: H(d0 = down, up) = 10α+ 20(1− α)
– E(d0=down,d1=down) = {s2, s8}: H(d0 = down, down) = 2α+ 25(1− α)

If the decision-maker is pessimistic enough (α > 5
13 ) the best decision d1 is

”up” (and not ”down” as found using Resolute Choice). Suppose now that the
decision-maker reaches decision node d2 due to the outcome of chance node x1:
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– E(d0=up,d2=up) = {s3, s4}: H((d0 = up, d2 = up)) = α+ 19(1− α)
– E(d0=up,d2=down) = {s5, s6}: H(d0 = up, d2 = down)) = 24(1− α)

If the decision-maker is enough optimistic α < 5
6 the best decision d2 is ”down”

and not ”up” as found using Resolute Choice. In this example is easy to see
that for a decision-maker which is not strictly optimistic nor pessimistic (more
precisely if α ∈] 5

13 ,
5
6 [), both decisions proposed by the Resolute Choice approach

are in conflict with the decision-maker’s preference at the moments he has to
decide.

4 An Alternative to Resolute Choice under Pure
Uncertainty

Jaffray [7] starts from the psychological implausibility of the Resolute Choice: an
optimal strategy chosen at time t can become unacceptable in the future. This is
because in some sense, the decision-maker now is not the same as the decision-
maker in the future. Jaffray speaks of different egos. He assigns a different ego
to each decision node and tries to build a strategy now that is not dominated for
the future egos. The question of Jaffray is: how can egos collaborate? Contrary
to Resolute Choice where the present ego enforces his preferences to the future
ones, we present two alternatives to the Resolute Choice. The first is the direct
application of the Veto-process proposed by Jaffray [7]. The second approach is
based on the idea that the satisfaction of the present depends on the one of his
future egos.

4.1 A Veto-process under Pure Uncertainty

Let ΔN be a set of possible strategies from node N . The application of the
algorithm proposed by Jaffray to our case of pure uncertainty comes down to
letting each ego N select those of its possible strategies δ ∈ ΔN that are optimal
according to the Hurwicz criterion applied on the reduction of δ, i.e. on the
the leaves of δ. So the algorithm consists in selecting the best substrategy (strict
Veto-process), from the last decision nodes to the root decision node by applying
lottery reduction and Hurwicz criterion.

Back to our example: suppose α ∈] 5
13 ,

5
6 [; the ego for decision d1 will choose

”up” and the ego of decision d2 will choose ”down”. So the ego of decision d0
will have to decide between strategies:

– δ1 = (d0 = down, d1 = up, d2 = down): Eδ1 = {s1, s7, s5, s6} and H(δ1) =
24(1− α)

– δ2 = (d0 = up): Ed0=up = {s0} and H(d0 = up) = 0
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Then the best strategy is δ1

Algorithm 1. Veto-process under pure uncertainty

Input: decision tree T of depth p > 1, optimism coefficient α
Output: A strategy δ
foreach node N from the depth p− 1 to 0 in T do

if N ∈ X then
ΔN ← ∪N ′∈Succ(N){{(N,N ′)} ∪ δ : δ ∈ ΔN ′}

if N ∈ D then
ΔN ←

⋃
N ′∈Succ(N){ΔN ′}

foreach δ ∈ ΔN do
Hδ ← α×minlni∈δ∩LN u(si) + (1− α)×maxlni∈δ∩LN u(si)

Vmax ← maxδ∈ΔN Hδ

ΔN ← {argmaxδ∈ΔNHδ};

In this approach, the Veto of future egos enforces Consequentialism. Since
each ego is responsible from the choice of its strategy, the algorithm ensures
that a future ego will not deviate from the chosen strategy.

In the Veto-process, the egos are like independent players, so that each player
tries to optimize its own criterion ; one can even imagine that each ego N works
with its own degree of optimism αN over the rewards it finally gets, letting
Hδ ← αN ×minlni∈δ∩LN u(si)+ (1−αN)×maxlni∈δ∩LN u(si) in the algorithm.

But in sequential decision under uncertainty, all players are dependent since
they participate of the same decision-maker. Moreover, only one player gets the
final reward. So, what is the relevance of assuming independent egos? In the
next section we propose a alternative process where the egos are dependent.

4.2 Ego-dependent Process under Pure Uncertainty

Another possibility could be to consider that the preference degrees of one ego
is a function of the satisfaction degree of its future egos - and eventually of the
egos that receive the final rewards, considering that like decision nodes, leaves
are more or less satisfied egos. Moreover the current decision must put the future
egos in the best position to be satisfied, until the last ego (i.e., the ego of a leaf)
obtains the final reward.

So in this section, we propose a new criterion that combines Hurwicz’s idea
and the philosophy of dependent satisfaction of the egos. For the ego of the
decision node di, the worth of decision N (a given posterior chance node) at this
node is recursively obtained as:

H(N) = α× min
u∈H(N )

u+ (1− α)× max
u∈H(N )

u. (1)

where H(N ) = {H(N ′) : ∀N ′ ∈ Succ(N)}.
In other words, this approach comes down to recursively replacing any simple

lottery by a certainty equivalent H(N) that would provide utility H(N) for sure.
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In a sense, we can say that we use a kind of lottery reduction that depends on
the parameters of the criterion used (Hurwicz), and more particulary on α. To
reduce a compound lottery, we replace all final simple lotteries by their Hurwicz
values, and carry on recursively.

Algorithm 2. Ego-dependent process under pure uncertainty

Input: decision tree T of depth p > 1, optimism coefficient α
Output: A strategy δ∗

foreach node N from the depth p to 0 in T do
if N ∈ LN then

VN ← {u(N)}
if N ∈ X then

VN ← ∪N ′∈Succ(N)VΔN′

if N ∈ D then
foreach N ′ ∈ Succ(N) do

H(N ′)← α×minv∈VN′ v + (1 − α)×maxv∈VN′ v

VN ← {maxN ′∈Succ(N)H(VN ′)}
δ∗ ← δ∗ ∪ (N, argmaxN ′∈Succ(N)H(VN ′))

Under this approach, it follows that the optimal strategy δ∗ under this crite-
rion is the strategy which maximizes H∗

N , ∀N ∈ Succ(d0). It yields an optimal
worth H∗, which is the maximal value of HN over the substrategies starting by
chance nodes in Succ(d0). For any chance node N in Succ(d0), HN is the utility
value such that all the future decisions are optimal for all the future egos; so this
model has several nice properties:

– Any substrategy of an optimal strategy is optimal with respect to the cor-
responding decision subtree.

– The optimal strategy can be computed by means of dynamic programming
from the leaves to the root of the decision tree.

This approach is appealing because it verifies two properties (Dynamic Con-
sistency and Consequentialism) and fails the other one (Tree Reduction). Indeed,
we do not consider that a decision tree is necessarily equivalent to a set of reduced
lotteries associated to strategies, in the face of total uncertainty: the structure of
the decision tree must influence the choice of strategies. Our Algorithm 2 is thus
based on dynamic programming, where VN , and H(VN ) are respectively sets of
evaluations and the worth of node N .

Back to our example with α = 6
13 . The egos of leaves get the utility value

associated to their states, so no choice is needed. The ego of decision node d1
will choose ”up” (Hd1=up = 6

13 × 10 + (1 − 6
13 ) × 20 ∼ 15.38 and Hd1=down ∼

14.38), the ego of decision node d2 will choose ”down” (Hd2=up ∼ 10.69 and
Hd2=down ∼ 12.92). The ego of decision node d0 only has to compare the decision
”up” with the decision ”down” when d1 = up, and d2 = down using Hurwicz
criterion on aggregated values {15.38, 12.92}; so the ego of d0 choice ”down”.
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In the example, the two methods give the same optimal strategy, but they would
not if Hd0=up = 14 since then the would be optimal using the Veto-Process (it
actually considers only the ego at d2).

5 Conclusion

In this paper we investigate the problem of sequential decision under pure uncer-
tainty. We argue that the resolute Choice is not always psychologically accept-
able. Then we study Jaffray’s Veto-process in the context of pure uncertainty.
We point out a weakness since it considers that preferences of each ego are inde-
pendent while there is only one decision-maker over the whole sequential decision
process. Hence a new rational approach is proposed, under the assumption that
egos try to help the next egos in the sequence. An approach which satisfies this
rationality requirement is presented along with an algorithm. Our finding sug-
gest that defining the optimal criterion on the basis of a single reduced lottery
induced by the whole decision tree is not satisfactory and looks like a debat-
able fiction that neglects the structure of decision trees. This is in line with the
causal approach to probability revived by Shafer [11] who points out that prob-
ability trees were considered more expressive than probability distributions in
early times of probability theory. In fact, the thesis of this paper is that com-
puting the decision criterion on the reduced lotteries induced by a decision tree
is generally not faithful to what is expected from a best strategy in the face
of total uncertainty. Indeed, the optimal worth computed by non-expected util-
ity criteria corresponds to no actual reward, it just reflects the decision maker
attitude in front of uncertainty. It contrasts with the classical case, where the
optimal expected utility of strategies accounts for the actual satisfaction of the
decision-maker after playing the optimal strategy a sufficient number of times,
if nature acts according to the prescribed probabilities.
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de l’utilité espérée dépendant du rang et du critère de Hurwicz, Ph. D. Thesis,
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Abstract. Fuzzy random variables are used when randomness is merged
with imprecision described by fuzzy sets. When we need to use computer
simulations for the comparison of a classical probabilistic approach with
that based on fuzzy random variables we need to establish the method
for the generation of crisp random variables compatible with existing
fuzzy data. In the paper we consider this problem, and propose some
practical solutions.

Keywords: random variable, comparison of fuzzy and crisp random
variables, Monte Carlo simulation.

1 Introduction

Random phenomena are usually modeled by classical probabilistic models. These
models are definitely appropriate when sample observations of random variables
are precisely reported, even if their actual values are not precisely known or may
substantially vary. However, real statistical data may be defined in imprecise way.
Firstly, the observed data may be reported using imprecise linguistic terms like
”about one hundred” etc. Moreover, in reality there is often no reason to assume
that the unknown values of observations are governed by the same probability
distribution. In contrast to the case of precisely known observations, there is no
method for the statistical verification of this important hypothesis.

To overcome the problems with the analysis of imprecisely reported statisti-
cal data two general approaches are used. First approach, still mainly used, is
entirely probabilistic. The supporters of this approach propose to use complex,
often multi-level, probabilistic models with many assumptions that are hardly
verifiable in practice. The second approach is based on the notion of fuzzy ran-
dom variables. In this approach imprecise observations are described by fuzzy
sets such as e.g. fuzzy numbers. Fuzzy random variables have been introduced
in order to merge this imprecision with pure randomness.

When we are dealing with complex problems whose formal description involves
random variables it is usually not possible to solve these problems in purely ana-
lytical way. Therefore, in such cases we use computer simulation methods, known
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as Monte Carlo methods. When fuzziness is additionally involved in the descrip-
tion of complex problems their solution requires the usage of simulation of fuzzy
random variables. The paper by Colubi et al. [1] serves as a very good exam-
ple how simulation techniques may be used for the analysis of the properties of
fuzzy random variables. There also exist numerous papers whose authors pro-
pose different methods for simulating fuzzy random variables for the solution
of practically oriented problems. However, only few of them provide more gen-
eral information about the methodology of simulation. The most general formal
model that can be used for the simulation of fuzzy random variable has been
proposed by Gonzalez-Rodriguez et al. [3]. The methodology presented in this
paper is based on the general definition of the fuzzy random variable proposed
by Puri and Ralescu [7], and the concept of the simulation of random elements
in the separable Hilbert space.

When fuzzy random variables are used for modeling imprecisely described
random phenomena an important question often arises about the advantage of
this methodology over the classical one. The adherents of purely probabilistic
approach claim that it is always possible to describe imprecision using classical
probabilistic methods. In this paper we claim that in general they are right if we
define a fuzzy random variable according to the definition firstly introduced by
Kwakernaak [6]. However, the purely probabilistic model of the fuzzy random
variable may be extremely complicated. Fuzzy methodology, in our opinion, pro-
vides tools for good approximations. It is interesting, however, to compare these
approximations with the results provided by restricted (simplified) purely prob-
abilistic models. It seems hardly possible to do such comparisons analytically,
but we could do it using Monte Carlo simulations. In order to do so we need
methods for the simulation of crisp random variables whose observed values are
compatible with existing imprecise information. The proposal of a useful method
for doing this is the main goal of this paper.

The remaining part of the paper is organized as follows. In Section 2 we discuss
some important problems related to the simulation of fuzzy random variables.
In Section 3 we present main original results of this paper. We use the concept of
the possibility distribution, understood according to the interpretation of Dubois
and Prade [2], for the construction of a random mechanism that generates crisp
random variables compatible with respective fuzzy ones. In the fourth section we
illustrate our results with some examples of simulation experiments. The paper
is concluded in the last section of the paper.

2 Monte Carlo Generation of Fuzzy Random Variables

The notion of a fuzzy random variable has been defined in several papers, starting
from early works of Zadeh on the fuzzy probability. The first generally accepted
definition was introduced in the paper by Kwakernaak [6]. Statistical methods
based on Kwakernaak’s proposal have been developed in the works of Kruse (see
[5]), so nowadays this approach is often coined as Kwakernaak-Kruse approach.
The definition, we present below, is taken from [4], and is consistent with the
results of Kruse and Kwakernaak.
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Suppose that a random experiment is described as usual by a probability
space (Ω,A,P), where Ω is a set of all possible outcomes of the experiment,
A is a σ− algebra of subsets of Ω (the set of all possible events) and P is a
probability measure

Definition 1. A mapping X : Ω → FN is called a fuzzy random variable if it
satisfies the following properties:

(a) {Xα(ω) : α ∈ [0, 1]} is a set (α-cut) representation of X(ω) for all ω ∈ Ω,
(b) for each α ∈ [0, 1] both XL

α = XL
α (ω) = inf Xα(ω) and XU

α = XU
α (ω) =

= supXα(ω), are usual real-valued random variables on (Ω,A,P).

According to Kruse [5] a fuzzy random variable X may be considered as an
imprecise perception of an unknown usual random variable V : Ω → R, called
an original of X . There exists a more general definition proposed by Puri and
Ralescu [7], but in this paper we restrict our attention to the case of the fuzzy
random variable defined according to the Kwakernaak-Kruse approach.

Let us look at the definition of the fuzzy random variable from a point of view
of computer simulations. It seems to be quite obvious that the ordinary random
variables XL

α and XU
α must be dependent. Moreover, for all α-levels 0 ≤ α ≤ 1,

and for all pairs of α-levels 0 ≤ α′ ≤ α′′ ≤ 1 their joint probability distribution
must fulfill the following requirements that assure the nested structure of the
α-level subsets of the fuzzy observations.

P
(
xL
α < XL

α , X
U
α ≤ xU

α

)
:

{
≥ 0 , xU

α > xL
α

= 0 , otherwise
(1)

P
(
xL
α′ < XL

α′ , XL
α′′ ≤ xL

α′′
)
:

{
≥ 0 , xL

α′′ > xL
α′

= 0 , otherwise
(2)

P
(
xU
α′′ < XU

α′′ , XU
α′ ≤ xU

α′
)
:

{
≥ 0 , xU

α′ > xU
α′′

= 0 , otherwise
(3)

Thus, we have the following proposition.

Proposition 1. Let the fuzzy random variable X̃ be defined on a finite set of
α levels 0 ≤ α(1) < α(2) < · · · < α(m) ≤ 1. Then, X̃ is fully described by a
2m-dimensional vector

(
XL

α(1) , . . . , X
L
α(m) , X

U
α(1) , . . . , X

U
α(m)

)
of ordinary random

variables whose joint probability distribution fulfills the conditions (1)-(3).

When the values of α are not discretized the random vector mentioned in Propo-
sition 1 becomes infinitely dimensional. Hence, any fuzzy random variable de-
fined according to the Kwakernaak-Kruse approach can be represented by a fully
probabilistic model described by dependent ordinary random variables whose
marginal probability distributions must fulfill conditions(1)-(3). This property
of the fuzzy random variables fully justifies the usage of Monte Carlo methods
for the generation of fuzzy random samples.
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3 Monte Carlo Simulation of Random Variables
Compatible with Fuzzy Data

Let us assume that we have a sample of imprecise fuzzy data x̃1, x̃2, . . . , x̃n ob-
served in a random experiment (or simulated as the realizations of fuzzy random
variable). If we want to compare fuzzy models and crisp probabilistic models us-
ing simulation methods we need to assume a certain probabilistic model in order
to generate possible “origins” of the observed fuzzy data. The most frequently
used approach consists in the transformation of the membership functions of the
fuzzy numbers x̃1, x̃2, . . . , x̃n into respective probability densities. For example,
let us suppose that the fuzzy observation x̃i is described by a triangular normal
fuzzy number (xi1, xi2, xi3) (i.e. such that μ(xi2) = 1). Then, its membership
function is easily transformed to the triangular probability density described by
the triangle (xi1, xi2, xi3) such that f(xi2) = 2/(xi3 − xi1).

This simple model has one serious disadvantage. As a matter of fact, it is a
purely probabilistic model that fits the imprecise data to one specific probability
distribution. We believe that this assumption is debatable. Consider, for exam-
ple, two random fuzzy variables X̃ and Ỹ whose observations are described by
intervals (i.e. by rectangular fuzzy numbers). According to the theory of fuzzy
sets the observations of their sum should be also described by intervals. However,
the probability distribution of the sum of their crisp “origins” simulated using
the aforementioned method is not uniform.

In this paper we propose to interpret the membership functions of the observed
fuzzy data as possibility distributions. The notion of the possibility distribution
was introduced by Zadeh, and has many different interpretations. According to
one of them, see [2], the possibility distribution can be understood as an upper
envelope for all ordinary discrete probability distributions compatible with our
imprecisely described value. Let μ[a,b](x) be the membership function of a fuzzy
number x̃ with the support [a, b]. Consider now a representation of [a, b] with a
finite set of m real numbers a ≤ x1 < x2 < . . . < xm ≤ b. Now, let us define on
this set the familyMN of all discrete distributionsMN(p1, p2, . . . , pm) such that
pj ≤ μ[a,b](xj), j = 1, . . . ,m, and

∑m
j=1 pi = 1. The discrete distribution that

belongs to the familyMN we will call compatible with the possibility distribution
μ[a,b](x). The value x

� randomly generated according to this distribution can be
considered as a possible crisp “origin” of the fuzzy observation x̃.

For every fuzzy number x̃ defined on a non-degenerate interval [a, b] there exist
uncountably many distributions defined in the aforementioned way. However,
for practical reasons we have to restrict the number of considered distributions.
First, we should set the fixed number of points m. When μ[a,b](a) > 0 and
μ[a,b](b) > 0 we set, respectively, x1 = a and xm = b, and the remaining m− 2
points we may generate according to a certain probability distribution defined on
(a, b). Otherwise, we generate all m points from this distribution. Note that any
non-random generation of these m points (e.g. equidistant) can be considered as
a special case of this general model.



Comparison of Fuzzy and Crisp Random Variables 17

Now, let us define some distributions on the set {x1, . . . , xm} that belong
to the family MN . Let us consider three such distributions: the left concen-
trated (LC), the right concentrated (RC), and the random Dirichlet (RD). The
LC distribution is the distribution MN(p1, . . . , pk), where pj = μ[a,b](xj), j =

1, . . . , k − 1 and pk = 1 −
∑k−1

j=1 pj , 1 ≥ k ≤ m. The respective RC distribu-
tion is the distribution MN(pl, . . . , pm), where pj = μ[a,b](xj), j = l + 1, . . . ,m
and pl = 1 −

∑m
j=l+1 pj , 1 ≥ l ≤ m. The interpretation of these distributions is

simple when we are interested in the inference about the location parameter of
the considered probability distribution or when the parameter of interest could
be transformed to a location parameter by the appropriate transformation of
the underlying random variable. For purely interval data the whole probability
mass of the LC distribution is concentrated at the left limiting value of the con-
sidered interval. Similarly,for the RC distribution the whole probability mass is
concentrated at the right limiting value of the considered interval.

Let us consider the LC distribution compatible with the triangular possibility
distribution defined by the triangular fuzzy number (A,B,C). Let s = |A,C| and
sL = |A,B| be, respectively, the support and the left spread of this possibility
distribution. We can now formulate the following proposition.

Proposition 2. The expected value of the LC distribution compatible with tri-
angular possibility distribution (A,B,C), and defined on the m evenly distributed
points on the interval (A,C) is equal to A when m tends to infinity.

Proof. Let X be a random variable defined on points xi =
2i−1
2

s
sL

+ A evenly

distributed on (A,C), and pi =
2i−1
2m

s
sL

be the corresponding probabilities of the

LC distribution, such that
∑k

i=1 pi ≤ 1 <
∑k+1

i=1 pi. One can prove that

Zk =

k∑
i=1

2i− 1

2m

s

sL
=

s

2msL
k2 (4)

Hence, we have pk+1 = 1 − Zk. If probabilities p1, p2, . . . , pk, pk+1 describe the
probability distribution defined on the set {x1, x2, . . . , xk, xk+1} the condition
Zk + pk+1 = 1 must be fulfilled. Note that pk+1 ≤ 2k+1

2m
s
sL

, and for m tending
to infinity this probability tends to zero. Thus, we have the following equation
that defines the relationship between k and m

s

2msL
k2 = 1 (5)

Now, let us calculate the expected value of X from the following formula

E(X) =
∑k

i=1 pixi =
∑k

i=1(
2i−1
2

s
m +A)(2i−1

2m
s
sL

)

= s2

sL
1

4m2
1
3k(4k

2 − 1) + A
2m

s
sL

k2.
(6)

From (5) we have k =
√
2msL/s, and hence

E(X) =
s3/2

s
1/2
L

√
2

12
(
8sL
s

m−1/2 −m−3/2) +A. (7)
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Thus, from (7) we see that for m → ∞ we have E(X) → A, and this ends the
proof. In the similar way we can prove a symmetric proposition concerning the
RC distribution

Proposition 3. The expected value of the RC distribution compatible with tri-
angular possibility distribution (A,B,C), and defined on the m evenly distributed
points on the interval (A,C) is equal to C when m tends to infinity.

In the general case, however, the values of the parameters p1, . . . , pm may
be also chosen in a random way. The Dirichlet distribution is defined by the
following density function

f(p1, . . . , pm;β1, . . . , βm) =

{
1

Bm

∏m
j=1 s

βj

j , (s1, . . . , pm) ∈ Sm

0 , otherwise
, (8)

where Sm is the closed m − 1-dimensional simplex and Bm is the normalizing
constant.

The Dirichlet distribution defined by (8) is very flexible, and allows to sim-
ulate very different “shapes” of the probability distribution compatible with a
fuzzy number x̃ which can be used for the generation of the “origin” value rep-
resentative for this fuzzy number. In the simulation algorithm the values of the
parameters β1, . . . , βm can be chosen randomly, for example from a predefined
interval (βmin, βmax). It gives an additional level of flexibility in the generation
of probabilities p1, . . . , pm. Then, the values of probabilities p1, . . . , pm can be
generated from the Dirichlet distribution (8). Finally, the MN(p1, . . . , pm) dis-
tribution can be used for the generation of the “origin” of the observed value of
the fuzzy random variable from among the set of (predefined or randomly gener-
ated) values {x1, . . . , xm}. We have called this distribution the random Dirichlet
(RD).

4 Properties of Probability Distributions Representing
Fuzzy Random Variables – Results of Experiments

From the discussion presented in Section 2 we know that a fuzzy random obser-
vation z̃ can be represented as the sum of the unobserved crisp random “origin”
y and a fuzzy number x̃ that represents our lack of knowledge about the “origin”.
In Monte Carlo experiments we can simulate “origins” from a given probabil-
ity distribution. Then, we can use a certain predefined random mechanism for
the generation of the membership function μ(x) of x̃. Thus, the simulated fuzzy
observation is a fuzzy number z̃ = y + x̃.

When we need to compare the approach based on random fuzzy numbers with
a classical approach based on crisp random numbers we should simulate crisp
random numbers that are compatible with our fuzzy observations. In this sec-
tion we present the results of simulation experiments that have been performed
in order to investigate the differences between different methods of the sim-
ulation of random variables compatible with given fuzzy observations. In this
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paper we describe only the results of experiments in which we assumed that
the observed fuzzy numbers are described by triangular membership functions
symmetric around zero with the randomly generated left and right spreads L
and R. Moreover, we assumed that both are described by the same probability
distribution characterized by its expected value w and a coefficient of variation v.

In our experiments we have considered four types of probability distributions
compatible with the given fuzzy observation: triangular, left(right) concentrated,
and random Dirichlet. Because the spreads L and R have been simulated from
the same distribution the average behavior of the LC and RC distributions was
the same. Therefore, we present here only the results for the RC distribution.
In the experiments we generated samples of n random fuzzy variables X̃, Then,
for each generated sample item we generated its “origin” from its compatible
probability distribution. In the next step we calculated the sample average of
the generated “origins”. The procedure has been repeated 100 000 times in order
to evaluate the properties of the simulated distributions of sample averages, such
as the expected value and the standard deviation.

In the first group of simulation experiments we investigated the dependence of
the expected value of the RC (LC) distribution on the number of discretization
points m when the triangular membership functions were generated from differ-
ent probability distributions. The convergence to the limiting values defined by
Proposition 3 (or 2) was rather slow. For example, when the spreads were gen-
erated from the uniform distribution defined on the interval (0, 4) the expected
value for the RC distribution for m = 500 was equal to 1, 88. Note however, that
according to Proposition 3 for m → ∞ this expected value should be equal to
2, i.e. to the expected length of the right spread. The results obtained in sim-
ilar experiments have shown that for a realistic discretization of the possibility
distribution described by a fuzzy number the observed average values of the left
and right concentrated distributions are not so far from their theoretical, but
rather improbable, values.

The important question may arise about the difference between the random
variables generated from the triangular (Tr) distribution and the random vari-
ables generated with the usage of the proposed random Dirichlet (RD) distri-
bution. Because of the way the triangular membership functions are generated
(maximum at zero, the same distribution of the both, left and right, spreads) the
expected value of the sample average for this distribution must be equal to zero.
However, in the case of the random Dirichlet distribution the similar behavior
of the sample average is somewhat unexpected. Only in the case of small values
of m the estimated average is slightly different than zero (e.g. for m = 10 it is
equal to −0.046 while σ is equal to 0.265). The situation is different when we
consider the standard deviation of x̄.

In all considered cases the variability of sample means generated from the ran-
dom Dirichlet distribution was greater than the similar variability in the case
of the triangular distribution. This difference becomes significant for moderate
and large values of m (e.g. larger than 200). This means that the random Dirich-
let distribution is less “informative”, and represents fuzziness in a better way.
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Moreover, for the large values of m the standard deviation of x̄ practically does
not depend upon the value of this parameter. Therefore, the maximal variabil-
ity of the generated crisp observations that are compatible with the given fuzzy
number can be obtained even for a moderate number of discretization points.
This property tells us that in real experiments the value of m need not be too
large, and thus, simulation experiments need not be time consuming. One should
also remember that in practice the variability of the distribution compatible with
fuzzy observations is equal to the sum of the variability of an unobserved “origin”
and the variability of the distribution representing observed fuzziness. When the
former is much larger than the latter the difference between the triangular and
the random Dirichlet distributions may be neglected.

5 Conclusions

The widely used methods of the generation of fuzzy random variables are fully
compatible with the Kwakernaak-Kruse definition of the fuzzy random variable.
The concept of the probability distribution compatible with a fuzzy observation
introduced in this paper provides a simple methodology for the comparison of
classical (non-fuzzy) and fuzzy approaches for dealing with imprecise data. In
the classical approach the lack of knowledge is modeled by a predefined and
difficult to identify probability distribution. When the fuzzy approach is used
this lack of knowledge may be modeled by several probability distributions that
are compatible, in the sense introduced in the paper, with imprecise observa-
tions. Therefore, this approach provides more flexibility in the description of
imprecisely observed random phenomena.

Acknowledgments. The author thanks Dr. Piotr Nowak for his helpful com-
ments regarding the interpretation of fuzzy random variables.
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Abstract. The comparison of random variables can be made by means
of stochastic orders such as expected utility or statistical preference. One
possible model when the random variables are imprecisely observed is to
consider fuzzy random variables, so that the images become fuzzy sets.
This paper proposes two comparison methods for fuzzy random variables:
one based on fuzzy rankings and another one that uses the extensions of
stochastic orders to an imprecise framework. The particular case where
the images of the fuzzy random variables are triangular fuzzy numbers
is investigated.We illustrate our results by means of a decision making
problem.
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1 Introduction

A decision making problem under uncertainty requires the choice between sev-
eral alternatives that are usually modeled by means of random variables; the
choice between them is made by means of stochastic orders [11]. When we have
imprecise information about the consequences of the different alternatives, we
need to consider a more general model, such as sets of random variables, random
sets, or, as we do in this paper, fuzzy random variables [6], where the images
are fuzzy sets instead of real numbers. In order to extend stochastic orderings to
this case, we follow in this paper two different avenues. On the one hand, based
on the idea behind statistical preference, we compare fuzzy random variables by
means of a choice model over their images, using fuzzy rankings, where by fuzzy
ranking we refer to a method for the comparison of fuzzy sets. On the other hand,
and similarly to expected utility, we can also compare fuzzy random variables
in terms of their expectations. Since the expectation of a fuzzy random variable
can be modeled by a possibility measure, we shall use the methods established
in [9,10] for the comparison of imprecise probability models.

The paper is organized as follows: Section 2 introduces the main notions about
fuzzy random variables and stochastic orders defined under imprecision. Then we
discuss the two approaches mentioned above for the comparison of fuzzy random
variables, and in Section 4 we investigate the particular case where the images
of the fuzzy random variables are triangular fuzzy numbers. Finally, Section 5
illustrates our methods in a decision making problem. The paper concludes with
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some additional remarks and a discussion of other approaches to this problem.
Proofs are omitted because of space limitations.

2 Preliminary Notions

2.1 Fuzzy Random Variables

Fuzzy random variables were introduced simultaneously by Kruse and Meyer
[6] and Puri and Ralescu [12]. In this paper, we follow the epistemic approach
considered in [6]. Let F(R) denote the set of all fuzzy sets on R.

Definition 1 ([6]). A fuzzy random variable is a map X̃ : Ω → F(R) such that

the α-cuts X̃α are strongly measurable multi-valued mappings.

Following Kruse and Meyer, fuzzy random variables can be used to model the
imprecise knowledge about an unknown random variable U0. For any ω ∈ Ω,ω′ ∈
R, X̃(ω)(ω′) can be interpreted as the acceptability degree of the proposition
“U0(ω) = ω′”. With a similar reasoning, it is possible to define a fuzzy set on
the class of measurable functions from Ω to R, μX̃ , that associates the value

μX̃(U) = inf{X̃(ω)(U(ω)) : ω ∈ Ω}

for any measurable function U : Ω → R. Then, according to [6] this value can be
understood as the acceptability degree of the proposition “U = U0”. Using the
fuzzy set μX̃ it is possible to define the expectation of a fuzzy random variable
as the fuzzy set EX̃ with membership function:

EX̃(r) = sup{μX̃(U) : E(U) = r}. (1)

EX̃(r) can be interpreted as the acceptability degree of the proposition “E(U0) =
r”. This membership function can also be seen as a possibility distribution, and
as a consequence this expectation can be regarded as a possibility measure.

2.2 Stochastic Orders under Imprecision

Stochastic orders are methods for the comparison of random quantities. Here we
shall use expected utility, given by X EU Y ⇔ E(X) ≥ E(Y ), and statistical
preference [2,3], that is based on a probabilistic relation. A probabilistic relation
on a set of alternatives A is a map defined from A2 to [0, 1] such that Q(a, b) +
Q(b, a) = 1 for any (a, b) ∈ A2, where Q(a, b) measures the strength of the
preference of a over b. Statistical preference considers a set of alternatives formed
by random variables, and defines a probabilistic relation by Q(X,Y ) = P (X >
Y )+ 1

2P (X = Y ). Then, X is statistically preferred to Y , denoted by X SP Y ,
if Q(X,Y ) ≥ 1

2 . In what remains we will use a well-known alternative expression
for statistical preference: X SP Y if and only if P (X ≥ Y ) ≥ P (Y ≥ X).
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In a context of imprecision, it may be necessary to choose between sets of
random variables, instead of single ones. This problem was studied in some
detail in [9,10], and a number of extensions of a given stochastic order to the
imprecise case were considered. In the next definition,  denotes a stochastic
order that could be either the expected utility or statistical preference, as we
shall use in this paper, or any other stochastic order.

Definition 2 ([10, Def. 5]). Consider two sets of random variables X ,Y and
a stochastic order . We say that:

– X is 1-preferred to Y if U  V for any U ∈ X and V ∈ Y.
– X is 2-preferred to Y if there is U ∈ X such that U  V for any V ∈ Y.
– X is 3-preferred to Y if for any V ∈ Y there is U ∈ X such that U  V .
– X is 4-preferred to Y if there are U ∈ X and V ∈ Y such that U  V .
– X is 5-preferred to Y if there is V ∈ Y such that U  V for any U ∈ X .
– X is 6-preferred to Y if for any U ∈ X there is V ∈ Y such that U  V .

When the extended stochastic order is either expected utility or statistical pref-
erence, we shall use the notation EUi or SPi, respectively.

Some stochastic orders, such as expected utility, compare two random vari-
ables by means of their associated probability distributions. For those, the defi-
nitions above can be used to compare sets of probability distributions, also called
credal sets. This allows us to compare imprecise probability models, such as pos-
sibility measures. Indeed, the credal set associated with a possibility measure Π
is given by:

M(Π) = {P probability | P ≤ Π}.

Then, we can compare two possibility measures ΠX and ΠY by means of their
associated credal sets. Our next result considers the extensions of expected util-
ity, and uses ΠX EUi ΠY to denote M(ΠX) EUi M(ΠY) for i = 1, . . . , 6.
Recall also that the conjugate function N of a possibility measure Π , given by
N(A) = 1−Π(Ac) for every A, is usually named necessity measure.

Proposition 1. For any two possibility measures ΠX and ΠY, with conjugate
necessity measures NX and NY, respectively, it holds that:

– ΠX EU1 ΠY ⇔ (C)

∫
iddΠX ≥ (C)

∫
iddNY;

– ΠX EU2 ΠY ⇔ ΠX EU3 ΠY ⇔ (C)

∫
iddNX ≥ (C)

∫
iddNY;

– ΠX EU4 ΠY ⇔ (C)

∫
iddNX ≥ (C)

∫
iddΠY;

– ΠX EU5 ΠY ⇔ ΠX EU6 ΠY ⇔ (C)

∫
iddΠX ≥ (C)

∫
iddΠY;

where (C)
∫
fdμ denotes the Choquet integral of f with respect to the non-

additive measure μ, and id denotes the identity function id(x) = x.
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3 Comparison of Fuzzy Random Variables

As we mentioned in Section 2.2, two possible ways of comparing two random
variables X,Y are expected utility and statistical preference, given by:

X EU Y ⇔ E(X) ≥ E(Y ). (2)

X SP Y ⇔ P ({ω : X(ω) ≥ Y (ω)}) ≥ P ({ω : Y (ω) ≥ X(ω)}). (3)

In this section, we extend these two orders to fuzzy random variables. In the case
of expected utility, the comparison of the expectations leads us to the comparison
of possibility measures; concerning statistical preference, the comparison of the
images of fuzzy random variables motivates the use of fuzzy rankings.

3.1 Comparison by Means of Fuzzy Rankings

Fuzzy rankings are methods for the comparison of quantities modeled by means
of fuzzy sets, in that they measure to what extent one fuzzy set is larger than
the other. Consider two fuzzy random variables, X̃, Ỹ modeling the imprecise
knowledge of respective random variables X,Y . Then for every ω in the initial
space X̃(ω) and Ỹ (ω) are the fuzzy sets that represent the degree of acceptability
of the propositions “X(ω) = ω′” and “Y (ω) = ω′”, for any ω′ ∈ R. In order to

compare the fuzzy random variables X̃ and Ỹ , we can compare the fuzzy sets
X̃(ω) and Ỹ (ω) for every ω ∈ Ω. This leads at once to the following definition:

Definition 3. Let X̃, Ỹ : Ω → F(R) be two fuzzy random variables on a prob-

ability space (Ω,A, P ), and let � be a fuzzy ranking. We say that X̃ is �-

statistically preferred to Ỹ , and denote it X̃ �P Ỹ , when

P ({ω ∈ Ω : X̃(ω) � Ỹ (ω)}) ≥ P ({ω ∈ Ω : Ỹ (ω) � X̃(ω)}).

When the fuzzy ranking � is complete, that is, if it allows the comparison of
every pair of fuzzy sets, we obtain the following result.

Proposition 2. Let � be a complete fuzzy ranking, and define:

Q(X̃, Ỹ ) = P ({ω : X̃(ω) � Ỹ (ω)}) + 1

2
P ({ω : X̃(ω) ∼ Ỹ (ω)}).

Then Q(X̃, Ỹ ) +Q(Ỹ , X̃) = 1 ∀X̃, Ỹ , and X̃ is �-statistically preferred to Ỹ if

and only if Q(X̃, Ỹ ) ≥ 1
2 . Moreover, if � extends the natural order on R, then

�-statistical preference is an extension of statistical preference given by Eq. (3).

3.2 Comparison by Means of Stochastic Orders

Another way of comparing fuzzy random variables is by extending appropriately
the order associated with expected utility, given by Eq. (2). Consider two fuzzy

random variables X̃ and Ỹ , and let EX̃ , EỸ be their respective fuzzy expec-
tations, given by Eq. (1). These expectations are fuzzy sets, or, equivalently,
possibility measures. It leads to the following definition.
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Definition 4. We say that X̃ is preferred to Ỹ with respect to the i-th extension
of expected utility, and denote it X̃ EUi Ỹ , when EX̃ EUi EỸ , where EUi is
given in Definition 2.

This result, together with Proposition 1, reduces the comparison of fuzzy
random variables to the comparison of appropriate Choquet integrals. For a
thorough discussion of the interpretation behind the different extensions EUi ,
for i = 1, . . . , 6, we refer to [9,10].

4 Particular Case: Triangular Fuzzy Random Variables

In this section we study the particular case where the images of X̃ and Ỹ are tri-
angular fuzzy numbers. Recall that A = (a1, a2, a3) is a triangular fuzzy number
when its membership function is given by:

A(ω) =

⎧⎪⎨⎪⎩
x−a1

a2−a1
for a1 < x ≤ a2.

a3−x
a3−a2

for a2 < x ≤ a3.

0 otherwise.

(4)

4.1 Fuzzy Rankings on Triangular Fuzzy Random Variables

Fuzzy rankings usually take a simple expression when applied to triangular fuzzy
numbers. Here we consider two well-known fuzzy rankings, introduced by Dubois
and Prade in [5].

Definition 5 ([5]). Let A,B be two fuzzy numbers, and define:

– Possibility of Dominance: PD(A,B) = sup
x≥y

(min(A(x), B(y))).

– Necessity of Strict Dominance: NSD(A,B) = 1−sup
x≤y

(min(A(x), B(y))).

Then we denote A PD B when PD(A,B) ≥ PD(B,A) (and similarly for
NSD). In case of triangular fuzzy numbers, these definitions can be simplified:

Lemma 1. Let A = (a1, a2, a3) and B = (b1, b2, b3) be two triangular fuzzy
numbers. It holds that A PD B ⇔ A NSD B ⇔ a2 ≥ b2.

Proof. This is a consequence of Eq. (4) and Definition 5.

Using this result, we can simplify Definition 3 for these fuzzy rankings.

Proposition 3. Given two triangular fuzzy random variables X̃ and Ỹ such
that X̃(ω) = (aω1 , a

ω
2 , a

ω
3 ) and Ỹ (ω) = (bω1 , b

ω
2 , b

ω
3 ) ∀ω ∈ Ω,

X̃ �P
PD Ỹ ⇔ X̃ �P

NSD Ỹ ⇔ P ({ω ∈ Ω : aω2 ≥ bω2 }) ≥ P ({ω ∈ Ω : bω2 ≥ aω2 }).

Note also that both PD and NSD are complete fuzzy rankings, and then Propo-
sition 2 can be applied.
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4.2 Stochastic Orders on Triangular Fuzzy Random Variables

We now turn on the comparison of triangular fuzzy random variables by means of
the generalizations of expected utility. We begin by showing a well-known result
that easily allows to compute the expectation of a triangular fuzzy number.

Proposition 4 ([4,7]). Consider a fuzzy random variable X̃ such that X̃(ω) is
a triangular fuzzy number (aω1 , a

ω
2 , a

ω
3 ) for any ω. Consider the functions f1(ω) =

aω1 , f2(ω) = aω2 and f3(ω) = aω3 , for any ω ∈ Ω. Then, EX̃ = (e1, e2, e3) is also
a triangular fuzzy number, where e1 = E(f1), e2 = E(f2) and e3 = E(f3).

Next we show that Definition 4 can be simplified in this case. The proof follows by
considering the interpretations of Definition 2 in the case of expected utility (see
for instance [9, Remark 3]), and the formulas of the ‘best’ and ‘worst’ alternatives
in the credal set associated with a possibility measure in the particular case of
triangular fuzzy numbers.

Proposition 5. Consider two possibility measures ΠX and ΠY whose associ-
ated fuzzy sets are the triangular fuzzy numbers (a1, a2, a3) and (b1, b2, b3), re-
spectively. Then:

– ΠX EU1 ΠY ⇔ a1 + a2 ≥ b2 + b3.
– ΠX EU2 ΠY ⇔ ΠX EU3 ΠY ⇔ a2 + a3 ≥ b2 + b3.
– ΠX EU4 ΠY ⇔ a2 + a3 ≥ b1 + b2.
– ΠX EU5 ΠY ⇔ ΠX EU6 ΠY ⇔ a1 + a2 ≥ b1 + b2.

5 Example of Application in Decision Making

This section presents an application of the previous definitions to a decision
making problem. We use the setting considered in [8]: a company operating in
UK is considering the possibility of expanding to new markets. They consider
four alternatives:

A1: Expand to the French market. A3: Expand to the Italian market.
A2: Expand to the German market. A4: Expand to the Spanish market.

The evaluation of the strategies depends on the economic situation for the next
year, that may take four different values:

S1: Bad economic situation. S3: Good economic situation.
S2: Regular economic situation. S4: Very good economic situation.

The probabilities for each state are estimated as 0.1, 0.3, 0.3 and 0.3, respec-
tively. Then, we can define the probability space (Ω,P(Ω), P ), where Ω =
{S1, S2, S3, S4}, and model each alternative as a fuzzy random variable taking
the following values, that represent the expected benefits:

S1 S2 S3 S4

A1 (0.2, 0.3, 0.4) (0.6, 0.7, 0.8) (0.2, 0.3, 0.4) (0.5, 0.6, 0.7)
A2 (0.5, 0.5, 0.5) (0.3, 0.4, 0.5) (0.4, 0.5, 0.7) (0.4, 0.5, 0.6)
A3 (0.1, 0.2, 0.4) (0.6, 0.8, 0.9) (0.8, 0.9, 1) (0.7, 0.8, 0.9)
A4 (0.3, 0.4, 0.5) (0.3, 0.4, 0.6) (0.5, 0.5, 0.5) (0.3, 0.4, 0.5)
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Since these alternatives are triangular fuzzy random variables, we can apply the
results from Section 4. First of all, if we compare them pairwisely by means
of PD and NSD, Lemma 1 assures that the two fuzzy rankings reduce to the
comparison of the modal points of the triangular fuzzy numbers. The resulting
preference degrees are summarized in the following table:

A1 A2 A3 A4

A1 · 0.5 0.25 0.5
A2 0.5 · 0.25 0.75
A3 0.75 0.75 · 1
A4 0.5 0.25 0 ·

Thus, we conclude that the best alternative is A3, that is, to invest into the Ital-
ian market. If instead we compare these fuzzy random variables by means of the
generalized expected utility, we deduce from Proposition 4 that the expectations
of A1, . . . , A4 are also triangular fuzzy numbers, and they are given by:

EA1 = (0.41, 0.51, 0.61) EA2 = (0.38, 0.47, 0.59).
EA3 = (0.64, 0.77, 0.88) EA4 = (0.38, 0.47, 0.59).

Then, applying Propositions 4 and 5, we obtain the following results:

A1 A2 A3 A4

A1 · EU2,5 − EU2,5

A2 − · − EU2,5

A3 EU1 EU1 · EU1

A4 − − − ·

Again A3 seems to be the most adequate option, because it is preferable to the
other alternatives with respect to the first extension of the expected utility (and
as a consequence also with respect to any of the other extensions).

6 Conclusions

Stochastic orders are methods for the comparison of random quantities. When
the random variables to be compared are imprecisely described, they can be
modeled by means of fuzzy random variables. This work presents a first ap-
proach to the extension of stochastic orders to the comparison of fuzzy random
variables. We have considered two possibilities: the comparison of the images of
the fuzzy random variables by means of a fuzzy ranking, and the comparison of
the expectations by means of stochastic orders on possibility measures. We have
investigated in more detail the particular case of fuzzy random variables whose
images are triangular fuzzy numbers, and showed that the proposed methods
can be simplified in that case. In addition, we have illustrated these methods in
a decision making problem.

There are still several open lines of research on the comparison of fuzzy random
variables. On the one hand, it is possible to extend other stochastic orders, such
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as stochastic dominance [11], to this context; on the other hand, we would like
to deepen into the comparison of the properties of the different fuzzy rankings
proposed in the literature with respect to this problem.

Finally, a different approach would be the comparison of fuzzy random vari-
ables by means of their α-cuts. In this case, the comparison is reduced to the
comparison of random sets, and we can consider notions of strong or weak pref-
erence, depending on whether the comparison holds for every or any α-cut. Note
also that the comparison of random sets can be made in two different ways: on
the one hand, we can consider a stochastic order on random variables, and apply
it to the sets of measurable selections by means of Definition 2 [9]; or we could
also consider other stochastic orders for random sets, such as the ones considered
in [1].

Acknowledgments. The research in this paper is partly supported by the Sci-
ence and Education Ministry FPU grant AP2009-1034 and the Spanish Ministry
of Science and Innovation grant MTM2010-17844.
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Abstract. In statistics, compositional data are defined as multivari-
ate observations that quantitatively describe contributions of parts on a
whole, carrying exclusively relative information. As a consequence, com-
positions can be represented as proportions or percentages without loss
of information (contained in ratios between parts). Nevertheless, in the
practice parts of compositional data are frequently formed by intervals;
for example, concentrations of chemical elements are provided not as
exact numbers, but rather in an interval range. Intuitively, a natural
question arises, whether the relative information is preserved, when the
original compositional data with interval-valued parts are represented in
proportions. Namely, from the arithmetic properties of interval data, nor-
malizing of intervals does not simply follow the case of real values, but a
special procedure according to constrained interval arithmetic is needed.
The aim of the contribution is to discuss possibilities of representing the
interval compositional data in proportions.

Keywords: compositional data, Aitchison geometry, interval arithmetic,
descriptive statistics.

1 Introduction

The concept of compositional data frequently occurs in many applications, cov-
ering such situations, where not the absolute values of variables, but rather
relative information they contain is of primary interest [1,8]. Typical examples
are formed by concentrations of chemical elements in a rock (in mg/kg), pro-
portional representation of political parties resulting from elections, but also
household expenditures on various costs (like foodstuff, housing, clothing, cul-
ture, etc.), when the relative structure of costs is to be analyzed. Consequently,
compositional data are popularly represented as multivariate observations with
a constant sum constraint (like in proportions or percentages). Nevertheless, the
above examples clearly imply that compositions themselves are not necessarily
induced by any such constraint (household expenditures can be represented both
in the original units, like EUR or USD, and in proportions, the ratios between
parts remain the same).
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In the practice also such situations occur that compositional parts are rep-
resented by intervals rather than by precise values. One natural source of such
data comes from aggregation of information over individuals in symbolic data
analysis [2] in order to obtain representants of specified sets of individuals (like
household expenditures in different parts of a certain region) that capture vari-
ability of the aggregation process. Another source of interval compositional data
is formed by measurement process itself that leads naturally to unprecise values.
Such situations arise usually in analytical chemistry or geochemistry, e.g. due
rounding effects of values near to detection limit. In contrast to symbolic data
analysis case, here the interval values of variables are often combined with pre-
cise ones what makes the use of procedures based on logarithmic transformation
[3] conceptually not possible.

To illustrate the methodology, presented further, we use a small real-world
data set, obtained from The National Institute of Public Health of Czech Re-
public (2011), where chemical composition of seven popular mineral waters was
analyzed. For our purposes, just four chemical elements were chosen (calcium,
sodium, magnesium and potassium), and the resulting values (measured in mg/l
and already collected in form of interval values with lower and upper boundary)
are presented in Table 1 (the mineral waters are listed with their original Czech
names). We can observe that the interval values in the data set occur in all vari-
ables, except for the first mineral water (called Hanácká kyselka) and potassium
in case of Magnesia.

Table 1. Interval concentrations of chemical elements (in mg/l) in Czech mineral
waters

Mineral waters Calcium Sodium Magnesium Potasium

Hanácká kyselka 275.0 275.0 68.0 68.0 251.0 251.0 17.7 17.7

Korunńı 78.3 86.5 29.5 30.9 98.0 111.1 23.0 25.5

Magnesia 35.3 41.3 179.0 200.0 4.3 6.8 1.4 1.4

Mattoni 87.6 88.6 24.8 24.9 71.9 79.8 18.0 19.0

Ondrášovka 192.0 199.4 19.4 19.8 29.2 30.9 1.4 1.6

Poděbradka 142.2 145.5 45.4 49.3 344.0 360.0 47.0 49.8

Dobrá voda 8.7 10.7 9.5 9.7 9.5 10.0 9.3 9.4

Obviously, also for interval compositional data, analogously as for composi-
tions with precise values, not absolute values of single element concentrations,
but rather their relative contributions to the overall chemical composition of
mineral waters is of primary interest. In other words, also here the ratios be-
tween (interval) compositional parts form the source of relevant information.
Nevertheless, due to limitations of interval arithmetics, treatment of interval
compositional data is more complex than in the standard (precise) case. The
aim of this contribution is to draw up possible problems and challenges, related
to geometrical properties and subsequent statistical analysis of interval compo-
sitional data, that might lead to a concise methodology in the future.
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The paper is organized as follows. In the next section, basics of interval arith-
metics are refreshed, with a focus on positive interval data (forming the com-
positional parts). Section 3 is devoted to the problem of forming the ratios of
compositional data. In Section 4, problems related to proportional representa-
tion of interval compositional data are analyzed. Consequently, implications for
descriptive statistics of interval compositions are briefly discussed. Finally, pos-
sibilities of further development are collected in the last section.

2 Computing with Intervals

Before we proceed to introduce interval compositional data and their geometrical
concepts, let us briefly refresh basic possibilities of computing with intervals. Due
to definition of compositional data, it is sufficient to restrict the general case for
positive intervals only. We will distinguish two cases: First, we will assume that
the input intervals are independent, i.e. all combinations of values belonging to
the intervals are admissible. Second, we will consider interactive input intervals,
where the set of all admissible combinations of values is given.

Let I1, . . . , In be independent intervals and f : Rn → R be a continuous
function. Then

f(I1, . . . , In) =
[
y, y

]
,

where

y = min{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n},
y = max{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n}.

If f stands for one of the basic arithmetic operations, we get the well-known
concept of standard interval arithmetic. Let [a, b], 0 < a ≤ b, and [c, d], 0 < c ≤ d,
be independent intervals. Then arithmetic operations are extended as follows:

[a, b] + [c, d] = [a+ c, b+ d] ,

[a, b]− [c, d] = [a− d, b− c] ,

[a, b] · [c, d] = [a · c, b · d] ,
[a, b]

[c, d]
=

[
a

d
,
b

c

]
.

However, the above concept cannot be applied in the case when it is given a
constraint set Q ⊂ Rn that represents all admissible combinations of the values
of x1, . . . , xn (see e.g. [5]). If Q ∩ (I1 × . . .× In) is a nonempty convex set, then

f(I1, . . . , In;Q) =
[
y, y

]
,

where

y = min{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n, (x1, . . . , xn) ∈ Q}
y = max{f(x1, . . . , xn) | xi ∈ Ii, i = 1, . . . , n, (x1, . . . , xn) ∈ Q}.

In our case, the role of a constraint set Q will play, for instance, the set
representing proportional representation of interval compositional data.
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3 Ratios of Compositional Parts

Following the Introduction section, a sample of D-part compositional data are
positive vectors xi := (xi1, . . . , xiD), i = 1, . . . , n, that describe quantitatively
contributions of parts on a whole, carrying exclusively relative information. This
means that the relevant information is expressed by the ratios rijk := xij/xik,
j, k = 1, . . . , D, j �= k.

Now, let us consider the case of interval compositional data

Xi := ([xi1, xi1] , . . . , [xiD, xiD]) , i = 1, . . . , n,

where

0 < xij ≤ xij , j = 1, . . . , D.

For the sake of simplicity, let us assume further that
[
xij , xij

]
and [xlk, xlk] are

independent intervals for any i, l = 1, . . . , n, and j, k = 1, . . . , D, j �= k.
According to the assumption, we can apply the concept of standard interval

arithmetics for computing the ratios between the compositional parts:

Ri
jk :=

[
xij , xij

]
[xik, xik]

=

[
xij

xik
,
xij

xik

]
, i = 1, . . . , n, j, k = 1, . . . , D, j �= k. (1)

For illustration, the ratios between concentrations of chemical elements presented
in Table 1 are shown in Table 2.

Table 2. Ratios between concentrations of chemical elements in Czech mineral waters

Mineral waters Calcium/Sodium Calcium/Magnesium Calcium/Potasium

Hanácká kyselka 4.044 4.044 1.096 1.096 15.537 15.537

Korunńı 2.534 2.932 0.705 0.883 3.071 3.761

Magnesia 0.177 0.231 5.191 9.605 25.214 29.500

Mattoni 3.518 3.573 1.098 1.232 4.611 4.922

Ondrášovka 9.697 10.278 6.214 6.829 120.0 142.429

Poděbradka 2.884 3.205 0.395 0.4236 2.855 3.096

Dobrá voda 0.897 1.126 0.870 1.126 0.926 1.151

For possible further dealing with interval ratios Ri
jk obtained by (1), it is

worth to note that Ri
jk and Ri

jl, k �= l, are not independent intervals since the

same interval
[
xij , xij

]
is used for their calculation.

4 Proportional Representation

The original compositions xi, i = 1, . . . , n, are often represented so that the
sums of the components for each composition are equal to an arbitrary (but
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fixed) constant κ > 0. Such a representation is formally expressed by the closure
operation

C(xi) :=

(
κ · xi1∑D
j=1 xij

, . . . ,
κ · xiD∑D
j=1 xij

)
, i = 1, . . . , n.

The constant κ is popularly taken as 1 (or 100) in case of proportional (percent-
age) representation. It is essential that the proportional representation keeps the
ratios between the compositional parts as

κ·xik∑D
j=1 xij

κ·xil∑
D
j=1 xij

=
xik

xil
, k, l = 1, . . . , D.

Note that the resulting scale invariance is one of the basic properties of compo-
sitional data, reflected also by the Aitchison geometry [8] that forms a natural
algebraic-geometrical structure of compositions. Without the loss of generality,
we will assume κ = 1 further in the paper.

For the interval compositional data Xi, i = 1, . . . , n, the situation becomes
more complex. Observe that in the proportions

C(xi)k :=
xik∑D
j=1 xij

, k = 1, . . . , D,

the variable xik appears both in the numerator and the denominator. Hence, we
cannot apply the concept of standard interval arithmetic and compute the k-th
interval proportion in the following way:

[xik, xik]∑D
j=1

[
xij , xij

] =
[xik, xik][∑D

j=1 xij ,
∑D

j=1 xij

] =

[
xik∑D
j=1 xij

,
xik∑D
j=1 xij

]
,

as the numerator and the denominator are not independent intervals. The correct
procedure for computing the intervals [cik, cik], k = 1, . . . , D, that express the
ranges of particular proportions from C(Xi) is given in the following way (the
formulas were developed for the first time in [4] for normalizing interval weights):

cik = min

{
xik∑D
j=1 xij

| xij ∈
[
xij , xij

]
, j = 1, . . . , D

}
=

xik

xik +
∑D

j=1, j 	=k xij

,

cik = max

{
xik∑D
j=1 xij

| xij ∈
[
xij , xij

]
, j = 1, . . . , D

}
=

xik

xik +
∑D

j=1, j 	=k xij

.

The interval proportions of concentrations of chemical elements presented in
Table 1 are given in Table 3.

However, the obtained intervals [cik, cik], k = 1, . . . , D, are not independent,
so it is not correct to compute their ratios by means of standard interval arith-
metic. Applying the results concerning normalization of interval weights that
were proved in [7], we find out that the following general relations hold:
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Table 3. Interval proportions of concentrations of chemical elements from Table 1

Mineral waters Calcium Sodium Magnesium Potasium

Hanácká kyselka 0.45 0.45 0.111 0.111 0.41 0.41 0.029 0.029

Korunńı 0.319 0.365 0.117 0.134 0.407 0.459 0.092 0.011

Magnesia 0.145 0.183 0.783 0.823 0.017 0.031 0.006 0.006

Mattoni 0.415 0.436 0.117 0.123 0.352 0.38 0.085 0.094

Ondrášovka 0.786 0.8 0.077 0.082 0.117 0.127 0.006 0.007

Poděbradka 0.237 0.25 0.076 0.085 0.584 0.605 0.078 0.086

Dobrá voda 0.23 0.274 0.24 0.261 0.242 0.267 0.234 0.253

Ri
jk ⊆

[
cij , cij

]
[cik, cik]

j, k = 1, . . . , D, j �= k.

Example 1. Let us consider the interval ratio between concentrations of calcium
and sodium in mineral water Korunńı [2.534, 2.932] (see Table 2). If we com-
pute, by means of the standard interval arithmetic operations, the ratio between
interval proportions of calcium and sodium on the whole presented in Table 3,
we obtain the following result:

[0.319, 0.365]

[0.117, 0.134]
= [2.373, 3.125] .

We can see that the interval ratio [2.534, 2.932] is indeed a strict subset of
[2.373, 3.125].

The interactions among the proportions [cik, cik], k = 1, . . . , D, mean that
the proper proportional representation of interval compositional data Xi, i =
1, . . . , n, has to be given in the following way:

C(Xi) :=
{
C(xi) ∈ [0, 1]D | xi ∈ [xi1, xi1]× . . .× [xiD, xiD]

}
. (2)

Employing the results proved in [6] concerning normalization of interval weights,
we can see that, unless D = 2, the interval proportions [cik, cik], k = 1, . . . , D,
alone do not carry the whole information about the proportional representation
of interval compositional data. From (2), we can see that we still have to know
the initial interval compositional data Xi, i = 1, . . . , n. For D = 2, it is on the
contrary sufficient to know only one interval proportion, e.g. [ci1, ci1], C(Xi) can
be then given as follows:

C(Xi) =
{
(ci1, ci2) ∈ [0, 1]2 | ci1 ∈ [ci1, ci1] , ci2 = 1− ci1

}
.

Remark 1. Note that if the ratios between two proportions are calculated prop-
erly, they are equal to the ratios between the corresponding original compo-
sitional parts (the following procedure is inspired by the procedure introduced
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in [7] for computing the ratios between normalized fuzzy weights). For j, k =
1, . . . , D, j �= k, let us denote the proper ratio between the j-th and k-th
proportions by [rijk, r

i
jk]. Then

rijk = min
{

cij
cik
| cij and cik express the j-th and k-th components

of at least one C(xi) ∈ C(Xi)
}
,

rijk = max
{

cij
cik
| cij and cik express the j-th and k-th components

of at least one C(xi) ∈ C(Xi)
}
.

It can be shown (see [7, Theorem 8]) that [rijk, r
i
jk] = Ri

jk for any j, k = 1, . . . , D,
j �= k.

5 Descriptive Statistics

Specific properties of (precise) compositional data, captured by the Aitchison ge-
ometry, should be reflected also by their descriptive statistics [1,9]. For instance,
the arithmetic mean as a measure of location needs to be replaced by the geo-
metric mean (centre) of compositional data, g(x) :=

(
g
(
x1
)
, . . . , g

(
xD

))
, where

xj := (x1j , . . . , xnj) and g
(
xj
)
:= n

√∏n
i=1 xij , j = 1, . . . , D. Note that the cen-

tre can be computed from an arbitrary representation of the input compositions
x1, . . . ,xn, the ratios between parts of g(C(x)) remain always the same, i.e.

g
(
xj
)

g (xk)
=

g
(
C
(
xj
))

g (C (xk))
, j, k = 1, . . . , D. (3)

Now, let us consider the case of interval compositional data Xi, i = 1, . . . , n,
introduced in Section 3. Since the particular intervals are assumed to be indepen-
dent, the centre of these data is given as a vector g(X) =

(
g
(
X1
)
, . . . , g

(
XD

))
,

where
Xj :=

([
x1j , x1j

]
, . . . ,

[
xnj , xnj

])
, j = 1, . . . , D,

and

g
(
Xj
)
:=

[
n

√∏n

i=1
xij ,

n

√∏n

i=1
xij

]
, j = 1, . . . , D.

Note that the particular intervals g
(
Xj
)
, j = 1, . . . , D, are independent. Hence,

their ratios have to be computed applying the concept of standard interval arith-
metic.

At the end of this section, let us verify the validity of equality (3) in the case
of interval compositional data. Let

C
(
Xj
)
:=

([
c1j , c1j

]
, . . . ,

[
cnj , cnj

])
, j = 1, . . . , D,
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and g(C(X)) =
(
g
(
C
(
X1
))

, . . . , g
(
C
(
XD

)))
, where, for i = 1, . . . , n, j =

1, . . . , D,
[
cij , cij

]
expresses the range of proportion of the j-th part in Xi.

Since the intervals
[
cij , cij

]
, i = 1, . . . , n, j = 1, . . . , D, are not independent, also

the obtained intervals g
(
C
(
X1
))

, . . . , g
(
C
(
XD

))
are not independent and their

ratios cannot be computed applying the concept of standard interval arithmetic.
If we do so, we obtain the following relation instead of equality (3):

g
(
Xj
)

g (Xk)
⊆

g
(
C
(
Xj
))

g (C (Xk))
, j, k = 1, . . . , D.

Therefore, for retaining the validity of equality (3), we have to respect the in-
teractions among g

(
C
(
X1
))

, . . . , g
(
C
(
XD

))
when computing their ratios.

6 Future Work

Interval compositional data form a natural extension of the precise case. We
have studied possible ways of dealing with such data. Future work will be aimed
at extension of other procedures developed for dealing with compositional data.
Another problem worth to study will be utilization of the information about
precise sum of compositional parts, that is frequently available in the practice.
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7. Pavlačka, O.: On various approaches to normalization of interval and fuzzy weights.
Fuzzy Set. Syst. 243, 110–130 (2014)

8. Pawlowsky-Glahn, V., Buccanti, A. (eds.): Compositional Data Analysis: Theory
and Applications. Wiley, Chichester (2011)

9. Pawlowsky-Glahn, V., Egozcue, J.J.: BLU Estimators and Compositional Data.
Math. Geol. 34, 259–274 (2002)



A New Definition of Evaluation/Defuzzification

of an Interval Type-2 Fuzzy Set

Luca Anzilli1, Gisella Facchinetti1, and Tommaso Pirotti2

1 Department of Management, Economics, Mathematics and Statistics,
University of Salento, Italy

{luca.anzilli,gisella.facchinetti}@unisalento.it
2 Department of Economics “Marco Biagi”,

University of Modena and Reggio Emilia, Italy
tommaso.pirotti@unimore.it

Abstract. In this paper we propose a new evaluation/defuzzification
formula for an Interval Type-2 Fuzzy Quantity (IT2 FQ), that is an
Interval Type-2 Fuzzy Set (IT2 FS) defined by two Type-1 Fuzzy Quan-
tities (T1 FQs) having membership functions that may be neither convex
nor normal. We start from a parametric formula to evaluate them and
we propose to call the IT2 FQ value their average. To compare the re-
sults we obtain changing the parameters, we use the final output of an
example of Interval Type-2 Fuzzy Logic System (IT2 FLS).

Keywords: Fuzzy sets, fuzzy quantities, interval type-2 fuzzy sets, eval-
uation.

1 Introduction

Type-2 fuzzy sets and systems generalize type-1 fuzzy sets and systems so that
more uncertainty can be handled. When fuzzy sets enter in scientific world, one
of critics is due to the fact that the membership function of a Type-1 Fuzzy
Set (T1 FS) has no uncertainty associated with it. This fact seems to contradict
the word “fuzzy”. In 1975 Prof. Lotfi A. Zadeh [20] proposed more sophisticated
kinds of fuzzy sets, he called Type-2 Fuzzy Sets (T2 FSs). A T2 FS lets us
incorporate uncertainty about the membership function into fuzzy set theory,
and is a way to address the above criticism of T1 FS heads-on. The membership
function of a T2 FS is three-dimensional, where the third dimension is the value
of the membership function at each point on its two-dimensional domain which is
called its footprint of uncertainty (FOU). Interval Type-2 Fuzzy Sets (IT2 FSs)
are particular T2 FSs in which third dimension value is constant (e.g., 1). This
means that no new information is contained in the third dimension of an IT2
FS and only the FOU is used to describe it. An IT2 FS is completely described
by two T1 FSs whose membership functions are the lower and upper bounds of
its FOU.

After the wide number of applications of Type-1 Fuzzy Logic Systems (T1
FLSs), even the Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) started and
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found a lot of interesting and successful applications in signal processing, finger-
prints detection and in Computing With Words fields. The researches on IT2
FLSs had a wide impulse by Prof. Jerry Mendel and others researchers works
[12,13,14,15]. The final output of an IT2 FLS is an IT2 FS and thus one needs
methods for the evaluation/defuzzification of an IT2 FS. Karnik and Mendel [11]
proposed a defuzzification method based on an algorithm that evaluates an IT2
FS taking the average of the centroids of T1 FSs embedded in the FOU zone.

This paper goes in the same direction and proposes a parametric evalu-
ation/defuzzification formula for an Interval Type-2 Fuzzy Quantity (IT2 FQ),
that is an IT2 FS defined by two Type-1 Fuzzy Quantities (T1 FQs) whose mem-
bership functions may be neither convex nor normal. We start from a parametric
formula for the evaluation of the two T1 FQs and we propose to call the IT2
FQ value their average. This approach allows us, by changing the set of param-
eters, to recover the T1 FQs evaluations proposed by Fortemps and Roubens
[8,3], Yager and Filev [18,19], Anzilli and Facchinetti [3] and Center of Gravity
(COG). To illustrate how our method works, we apply it to the final output of an
example of IT2 FLS and compare the numerical results we obtain changing the
set of parameters. In Section 2 and Section 3 we introduce the concepts of IT2
FS and IT2 FQ. In Section 4 we give an example of IT2 FLS and in section 5 we
present the evaluation model for an IT2 FQ and apply it to the defuzzification
of the final output of the IT2 FLS.

2 Interval Type-2 Fuzzy Sets

We give a short presentation of T2 FSs and IT2 FSs (for detail see [15]).

Definition 1. A T2 FS Ã in the universe of discourse X is characterized by a
type-2 membership function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.

Ã = {((x, u), μÃ(x, u)) ; ∀x ∈ X , ∀u ∈ Jx ⊆ [0, 1]}

in which 0 ≤ μÃ(x, u) ≤ 1. Jx is a closed interval of real numbers. A T2 FS Ã

can also be represented as Ã =
∫
x∈X

∫
u∈Jx

μÃ(x, u)/(x, u).

Definition 2. If all μÃ(x, u) = 1 then Ã is called an IT2 FS.

An IT2 FS Ã can be considered as a special case of a T2 FS and it can be
expressed as Ã =

∫
x∈X

∫
u∈Jx

1/(x, u). Jx is called the primary membership of x.

The footprint of uncertainty (FOU) of an IT2 FS Ã is defined by FOU(Ã) =⋃
x∈X Jx. The FOU is a complete description of an IT2 FS. The upper mem-

bership function μU
Ã

and the lower membership function μL
Ã

of an IT2 FS Ã
are defined as the two type-1 membership functions that bound the FOU. Thus
Jx = [μL

Ã
(x), μU

Ã
(x)] for all x ∈ X . In the following an IT2 FS Ã will be denoted

by Ã = (AL, AU ), where AL and AU are the T1 FSs with membership functions
μAL = μL

Ã
and μAU = μU

Ã
, respectively.
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The intersection and the union of two IT2 FSs Ã, B̃ are defined as the IT2 FSs
given by

Ã � B̃ =

∫
x∈X

∫
u∈[μL

Ã�B̃
(x),μU

Ã�B̃
(x)]

1/(x, u)

Ã � B̃ =

∫
x∈X

∫
u∈[μL

Ã�B̃
(x),μU

Ã�B̃
(x)]

1/(x, u)

with μL
Ã
B̃

(x) = T (μL
Ã
(x), μL

B̃
(x)), μU

Ã
B̃
(x) = T (μU

Ã
(x), μU

B̃
(x)), μL

Ã�B̃
(x) =

S(μL
Ã
(x), μL

B̃
(x)) and μU

Ã�B̃
(x) = SμU

Ã
(x), μU

B̃
(x)), where T is the t-norm opera-

tor and S is the t-conorm operator.

3 Interval Type-2 Fuzzy Quantities

We now introduce the concept of T1 FQ (see [3,4]) and the definition of IT2 FQ.

Definition 3. Let N be a positive integer and let a1, a2, . . . , a4N be real numbers
with a1 < a2 ≤ a3 < a4 ≤ a5 < a6 ≤ a7 < a8 ≤ a9 < · · · < a4N−2 ≤ a4N−1 <
a4N . We call type-1 fuzzy quantity

A = (a1, a2, . . . , a4N ; h1, h2, . . . , hN , h1,2, h2,3, . . . , hN−1,N ) (1)

where 0 < hj ≤ 1 for j = 1, . . . , N and 0 ≤ hj,j+1 < min{hj, hj+1} for j =
1, . . . , N − 1, the fuzzy set defined by a continuous membership function μ : R→
[0, 1], with μ(x) = 0 for x ≤ a1 or x ≥ a4N , such that for j = 1, 2, . . . , N

(i) μ is strictly increasing in [a4j−3, a4j−2], with μ(a4j−3)=hj−1,j and μ(a4j−2)
= hj,

(ii) μ is constant in [a4j−2, a4j−1], with μ ≡ hj,
(iii) μ is strictly decreasing in [a4j−1, a4j ], with μ(a4j−1) = hj and μ(a4j) =

hj,j+1,

and for j = 1, 2, . . . , N − 1

(iv) μ is constant in [a4j , a4j+1], with μ ≡ hj,j+1,

where h0,1 = hN,N+1 = 0. Thus the height of A is hA = maxj=1,...,N hj.

We observe that in the case N = 1 the T1 FQ defined in (1) is fuzzy convex,
that is every α-cut Aα is a closed interval. If N ≥ 2 the T1 FQ defined in (1) is
a non-convex fuzzy set with N humps and height hA = maxj=1,...,N hj .

Definition 4. We call Interval Type-2 Fuzzy Quantity (IT2 FQ) an IT2 FS Ã
such that μL

Ã
and μU

Ã
are membership functions of T1 FQs.

If Ã is an IT2 FQ we denote by AL the T1 FQ with membership function
μAL = μL

Ã
and by AU the T1 FQ with membership function μAU = μU

Ã
(see

Figure 2). In the following an IT2 FQ Ã will be denoted by Ã = (AL, AU ).
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Fig. 1. Piecewise linear T1 FQ (N = 2)

FOU(Ã)

Fig. 2. IT2 FQ Ã = (AL, AU )

4 An Example of Interval Type-2 Fuzzy Logic Systems

Suppose we have an Interval Type-2 Fuzzy Logic Systems (IT2 FLS) with p
inputs, x1, . . . , xp and one output y. Consider its rule-block characterized by M
rules where the m-th rule has the form

Rm : IF x1 is F̃1m and . . . and xp is F̃pm THEN y is G̃m m = 1, . . . ,M

where F̃im, G̃m are IT2 FSs. Note that F̃im is the linguistic label associated with
i-th antecedent in them-th rule and G̃m is the linguistic label associated with the
output variable in the m-th rule. Let us define F̃m = ⊔pi=1 F̃im, m = 1, . . . ,M .

The output G̃∗
m of each rule is the IT2 FS given by G̃∗

m = F̃ ′
m ◦ (F̃m → G̃m),

where ◦ is the sup-star composition operator. The final output G̃∗ is the IT2 FS
obtained as G̃∗ =

⊔M
m=1 G̃

∗
m.

We consider a singleton IT2 FLS, that is a IT2 FLS with crisp input x′ =
(x′

1, . . . , x
′
p). We assume that Mamdani implications are used, T = min, S =

max. For each rulem=1, . . . ,M we compute the firing interval [μL
F̃m

(x′), μU
F̃m

(x′)]
as

μL
F̃m

(x′) = min
i=1,...,p

μL
F̃im

(x′
i) , μU

F̃m
(x′) = min

i=1,...,p
μU
F̃im

(x′
i) .

Form = 1, . . . ,M the output IT2 FS of rulem, G̃∗
m = (G̃∗ L

m , G̃∗ U
m ), is calculated

as

μL
G̃∗

m
(y) = min

{
μL
F̃m

(x′), μL
G̃m

(y)
}
, μU

G̃∗
m
(y) = min

{
μU
F̃m

(x′), μU
G̃m

(y)
}
.

The final output IT2 FS G̃∗ = (G̃∗L, G̃∗U ) is obtained as G̃∗ =
⊔M

m=1 G̃
∗
m, that

is
μL
G̃∗(y) = max

m=1,...M
μL
G̃∗

m
(y) , μU

G̃∗(y) = max
m=1,...M

μU
G̃∗

m
(y) .

To show our defuzzification method we consider a very simple example of IT2
FLS with two inputs and one output. The example is the type-2 translation of
a client financial risk tolerance model illustrated in [5, p.130], with a little dif-
ference on output granularity. “Financial service institutions face a difficult task
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in evaluating clients risk tolerance. It is a major component for the design of an
investment policy and understanding the implication of possible investment op-
tions in terms of safety and suitability. Here we present a simple model of client’s
risk tolerance ability (RT), which depends on his/hers annual income (AI) and
total net worth (TNW)”. Suppose the financial experts agree to describe the
input variables AI and TN by the linguistic terms {L (Low), M (Medium), H
(High)} and the output variable RT by the linguistic terms {L (Low), LM (Low-
Medium), M (Medium), MH (Medium-High), H (High)}. Each granule is an IT2
FS in which the domains are : U1 = {x × 103 ; 0 ≤ x ≤ 100} for input AI,
U2 = {y × 104 ; 0 ≤ y ≤ 100} for input TN and U3 = {z ; 0 ≤ z ≤ 100} for
output RT. The real numbers x and y represent euros in thousands and hundred
of thousands, correspondingly, while z takes values on a psychometric scale from
0 to 100 measuring risk tolerance. All the granules are described by triangular
or trapezoidal IT2 FSs, as shown in Fig. 3.

(a) Input variables AI and TN (b) Output variable RT

Fig. 3. Input and output variables of IT2 FLS

We assume that the financial experts selected the rules:

R1: IF AI is L and TN is L THEN RT is L
R2: IF AI is L and TN is M THEN RT is ML
R3: IF AI is L and TN is H THEN RT is ML
R4: IF AI is M and TN is L THEN RT is ML
R5: IF AI is M and TN is M THEN RT is M
R6: IF AI is M and TN is H THEN RT is MH
R7: IF AI is H and TN is L THEN RT is MH
R8: IF AI is H and TN is M THEN RT is MH
R9: IF AI is H and TN is H THEN RT is H

If we set crisp inputs by x = 38 and y = 70, the final output is the IT2 FQ
G̃∗ = (G̃∗L, G̃∗U ) shown in Fig. 4, where G̃∗L and G̃∗U are T1 FQs (see (1))
given by

G∗L = (5.00, 11.91, 39.73, 43.00, 57.00, 64.20, 84.60, 95.00; 0.31, 0.47, 0.18)

G∗U = (0.00, 11.86, 39.32, 43.41, 56.59, 63.86, 85.27, 100.00; 0.53, 0.65, 0.36) .
(2)
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5 Evaluation of Interval Type-2 Fuzzy Quantities

In [4] we propose a way to approximate a T1 FQ by an interval. Our proposal
starts from Grzegorzewski’s papers in which the author defines and finds the
approximating interval of a fuzzy number. Starting from a distance between
two fuzzy numbers and observing that any closed interval is a fuzzy number,
the author defines the approximating interval of a fuzzy number as the interval
of minimum distance. The distance he uses is based on the distance between
intervals introduced by Trutschnig et al. [16]. This idea needs that each α-cut
is an interval, that is the fuzzy set has to be convex. Hence, we cannot follow
the same approach for non convex fuzzy quantities. To overcome this obstacle
we noticed that Grzegorzewski’s procedure may be regarded as the study of the
minimum of the variance between the α-cuts family identifying a fuzzy number
and a generic interval. This new way to look at the problem may be useful for
non convex fuzzy quantities too.

Proposition 1. Let A be the T1 fuzzy quantity defined in (1) with height
hA. Then for each α ∈ [0, hA] there exist an integer nα, with 1 ≤ nα ≤
N , and Aα

1 , . . . , A
α
nα

disjoint closed intervals such that Aα =
⋃nα

i=1 A
α
i =⋃nα

i=1[a
L
i (α), a

R
i (α)] , where we have denoted Aα

i = [aLi (α), a
R
i (α)], with Aα

i <
Aα

i+1 (that is aRi (α) < aLi+1(α)). Thus nα is the number of intervals producing
the α-cut Aα.

From decomposition theorem for T1 FSs and using previous result, we get

A =
⋃

α∈[0,hA]

αAα =
⋃

α∈[0,hA]

α

nα⋃
i=1

Aα
i =

⋃
α∈[0,hA]

nα⋃
i=1

αAα
i

and thus the T1 FQ is identified by the intervals {Aα
i ; i = 1 . . . , nα, 0 ≤ α ≤

hA}.

Definition 5. We say that C∗(A) = [c∗L, c
∗
R] is an approximation interval of the

T1 FQ A with respect to p, f , θ if it minimizes the weighted mean of the squared
distances

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

G∗L

G∗U

Fig. 4. Output IT2 FQ G̃∗ = (G̃∗L, G̃∗U ) of IT2 FLS
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D
(2)

(C;A) =
1∫ hA

0 f(α) dα

∫
hA

0

nα∑
i=1

d
2
θ(C,A

α
i ) pi(α) f(α) dα

=
1∫ hA

0 f(α) dα

∫
hA

0

nα∑
i=1

[(
mid(C) − mid(Aα

i )
)2 + θ(α)

(
spr(C)− spr(Aα

i )
)2]pi(α) f(α)dα

among all the intervals C = [cL, cR], where, for each level α, the weights p(α) =
(pi(α))i=1,...,nα satisfy the properties pi(α) ≥ 0 and

∑nα

i=1 pi(α) = 1, the weight

function f : [0, 1]→ [0,+∞[ is such that
∫ hA

0 f(α) dα > 0 and θ : [0, 1]→]0, 1] is
a function that indicates the relative importance of the spreads against the mids
([10,16]).

We have denoted by mid(I) = (a+ b)/2 and spr(I) = (b−a)/2 the middle point
and the spread of the interval I = [a, b].

Theorem 1. [4] The approximation interval C∗(A) = C∗(A; p, f, θ) = [c∗L, c
∗
R]

of the T1 FQ A with respect to p, f , θ is given by

c∗L =

∫ hA

0

∑nα

i=1 mid(Aα
i ) pi(α) f(α) dα∫ hA

0
f(α) dα

−
∫ hA

0

∑nα

i=1 spr(A
α
i ) pi(α) f(α) θ(α) dα∫ hA

0
f(α) θ(α) dα

c∗R =

∫ hA

0

∑nα

i=1 mid(Aα
i ) pi(α) f(α) dα∫ hA

0 f(α) dα
+

∫ hA

0

∑nα

i=1 spr(A
α
i ) pi(α) f(α) θ(α) dα∫ hA

0 f(α) θ(α) dα
.

Definition 6. We call evaluation of the T1 FQ A with respect to p, f , θ and
λ ∈ [0, 1] the real number

V λ,θ(A) = φλ(C
∗(A)) ,

where φλ is defined by φλ(I) = (1− λ)a+ λb = mid(I) + (2λ− 1)spr(I) for any
interval I = [a, b] and λ ∈ [0, 1] is a pessimistic/optimistic parameter. Thus

V λ,θ(A) =

∫ hA
0

∑nα
i=1 mid(Aα

i ) pi(α) f(α) dα∫ hA
0 f(α) dα

+ (2λ − 1)

∫ hA
0

∑nα
i=1 spr(Aα

i ) pi(α) f(α) θ(α)dα∫ hA
0 f(α) θ(α) dα

.

This general formula includes, for suitable choices of parameters λ, p and f , the
evaluations proposed by Fortemps and Roubens [8,3], Yager and Filev [18,19],
Anzilli and Facchinetti [3] and Center of Gravity (COG), as shown in Table 1.

Definition 7. We define the value of the IT2 FQ Ã = (AL, AU ) as

V λ,θ(Ã) = (V λ,θ(AL) + V λ,θ(AU ))/2 .

As an application, we now compute the evaluation of the final output G̃∗ =
(G̃∗L, G̃∗U ) given in (2) (see Fig. 4) using different methods. First, we evaluate
the T1 FQs G̃∗L and G̃∗U and then we obtain the value of the IT2 FQ G̃∗ as
V (G̃∗) = (V (G∗L) + V (G∗U ))/2. The numerical results are shown in Table 2.
The “Interval Type-2 Fuzzy Logic Toolbox” [6] produces 52 as centroid.
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Table 1. Set of parameters

Evaluation λ pi(α) f(α)

Fortemps and Roubens 1/2 1/nα nα

Yager and Filev 1/2 spr(Aα
i )/

∑nα
j=1 spr(A

α
j ) 1

Anzilli and Facchinetti 1/2 spr(Aα
i )/

∑nα
j=1 spr(A

α
j ) nα

COG 1/2 spr(Aα
i )/

∑nα
j=1 spr(A

α
j ) 2

∑nα
j=1 spr(A

α
j )

Table 2. Evaluation of IT2 FQ G̃∗ = (G̃∗L, G̃∗U )

Evaluation V (G∗L) V (G∗U ) V (G̃∗)

Fortemps and Roubens 56.48 53.57 55.03
Yager and Filev 58.28 54.48 56.38
Anzilli and Facchinetti 56.49 53.53 55.01
COG 53.44 51.49 52.47

6 Conclusion

In this paper we introduce a different type-reduction method for IT2 FLSs. We
consider only the T1 membership functions that bound the Output FOU zone
and for its defuzzification we present a general formula completely different from
centroid proposed by Karnik and Mendel for two reasons. First of all it is ob-
tained working on an α-cuts approach while centroid works on x-axis. Moreover
it is presented in a parametric formulation leaving a wide set of freedom. This
opportunity has allowed us to obtain not only other methods already known,
not only other completely new but the centroid too. We have obtained this gen-
eral formula starting from an idea of the interval nearest to T1 FQ respect to a
general functional suggested by the distance proposed by Trutschnig et al. [16].
Now we are working on a more general way to approximate T1 FQs based on a
triangular fuzzy set and in the following on trapezoidal fuzzy sets. These works
are in preparation.
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Abstract. We study interval-valued fuzzy sets as a model for the impre-
cise knowledge of the membership function of a fuzzy set. We compare
three models for the probabilistic information about this membership
function: the set of distributions of the measurable selections, the upper
and lower probabilities of the associated random interval, and its p-box.
We give sufficient conditions for the equality between these sets, and
establish a connection with the notion of probability induced by an in-
tuitionistic fuzzy set. An alternative approach to the problem by means
of sets of finitely additive distributions is also considered.

Keywords: Interval-valued fuzzy sets, random intervals, measurable se-
lections, upper and lower probabilities, p-boxes.

1 Introduction

Interval-valued fuzzy sets [18] (IVF-sets, for short) were introduced as an ex-
tension of fuzzy sets [16] to model situations in which the “true” membership
function is in some sense unknown. Then, instead of providing a precise member-
ship degree, IVF-sets assign an interval of possible membership degrees. Thus,
given an universe Ω, an IVF-set A is defined, for any ω ∈ Ω, by [lA(ω), uA(ω)],
and it is given the epistemic interpretation that all we know about the “true”
membership degree of ω is that it belongs to that interval.

A related extension of fuzzy sets is given by intuitionistic fuzzy sets [1,2] (IF-
sets, for short). For them, the interpretation is slightly different: they assign
a membership and a non-membership degree to any element of the possibility
space. Thus, an IF-set A is defined by two functions μA, νA : Ω → [0, 1], so
that for any ω ∈ Ω, μA(ω) and νA(ω) model the degree in which ω satisfies and
does not satisfy the notion encompassed by the fuzzy set A, with the restric-
tion μA(ω) + νA(ω) ≤ 1. In this sense, they constitute an instance of bipolar
models [8]. Although IF-sets and IVF-sets model different situations, they are
mathematically equivalent [4].

In this work, we shall assume that the IVF-set is defined on a probability space
and that the unknown membership function is measurable, and shall investigate
the probabilistic information about its associated distribution. In Section 3, we

c© Springer International Publishing Switzerland 2015 47
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compare three possible models, from the most to the least informative: the set of
distributions of the measurable selections, those bounded between the upper and
lower probabilities of the IVF-set, and those determined by the associated p-box.
The advantage of these less informative models is that they are determined by
a set and a point function, respectively.

We shall establish sufficient conditions for the equality between these three
models, and give examples showing that they are not equivalent in general.
Our results shall provide moreover a connection with the notion of probability
induced by an intuitionistic fuzzy set from [10]. Finally, in Section 4 we shall
investigate the problem without the assumption of measurability. In that case,
we shall work with sets of finitely additive probabilities and with the theory of
coherent lower previsions of Walley [15]. We shall see that the equivalences above
do not always hold in this case. We conclude the paper with some additional
remarks in Section 5. Due to the space restrictions, proofs have been omitted.

2 Preliminary Concepts

2.1 Random Sets

Since in this paper we shall deal with the probabilistic information of IVF-sets,
it is interesting to recall a few notions of the sets of probabilities associated with
multi-valued mappings. Given a probabilistic space (Ω,A, P ) and a measurable
space (Ω′,A′), a random set [6] is a multi-valued mapping Γ : Ω → P(Ω′) such
that Γ ∗(A) = {ω ∈ Ω : Γ (ω) ∩ A �= ∅} ∈ A for any A ∈ A′.

A random set Γ can be used to model the imprecise knowledge about a random
variable X , in the sense that for every ω ∈ Ω all we know about X(ω) is that it
belongs to Γ (ω). Then, X belongs to the set of measurable selections of Γ :

S(Γ ) = {U : Ω → Ω′ random variable | U(ω) ∈ Γ (ω) ∀ω ∈ Ω}, (1)

and the probability measure it induces on A′ belongs to

P(Γ ) = {PU : U ∈ S(Γ )}. (2)

Another way of summarizing the information given by a random set is by
means of its associated upper and lower probabilities:

Definition 1 ([6]). Let (Ω,A, P ) be a probability space, (Ω′,A′) a measurable
space and Γ : Ω → P(Ω′) a random set. Then its upper and lower probabilities
P ∗
Γ , P∗Γ : A′ → [0, 1] are given by:

P ∗
Γ (A) = P ({ω : Γ (ω) ∩ A �= ∅}) and P∗Γ (A) = P ({ω : Γ (ω) ⊆ A}) ∀A ∈ A′.

(3)

These upper and lower probabilities define a credal setM(P ∗
Γ ) by:

M(P ∗
Γ ) = {P probability : P∗Γ (A) ≤ P (A) ≤ P ∗

Γ (A) ∀A ∈ A′}.

It is easy to see that P(Γ ) ⊆ M(P ∗
Γ ), and that the two sets do not coincide

in general. The equality between them was investigated in [11] for the particular
case of random closed intervals we shall consider later on.
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2.2 P-Boxes

In these notes, we shall also work with one particular imprecise probability
model: p-boxes.

Definition 2 ([9]). A distribution function on Ω = [0, 1] is a monotone map-
ping F : [0, 1]→ [0, 1] that is right-continuous and satisfies F (1) = 1. Given two
monotone functions F , F : [0, 1]→ [0, 1] satisfying F (1) = F (1) = 1 and F ≤ F ,
its associated probability box (p-box, for short) (F , F ) is the set of distribution
functions bounded between F and F .

The assumption of right-continuity of distribution functions guarantees that
they are in a one-to-one correspondence with σ-additive probability measures.
More generally, a monotone and normalized function F : [0, 1] → [0, 1] repre-
sents the cumulative probabilities associated with an infinite number of different
finitely additive probability measures. See [14] for a study of p-boxes from the
point of view of finitely additive probability measures.

The credal set associated with the p-box (F , F ) is given by

M(F , F ) := {P probability : F ≤ FP ≤ F},

where FP denotes the distribution function of P .

3 Probabilistic Information of Interval-Valued Fuzzy Sets

In this section, we detail a number of ways in which IVF-sets can be related to
imprecise probability models.

3.1 IVFS as Random Intervals

As we mentioned in the introduction, an interval-valued fuzzy set can be re-
garded as a model for the imprecise knowledge of the membership function of
a fuzzy set. In this section, we shall assume that the IVF-set is defined on
the probability space ([0, 1], β[0,1], λ[0,1]), and that the multi-valued mapping
ΓA : [0, 1]→ P([0, 1]), given by

ΓA(ω) := [lA(ω), uA(ω)] (4)

is a random set. This means [11, Theorem 3.1] that the mappings lA, uA : [0, 1]→
[0, 1] must be β[0,1] − β[0,1]-measurable.

If we assume that the ‘true’ membership function imprecisely specified by
means of the IVF-set is β[0,1]− β[0,1]-measurable, then it must belong to the set
S(ΓA) given by Eq. (1), and its associated probability measure will belong to the
set P(ΓA) given by Eq. (2). As we have seen in Section 2.1, P(ΓA) is included in
the setM(P ∗

ΓA
) of probability measures that are dominated by P ∗

ΓA
, but the two

sets do not coincide in general. The equality between these two sets for random
closed intervals was studied in [11]. Using the results from that paper, it is easy
to establish the following:
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Proposition 1. M(P ∗
ΓA

) = P(ΓA) under any of the following conditions:

(C1) lA, uA are increasing.
(C2) lA(ω) = 0 for any ω ∈ [0, 1].
(C3) lA, uA are strictly comonotone1.

This result is interesting because it allows us to summarize the available infor-
mation about the distribution of the membership function (the set of probability
measures P(ΓA)) by means of the set function P ∗

ΓA
. The conditions above may

be interpreted in the following way:

(C1) As ω increases in [0,1], the evidence in favor of ω satisfying A increases.
(C2) There is no evidence supporting that any element satisfies A.
(C3) The intervals associated with the elements are ordered. In particular, this

holds when the length of the intervals is constant.

On the other hand, the equality P(Γ ) =M(P ∗
Γ ) does not necessarily hold for

all random closed intervals Γ [11, Example 3.3]. It is easy to adapt this example
to our context and deduce that there are IVF-sets where the information about
the membership function is not completely determined by the upper probability
P ∗
ΓA

: it would suffice to take ΓA : [0, 1]→ P([0, 1]) given by

ΓA(ω) =
[
0.5− ω

2
, 0.5 +

ω

2

]
for every ω ∈ [0, 1]. (5)

3.2 P-Boxes Induced by an IVF-Set

Now we take one step forward and study under which conditions the upper and
lower probabilities P ∗

ΓA
, P∗ΓA of the random interval associated with the IVF-

set A can be summarized by means of two point functions: its lower and upper
distribution functions FA, FA : [0, 1]→ [0, 1], given by

FA(x) := P∗ΓA([0, x]) = PuA([0, x]) and FA(x) := P ∗
ΓA

([0, x]) = PlA([0, x]).
(6)

We shall refer to (FA, FA) as the p-box associated with the IVF-set A. The credal
set associated with this p-box is given by:

M(FA, FA) := {Q : β[0,1] → [0, 1] : FA(x) ≤ FQ(x) ≤ FA(x) ∀x ∈ [0, 1]},

where FQ is the distribution function associated with the probability measure
Q. It is immediate to see that the setM(FA, FA) includes M(P ∗

ΓA
). However,

the two sets do not coincide in general, and as a consequence the use of the lower
and upper distribution functions may produce a loss of information. This was
shown in [5, Example 3.3] for arbitrary random sets. Next, we give an example
with random closed intervals associated with an IVF-set:

1 We say that two functions A,B : [0, 1] → [0, 1] are strictly comonotone when (A(ω)−
A(ω′)) ≥ 0 ⇔ (B(ω)−B(ω′)) ≥ 0 for any ω, ω′ ∈ [0, 1].
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Example 1. Consider the random set of Eq. (5), and let (FA, FA) be its associ-
ated p-box. Given the distribution function F defined by:

F (x) =

⎧⎪⎨⎪⎩
FA(x) if x ≤ 1

4 ,
1
2 if x ∈

(
1
4 ,

3
4

]
,

FA(x) if x > 3
4 ,

its associated probability, PF , belongs to M(FA, FA). However, PF does not
belong toM(P ∗

ΓA
), because

PF

([
1

4
,
3

4

])
= 0 < P∗ΓA

([
1

4
,
3

4

])
=

1

2
. �

Our next result shows that the sufficient conditions we have established in
Proposition 1 for the equality M(P ∗

ΓA
) = P(ΓA) also guarantee the equality

between M(P ∗
ΓA

) and M(FA, FA); thus, in those cases the p-box associated
with the IVF-set keeps all the information about the probability distribution of
the membership function.

Proposition 2. Let A be a IVF-set on ([0, 1], β[0,1], λ[0,1]), and let ΓA be its

associated random interval, given by Eq. (4). Then P(ΓA) = M(FA, FA) =
M(P ∗

ΓA
) under any of the following conditions:

(C1) lA, uA are increasing.
(C2) lA(ω) = 0 for every ω ∈ [0, 1].
(C3) lA and uA are strictly comonotone.

3.3 Probabilities Associated with IFS

Another connection between probability theory and intuitionistic fuzzy sets was
established in [10] by means of the probabilities induced by IF-sets. Given a
probability space (Ω,A, P ), the probability associated with an IF-set A is an
element of the interval [∫

Ω

μAdP,

∫
Ω

1− νAdP

]
. (7)

This definition generalizes an earlier one by Zadeh [17]. Using this notion, in
[10] a link is established with probability theory by considering the appropriate
operators in the spaces of real intervals and of intuitionistic fuzzy sets. Note that
it is assumed that we have a structure of probability space on Ω and that the
functions μA, νA are measurable, as we have done in this paper. From [4], it is
known that IF-sets and IVF-sets are mathematically equivalent. In fact, given
an IF-set with membership and non-membership functions μA and νA, it defines
an IVF-set by considering [μA(ω), 1− νA(ω)] for every ω ∈ Ω.

If we assume that (Ω,A, P ) = ([0, 1], β[0,1], λ[0,1]) and consider the random
interval associated with the intuitionistic fuzzy set A interpreted as an IVF-
set, we can see that the interval in Eq. (7) corresponds simply to the set of
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expectations of the measurable selections of ΓA: it follows from [12, Thm. 14]
that the Aumann integral [3] of (id ◦ ΓA) satisfies[

inf(A)

∫
(id ◦ ΓA)dP, sup(A)

∫
(id ◦ ΓA)dP

]
=

[
(C)

∫
id dP ∗

ΓA
, (C)

∫
id dP∗ΓA

]
where (C) denotes the Choquet integral [7] with respect to the non-additive
measures P∗ΓA , P

∗
ΓA

, respectively. Since on the other hand it is immediate to see
that

sup(A)

∫
(id ◦ ΓA)dP =

∫
(1− νA)dP and inf(A)

∫
(id ◦ ΓA)dP =

∫
μAdP,

we deduce that the probabilistic information about the intuitionistic fuzzy set
A can be determined in particular by the lower and upper probabilities of its
associated random interval.

4 A Non-measurable Approach

The previous developments assume that the IVF-set is defined on the probability
space ([0, 1], β[0,1], λ[0,1]) and that the functions lA, uA : [0, 1] → [0, 1], as well
as the ‘true’ membership function of the fuzzy set modeled by A are β[0,1] −
β[0,1] measurable. Although this is a standard assumption when considering the
probabilities associated with fuzzy events, it is arguably done for mathematical
convenience only. In this section, we present an alternative approach where we
get rid of the measurability assumptions by using finitely additive probabilities.

Consider thus a IVF-set A on [0, 1]. Given its bounds lA, uA, we can define the
multi-valued mapping ΓA : [0, 1] → [0, 1] by ΓA(ω) = [lA(ω), uA(ω)] ∀ω. Note
that we are not assuming anymore that this multi-valued mapping is a random
set. Our information about the ‘true’ membership function would be given by
the set of functions

{U : [0, 1]→ [0, 1] : lA(ω) ≤ U(ω) ≤ uA(ω)}. (8)

Now, if we do not assume the measurability of lA, uA and consider then the
field P([0, 1]) of all events in the initial space, we may not be able to model our
uncertainty by means of a σ-additive probability measure. However, we can do
so by means of a finitely additive probability measure. Moreover, the notions of
lower and upper probabilities can be generalised to that case [13]. If for instance
we consider a finitely additive probability P on P([0, 1]), then reasoning as in
Section 3.1 we obtain that PU (C) ∈ [PΓ∗A(C), P ∗

ΓA
(C)] for all C ⊆ [0, 1], where

P ∗
ΓA
, P∗ΓA are defined by Eq. (3).

Then the information about PU is given by the set of finitely additive proba-
bilities dominated by P ∗

ΓA
, that coincides with the finitely additive probabilities

induced by the elements of the set of Eq. (8). Hence, and in contradistinction to
Section 3.1, when we work with finitely additive probabilities we do not need to
make the distinction between P(ΓA) andM(P ∗

ΓA
).
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The associated p-box is given now by the set of finitely additive distribution
functions (that is, monotone and normalized) that lie between FA and FA,
where again FA, FA are given by Eq. (6). Its associated set of finitely additive
probability measures M(FA, FA) is determined by its lower envelope E(F,F ),

that can be determined in the following way ([14]): if we denote by H the field
of subsets of [0, 1] generated by the sets {[0, x], (x, 1] : x ∈ [0, 1]}, then any set
in H is of the form

B1 := [0, x1] ∪ (x2, x3] ∪ . . . (x2n, x2n+1] or B2 := (x1, x2] ∪ . . . (x2n, x2n+1]

for some n ∈ N, x1 < x2 < · · · < xn ∈ [0, 1]. It holds that

EF,F (B1) = FA(x1) +
∑n

i=1 max{0, FA(x2i+1)− FA(x2i)},
EF,F (B2) =

∑n
i=1 max{0, FA(x2i)− FA(x2i−1)},

and also EF,F (C) = supB⊆C,B∈HEF,F (B) for any C ⊆ [0, 1].

Next, we investigate the equalityM(P ∗
ΓA

) =M(FA, FA) under the conditions
(C1)–(C3) considered in Proposition 1. We begin by showing that the two sets
may not coincide when condition (C1) is satisfied.

Example 2. Consider the random interval defined by:

ΓA(ω) =

⎧⎪⎨⎪⎩
[ω, 2ω] if ω ∈

[
0, 13

][
1
3 ,

2
3

]
if ω ∈

(
1
3 ,

2
3

]
[2ω − 1, ω] if ω ∈

(
2
3 , 1

]
where in the initial space ([0, 1],P([0, 1])) we consider a finitely additive prob-
ability P that agrees with λ[0,1] on β[0,1]. Then, P∗ΓA

([
1
3 ,

2
3

])
= 1

3 . However, it
holds that:

EFA,FA

([
1

3
,
2

3

])
= EFA,FA

((
1

3
,
2

3

])
= FA

(
2

3

)
− FA

(
1

3

)
=

2

3
− 2

3
= 0.�

With respect to condition (C2), we have proven the following:

Proposition 3. Let A be an IVF-set on ([0, 1],P([0, 1]), P ) with lA = 0, and let
P∗ΓA , (FA, FA) be its associated lower probability and p-box. Then, EFA,FA

=

P∗ΓA .

Finally, the equality does not hold for condition (C3), as we show next:

Example 3. Consider the random interval ΓA defined on ([0, 1],P([0, 1]), P ) by:

ΓA(ω) =

⎧⎪⎨⎪⎩
[
1
2 − ω, 1− ω

]
if ω ∈

[
0, 14

][
1
4 ,

3
4

]
if ω ∈

(
1
4 ,

3
4

][
ω − 1

2 , ω
]

if ω ∈
(
3
4 , 1

]
,

and where P is a finitely additive probability that agrees with λ[0,1] on β[0,1].

Since lA(ω) = uA(ω)− 1
2 , we see that lA and uA are strictly comonotone. If we

consider the set
[
1
4 ,

7
8

]
, we observe that

EFA,FA

([
1

4
,
7

8

])
= EFA,FA

((
1

4
,
7

8

])
=

1

4
<

3

4
= P∗ΓA

([
1

4
,
7

8

])
. �
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5 Conclusions

Our results show that the probabilistic information that an IVF-set holds about
the underlying membership function can be summarized under some conditions
by means of its associated p-box, although not in all cases. However, the corre-
spondence depends on the measurability assumption of this membership func-
tion, and does not hold when we work with finitely additive probabilities instead.

In the future, we intend to deepen in the study of the imprecise probability
models associated with an IVF-set, and to generalize our results to other possibil-
ity spaces. It would also be interesting to explore the alternative approach where
no probability structure is considered in the initial space, and our knowledge is
given instead by the set of possibility measures associated with the selections.
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Abstract. Probabilistic models, like the Mallows model, are commonly
used for label ranking. However, for incomplete preferences the existing
methods are exhaustive in the learning step and therefore the appli-
cations of the Mallows model in practical label ranking problems or in
recommender systems are limited. In this paper, we show how to improve
the Mallows model using IF-sets so it may become more simple and more
effective for analyzing vague preferences and creating recommendations.

Keywords: IF-sets, incomplete data, instance-based learning, label
ranking, the Mallows model, recommender systems.

1 Introduction

Label ranking is an important task in many applications like information re-
trieval, rating products or recommender systems. It can be treated as a general-
ization of a classification problem, where, instead of a ranking of all labels, only
a single label is requested as a prediction for given observation. Thus, in brief,
the label ranking can be perceived as a problem of learning a mapping from
instances to rankings over a finite set of predefined labels.

This problem can be solved in different ways. Existing methods often use bi-
nary classification algorithms so the ranking is obtained by pairwise comparisons
(see [6]). Another approaches utilize probabilistic models defined on a class of
all rankings. As prominent example one can mention the Mallows model [7].

In recommender systems, due to the large amount of rated items, we typically
meet incomplete preferences for all users available in data bases. However, it is
not obvious, how to cope with such incomplete or vague preferences. Therefore,
we propose an algorithm that combines the Mallows model with IF-set theory
to get an effective method of label ranking and create recommendations in the
presence incomplete rankings.

The paper is organized as follows. In Sec. 2 we describe briefly the problem of
instance based label ranking and the Mallows model. Next, in Sec. 3 we show how

c© Springer International Publishing Switzerland 2015 55
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Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_7
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to apply IF-sets for modeling incomplete preferences and then how to enrich the
classical Mallows model. Finally, in Sec. 4, we propose a new efficient algorithm
for instance based label ranking and present results of the experimental study
comparing our algorithm with other approaches.

2 Label Ranking and the Mallows Model

2.1 Basic Notions

Let X, called an instance space, denote a set of elements (users, patients etc.)
characterized by several attributes. Suppose that instead of classifying instances
into separate classes, we associate each instance x ∈ X with a total order of all
class labels Y = {y1, . . . , yM}. Moreover, we say that yi �x yj indicates that yi
is preferred to yj given the instance x.

A total order�x can be identified with a permutation πx of the set {1, . . . ,M},
where πx is defined such that πx(i) is the index j of the class label yj put on the
i-th position in the order. Hence, π−1

x (j) = i gives the position of the j-th label
(see [2]). The class of permutations of {1, . . . ,M} will be denoted by Ω.

We may assume that every instance is associated with a probability distribu-
tion over Ω, i.e. for each instance x ∈ X there exists a probability distribution
P(·|x) such that, for every π ∈ Ω, P(π|x) is the probability that πx = π.

The main goal in label ranking is to predict a ranking of labels y1, . . . , yM
for a new instance x, given some instances with known rankings of labels as a
learning set. In practical issues, especially in recommender systems where the
amount of available products is large, preference on instances known from the
learning set do not usually contain all labels, i.e our information is of the form
yπx(1) �x . . . �x yπx(k), where k < M .

To evaluate the predictive performance of a label ranker a suitable loss func-
tion on Ω is needed, e.g. based on Kendall’s tau (see [2]).

2.2 The Mallows Model

Going back to the above mentioned probability distribution P(·|x), we need a
probabilistic model suitable for our considerations. In [2] the Mallows model was
used in the context of an instance-based approach to label ranking.

The Mallows model is a distance-based probability model defined by

P(π|θ, π0) =
exp(−θD(π, π0))

φ(θ)
, (1)

where the ranking π0 ∈ Ω is the location parameter (center ranking), D is a
distance measure on rankings, φ = φ(θ) is a constant normalization factor and
θ stands for a spread parameter which determines how quickly the probability
decreases with the increasing distance between π and π0.

The label ranking problem is then solved by the maximum likelihood estima-
tion connected with (1). In [2] parameters θ, π0 are estimated using π1, . . . , πk
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rankings connected with k nearest neighbors of a new instance x in the train-
ing set. It works nicely when all rankings from the training set are complete.
Unfortunately, such situation is unusual in the real world problems.

To handle incomplete rankings in the training data it was proposed in [2] to
maximize the probability

P(π|θ, π0) =
∑

π∗∈E(π)

P(π∗|θ, π0), (2)

where E(π) - set of linear extensions of π. However, calculations with (2) are
rather exhaustive. Therefore, we suggest below another method based on IF-
modeling of incomplete rankings proposed by Grzegorzewski (see [3,4]).

3 IF-sets and Incomplete Preferences

Let U denote a usual set, called the universe of discourse. An IF-set (Atanassov’s
intuitionistic fuzzy set, see [1]) is given by a set of ordered triples C̃ = {(u, μC̃(u),
νC̃(u)) : u ∈ U}, where μC̃ , νC̃ : U → [0, 1] stand for the membership and
nonmembership functions, respectively. It is assumed that 0 ≤ μC̃(u)+νC̃(u) ≤ 1
for each u ∈ U.

In [3,4,5] Grzegorzewski proposed how to model preference systems admitting
ties and missing ranks. The key idea is to represent a preference system by an
appropriate IF-set. Consider any finite set of labels Y = {y1, . . . , yM}. Given
any instance x ∈ X let us define two functions wx, bx : Y → {0, 1, . . . ,M − 1}
as follows: for each yi ∈ Y let wx(yi) denote a number of elements in Y surely
worse than yi, while bx(yi) let denote a number of elements surely better than
yi, with respect to the preference related to instance x. Next let

μx̃(yi) =
wx(yi)

M − 1
, νx̃(yi) =

bx(yi)

M − 1
. (3)

denote a membership and nonmembership function, respectively, of the IF-set
x̃ = {(yi, μx̃(yi), νx̃(yi)) : yi ∈ Y} describing the preference system connected
with instance x.

Having any two instances x1, x2 ∈ X we may compute a correlation between
preference systems x̃1, x̃1 generated by these instances, using the generalized
Kendall’s tau, admitting incomplete preferences (see [4]):

τ̃ =
1

2M(M − 1)

M∑
i=1

M∑
j=1

[sgn(μx̃1(yj)− μx̃1(yi)) · sgn(μx̃2(yj)− μx̃2(yi)) (4)

+sgn(νx̃1(yj)− νx̃1(yi)) · sgn(νx̃2(yj)− νx̃2(yi))].

In Sec. 2.1 we have identified preferences with an adequate permutation πx
of labels Y. For possibly incomplete preferences we get incomplete permutation
π̃ = π̃x which might be identified with the corresponding IF-set x̃. Thus for any
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two instances x1, x2 ∈ X we have τ̃ = τ̃ (x̃1, x̃2) = τ̃ (π̃1, π̃2). Hence, using (4), we
may consider the following measure

Dτ̃ (π̃1, π̃2) =
1− τ̃ (π̃1, π̃2)

2
, (5)

which seems to be useful in the generalized Mallows model (1) admitting incom-
plete rankings and defined as follows

P̃(π̃|θ, π̃0) =
exp(−θDτ̃ (π̃, π̃0))

φ(θ)
. (6)

Of course, when modeling preferences by IF-sets one can also consider other
substitutes for the measure D in (1), including different distances, dissimilarity
measures or divergences (see, e.g., [8]). However, we have chosen a measure based
on the generalized Kendall’s tau because it is common to use distances utilizing
the classical Kendall’s coefficient in the Mallows model (see, e.g., [2]).

In the examples below we compare the suggested methodology with the results
obtained using the distance based on the classical Kendall’s tau for all linear
extensions of incomplete rankings.

Example 1. Consider M = 6 labels and the following two ranking: π0 : y1 �
y3 � y4 � y2 � y5 � y6 and π : y3 � y1 � y5 � y4 � y6. It is seen at once
that the first ranking is complete, while the second one is incomplete because of
unknown location of label y2.

To perform the classical Mallows model one may consider possible six different
locations of y2 with respect to other labels. Using notation introduced in Sec.
2.1 if we put, e.g. π−1(2) = k, which means that label y2 is located on the k-
th position in the complete ranking (k = 1, . . . , 6), then for all labels yj such
that π−1(j) ≥ k, their position in the new ranking shifts to the right, so we
get π−1(j) := π−1(j) + 1. The probabilities calculated for the classical Mallows
model according to formula (1) for all possible location of the unknown label y2
are given in Table 1. In these calculations the classical Kendall’s τ was applied
in (5) and the spread parameter θ = 1 was assumed.

Table 1. Values of P(π|θ, π0) for different locations of y2

π−1(2) 1 2 3 4 5 6

P(π|θ, π0) 0.09049159 0.09673 0.1033985 0.09673 0.1033985 0.09673

On the other hand, we may construct IF-sets x̃0 and x̃ describing preferences
generated by π0 and π, respectively. By (3) we get

x̃0 = {(y1, 1, 0), (y2, 0.4, 0.6), (y3, 0.8, 0.2), (y4, 0.6, 0.4), (y5, 0.2, 0.8), (y6, 0, 1)}
x̃ = {(y1, 0.6, 0.2), (y2, 0, 0), (y3, 0.8, 0), (y4, 0.2, 0.6), (y5, 0.4, 0.4), (y6, 0, 0.8)}
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If we calculate probability (6) for the complete ranking π0 and incomplete π using
formula (5) based on the generalized Kendall’s tau (4) then we get P̃(π|θ, π0) =
0.09673. As we can see, (6) approximates possible probabilities quite well. We
tried many other examples and the results were similarly good. �

Example 2. Now we will check what happen if there are more missing values
in label ranking. Let us consider M = 7 labels and the following two ranking:
π0 : y1 � y2 � y3 � y4 � y5 � y6 � y7 and π : y4 � y1 � y3 � y7 � y5. So now
the first ranking is complete, while the second one is incomplete because of two
unknown location of labels y2 and y6.

Using the suggested methodology based on IF-sets and the generalized Ken-
dall’s tau (4) the probability value of (6) for the complete ranking π0 and in-
complete π equals P̃(π|θ, π0) = 0.05330688.

However, if we apply the traditional approach based on possible linear exten-
sions π∗ ∈ E(π) (see Sec. 2.2) we get minπ∗∈E(π){P((π∗|θ, π0)} = 0.0451233 and
maxπ∗∈E(π){P((π∗|θ, π0)} = 0.0629746, while the arithmetic mean and the me-
dian for all possible linear extensions {P((π∗|θ, π0) : π∗ ∈ E(π)} equals 0.0551824
and 0.05459133, respectively. Hence again, IF-set based approach appears to be
helpful in approximating the probability (1) for incomplete rankings. �

4 Incomplete Knowledge and the Mallows Model in
Designing Recommendations

4.1 Main Idea

As we have mentioned above, our aim is to predict a ranking of labels for a
given new instance x. Unfortunately, estimation of π from (6) is not very simple.
However, in many applications it is not necessary to identify a whole ranking but
it suffices to indicate only those labels which are located on the highest positions
in the ranking. It is a typical case found in recommender systems.

In this contribution we apply the Mallows model to express the probability
corresponding to the best label, i.e.

P̃(ybestj |θ, π∗) =
exp(−θD∗(ybestj , yπ

∗
j ))

φ(θ)
, (7)

where D∗ is the Euclidean distance between IF-sets given by

D∗(ybestj , yπ
∗

j ) =

√√√√1

2

n∑
i=1

((μybest
j
− μπ∗(yj))2 + (νybest

j
− νπ∗(yj))2). (8)

In our case μybest
j

= 1 and νybest
j

= 0, as we want to calculate the probability that

yj is the best label for instance x. Then, as a final recommendation we assume

Y = argmax
yj

{
∑

π∗∈π̄kNN(x)

P̃(ybestj |θ, π∗)}, (9)
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where π̄kNN(x) is the set of preference systems connected with k instances nearest
to x. To predict the complete ranking for instance x we order labels y1, . . . , yM
according to the values of (7).

4.2 Algorithms

We propose two algorithms based on the ideas discussed above. The first one is
a direct implementation of the method proposed in Sec. 4.1.

Mallows Best Probability Algorithm (MBP)
{Input: x - new instance, X - learning set of instances, π̄ - labels connected with
instances, k - number of nearest neighbors}
1. Find k nearest neighbors of x in X.
2. For (j in 1 : M) calculate

∑
π∗∈π̄kNN(x)

P̃(ybest
j |θ, π∗)

3. MBP-rank < − Sort labels according to the values obtained in step 2 (in case of ties
a label with lower index is better in the ranking).
{Output: MBP-rank}

The second algorithm is a modification of MBP that replaces missing labels
in π̄kNN(x) by the most probable extension of π∗ ∈ π̄kNN(x) with respect to (1).
This replacement idea was suggested in IBLR algorithm given in [2].

Multistep Mallows Best Probability Algorithm (MMBP)
{Input: x - new instance, X - learning set of instances, π̄ - labels connected with
instances, k - number of nearest neighbors}
1. Find k nearest neighbors of x in X.
2. For (j in 1 : M) calculate

∑
π∗∈π̄kNN(x)

P̃(ybest
j |θ, π∗)

3. MMBP-rank < − Sort labels according to the values obtained in step 2 (in case of
ties a label with lower index is better in the ranking).
4. π̄mod

kNN(x) < − Find the most probable extensions of π∗ ∈ π̄kNN(x) with respect to
(6).
5. For (j in 1 : M) calculate

∑
π∗
mod

∈π̄mod
kNN(x)

P̃(ybest
j |θ, π∗)

6. MMBP-rankmod < − Sort labels according to the values obtained in step 5 (in case
of ties a label with lower index is better in the ranking)
7. If (MMBP-rankmod �= MMBP-rank) then (MMBP-rank < − MMBP-rankmod, go
to step 4) else (output(MMBP-rank)).
{Output: MMBP-rank}

4.3 Experimental Results

To evaluate the proposed method we compared it with the IBLR algorithm given
in [2]. Two types of data sets were used in our experiment: (A) For classification
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data, we followed the procedure proposed in [2], i.e. the naive Bayes classifier
was first trained on the complete data set and then, for each example, all the
labels present in the data set were ordered with respect to the predicted class
probabilities. (B) For regression data a certain number of (numerical) attributes
was removed from the set of predictors and each one was considered as a label.
To obtain a ranking, the attributes were standardized and then ordered (see [2]).
To obtain incomplete ranks we changed some ranks in every ranking into NA
(non available). We considered different proportions p of missing values.

To compare algorithms we used two quality measures: their prediction accu-
racy and the evaluation times. As a measure of accuracy we used Kendall’s tau.
We evaluated the experiments using leave-one-out crossvalidation and according
to the random effect of removing labels from complete rankings we repeated the
evaluation 20 times for every chosen value of p. The results shown in Table 2
and Table 3 are the mean results for a given p.

All evaluations were performed using R package. We set the number of near-
est neighbors to 5 (function knn from FNN library). The evaluation times, i.e.
times of one full leave-one-out crossvalidation procedure for every algorithm, are
measured using proc.time(). In Table 2 and Table 3 we show the mean times
for all evaluations. To improve performance and parallelize our calculations, we
used library snowfall with parameters sfInit(cpus=4, parallel=TRUE) on Intel
core i5 2450M CPU. All data sets used for experiments were downloaded from
http://www.uni-marburg.de/fb12/kebi/research/repository/

Table 2. Comparison of label ranking algorithms for p = 30% missing labels in the
learning set

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.781 0.784 0.788 3.504 0.26 3.7
vowel (A) 0.817 0.795 0.819 102.03 1.05 102.26
housing (B) 0.670 0.665 0.670 8.44 0.70 8.95
elevators (B) 0.622 0.617 0.624 1371.86 225.83 1583.55
wisconsin (B) 0.432 0.420 0.427 316.12 0.40 319.54

average 0.664 0.656 0.665 360.39 45.65 403.60

Results given in Table 2 and Table 3 show that algorithms MBP, MMBP and
IBLR have similar accuracy on our experimental sets. More precisely, MBP is
usually slightly worse than the two other algorithms, but it is significantly faster.
MMBP algorithm, which can be perceived as the improved (in some sense) MBP,
behaves more or less like IBLR both with respect to the accuracy and evaluation
time. Therefore, one may conclude that our IF-set based method for handling
incomplete label ranking seems to be very promising: it might be as accurate as
IBLR (in MMBP version), but if we allow a slight lower accuracy then, using
MBP version, we get desired results much faster than using IBLR.

http://www.uni-marburg.de/fb12/kebi/research/repository/
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Table 3. Comparison of label ranking algorithms for p = 50% missing labels in the
learning set

accuracy time [s]
data set IBLR MBP MMBP IBLR MBP MMBP

glass (A) 0.688 0.685 0.687 5.12 0.29 5.42
vowel (A) 0.725 0.700 0.715 119.84 0.95 126.04
housing (B) 0.579 0.570 0.573 12.53 0.7 13.12
elevators (B) 0.540 0.530 0.535 2326.23 272.67 2598.56
wisconsin (B) 0.381 0.351 0.363 502.22 0.37 508.74

average 0.583 0.567 0.575 593.19 55.00 650.38

5 Conclusions

In practice, the choice of the best method should be determined by the data
structure. In recommender systems the 2% better accuracy is not as crucial as the
time performance. Moreover, obviously the time consumed by all this methods
increases with the number of labels and the number of missing values. The typical
situation in recommender systems is that the number of labeled products is very
large and therefore most of labels are missing for each user. Thus, the proposed
MBP algorithm seems to be a promising candidate for creating recommendations
especially in the presence of large number of labeled items.

Acknowledgments. Study was supported by research fellowship within “Infor-
mation technologies: research and their interdisciplinary applications” project
co-financed by European Social Fund (agreement number POKL.04.01.01-00-
051/10-00).
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Abstract. Starting with a descriptive characterization of probability
on the intuitionistic fuzzy sets, different formulations of continuity are
presented. The main instrument is a Cignoli representation theorem on
IF probabilities by classical Kolmogorovian probabilities.
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1 Introduction

One of the most important results of mathematics in the 20th century is the
Kolmogorov concept of probability based on the set theory (see e. g. [22] for a
review). On the other hand a new point of view on the mathematical models
of uncertainty has been given by the Zadeh fuzzy set theory ([23]). This theory
generalizes the Borel classical set theory. And it is characteristic that one of the
first basic result of the fuzzy school was devoted to some probabilistic aspects
of the theory ([24]).

In the paper we are interested in the Atanassov intuitionistic fuzzy (IF ) set
theory ([1], [2]). Here the IF set is a pair A = (μA, νA) of fuzzy sets such that
μA+νA ≤ 1. And again, one of the first important direction of the IF set theory
was in the studying of probability of IF sets. The probability on the family F
of IF events has been defined in [11] as a mapping assigning to every IF set
A = (μA, νA) the interval

P (A) =

[∫
Ω

μAdP,

∫
Ω

(1− νA)dP

]
.

Consequently probability has been defined axiomatically ([16])

P (A) = [P1(A), P2(A)] .

Let I be the family of all compact intervals in R. Since the mapping P : F → I is
characterized by the functions P1, P2 : F → [0, 1], called states, the main results
has been formulated for states. Recall that the additivity of the states has been
taken with respect to the Lukasiewicz operations ⊕,�, and the continuity as the

c© Springer International Publishing Switzerland 2015 63
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upper continuity. In this paper some other forms of continuity are formulated
and proved.

The main instrument of our investigations is the state representation theorem
([4], [5], [17], [19],[20]). By the theorem every IF state can be described by the
help of the classical Kolmogorovian probabilities.

2 IF Spaces

Any subset A of a given space Ω can be identified with its characteristic function

IA : Ω → {0, 1}

where IA(ω) = 1, if ω ∈ A, IA(ω) = 0, if ω /∈ A. From the mathematical point of
view a fuzzy set is a natural generalization of IA(see [23], [24]). It is a function

ϕA : Ω → [0, 1] .

Evidently any set (i.e. two-valued function on Ω, IA → {0, 1}) is a special case
of a fuzzy set (multi-valued function), ϕA : Ω → [0, 1].

There are many possibilities for characterizations of operations with sets
(union A ∪B and intersection A ∩B). We shall use so called Lukasiewicz char-
acterization:

IA∪B = (IA + IB) ∧ 1,

IA∩B = (IA + IB − 1) ∨ 0 .

(Here (f ∨ g)(ω) = max(f(ω), g(ω)), (f ∧ g)(ω) = min(f(ω), g(ω)).) Hence if
ϕA, ϕB : Ω → [0, 1] are fuzzy sets, then the union (disjunction ϕA or ϕB of
corresponding assertions) can be defined by the formula

ϕA ⊕ ϕB = (ϕA + ϕB − 1) ∧ 1,

the intersection (conjunction ϕA and ϕB of corresponding assertions) can be
defined by the formula

ϕA � ϕB = (ϕA + ϕB − 1) ∨ 0 .

In the paper we shall work with the Atanassov generalization of the notion of
fuzzy set so-called IF -set (see [1], [2]), what is a pair

A = (μA, νA) : Ω → [0, 1]× [0, 1]

of fuzzy sets μA, νA : Ω → [0, 1], where

μA + μA ≤ 1 .

Evidently a fuzzy set ϕA : Ω → [0, 1] can be considered as an IF set, where
μA = ϕA : Ω → [0, 1], νA = 1 − ϕA : Ω → [0, 1]. Here we have μA + νA = 1,
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while generally it can be μA(ω) + νA(ω) < 1 for some ω ∈ Ω. Geometrically an
IF -set can be regarded as a function A : Ω → Δ to the triangle

Δ = {(u, v) ∈ R2; 0 ≤ u, 0 ≤ v, u+ v ≤ 1} .

Fuzzy set can be considered as a mapping ϕA : Ω → D to the segment

D = {(u, v) ∈ R2; 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, u+ v = 1}

and the classical set as a mapping ψ : Ω → D0 from Ω to two-point set

D0 = {(0, 1), (1, 0)} .

In the next definition we again use the Lukasiewicz operations.

Definition 1. By an IF subset of a set Ω a pair A = (μA, νA) of functions

μA : Ω → [0, 1], νA : Ω → [0, 1]

is considered such that

μA + νA ≤ 1 .

We call μA the membership function, νA the non membership function and

A ≤ B ⇐⇒ μA ≤ μB, νA ≥ νB .

If A = (μA, νA), B = (μB , νB) are two IF sets, then we define

A⊕B = ((μA + μB) ∧ 1, (νA + νB − 1) ∨ 0),

A�B = ((μA + μB − 1) ∨ 0, (νA + νB) ∧ 1),

¬A = (1− μA, 1− νA) .

Denote by F a family of IF sets such that

A,B ∈ F =⇒ A⊕B ∈ F , A�B ∈ F ,¬A ∈ F .

Example 1. Let F be the set of all fuzzy subsets of a set Ω. If f : Ω → [0, 1]
then we define

A = (f, 1− f),

i.e. νA = 1− μA.

Example 2. Let (Ω,S) be a measurable space, S a σ-algebra, F the family of all
pairs such that μA : Ω → [0, 1], νA : Ω → [0, 1] are measurable. Then F is closed
under the operations ⊕,�,¬.
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3 IF States

Definition 2. Let (Ω,S) be a measurable space, hence Ω is a non-empty set, S
is a σ-algebra of subsets of Ω. By F the family of all IF -sets A = (μA, νA) is
denoted with σ-measurable functions μA, νA : Ω → [0, 1].

Definition 3. Let A = (μA, νA) ∈ F , An = (μAn , νAn) ∈ F , (n = 1, 2, ...). We
write An ↗ A if μAn ↗ μA, νAn ↘ νA. We write An ↘ A if μAn ↘ μA, νAn ↗
νA.

Definition 4. A mapping m : F → [0, 1] is called an IF state, if the following
properties are satisfied

(1.1) m((0, 1)) = 0, m((1, 0)) = 1,
(1.2) A�B = (0, 1) =⇒ m(A⊕B) = m(A) +m(B),
(1.3) An ↗ A =⇒ m(An)↗ m(A) .

Now the representation theorem of IF states will be presented ([4], [5], [18],
[20]).

Theorem 1. Let m : F → [0, 1] be an IF state. Then there exist probabilities
P,Q : S → [0, 1] and α ∈ R such that

m(A) =

∫
Ω

μAdP + α

(
1−

∫
Ω

(μA + νA)dQ

)
for all A ∈ F .

Example 3. Let F be the set of all measurable fuzzy subsets in the measurable
space (Ω,S),m : F → [0, 1] be a state, A = (f, 1− f) ∈ F . Then

m(f) =

∫
Ω

fdP + α(1−
∫
Ω

(f + 1− f)dQ) =

∫
Ω

fdP .

4 Continuity

A simple consequence of additivity and upper continuity is lower continuity.

Theorem 2. Let An ∈ F(n = 1, 2, ...), An ↘ A. Then m(A) = limn→∞m(An).

Proof. Put Bn = ¬An(n = 1, 2, ...), B = ¬A. Then

B �A = (1− μA , 1− νA)� (μA, νA) =

= ((1 − μA + μA − 1) ∨ 0 , (1− νA + νA) ∧ 1 = (0, 1),

B ⊕A = ((1 − μA + μA) ∧ 1 , (1− νA + νA − 1) ∨ 0) = (1, 0) .

Therefore
1 = m((1, 0)) = m(B ⊕A) = m(B) +m(A),
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hence

m(B) = 1−m(A) .

Similarly
m(Bn) = 1−m(An) .

Moreover
μBn = 1− μAn ↗ 1− μA = μB,

νBn = 1− νAn ↘ 1− νA = νB .

Therefore Bn ↗ B, and m(Bn)↗ m(B), hence

m(A) = 1−m(B) = 1− lim
n→∞m(Bn) =

= lim
n→∞(1−m(Bn)) = lim

n→∞m(An) .

��

Of course, the continuity of IF states works not only in the monotone case.

Theorem 3. Let An = (μAn , νAn) ∈ F(n = 1, 2, ...), A = (μA, νA) ∈ F and

lim
n→∞μAn = μ, lim

n→∞(μAn + νAn) = μA + νA .

Then
lim
n→∞m(An) = m(A) .

Proof. By Theorem 1 there exist probabilities P,Q : S → [0, 1] and α ∈ R such
that

m(A) =

∫
Ω

μAdP + α

(
1−

∫
Ω

μA + νAdQ

)
,

m(An) =

∫
Ω

μAndP + α

(
1−

∫
Ω

μAn + νAndQ

)
.

Of course, (μAn)n, (μAn + νAn)n are bounded sequences of integrable functions
and

lim
n→∞μAn = μ, lim

n→∞(μAn + νAn) = μA + νA .

Therefore by the Lebesgue integration theorem

lim
n→∞m(An) = lim

∫
Ω

μAndP + α

(
1− lim

n→∞

∫
Ω

(μAn + νAn)dQ

)
=

=

∫
Ω

μAdP + α

(
1−

∫
Ω

(μA + νA)dQ

)
= m(A) .

��

The preceding theorem can be presented also in a more general form
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Theorem 4. Let μAn , νAn ∈ F , f, g : [0, 1]2 → [0, 1] be continuous functions,
f(u, v) + g(u, v) ≤ 1 for any u, v ∈ [0, 1]. Let

An = (f(μAn , νAn), g(μAn , νAn)) (n = 1, 2, ...), A = (f(μA, νA), g(μA, νA)) .

Then

lim
n→∞m(An) = m(A) .

Proof. Evidently An ∈ F , A ∈ F . By Theorem 1

m(An) =

∫
Ω

f(μAn , νAn)dP + α(1 −
∫
Ω

(f(μAn , νAn) + g(μAn , νAn))dQ),

hence by the Lebesgue integration theorem

lim
n→∞m(An) =

= lim
n→∞

∫
Ω

f(μAn , νAn)dP + α

(
1− lim

n→∞

∫
Ω

(f(μAn , νAn) + g(μAn , νAn))dQ

)
=

=

∫
Ω

f(μA, νA)dP + α

(
1−

∫
Ω

(f(μA, νA) + g(μA, νA))dQ

)
= m(A) .

��

Theorem 5. Let An ∈ F (n = 1, 2, . . .), Ai �Aj = (0, 1)(i �= j). Put

∞⊕
n=1

An =

∞∨
n=1

n⊙
i=1

Ai .

Then

m

( ∞⊕
n=1

An

)
=

∞∑
i=1

m(An) .

Proof. Put

Sn =

n⊙
i=1

Ai (n = 1, 2, ...) .

Then Sn ⊂ Sn+1, Sn ∈ F (n = 1, 2, ...), Sn ↗
⊕∞

n=1An. Then

m

( ∞⊕
n=1

An

)
= lim

n→∞m(Sn) = lim
n→∞m

(
n⊙

i=1

Ai

)
=

= lim
n→∞

n∑
i=1

m(Ai) =
∞∑
i=1

m(An) .

��
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5 Conclusions

The IF sets theory is important and useful so in some theoretical considerations
(see e.g. [6], [13], [14]) as well as from the practial point of view (e.g. [2]). More-
over, all theorems stated above can be directly applied for the spaces of fuzzy
sets.

On the other hand, the space of intuitionistic fuzzy sets can be embedded
to a multivalued algebra, hence our results can be motivation for probability
on MV -algebras ([21], [15]). Also some physical motivations and applications
are possible ( e. g. [8], [9]). On the base the Slovak school of D-posets ([7],[12])
as well as equivalent American theory of effect algebras ([10]) are available for
further investigations.
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Abstract. We provide (in a finite setting) a closed form expression for
the lower envelope of the set of all the possible Bayesian posteriors deriv-
able from a possibly incomplete or imprecise prior distribution (giving
rise to a 2-monotone capacity) and a likelihood function.

Keywords: Bayesian updating, coherence, conditional probability,
belief function, 2-monotone capacity.

1 Introduction

The classical Bayesian paradigm relies on a precise and complete probabilis-
tic prior and likelihood assessment {P (Hi), P (E|Hi)}i=1,...,n and gives rise to a
unique posterior distribution {P (Hi|E)}i=1,...,n, whenever P (E) > 0. However,
in real applications (e.g., medical diagnosis, forensic analysis and legal processes,
to cite some) the prior knowledge could be imprecise (e.g., a belief function) or,
even if precise, it could be only partially specified or defined on different hy-
potheses. At the same time, the expert could be interested in Bayesian queries
on events more complex than the Hi|E’s.

The cases described above induce a (convex) set of prior probabilities whose
lower envelope turns out to be a belief function [12,20,14,6]. Hence, the problem
of non-unicity of the posterior needs to be dealt referring to the entire class of
probabilistic extensions, and a characterization of the envelopes of such set is
desirable, especially with a sensitivity analysis in view.

The main aim of this paper is to prove a generalized version of Bayes’ theo-
rem for finite spaces when the prior information is expressed by a 2-monotone
capacity on the algebra spanned by the Hi’s and the statistical model is still a
likelihood function on the events E|Hi’s. Actually, our results can be generalized
(see [5]) in order to extend results proved in [25,26], by allowing conditioning to
any event in the algebra A spanned by E and the Hi’s, without any positivity
assumption on the corresponding (lower or upper) probability. This aim is in
line with that of Walley [24].

Our contribution consists in providing a closed form expression for the lower
envelope of the set of full conditional probabilities on A extending a complete

c© Springer International Publishing Switzerland 2015 71
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and precise prior probability and a likelihood function. Then we characterize
the lower envelope of the coherent conditional probability extensions of a prior
probability referring to events different from those where the likelihood is given.
Finally, a generalization of the first result is proved, by considering a prior 2-
monotone capacity and a likelihood function. We show that the “lower posterior
probability” may fail 2-monotonicity: in the case the lower posterior probability
is a 2-monotone capacity, then the updating procedure can be iterated.

2 Framework of Reference

Let A be a Boolean algebra of events, endowed with the usual Boolean opera-
tions of contrary (·)c, disjunction ∨, and conjunction ∧, and the partial order
of implication ⊆. We denote with Ω and ∅, respectively, the sure event and the
impossible event which coincide with the top and the bottom elements of A,
respectively. A subset H ⊆ A0 = A \ {∅} is said an additive class if it is closed
under finite disjunctions.

We refer to the following axiomatic definition of conditional probability [7]
which is equivalent to [10,9].

Definition 1. Let A be a Boolean algebra and H ⊆ A0 an additive class. A
function P : A × H → [0, 1] is a conditional probability if it satisfies the
following conditions:

(i) P (E|H) = P (E ∧H |H), for every E ∈ A and H ∈ H;
(ii) P (·|H) is a finitely additive probability on A, for any H ∈ H;
(iii) P (E∧F |H) = P (E|H) ·P (F |E∧H), for any H,E∧H ∈ H and E,F ∈ A.

Following [13], we say that a conditional probability P (·|·) is full on A if H =
A0. In order to deal with an assessment P on an arbitrary set G of conditional
events we need to resort to the concept of coherence [7] (equivalent to [27,17]).

Definition 2. Given an arbitrary set G = {Ei|Hi}i∈I of conditional events, an
assessment P : G → [0, 1] is a coherent conditional probability if and only
if there is a conditional probability P̃ : A×H → [0, 1] with A×H ⊇ G extending
the assessment P (i.e., P̃|G = P ).

By the conditional version [27,17] of de Finetti’s fundamental theorem for
probabilities [11], any coherent conditional probability P on G can be extended
coherently to any further set G′ ⊃ G of conditional events. In general, the exten-
sion on G′ is not unique thus we consider the set P = {P̃ (·|·)} of all the coherent
extensions of P . Such set is a compact subset of the space [0, 1]G

′
endowed with

the product topology of pointwise convergence and is the Cartesian product of
(possibly degenerate) closed intervals, which determine the lower and upper en-
velopes P = minP and P = maxP , where the minimum and the maximum
are intended pointwise on the elements of G′. The functions P and P on G′ are
coherent lower and upper conditional probabilities [7], respectively.
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Notice that P and P are dual, i.e., P (E|H) = 1−P (Ec|H) if E|H,Ec|H ∈ G′,
thus, when G′ is a structured set A×H the knowledge of P (simply called lower
conditional probability in this case) is sufficient to recover P .

Recall that a lower conditional probability P on A×H is such that for every
H ∈ H, P (∅|H) = 0, P (Ω|H) = 1, P (E|H) = P (E ∧H |H) and P (·|H) is super-
additive on A. Furthermore, for H ∈ H, P (·|H) is said n-monotone (n ≥ 2) on
A if

P

(
n∨

i=1

Ei

∣∣∣∣∣H
)
≥

∑
∅	=I⊆{1,...,n}

(−1)|I|+1P

(∧
i∈I

Ei

∣∣∣∣∣H
)
, (1)

for every E1, . . . , En ∈ A. In particular, for H ∈ H, P (·|H) is said a belief
function [20] on A if it is n-monotone for every n ≥ 2.

3 Precise and Complete Prior and Likelihood Function

Let L = {H1, . . . , Hn} be a finite partition of Ω, E an arbitrary possible event,
and A = 〈{E} ∪ L〉 the algebra spanned by {E} ∪ L, whose set of atoms is CA.

A likelihood function f (see, e.g., [4]) is any map from {E} × L to [0, 1],
with the only constraint that f(E|Hi) = 0 if E ∧ Hi = ∅ and f(E|Hi) = 1 if
E ∧Hi = Hi.

Given a likelihood function f(E|·) and a prior probability distribution p(·)
on L, the joint assessment {p, f} is a coherent conditional probability on G =
{E|Hi, Hi}i=1,...,n [18,7,22] which determines a unique coherent extension P on
G′ = A× ({Ω} ∪ L). Nevertheless, the further extension of P on A×A0 is not
unique in general so we need to consider the set

P = {P̃ : full conditional probability on A s.t. P̃|G′ = P}.

The following theorem provides a closed form expression for P = minP .

Theorem 1. Given a likelihood function f(E|·) and a prior probability distri-
bution p(·) on L, for every F |K ∈ A×A0, P (F |K) = 1 when F ∧K = K, and
if F ∧K �= K, then:

(i) if P (K) > 0 then

P (F |K) =
P (F ∧K)

P (K)
; (2)

(ii) if P (K) = 0, then if I �= ∅ and Hj ∧ F ∧ K �= ∅ for all j ∈ J and F c ∧
K∧

(∨
i∈I Hi

)c
= ∅, where I, J ⊆ {1, . . . , n} are, respectively, the maximum

and minimum index set such that
∨

i∈I Hi ⊆ K ⊆
∨

j∈J Hj, then

P (F |K) = min

⎧⎨⎩ min
E∧Hi⊆F∧K

Ec∧Hi⊆F c∧K

f(E|Hi), min
Ec∧Hi⊆F∧K
E∧Hi⊆F c∧K

(1 − f(E|Hi))

⎫⎬⎭ ; (3)

otherwise P (F |K) = 0.



74 G. Coletti, D. Petturiti, and B. Vantaggi

Proof. The proof is trivial in the case F ∧ K = K or P (K) > 0. Assume
F ∧ K �= K and P (K) = 0. Denote with E• either E or Ec and let C1 =
{E• ∧Hi ∈ CA : P (E• ∧Hi) = 0}. The lower bound P (F |K) can be computed
by solving the optimization problem (see [7,1]) with non-negative unknowns x1j
for E ∧Hj ∈ C1, j ∈ J , and y1j for Ec ∧Hj ∈ C1, j ∈ J ,

minimize

⎡⎣ ∑
E∧Hj⊆F∧K

x1j +
∑

Ec∧Hj⊆F∧K

y1j

⎤⎦
⎧⎨⎩
x1j = f(E|Hj) · (x1j + y1j ) if E ∧Hj ∈ C1 and Ec ∧Hj ∈ C1 and j ∈ J,∑
E∧Hj⊆K

x1j +
∑

Ec∧Hj⊆K

y1j = 1.

The unknowns in the system are divided in independent groups corresponding
to each Hj with j ∈ J and are constrained together only by the last equation.
If I = ∅ or there exits j ∈ J s.t. Hj ∧ F ∧K = ∅ or F ∧K ∧

(∨
i∈I Hi

)c �= ∅,
one can always build a solution such that

∑
E∧Hj⊆F∧K

x1
j +

∑
Ec∧Hj⊆F∧K

y1
j = 0

and
∑

E∧Hj⊆F c∧K

x1
j +

∑
Ec∧Hj⊆F c∧K

y1
j = 1, which implies P (F |K) = 0. In the

opposite case the minimum is achieved in correspondence of those solutions
such that x1

i + y1
i = 1 for E• ∧Hi ⊆ F ∧K and (E•)c ∧Hi ⊆ F c ∧K, thus the

conclusion follows. �

Let us note that if P (K) > 0, P (·|K) is a probability measure (and so a belief
function) on A. However the following example shows that for some K ∈ A0

with P (K) = 0, the lower envelope P (·|K) can fail even 2-monotonicity.

Example 1. Let L = {H1, H2, H3, H4} be a partition of Ω and E an event logi-
cally independent of L. Consider the likelihood f(E|Hi) =

1
2 , i = 1, 2, 3, 4, and

the prior probability distribution p(H1) = 1 and p(Hi) = 0, i = 2, 3, 4.
Let K = H2 ∨ H3 ∨ H4 and F = (E ∧ H2) ∨ (Ec ∧ H3) ∨ (E ∧ H4). It

holds P (E ∨ F |K) = P (E|K) = P (F |K) = 1
2 and P (E ∧ F |K) = 0, which

implies P (·|K) is not 2-monotone on A = 〈{E} ∪ L〉 since it is P (E ∨ F |K) <
P (E|K) + P (F |K)− P (E ∧ F |K).

4 Imprecise or Partial Prior Information

Consider two finite Boolean algebras of events A,A′, and a probability measure
P on A. If the algebra of interest is A′ we can consider the set of coherent
extensions on G′ = (A× {Ω}) ∪ (A′ ×A′0)

P = {P̃ : coherent conditional probability on G′ s.t. P̃|A×{Ω} = P}

with its lower envelope P = minP . Next theorem provides a closed form expres-
sion for P on A′×A′0, relying on the lower and upper probabilities P (·) = P (·|Ω)
and P (·) = P (·|Ω) on A′, obtained extending P on A∪A′, which are known to
be, respectively, a belief function and a plausibility function [14].
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Theorem 2. Let A,A′ be two finite Boolean algebras, P a probability measure
on A, and P (·|·) the lower envelope of the set of coherent extensions of P on G′.
The following statements hold:

(i) P (·|K) is a belief function on A′, for every K ∈ A′0;
(ii) for every F |K ∈ A′×A′0, P (F |K) = 1 when F ∧K = K, and if F ∧K �= K,

then we have

P (F |K) =

{
P (F∧K)

P (F∧K)+P (F c∧K)
if P (F ∧K) + P (F c ∧K) > 0,

0 otherwise.
(4)

Proof. We prove condition (ii) first. If F∧K = K, for every P̃ ∈ P , P̃ (F |K) = 1,
so P (F |K) = 1. Hence assume F ∧ K �= K. By Proposition 3.1 in [14], P (·)
is a belief function on A′, so Theorem 7.2 in [23] implies equation (4) when
P (F ∧ K) + P (F c ∧ K) > 0. Finally, in the case P (F ∧ K) + P (F c ∧ K) = 0
equation (4) follows by Proposition 3 in [1].

Now we prove condition (i). Theorem 1 in [15] (or, equivalently, Theorem 4.1
in [21]) implies that P (·|K) is a belief function on A′ when P (K) > 0, which
implies P (F ∧K) + P (F c ∧K) > 0. When P (K) = 0, the claim follows by the
monotonicity of P (·|K) and since P (F |K) > 0 only for events F ∈ A′ such that
F ∧K = K. �

Previous theorem differs from Theorem 7.2 in [23], where P (F |K) is not de-
fined when P (K) = 0, moreover, in the case P (K) > 0 and P (F ∧K) + P (F c ∧
K) = 0, P (F |K) is set equal to 1, which is not the minimum coherent value
for F |K (actually it is the maximum). The quoted result refers to the regular
extension for lower previsions [24]. On the other hand, by considering the natural
extension, a result equivalent to our Theorem 2 follows [24,16].

Let ϕ be a 2-monotone capacity on A′ together with its dual ϕ and consider

Pϕ = {P̃ : probability on A′ s.t. ϕ ≤ P̃ ≤ ϕ}. (5)

If ϕ is a belief function on a finite Boolean algebraA′, Corollary 3.6 in [14] assures
the existence of a finite algebraA and a probability measure P on A, such that ϕ
is obtained as the lower envelope on A′ of the set of coherent extensions of P on
A∪A′. In this case, Theorem 2 characterizes the lower envelope of the set of full
conditional probabilities obtained extending each P̃ ∈ Pϕ on A′ × A′0. Hence,
the same theorem characterizes also the lower envelope of the set of coherent
extensions on A′×A′0 of a belief function (viewed as a lower probability on A′).

Let L = {H1, . . . , Hn} be a finite partition, a partial prior probability distribu-
tion is a coherent probability P on a set of incompatible events {K1, . . . ,Km} ⊆
〈L〉0. In [6] it has been shown that the lower envelope of the set of coherent
extensions of P on 〈L〉 is a belief function, thus also in this case Theorem 2
characterizes the lower envelope of the coherent extensions on 〈L〉 × 〈L〉0.

5 2-monotone Prior Capacity and Likelihood Function

Given L and E as in Section 3, here we assume that our knowledge a priori is
expressed by a 2-monotone capacity ϕ on 〈L〉 while the statistical model is still
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represented by a likelihood function f(E|·) on L. By Proposition 1 in [18] the
assessment {P̃ , f} is a coherent conditional probability for every P̃ ∈ Pϕ, thus
the assessment {ϕ, f} is a coherent lower conditional probability. Our aim is to
provide a closed form expression for the lower envelope P of the set of coherent
extensions of {ϕ, f} on A×A0, with A = 〈{E} ∪ L〉.

Next theorem characterizes the lower envelope P (·) = P (·|Ω) on A× {Ω} as
a Choquet integral with respect to ϕ and it generalizes a result given in [3]. For
this aim, for every F ∈ A define the 〈L〉-measurable function GF : L → [0, 1]

GF (Hi) =

⎧⎪⎪⎨⎪⎪⎩
0 if F ∧Hi = ∅,
1 if F ∧Hi = Hi,
f(E|Hi) if F ∧ E ∧Hi �= ∅ = F ∧ Ec ∧Hi,
1− f(E|Hi) if F ∧ Ec ∧Hi �= ∅ = F ∧ E ∧Hi.

(6)

Theorem 3. Given a likelihood function f(E|·) on L and a 2-monotone capacity
ϕ(·) on 〈L〉, for every F ∈ A it holds

P (F ) = C

∫
GF dϕ =

∫ +∞

0

ϕ
(∨
{Hi ∈ L : GF (Hi) ≥ x}

)
dx.

Proof. For every F ∈ A and P̃ ∈ Pϕ, the probability of F is the expectation of

GF with respect to P̃ , so P (F ) coincides with the minimum of the expectations
varying P̃ ∈ Pϕ. The proof follows by Proposition 3 in [19] which implies that the
lower expectation of GF with respect to the class of probabilities Pϕ coincides
with the Choquet integral of GF with respect to ϕ. �

Theorem 3 characterizes also the dual upper envelope P (·) = P (·|Ω) on A×
{Ω} as a Choquet integral with respect to ϕ. Given P (·), P (·) on A, for every
F |K ∈ A×A0 define

L(F ∧K) = min

{∫
GF∧KdP̃ : P̃ ∈ Pϕ,

∫
GF c∧KdP̃ = P (F c ∧K)

}
, (7)

U(F c ∧K) = max

{∫
GF c∧KdP̃ : P̃ ∈ Pϕ,

∫
GF∧KdP̃ = P (F ∧K)

}
. (8)

Note that it holds in general P (F ∧K) ≤ L(F ∧K) and U(F c∧K) ≤ P (F c∧K).
The min and max in equations (7) and (8) are attained in correspondence of

the extreme points of the set Pϕ, characterized in [2], whose number is at most
n! (i.e., the permutations of L).

Next theorem provides a complete characterization of P (·|·) on A × A0 in
terms of P (·), P (·), L(·) and U(·).
Theorem 4. Given a likelihood function f(E|·) on L and a 2-monotone capacity
ϕ on 〈L〉, for every F |K ∈ A × A0, P (F |K) = 1 when F ∧ K = K, and if
F ∧K �= K, then:

(i) if P (K) > 0 then

P (F |K) = min

{
P (F ∧K)

P (F ∧K) + U(F c ∧K)
,

L(F ∧K)

L(F ∧K) + P (F c ∧K)

}
; (9)
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(ii) if P (K) = 0, then if I �= ∅ and Hj ∧ F ∧K �= ∅ for all j ∈ J and F c ∧K ∧(∨
i∈I Hi

)c
= ∅, where I, J ⊆ {1, . . . , n} are, respectively, the maximum and

minimum index set such that
∨

i∈I Hi ⊆ K ⊆
∨

j∈J Hj, then

P (F |K) = min

⎧⎨⎩ min
E∧Hi⊆F∧K

Ec∧Hi⊆F c∧K

f(E|Hi), min
Ec∧Hi⊆F∧K
E∧Hi⊆F c∧K

(1− f(E|Hi))

⎫⎬⎭ ; (10)

otherwise P (F |K) = 0.

Proof. Let P = {P̃ (·|·)} be the set of full conditional probabilities on A × A0

such that P̃|{E}×L = f and ϕ(·) ≤ P̃ (·|Ω) ≤ ϕ(·), with ϕ the dual capacity of

ϕ. If F ∧K = K, then, for every P̃ ∈ P , it follows P̃ (F |K) = 1, which implies
P (F |K) = 1. Hence assume F ∧K �= K.

To prove condition (i), suppose P (K) > 0, which implies P̃ (K) = P̃ (K|Ω) > 0

for every P̃ ∈ P , and so P (F |K) = min
{

P̃ (F∧K)

P̃ (F∧K)+P̃ (F c∧K)
: P̃ ∈ P

}
. The

conclusion follows since the real function x
x+y is increasing in x and decreas-

ing in y, so the minimum is attained in correspondence of P (F∧K)
P (F∧K)+U(F c∧K) or

L(F∧K)

L(F∧K)+P(F c∧K)
. Finally, condition (ii) is implied by the extension procedure

described in [8] and Theorem 1. �

In particular, if P (E) > 0, then for every F ∈ A we have P (F ∧E) = L(F ∧E)

and P (F c∧E) = U(F c∧E), thus Theorem 4 implies P (F |E) = P (F∧E)

P (F∧E)+P (F c∧E)
,

which coincides with the lower posterior probability defined in [25,26].
Note that for all F |K ∈ 〈L〉 × 〈L〉0, if ϕ is a belief function and P (K) =

ϕ(K) > 0, then P (·|·) on 〈L〉 × 〈L〉0 has the same characterization given in
Theorem 2. As a further consequence, for all F |K ∈ A × 〈L〉0, P (F |K) can be
expressed as the Choquet integral of GF with respect to the restriction of P (·|K)
on 〈L〉, that is P (F |K) = c

∫
GF (·)dP (·|K).

Notice that also for the function P (·|K) studied in this section (in particular
for the lower posterior probability) 2-monotonicity may fail when P (K) = 0
(see, again, Example 1). In the case the lower posterior probability is 2-monotone,
previous results can be used in order to iterate the updating procedure by taking
as new prior a lower posterior probability and considering a likelihood function
related to another evidence.
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Abstract. As observed in a real-life production company, there is often
a need to forecast demand for new products, despite the shortness of the
available time series data. We introduce an innovative approach to dis-
cover prior information from experts in their fields and incorporate this
into the bayesian autoregressive forecasting. It is observed that for the
short time series, the bayesian method combined with the soft computing
techniques, especially the linguistic summarization and the supervised
learning, outperforms the traditional, statistical methods, and that prior
assumptions play a key role. The details of the proposed approach are
illustrated by the simulation study.

Keywords: Time Series Forecasting, Autoregression, Bayesian Meth-
ods, Data Analysis, Summarization, Decision Support, Classification,
Support Vector Machine.

1 Introduction

When forecasting demand for a new product or a new customer, there are usu-
ally very few time series observations available. For such short time series the
traditional methods for the time series forecasting may be inaccurate. Hope-
fully, there are analysts and experts that conduct the forecasting process based
on their expertise and intuitions. However, the research on the psychology of
decision-making proves that people may take irrational decisions. Therefore, our
main objective is to create a human-consistent tool to support the forecasting
of the short autoregressive time series.

The focus of this paper is to present the Bayesian Forecasting with Soft Com-
puting Prior Information (BFSC) approach that supports the decision-making
about the prior assumptions for the short autoregressive time series. We pro-
cess the linguistic summaries, which are a result of data mining and are easily
interpretable for experts.

Within the experiments the significance of the prior assumptions is verified
and the comparative analysis of the forecasting accuracy with the well-known
forecasting methods is performed.
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The structure of this paper is as follows. The next section explains the moti-
vation and background for the problem. In Section 3 we present the details of
the proposed approach for forecasting. The performance of the approach is illus-
trated with the simulation studies in Section 4. This paper concludes in Section
5 with the summary and the potential further research opportunities.

2 Background and Motivation

The Box-Jenkins autoregressive and moving average (ARMA) processes are one
of the most popular probabilistic models for forecasting, and although simple,
very successful in applications. However, the traditional parameter estimation
methods, like the Yule-Walker or the Burg algorithm, require the availability of
the time series history of at least 50 observations (see Box [1]). If a time series
is short, then the estimation methods may not be accurate. For the review of
methods to estimate the autoregressive parameters, refer to [2].

Hopefully, the bayesian methods enable the inclusion of the prior information
with promising results for the short time series. However, the proper selection
of prior probability distributions for the unknown variables is essential for the
satisfactory forecasting performance in terms of accuracy and time. Following
[3], the definitions for the prior probability distributions are usually assumed
subjectively based on expert’s experience. In [4], the authors show the criti-
cal importance of the prior assumptions for the bayesian model averaging. Un-
fortunately, the research on the behavioral economics and the psychology of
decision-making proves that people may be misled by emotions, lack of skills,
extensive self-confidence or risk avoidance. Therefore, there is a need to support
the decision-making about the prior assumptions.

The soft computing research for time series has gained a lot of attention in
literature over the last decade. For the recent review on the time series data
mining see [5]. One of the goals of the data mining is to provide the human-
consistent description of the raw data. Linguistic summaries in the sense of [6]
are an example of such descriptions. The linguistic summaries are in line with
the visual inspection capabilities and describe general facts about the evolution
of a time series in a (quasi) natural language e.g., ‘Among all increasing trends,
majority is long.’, and therefore, are easily interpretable for experts.

Within this paper, the linguistic summarization and the supervised learning
are applied to discover the information about the expected trends in time series.
Then, the data mining results are included as the prior information in the process
of the bayesian autoregressive forecasting.

3 Proposed Algorithm

We introduce the Bayesian Forecasting with Soft Computing Prior Information
(BFSC) method. Its main objective is to construct the prior model probabilities
combining the data mining results and the experts’ advice.
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The method consists of the following three steps: the supervised learning of
the probabilistic models, the mining for the human-consistent prior information,
and finally, the bayesian posterior simulation and forecasting.

The input data for the algorithm are as follows:

– Time series for prediction y = {yt}nt=1, where n ∈ {nmin, ..., nmax} ⊆ N,
y ∈ Y, where Y is a space of discrete time series

– The selection of the template probabilistic models M = {M1,M2, ...,MJ} ⊆
M where M is a set of stationary autoregressive processes. For i ∈ {1, ..., J}:
θki ∈ ΘM ⊆ Rki is the vector of unobservables (parameters) for the autore-
gressive process Mi.

The proposed algorithm consists of the following steps:

1. The supervised learning of the probabilistic models
The goal is to build the training database and to discover rules enabling the
classification of the probabilistic models based on the sets of linguistic sum-
maries describing the evolution of time series.
1.1. Generate time series realizations of the template models
Generate the training database from M : T s

m = {{y1t }mt=1, ..., {yst}mt=1} ⊆ Ys,
where m ∈ N and s = J × k with (k ≥ 10) ∧ (k ∈ N). Create Cs =
{c(y1), ..., c(ys)}, where c : Y→M assigns to the time series its model.
1.2. Perform segmentation
Transform the time series T s

m into the series of meaningful labeled intervals
(trends) Trs = {{Tr1t }m1

t=1, ..., {Trst}ms
t=1}. We adapt a broken-line segmenta-

tion algorithm based on the idea of a sliding window.
1.3. Summarize series of trends
Discover linguistic summaries LIsTr = {{Li1h}zh=1, ..., {Lish}zh=1} ⊆ LIs where
linguistic summary LI is defined according to the classic calculus of linguis-
tically quantified proposition based on the concept of the Yager’s extended
protoform [6]. The linguistic summary LI : Q R trends are P consists of
quantifier Q (e.g., most, among all), qualifier R (attribute together with an
imprecise label, e.g., increasing trend), summarizer P (attribute together
with an imprecise label). For details see also [7].
1.4. Evaluate the quality of the linguistic summaries
Measure the quality of linguistic summaries LI ∈ LIsTr and save as V s =
{{V 1

h }zh=1, ..., {V s
h }zh=1} where V : LI → [0, 1]. We adapt the degree of truth

(validity) V introduced by Zadeh and defined as follows:

V (Q R trends are P ) = μQ(

∑n
i=1 (μR(yn) ∧ μP (yn))∑n

i=1 μR(yn)
) (1)

where μR(yn), μP (yn) are the membership functions μR, μP : R→ [0, 1] de-
termining the degree to which R,P respectively, are satisfied for the time
series y at the given moment n. For basic definitions related to the fuzzy sets
theory see e.g., [8].
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1.5. Apply Support Vector Machines (SVM)
Learn the classification rules on vectors V s andCs from the training database.
The elements of V s are attributes for the classification task. The elements of
Cs, that correspond to the template probabilistic models, are the classes (cat-
egories). For details on the supervised learning methods and the SVM classi-
fication see e.g., [9,10].

2. The mining for human-consistent prior information
The goal is to discover the linguistic summaries about the expected evolution
of the predicted time series from the experts of the field.
2.1. Generate provisional linguistic summaries
Create the set of the expected linguistic summaries LIE related to the short
time series y for prediction and estimate the vector V E ∈ [0, 1]E with the
respective degrees of validity.
2.2. Validate linguistic summaries with experts
Present V E to an expert for the evaluation through the human-computer
interaction.
2.3. Calculate the prior information
Calculate the classification scores Sc(V E) = {ScM1 , ScM1 , ..., ScMJ} where
Sc : [0, 1]E → [0, 1]J using rules learned through the SVM in step (1.5).
The classification assumes assigning score to each of J possible categories
(models).

3. The posterior simulation and forecasting
The goal is to find forecast ω = {yn+l} being the vector of interest for the
bayesian inference.
3.1. Construct the prior probability distributions
For all k ∈ {1, ..., s} establish p(Mk|M) based on the classification scores
Sc(V E). Let r denote the acceptance rate, if ScMk > r, then include Mk in
the posterior simulation and add k to Jr. The priors for the unobservables
p(θk|Mk) are adapted from the definitions related to the template models
p(Mk|M).
3.2. Apply the bayesian averaging
Include the multiple models in the process of the inference

p(ω|y,M) =

Jr∑
j=1

p(ω|y,Mj)p(Mj |M) (2)

where p(ω|y,Mj) is the posterior density of the vector of interest.
3.3. Run the Markov Chain Monte Carlo posterior simulation
Generate forecasts for the time series y. MCMC yields a pseudo-random se-
quence of the vector of interest to estimate its posterior moments concluding
from the Bayes Theorem according to the following formula:

p(θM |y,M) =
p(θM |M)p(y|θM ,M)

p(y|M)
(3)

instead of describing the probability density function analytically. For details
see e.g., [3].
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3.4. Evaluate the quality of the forecast
For example, for the normalized time series use the value of sum of squared
errors (SSE) to measure the forecasting accuracy. The measures for the fore-
casting accuracy are studied by [11].

4 Experimental Results

This section illustrates the performance of the proposed Bayesian Forecasting
with Soft Computing Prior Information (BFSC) approach and its forecasting
accuracy. The time series datasets for the simulation study are created from the
stationary autoregressive processes in line with the following formula:

ỹt = φ1 ˜yt−1 + at, at ∼ N(0, σ2), ỹt = yt − μ (4)

where θ = {φ1, σ
2} is the vector of the unknown variables, φ1 ∈ [−0.9, 0.9], σ2 ∈

[0, 1] and μ is the mean of yt.
The program with the proposed approach is created in Python with the sup-

port of NumPy, SciPy, PyMc extension modules. Linguistic summaries are gen-
erated with the Trend Analysis System [12].

The performance of the proposed approach is compared to the alternative
bayesian least squares method with the uninformative prior information and to
the two well-known, popular in applications, non-bayesian estimation methods:
the Yule-Walker and the Burg method.

4.1 Supervised Learning of Probabilistic Models

First, we analyze the classification performance for the database with the tem-
plate time series and the linguistic summaries used to learn the system. It is
observed that the degree of truth for almost half of all the linguistic summaries
that were generated automatically for the template time series is close to 0.
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Fig. 1. Classification accuracy and time for different number of attributes (linguistic
summaries) for the 3-class problem, SVM with RBF kernel
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We examine the classification accuracy and time depending on the considered
number of attributes (features) and classes (models) based on the mean for 5-fold
cross validation. As demonstrated by results for the 3-class problem in Figure 1,
the classification accuracy is highest and amounts to 0.69, 0.63 and 0.63 for 9, 50
and 130 attributes, respectively. The scenario of 9 attributes refers to the set of
simple linguistic summaries based on the short protoforms. Classification time
increases proportionally to the size of the considered attributes. We conclude
that the subspace of attributes for classification (linguistic summaries) may be
limited leading to the increased efficiency and without the loss on the accuracy.
Furthermore, the limited subspace is easier for the experts’ interpretation.

4.2 Mining for the Human-consistent Prior Information

The attributes (and labels) of trends for the time series segmentation and sum-
marization considered in the experiment are as follows: duration (short, medium,
long), dynamics (increasing, constant, decreasing), variability (low, moderate,
high). The linguistic summaries are naturally linked to the expressions in natu-
ral language, and therefore, are easily interpreted and validated by humans.

Table 1. Avg degree of truth V for the selected linguistic summaries in the groups
of time series generated from 3 models: M1, M2, M3 with autoregressive coefficient
φ1 = 0.0, φ1 = 0.5, φ1 = 0.9, respectively

Description of the linguistic summary V
M1 M2 M3

Among all trends, most are short 1.00 0.71 0.49
Among all trends, most are moderate 0.47 0.81 0.86
Among all trends, most are medium 0.51 0.88 0.98
Among all trends, most are low 0.47 0.22 0.14
Among all decr trends, most are medium 0.17 0.46 0.69
Among all decr trends, most are moderate 0.34 0.44 0.71

Table 1 presents average values of the degree of validity V for groups of the
sample time series generated from the selected 3 template models. The degree of
validity V is a satisfactory discrimination between the considered probabilistic
models.

4.3 Posterior Simulation and Forecasting

As presented in Table 2, the forecasting accuracy measured by the sum of squared
errors for the 1-step-ahead predictions of the proposed bayesian approach with
the soft computing prior outperforms significantly the alternative methods for
the short time series (10-20 observations).
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Table 2. The forecasting accuracy measured by the sum of squared errors for 1-step-
ahead prediction on the samples of 100 time series for: a)BFSC: the proposed approach
b) B-un: the bayesian least squares methods with uninformative prior c) Burg: the
Burg method d) Y-W: the Yule Walker method

No of obs in TS
10 11 12 13 14 15 16 17 18 19 20 50 100

BFSC 107.3 107.2 107.4 107.3 106.9 108.5 106.3 105.8 106.8 106.6 106.8 103.2 103.0
B-un 123.1 119.0 118.6 121.2 120.6 117.8 115.5 114.7 114.8 112.1 113.2 106.1 104.0
Burg 118.2 116.7 117.4 116.2 116.0 114.7 113.5 111.4 111.2 111.5 111.8 105.2 104.3
Y-W 119.2 117.6 117.5 116.2 116.6 114.9 113.9 112.9 112.6 113.0 112.8 105.0 104.0

At the same time, it is observed that for longer time series (100 observations),
there is no significance difference between the SSE obtained by the considered
methods in terms of the forecast accuracy.

Table 3 shows the efficiency of the estimation measured by the sum of squared
error (SSE) of posterior mean of the autoregressive coefficient compared to the
true coefficient which was assumed to generate the time series. As presented
in Table 3, the accuracy of parameter estimation depends on the length of the
available time series data and is 2 to 4 times more accurate for the proposed
approach than for the alternative methods. As to consider an example, for the
time series of length 10, the SSE of the posterior mean amounts to 1.95, 8.42,
8.54 and 9.85 respectively, for the proposed BFSC, the Burg algorithm, the Yule-
Walker method and the bayesian least squares with uninformative prior. For time
series of length 20, within this dataset, the SSE of the posterior mean amounts
to 1.63, 4.12, 4.32 and 4.92, respectively. Similarly to the forecast accuracy, the
SSE of the posterior mean is comparable for all methods and ranges between
0.58 to 0.81.

Table 3. The efficiency of estimation measured by the sum of squared error of the
posterior mean for the autoregressive coefficient compared to the coefficient which was
assumed to generate the time series on the samples of 100 time series for: a) BFSC: the
proposed approach b) B-un: the bayesian least squares methods with uninformative
prior c) Burg: the Burg method d) Y-W: the Yule Walker method

No of obs in TS
10 11 12 13 14 15 16 17 18 19 20 50 100 Avg

BFSC 1.95 1.84 1.92 1.78 1.81 1.74 1.65 1.69 1.76 1.61 1.63 0.96 0.58 1.61
B-un 9.85 9.63 7.89 7.82 7.51 7.12 5.69 5.93 5.95 5.31 4.92 1.58 0.81 6.15
Burg 8.42 8.41 7.10 6.60 5.96 5.55 4.95 5.03 4.68 4.25 4.12 1.41 0.74 5.17
Y-W 8.54 8.37 7.31 6.69 6.21 5.66 5.10 5.23 4.84 4.46 4.32 1.44 0.75 5.30

The performed experiment confirmed that the proposed approach helps to
increase the accuracy of forecasting time series with 10-20 observations.
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5 Conclusion

In this paper we have introduced the Bayesian Forecasting with Soft Computing
Prior Information approach to support the decision-making about the prior
assumptions for forecasting. The simulation of the forecast accuracy showed
that for the short autoregressive time series (10-20 observations) the proposed
method may lead to the increase of the forecasts accuracy compared to the
traditional estimation methods. Because of the purely simulational character of
this study, the obtained results are of preliminary character, and in future should
be confirmed by the experiments performed on real-life data sets.

The approach may be easily extended with other template probabilistic mod-
els. However, further experiments are needed to prove its overall effectiveness.
For future research we plan to include multivariate linguistic summaries, mul-
tiple interpretations of the processed imprecise labels and other types of the
linguistic information like frequent patterns and association rules.
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7. Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their proto-

forms: towards natural language based knowledge discovery tools. Information Sci-
ences 173, 281–304 (2005)

8. Gil, M., Hryniewicz, O.: Statistics with imprecise data. In: Encyclopedia of Com-
plexity and Systems Science, pp. 8679–8690. Springer, Heidelberg (2009)

9. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
10. Berthold, M., Hand, D.: Intelligent data analysis. An Introduction. Springer (2007)
11. Hyndman, R., Koehler, A.: Another look at measures of forecast accuracy. Inter-

national Journal of Forecasting 22, 679–688 (2006)
12. Kacprzyk, J., Wilbik, A., Partyka, A., Ziólkowski, A.: Trend Analysis System,
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Abstract. The most common way to learn the structure of Bayesian
networks is to use a score function together with an optimization pro-
cess. When no prior knowledge is available over the structure, score func-
tions based on information theory are used to balance the entropy of
the conditional probability tables with network complexity. Clearly, this
complexity has a high impact on the uncertainty about the estimation of
the conditional distributions. However, this complexity is estimated inde-
pendently of the computation of the entropy and thus does not faithfully
handle the uncertainty about the estimation. In this paper we propose
a new entropy function based on a “possibilistic upper entropy” which
relies on the entropy of a possibility distribution that encodes an upper
bound of the estimation of the frequencies. Since the network structure
has a direct effect on the number of pieces of data available for probabil-
ity estimation, the possibilistic upper entropy is of an effective interest
for learning the structure of the network. We also show that possibilistic
upper entropy can be used for obtaining an incremental algorithm for
the online learning of Bayesian network.

1 Introduction

Bayesian networks [8] are compact representations of probabilistic dependencies
over a set of variables. A Bayesian networks (BN) is composed of a directed
acyclic graph (DAG) which encodes the dependency relations, and of tables
which describe the conditional probability distributions. Given a DAG and a set
of complete vectors over variables, the tables can be easily obtained by com-
puting conditional frequencies (which can be refined with a smoothing process).
Thus, given a set of complete vectors over variables, a challenge is to identify the
best structure for the BN. The best structure is theoretically the one in which
the entropy of the conditional probabilities is the lowest. However, adding an
edge (and then a dependency) in the graph always decreases the entropy, but it
also decreases the amount of data used for estimating the conditional probability
distributions. Learning the structure of a BN thus consists in finding the best
trade-off between the global entropy of the BN and the uncertainty around the
estimation of the conditional probabilities. Since the uncertainty is related to
the complexity of the DAG (i.e. the size of the tables), score functions based on
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information theory, such as Akaike information criterion (AIC) or minimum de-
scription length (MDL), have been currently used (other measures based on prior
knowledge over structure have also be proposed in [7], but we do not consider
them in this paper since we assume that we have no prior knowledge). These
score functions balance the entropy values with the complexity of the graph.
Their major limitation is that they consider the computations of entropy and of
structure complexity in an independent way. Thus, it does not reflect the manner
how the information is dispatched in the table. In this paper we propose to use
the upper bound of the frequency estimates for defining a so-called possibilistic
upper entropy (π-up entropy). The approach relies on the building of a possibility
distribution. Quantitative possibility measures can be viewed as upper bounds of
probabilities. Then, a possibility distribution represents a family of probability
distributions [5]. This view was first implicitly suggested in [10] when empha-
sizing the idea that what is probable must be possible. Following this intuition,
a probability-possibility transformation has been proposed [6]. This transforma-
tion associates a probability distribution with the maximally specific (restrictive)
possibility distribution which is such that the possibility of any event is an upper
bound of the corresponding probability. Possibility distributions are then able to
describe epistemic uncertainty and to represent knowledge states such as total
ignorance, partial ignorance, or complete knowledge. In the spirit of [9], we pro-
pose a log-based loss function for possibility distributions. We derive an entropy
function for a possibility distribution associated to a frequency distribution. In
order to obtain the π-up entropy for a frequency distribution, we build a possi-
bility distribution that upper bounds the confidence intervals of the frequency
values (according to the amount of data available and a confidence degree) and
we compute its relative possibilistic entropy. This π-up entropy has a nice be-
havior. For instance, it respects the entropy order for a fixed level of information
and it increases the entropy value for a fixed frequency distribution when the
amount of data decreases. Our π-up entropy shares similar ideas (handling the
uncertainty around the estimation of the probability values) with a proposal by
Abelan et al. [1] for credal sets. Our approach is simpler and easier to compute.
Their entropy function is based on the worst entropy value for the probabilities
in the credal set obtained by the computation of confidence intervals. Thus, in
order to have discriminant values, they have to use very optimistic confidence
intervals (while we compute faithful confidence intervals). Moreover, the compu-
tation of entropy based on credal sets requires the solving of a simplex problem
and would make this approach time consuming.

In this paper, we show that we can directly use π-up entropy as a score
function for learning the structure of Bayesian networks. In addition to the
classical learning approach based on optimization, we propose a very simple
incremental learning method. The paper is organized as follows. First we provide
a short background on possibility distributions and possibility measures and their
use as upper bound of families of probability distributions. Second, we describe
probabilistic entropy and π-up entropy and their properties. Section 4 is devoted
to the presentation of the algorithms for learning the structure of BN’s. In the
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last section, we compare our score function with state of the art ones on 10
benchmark databases, which shows a clear benefit for the approach.

2 Possibility Theory

Possibility theory, introduced in [10], was initially proposed in order to deal with
imprecision and uncertainty due to incomplete information as the one provided
by linguistic statements. This kind of epistemic uncertainty cannot be handled
by a single probability distribution, especially when a priori knowledge about the
nature of the probability distribution is lacking. A possibility distribution π is a
mapping from Ω to [0, 1]. We only consider the case where Ω = {C1, . . . , Cq} is a
discrete universe (of classes in this paper). The value π(x) denotes the possibility
degree of x. For any subset of Ω, the possibility measure is defined as follows :

∀A ∈ 2Ω, Π(A) = max{π(x), x ∈ A}.

If it exists at least one singleton x ∈ Ω for which we have π(x) = 1, the distribu-
tion is normalized. We can distinguish two extreme cases of knowledge situation:
complete knowledge when ∃x ∈ Ω such as π(x) = 1 and ∀y ∈ Ω, y �= x, π(y) = 0
and total ignorance when ∀x ∈ Ω, π(x) = 1.

The natural pre-order over possibility distributions (named specificity) is de-
fined by the classical function pre-order. Namely, a distribution π is more specific
than π′, denoted π & π′, if and only if ∀x ∈ Ω, π(x) ≤ π′(x)⇔ ∀A ∈ 2Ω, Π(A) ≤
Π ′(A).

One view of possibility theory is to consider a possibility distribution as a
family of probability distributions (see [3] for an overview). Thus, a possibility
distribution π will represent the family of the probability distributions for which
the measure of each subset of Ω will be respectively lower and upper bounded by
its necessity and its possibility measures. More formally, if P is the set of all prob-
ability distributions defined on Ω, the family of probability distributions P(π)
associated with π is defined as P(π) = {p ∈ P , ∀A ∈ Ω,N(A) ≤ P (A) ≤ Π(A)},
where P is the probability measure associated with p. In this scope, the situation
of total ignorance corresponds to the case where all probability distributions are
possible. According to this probabilistic interpretation, Dubois et al. [6] propose
to transform a probability distribution into a possibility distribution by choosing
the most informative possibility measure that upper bounds the considered prob-
ability measure. This possibility measure corresponds to the tightest possibility
distribution. Let us consider a probability distribution p on Ω = {C1, . . . , Cq}.
We note σ ∈ Sq a permutation of the set 1, . . . , q. For each permutation σ ∈ Sq

we can build a possibility distribution πσ
p which encodes p as follows:

∀j ∈ {1, . . . , q}, πσ
p (Cj) =

∑
k,σ(k)≤σ(j)

p(Ck). (1)

Then, each πσ
p corresponds to a cumulative distribution of p according to the

order defined by σ. We have ∀σ ∈ Sq, p ∈ P(πσ
p ). The probability-possibility
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transformation [4] uses one of these particular possibility distributions. Given
a probability distribution p on Ω = {C1, . . . , Cq} and a permutation σ∗ ∈ Sq

such as p(Cσ∗(1)) ≤ . . . ≤ p(Cσ∗(q)), the probability possibility of p is noted

π∗
p and is defined as π∗

p = πσ∗
p . π∗

p is the cumulative distribution of p built by
considering the increasing order of p. For this order, π∗

p is the most specific
possibility distribution that encodes p.

3 Possibilistic Upper Entropy

In section we explain how particular possibility distributions can be used to take
into account the amount of data used for estimating the frequencies into the
computation of the entropy. Probabilistic loss functions are used for evaluating
the adequateness of a probability distribution with respect to data. We consider
a set of realizations X = {x1, . . . , xn} of a random variable over a discrete
universe Ω = {C1, . . . , Cq}. Let α1, . . . , αq be the frequency of the elements of
X that belong respectively to {C1, . . . , Cq}. The log-likelihood is a natural loss
function for estimating the adequateness between a probability distribution p on
the discrete space Ω = {C1, . . . , Cq} and an event xi. Formally the likelihood
coincides with a probability value. The logarithmic-based likelihood is defined
as follows:

Llog(p|xi) = −
q∑

j=1

1j(xi)log(p(Cj)), (2)

where 1j(xi) = 1 if xi = Cj , and 1j(xi) = 0 otherwise. When we consider
the whole set of data we obtain Llog(p|X) = −

∑q
j=1 αj log(p(Cj)). When p is

estimated with respect to frequencies, we obtain the entropy of the distribution.

H(p) = −
q∑

j=1

p(Cj)log(p(Cj)). (3)

The entropy measures the amount of information of the distribution. The higher
the entropy, the lower the amount of information (uniform distribution). We now
show how to use Llog in order to define a loss function, and the related entropy,
for possibility distributions that agree with the interpretation of a possibility
distribution in terms of a family of probability distributions. Proofs and detailed
discussion about possibilistic loss function can be found in [9]. We expect three
properties:

(a) the loss function is minimal for the possibility distribution that results from
the probability-possibility transformation of the frequencies

(b) the possibilistic entropy is the sum of the independent loss functions for each
event as for probabilistic entropy

(c) the possibilistic entropy of the results of the probability-possibility transfor-
mations agree with the probabilistic entropy order.
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Since a possibility distribution π can be viewed as an upper bound of a cumula-
tive function, for all j, the pair πj = (π(Cσ(j)), 1−π(Cσ(j))) (σ is the permutation
of Sq such that π(Cσ(1)) ≤ . . . ≤ π(Cσ(q))) can be seen as a binomial probability

distribution for the sets of events BCj =
⋃j

i=1 Cσ(i) and BCj . Then, the loga-
rithmic loss of a possibility distribution for an event will be the average of the
log loss of each binomial distribution πj .

Lpos(π|xi) =
∑q

j=1 Llog(πj |xi)
q

(4)

When we consider the whole set of data, we obtain:

Lpos(π|X) = −
∑q

j=1(cdfj ∗ log(π(Cj) + (1− cdfj) ∗ log(1− π(Cj)))

q
(5)

where cdfj =
∑

k,σ(k)≤σ(j) αk. The property (a) has been proven in [9]. We
remark that cdfj corresponds to the cumulative probability distribution of the
frequencies with respect to σ (Eq. 1). Then, we can derive a definition of the
entropy of a possibility distribution π relative to a probability distribution p by
considering the cumulative distribution of p according to the order σ (πσ

p ):

Hpos(p, π) = −
∑q

j=1 π
σ
p (Cj) ∗ log(π(Cj))

q
−
∑q

j=1(1− πσ
p (Cj)) ∗ log(1− π(Cj))

q
(6)

The expected property (b) is obvious if we consider the probability distribution
p such as p(Ci) = αi. We can establish some properties of possibilistic entropy
which validate the property (c) and show that the possibility entropy is fully
compatible with the interpretation of a possibility distribution as a family of
probability distributions:

• Given two probability distributions p and p′ on Ω = {C1, . . . , Cq} we have
H(p) ≤ H(p′)⇒ Hpos(p, π

∗
p) ≤ Hpos(p

′, π∗
p′),

• Given a probability distribution p and two possibility distributions π and π′

on Ω = {C1, . . . , Cq} we have π∗
p & π & π′ ⇒ Hpos(p, π

∗
p) ≤ Hpos(p, π) ≤

Hpos(p, π
′).

As said previously, the entropy calculus does not take into account the amount
of information used for estimating the frequencies. The idea behind π-up entropy
is to consider the confidence intervals around the estimation of the frequencies to
have an entropy measure that increases when the size of the confidence interval
increases. Applying directly the entropy to the upper-bounds of the frequency is
not satisfactory since entropy only applies to genuine probability distributions.
Similarly, using the probability distribution that has values in the confidence
interval and that has the maximum value of entropy is too restrictive. Thus we
propose to build the most specific possibility distribution that upper bounds the
confidence interval and compute its possibilistic entropy relative to the frequency
distribution.
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We use the Agresti-Coull interval (see [2] for a review of confidence intervals for
binomial distributions) for computing the upper bound value of the probability
of an event. Given p(c) the probability of the event estimated from n pieces of
data, the upper bound p∗γ,n of the (1−γ)% confidence interval of the distribution
is obtained as follows:

p∗γ,n(c) = p̃+ z

√
1

ñ
p̃(1 − p̃) (7)

where ñ = n + z2, p̃ = 1
ñ (p(c) ∗ n + 1

2̃
z2), and z is the 1 − 1

2γ percentile of
a standard normal distribution. The most specific πγ

p,n that upper bounds the
(1−γ)% confidence interval of the probability distribution p onΩ = {C1, . . . , Cq}
estimated from n pieces of data is computed as πγ

p,n(Cj) = P ∗
γ,n(

⋃j
i=1 Cσ(i))

where σ ∈ Sq is the permutation such as p(Cσ(1)) ≤ . . . ≤ p(Cσ(q)). Then πγ
p,n is

built in the same way as π∗
p except that it also takes into account the uncertainty

around the estimation of p. Obviously, we have p ∈ P(πγ
p,n), ∀n > 0, π∗

p & πγ
p,n

and lim
n→∞πγ

p,n = π∗
p . Having πγ

p,n, we can now define the π-up entropy of a

probability distribution:

Hπ-up(p, n, γ) = Hposs(p, π
γ
p,n) (8)

Hπ-up has the following properties:

• Given a probability distribution p on Ω = {C1, . . . , Cq} and n′ ≤ n we have
∀γ ∈]0, 1[,Hπ-up(p, n, γ) ≤ Hπ-up(p, n

′, γ),
• Given two probability distributions p and p′ on Ω = {C1, . . . , Cq} we have
∀γ ∈]0, 1[,H(p) ≤ H(p′)⇒ Hπ-up(p, n, γ) ≤ Hπ-up(p

′, n, γ).

4 Learning a Bayesian Network Structure

We consider a BN over a set of m random variables V = {V1, . . . , Vm} (each
random variable Vi can take ri possible values). D is a set of n complete val-
uations of V . Given a Bayesian network B, we note qi the numbers of lines in
the conditional table for the variable Vi. Given B and D we define the AIC and
MDL score functions as follows:

AIC(B,D) = LogP (B,D)−Dim(B), (9)

MDL(B,D) = LogP (B,D)− 1

2
Dim(B) ∗ log(n), (10)

where Dim(B) =
∑m

i=1(1 − ri) ∗ qi. The terms LogP (B,D) is closely related to
the entropy of the conditional distribution (thanks to the decomposability of the
entropy) when they are evaluated by considering the frequencies:

LogP (B,D) =
m∑
i=1

qi∑
j=1

ri∑
k=1

Ni,j,k ∗ log(
Ni,j,k

Ni,j
) = −

m∑
i=1

qi∑
j=1

Ni,j ∗ H(pi,j) (11)
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where Ni,j,k is the number of examples in D which fall in the jth line of the
table of Vi and for which Vi takes the kth possible value, Ni,j =

∑ri
k=1Ni,j,k,

and pi,j is the conditional probability distribution in the jth line of the table of
Vi. Since Hπ-up is also decomposable, we propose the following score function

POSS(B,D) = −
m∑
i=1

qi∑
j=1

Ni,j ∗ Hπ-up(pi,j , Ni,j , γ) (12)

It is easy to remark that in AIC and MDL, the accuracy of the BN (described by
LogP (B,D)) is computed independently of the complexity of the graph. Thus,
even if it is clear that the number of examples used for evaluating the different
lines of the tables decreases when Dim(B) increases, it does not reflect all the
possible situations (very homogeneous distributions of the data over the lines,
or on the contrary very heterogeneous distributions, for instance). POSS(B,D)
evaluates the amount of uncertainty on each conditional distribution and auto-
matically gives a trade-off between uncertainty (related to the complexity of the
graph) and the accuracy of the model.

In order to obtain the structure of the BN, a classical steepest hill climbing
approach is used. However, we also propose a very simple incremental learning
approach. For each new example, we apply the following process:

1. Update the score of each nodes
2. Update the score for each possible addition of an edge
3. If the addition of at least one edge increase the global score then add the

edge that performs the best increase.

This approach can be done very efficiently for two reasons: i) each score
function (AIC, MDL, POSS ) can be decomposed into local score functions for
each line of the tables, only the lines that correspond to the new example are
updated, ii) the predicted score values for all the possible edge addition cans be
stored in each line of the table and efficiently updated as in i). For the sake of
efficiency, no more than one edge can be added when considering a new example.
This is reasonable since generally a BN contains far less nodes than the numbers
of examples used for learning the structure and the tables. Since the POSS score
considers the uncertainty of the conditional distributions locally, it appears to
be suitable for this approach.

The only parameter of the algorithm is γ. It represents the strength of the
constraint for uncertainty. This parameter can be automatically and effectively
tuned very quickly by choosing the best value of gamma for cross-validation in
a small sub-sample of the training set (100 examples in the experiments).

5 Experimentation

In order to check the effectiveness of the proposed algorithms, we used 10 bench-
marks from UCI1 (numerical values are discretized). HAIC, HMDL and HPOSS

1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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denote respectively a steepest hill climbing starting from an empty graph with
the AIC, MDL and the POSS score functions. OAIC, OMDL and OPOSS cor-
responds to their online counterparts. The results in the following table corre-
sponds to classification accuracy results for 10-cross validation. Departing from
the normal use of these datasets, here all the variables of the dataset are re-
garded in turn as classes to be predicted from the remaining variables. We thus
take into account the whole BN rather than only the nodes directly related to
the variable that is usually taken as the class. Values in bold corresponds to
statistically significant differences with the two other algorithms (Hill climbing
and online algorithm are considered independently).

Data set HAIC HMDL HPOSS OAIC OMDL OPOSS
wine 77.5±2.2 77.3±2.4 78.2±2.4 75.4±2.1 73.7±3.5 78.1±2.2
diabetes 65.7±2.4 65.8±2.3 66.3±2.5 64.3±2.6 65.3±1.6 66.1±1.7
breast 79.6±1.9 79.9±1.7 80.0±1.6 78.9±2.4 79.4±2.0 79.7±1.7
vehicle 82.7±1.6 80.9±1.4 83.0±1.4 81.2±1.3 78.5±1.5 82.3±1.1
zoo 90.0±2.2 88.8±2.2 90.2±2.2 87.6±3.4 85.2±3.6 90.6±1.7
soybean 85.7±0.8 84.3±0.7 88.6±0.5 84.2±0.8 82.1±0.7 87.6±0.4
segment 74.1±1.0 70.9±1.0 76.6±0.6 73.7±0.9 59.1±1.4 73.8±0.7
glass 79.0±3.1 78.1±2.8 83.7±2.2 75.7±2.3 74.7±2.7 82.0±3.4
yeast 79.1±1.3 78.6±1.4 79.2±1.4 78.5±1.3 76.3±1.3 78.8±1.2
blocks 81.0±0.7 78.3±0.8 83.4±0.7 79.1±0.6 78.3±0.5 81.3±0.4

HPOSS statistically overcomes HAIC and HMDL on 4 of the 10 databases
and is never overcome (statistically or not). When considering the online ver-
sion, OAIC and OMDL algorithms obtain less good results than their hill climb-
ing counterparts. On the opposite, OPOSS obtains similar results as HPOSS.
OPOSS takes generally more time than HPOSS to learn a BN (which is easily
understandable since it considers examples one by one) but the updating time
is less than 1 ms in most cases and 39 ms in the worst case.

6 Conclusion

In this paper we have proposed an extension of the log-based entropy that takes
into account the confidence intervals of the estimates of the frequencies with a
limited amount of data, thanks to the use of a possibility-based representation of
the family of probability distributions that agree with the data. We have shown
that we can use this entropy directly as a score function to learn the structure
of a Bayesian network. Experiments show that our algorithms perform very well
again the classical information score functions and confirms the reliability and
the efficiency of the online algorithm proposed. In the future, we shall compare
more precisely our entropy measure with π-up entropy on a credal set. We also
plan to investigate the learning of structures and conditional distributions when
the data are incomplete. Besides, the tuning of the γ parameters in OPOSS
could be made automatically during the updating process.
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Abstract. The question of probability of a system of fuzzy equations
solvability in a max–t-norm fuzzy algebra for several t-norms and 2× 2
matrices is considered. We derive that the probability of solving such
a system is very low, namely 1

10
for Gödel norm, 11

60
for �Lukasiewicz

norm, 5
36

for product norm and zero for drastic norm. These results
are surprising compared to the case of a finite vector space, where the
probability is one.

Keywords: t-norms, fuzzy relation equations, fuzzy algebras.

1 Introduction

Since the pioneer work [1] of fuzzy relation equations, many results on finding
minimal and maximal elements and solvability of such systems have been devel-
oped (e.g. [2,3,4,5,6,7]). However, to the author’s knowledge, there is no result
describing something like probability of solving such a system. By probability
is understood a situation, when one picks up uniformly randomly a matrix A
together with a right-hand side b with coefficients from [0; 1], then how often will
the composed system A⊗ x = b have a solution with respect to x?

This paper aims to make a first step in answering such kind of questions. To do
this, we have restricted ourselves only to 2× 2 matrices and four fuzzy algebras
with t-norms minimum, �Lukasiewicz, product and drastic. The derivation of
conditional probabilities in these cases is presented. However, generalization to
higher dimensions is the task of our future work.

After introduction, we continue by definitions of t-norms, fuzzy algebras and
formulating rigorously the question of our concern. Then we answer the question
in the case of finite vector spaces to have a classical result to which the results of
fuzzy cases can be compared. The main section starts with results common for
all t-norms. Then the respective cases are studied. The last section summarizes
obtained results.
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2 Preliminaries

In this section, basic definitions, problem formulation and result for classical
case are given.

Definition 1. A mapping T : [0; 1] × [0; 1] )→ [0; 1] is called a t-norm, if the
following conditions are satisfied for all a, b, c ∈ [0; 1]:

1. aT(bT c) = (aT b)T c (associativity),
2. aT b = bTa (commutativity),
3. if a ≤ b, then aT c ≤ bT c (monotonicity),
4. aT1 = a (1 as neutral element).

From all continuous t-norms (w.r.t. usual definition of continuity of a map-
ping), the following three play a prominent role, since every other continuous
t-norm is their ordinal sum [9]:

aTG b := min{a, b}, aT�L b := max{0, a+ b− 1}, aTΠ b := ab.

The fourth one studied in this paper is the drastic norm:

aTD b =

{
0 if max(a, b) < 1,

min(a, b) otherwise,

which is not continuous, but plays an important theoretical role, since it is the
smallest possible t-norm.

Definition 2. Given the unit interval [0; 1] together with a t-norm T, by max–
t-norm algebra we understand an algebra A = ([0; 1],max,T, 0, 1) of a type
(2, 2, 0, 0).

Fuzzy algebras are usually viewed as complete residuated lattices (as e.g. in
[8]). The chosen definition 2 is fully sufficient in what follows, since only the
properties of t-norms are utilized.

We denote ⊕ := max and ⊗ := T. The respective t-norm will be clear from
the context. In notation, multiplication ⊗ is given precedence over addition ⊕,
i.e., a ⊗ b ⊕ c means the same as (a ⊗ b)⊕ c.

Note, that ([0; 1],⊕, 0) and ([0; 1],⊗, 1) constitute commutative monoids and
that T is distributive w.r.t. max: a⊗ b⊕ a⊗ c = a⊗ (b⊕ c).

We extend the algebra A to a vector space-like structure An by formally re-
placing operations in standard matrix multiplication (matrix addition and mul-
tiplication by elements from a ring) by our operations ⊕ and ⊗. For example,(

a11 a12
a21 a22

)
⊗
(
x1
x2

)
=

(
a11 ⊗ x1 ⊕ a12 ⊗ x2
a21 ⊗ x1 ⊕ a22 ⊗ x2

)
.

Our question can be formulated as follows:When randomly picking up a square
matrix A ∈ An×n and a column b ∈ An, what is the probability, that the equation

A⊗ x = b

is solvable in x ∈ An?
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By probability is meant the ratio of the volume of all solvable pairs (A, b) to
the volume of all pairs. Answers for n = 2 and four t-norms are given in section
3, but before proceeding to fuzzy algebras, we answer our question for the case
of finite vector spaces over a field R:

– for a regular matrix every system of linear equations (SLE) is solvable,
– determinant of such a matrix is nonzero,
– non-regular matrices satisfy equation detA = 0,
– the set of all non-regular matrices thus compose a set of a zero measure in

Rn2

,
– then the set of pairs (A, b) of SLE with A non-regular is of a zero measure

in Rn2+n, too.

Thence, in this case, the answer is PR = 1.

3 max–t-norm Algebras

We restrict ourselves to 2× 2 dimensional squares A

A =

(
a11 a12
a21 a22

)
, (1)

from A2×2. Notation (
�1 �2

�3 �4

)
�5

represents the set of all such pairs (A, b) for which

a11�1b1, a12�2b1, a21�3b2, a22�4b2 and finally b1�5b2,

where b = (b1, b2)
T is the right-hand side and �i ∈ {<,>} for i = 1, 2, . . .5.

We consider only strict inequalities, since coefficients are uniformly distributed
and the probability of obtaining just one exact value is zero. When �5 is omitted,
there is no relation between b1 and b2.

The following cases are either unsolvable due to the monotonicity of t-norms,
i.e., when a, b ∈ [0; 1], a < b then a ⊗ x < b for all x ∈ [0; 1], or their solvable
parts have a zero measure:(

< <
< <

)
, V = 1

9 ,(
> <
> <

)
,

(
< >
< >

)
, V = 1

36 ,(
> >
< <

)
,

(
< <
> >

)
, V = 1

9 ,(
> <
< <

)
>

,

(
< >
< <

)
>

,

(
< <
> <

)
<

,

(
< <
< >

)
<

, V = 1
90 ,(

> <
< <

)
<

,

(
< >
< <

)
<

,

(
< <
> <

)
>

,

(
< <
< >

)
>

, V = 4
90 .
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V denotes the volume of such a set, e.g.

V

((
< <
> <

)
<

)
=

∫ 1

0

db2

∫ b2

0

db1

∫ b1

0

da11

∫ b1

0

da12

∫ 1

b2

da21

∫ b2

0

da22 =

=

∫ 1

0

db2

∫ b2

0

db1 b
2
1 b2 (1− b2) =

1

90
.

We see, that the volume of unsolvable pairs must be strictly greater than

1

9
+ 2 · 1

36
+ 2 · 1

9
+ 4 · 1

90
+ 4 · 4

90
=

11

18
,

i.e., more than half of the whole volume of all pairs. On the other hand, the two
following sets are always solvable for continuous t-norms (excluding thus also
drastic norm): (

> <
< >

)
,

(
< >
> <

)
, V =

1

36
. (2)

Thence, for continuous t-norms, the probability of system solvability with two
equations and two variables is at least 1

18 . Solvability of other sets of pairs,
namely

I :

(
> >
> >

)
, V = 1

9 ,

II :

(
< >
> >

)
>

,

(
> <
> >

)
>

,

(
> >
< >

)
<

,

(
> >
> <

)
<

, V = 4
90 ,

III :

(
< >
> >

)
<

,

(
> <
> >

)
<

,

(
> >
< >

)
>

,

(
> >
> <

)
>

, V = 1
90 ,

substantially depends on the chosen t-norm, as is shown in next four subsections.

3.1 max−TG Algebra

Sets of type I and II are not solvable in max−TG algebra, since in the first case
one of bi’s is strictly greater than other, w.l.o.g. let b1 > b2, then solving this one
x1 = b1 leads to min(x1, a21) > b2 in the second equation. Similarly for x2 = b1.
Case II differs only in that there is just one possibility for choosing xi such that
the equation with greater right-hand side is solved. Consider for example

(A, b) ∈
(
> <
> >

)
>

,

then clearly x1 = b1 in order to solve the first equation. But then min(a21, x1) >
b2 and the second equation can not hold.

Systems from sets III are solvable; for instance for a pair (A, b) from

(A, b) ∈
(
> >
< >

)
>

take x = (b1, b2). The first equation is not corrupted, because b2 < b1, and
neither is the second, because a21 < b2 < b1 and thus min(a21, x1) = a21 < b2.

The overall probability is PG =
1

18
+ 4 · 1

90
=

1

10
, where 1

18 comes from (2).
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3.2 max−T�L Algebra

In this algebra even systems from I and II may be solvable. Assume for example,
that we would like to solve a system from I in variables a11 and a22, i.e.,

x1 = 1 + b1 − a11, x2 = 1 + b2 − a22,

where x1, x2 ≤ 1 because aii > bi for i = 1, 2. Following conditions ensure, that
neither of the equations will be corrupted

a21 + b1 − a11 ≤ b2, a12 + b2 − a22 ≤ b1. (3)

It is now convenient to divide case I into two parts b1 > b2 and b2 > b1. For the
first part, the conditions (3) can be rewritten to the form

a21 ≤ a11 + b2 − b1, a22 ≥ a12 + b2 − b1

and 1 ≥ a11 + b2 − b1 ≥ b2 holds since 1 ≥ a11 + b2 − b1︸ ︷︷ ︸
≤0

and a11 − b1︸ ︷︷ ︸
≥0

+b2 ≥ b2,

similarly for a22. Then the volume of solvable part can be computed as

V

((
(>) >
> (>)

)
>

)
=

=

∫ 1

0

db1

∫ b1

0

db2

∫ 1

b1

da11

∫ a11+b2−b1

b2

da21

∫ 1

b1

da12

∫ 1

a12+b2−b1

da22 =

=
1

80
.

Parenthesis indicate elements solving corresponding equation. Similarly can be
dealt with other cases. The volumes of solvable parts of respective cases are

I’ :

(
(>) >
> (>)

)
>

,

(
> (>)
(>) >

)
>

,

(
(>) >
> (>)

)
<

,

(
> (>)
(>) >

)
<

, V =
1

80
,

and V (II) = 1
80 , V (III) = 1

144 . The probability is then

P�L =
1

18
+ 4 · 1

80
+ 4 · 1

80
+ 4 · 1

144
=

11

60
.

3.3 max−TΠ Algebra

This algebra has very similar properties as the previous one, just replace sub-
traction by division and addition by multiplication, e.g. a11 + b2 − b1 now reads

a11
b2
b1
. Then the volumes of solvable parts are
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V

((
(>) >
> (>)

)
>

)
=

=

∫ 1

0

db1

∫ b1

0

db2

∫ 1

b1

da11

∫ a11
b2
b1

b2

da21

∫ 1

b1

da12

∫ 1

a12
b2
b1

da22 =

=
1

144
,

V (II) =
1

180
and V (III) =

1

120
. The probability in this case is

PΠ =
1

18
+ 4 · 1

144
+ 4 · 1

180
+ 4 · 1

120
=

5

36
.

3.4 max−TD Algebra

In this algebra the probability is zero, because in order to obtain a value bi from
a multiplication A⊗ x, there must be either a number 1 or bi in the matrix A.
However, the probability that this happens is zero.

4 Conclusions

In our contribution, we tried to make a first step in understanding what systems
of linear equations (SLE) in classical vector spaces and fuzzy relation equations
in fuzzy algebras have in common. We have shown computing with 2×2 matrices
has completely different properties and from the point of view of solvability has
nothing in common with SLE in vector spaces, since the probability of solvabil-
ity of random pair (A, b) is very low in fuzzy algebras whilst in vector spaces
it is certainly solvable. If we compare ordered t-norms with ordered obtained
probabilities

TD ≤ T�L ≤ TΠ ≤ TG,

PD < PG < PΠ < P�L,
0

180
<

18

180
<

25

180
<

33

180
,

we can conjecture, that for two comparable continuous t-norms the less one
(recall that T1 ≤ T2 if for all a, b ∈ [0; 1] holds that a T1 b ≤ a T2 b) will have
greater probability of solvability.

In our next research, we will aim to answer the question for a general
dimension.
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Abstract. We consider fuzzy stochastic differential equations in a new
formulation. The equations that we examine possess solutions which are
the fuzzy stochastic processes with trajectories of decreasing fuzziness
in their consecutive values. This is a novelty. We give a theorem that
guarantees existence and uniqueness of solutions. Some fuzzy stochastic
differential equations are solved explicitly and some visualizations of sim-
ulations connected with their solutions are included. All the results can
be applied immediately to set-valued stochastic differential equations.

Keywords: Fuzzy stochastic differential equation, fuzzy stochastic in-
tegral equation, set-valued stochastic differential equation.

1 Introduction

The dynamical systems operating in a random environment are often described
by stochastic differential equations which involve stochastic integrals [16]. The
system’s states described by single values of a phase space are uncertain because
of random factors and stochastic noises. On the other hand, in praxis there
are often some questions if a concrete equation is a perfect one for considered
phenomenon. This is caused by an imperfect knowledge of considered system
and this uncertainty is not of stochastic type. Some measurements which are
made to match an appropriate model are imprecise, vague or fuzzy. In partic-
ular, the parameters and the functional relationships in the systems may not
be known precisely but only some sets of possible values may be determined or
some linguistic variables may be used to describe them. The human perception
lead to unclear and ambiguous descriptions of the observed systems. To model
the systems with vagueness and fuzziness, the theory of fuzzy differential equa-
tions has been proposed [1,3,5,14]. This theory is developed independently and
separately from the theory of the stochastic differential equations. These two
different theories interlock in a notion of the fuzzy stochastic differential equa-
tion [2], [6]-[13], [15]. Such equations form a quite new topic of research and
can be useful in mathematical models of the systems governed by some random
forces and with fuzzy states. In [9]-[13] the author considers the fuzzy stochas-
tic differential equations in a form which is a very natural generalization of the

c© Springer International Publishing Switzerland 2015 105
P. Grzegorzewski et al. (eds.), Strengthening Links between Data Analysis & Soft Computing,
Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_13
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crisp stochastic differential equations. Roughly speaking, in [9]-[13] the following
equation is under considerations

x(t) = x0 +

∫ t

0

f(s, x(s))ds +

∫ t

0

g(s, x(s))dB(s), t ∈ [0, T ],

where x0 denotes a fuzzy random variable, f is a fuzzy-valued coefficient which
is random, g is a crisp-valued random mapping, B is Brownian motion. In this
paper, we reformulate the equation written above. Namely, we move the integrals
from right to left and therefore consider equation

x(t) + (−1)
∫ t

0

f(s, x(s))ds + (−1)
∫ t

0

g(s, x(s))dB(s) = x0, t ∈ [0, T ].

Such treatment would not have any significance if the equations were the crisp
ones. However, in the fuzzy case the situation is completely different. The so-
lutions to both the equations lay open some different geometrical properties.
Namely, the diameter of the trajectory values of a solution to the first equation
increases when time t increases, whereas it decreases for the second equation.
This confirmes that the fuzzy modeling is much subtler and much richer than
the crisp modeling. Although we consider the mappings x0, f, g, x with values
in the space of fuzzy sets of Rd, the results of this paper can be rewritten in
a framework of fuzzy and set-valued differential equations in M-type 2 Banach
spaces. In [13] we considered the first equation written above in a set-up of fuzzy
sets (and sets) of infinite dimensional M-type 2 Banach spaces.

2 Preliminaries

By the symbol K(Rd) we denote the family of all nonempty, compact and con-
vex subsets of Rd. In K(Rd) we consider the Hausdorff metric dH which is de-
fined by dH (A,B) := max

{
supa∈A infb∈B ‖a− b‖, supb∈B infa∈A ‖a− b‖

}
, where

‖ · ‖ denotes a norm in Rd. Let (Ω,A, P ) be a complete probability space By
Lp(Ω,A, P ;K(Rd)) we denote the set of random sets F which are Lp-integrably
bounded (see [9]-[11] for the details). A fuzzy set u in Rd is characterized by its
membership function (denoted by u again) u:Rd → [0, 1]. By F(Rd) we denote a
set of fuzzy sets u:Rd → [0, 1] such that [u]α ∈ K(Rd) for every α ∈ [0, 1], where
[u]α := { a ∈ Rd : u(a) ≥ α } for α ∈ (0, 1] and [u]0 := cl{ a ∈ Rd : u(a) > 0 }.
The set [u]0 is called the support of the fuzzy set u. By 〈r〉 we mean the char-
acteristic function of the singleton {r}, r ∈ Rd. Obviously, 〈r〉 ∈ F(Rd). The
addition u+v and scalar multiplication ru in F(Rd) can be defined levelwise, i.e.
[u+ v]α = [u]α + [v]α, [ru]α = r[u]α, where u, v ∈ F(Rd), r ∈ R and α ∈ [0, 1]. If
for u, v ∈ F(Rd) there exists w ∈ F(Rd) such that u = v+w then w is said to be
the Hukuhara difference of u and v and we denote it by u+v. In F(Rd) we consider
the metric d∞(u, v) := supα∈[0,1] dH([u]α, [v]α). For u ∈ F(Rd) we denote an in-

dicator of the fuzziness of u by Fuzz(u) := diam([u]0) = sup{‖a−b‖ : a, b ∈ [u]0}.
If u is crisp then Fuzz(u) = 0.
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An x:Ω → F(Rd) is called a fuzzy random variable (see [17]), if [x]α:Ω →
K(Rd) is a random set for all α ∈ [0, 1]. In [4] it is proved that x:Ω → F(Rd)
is the fuzzy random variable if and only if x: (Ω,A) → (F(Rd),BdS) is A|BdS -
measurable, where dS denotes the Skorohod metric in F(Rd) and BdS denotes
the σ-algebra generated by the topology induced by dS . A fuzzy random vari-
able x:Ω → F(Rd) is said to be Lp-integrably bounded, p ≥ 1, if [x]0 belongs
to Lp(Ω,A, P ;K(Rd)). By Lp(Ω,A, P ;F(Rd)) we denote the set of the all Lp-
integrably bounded fuzzy random variables.

Denote I := [0, T ]. We equip the probability space with a filtration {At}t∈I

satisfying the usual hypotheses. An x: I×Ω → F(Rd) is called the fuzzy stochas-
tic process, if for every t ∈ I the mapping x(t, ·):Ω → F(Rd) is a fuzzy random
variable. It is d∞-continuous, if almost all (with respect to the probability mea-
sure P ) its trajectories, i.e. the mappings x(·, ω): I → F(Rd) are d∞-continuous
functions. A fuzzy stochastic process x is said to be nonanticipating, if for every
α ∈ [0, 1] the mapping [x(·, ·)]α is measurable with respect to the σ-algebra N ,
which is defined as follows N := {A ∈ B(I) ⊗ A : At ∈ At for every t ∈ I},
where At = {ω : (t, ω) ∈ A}. Let p ≥ 1 and Lp(I×Ω,N ;Rd) denote the set of all
nonanticipating stochastic processes h: I × Ω → Rd such that E

∫
I
‖h(s)‖pds <

∞. A fuzzy stochastic process x is called Lp-integrably bounded (p ≥ 1), if
there exists a real-valued stochastic process h ∈ Lp(I × Ω,N ;R) such that
d∞(x(t, ω), 〈0〉) ≤ h(t, ω) for a.a. (t, ω) ∈ I ×Ω. By Lp(I ×Ω,N ;F(Rd)) we de-
note the set of nonanticipating and Lp-integrably bounded fuzzy stochastic pro-
cesses. For τ, t ∈ I, τ < t, and x ∈ L1(I×Ω,N ;F(Rd)) we can define (see [9]-[11])

the fuzzy stochastic Lebesgue–Aumann integral Ω , ω )→
∫ t

τ
x(s, ω)ds ∈ F(Rd)

which is a fuzzy random variable.
For convenience, from now on, the phrase “with P.1” stands for “with prob-

ability one”. Also we will write x
P.1
= y instead of P

(
x = y

)
= 1, where x, y

are random elements. Also we will write x(t)
I P.1
= y(t) instead of P

(
x(t) =

y(t) ∀ t ∈ I
)
= 1, where x, y are the stochastic processes.

3 Fuzzy and Set-Valued Stochastic Differential Equations

We shall consider two kinds of fuzzy stochastic differential equations

x(t)
I P.1
= x0 +

∫ t

0

f(s, x(s))ds +

〈∫ t

0

g(s, x(s))dB(s)

〉
, (1)

x(t) + (−1)
∫ t

0

f(s, x(s))ds +

〈
(−1)

∫ t

0

g(s, x(s))dB(s)

〉
I P.1
= x0, (2)

where x0:Ω → F(Rd) is a fuzzy random variable, f : I × Ω × F(Rd) → F(Rd)
and g: I ×Ω × F(Rd)→ Rd. The first integral is the fuzzy stochastic Lebesgue–
Aumann integral, whereas the second integral is the crisp stochastic Itô integral.

Let T̃ ∈ (0, T ] and Ĩ := [0, T̃ ]. For the definition written below we assume
that T̃ < T .
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Definition 1. A fuzzy stochastic process x: Ĩ ×Ω → F(Rd) is said to be a local
solution to Eq. (1), respectively to Eq. (2) if x ∈ L2(Ĩ ×Ω,N ;F(Rd)), x is d∞-
continuous, it satisfies (1) or satisfies (2), respectively, with Ĩ instead of I. A
local solution x: Ĩ ×Ω → F(Rd) to (1) (to (2), respectively) is said to be unique,

if x(t)
Ĩ P.1
= y(t), where y: Ĩ × Ω → F(Rd) is any local solution to (1) (to (2),

respectively).

If T̃ = T then a repetition of this definition gives the notions of global solutions
and their uniqueness.

In [11] we proved that solutions to Eq. (1) possess trajectories with nonde-
creasing fuzziness in their values. Now, for the dual equation (2) we have the
following assertion.

Theorem 1. Assume that x: Ĩ × Ω → F(Rd) is a (local or global) solution to
Eq. (2). Then with P.1 the function Fuzz(x(·, ω)): I → R is nonincreasing.

In fact, we can write even more. Namely under assumptions of this theorem we
obtain that with P.1 for every α ∈ [0, 1] the function diam([x(·, ω)]α): I → R is
nonincreasing.

To guarantee the existence and uniqueness of a solution to Eq. (2), we will
assume that f : I ×Ω × F(Rd)→ F(Rd), g: I ×Ω × F(Rd)→ Rd satisfy:

(H1) the mapping f : (I ×Ω)× F(Rd)→ F(Rd) is N ⊗BdS |BdS -measurable and
g: (I ×Ω)× F(Rd)→ Rd is N ⊗ BdS |B(Rd)-measurable,

(H2) there exists a constant L > 0 such that for λ× P -a.a. (t, ω) and for every
u, v ∈ F(Rd) it holds

max
{
d2∞

(
f(t, ω, u), f(t, ω, v)

)
, ‖g(t, ω, u)− g(t, ω, v)‖2

}
≤ Ld2∞(u, v),

(H3) there exists C > 0 such that for λ× P -a.a. (t, ω)

max
{
d2∞

(
f(t, ω, 〈0〉), 〈0〉

)
, ‖g(t, ω, 〈0〉)‖2

}
≤ C,

(H4) there exists T̃ ∈ (0, T ] such that the sequence of the fuzzy stochastic

processes xn: Ĩ ×Ω → F(Rd) is well defined (Ĩ = [0, T̃ ]), where x0(t)
Ĩ P.1
:=

x0 and for n = 1, 2, . . .

xn(t)
Ĩ P.1
:= x0+

[
(−1)

t∫
0

f(s, xn−1(s))ds+
〈
(−1)

t∫
0

g(s, xn−1(s))dB(s)
〉]
.

The condition (H3) is weaker than the following linear growth condition:

(H5) there exists C > 0 such that for λ× P -a.a. (t, ω) and for every u ∈ F(Rd)

max
{
d2∞

(
f(t, ω, u), 〈0〉

)
, ‖g(t, ω, u)‖2

}
≤ C(1 + d2∞(u, 〈0〉)).

Theorem 2. Let x0 ∈ L2(Ω,A0, P ;F(Rd)). Assume that (H1)-(H4) are satis-
fied. Then Eq. (2) has a unique, possibly local, solution defined on Ĩ ×Ω.
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Corollary 1. Let x0 ∈ L2(Ω,A0, P ;F(Rd)). Assume that (H1), (H2), (H4) and
(H5) are satisfied. Then Eq. (2) has a unique, possibly local solution.

A particular case of Eq. (2) is the following set-valued stochastic integral
equation:

X(t) + (−1)
∫ t

0

F (s,X(s))ds+

{
(−1)

∫ t

0

G(s,X(s))dB(s)

}
I P.1
= X0, (3)

where X0:Ω → K(Rd) is a random set, F : I × Ω × K(Rd)→ K(Rd), G: I × Ω ×
K(Rd)→ Rd and the first integral is the set-valued stochastic Lebesgue–Aumann
integral and the second integral is the crisp stochastic Itô integral.

Corollary 2. Suppose that X : Ĩ × Ω → K(Rd) is a (local or global) solution to
Eq. (3). Then with P.1 the function diam(X(·, ω)): I → R is nonincreasing.

Reformulating the conditions (H1)-(H4) into the following conditions:

(A1) the mapping F : (I×Ω)×K(Rd)→ K(Rd) is N ⊗BdH |BdH -measurable and
G: (I ×Ω)× K(Rd)→ Rd is N ⊗ BdH |B(Rd)-measurable,

(A2) there exists a constant L > 0 such that for λ× P -a.a. (t, ω) and for every
A,B ∈ K(Rd) it holds

max
{
d2H
(
F (t, ω, A), F (t, ω,B)

)
, ‖G(t, ω, A)−G(t, ω,B)‖2

}
≤ Ld2H(A,B),

(A3) there exists C > 0 such that for λ× P -a.a. (t, ω)

max
{
d2H
(
F (t, ω, {0}), {0}

)
, ‖G(t, ω, {0})‖2

}
≤ C,

(A4) there exists T̃ ∈ (0, T ] such that the sequence of the set-valued stochastic

processes Xn: Ĩ×Ω → K(Rd) is well defined (Ĩ = [0, T̃ ]), where X0(t)
Ĩ P.1
:=

X0 and for n = 1, 2, . . .

Xn(t)
Ĩ P.1
:= X0 +

[
(−1)

t∫
0

F (s,Xn−1(s))ds+
{
(−1)

t∫
0

G(s,Xn−1(s))dB(s)
}]
.

we obtain immediately the following assertion.

Corollary 3. Let X0 ∈ L2(Ω,A0, P ;K(Rd)). Suppose that (A1)-(A4) are satis-
fied. Then Eq. (3) has a unique, possibly local solution defined on Ĩ ×Ω.

4 Examples and Numerical Simulations

It is difficult to find explicit formulae for solutions to crisp stochastic differential
equations. Fuzzy stochastic equations inherit this kind of a heavy task. However,
some simple equations possess solutions that can be written in a closed, explicit
form. In what follows we consider some examples of fuzzy stochastic differential



110 M.T. Malinowski

equations with values in F(R). To analyze an essential difference between Eqs (1)
and (2), we consider the following fuzzy stochastic differential equations

x(t)
I P.1
= x0 +

∫ t

0

ξ(s)x(s)ds +
〈∫ t

0

θ(s)dB(s)
〉

(4)

and

x(t) + (−1)
∫ t

0

ξ(s)x(s)ds +
〈
(−1)

∫ t

0

θ(s)dB(s)
〉

I P.1
= x0, (5)

where ξ: I → R and θ: I → (0,∞) are measurable and bounded, x0:Ω → F(R) is
a fuzzy random variable. These equations can be used as some models of popu-
lation dynamics. They are some extensions of the well-known Malthus model in
population modeling. The solutions to these equations are different when ξ(t) ≥ 0
and ξ(t) ≤ 0. Therefore we investigate these two cases separately. Notice that in
the crisp case there is no need to such separate examinations. Moreover, in the
crisp case Eqs (4) and (5) coincide. The fuzzy environment that we study results
in a much richer examinations concerning Eqs (4) and (5).

Fig. 1. The graphs of [x(·, ω∗)]0 for the solutions x to (4) and (5) with ξ(t) ≥ 0

Assume that ξ(t) ≥ 0 for t ∈ I. After some calculations we obtain that the
solution x: I ×Ω → F(R) to (4) with non-negative ξ is as follows:

x(t)
I P.1
= exp

{∫ t

0

ξ(s)ds

}
· x0 +

〈∫ t

0

θ(s) exp

{∫ t

s

ξ(τ)dτ

}
dB(s)

〉
and Fuzz(x(t)) = Fuzz(x0) exp

{∫ t

0
ξ(s)ds

}
is nondecreasing as t increases. The

solution x: Ĩ ×Ω → F(R) to (5) with non-negative ξ is of the form
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x(t)
Ĩ P.1
=

[
cosh

{∫ t

0

ξ(s)ds

}
· x0 +

(
− sinh

{∫ t

0

ξ(s)ds

}
· x0

)]
+
〈∫ t

0

θ(s) exp

{∫ t

s

ξ(τ)dτ

}
dB(s)

〉
and Fuzz(x(t)) = Fuzz(x0) exp

{
−
∫ t

0 ξ(s)ds
}

is nonincreasing as t increases.

In the sequel we shall simulate numerically some trajectories of the solution
supports [x(·, ω)]0 corresponding to the equations (4) and (5) with non-negative
ξ. In this way, in Fig. 1, we illustrate a behavior of the fuzziness of the solu-
tions values. One can see the monotonicity of fuzziness of the trajectory values
Fuzz(x(·, ω)). Let us put the following data in (4) and (5): I = [0, 1], ξ(t) = t
and θ(t) = t for t ∈ I. Assume that for an ω∗ ∈ Ω the realization of the sup-
port of the initial value is as follows [x0(ω

∗)]0 = [100, 110]. For ω∗ we simulate
one trajectory of the solution support to both the equations. A corresponding
illustration is drawn in Fig. 1.

Fig. 2. The graphs of [x(·, ω∗)]0 for the solutions x to (4) and (5) with ξ(t) ≤ 0

Now we assume that ξ(t) ≤ 0 for t ∈ I. Then we obtain that the solution
x: I ×Ω → F(R) to (4) with non-positive ξ reads:

x(t)
I P.1
= cosh

{∫ t

0

ξ(s)ds

}
· x0 + sinh

{∫ t

0

ξ(s)ds

}
· x0

+
〈∫ t

0

θ(s) exp

{∫ t

s

ξ(τ)dτ

}
dB(s)

〉
and Fuzz(x(t)) = Fuzz(x0) exp

{
−
∫ t

0 ξ(s)ds
}

is nondecreasing. The solution

x: Ĩ ×Ω → F(R) to (5) with non-positive ξ is of the form

x(t)
Ĩ P.1
= exp

{∫ t

0

ξ(s)ds

}
· x0 +

〈∫ t

0

θ(s) exp

{∫ t

s

ξ(τ)dτ

}
dB(s)

〉
and Fuzz(x(t)) = Fuzz(x0) exp

{∫ t

0 ξ(s)ds
}
is nonincreasing.
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For a visualization of the solution support in the models (4) and (5) we set
the data I = [0, 1], ξ(t) = −t and θ(t) = t for t ∈ I. Similarly like above we
assume that for an ω∗ ∈ Ω the realization of the support of the initial value
is [x0(ω

∗)]0 = [100, 110]. As a result of a simulation we obtain the trajectories
[x(·, ω∗)]0 corresponding to the solutions to (4) and (5). They are presented in
Fig. 2. The illustrations Fig. 1 and Fig. 2 reflect the fact that the trajectories of
the solution to Eq. (1) have nondecreasing fuzziness in their consecutive values,
whereas the trajectories of the solution to Eq. (2) have nonincreasing fuzziness
in their consecutive values.
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Abstract. The α-trimmed mean, a statistic commonly used in robust-
ness studies, has an intractable small sample distribution. For this rea-
son, an asymptotic normal distribution or a Student t distribution are
commonly used as approximations when the sample size is small. In this
article we obtain an approximation for the small sample distribution of
the α-trimmed mean, based on the von Mises expansion of a functional,
which is valid for the case in which the observations come from a Gaus-
sian Mixture Model.

Keywords: Robustness, α-trimmed mean, von Mises expansion.

1 Introduction

The α-trimmed mean is a very popular robust statistic used for location prob-
lems. If we trim the 100 · α% of the smallest and the 100 · α% of the largest
ordered sample data X(i), the symmetrically α-trimmed mean is defined by

Xα =
1

n− 2k

(
X(k+1) + ...+X(n−k)

)
where k = [nα] if [ . ] stands for the integer part.

Its exact distribution is intractable (see for instance [13] pp. 31). Its large-
sample approximation is asymptotically normal under some conditions although
more complicated than for other L-estimates; see for instance [12] pp. 361, [13]
pp. 31, [1] or [15].

When the sample size is small and the data are normally distributed, a Stu-
dent’s t distribution is used as an approximation for the standardized trimmed
mean; see for instance [14] pp. 105 or pp. 156-157, or [16]. In fact, if it is

Wi =

⎧⎨⎩X(k+1) , Xi ≤ X(k+1)

Xi , X(k+1) < Xi ≤ X(n−k)

X(n−k) , Xi ≥ X(n−k)

� The author is very grateful to two anonymous referees for their comments. This work
was partially supported by the Grant MTM2012-33740.
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and xWα is the α-Winsorized mean

xWα =
1

n

n∑
i=1

Wi

being also the α-Winsorized quasi-variance

S2
W =

1

n− 1

n∑
i=1

(
Wi − xWα

)2
then it is

Xα − μα√
V̂ (Xα)

=
(1− 2α)

√
n (Xα − μα)

SW
≈ tn−2k−1

where

μα =
1

1− 2α

∫ 1−α

α

F−1(p) dp =
1

1− 2α

∫ F−1(1−α)

F−1(α)

y dF (y)

is the functional associated with the trimmed mean Xα.
Nevertheless, if the data are supposed to come from a normal distribution

(i.e., no contamination is assumed) the trimmed mean is not really needed.
There are some Edgeworth expansions used as approximations, [10], but it

is well known that these approximations are accurate only in the center of the
distribution and not in the tails where they can even be negative.

The only accurate approximations for the distribution ofXα, when the sample
size is small and the distribution not normal, are the saddlepoint approximations
given in [11] or [2], although these are almost impossible to apply and the ele-
ments involved in them, difficult to interpret.

In some articles, [3], [4], [5], [6], [7], [8] and [9], a linear approximation, based
on a vonMises expansion plus an iterative procedure, was used to obtain accurate
approximations of some classical statistics when the underlying model is close to
the normal distribution. In these articles a saddlepoint approximation was used
in the computation of the Tail Area Influence Function (TAIF) that appears in
the von Mises expansion. But, in two recent articles, [8] and [9], a new expression
to compute exactly the TAIF was obtained, formula that can be used in the von
Mises expansion instead of the saddlepoint approximation.

We shall use the von Mises expansion in combination with the exact expres-
sion of the TAIF, to obtain an accurate approximation to the small sample
distribution of the trimmed mean when the underlying model is close to the
normal.

2 Definitions and Computations

Although the random variables Xi in the sample (X1, ..., Xn) are independent
and identically distributed (iid), in this section we shall consider statistics
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(e.g., the trimmed mean) for which it could be Tn(X1 + c,X2, ..., Xn) �= Tn(X1,
X2+c, ..., Xn) for a constant c. For this reason, in the following we shall consider
statistics Tn(X1, ..., Xn) based on independent but not necessarily identically dis-
tributed univariate random variables Xi, being Xi ≡ Gi, i = 1, ..., n (X ≡ H
stands for “X is distributed as H”), statistics that, in the case of a hypothe-
sis testing problem, will reject the null hypothesis (usually about a parameter
θ ∈ Θ) for large values of Tn, although the results can easily be extended to
other situations.

Under very general conditions (Section 2 in [17]) we can use the first-order
von Mises expansion (see Corollary 2 in [9]) to compute the tail probability
functional under a model F = (F1, ..., Fn) as

PF{Tn(X1, X2, ..., Xn) > t} = PF1,...,Fn{Tn(X1, X2, ..., Xn) > t} =

= PG{Tn(X1, X2, ..., Xn) > t}+
n∑

i=1

∫
X
TAIFi (x; t;Tn,G) dFi(x) +Rem

where TAIFi is the i-th Partial Tail Area Influence Function of Tn at G =
(G1, ..., Gn) with relation to Gi, i = 1, ..., n, defined in [9] by

TAIFi(x; t;Tn,G) =
∂

∂ε
PGε,x

i
{Tn(X1, ..., Xn) > t}

∣∣∣∣
ε=0

in those x ∈ X where the right hand side exists, being Gε,x
i = (1 − ε)Gi +

ε δx , i = 1, ..., n, and δx the probability measure which assigns mass 1 at the
point x ∈ X ⊂ R .

In the computation of the TAIFi only Gi is contaminated; the other distribu-
tions remain fixed, i = 1, ..., n.

Here we assume this situation and also that the Xi’s are univariate although
an extension to multivariate case would be straightforward (see [9]).

The remainder term

Rem =
1

2

∫ ∫
T

(2)
GF

(x1, x2) d[F(x1)−G(x1)] d[F(x2)−G(x2)]

is small if distributions F and G are close. (T
(2)
GF

is the second derivative of the
tail probability functional at the mixture distribution GF = (1− λ)G+ λF, for
some λ ∈ [0, 1].)

Hence, if F and G are close enough, we can write, using the exact expression
for the TAIFi obtained in [9]

PF{Tn(X1, X2, ...,Xn) > t} � PG{Tn(X1, X2, ...,Xn) > t} +
n∑

i=1

∫
X

TAIFi (x; t;Tn,G) dFi(x)

(1)

= (1− n)PG{Tn(X1, X2, ..., Xn) > t}+
∫
X
PG2,...,Gn{Tn(x,X2, ..., Xn) > t}dF1(x)+
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+

∫
X
PG1,G3,...,Gn{Tn(X1, x, ..., Xn) > t} dF2(x) + · · ·

+

∫
X
PG1,...Gn−1{Tn(X1, ..., Xn−1, x) > t} dFn(x) (2)

that allows an approximation of the tail probability PF{Tn > t} under mod-
els (F1, ..., Fn), knowing the value of this tail probability under near models
(G1, ..., Gn).

In order to value the influence of outliers, we shall consider as model F =
(1 − ε)G + εGs where Gs is a shift version of G and ε ∈ [0, 0.5] a parameter
which measures the contamination.

Namely, if G are location families with a common location parameter θ0, we
shall suppose that Gs have a common location parameter θ > θ0.

In this case, we shall have, for instance, in the last integral (2), if t = tn is
a possible value of Tn and ϕ the random function (test or critical function in a
hypothesis testing problem)

ϕ(x1, ..., xn) =

⎧⎨⎩1 if Tn(x1, x2, ..., xn) > tn

0 if Tn(x1, x2, ..., xn) ≤ tn

that ∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dFn(x)

= (1− ε)

∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dGn;θ0(x)

+ε

∫
X
PG1;θ0

,...Gn−1;θ0
{Tn(X1, ..., Xn−1, x) > tn} dGn;θ(x)

= (1− ε)

∫
X

[∫
X
. . .

∫
X
ϕ(x1, ..., xn−1, x) dG1;θ0(x1) · · · dGn−1;θ0 (xn−1)

]
dGn;θ0(x)

+ε

∫
X

[∫
X
. . .

∫
X
ϕ(x1, ..., xn−1, x) dG1;θ0(x1) · · · dGn−1;θ0(xn−1)

]
dGn;θ(x)

= (1− ε)PGθ0
{Tn(X1, ..., Xn) > tn}+ εPGθ0

{Tn(X1, ..., Xn + (θ − θ0)) > tn}

moving the shift parameter in the last integral with a simple change of variable.
Hence, if F = (1− ε)Gθ0 + εGθ

PF{Tn(X1, X2, ...,Xn) > tn} � (1 − ε n)PGθ0
{Tn(X1, X2, ...,Xn) > tn}+

+ε
(
PGθ0

{Tn(X1 + (θ − θ0), X2, ...,Xn) > tn} + PGθ0
{Tn(X1, X2 + (θ − θ0), ...,Xn) > tn}
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+ · · ·+ PGθ0
{Tn(X1, X2, ..., Xn + (θ − θ0)) > tn}

)
= (1 − ε n)PGθ0

{Tn(X1, X2, ..., Xn) > tn(x1, x2, ..., xn)}+ ε

(
PGθ0

{Tn(X1, X2, ..., Xn) > tn(x1 − (θ − θ0), x2, ..., xn)}

+PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, x2 − (θ − θ0), ..., xn)}

+ · · ·+ PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, x2, ..., xn − (θ − θ0))}

)
.

3 Iterative Procedure

The previous approximation is accurate if F = (1 − ε)Gθ0 + εGθ is close to
Gθ0 , i.e., if ε is small and/or θ is close to θ0. Nevertheless, in some situa-
tions, ε is not small or θ is far from θ0. In these cases we can use an alterna-
tive iterative procedure considering intermediate distributions between Gθ0 and
F = G(1−ε)θ0+εθ; namely, distributions Fj = (F1;θj , ..., Fn;θj ) = (F1j , ..., Fnj) =
Gθ0+(θ−θ0)εj/(k+1), j = 1, ..., k + 1, where F0 = Gθ0 = (G1;θ0 , ..., Gn;θ0) and
Fk+1 = F = Gθ0+(θ−θ0)ε. With k iterations, equation (1) now becomes

PF{Tn(X1, X2, ..., Xn) > tn} . PGθ0
{Tn(X1, X2, ..., Xn) > tn}+

+

k+1∑
j=1

∫
X

n∑
i=1

TAIFi (x; tn;Tn,Fj−1) dFij(x)

Moreover, since

TAIFi (x; tn;Tn,Fj−1) =

= P(F1,j−1,...,Fi−1,j−1,Fi+1,j−1,...,Fn,j−1) {Tn(X1, ..., Xi−1, x,Xi+1, ..., Xn) > tn}

−PFj−1 {Tn(X1, ..., Xn) > tn}
if we consider again a location family as underlying distribution, i.e., that Fj =
(F1;θj , ..., Fn;θj ) = (F1j , ..., Fnj) is a location family with location parameter
θj = θ0 + εj(θ − θ0)/(k + 1) and the random function ϕ, we can move again
the shift parameter in the distribution to the random variable with a change of
variable, obtaining

PF{Tn(X1, X2, ..., Xn) > tn} 
 PGθ0
{Tn(X1, X2, ..., Xn) > tn}+
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+
k+1∑
j=1

[PG0 {Tn(X1 + c2j , X2 + c1j , ..., Xn + c1j) > tn}

+PG0 {Tn(X1 + c1j , X2 + c2j , X3 + c1j , ..., Xn + c1j) > tn}

+...+ PG0 {Tn(X1 + c1j , ..., Xn−1 + c1j , Xn + c2j) > tn}

−nPG0 {Tn(X1 + c1j , ..., Xn + c1j) > tn}]

where c1j = ε(j − 1)(θ − θ0)/(k + 1) and c2j = εj(θ − θ0)/(k + 1). Hence,

PF{Tn(X1, X2, ..., Xn) > tn} 
 PGθ0
{Tn(X1, X2, ..., Xn) > tn(x1, ..., xn)}

+

k+1∑
j=1

[PG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c2j , x2 − c1j , ..., xn − c1j)}

+PG0 {Tn(X1, X2, ..., Xn) > tn(X1 − c1j , x2 − c2j , ..., xn − c1j)}

+...+ PG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c1j , ..., , xn − c2j)}

−nPG0 {Tn(X1, X2, ..., Xn) > tn(x1 − c1j , ..., xn − c1j)}].
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Fig. 1. Simulated (solid line) and von Mises approximation given by (3) (dotted) dis-
tributions of Tn with a N((1− ε)θ0 + εθ, 1) model
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Fig. 2. Simulated (solid line) and von Mises approximation given by (3) (dotted) dis-
tributions of Tn with a (1− ε)N(θ0, 1) + εN(θ, 1) model

If we considere now the standardized trimmed mean

Tn =
Xα − μα√
V̂ (Xα)

=
(1− 2α)

√
n (Xα − μα)

SW
≈ tn−2k−1

and, asG0, standard normal distributions, for which we know that Tn ≈ tn−2k−1

we have

PG(1−ε)θ0+εθ
{Tn(X1, X2, ..., Xn) > tn} 
 P{W > tn(x1, ..., xn)}

+
k+1∑
j=1

[P{W > tn(x1−c2j , x2−c1j , ..., xn−c1j)}+P{W >tn(x1−c1j , x2−c2j , ..., xn−c1j)}

+ ...+ P{W > tn(x1 − c1j , ..., xn − c2j)} − nP{W > tn(x1 − c1j , ..., xn − c1j)}] (3)

where W is a random variable with a Student’s t distribution with n − 2k −
1 degrees of freedom. Hence, with this approximation, we transfer computa-
tions under the Gaussian Mixture Model F to computations of a Student’s t
distribution.

4 Simulations

If we consider a N((1 − ε)θ0 + εθ, 1) model as distribution G in the von Mises
approximation (3), we observe in Fig. 1 that this approximation (dotted) is
accurate considering n = 10, θ0 = 0, ε = 0.05, α = 0.1, θ = 1, only with k = 20
iterations and a simulation of B = 70 replications in the computations of the
simulated distribution of Tn.



122 A. Garćıa-Pérez

In Fig. 2 we see that, even in the case that the underlying model is a
(1 − ε)N(θ0, 1) + εN(θ, 1), the approximation is also accurate with the same
values in the parameters as before.
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Abstract. This paper means an introduction to analyze whether the
choice of the shape for fuzzy data in their statistical analysis can or can-
not affect the conclusions of such an analysis. More concretely, samples of
fuzzy data are simulated in accordance with different assumptions (dis-
tributions) concerning four relevant points (namely, those determining
their core and support), and later, by preserving core and support, the
‘arms’ are changed by considering trapezoidal, Π-curves, and some LR
fuzzy numbers. For the simulations obtained with each of the considered
shapes, several characteristics have been estimated: Aumann-type mean,
1-norm and wabl/ldev/rdev medians and Fréchet’s variance. A compar-
ative analysis with the bias, mean squared distance and variance of the
estimates is finally included.

Keywords: fuzzy data, estimation, statistical measures, sensitivity
analysis.

1 Introduction

Along the last years a distance-based methodology has been developed to analyze
fuzzy number-valued data from a statistical perspective (see Blanco-Fernández
et al. [2] for a recent review). The methodology assumes that data are generated
from random elements taking on fuzzy numbers values (the so-called random
fuzzy numbers or -one dimensional- fuzzy random variables in Puri and Ralescu’s
sense [10]).

Almost all the already developed methods refer to the estimation or to the
hypothesis testing about some summary measures of the distributions of the
random elements producing fuzzy-valued data. These methods are mostly the-
oretically supported, but empirical studies have been also conducted either to
corroborate some of their generally stated properties or as an alternative when
formal general results or conclusions cannot be stated.

c© Springer International Publishing Switzerland 2015 123
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Most of these empirical developments have been based on simulations from
random mechanisms leading to trapezoidal fuzzy number values. This assump-
tion is often considered in practice to ease both the drawing and the comput-
ing processes (see, as a recent example the studies in De la Rosa de Sáa et
al. [4]) although this is not at all mandatory from a formal viewpoint. Actually,
Pedrycz [9], Grzegorzewski [6], [7], Grzegorzewski and Pasternak-Winiarska [8],
Ban et al. [1], and others, have provided with different arguments to employ tri-
angular or trapezoidal fuzzy numbers or approximations preserving ambiguity,
expected interval, and so on.

An open problem that has been often commented in the papers related to
the aforementioned distance-based methodology is that of discussing whether or
not the shape of the fuzzy data influences the statistical conclusions. Since fuzzy
data are essentially subjective in this respect, it is convenient to know whether
this subjectivity can importantly affect the outputs from the methods.

This paper aims to analyze such a possible influence in which concerns the es-
timation of some summary measures, namely, three location ones (Aumann-type
mean, and two L1-type medians), and the Fréchet variance of the fuzzy dataset.
For this purpose, simulations have been carried out from random mechanisms
generating different types of fuzzy values, but data of different type sharing the
core (i.e., the 1-level) and the closure of the support (0-level).

2 The Simulation Procedures

To analyze how sensitive the considered summary measures are w.r.t. changes in
shape, the simulations we have carried out refer to the four key points character-
izing the involved fuzzy numbers (more concretely, those determining their core
and support). Six different shapes (T1 to T6, see Figure 1) based on the same
four-tuple are separately employed. It is known that for any fuzzy number A
there exist four numbers a1, a2, a3, a4 ∈ R and two functions lA, rA : R→ [0, 1],
where lA is nondecreasing and rA is nonincreasing, such that we can describe A
with its membership function in the following manner,

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a1

lA(x) if a1 ≤ x < a2

1 if a2 ≤ x ≤ a3

rA(x) if a3 < x ≤ a4

0 if a4 < x.

The corresponding fuzzy numbers have been obtained by using different lA
and rA functions: linear functions in T1 (trapezoidal fuzzy numbers), quadratic
functions with T2 (Π-curves, see, for instance, [3]) and shape functions handling
parametric monotonic Hermite-type interpolation in T3-T4 (LR fuzzy numbers
using (2,2)-rational splines) and T5-T6 (LR fuzzy numbers using mixed expo-
nential splines). For more details about the considered LR fuzzy numbers see,
for instance, [13].
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Fig. 1. Six types of fuzzy numbers sharing core and support and differing in shape. On
the left, trapezoidal (top) and Π-curve (bottom), along with four different LR fuzzy
numbers on the middle and the right

For each of these six shapes, some simulations studies have been conducted,
generating the corresponding fuzzy numbers in two different ways:

Step 1. A sample of fuzzy numbers of the given shape has been obtained by
simulating from
• four real-valued random variables Xi (i = 1, 2, 3, 4), defining a random

fuzzy number X in Puri and Ralescu’s sense, namely, X1 = (inf X1 +
supX1)/2, X2 = (supX1 − inf X1)/2, X3 = inf X1 − inf X0, X4 =
supX0 − supX1 (whence inf X0 = X1 − X2 − X3, inf X1 = X1 − X2,
supX1 = X1 +X2, supX0 = X1 +X2 +X4);
• In the FIRST STUDY (similar to some ones considered by Sinova et

al., see [11], [12]), the sample size is n = 100 and two cases related to
these four random variables Xi have been considered: one in which Xi

are independent (CASE 1) and another one in which they are dependent
(CASE 2). More specifically, CASE 1 assumes that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2

1, all of them being independent
whereas CASE 2 assumes that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2

1 + 1)2 + 0.1 · χ2
1, where χ2

1 is
supposed to be independent of X1, and the three involved χ2

1 being
independent.

• In the SECOND STUDY (which follows the ideas by De la Rosa de Sáa
et al. [4] in developing comparative studies in connection with question-
naires based on the fuzzy rating scale, using the referential [0,10]), the
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simulation strategy has mimicked the human behavior by considering
a finite mixture of three different procedures. Concretely, 100000 fuzzy
values have been generated in the following way:
◦ 5% of the data have been obtained by first considering a simula-

tion from a simple random sample of size 4 (X1, X2, X3, X4) from
a beta population X ∼ β(1, 1), later scaling it in [0,10] and finally
considering the ordered sample (X(1), X(2), X(3), X(4)).
◦ 35% of the data have been obtained considering a simulation of four

random variables Xi as follows:
X1 ∼ β(1, 1),
X2 ∼ Uniform

[
0,min{1/10, X1, 1−X1}

]
,

X3 ∼ Uniform
[
0,min{1/5, X1 −X2}

]
,

X4 ∼ Uniform
[
0,min{1/5, 1−X1 −X2}

]
;

◦ 60% of the data have been obtained considering a simulation of four
random variables Xi as follows:

X1 ∼ β(1, 1),

X2 ∼

⎧⎨⎩Exp(200) if X1 ∈ [0.25, 0.75]
Exp(100 + 4X1) if X1 < 0.25
Exp(500− 4X1) otherwise

X3 ∼
{
γ(4, 100) if X1 −X2 ≥ 0.25
γ(4, 100 + 4X1) otherwise

X4 ∼
{
γ(4, 100) if 1−X1 −X2 ≤ 0.75
γ(4, 500− 4X1) otherwise.

Step 2. N = 1000 replications of Step 1 in the first study have been consid-
ered and the 100000 fuzzy values from the second study have been divided
randomly (and without replacement) into 1000 samples of size n = 100. So
in both studies, there are 1000 available samples of size n = 100.

Step 3. The population summary measures have been approximated on the
basis of 35.000 replications.

Step 4. The estimates have been complemented with the average distance-
based bias along the 1000 samples, and some other associated mean errors.

Distances have been computed by considering three different metrics: the L2

metric ρ2, the L1 metric ρ1 (see Diamond and Kloeden [5]) and the L1 metric
D1 (a particular case of that introduced by Sinova et al. [11]), where for fuzzy
numbers Ũ , Ṽ they are given by

ρ2(Ũ , Ṽ ) =

√
1

2

∫
[0,1]

[
(inf Ũα − inf Ṽα)2 + (sup Ũα − sup Ṽα)2

]
dα,

ρ1(Ũ , Ṽ ) =
1

2

∫
[0,1]

[
| inf Ũα − inf Ṽα|+ | sup Ũα − sup Ṽα|

]
dα,

D1(Ũ , Ṽ ) = |wabl(Ũ)− wabl(Ũ)|
+
1

2

∫
[0,1]

[
|ldev Ũα − ldev Ṽα|+ |rdev Ũα − rdev Ṽα|

]
dα,

with wabl(Ũ) =
∫
[0,1]

(inf Ũα + sup Ũα) dα/2, ldev Ũα = wabl(Ũ) − inf Ũα,

rdev Ũα = sup Ũα − wabl(Ũ).
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The outputs for this first simulation study have been collected in Table 1
for the mean errors in estimating the summary measures and in Figure 2 and
Table 2 for their estimates.

Table 1. Mean errors in the estimation of some summary measures with the first
simulations (CASES 1 and 2) for the six different types of fuzzy numbers in Figure 1

CASE 1

ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.007 0.008 0.011 0.028 0.028 0.028T1
Variance 0.028 0.035 0.055 0.027 0.036 0.056 0.029 0.038 0.058 0.583 0.583 0.583
MSE 0.028 0.035 0.055 0.028 0.036 0.056 0.029 0.038 0.058 0.584 0.584 0.584

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.007 0.008 0.010 0.028 0.028 0.028T2
Variance 0.028 0.034 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.576 0.576 0.576
MSE 0.028 0.034 0.054 0.027 0.035 0.056 0.029 0.037 0.058 0.576 0.576 0.576

Bias 0.005 0.005 0.005 0.008 0.008 0.008 0.008 0.008 0.011 0.022 0.022 0.022T3
Variance 0.028 0.035 0.055 0.027 0.036 0.056 0.029 0.038 0.059 0.583 0.583 0.583
MSE 0.028 0.035 0.055 0.027 0.036 0.056 0.030 0.038 0.059 0.583 0.583 0.583

Bias 0.004 0.004 0.004 0.007 0.007 0.009 0.008 0.008 0.008 0.030 0.030 0.030T4
Variance 0.027 0.033 0.051 0.026 0.034 0.053 0.026 0.034 0.051 0.562 0.562 0.562
MSE 0.027 0.033 0.051 0.026 0.034 0.053 0.026 0.034 0.051 0.563 0.563 0.563

Bias 0.004 0.004 0.005 0.008 0.008 0.009 0.008 0.008 0.010 0.027 0.027 0.027T5
Variance 0.028 0.035 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.574 0.574 0.574
MSE 0.028 0.035 0.054 0.027 0.035 0.055 0.029 0.037 0.058 0.575 0.575 0.575

Bias 0.004 0.004 0.004 0.007 0.008 0.009 0.008 0.008 0.009 0.029 0.029 0.029T6
Variance 0.027 0.033 0.051 0.026 0.034 0.052 0.026 0.033 0.051 0.558 0.558 0.558
MSE 0.027 0.033 0.051 0.026 0.034 0.052 0.026 0.034 0.051 0.559 0.559 0.559

CASE 2
ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T1
Variance 0.011 0.013 0.020 0.005 0.007 0.012 0.021 0.026 0.041 0.023 0.023 0.023
MSE 0.011 0.013 0.020 0.005 0.007 0.012 0.021 0.026 0.041 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T2
Variance 0.011 0.013 0.020 0.005 0.006 0.011 0.021 0.026 0.041 0.023 0.023 0.023
MSE 0.011 0.013 0.020 0.005 0.006 0.011 0.021 0.026 0.041 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.001 0.002 0.002 0.005 0.005 0.006 0.004 0.004 0.004T3
Variance 0.011 0.013 0.019 0.006 0.008 0.014 0.021 0.025 0.040 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.006 0.008 0.014 0.021 0.025 0.040 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.003 0.004 0.004 0.005 0.004 0.004 0.004T4
Variance 0.011 0.013 0.019 0.007 0.009 0.015 0.020 0.024 0.038 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.007 0.009 0.015 0.020 0.024 0.038 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.002 0.004 0.005 0.006 0.004 0.004 0.004T5
Variance 0.011 0.013 0.019 0.005 0.007 0.012 0.021 0.025 0.040 0.023 0.023 0.023
MSE 0.011 0.013 0.019 0.005 0.007 0.012 0.021 0.025 0.040 0.023 0.023 0.023

Bias 0.003 0.003 0.003 0.002 0.002 0.003 0.004 0.004 0.005 0.004 0.004 0.004T6
Variance 0.011 0.012 0.018 0.007 0.009 0.016 0.020 0.024 0.037 0.022 0.022 0.022
MSE 0.011 0.012 0.018 0.007 0.009 0.016 0.020 0.024 0.037 0.023 0.023 0.023

On the basis of the outputs in Table 1 one can empirically conclude to some
extent that the shape of the considered data scarcely affects the bias, variance
and mean squared error of the summary measures estimates.



128 M. Asunción Lubiano et al.

Table 2. Monte Carlo estimate of the Fréchet ρ2-variance in the first simulations

Variance T1 T2 T3 T4 T5 T6

CASE 1 3.629 3.547 3.587 3.402 3.565 3.402

CASE 2 1.268 1.262 1.254 1.223 1.258 1.219

Fig. 2. Monte Carlo estimates of the (Aumann type) means and ρ1- and D1-medians
in CASE 1 (on the left) and CASE 2 (on the right) of the first simulations
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The same happens for the estimates of the ρ2-Fréchet variance in Table 2. The
estimates of the location measures, graphically displayed in Figure 2, are more
influenced by the shape of the involved fuzzy data. Nevertheless, the location
estimates are indeed closer than the original data.

The outputs for the second simulation study have been collected in Table 3
for the mean errors in estimating the summary measures and in Figure 3 and
Table 4 for their estimates. On the basis of the outputs in Table 3 one can
empirically conclude to some extent that the shape of the considered data does
not strongly affect the bias, variance and mean squared error of the summary
measures estimates.

Table 3. Mean errors in the estimation of the summary measures with the second
simulations for the six different types of fuzzy numbers in Figure 1

ρ2-Mean ρ1-Median D1-Median ρ2-Variance

Type Error ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1 ρ1 ρ2 D1

Bias 0.002 0.002 0.003 0.009 0.009 0.012 0.005 0.005 0.005 0.016 0.016 0.016T1
Variance 0.083 0.086 0.106 0.220 0.238 0.323 0.213 0.217 0.252 0.523 0.523 0.523
MSE 0.083 0.086 0.106 0.220 0.238 0.323 0.213 0.217 0.252 0.524 0.524 0.524

Bias 0.002 0.002 0.003 0.008 0.009 0.012 0.005 0.005 0.005 0.016 0.016 0.016T2
Variance 0.083 0.085 0.105 0.220 0.237 0.322 0.213 0.217 0.253 0.524 0.524 0.524
MSE 0.083 0.085 0.105 0.221 0.237 0.322 0.213 0.217 0.253 0.525 0.525 0.525

Bias 0.002 0.002 0.002 0.010 0.011 0.013 0.005 0.005 0.006 0.018 0.018 0.018T3
Variance 0.083 0.086 0.105 0.219 0.236 0.317 0.211 0.214 0.248 0.533 0.533 0.533
MSE 0.083 0.086 0.105 0.219 0.236 0.318 0.211 0.214 0.248 0.534 0.534 0.534

Bias 0.002 0.002 0.003 0.007 0.008 0.009 0.002 0.002 0.003 0.016 0.016 0.016T4
Variance 0.084 0.086 0.105 0.218 0.234 0.316 0.219 0.221 0.254 0.537 0.537 0.537
MSE 0.084 0.086 0.105 0.218 0.235 0.316 0.219 0.221 0.254 0.537 0.537 0.537

Bias 0.002 0.002 0.003 0.009 0.009 0.012 0.004 0.004 0.004 0.017 0.017 0.017T5
Variance 0.083 0.086 0.106 0.219 0.236 0.320 0.214 0.217 0.252 0.527 0.527 0.527
MSE 0.083 0.086 0.106 0.219 0.237 0.320 0.214 0.217 0.252 0.527 0.527 0.527

Bias 0.002 0.002 0.003 0.008 0.008 0.009 0.001 0.001 0.002 0.016 0.016 0.016T6
Variance 0.084 0.086 0.105 0.217 0.234 0.315 0.218 0.221 0.253 0.539 0.539 0.539
MSE 0.084 0.086 0.105 0.217 0.234 0.315 0.218 0.221 0.253 0.539 0.539 0.539

Fig. 3. Approximated estimates of the (Aumann type) means and ρ1- and D1-medians
for the second simulations
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Table 4. Approximated estimate of the Fréchet ρ2-variance in the second simulations

T1 T2 T3 T4 T5 T6

Variance 7.921 7.902 7.950 7.971 7.926 7.983

The same happens for the estimates of the ρ2-Fréchet variance in Table 4,
although the shape difference influences slightly more than for the first study.
The estimates of the location measures, graphically displayed in Figure 3, are
more influenced by the shape of the involved fuzzy data, also slightly more than
for the first simulations. Again, the location estimates are indeed closer than the
original data.

As a clear extension of the study in this paper, it is a must to develop com-
parison concerning the influence on the power of hypothesis testing involving
fuzzy data.
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Abstract. Often atypical observations separated from the majority or
deviate from the general pattern appear in the datasets. Classical estima-
tors such as the sample mean or the sample variance, can be substantially
affected by these observations, which are referred to as outliers. Robust
statistics provides methods which are not unduly influenced by atypical
data.

In this paper an introductory empirical study is developed to compare
the robustness of the scale estimator ‘Median Absolute Deviation’ in
contrast to the classical scale estimator ‘Average Absolute Deviation’ in
a fuzzy setting. Both estimators are defined on the basis of the Aumann-
type mean, the 1-norm median for random fuzzy numbers along with an
L1-type metric between fuzzy numbers, and some of their properties are
examined. Outliers will be introduced in simulated fuzzy data to analyze
how much these two estimators are influenced by them.

Keywords: fuzzy data, robustness, median absolute deviation, average
absolute deviation.

1 Introduction

Over the last years, the consideration of different sources of imprecision for
generating and modelling experimental data have implied the development of
advanced statistical and soft computing techniques capable to cope with this
kind of data.

By combining probabilistic uncertainty with fuzzy imprecision, the concept of
the so-called random fuzzy numbers (RFNs for short, see [10]) arises as a suitable
and well-formalized model within the probabilistic setting. In the study of RFNs
we could describe their behaviour by means of certain measures summarizing the
central tendency or location. Some of the most relevant measures in this context
are the mean and the median (see, for instance, [1,3,4,6,9,13]).

Another useful summary tool associated with the distribution of random mag-
nitudes is the measurement of the dispersion, given that when there is no vari-
ation of observations the statistical methodology is not of interest. Measures of

c© Springer International Publishing Switzerland 2015 133
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variability can be used in practice as descriptive statistics for data analysis, to
compare the dispersion of different datasets, to formulate rules for the detection
of outliers, and so on. In the fuzzy setting the variability of the values of an
RFN have been measured by means of the Fréchet variance defined in terms of
an L2-type metric (see, for instance, [7,11]).

In statistical applications, it is very valuable for estimators of summary mea-
sures to be robust. In this paper, we refer with robust statistics to statistical
approaches that are less influenced either by outlying observations or by devia-
tions from strict statistical model assumptions (Maronna et al. [8]). A different
method for quantifying the robustness that does not address here has been pro-
posed by Zieliński [16].

The Aumann-type sample mean is highly affected by the presence of outliers.
Sinova et al. [13] have shown that the sample 1-norm median is a good estimate
of the location for fuzzy numbers and it is a robust alternative to the sample
mean in estimating location.

Similarly, the Fréchet variance can be very adversely influenced by atypical
values. The aim of this contribution is to introduce scale measures for RFNs on
the basis of an L1-type metric and to analyze their sensitivity to either changes
of values or presence of outliers.

In Section 2 the preliminaries on fuzzy numbers, arithmetic and metrics be-
tween them, and the concept of random fuzzy number and their summary mea-
sures of central tendency will be established. Section 3 introduces some scale
measures and analyzes some relevant properties. In Section 4 the influence of
outliers on these measures is illustrated by means of a simulation study. Finally,
some future research directions will be commented.

2 Preliminaries about Fuzzy Statistics

Let F∗
c (R) be the space of bounded fuzzy numbers. A (bounded) fuzzy number

Ũ ∈ F∗
c (R) is an ill-defined quantity or value which can be formally characterized

by means of a mapping Ũ : R→ [0, 1] such that the α-level set of Ũ , defined as

Ũα = {x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1], and as the closure of the support of Ũ if

α = 0, is a nonempty compact interval. For each x ∈ R, the value Ũ(x) can be

interpreted as the ‘degree of compatibility’ of x with the property ‘defining’ Ũ .
On the space F∗

c (R) one can consider the usual fuzzy arithmetic based on
Zadeh’s extension principle [15], which coincides level-wise with the usual interval
arithmetic. Concretely the operations required for the statistical analysis of fuzzy
data are the sum of fuzzy numbers and the product of fuzzy numbers by a scalar
satisfying that

(Ũ+Ṽ )α = Ũα+Ṽα = {u+v | u ∈ Ũα, v ∈ Ṽα}, (γŨ)α = γŨα = {γu | u ∈ Ũα}

for all Ũ , Ṽ ∈ F∗
c (R), γ ∈ R and α ∈ [0, 1].
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(F∗
c (R),+, ·) is not a linear but a semilinear space (since there is no inverse

element for the sum). This lack of a suitable definition for the difference be-
tween two fuzzy numbers is often overcome by considering metrics between fuzzy
numbers which are intuitive, versatile and easy-to-use.

In this article we consider the L1 metric by Diamond and Kloeden [2], which
extends the Euclidean metric in R and Vitale’s L1 metric between nonempty
compact intervals [14]. Given Ũ , Ṽ ∈ F∗

c (R), the mapping ρ1 : F∗
c (R)× F∗

c (R)→
[0,+∞) defined as

ρ1(Ũ , Ṽ ) =
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+ ∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα

is to be referred as the 1-norm distance between two fuzzy numbers.
To formalize the random mechanisms that produce fuzzy data, the random

fuzzy numbers (Puri and Ralescu [10]) will be considered.

Definition 1. Given a probability space (Ω,A, P ), an associated random fuzzy
number (RFN) is a mapping X : Ω → F∗

c (R) such that for all α ∈ [0, 1] the
α-level mapping Xα : Ω → P(R) (with Xα(ω) =

(
X (ω)

)
α
) is a compact random

interval (that is, for all α ∈ [0, 1] the real-valued mappings inf Xα and supXα

are random variables).

This notion can be equivalently formalized as a Borel-measurable mapping
w.r.t. the Borel σ-field generated on F∗

c (R) by the topology induced by the
metric ρ1. Consequently, one can properly refer to the induced distribution of
an RFN, the independence of two RFNs, etc.

Definition 2. Let X be an RFN. The Aumann-type mean of X (defined by

Puri and Ralescu [10]) is the fuzzy number Ẽ(X ) ∈ F∗
c (R), if it exists, such that

for each α ∈ [0, 1] (
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] .

Definition 3. Let X be an RFN. The 1-norm median of X (defined by Sinova

et al. [13]) is the fuzzy number M̃e(X ) ∈ F∗
c (R), if it exists, such that for each

α ∈ [0, 1] (
M̃e(X )

)
α
=
[
Me

(
inf Xα

)
,Me

(
supXα

)]
,

where in case Me
(
inf Xα

)
or Me

(
supXα

)
are nonunique we will follow the most

usual convention, that is, we will consider the midpoint of the interval of medians.

Both the mean and the 1-norm median of a RFN preserve most of the ba-
sic properties of the mean and the median of random variables (e.g., they are
equivariant by positive affine transformations).
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3 Measures of Scale

Measures like the sample mean or the sample 1-norm median provide a good
estimate of the central tendency or location of a dataset. Nevertheless, it is also
very valuable to measure/estimate the variability of the data. Responsible for
carrying out this task are the measures of scale.

In this section, two scale measures based on location measures (one of them on
the mean and the other one on the 1-norm median), and on an L1-type metric,
are introduced for RFNs, and some first properties are stated.

Definition 4. Let X be an RFN. The median absolute deviation about the
median is the real number M̃AD(X ) ∈ [0,∞) defined as

M̃AD(X ) = Me
(
ρ1
(
X , M̃e(X )

))
.

Definition 5. Let X be an RFN. The average absolute deviation about the

mean is the real number ÃAD(X ) ∈ [0,∞) defined as

ÃAD(X ) = E
(
ρ1
(
X , Ẽ(X )

))
.

These measures satisfy the following Propositions:

Proposition 1. M̃AD satisfies the shift invariance and the scale equivari-
ance conditions. That is, given γ ∈ R, Ũ ∈ F∗

c (R) and X an RFN, then:

M̃AD(γ · X + Ũ) = |γ| · M̃AD(X ).

Proof. Taking into account the equivariance under ‘linear’ transformations of
the 1-norm median of an RFN, and considering that ρ1 is a traslational invariant
and equivariant under positive homotheties metric, along with the properties of
the median for real-valued random variables, we have that:

M̃AD(γ · X + Ũ) = Me
(
ρ1
(
γ · X + Ũ , M̃e(γ · X + Ũ)

))
= Me

(
ρ1
(
γ · X + Ũ , γ · M̃e(X ) + Ũ

))
= Me

(
|γ| · ρ1

(
X , M̃e(X )

))
= |γ| ·Me

(
ρ1
(
X , M̃e(X )

))
= |γ| · M̃AD(X ).

Proposition 2. ÃAD also satisfies the shift invariance and the scale equiv-
ariance conditions. Therefore, given γ ∈ R, Ũ ∈ F∗

c (R) and X an RFN, then:

ÃAD(γ · X + Ũ) = |γ| · ÃAD(X ).
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4 Simulation Study

The simulation study presented in this section aims to empirically check the

robustness of the estimator
̂̃
MAD in comparison to the estimator

̂̃
AAD, which

is not robust.
A popular and successful measure of the robustness of an estimator is its

breakdown point, introduced by Hampel [5]. It is the minimum proportion of
sample data which should be perturbed to get an arbitrary large or small esti-
mator value. Thus, estimators with a high breakdown point are not influenced
by a high amount of atypical data. Some of them can reach a breakdown point
of 50%, the highest bound.

Following the definition of breakdown point for scale estimators by Rousseeuw
and Croux [12], for any sample x̃n from an RFN X , the so-called finite sample

breakdown point (fsbp for short) of a scale estimator
̂̃
S(X )n is defined by:

fsbp∗(̂̃S(X )n, x̃n) = min

{
fsbp+(

̂̃
S(X )n, x̃n), fsbp

−(̂̃S(X )n, x̃n)

}
where

fsbp+(
̂̃
S(X )n, x̃n) = min

{
k

n
; sup
ỹn,k

˜̂S(ỹn,k) =∞
}

and

fsbp−(̂̃S(X )n, x̃n) = min

{
k

n
; inf
ỹn,k

˜̂S(ỹn,k) = 0

}
with ỹn,k obtained by replacing any k observations of x̃n by arbitrary values.
The quantities fsbp+ and fsbp− are called the explosion breakdown point and
the implosion breakdown point.

Following Sinova et al. [13], the simulations have been performed by con-
sidering trapezoidal RFNs X = Tra(inf X0, inf X1, supX1, supX0), each of them
characterized by means of the following four real-valued random variables:

• X1 = (inf X1 + supX1)/2, X2 = (supX1 − inf X1)/2,
• X3 = inf X1 − inf X0, X4 = supX0 − supX1,

whence X = Tra(X1 −X2 −X3, X1 −X2, X1 +X2, X1 +X2 +X4).
We have considered samples of size n = 100 which can be split into non-

contaminated subsamples of size n(1 − cp) (where cp denotes the proportion of
contamination) and contaminated subsamples of size n · cp.

For the non-contaminated subsamples we have assumed that X1 � N (0, 1),
X2, X3, X4 � χ2

1.
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In the case of the contaminated subsamples two different cases have been
studied:

– Explosion: X1 � N (0, 3) + 100 and X2, X3, X4 � χ2
4 + 100

– Implosion: one datum of the non-contaminated sample has been randomly
chosen and repeated n · cp times.

For each sample we have computed the estimators
̂̃
MAD and

̂̃
AAD and we

have considered 10000 replications. The results of the simulation are shown in
Table 1 for the explosion and in Table 2 for the implosion. Each table entry is
the mean of the estimators on the 10000 replications.

Table 1. Explosion: behaviour of the
̂̃
MAD and

̂̃
AAD when outliers are introduced in

the sample

cp 0 0.1 0.2 0.3 0.4 0.5

̂̃
MAD 1.06 1.2 0.42 1.79 2.58 76.88

̂̃
AAD 1.4 27.89 49.47 64.91 74.17 77.27

Table 2. Implosion: behaviour of the
̂̃
MAD and

̂̃
AAD when there are repeated data

in the sample

cp 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

̂̃
MAD 1.21 1.2 1.17 1.05 0.77 0.07 0 0 0 0 0

̂̃
AAD 1.4 1.4 1.37 1.33 1.25 1.14 1 0.82 0.59 0.32 0

In Figure 1 the explosion and implosion maxbias curves for the estimators
̂̃
MAD and

̂̃
AAD show the behaviour of these measures when perturbations are

introduced progressively in the sample.

We can notice that the fsbp for the estimator
̂̃
MAD is 50%, since this is

the smallest proportion of contamination that is needed to let
̂̃
MAD explode to

infinity or implode to zero.

Conversely, we can deduce that the fsbp for the estimator
̂̃
AAD is 0%.
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Fig. 1. Comparison of the effect of increasing contamination in the scale estimators
̂̃
MAD and

̂̃
AAD through explosion and implosion maxbias curves
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5 Concluding Remarks

In this paper the definition of the robust scale measure M̃AD for fuzzy data has
been introduced. Its property of equivariance under positive affine transforma-
tions has also been analyzed.

Furthermore, an empirical comparison between the scale estimators M̃AD

and ÃAD has been carried out and their breakdown point values have been

indicated. The simulation study shows the robustness of M̃AD in contrast to the

non-robustness of ÃAD, when atypical values were introduced in the data.
In the future, it would be interesting to analyze consistency and other tools

used to measure the robustness, such as the sensitive curve. In addition, alterna-

tives to the robust scale measure M̃AD, like for instance the scale measure ĨQR,
can be defined and studied for fuzzy data.
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Abstract. In this paper the population and sample medians of a real-
valued random variable are generalized to deal with random fuzzy num-
bers. The extension is based on a representation of fuzzy numbers for
which necessary and sufficient conditions to characterize them have been
previously established. Relevant statistical properties for these medians
are studied.

Keywords: fuzzy data, robustness, wabl/ldev/rdev representation of a
fuzzy number, wabl/ldev/rdev median of a random fuzzy number.

1 Introduction

In previous papers (see [3], [4]) extensions for the median notion to random fuzzy
numbers (or RFN, in Puri and Ralescu’s sense, see [1]) based on L1 metrics have
been introduced and discussed. The two metrics involved in those definitions
make use of representations of fuzzy numbers for which necessary and sufficient
conditions to characterize them are known. A third alternative will be introduced
in this paper, as a generalization of the Hausdorff-type median for random in-
tervals (Sinova et al. [2]). It will be shown that it fulfills convenient properties.

2 The ϕ-Wabl/Ldev/Rdev Median for an RFN

Let Fc(R) denote the class of bounded fuzzy numbers. The population and sam-
ple ϕ-wabl/ldev/rdev medians for random fuzzy numbers are defined as follows:

Definition 1. Given a probability space (Ω,A, P ), an absolutely continuous
probability measure ϕ on the measurable space ([0, 1],B[0,1]) with positive mass
function on (0, 1), θ > 0 and an associated RFN X : Ω → Fc(R), the popula-
tion ϕ-wabl/ldev/rdev median(s) of X is (are) the fuzzy number(s)

M̃ϕ(X ) = arg min
Ũ∈Fc(R)

E
(
Dϕ

θ

(
X , Ũ

))
,

c© Springer International Publishing Switzerland 2015 143
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whenever these expectations exist, where

Dϕ
θ

(
Ũ , Ṽ

)
= |wablϕ(Ũ)− wablϕ(Ṽ )|

+
θ

2

∫
[0,1]

|ldevϕ
Ũ
(α)− ldevϕ

Ṽ
(α)| dϕ(α) + θ

2

∫
[0,1]

|rdevϕ
Ũ
(α)− rdevϕ

Ṽ
(α)| dϕ(α),

with

wablϕ(Ũ) =

∫
[0,1]

inf Ũα + sup Ũα

2
dϕ(α),

ldevϕ
Ũ
(α) = wablϕ(Ũ)− inf Ũα, rdevϕ

Ũ
(α) = sup Ũα − wablϕ(Ũ).

Definition 2. Given a probability space (Ω,A, P ), an absolutely continuous
probability measure ϕ on the measurable space ([0, 1],B[0,1]) with positive mass
function on (0, 1), θ > 0, an associated RFN X and a simple random sample
(X1, . . . ,Xn) obtained from X , the sample ϕ-wabl/ldev/rdev median(s) of
X is(are) the fuzzy number-valued statistic(s)˜̂Mϕ(X )n = arg min

Ũ∈Fc(R)

1

n

n∑
i=1

(
Dϕ

θ

(
Xi, Ũ

))
.

A key question at this stage is whether the ϕ-wabl/ldev/rdev median exists
and can be computed easily in practice. The following result guarantees that at
least one such median always exists and its computation is straightforward.

Theorem 1. Given a probability space (Ω,A, P ), an absolutely continuous prob-
ability measure ϕ on the measurable space ([0, 1],B[0,1]) with positive mass func-
tion on (0, 1) and an associated RFN X , for any α ∈ [0, 1], the fuzzy number
M̃ϕ(X ) ∈ Fc(R) such that(

M̃ϕ(X )
)
α
=

[
Me

(
wablϕ(X )

)−Me
(
ldevϕ

X (α)
)
,Me

(
wablϕ(X )

)
+Me

(
rdevϕ

X (α)
)]

(where in case Me
(
wablϕ(X )

)
, Me

(
ldevϕX (α)

)
or Me

(
rdevϕX (α)

)
are non-unique,

the most usual convention for real-valued medians of choosing the midpoint of
the interval of medians is considered) is a population ϕ-wabl/ldev/rdev median
of X .

Proof. First, whatever α ∈ [0, 1] and Ũ ∈ Fc(R) may be, we have that:

E
[
|wablϕ(X ) −Me

(
wablϕ(X )

)
|
]
≤ E

[
|wablϕ(X )− wablϕ(Ũ)|

]
,

E
[
|ldevϕX (α)−Me

(
ldevϕX (α)

)
|
]
≤ E

[
|ldevϕX (α) − ldevϕ

Ũ
(α)|

]
,

E
[
|rdevϕX (α) −Me

(
rdevϕX (α)

)
|
]
≤ E

[
|rdevϕX (α)− rdevϕ

Ũ
(α)|

]
,

because ldevϕ
Ũ
(α), rdevϕ

Ũ
(α),wablϕ(Ũ) ∈ R, and ldevϕX (α), rdevϕX (α), and

wablϕ(X ) are real-valued random variables. Therefore,

E
(
Dϕ

θ

(
X , Ũ

))
≥ E

(
Dϕ

θ

(
X , M̃ϕ(X )

))
.

Now let’s see that M̃ϕ(X ) ∈ Fc(R). Sufficient conditions to characterize fuzzy
numbers are stated in Sinova et al. [5]:
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– Over all Ω we have that ldevϕX (α) and rdevϕX (α) are non-increasing func-
tions of α in [0, 1], so due to the considered convention, Me(ldevϕX (α)) and
Me(rdevϕX (α)) are non-increasing functions of α in [0, 1].

– Furthermore, functions Me(ldevϕX (α)) and Me(rdevϕX (α)) are left-continuous
at every α ∈ (0, 1]:
Indeed, if {αn}n ↑ α ∈ (0, 1] as n → ∞, then for any element in Ω we have
that {ldevϕX (αn)}n ↓ ldevϕX (α) and, because of the considered convention,
the sequence

{
Me

(
ldevϕX (αn)

)}
n
↓ is bounded below. Since Me

(
ldevϕX (α)

)
is a lower bound, there exists a limit for this sequence (it will be denoted by
Lϕ
α). Therefore, Lϕ

α = lim
n→∞Me

(
ldevϕX (αn)

)
≥ Me

(
ldevXα

)
, so:

0.5 ≤ P
(
ldevϕX (αn) ≥ Me

(
ldevϕX (αn)

))
≤ P

(
ldevϕX (αn) ≤ Lϕ

α

)
for all ω ∈ Ω using the definition of Me(ldevϕX (αn)). Since{(

ldevϕX (αn) ≥ Lϕ
α

)}
n
↓

∞⋂
n=1

(
ldevϕX (αn) ≥ Lϕ

α

)
=
(
ldevϕX (α) ≥ Lϕ

α

)
,

we have that

P
(
ldevϕ

X (α) ≥ Lϕ
α

)
= P

(
lim

n→∞
(
ldevϕ

X (αn) ≥ Lϕ
α

))
= lim

n→∞
P
(
ldevϕ

X ≥ Lϕ
α

)
≥ 0.5.

Following similar arguments, P
(
ldevϕX (α) > Lϕ

α

)
≤ 0.5.

Consequently, taking into account the considered convention, we have that
Lϕ
α = Me

(
ldevϕX (α)

)
.

Analogously, if {αn}n ↑ α ∈ (0, 1] as n → ∞, it holds that {rdevϕX (αn)}n
↓ rdevϕX (α) and the sequence

{
Me

(
rdevϕX (αn)

)}
n
↓, being bounded below

by Me
(
rdevϕX (α)

)
. Therefore, there exists

L
′ϕ
α = lim

n→∞Me
(
rdevϕX (αn)

)
and following a reasoning like above, L

′ϕ
α = Me

(
rdevϕX (α)

)
.

– The right-continuity at 0 of both, Me(ldevϕX (α)) and Me(rdevϕX (α)), can be
proved by means of similar arguments.

– Since −ldevϕX (1) ≤ rdevϕX (1) over all Ω, one can guarantee (using the con-
sidered convention) that:
−ldevϕ

M̃ϕ(X )
(1) = Me(−ldevϕX (1)) ≤Me(rdevϕX (1)) = rdevϕ

M̃ϕ(X )
(1).

– Finally,∫
[0,1]

ldevϕ
M̃ϕ(X )

(α) dϕ(α) =

∫
[0,1]

Me(ldevϕX (α)) +Me(rdevϕX (α))

2
dϕ(α)

=

∫
[0,1]

rdevϕ
M̃ϕ(X )

(α) dϕ(α),

whence M̃ϕ(X ) is a bounded fuzzy number.

�
It is important to remark that the population ϕ-wabl/ldev/rdev median does

not depend on the parameter θ, as it happened with the Hausdorff-type median
for random intervals. The same remark would be also applicable to the sample
ϕ-wabl/ldev/rdev median.
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3 Statistical Properties of the ϕ-Wabl/Ldev/Rdev
Median of an RFN

The ϕ-wabl/ldev/rdev median of a random fuzzy number preserves most of the
basic properties of the median of a random variable. Thus, it can be straightfor-
wardly proved that

Proposition 1. M̃ϕ is equivariant under ‘linear’ transformations, that is, if
γ ∈ R, Ũ ∈ Fc(R) and X is an RFN, then

M̃ϕ(γ · X + Ũ) = γ · M̃ϕ(X ) + Ũ ,

where operations between fuzzy numbers are assumed to be based on Zadeh’s
extension principle. Consequently, if X is a random fuzzy number associated
with the probability space (Ω,A, P ) and the distribution of X is degenerate at a
fuzzy number Ũ ∈ Fc(R) (i.e., X = Ũ a.s. [P ]), then M̃ϕ(X ) = Ũ .

Proposition 2. Let (Ω,A, P ) be a probability space, ϕ be an absolutely continu-
ous probability measure on the measurable space ([0, 1],B[0,1]) with positive mass
function on (0, 1) and let X be a symmetric random fuzzy number about c ∈ R.
Then, the ϕ-wabl/ldev/rdev median of X is a symmetric fuzzy number about c.

Theorem 2. Let (Ω,A, P ) be a probability space, ϕ be an absolutely continu-
ous probability measure on the measurable space ([0, 1],B[0,1]) with positive mass
function on (0, 1) and let X be a random fuzzy number associated with (Ω,A, P )
and satisfying that Me(wablϕ(X )), Me

(
ldevϕX (α)

)
and Me

(
rdevϕX (α)

)
are actu-

ally unique (for each α ∈ [0, 1] in case of the two last medians).
If the two sequences of the real-valued sample medians

{ ̂Me(ldevϕX (α))n
}
n

and{ ̂Me(rdevϕX (α))n
}
n

as functions of α over [0, 1] are both uniformly integrable,

then the estimator ˜̂Mϕ(X )n is strongly consistent in Dϕ
θ -sense (and hence, in

the sense of all the topologically equivalent metrics), i.e.

lim
n→∞Dϕ

θ

( ˜̂Mϕ(X )n, M̃ϕ(X )
)
= 0 a.s. [P ].

Proof. Indeed,
P

(
lim
n→∞Dϕ

θ

( ˜̂Mϕ(X )n, M̃ϕ(X )
)
= 0

)
= P

((
lim
n→∞ |

̂Me(wablϕ(X ))n −Me(wablϕ(X ))| = 0
)

⋂(
lim
n→∞

∫
[0,1]

| ̂Me(ldevϕX (α))n −Me(ldevϕX (α))| = 0
)

⋂(
lim
n→∞

∫
[0,1]

| ̂Me(rdevϕX (α))n −Me(rdevϕX (α))| = 0
))

.

On one hand,

P
(
lim
n→∞ |

̂Me(wablϕ(X ))n −Me(wablϕ(X ))| = 0
)
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= P
(
lim
n→∞

(
̂Me(wablϕ(X ))n −Me(wablϕ(X ))

)
= 0

)
= 1,

due to the strong consistency of ̂Me(wablϕ(X ))n.
On the other hand, under the assumption of uniqueness for the medians of

ldevϕX (α) and rdevϕX (α), the sample medians are strongly consistent estimators
of the population medians, and hence

P
(
lim
n→∞

(
̂Me(ldevϕX (α))n −Me(ldevϕX (α))

)
= 0

)
= 1,

P
(
lim
n→∞

(
̂Me(rdevϕX (α))n −Me(rdevϕX (α))

)
= 0

)
= 1.

Moreover, assumptions for ̂Me(ldevϕX (α))n and Me
(
ldevϕX (α)

)
guarantee that

conditions to apply Vitali’s Convergence Theorem are fulfilled, whence

P

((
lim
n→∞

∫
[0,1]

| ̂Me(ldevϕX (α))n −Me(ldevϕX (α))| dϕ(α) = 0

))
= 1.

By following similar arguments, one can prove that

P

((
lim
n→∞

∫
[0,1]

| ̂Me(rdevϕX (α))n −Me(rdevϕX (α))| dϕ(α) = 0

))
= 1.

Consequently,

P

(
lim
n→∞Dϕ

θ

( ˜̂Mϕ(X )n, M̃ϕ(X )
)
= 0

)
. �

The robustness of the ϕ-wabl/ldev/rdev median w.r.t. the mean will be now
analyzed through the finite sample breakdown point of the sample median in a
sample of size n from a random fuzzy number X , which is now given by

fsbp( ˜̂Mϕ(X )n, x̃n,D
ϕ
θ )

=
1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

Dϕ
θ (
˜̂Mϕ(Pn),

̂
M̃ϕ(Qn,k)) =∞

}
,

where x̃n denotes the considered sample of n data from the metric space (Fc(R),
Dϕ

θ ) in which supŨ,Ṽ ∈Fc(R)
Dϕ

θ (Ũ , Ṽ ) =∞, Pn is the empirical distribution of x̃n

and Qn,k is the empirical distribution of sample ỹn,k obtained from the original
one x̃n by perturbing at most k components. Then, we have that

Proposition 3. The finite sample breakdown point of the sample ϕ-wabl/ldev/

rdev median from a random fuzzy number X , fsbp
( ˜̂Mϕ(X )n

)
, equals

fsbp
( ˜̂Mϕ(X )n

)
=

1

n
· 1n+ 1

2
2,

where 1·2 denotes the floor function.

Proof. First note that the condition supŨ,Ṽ ∈Fc(R)
Dϕ

θ (Ũ , Ṽ ) = ∞ is satisfied in
this case, since Dϕ

θ

(
�[n−1,n+1],�[−n−1,−n+1]

)
= 2n (of course, other examples

could be provided for the same purpose).
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Furthermore,

Dϕ
θ (
˜̂Mϕ(Pn),

̂
M̃ϕ(Qn,k)) ≥ |wablϕ( ˜̂Mϕ(Pn))− wablϕ(

̂
M̃ϕ(Qn,k)

)
|

= | ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))|.
Therefore, by recalling the fsbp of the sample median of a real-valued random
variable, one can conclude that whenever at least 1n+1

2 2 elements x̃i ∈ Fc(R) of
x̃n are replaced by other arbitrarily ‘large’ elements in Fc(R) so that

sup
Qn,k

| ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))| =∞,

we have that

sup
Qn,k

Dϕ
θ (
˜̂Mϕ(Pn),

̂
M̃ϕ(Qn,k)) ≥ sup

Qn,k

| ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))| =∞,

whence
fsbp( ˜̂Mϕ(X )n, x̃n,D

ϕ
θ ) ≤

1

n
· 1n+ 1

2
2.

On the other hand, by using again the fsbp of the sample median of a real-
valued random variable, we have that for all α ∈ [0, 1]

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))| = ∞
}

= �n+ 1

2
,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
ldevϕ

Pn
(α)

)− ̂Me
(
ldevϕ

Qn,k
(α)

)| = ∞
}

= �n+ 1

2
,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

| ̂Me
(
rdevϕ

Pn
(α)

)− ̂Me
(
rdevϕ

Qn,k
(α)

)| = ∞
}

= �n+ 1

2
,

whence for all α ∈ [0, 1]

sup
Q

n,�n+1
2

�−1

| ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))| = M1 <∞,

sup
Q

n,�n+1
2

�−1

| ̂Me
(
ldevϕPn

(α)
)
− ̂Me

(
ldevϕQn,k

(α)
)
| =M2 <∞,

sup
Q

n,�n+1
2

�−1

| ̂Me
(
rdevϕPn

(α)
)
− ̂Me

(
rdevϕQn,k

(α)
)
| = M3 <∞,

and therefore
sup

Q
n,�n+1

2
�−1

Dϕ
θ (
˜̂Mϕ(Pn),

̂
M̃ϕ(Qn,�n+1

2 �−1))

= sup
Q

n,�n+1
2

�−1

[
| ̂Me(wablϕ(Pn))− ̂Me(wablϕ(Qn,k))|

+
1

2

∫
[0,1]

| ̂Me
(
ldevϕPn

(α)
)
− ̂Me

(
ldevϕQ

n,�n+1
2

�−1

(α)
)
| dϕ(α)

+
1

2

∫
[0,1]

| ̂Me
(
ldevϕPn

(α)
)
− ̂Me

(
ldevϕQ

n,�n+1
2

�−1

(α)
)
| dϕ(α)

]
≤M1 +

M2 +M3

2
<∞.
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Consequently,

min

{
k ∈ {1, . . . , n} : sup

Qn,k

Dϕ
θ (
˜̂Mϕ(Pn),

̂
M̃ϕ(Qn,k)) =∞

}
> 1n+ 1

2
2 − 1,

so that fsbp( ˜̂Mϕ(X )n, x̃n,D
ϕ
θ ) ≥

1

n
· 1n+ 1

2
2. �

The following result formalizes the comparison of the robustness of the sample
ϕ-wabl/ldev/rdev median and the sample mean of a random fuzzy number. Thus,

Proposition 4. The finite sample breakdown point of the sample mean from a
random fuzzy number X , fsbp

(
Xn

)
= 1/n, is lower than that for the sample

ϕ-wabl/ldev/rdev median for sample sizes n > 2.

The following simulations illustrate an empirical comparison between the
mean, the 1-norm median (see [4]) and the �-wabl/ldev/rdev median (where
� denotes the Lebesgue measure on [0, 1]):

Step 1. A sample of size n = 100000 of trapezoidal fuzzy numbers has been simulated
for each of some different situations in such a way that

• to generate the trapezoidal fuzzy data, we have considered four real-valued
random variables as follows: X1 = midX1, X2 = sprX1, X3 = inf X1 − inf X0,
X4 = supX0 − supX1;

• each sample is assumed to be split into a subsample of size n(1 − cp) (cp =
proportion of contamination ranging in {0, 0.1, 0.2, 0.4}) associated with a non-
contaminated distribution and a subsample of size n ·cp associated with a con-
taminated one, where an additional contamination role is played by CD (which
measures how far the distribution of the contaminated subsample is from the
distribution of the non-contaminated one and ranges in {0, 1, 5, 10, 100});

• 16 situations for different values of cp and CD have been considered for simu-
lations and for each of these situations two cases have been selected, namely,
one in which random variables Xi are independent (CASE 1) and another one
in which they are dependent (CASE 2). More specifically, CASE 1 assumes
that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2

1 for the non-contaminated subsample,
•• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2

4 + CD for the contaminated
subsample,

whereas CASE 2 assumes that
•• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2

1 + 1)2 + 0.1 · χ2
1 for the non-

contaminated subsample (with χ2
1 independent of X1),

•• X1 ∼ N (0, 3) +CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 + 0.1 · χ2

1 +CD for the
contaminated subsample (with χ2

1 independent of X1).
Step 2. N = 1000 replications of Step 1 in the first simulations have been considered,

so that for each of the 16 situations concerning cp and cD there are 1000
available samples of size n = 100000.

Step 3. For each of the 16 situations and 1000 replications, the mean distance between
the non-contaminated distribution and each sample mixed location measure is
computed. Finally, the mean over the 1000 samples (MD) is obtained.

Distances have been computed by considering the well-known ρ2. The outputs
for this simulation study have been collected in Table 1.
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Simulations support empirically the fact that the contamination affects the
Aumann-type mean much more than the two considered medians. Moreover, the
wabl/ldev/rdev median behaves in a slightly more robust way than the 1-norm
one in both CASES 1 and 2.

Table 1. Mean ρ2-distance of the location measure to the non-contaminated
distribution

CASE 1 CASE 2

cp cD Aumann mean 1-norm median w/l/r median Aumann mean 1-norm median w/l/r median

0 0 1.590684 1.552950 1.554372 1.002750 1.032440 1.009203
0.1 0 1.685077 1.564486 1.553082 1.004752 1.031691 1.012825
0.1 1 1.727329 1.569681 1.553262 0.990237 1.037552 0.994915
0.1 5 1.958604 1.566279 1.554583 1.085708 1.043102 0.996064
0.1 10 2.355203 1.568843 1.554976 1.568303 1.044393 0.996751
0.1 100 13.552122 1.569227 1.555065 13.187656 1.045329 0.996780
0.2 0 1.825401 1.593075 1.563680 1.007136 1.030994 1.016413
0.2 1 1.946608 1.602914 1.565674 0.988365 1.043201 0.986686
0.2 5 2.601743 1.615051 1.572603 1.548887 1.056944 0.992840
0.2 10 3.658885 1.617811 1.574932 2.728677 1.058855 0.994872
0.2 100 26.827333 1.617947 1.575027 26.308354 1.061132 0.993515
0.4 0 2.212263 1.759157 1.711233 1.012141 1.028484 1.026757
0.4 1 2.558034 1.865478 1.742423 1.025340 1.061503 1.015477
0.4 5 4.194068 2.014625 1.802162 2.701750 1.124580 1.067675
0.4 10 6.646680 2.092274 1.817192 5.211615 1.138088 1.091136
0.4 100 54.186654 2.101532 1.829062 51.864586 1.142909 1.091821

4 Concluding Remarks

A new approach for the median of a random fuzzy number has been introduced.
Some of its properties have been proved and its robustness has been shown by
calculating its finite sample breakdown point, empirically checked through some
simulations. Among the future directions, the sensitivity analysis of the influence
of ϕ on the resulting median will be the main aspect to bear in mind.
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Abstract. Fuzzy opinions are very common in surveys performed by
social sciences. A fuzzy multinomial distribution for modeling such opin-
ions is proposed. Next, a method for constructing a generalized version of
the chi-square test of homogeneity which allows fuzzy data is proposed.
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1 Introduction

A test of homogeneity involves testing that the proportions of elements with
certain category in two or more populations are the same. More formally, test-
ing homogeneity means verification whether several multinomial distributions
corresponding to particular populations are similar (homogeneous).

The best known test of homogeneity is the chi-square test applied to sample
data organized in a contingency table. The data often come from questionnaires,
popular especially in social sciences. Traditionally, the respondent examined dur-
ing a survey should choose his/her favorite category from a list of given options.
Usually these options are mutually exclusive and exhaustive, i.e. the respondent
should indicate one and only one option.

The classical chi-square test of homogeneity requires contingency tables with
exclusive categories. The last assumptions often appears too rigid in practice,
because the respondents often can hardly choose their favorite options. Thus
fuzzy answers allowing to specify a degree of conviction for each category, to
which it is the most preferred one, seems to be useful. Moreover, a generalization
of the chi-square test of homogeneity allowing fuzzy answers would be desirable.

Formally the chi-square test of homogeneity is a goodness-of-fit test for the
multinomial distribution. Although many statistical tools have been generalized
for fuzzy data, there are only a few papers devoted to goodness-of-fit tests in
a fuzzy environment [2–6]. The goal of this paper is to generalize not only the

c© Springer International Publishing Switzerland 2015 151
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test but also the notion of the multinomial distribution. In this aspect our idea
is close to that proposed by Lin et al. [5], however we propose a model which -
in our opinion - suits better to the nature of fuzzy answers in questionnaires.

The paper is organized as follows: In Sec. 2 we propose a way for modeling
fuzzy answers leading to fuzzy multinomial distribution. Next, in Sec. 3 we show
how to construct the chi-square test of homogeneity in fuzzy environment. All
suggested notions and tools are illustrated by examples.

2 Fuzzy Preferences and Their Distributions

2.1 Fuzzy Answers in Questionnaires

Suppose that a given question in a survey admits d options. Usually the answer
to that question might be identified with X = (X1, . . . , Xd), where Xi ∈ {0, 1}
such that

∑d
i Xi = 1. Here Xi = 1 indicates that one chooses the i-th option.

In many cases exclusive choices are not natural and too restrictive and it
seems that fuzzy answers would be much more appropriate there. In other words,
instead of choosing one and only one category (option), the respondent may
divide his/her vote among several options proportionally to his/her convictions
or preferences. Therefore, a fuzzy answer might be identified with a vector X =
(X1, . . . , Xd), where

∑d
i Xi = 1, but now Xi ∈ [0, 1]. In this case Xi indicates

the grade of preference attributed to i-th option. If someone attributes Xi = 1
to i-th category, it would be interpreted that he/she is completely convinced to
this option. Such a crisp answer is, of course, a particular case of a fuzzy answer.

2.2 Fuzzy Multinomial Distribution

Having two categories (X1, X2) = (X1, 1−X1) one may identify the first option
with success if X1 ≥ 0.5. Similarly, for d ≥ 2 the label success will be attributed
to the option with the highest grade of preference. Let us denote the probability
that the i-th option is classified as success by

πi = P (Xi = max{X1, ..., Xd}). (1)

Before we generalize the multinomial distribution so it could be applied as an
adequate mathematical model for fuzzy answers, we need some assumptions on
the Xi distribution. Since there is no reason neither to favor nor to discriminate
any option, some kind of averaging seems to be reasonable. Therefore, we assume
that the distribution of Xi|(Xi = max{X1, X2, ..., Xd}) is uniform.

Definition 1. Let Sd denote the d-dimensional simplex, i.e.

Sd = {(x1, . . . , xd) ∈ Rd : x1, . . . , xd ≥ 0, x1 + · · ·+ xd = 1} (2)

and let

Mi = {(x1, . . . , xd) ∈ Sd : xi = max{x1, . . . , xd}}, i = 1, . . . , d. (3)
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We say that X = (X1, . . . , Xd) has the d-dimensional fuzzy multinomial
distribution, and we denote it as X ∼ FM(d,Π), if its density is given by

f(x1, . . . , xd) =

⎧⎪⎨⎪⎩
d! · π1 if (x1, . . . , xd) ∈M1

...
...

d! · πd if (x1, . . . , xd) ∈Md,

(4)

where Π = (π1, . . . , πd) such that π1, . . . , πd ≥ 0 and
∑d

i=1 πi = 1.

One can prove that (4) is a probability distribution. Actually, since
∑d

i=1 xi =
1, we may express any variable by the remaining ones. Let us fix xd. Hence (4)
is a function of d− 1 independent variables and is positive on a set

S̃d−1 = {(x1, ..., xd−1) ∈ Rd−1 : x1, ..., xd−1 ≥ 0, x1 + · · ·+ xd−1 ≤ 1},

whose Lebesgue measure is 1
(d−1)! . By the symmetry the Lebesgue measures of

each set Mi, i = 1, . . . , d are identical and equal to 1
d! . Thus∫

S̃d−1

f(x1 . . . , xd−1)dx1 . . . dxd−1 = d!

(
π1 ·

1

d!
+ . . .+ πd ·

1

d!

)
= 1.

2.3 Some Examples

Let us consider two particular examples of the suggested fuzzy multinomial dis-
tribution.

Example 1. Let X = (X1, X2, X3) ∼ FM(3, Π), Π = (π1, π2, π3), which might
be considered as a model of a fuzzy answer to a question admitting three options.
By (4) we get

f(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
6π1 if (x, y, z) ∈M1

6π2 if (x, y, z) ∈M2

6π3 if (x, y, z) ∈M3

0 otherwise,

(5)

where π1, π2, π3 ≥ 0 and π1 + π2 + π3 = 1. Since z = 1 − x − y, substituting
this relation into (5) we finally get the following density of a fuzzy multinomial
distribution:

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
6π1 if y ≥ 0, y ≥ 1− 2x, x ≤ 1− y, y ≤ x
6π2 if x ≥ 0, y > x, y ≥ 1−x

2 , y ≤ 1− x
6π3 if x ≥ 0, y ≥ 0, y < 1−x

2 , y < 1− 2x
0 otherwise.

(6)

Fig. 1 shows the subsets of the unit square where (6) is positive and a value
assumed by f(x, y) in each subset.
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Fig. 1. Support and values of the FM(3,Π) density

After long and tedious calculations we may show that the marginal density of
each Xi (i = 1, 2, 3) is given by

f(x) =

⎧⎪⎪⎨⎪⎪⎩
3(1− x)(1 − πi) if x ∈ [0, 13 )
6(1− 2x) + 6πi(5x− 2) if x ∈ [ 13 ,

1
2 )

6πi(1− x) if x ∈ [ 12 , 1]
0 otherwise

(7)

and hence its expected value and variance are equal to

μi = EXi =
7 + 15πi

36
(8)

σ2
i = V ar(Xi) =

20 + 231πi − 225π2
i

1296
. (9)

The covariance between any two marginals Xi, Xj, for i �= j is given by

Cov(Xi, Xj) = −
7 + 6πi + 6πj + 225πiπj

1296
. (10)

�

Example 2. In the two-dimensional case, i.e. for (X1, X2) ∼ FM(2, Π), Π =
(π1, π2), which might be considered as a model of a fuzzy answer to the question
admitting possible two options, the situation simplifies a lot. Actually, since now
we have (X,Y ) = (X, 1−X) and π2 = 1− π1, therefore, by (4), we get
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f(x) =

{
2π1 if x ∈ [0.5, 1]
2(1− π1) if x ∈ [0, 0.5).

(11)

It is worth noticing that (11) coincides with the fuzzy Bernoulli distribution
proposed by Lin et al. [5], denoted as X ∼ FB(π1). �

3 Testing Homogeneity with Fuzzy Data

3.1 Chi-square Test for Homogeneity

Suppose we like to test homogeneity of k ≥ 2 populations with regard to the dis-
tribution of their d ≥ 2 categories. Hence the distribution of the i-th population
is represented by the multinomial distribution Πi = (πi1, . . . , πid). We verify the
null hypothesis

H0 : Π1 = · · · = Πk = Π0 = (π01, . . . , π0d) (12)

stating that there are no significant differences between distributions, against
the alternative hypothesis H1 : ¬H0, that at least two distributions differ.

The most famous statistical tool for testing (12) is the chi-square test of
homogeneity. It requires data organized in a contingency table given as follows:

category 1 category 2 . . . category d Σ
population 1 O11 O12 . . . O1d n1

population 2 O21 O22 . . . O2d n2

...
...

...
...

...
...

population k Ok1 Ok2 . . . Okd nk

Σ O·1 O·2 . . . O·d N

Here Oij denotes the observed frequency of the j-th category in a sample
from the i-th population, while ni stands for the number of observations in i-th
sample. We assume that the total number of observations in all k samples are
N = n1 + . . .+ nd. Moreover, O·1, . . . O·d are column totals.

To perform a test we compare the observed frequencies Oij with the corre-
sponding expected frequencies Eij , where Eij = 1

N niO·j . If the null hypothesis
(12) holds then the test statistic, given by

T =
k∑

i=1

d∑
j=1

(Oij − Eij)
2

Eij
, (13)

is chi-square distributed with (k− 1)(d− 1) degrees of freedom. Hence we reject
H if the value of test statistic T is too large.

In the next section we show how to generalize the chi-square test of homogene-
ity for fuzzy multinomial distributions. Unfortunately, because of quite compli-
cated calculations, this generalization has to be performed separately for each
number of categories. Therefore, we have decided do propose below only how to
construct the chi-square test of homogeneity for three categories.
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3.2 Chi-square Test for Three Categories

Suppose that we want to verify whether the answers coming from k groups of
respondents are homogeneous. In this section we assume that instead of exclusive
choices between A, B and C we admit fuzzy answers, where each respondent
specifies his/her grades of preferences between these three categories. In such a
case we may gather all aggregated answers in the following table

A B C Σ
G1 Z11 Z12 Z13 n1

G2 Z21 Z22 Z23 n2

...
...

...
...

...
Gk Zk1 Zk2 Zk3 nk

Σ Z·1 Z·2 Z·3 N

For each group of respondents G1, . . . , Gk its aggregated answers might be
perceived as a random variable Zi = (Zi1, Zi2, Zi3), such that

Zij =

ni∑
l=1

Xijl j = 1, 2, 3, (14)

whereXijl denotes a grade attributed to the j-th category by the l-th respondent
from the i-th group, ni stands for the frequency of the i-th group, and

Z·j =
k∑

i=1

Zij , (15)

Moreover, let Xil = (Xi1l, Xi2l, Xi3l) denote a vector corresponding to a
fuzzy answer of the l-th respondent from the i-th group. Let us assume that
Xi1, . . . , Xini are random vectors coming from the FM(3, πi) distribution, where
Πi = (πi1, πi2, πi3).

Our goal is to verify the null hypothesis

H0 : Π1 = · · · = Πk = Π0 = (π01, π02, π03) (16)

stating that the answers in all groups are concordant, against the alternative
hypothesis H1 : ¬H0, that the answers in at least two groups differ significantly.

Assuming that the null hypothesis holds, each Xil has the same distribution
FM(3, Π0). Let μ = (μ1, μ2, μ3) denote its mean, given by (8). It seems that a
reasonable estimator of EZij , i = 1, . . . , k, j = 1, 2, 3, is

Eij = ni · μ̂j , (17)

where

μ̂j =
Z·j
N

. (18)
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Since EZij = ni
7+15πj

36 , the consistent estimator of πj is given by

π̂j =
36Eij

15ni
− 7

15
=

36Zj

7N
− 7

15
=

36

7
μ̂j −

7

15
. (19)

Some facts given in [1], a multivariate version of the Central Limit Theorem
and the Slucky theorem [8] are useful to prove the following theorem.

Theorem 1. Let

W1 =
4(7 + 15π̂01)(7 + 6π̂02 + 6π̂03 + 225π̂02π̂03)

3(13 + 168(π̂01π̂02 + π̂01π̂03 + π̂02π̂03) + 2025π̂01π̂02π̂03)
, (20)

W2 =
4(7 + 15π̂02)(7 + 6π̂01 + 6π̂03 + 225π̂01π̂03)

3(13 + 168(π̂01π̂02 + π̂01π̂03 + π̂02π̂03) + 2025π̂01π̂02π̂03)
, (21)

W3 =
4(7 + 15π̂03)(7 + 6π̂01 + 6π̂02 + 225π̂01π̂02)

3(13 + 168(π̂01π̂02 + π̂01π̂03 + π̂02π̂03) + 2025π̂01π̂02π̂03)
. (22)

Then, assuming the null hypothesis (16) holds, the following statistic

T3 =

3∑
j=1

Wj

k∑
i=1

(Zij − Eij)
2

Eij
. (23)

is asymptotically chi-square distributed with 2(k − 1) degrees of freedom.

Test statistic (23) is very similar to the statistic of the classical chi-square
test. Indeed, as in (13) we may distinguish observed and expected frequencies
calculated for each cell of the contingency table. However, test statistic (23),
contrary to its classical prototype, might be perceived as a weighted chi-square
statistic with weights W1, W2 and W3 given by (20)-(22). And, similarly as
using the classical test, we reject the null hypothesis (16) if T3 is too large, i.e. if
T3 exceeds the (1−α)100% quantile of the chi-square distribution χ2(2(k− 1)),
where α is a significance level. Otherwise, one may compute an adequate p-value.

Example 3. Suppose we are interested whether there are any significant differ-
ences in preferences for favorite fruits between male and female. We asked 50
women and 50 men to choose their favorite fruits among bananas, apples and
grapes. Contrary to the classical survey with exclusive choices each respondent
could divide his/her vote between available fruits. So we got fuzzy answers like

my favorite fruit = b/banana + a/apple + g/grape,

where b, a, g ∈ [0, 1], satisfying b+a+g = 1, expressed the weights corresponding
to each fruits considered as the most favorite one. All received answers after
appropriate aggregation were organized in the following contingency table:

Banana Apple Grape Σ
Female 15 21.6 13.4 50
Male 13.5 19.2 17.3 50
Σ 28.5 40.8 30.7 100
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Our goal is to verify the null hypothesisH0 : ΠF = ΠM = Π0 = (π01, π02, π03),
stating that there are no significant differences in preferences of male and female.

The firs step is to estimate Eij . In our case n1 = n2 = 50, N = 100, while
Z·1 = 28.5, Z·1 = 40.8 and Z·1 = 30.7 are obtained from our contingency table.
By (17) and (18) and taking Zij form the contingency table we compute Eij . As
a result we get E11 = E21 = 14.25, E12 = E22 = 20.4 and E13 = E23 = 15.35.
Now, by (18) and (19) we get: π̂01 = 0.217, π̂02 = 0.513 and π̂03 = 0.27.

Substituting all those values into (20)-(22) and then into (23) we get T3 = 2.99.
The corresponding p-value is equal to 0.224 so there is no reason to reject H0. It
means that both male and female do not differ significantly in their preferences
for the selected group of fruits. �

4 Conclusions

Fuzzy answers are natural and common in surveys considered in the social sci-
ences. In this paper we proposed a methodology for modeling probability dis-
tributions corresponding to such data. Moreover, we showed how to construct a
generalized version of the chi-square test of homogeneity which allows nonexclu-
sive categories in contingency tables.

The main drawback of the generalized chi-square construction is that the
shape of the test statistic depends on the number of the considered categories.
However, since nowadays most of the calculations in statistics are perform with a
professional software, this disadvantage could be practically diminished by using
a suitable package (e.g. in R [7]).
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On Comparison of Distorted Histograms

Alexander Lepskiy	
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20 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. There are many tasks where the comparison of histograms
(distributions, fuzzy numbers) is required with help of relationship of
type ”more-less”. There are many approaches to solving this problem.
But the histograms may be distorted. Then we have to find the conditions
on the distortions under which the comparison of the two histograms is
not changed. The solution of the problem is searched via three popular
probabilistic methods of comparison.

Keywords: comparison of distributions, distortions of distributions,
stability of comparison.

1 Introduction

There are many tasks where the comparison of histograms (distributions, fuzzy
numbers) is necessary. We will consider the discrete distributions which are given
with help of histograms of type U = (xi, ui)i∈I , xi < xi+1, i ∈ I. Such his-
tograms may consist of fuzzy discrete numbers. In this paper we will consider the
comparison of type ”more-less”. For example, comparison of results of different
experiments (see, e.g. [1]); comparison of functional indicators of the organiza-
tional, technical systems etc. [2]; decision-making under fuzzy uncertainty [3];
simulation of fuzzy preferences [4]; comparisons of income distribution within
the framework of socio-economic analysis [5]; ranking students based on the
results of histograms of their grades [6] etc. The different approaches are used
for comparing histograms. Probabilistic approach is one of the most popular.
Some numerical characteristics of random variables associated with histograms
are compared in this approach. Another approach is based on the use of ranking
methods of income distribution in the theory of social choice [5]. Histograms
income has the form U = (i, ui)

nU

i=1 = (ui)
nU

i=1, where u1 ≤ u2 ≤ ... ≤ unU in this
case. These histograms are compared with help of welfare functions W (U) that
satisfy the conditions of symmetry, monotonicity, concavity, etc. This approach
is equivalent to ranking of ordered ascending vectors if the dimensions of vector-
histograms are the same. The methods of the importance of criteria can be used
in this case [7], or social threshold aggregations [8], etc.
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The third approach to ranking histograms is associated with the use of the
tools of comparison of fuzzy numbers. The histogram U = (xi, ui)i∈I is asso-
ciated with fuzzy set (or fuzzy number) [9] by means of membership function
U = (ui)i∈I which is defined on the universal set X = (xi)i∈I . Methods of
comparison of fuzzy numbers can be used in this case [10,11,12]. Overview and
analysis of the main approaches of comparing histograms are given in [6].

The comparison of histograms can be defined with some degree of imprecision.
The nature of these imprecision may be different. For example, the uncertainty
can be probabilistic character when compared histograms as the results of ex-
periments. The imprecision may be the result of deliberate distortion of data in
the theory of collective choice. The filling gap in incomplete data is another type
of distortion.

Thus we have following questions. Can a distortion change the comparison of
histograms by definite method to the opposite? Which distortion does not change
the result of the comparison? The purpose of this paper is to obtain answers to
these questions. In this paper we will analyze the stability to the distortion of
some of the most popular probabilistic methods of comparing histograms.

2 Notation and Definitions

A pair U = (xi, ui)i∈I of two ordered sets of numbers will be treated as the
histogram in this work, where (xi)i∈I is an ordered ascending vector different
arguments of histogram (i.e. xi < xi+1, i ∈ I), (ui)i∈I is a vector of non-negative
values of histogram, I is a some index set.

We are to define the total preorder relation R (reflexive, complete and tran-
sitive relation) on the set of histograms U = {U}. If histograms U and V are in
the relation R (i.e. (U, V ) ∈ R)), then we will denote this through U � V and
we will define that U is greater than V . If U � V and V � U then we will treat
these histograms as equal ad we will denote U ∼ V .

We will also assume that the relation R should be in accordance with the
condition, that ordering arguments of the histogram ascend their importance: if
U ′ = (xi, u

′
i), U

′′ = (xi, u
′′
i ) are two histograms for which u′i = u′′i for all i �= k, l

and u′l − u′′l = u′′k − u′k ≥ 0 then U ′′ � U ′ for k > l and U ′ � U ′′ for k < l.
Without loss of generality we can assume that the compared histograms

are ”aligned on the number of columns”, i.e. if U = (xUi , ui)i∈IU and V =
(xVi , ui)i∈IV are two histograms, then IU = IV and {xUi }i∈I = {xVi }i∈I . In-
deed, the sets of arguments of histograms XU = {xUi }i∈IU and XV = {xVi }i∈IV

are combined: X = X(U) ∪ X(V ) = {xi} and some procedure for filling data
gaps is applied. Thus, we assume below that all histograms are of the form
U = (xi, ui)i∈I = (ui)i∈I .

3 Some Probabilistic Indices of Comparison

Let U = (xi, ui)i∈I and V = (xj , vj)j∈I be two histograms, ui ≥ 0, vj ≥ 0 for
all i, j ∈ I, I be some index set.
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We consider a numerical index r(U, V ) of pairwise comparison of histograms
U and V in U2. We will assume that index r(U, V ) is coordinated with the
condition, that ordering arguments histograms ascend their importance: if U =
(xi, ui), V = (xi, vi) are two histograms for which ui = vi for all i �= k, l and
ul − vl = vk − uk ≥ 0 then r(U, V ) ≥ 0 for k > l and r(U, V ) ≤ 0 for k < l.
Hence, in particular it follows that r(U,U) = 0.

If the index r(U, V ) is given with help of some utility function F (U) as
r(U, V ) = F (U) − F (V ) then U � V ⇔ r(U, V ) ≥ r(V, U) ⇔ Δr(U, V ) =
r(U, V )− r(V, U) ≥ 0 will be total preorder relation. In general case the sign of
differential index of comparison Δr(U, V ) = r(U, V ) − r(V, U) cannot assign a
transitive relation.

We give examples of indices pairwise comparison of histograms – probability
distributions. In this case we assume that U = (xi, ui)i∈I and V = (xj , vj)j∈I

are random variables taking values {xi}i∈I with probabilities {ui}i∈I and (vj)j∈I

accordingly.
1. Let U � V if E[U ] ≥ E[V ] (comparison of mathematical expectations).

In general U � V if E[f(U)] ≥ E[f(V )], where f is some function (utility
function). We normalize this index that it accepts values in the interval [0,1]:
E0[U ] = 1

Δx (E[V ]− xmin) , where Δx = xmax − xmin. Notice that E0[U ] =
E[U0] , where U0 = (x0i , ui)i∈I , x

0
i = 1

Δx (xi − xmin) ∈ [0, 1] for all i ∈ I. The
corresponding differential comparison index is denoted by ΔE(U, V ) = E0[U ]−
E0[V ] = 1

Δx (E[U ]− E[V ]).
2. Let U � V if FU (x) ≤ FV (x) for all x ∈ R where FU (x) =

∑
i:xi<x ui is

distribution function of random variable U . The opposite inequality in the com-
parison is explained by a condition of conformity of comparison with ordering of
arguments of comparing histograms by ascending importance. This is a principle
of stochastic dominance of the 1st order, which is used, for example, in the risk
theory [13].

The corresponding differential comparison index is denoted by ΔF (U, V ) =
inf
x
(FU (x)− FV (x)). Notice that FU (x) − FV (x) = 0 for all x ≤ x1 or x >

xn if U = (xi, ui)
n
i=1 and V = (xj , vj)

n
j=1 are two random variables. We will

consider the index inf
x∈(x1,xn]

(FU (x) − FV (x)) instead of differential comparison

index ΔF (U, V ) = inf
x
(FU (x) − FV (x)) because the conditions of conservation

of sign of difference FU (x) − FV (x) are interesting for us. We will denote this
index by ΔF (U, V ) too. Notice that index ΔF (U, V ) is not defined on the entire
set U2.

3. Let U � V if P{U ≥ V } ≥ P{U ≤ V }. This approach to compari-
son is called stochastic precedence (V precedes U) and the some properties
of this ordering can be found in [14,15]. If we assume that the random vari-
ables U = (xi, ui)i∈I and V = (xj , vj)j∈I are independent then P{U ≥ V } =∑
(i,j): xi≥xj

uivj . The corresponding differential comparison index is denoted by

ΔP (U, V ) = P{U ≥ V } − P{U ≤ V }. Notice that the inequality ΔP (U, V ) ≥ 0
does not specify a transitive relation. However, the probability of nontransitive



162 A. Lepskiy

triples of histograms for uniform generation is very small as shown by numerical
simulation.

4 Distortions of Histograms

Suppose that we have two ”distorted” histograms Ũ = (xi, ũi)i∈I and Ṽ =
(xj , ṽj)j∈I instead compared histograms U = (xi, ui)i∈I and V = (xj , vj)j∈I .
There are different reasons for distortions of histograms. It may be intentional
manipulation by histogram data. It may be the result of random factors. It may
be the result of the processing procedures of histogram (smoothing, reduction to
the unimodal form, etc.). Therefore the description of uncertainty of histogram
may be different. For example, this uncertainty may have an interval or stochastic
or fuzzy character, etc.

We consider the interval distortions of histograms below. Let U = (xi, ui)i∈I is
a ideal histogram and Ũ = (xi, ũi)i∈I is an interval distortion of U : ũi = ui+hi,
i ∈ I, where

∑
i∈I hi = 0 and |hi| ≤ αui, i ∈ I, where α ∈ [0, 1]. The value

α characterize the threshold of distortion. We will call such a distortion an
α-distortion. We denote by Nα(U) the class of all α-distortion of histogram
U = (xi, ui)i∈I , i.e.

Nα(U) =
{
H = (hi)i∈I :

∑
i∈I

hi = 0, |hi| ≤ αui, i ∈ I
}
. (1)

Suppose that Δr(U, V ) ≥ 0. The main question that is studied in this paper
consist in following. In what case do we have Δr(Ũ , Ṽ ) ≥ 0 for all H ∈ Nα(U)
and G ∈ Nβ(V )? By other words, when the comparison of histograms will not
change after α-distortion of histogram U = (xi, ui)i∈I and β-distortion of his-
togram V = (xj , vj)j∈I? We obtain the conditions of conservation of comparison
distorted histograms for different types of comparisons.

5 Conditions of Preservation for Comparison of Distorted
Histograms

The Conservation Conditions of Comparison of Distorted Histograms
with Respect to ΔE Index. We consider the value

EU = sup
{∑

i∈I
x0i hi : (hi)i∈I ∈ N1(U)

}
for histogram U = (xi, ui)i∈I , where N1(U) is a set of the type (1) with α = 1.
We note the following properties of the value EU .

Lemma 1. The estimation 0 ≤ EU ≤ min {E0[U ], 0.5} is true and this inequal-
ity is sharp.
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Lemma 2. The equality

EU =
n∑

s=s0

x0susas −
s0−1∑
s=1

x0susbs

is true for histogram U = (xi, ui)
n
i=1, where 1 ≥ an ≥ ... ≥ as0 ≥ 0, 1 ≥

b1 ≥ ... ≥ bs0−1 ≥ 0,
∑n

s=s0
usas =

∑s0−1
s=1 usbs, and the index s0 satisfies to

inequality s0 − 1 < mU ≤ s0, where mU is a median of distribution of U .

Proposition 3. Let Ũ = (xi, ui + hi)i∈I , Ṽ = (xj , vj + gj)i∈I be a α- and β-
distortion of histograms U = (xi, ui)

n
i=1 and V = (xj , vj)

n
j=1 respectively. Then

we have ΔE(Ũ , Ṽ ) ≥ 0 for all (hi)i∈I ∈ Nα(U) and (gi)i∈I ∈ Nβ(V ), α, β ∈ [0, 1]
iff ΔE(U, V ) ≥ αEU + βEV .

Let ĒU = min {E0[U ], 0.5}. Then following corollary follows from Lemma 1.

Corollary 4. If we have ΔE(U, V ) ≥ αĒU+βĒV , then inequality ΔE(Ũ , Ṽ ) ≥ 0
is true for all (hi)i∈I ∈ Nα(U) and (gi)i∈I ∈ Nβ(V ).

The Conservation Conditions of Comparison of Distorted Histograms
with Respect to ΔF Index. The similar conditions of the conservation of
a sign of the comparison can be obtained for differential index ΔF (U, V ). We
introduce the function

FU (x) = sup
{∑

i:xi<x
hi : (hi)i∈I ∈ N1(U)

}
,

where N1(U) is a set of type (1) with α = 1.

Lemma 5. FU (x) = min {FU (x), 1 − FU (x)} for all x ∈ R.

Proposition 6. Let Ũ = (xi, ui + hi)i∈I , Ṽ = (xj , vj + gj)i∈I be a α- and β-
distortion of histograms U = (xi, ui)i∈I and V = (xj , vj)i∈I respectively. Then

we have ΔF (Ũ , Ṽ ) ≥ 0 for all (hi)i∈I ∈ Nα(U) and (gi)i∈I ∈ Nβ(V ), α, β ∈ [0, 1]
if

FU (x)− FV (x) ≥ αFU (x) + βFV (x) for all x ∈ R.

Corollary 7. The inequality ΔF (Ũ , Ṽ ) ≥ 0 is true for all (hi)i∈I ∈ Nα(U) and

(gi)i∈I ∈ Nβ(V ) if 0 ≤ sup
x

αFU (x)+βFV (x)
FU (x)−FV (x) ≤ 1 (we assume that the fraction is

equal to zero if its numerator and denominator are equal to zero).

Corollary 8. If ΔF (U, V ) ≥ sup
x
{αFU (x) + βFV (x)} then inequality ΔF (Ũ , Ṽ )

≥ 0 is true for all (hi)i∈I ∈ Nα(U) and (gi)i∈I ∈ Nβ(V ).
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The Conservation Conditions of Comparison of Distorted Histograms
with Respect to ΔP Index. The following conditions of sign conservation
are valid for differential comparison index ΔP (U, V ).

Proposition 9. Let Ũ = (xi, ui + hi)i∈I , Ṽ = (xj , vj + gj)j∈I be a α- and β-
distortion of histograms U = (xi, ui)i∈I and V = (xj , vj)j∈I respectively. Then

we have ΔP (Ũ , Ṽ ) ≥ 0 for all (hi)i∈I ∈ Nα(U) and (gi)i∈I ∈ Nβ(V ), α, β ∈ [0, 1]
if ΔP (U, V ) ≥ Δηα,β(U, V ), where

Δηα,β(U, V ) = sup
(hi)i∈Nα(U),
(gi)i∈Nβ(V )

∑
(i,j): xi<xj

(uigj + hivj + higj − ujgi − hjvi − hjgi).

6 Comparison of the Sets of Admissible Distortions

We consider the set of all those α- and β-distortion of histograms U and V
respectively that preserve the histogram comparison with respect to given index
Δr(U, V ) on condition that it equals c > 0:

Ωc
r(U, V ) =

{
(α, β) : Δr(U, V ) = c, Δr(Ũ , Ṽ ) ≥ 0 ∀H ∈ Nα(U), G ∈ Nβ(V )

}
.

This set is called the set of admissible distortions of histograms U and V for
given comparison Δr(U, V ) = c. It is easy to see that the set Ωc

r(U, V ) is a
star domain (or star-convex set, star-shaped or radially convex set) [16] with
star center the origin, i.e. if (α0, β0) ∈ Ωc

r(U, V ) then (tα0, tβ0) ∈ Ωc
r(U, V ) for

all t ∈ [0, 1]. It is known [16] that ray function Φc
r(α, β) (i.e. continuous, non-

negative and homogeneous: Φc
r(tα, tβ) = tΦc

r(α, β) for all t ≥ 0) may be set in
bijective correspondence to star-convex set with center at the origin such that
Ωc

r(U, V ) = {(α, β) : α ≥ 0, β ≥ 0, Φc
r(α, β) ≤ 1}.

The functions Φc
E(α, β), Φ

c
F (α, β) and Φc

P (α, β) of sets of admissible dis-
tortions for indices ΔE(U, V ), ΔF (U, V ) and ΔP (U, V ) respectively will be

equal Φc
E(α, β) =

1
c (αEU + βEV ), Φc

F (α, β) = sup
x

{
αFU (x)+βFV (x)
FU (x)−FV (x)

}
, Φc

P (α, β) =

1
cΔηα,β(U, V ) as follows from the Proposition 3, 6, 9.
In general the function Φc

F (α, β) is a piecewise linear in the case of discrete
distributions. However we can specify the wide class of pairs of distributions for
which this function is more simple. Let U and V be two random variables with
distribution functions FU and FV respectively, mU and mV be a medians of cor-
responding distributions. If the values FU (mV ) and FV (mU ) are approximately
symmetrical with respect to 1

2 then the function Φc
F (α, β) consists of two linear

functions. The function Φc
F (α, β) is linear function if the values FU (mV ) and

FV (mU ) are located ”strongly asymmetric” with respect to 1
2 .

We introduce the following notion for numerical measuring the degree of sta-
bility of the comparison to the α-distortion. We call the comparison r(U, V )
of histograms U and V with r(U, V ) = c > 0 by δ-stable to α-distortion if
δ = max {k(α, β) : Φc

r(α, β) ≤ 1}, where k(α, β) is a some criterial function, as
which the may be, for example: k1(α, β) =

1
2 (α+ β), k2(α, β) = min{α, β}.
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By other words, δ-stability characterizes the maximal level of distortions of
histograms for which the sign of comparison histograms will not change. We
denote the value of δ-stability of comparison of histograms r(U, V ) relatively

criterial function ki through δ
(i)
r (U, V ). In particular, it is easy to see that

δ
(1)
E (U, V ) = c

2min{EU ,EV } , δ
(2)
E (U, V ) = c

EU+EV
.

Example. We consider the comparison of the two histograms of USE (Unified
State Exam) applicants admitted in 2012 on a specialty ”Economy” and only
on the competitive set in Moscow State Institute of the International Relations
(MGIMO, the histogram U) and Moscow State University (MSU, the histogram
V ). The histograms of these universities are given in Fig. 1.

Fig. 1. The histograms USE applicants admitted in 2012 on a specialty ”Economy” in
Moscow State Institute of the International Relations (dark color) and Moscow State
University (light color)

The normalized expectations have values E0[U ] = 0.732 and E0[V ] = 0.669
for these histograms; the differential index of comparison with respect to ex-
pectations is equal ΔE(U, V ) = E0[U ] − E0[V ] = 0.063; the differential in-
dex of comparisons with respect to distribution functions is equal ΔF (V, U) =

inf
x∈(x1,xn]

(FV (x) − FU (x)) = 0.0031; we have probabilities P{U ≥ V } = 0.684,

P{U ≤ V } = 0.434 and the differential index of comparisons with respect to
probabilities is equal ΔP (U, V ) = P{U ≥ V } − P{U ≤ V } = 0.25.

Then we have following values of δ-stability of comparisons of histograms with
respect to:

a) expectations: δ
(1)
E (U, V ) = 0.375, δ

(2)
E (U, V ) = 0.351;

b) distribution functions: δ
(1)
F (U, V ) = 0.001989; δ

(2)
F (U, V ) = 0.001788;

c) probabilities: δ
(1)
P (U, V ) = 0.306, δ

(2)
P (U, V ) = 0.254.

Thus the comparisons with respect to expectation shows the greatest stability
(at the level of 35-40%). The comparisons with probability slightly worse than
the first comparison (25-30%). The comparison using the distribution function
has the lowest stability (0.15-0.20%).
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7 Conclusion
The necessary and sufficient conditions on the distortion level of histograms, un-
der which the result of the comparison of histograms by probabilistic methods will
not change, were found in this paper. It was clear a priori that ”integral” methods
of comparison, such as the method of comparing expectations, method compar-
isons of probability of inequalities are more preferred than pointwise comparison
methods, such as stochastic dominance. These assumptions were confirmed by the
results of research. Accurate theoretical estimates of possible values of distortion
histograms, in which the comparison result will not change, were obtained.

The found conditions invariability of comparing histograms can be used to
estimate the reliability of results of different rankings, data processing, etc., in
terms of different types of uncertainty: stochastic uncertainty, the uncertainty
associated with the distortion of the data in filling data gaps, etc.
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Abstract. The paper presents a new fuzzy set based description which
helps to distinguish the expected values of the statistical experiment
from the outliers. Since the Neyman-Pearson criterion is not adequate
in some real applications for such purpose, we propose to use triangular
norms for conjuction of two propositions about typical and non-typical
values and describe both of them as a fuzzy set that is called the typical
transform. We also investigate such a property of the typical transform
as stability.
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1 Introduction

In general when we carry out statistical experiments we can observe results that
are not expected. These results are called outliers. To the contrary results that
are conceived expected can be called typical. The paper gives a new fuzzy set
based description of this prior information that we call the typical transform. For
this purpose we consider two probability measures. The first measure describes
the typical elementary events that can appear during the experiment and the
second measure describes the whole possible events during the experiment, i.e.
the probability distribution that can be chosen if we know nothing about the
possible outcomes of the experiment. This probability measure can be chosen
using, for example, the maximal entropy principle that leads to the uniform
distribution.

In the paper we argue that the Neyman-Pearson criterion is not adequate in
some real applications for separating typical and non-typical results of the exper-
iment, therefore, we propose to use t-norms for conjunction of two propositions
about typical values that found applications in fuzzy set theory. This allows us
to describe typical and non-typical results of the experiment with a fuzzy set
that is called the typical transform. We investigate some properties of the typical
transform, in particular, its stability.

� This study (research grant No 14-01-0015) was supported by The National Research
UniversityHigher School of Economics Academic Fund Program in 2014/2015.
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2 Background

The detection of outliers is purely heuristic-based problem because there are
no exact definition of that term. That is why there are a lot of approaches
which are based on various assumptions[4]. The methods based on statistical
tests assume that the data is distributed normally and identify outliers as the
observations which are far enough from the mean in terms of standard devia-
tion or Mahalanobis distance. Depth-based approaches assume that outliers are
located at the border of the data space. Deviation-based methods state that
outliers are the observations whose removal minimizes the variance of the data.
Distance-based approaches assume that outliers are far apart from their nearest
neighbours in the data set. Density-based methods estimate the density of prob-
ability distribuition for certain observation point and compare it with densities
of the nearest neighboring observations.

Our approach based on the typical transform assumes that the probability
density function is specified. We formulate three general postulates about the
relation between the probability density function value and the corresponding
degree of typicality. Non-typical elementary events are treated as outliers.

The typical transform can also be considered as a new fuzzy methodology
to describe the uncertainty during the processing of the statistical information.
One should note the existence of other approaches to build the fuzzy sets when
one processes the statistical information[1,3].

3 Necessary Mathematical Apparatus

In the next section we use distortion functions [2,7] and triangular norms [5,6]
to proceed our reasoning.

Let F be the set of all distortion functions. According to the definition, the
arbitrary distortion function φ : [0, 1] →]0, 1] is a non-decreasing function that
satisfies φ(0) = 0 and φ(1) = 1.

Let T be the set of all triangular norms. Each triangular norm t : [0, 1] ×
[0, 1]→ [0, 1] satisfies the following conditions:

– commutativity t(a, b) = t(b, a);
– monotonicity t(a, b) ≥ t(c, d) if a ≥ c and b ≥ d;
– associativity t(a, t(b, c)) = t(t(a, b), c);
– identity element t(a, 1) = a.

4 Typical Transform

4.1 Problem Statement

Let (U, σU , PU ) be a probability space, where U ⊆ Rn is the set of elemen-
tary events, σU is the sigma algebra of measurable subsets in U , and PU is a
probability measure on σU . Let us assume that the measure PU plays a role of
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vacuous information about the experiment and can be chosen, for example, by
using the maximum entropy principle. In case of additional information about
the experiment we describe it with a random variable ρ : U → R and correspond-
ing probability measure Pρ with a density function pρ : U → [0,∞). Thus the
probability of any A ∈ σU can be computed by the formula Pρ(A) =

∫
A
pρ(u)du,

where the last integral can be conceived as the Lebesgue integral in general case.
For any random variable ρ we divide its values on typical and non-typical ones
using the set of typical events Bρ ∈ σU . This separation heuristically can be
described by the following postulates.

Postulate 1. Let pρ(u1) > pρ(u2) for u1, u2 ∈ U , then u1 is more likely typical
than u2.

Since the proceeded experiment changes the probability distribution over the U ,
the regions with a high degree of outcomes condensation tend to contain a lot
of posterior probability and a little of prior probability.

Postulate 2. The value PU (Bρ) should be close to 0.

Postulate 3. The value Pρ(Bρ) should be close to 1.

4.2 The Formalization of Postulates

Consider an arbitrary elementary event u ∈ U . Let us introduce a pair of hy-
potheses which are collectively exhaustive events. The main hypothesisH0 states
that the elementary event u is typical for the random variable ρ

H0 : u ∈ Bρ.

The alternative hypothesis H1 says the opposite, i.e. u is not typical for the
random variable ρ

H1 : u /∈ Bρ.

Let us define a random variable χ such that its probability density function
depends on the choice between the hypotheses H0 and H1, i.e. pχ(u;H0) �=
pχ(u;H1).

Due to the postulate 1, the optimal statistical criterion to classify elementary
events should have the critical region like

Sρ,y = {u ∈ U |pρ(u) < y} , (1)

where y ≥ 0 is the parameter.
Consider the probability of type I error α(y) and the probability of type II

error β(y) for the parametrized criterion with the critical region Sρ,y:

α(y; ρ, χ) =

∫
Sρ,y

pχ(u;H0)du,

β(y; ρ, χ) =

∫
U\Sρ,y

pχ(u;H1)du.
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The postulate 2 can be formalized as the minimization of the following functional∫
U\Sρ,y

dPU → min
y

. (2)

The postulate 3 can be formalized as the minimization of the functional∫
Sρ,y

dPρ → min
y

. (3)

Note that if pχ(u;H0) = pρ(u) then (3) minimizes the probability of type I error
α(y). Analogously, if pχ(u;H1)du = dPU , then (2) minimizes the probability of
type II error β(y).

Thus, the main H0 and alternative H1 hypotheses are presented. The critical
region for the optimal statistical criterion to check the main hypothesis belongs to
the parametrized family (1). The optimal criterion should minimize probabilitiies
of type I and type II errors that can be presented as the system of conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

α(y; ρ) =

∫
Sρ,y

dPρ → min
y

,

β(y; ρ) =

∫
U\Sρ,y

dPU → min
y

.

(4)

The system (4) is the multi-objective optimization problem. According to
(4), type I α(y) and type II β(y) errors can not be optimized simultaneously.
The Neyman-Pearson criterion suggests to fix an admissible level of the type
I error probability and build the optimal criterion that minimizes the type II
error probability given the fixed type I error level. In the context of the problem
being discussed, it follows the priority of the postulate 3 over the postulate 2.
Assuming the equivalence of the postulates 3 and 2, we propose another way to
solve the multi-objective problem (4) which takes into account the specificity of
present restrictions.

Assume that the statistical criterion with the critical region Sρ,y from the
criteria family (1) satisfies the postulate 3 with the confidence degree

Cα(y; ρ, φα) = φα(1− α(y; ρ)) = φα

(∫
U\Sρ,y

dPρ

)
,

where y ≥ 0 and φα ∈ F . Analogously, let the same criterion satisfy the postu-
late 2 with the confidence degree

Cβ(y; ρ, φβ) = φβ(1− β(y; ρ)) = φβ

(∫
Sρ,y

dPU

)
,

where y ≥ 0 and φβ ∈ F . In both cases the confidence degree depends on the
error of certain type transformed by the distortion function which is known a
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priori. The logical conjunction of the postulates 2 and 3 can be expressed with
the help of the triangular norm t ∈ T

C(y; ρ, φα, φβ , t) = t

(
φα

(∫
U\Sρ,y

dPρ

)
, φβ

(∫
Sρ,y

dPU

))
, (5)

which is known a priori too.
The maximal confidence degree of both postulates is achieved when y = y∗,

where
y∗ = argmax

y≥0
C(y; ρ, φα, φβ , t), (6)

which corresponds to the critical region

Sρ,y∗(u) = {u ∈ U |pρ(u) < y∗}. (7)

If u ∈ U belongs to the critical region Sρ,y∗ then the alternative hypothesis H1 is
accepted. Otherwise, the main hypothesis H0 is admitted. Thus, the elementary
event u ∈ U is typical u ∈ Bρ if it does not belong to the critical region Sρ,y∗ .
This statement can be formalized in the terms of characteristic functions of the
sets Bρ and Sρ,y∗

Bρ(u;φα, φβ , t) = 1− Sp,y∗(u). (8)

4.3 Fuzzy Set of Typical Elementary Events

The solution (6)-(8) can be unstable relative to the small changes in the function
pρ since the output of characteristic function is binary valued. However, (6)-(8)
is naturally extended to the case if the critical region is a fuzzy set. Assuming
that S is the fuzzy critical region, the main and alternative hypotheses for u ∈ U
are accepted with 1− S(u) and S(u) confidence degrees respectively. Thus, the
set of the typical elementary events Bρ in (8) can be treated as a fuzzy set.

If Bρ(u) is close to 1 or 0 then u is accordingly almost certainly the typical
or almost certainly the non-typical elementary event. Meanwhile, if Bρ(u) is
close to 0.5, then there is not enough information to classify u with the high
degree of assurance. At this point, the fuzzy sets of typical elementary events
are applicable in the case one needs to filter out the elementary events that can
not be classified with required degree of confidence.

Let us build the fuzzy critical region as the weighted union of the crisp critical
regions Sρ,y using the functional (5)

S(u; ρ, φα, φβ , t, h) =

∫∞
0 C(y; ρ, φα, φβ , t)Sρ,y(u)h(y)dy∫∞

0
C(y; ρ, φα, φβ , t)h(y)dy

,

where y ≥ 0 and h(y) : [0,∞)→ [0,∞) is the a priori known probability density
function which guarantees the convergence of the integrals both in numerator
and deniminator of the functional above. Thus, the membership function of the
typical elementary events set Bρ for the random variable ρ can be represented
as
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Bρ(u;φα, φβ , t, h) =

∫ pρ(u)

0 C(y; ρ, φα, φβ , t)h(y)dy∫∞
0 C(y; ρ, φα, φβ , t)h(y)dy

. (9)

4.4 Stability Research

The stability relative to the small changes in the input data is the significant
feature in practice. Let us formulate the stability conditions of the transform
(1),(5),(9) as the theorem below.

Theorem 1. Let φα, φβ ∈ F and t ∈ T satisfy the Lipschitz [5,6] continuity
condition:

|φα(x1)− φα(x2)| ≤ Kα|x1 − x2|,|φβ(x1)− φβ(x2)| ≤ Kβ|x1 − x2|,
|t(x1, y1)− t(x2, y2)| ≤ Kt(|x1 − x2|+ |y1 − y2|)

for all x1, x2, y1, y2 ∈ [0, 1]. Assume the function h satisfy the conditions∫ ∞

0

h(y)

y
dy = Kh <∞, max

y∈[0;∞)
h(y) ≤ hmax <∞.

Let ρ, κ be the random variables and |pρ(u)−pκ(u)| ≤ εmax for all u ∈ U , where
εmax ≥ 0. Then

|Bρ(u;φα, φβ , t, h)− Bκ(u;φα, φβ , t, h)| ≤
Kmaxεmax∫∞

0
C(y; ρ, φα, φβ , t)h(y)dy

,

where Kmax = 2Kt(Kβhmax +Kαhmax +KαKh) + hmax.

Theorem 1 states that the stability of the transform(1),(5),(9) is in the direct
proportion with the value

qρ =

∫ ∞

0

C(y; ρ, φα, φβ , t)h(y)dy.

If qρ → 0, then the small changes in the input data may lead to the huge changes
of the values of the membership function Bρ. In the extreme case qρ = 0 the
result of (9) is undefined. For instance, that is achieved when the random variable
ρ is distributed uniformly on the bounded space U .

We propose to regularize (9) as follows:

Bρ(u;φα, φβ , t, h) = 0.5(1− λ) + λ

∫ pρ(u)

0 C(y; ρ, φα, φβ , t)h(y)dy∫∞
0 C(y; ρ, φα, φβ , t)h(y)dy

. (10)

The value λ ∈ [0, 1] is the regularization parameter which is chosen according to
the stability of (9), i.e. it is directly proportional to qρ:

λ = min

{
1,
Emax

∫∞
0

C(y; ρ, φα, φβ , t)h(y)dy

Kmax

}
, (11)
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where Emax is the number that bounds from above the absolute value of ΔBρ

for small changes in the input data

|ΔBρ(u)|
εmax

≤ Emax.

One can prove that if the functions φα, φβ , t and h satisfy the conditions of the
theorem 1, then (10) is absolutely stable regardless of qρ for all u ∈ U .

The unstability of (9) when qρ → 0 can be treated as the high degree of
uncertainty whether u ∈ U is typical elementary event ot not. One states above
that if closer the membership degree of Bρ to 0.5 for some u ∈ U then greater the
uncertainty degree during its classification as typical or not. The formulas (10)
and (11) naturally connect together both these uncertainty types. The closer qρ
is to 0, the less the parameter λ is and the closer the membership degree of Bρ

is to 0.5 for all u ∈ U .

4.5 Practical Use

The practical use of the presented transform is to define the degree of how typical
the certain signal relative to the statistical experiment proceeded earlier. Let the
signal be represented as the probability density function f : U → [0,∞) that
corresponds to the probability measure Pf . Then the typicality degree for f
relative to ρ can be represented as

Bρ(f) =

∫
U

Bρ(u)f(u)du =

∫
U

Bρ(u)dPf .

The significant feature is the ability to estimate the confidence degree of the
introduced transform:

Tρ =

∫
U

|1− 2Bρ(u)|dPU .

One can also compute the confidence degree of this transform applying to the
specified signal

Tρ(f) =

∫
U

|1− 2Bρ(u)|dPf .

5 Examples

Here are some examples of the discrete transform when U = {−100, . . . , 100}
and PU has the uniform distribution on U . We use φα(u) = φβ(u) = u for all
u ∈ {−100, . . . , 100} and t(x, y) = min(x, y). One can easily prove that they
satisfy the Lipschitz condition. The various values of Emax were chosen: 1, 15
and 50. See the Fig. 1 for the results of transform.
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Fig. 1. Top-left item is the original distribution Pρ. Top-right, down-left and down-
right items are the results of discrete transform Bρ with Emax = 50, Emax = 15 and
Emax = 1 respectively.

6 Conclusion

We present the fuzzy set based description for the statistical experiment to
distinguish the expected values from the outliers. We propose to use triangular
norms for conjuction of two propositions about typical and non-typical values
and describe both of them as the fuzzy set that is called the typical transform.
We also investigate such a property of the typical transform as stability.
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Abstract. A hypothesis test for analyzing the degree of similarity be-
tween the expected value of a random interval and a fixed interval is
introduced. It is based on a measure of the similarity between classical
convex sets proposed in the literature. Asymptotic techniques are firstly
applied to analyze the limit distribution of the proposed test statistic.
Afterwards, a bootstrap approach is presented to better approximate the
sampling distribution. Finally, the performance of the test is investigated
by means of simulation studies.

Keywords: Similarity degree, expected value, random interval, boot-
strap approach.

1 Introduction

Different problems involving interval-valued data have been faced in the litera-
ture. Sometimes intervals are referred to an imprecise identification of an exact
value quantification [7,13]. In other situations the interest is focused on charac-
teristics which are essentially interval-valued data as, for instance, fluctuations
in Economy, numerical ranges, subjective perceptions and so on [2,3,6].

Random experiments involving such kind of data, also called random inter-
vals (RIs), are considered. Some statistical analysis for RIs in different settings
have already been addressed [5,11,12,15]. Specifically, hypothesis tests for the
expected value of random intervals, which is also an interval, have been previ-
ously developed [8,10]. As these hypotheses comprised strict equalities, the idea
is to relax them, which is in coherence with the imprecise setting of intervals.

The aim is to analyze if the expected value of a random interval can be
considered to be similar to a previously fixed interval. For this purpose, a sim-
ilarity measure between two intervals which is based on the Jaccard similarity
coefficient for classical convex sets [9] will be considered. This index is a ratio
quantifying the size of the intersection with respect to the size of the union of
both intervals. In this context, the size of the intersection between intervals will
be defined taking into account its Lebesgue measure [14], whereas the size of the
union is based on the sizes of both intervals and the intersection interval.

A test statistic will be defined on the basis of the Jaccard index and its
asymptotic limit distribution will be firstly analyzed. Later, bootstrap techniques
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will be applied in order to approximate the sampling distribution in practice.
Some simulation studies will be carried out to show the empirical behaviour of
the bootstrap approach.

2 Preliminaries

Let Kc(R) denote the family of all non-empty closed and bounded intervals of
R. The formalization of the hypothesis test procedure is based on the (mid , spr )
representation of the intervals, i.e. A = [midA ± sprA] for A ∈ Kc(R), where
midA ∈ R is the mid-point or centre and sprA ≥ 0 is the spread or radius of A.
The previous characterization has been shown to be a valuable tool for different
statistical purposes (see, for instance, [2,4,15]).

Given a probability space (Ω,A, P ), a random interval is a Borel measurable
mapping X : Ω −→ Kc(R) w.r.t. the well-known Hausdorff metric on Kc(R) [11].
Equivalently, a mapping X : Ω −→ Kc(R) is an RI if both midX and sprX are
(real-valued) random variables. It is clear that sprX ≥ 0.

The usual interval arithmetic is expressed in terms of the (mid , spr ) repre-
sentation as follows:

A1 + λA2 = [(midA1 + λmidA2)± (sprA1 + |λ|sprA2)], (1)

for A1, A2 ∈ Kc(R) and λ ∈ R. The expected value of an RI X is defined in
terms of the Aumann expectation [1] and it fulfils that E([midX ± sprX ]) =
[E(midX)± E(sprX)], whenever midX, sprX ∈ L1(Ω,A, P ).

2.1 Similarity Degree between Intervals

Let A ∈ Kc(R). The Lebesgue measure of A is given by λ(A) = 2sprA. In
addition, the Lebesgue measure of the empty set is λ(∅) = 0.

Let now A,B ∈ Kc(R). The Lebesgue measure of the intersection between A
and B can be expressed as follows (cf. [14]):

λ(A ∩B) = max
{
0,min

{
2sprA, 2sprB, sprA+ sprB − |midA−midB|

}}
(2)

A measure of the degree of similarity between the intervals A,B ∈ Kc(R) can
be defined, in accordance with the Jaccard coefficient [9], as

S(A,B) =
λ(A ∩B)

λ(A ∪B)
, (3)

where λ(A∪B) = λ(A)+λ(B)−λ(A∩B) and either A or B are assumed not to
be reduced to a singleton. Clearly, 0 ≤ S(A,B) ≤ 1 since λ(A ∩B) ≤ λ(A ∪B).

This measure satisfies that S(A,B) = 0 iff A ∩B = ∅, S(A,B) = 1 if A ⊂ B,
and S(A,B) ∈ (0, 1) iff A ∩B �= ∅ and A �= B.

In Figure 1 are gathered various possible similarity degrees.
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Fig. 1. Different representations for the similarity degree between E(X) (in grey) and
A (in black)

3 Hypothesis Testing for the Similarity between the
Expected Value of an RI and a Fixed Interval

Let (Ω,A, P ) be a probability space, X : Ω −→ Kc(R) an RI so that sprE(X) >
0 and A ∈ Kc(R) priory fixed so that sprA > 0. Given d ∈ [0, 1], the aim is to
test

H0 : S(E(X), A) ≥ d vs. H1 : S(E(X), A) < d. (4)

The other one-sided test and the two-sided test could be analogously studied,
but we will focus our attention in the previous one since it seems to be the most
appealing for practical applications.

From the definition in (2), hypotheses of Test (4) can be equivalently expressed
as

H0 : max
{
d sprA− sprE(X), d sprE(X)− sprA,

(1 + d) |midE(X)−midA|+ (d− 1) (sprE(X) + sprA)
}
≤ 0;

H1 : max
{
d sprA− sprE(X), d sprE(X)− sprA,

(1 + d) |midE(X)−midA|+ (d− 1) (sprE(X) + sprA)
}
> 0.

(5)

3.1 Asymptotic Approach

If {Xi}ni=1 is a collection of random variables independent and identically dis-
tributed as X , the following test statistic is defined:

Tn =
√
nmax

{
d sprA− sprXn, d sprXn − sprA,

(1 + d)
∣∣midXn −midA

∣∣+ (d− 1)
(
sprXn + sprA

)}
,

(6)
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where midXn and sprXn are the corresponding classical sample means midXn

and sprXn, respectively.
Some mild conditions are assumed to avoid trivial cases and to guarantee the

existence of the involved moments. They are gathered in the following space:

P =
{
Y : Ω → Kc(R) |σ2

midY <∞ , 0 < σ2
sprY <∞ ∧ σ2

midX, sprX �= σ2
midXσ2

sprX

}
.

From now on, consider the bivariate normal distribution Z = (z1, z2)
T ≡

N2

(
0, Σ

)
whereΣ is the covariance matrix for the random vector (midX, sprX).

As we will show in the following lines, the limit distribution of the statistic Tn

(and also the one of its bootstrap version) depend on the variables z1 and z2.
Lemma 1 shows the limit distribution of Tn under different conditions.

Lemma 1. For n ∈ N, let X1, . . . , Xn be n RIs independent and equally dis-
tributed from X, and defined on the probability space (Ω,A, P ). Let Tn be defined
as in (3.1). If X ∈ P, then:
a) Whenever sprE(X) = d sprA and midE(X) − midA = (1 − d)sprA, it is

fulfilled that

Tn
L−→ max{−z2, (1 + d)z1 + (d− 1)z2}. (7)

b) Whenever sprE(X) = d sprA and −midE(X) +midA = (1− d)sprA, it is
fulfilled that

Tn
L−→ max{−z2,−(1 + d)z1 + (d− 1)z2}. (8)

c) Whenever d sprE(X) = sprA and midE(X) −midA =
(1 − d)

d
sprA, it is

fulfilled that

Tn
L−→ max{dz2, (1 + d)z1 + (d− 1)z2}. (9)

d) Whenever d sprE(X) = sprA and −midE(X) + midA =
(1− d)

d
sprA, it

is fulfilled that

Tn
L−→ max{dz2,−(1 + d)z1 + (d− 1)z2}. (10)

Proof. The statistic Tn can be equivalently expressed as:

Tn =
√
nmax

{
d sprA− sprE(X) + sprE(X)− sprXn,

d sprXn − d sprE(X) + d sprE(X)− sprA,

(1 + d)
∣∣midXn −midE(X) + midE(X)−midA

∣∣
+(d− 1)

(
sprXn − sprE(X) + sprE(X) + sprA

)}
,

a) If sprE(X) = d sprA and midE(X) − midA = (1 − d)sprA, the second
term and the negative form of the third term diverges in probability to
−∞ as n → ∞ by the CLT and the Slutsky’s theorem. Then, by using the
continuous mapping theorem and the CLT for real variables (7) is provided.
The same reasoning can be applied to the other three situations by taking
into account that



Similarity Test for the Expectation of a Random Interval 179

b) Whenever sprE(X) = d sprA and −midE(X) + midA = (1 − d)sprA, the
second term and the positive form of the third term diverges in probability
to −∞ as n→∞;

c) Whenever d sprE(X) = sprA and midE(X) − midA =
(1− d)

d
sprA, the

first term and the negative form of the third term diverges in probability to
−∞ as n→∞;

d) Whenever d sprE(X) = sprA and −midE(X) + midA =
(1 − d)

d
sprA, the

first term and the negative form of the third term diverges in probability to
−∞ as n→∞.

�

Remark 1. It is easy to check that in other situations under H0 the statistic Tn

converges weakly to a limit distribution stochastically bounded for one of those
provided in Lemma 1.

Since the limit distribution of Tn depends on X , it is suitable to consider
the following X-dependent distribution for the theoretical analysis of the testing
procedure:

T ′
n = max

{ √
n
(
sprE(X)− sprXn

)
+min

(
0, n1/4(sprA− sprXn)

)
,

√
n
(
d
(
sprXn − sprE(X)

))
+min

(
0, n1/4(sprXn − sprA)

)
,√

n
(
(1 + d)

(
midXn −midE(X)

)
+ (d− 1)

(
sprXn − sprE(X)

))
+min

(
0, n1/4(midXn −midA)

)
,√

n
(
(1 + d)

(
midE(X)−midXn

)
+ (d− 1)

(
sprXn − sprE(X)

))
+min

(
0, n1/4(midA−midXn)

)}
.

(11)

The minima included in T ′
n is useful to determine the terms on its expres-

sion which has influence depending on the situation under H0. For instance, if
sprA − sprE(X) ≥ 0 and midA − midE(X) ≥ 0, the second and the third
terms of T ′

n diverge in probability to −∞ whereas the first and the fourth terms
determine the limit distribution of the statistic. Clearly, T ′

n converge to the same
distributions that Tn under the conditions established in Lemma 1. The consis-
tency of the test is settled in the following lines.

Let α ∈ [0, 1] and k1−α be the (1−α)-quantile of the asymptotic distribution
of T ′

n. If H0 in (5) is true, then it is satisfied that

lim sup
n→∞

P (T ′
n > k1−α) ≤ α

and the equality is achieved whenever conditions in a), b), c) and d) in Lemma
1 are fulfilled. In addition, if H0 is not fulfilled then

lim
n→∞P (T ′

n > k1−α) = 1.

Therefore, the test which rejects H0 in (5) at the significance level α whenever
T ′
n > k1−α is asymptotically correct and consistent.
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3.2 Bootstrap Approach

Due to the difficulties in handling the asymptotic limit distribution, a residual
bootstrap approach is proposed.

Let X be an RI s.t. sprE(X) > 0, A ∈ Kc(R) s.t. sprA > 0 and {Xi}ni=1

be a simple random sample from X . Let {X∗
i }ni=1 be a bootstrap sample from

{Xi}ni=1. The bootstrap statistic is defined below on the basis of T ′
n and the

classical residual bootstrap approach.

T ∗
n = max

{ √
n
(
sprXn − sprX∗

n

)
+min

(
0, n1/4(sprA− sprXn)

)
,

√
n
(
d
(
sprX∗

n − sprXn

))
+min

(
0, n1/4(sprXn − sprA)

)
,√

n
(
(1 + d)

(
midX∗

n −midXn

)
+ (d− 1)

(
sprX∗

n − sprXn

))
+min

(
0, n1/4(midXn −midA)

)
,√

n
(
(1 + d)

(
midXn −midX∗

n

)
+ (d− 1)

(
sprX∗

n − sprXn

))
+min

(
0, n1/4(midA−midXn)

)}
.

(12)

The asymptotic distribution of T ∗
n is provided in the following lemma.

Lemma 2. Let X ∈ P. Then,

a) Whenever sprE(X) = d sprA and midE(X) − midA = (1 − d)sprA, it is
fulfilled that

T ∗
n

L−→ max{−z2, (1 + d)z1 + (d− 1)z2} a.s.− [P ]. (13)

b) Whenever sprE(X) = d sprA and −midE(X) +midA = (1− d)sprA, it is
fulfilled that

Tn
L−→ max{−z2,−(1 + d)z1 + (d− 1)z2} a.s.− [P ]. (14)

c) Whenever d sprE(X) = sprA and midE(X) −midA =
(1 − d)

d
sprA, it is

fulfilled that

Tn
L−→ max{dz2, (1 + d)z1 + (d− 1)z2} a.s.− [P ]. (15)

d) Whenever d sprE(X) = sprA and −midE(X) + midA =
(1− d)

d
sprA, it

is fulfilled that

Tn
L−→ max{dz2,−(1 + d)z1 + (d− 1)z2} a.s.− [P ]. (16)

Remark 2. The consistency of the bootstrap procedure can be easily proven.
In addition, other situations under H0 leads to other limit distributions of the
bootstrap statistic different from the ones provided in Lemma 2.

In practice, Monte Carlo method is employed to approximate the distribution
of T ∗

n .



Similarity Test for the Expectation of a Random Interval 181

4 Simulations

Some simulated models are proposed in order to analyze the behaviour of the
bootstrap approach. Given the RI X , two different models are considered
depending on the distributions for its mid and its spread, mainly,

Case 1: midX ≡ N (1, 5) and sprX ≡ U(0, 4);

Case 2: midX ≡ U(−4, 6) and sprX ≡ χ2
2.

Let A = [−5, 3] ∈ Kc(R). The aim is to construct the test

H0 : S(E(X), A) ≥ 1/2 vs. H1 : S(E(X), A) < 1/2.

The bootstrap approach in Section 3.2 has been applied. Specifically, 10000
simulations with 1000 bootstrap replications have been carried out at the usual
significance levels ρ (.01, .05 and .1) for different sample sizes. Results are gath-
ered in Table 1.

Table 1. Empirical size of the bootstrap tests for the similarity degree

Case 1 Case 2

n�100 · ρ 1 5 10 1 5 10

10 2.82 7.94 13.66 3.63 8.11 11.40

30 1.59 5.74 10.88 1.80 5.81 11.08

50 1.35 5.36 10.59 1.67 5.66 10.92

100 1.27 5.26 10.35 1.28 5.32 10.26

200 1.10 5.06 10.08 1.09 5.02 10.10

Table 1 shows that the empirical sample sizes are in both cases quite close to
the nominal significance levels for sample sizes greater than or equal to n = 100.
However, the approximation to the nominal significance level is faster in Case 1
with respect to Case 2, especially for small sample sizes, which could be due to
the differences in nature of the distributions involved in both models.

On the other hand, although the theoretical study of the power of the test
will be developed in the future, some small simulations have been carried out.
Specifically, midX in Case 1 has been chosen to have distributions N (3, 5),
N (5, 5) and N (7, 5), respectively. In these cases, the bootstrap approach for
α = .05 and n = 10 lead to p-values of .39, .814 and .984, respectively, which
implies that the power of the test approximate to 1 as the distribution of X
moves further away from the null hypothesis.

5 Conclusions and Open Problems

A test for analyzing the similarity between the expected value of an RI and a
prefixed interval has been developed. Asymptotic and bootstrap techniques have
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been tackled and some simulations have been carried out showing the suitability
of the bootstrap approach for moderate/large sample sizes.

In the future, a theoretical and empirical comparison between the Jaccard
coefficient and other different similarity indexes could be established. In addition,
different test statistics involving the covariance matrix can be studied as well as
the influence of the distributions chosen for the simulations in order to reduce the
bias observed for small sample sizes. The power of the test may be theoretically
analyzed. Finally, it could be also interesting to extend the results provided in
this work to the case of fuzzy sets.
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Abstract. A multiple interval-valued linear regression model consid-
ering all the cross-relationships between the mids and spreads of the
intervals has been introduced recently. A least-squares estimation of the
regression parameters has been carried out by transforming a quadratic
optimization problem with inequality constraints into a linear comple-
mentary problem and using Lemke’s algorithm to solve it. Due to the
irrelevance of certain cross-relationships, an alternative estimation pro-
cess, the LASSO (Least Absolut Shrinkage and Selection Operator), is
developed. A comparative study showing the differences between the
proposed estimators is provided.

Keywords: Multiple regression, Lasso estimation, interval-valued data.

1 Introduction

Intervals represent a powerful tool to capture the imprecision of certain char-
acteristics that cannot be fully described with a real number. For example, the
measures provided by instruments which have some errors in their measure-
ments [1]. Moreover, intervals also model some features which are inherently
interval-valued. For instance, the range of variation of the blood preasure of a
patient along a day [2] or the tidal fluctuation [9].

The statistical study of regression models for interval data has been exten-
sively addressed lately in the literature [2–5,7], deriving into several alternatives
to tackle this problem. On one hand, the estimators proposed in [4, 7] account
the non-negativity constraints satisfied by the spread variables, but do not as-
sure the existence of the residuals. Hence, they can lead to ill-defined estimated
models. On the other hand, the models proposed in [2, 3, 5] are formalized ac-
cording to the natural interval arithmetic and their estimators lead to models
that are always well-defined over the sample range.

The multiple linear regression model [3] considered belongs to the latter ap-
proach and its main advantage is the flexibility derived from its way to split the

c© Springer International Publishing Switzerland 2015 185
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regressors, allowing us to account for all the cross-relationships between the cen-
ters and the radius of the interval-valued variables. Nevertheless, this fact entails
an increase in the number of regression parameters and thus, a Lasso estimation
is considered in order to shrink some of these coefficients towards zero. The Lasso
estimation of an interval-valued regression model has been previously addressed
in [4], but it is a more restrictive model formalized in the first framework, where
residuals might not exist.

The paper is organized as follows. Section 2 presents some preliminary con-
cepts about the interval framework and section 3 contains the formalization of
the model. The Least-Squares and Lasso estimations of the proposed model are
developed in subsections 3.1 and 3.2. Section 4 briefly describes the Lasso model
proposed by Giordani [4]. The empirical performance of the estimators proposed
in sections 3 and 4 is compared in section 5 by means of a ilustrative real-life
example. Section 6 finishes with some conclusions.

2 Preliminaries

Interval data are defined as elements belonging to the space Kc(R) = {[a1, a2] :
a1, a2 ∈ R, a1 ≤ a2}. Given an interval A ∈ Kc(R), it can be parametrized
in terms of its center or midpoint, midA = (supA + inf A)/2, and its radius
or spread, sprA = (supA − inf A)/2. Nonetheless, intervals can alternatively
be expressed by means of the so-called canonical decomposition [2] defined as
A = midA[1 ± 0] + sprA[0± 1], where [1± 0] = [1, 1] and [0± 1] = [−1, 1]. This
decomposition allows us to consider separately the mid and spr components of
A, which will lead into a more flexible model. The interval arithmetic on Kc(R)
consists of the Minkowski addition and the product by scalars defined as follows
by the jointly expression: A+ δB = [(midA+ δmidB) ± (sprA+ |δ| sprB)] for
any A,B ∈ Kc(R) and δ ∈ R.

The space (Kc(R),+, · ) is not linear but semilinear, as the existence of sym-
metric element with respect to the addition is not guaranteed in general. An
additional operation is introduced, the so-called Hukuhara difference between
the intervals A and B. The difference C is defined as C = A −H B ∈ Kc(R)
verifying that A = B +C. The existence of C is subject to the fulfilment of the
expression sprB ≤ sprA.

Given the intervals A,B ∈ Kc(R), the metric dτ (A,B) = ((1 − τ) ((midA −
midB)2+τ (sprA−sprB)2))

1
2 , for an arbitrary τ ∈ (0, 1), is the L2-type distance

to be considered. dτ is based on the metric dθ defined in [11].
Given a probability space (Ω,A, P ) the mapping x : Ω → Kc(R) is a random

interval iff it is a measurable Borel mapping. The moments to be considered are
the classical Aumann expected value for intervals; the variance defined follow-
ing the usual Fréchet variance [8] associated with the Aumann expectation in
the interval space (Kc(R), dτ ); and the covariance defined in terms of mids and
spreads as σx,y = (1 − τ)σmidx,midy + τσsprx,spry.
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3 The Multiple Linear Regression Model

Let y be a response random interval and let x1, x2, . . . , xk be k explanatory
random intervals. The model is formalized in a matrix notation as follows:

y = XBlB + ε , (1)

where B = (b1|b2|b3|b4)t ∈ R4k×1 with bi ∈ Rk (i ∈ {1, 2, 3, 4}), XBl =
(xM |xS|xC|xR) ∈ Kc(R)1×4k where the elements are defined as xM =
midxt [1 ± 0], xS = sprxt [0 ± 1], xC = midxt [0 ± 1] and xR = spr xt [1 ± 0],
considering the canonical decomposition of the regressors. Superscripts represent
Bl=Block matrix, M=mid, S=spread, C=center and R=radius.
xt is the vector of k explanatory random intervals, i.e., xt = (x1, x2, . . . , xk).

Thus, midxt = (midx1,midx2, . . . ,midxk) ∈ Rk (analogously spr xt) and ε is
a random interval-valued error such that E(ε|x) = Δ ∈ Kc(R).

The following separate linear relationships for the mid and spr components of
the intervals are derived from (1):

midy = midxt b1 + sprxt b4 +mid ε , (2a)

spry = spr xt |b2|+ |midxt| |b3|+ spr ε . (2b)

Thus, the flexibility of the model arises from the possibility of considering all
the information provided by midx and sprx to model midy and spry, as follows
from (2a) and (2b). This represents an improvement with respect to previous
models that merely addressed the relationship between the mids of the variables
or between the spreads but never any cross-relationship (mid-spr).

Nevertheless, the inclusion of more coefficients entails an increase in the di-
mensionality of the estimation process. Some of these coefficients could be zero
as not all the new introduced variables might contribute. Therefore it is proposed
to estimate (1) by least-squares and by Lasso and compare the advantages and
disadvantages that each estimation process provides.

3.1 The Least-Squares Estimation

Given {(yj ,xi,j) : i = 1, . . . , k, j = 1, . . . , n} a simple random sample of intervals
obtained from (y,x1, . . . ,xk) in (1) the estimated model is

ŷ = XeblB̂ + ε̂ (3)

where y = (y1, . . . , yn)
t, Xebl = (XM |XS|XC |XR) ∈ Kc(R)n×4k (the super-

script ebl comes from estimated block matrix), ε = (ε1, . . . , εn)
t is such that

E(ε|x) = 1nΔ and B as in (1). XM is the (n × k)-interval-valued matrix such
that (XM )j,i = midxi,j [1 ± 0] (analogously XS , XC and XR). Given an arbi-
trary vector of regression coefficients A ∈ R4k×1 and an interval of residuals
C ∈ Kc(R), the Least-Squares estimation looks for B̂ and Δ̂ minimizing the

distance d2τ (y,X
eblA + 1nC). Δ̂ can be obtained separately and firstly by the

expression Δ̂ = y−H XeblB̂.
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Recalling that, by definition, XS = −XS (and analogously XC = −XC) the
estimation process of the coefficients b2 and b3 accompanying these variables
can be simplified by searching only for non-negative estimates. By contrast,
coefficients b1 and b4 are not affected by any kind of restrictions so they can be
estimated directly by OLS. Moreover, it has to be assured the existence of the
residuals defined as the Hukuhara differences ε = y−H XeblB. For this purpose
the minimization problem ends up to be the following constrained quadratic
problem:

min
Am∈ R2k, As∈ Γ

(1 − τ) ‖vm − FmAm‖2 + τ ‖vs − FsAs‖2 (4)

Γ = {(a2, a3) ∈ [0,∞)k × [0,∞)k : sprX a2 + |midX | a3 ≤ spr y},

being vm = midy − midy 1n, vs = spry − spry 1n ∈ Rn, Fm = midXebl −
1n(midXebl), Fs = sprXebl − 1n(sprXebl) ∈ Rn×2k, Am = (a1|a4)t ∈ R2k×1 the
coefficients related to the midpoints and As = (a2|a3)t ∈ R2k×1 the coefficients
related to the spreads, with al ∈ Rk, l = 1, . . . , 4.

There are several numerical ways to tackle the resolution of a quadratic prob-
lem as (4). Given the shape of the objective function, the minimization process
is solved separately over Am and As. Those coefficients related with the mids
(Am) are not affected by constraints and therefore, the OLS estimator can be

used directly. Thus Âm = (F t
mFm)−1F t

mvm. However, in order to proceed with
the constrained minimization over As, Karush-Kuhn-Tucker conditions guaran-
tee the existence of local optima solution, which can be computed with standard
numerical tool. Nevertheless, in order to obtain an exact solution and a more
handy estimator of As, (4) can be equivalent expressed as a Linear Complemen-
tary Problem with the shape:

ω = M λ+ q s.t. ω, λ ≥ 0 , ωjλj = 0 , j = 1, . . . , n+ 1 , (5)

with M = (RQ−1Rt) and q = (−RQ−1 c− r) (details in [3]). Thereby, once λ

is obtained, the expression of the estimator is Âs = Q−1 (Rt λ− c).

3.2 The Lasso Estimation

Least Absolute Shrinkage and Selection Operator (LASSO) is a regressionmethod
that penalizes the sum of the absolute values of the regression coefficients esti-
mates. For this purpose it involves a regularization parameter which affects di-
rectly the estimates: the larger the value of this parameter, the more estimates
that are shrunk towards zero. However, this coefficient cannot be estimated sta-
tistically, so a cross-validation process is usually applied.

As previously, (4) can be solved separately. On one hand, the classical Lasso
method will be used to obtain the estimator of the regression coefficients related
to the mids. Thus, the problem is expressed as:

1

2
‖vm −Am Fm‖22 + λ

2k∑
j=1

|Amj |
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being λ the regularization parameter. There are different programs capable to
solve this problem (such as Matlab or R). The lasso.m Matlab function is the

one used to obtain Âm.
On the other hand, for those coefficients related with the spreads a constrained

Lasso algorithm has been developed as a modified version of the code proposed
by Mark Schmidt (2005) [10] and is available upon request. The problem is given
by:

1

2
‖vs −As Fs‖22 + λ

2k∑
j=1

|Asj | s.t RAs ≥ r.

The most usual elections of λ are the value thanminimizes the Cross-Validation
Mean Square Error (λMSE) and the value that provides a simpler or more parsi-
monious model with respect to λMSE (in terms of more zero coefficients) but at
the same time with one-standard-error (λ1SE).

4 Giordani’s Lasso Estimation

The so-called Lasso-based Interval-valued Regression (Lasso-IR) proposed by
Giordani in [4] is another Lasso method to deal with a multiple linear regression
model for interval data. However, the later regression model is not formalized
following the interval arithmetic and can end up with an ill-defined estimated
model. Keeping the same notation as in (2b), it requires the non-negativity of
b2 and b3 but does not test if the Hukuhara’s difference ε = y−H XeblB exists.
The optimization problem can be written (analogously to (4)) as:

min
Am,As

(1− τ) ‖vm − Fm Am‖2 + τ‖vs − Fs(Am +Aa)‖2 (6)

Fs(Am +Aa) ≥ 0,

p∑
j=0

|Aaj | ≤ t

The coefficients related to the spreads (As) are the ones for the mids (Am)
plus a vector of additive coefficients (Aa) showing the distance that they are
allowed to differ from Am. In this case (6) has been expressed as a constrained
quadratic problem, where there is a one-to-one correspondence between λ and t.
The value of t that minimizes the cross-validation mean square error is the one
considered. In order to solve the problem a stepwise algorithm based on [6] is
proposed.

Another important difference, which entails less flexibility in the model, is
the limitation of being able to study separately the relationships between the
mids and the relationship between the spreads of the intervals but never any
cross-relationship.

Remark 1. There is a particular case of model (1), the so-called Model M ad-
dressed in [2], which is formalized in the interval framework but has the same
lack of flexibility as (6). In this case b3 and b4 = (0, . . . , 0), so the model has the
shape:

y = b1 x
M + b2 x

S + ε. (7)
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5 A Real-Life Illustrative Example

The following example contains the information of a sample of 59 patients (from
a population of 3000) hospitalized in the Hospital Valle del Nalón in Asturias,
Spain. The variables to be considered are the ranges of fluctuation of the diastolic
blood preasure over the day (y), the pulse rate (x1) and the systolic blood
preasure (x2). The dataset can be found in [2] and [5].

In order to make possible the comparison between the estimator proposed in
section 4 and those ones introduced in subsections 3.1 and 3.2, the example will
be developed for the simpler model explained in Remark 1.

Given the displayed model in (7), y = b1x
M
1 + b2x

M
2 + b3x

S
1 + b4x

S
2 + ε, the

estimates of the regression coefficients are summarized in Table 1:

Table 1. Estimates of the regression coefficients for the three estimators: LS, Lasso
(for the two more representatives values of λ) and Lasso-IR (for a fixed value of t=0.10
prefixed by the author). The last column contains the MSE of the models mimicking
its definition in the classical framework.

b̂1 b̂2 b̂3 b̂4 MSE

LS − estimation (Sect. 3.1) 0.4497 0.0517 0.2588 0.1685 68.2072

Lasso− estimation (Sect. 3.2) 0.4202 0.0020 0.3379 0.2189 68.8477
λMSE (0.6094) ( 0.0259)

Lasso− estimation (Sect. 3.2) 0.2749 0 0.0815 0 76.9950
λ1SE (3.2521) (1.8736)

Lasso− IR (Sect.4) 0.5038 0.1261 0.4847 0.3605 71.2418

In view of the results in Table 1, those coefficients which take small values with
the LS-estimation (b̂2 and b̂4) are schrunk towards zero with the most preferable
Lasso estimation (for λ1SE). However, this entails a significant increase of the
MSE. In the case of using our Lasso-estimator for λMSE , the MSE is smaller
but it does not provide a parsimonious model, being therefore its usefulness
questionable. The estimator proposed in section 4 reaches a high value of MSE
(worse in comparison with the lasso for λMSE) and does not end up with an
easy-to-interpret model.

6 Conclusions

On one hand, a recently studied regression model for interval data, allowing to
study all the cross-relationships between the mids and spreads of the interval-
valued variables involved, is considered. This flexibility derives into an increase of
the dimensionality of the model. Therefore a Lasso estimation seems appropiate
to tackle this problem by setting some of these coefficients to zero. Nonetheless,
a comparison study gathering the double estimation process conducted (first by
Least-Squares and after by Lasso) is provided.
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On the other hand, it is considered the Lasso-based interval-valued regression
model (Lasso-IR) proposed in [4]. This model is not constrained to guarantee the
existance of the residuals so it can provide misleading estimations. Moreover, it
has a lack of flexibility as it solely tackles the relationships of type mid-mid and
spr-spr but no cross-relationships mid-spr.

A real-life example illustrating the difference between the estimators in terms
of MSE and simplicity has been conducted.
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Abstract. An ANOVA problem for interval-valued experimental data is
considered. When a random variable is observed on several populations,
the ANOVA technique focuses on testing whether the variable behaves
significantly different on those groups. The theoretical formalization of
the three-way ANOVA problem when the random element takes on in-
terval values is shown. Since no distribution assumptions for interval-
valued variables are established, a bootstrap technique for the statistical
resolution of the inferential study is developed and implemented. The
theoretical validity of the procedure is guaranteed from previous results,
and its empirical behaviour is shown with a case study.

Keywords: interval-valued data, ANOVA problem, bootstrap test.

1 Introduction

The Analysis of Variance (ANOVA) problem is a well-known statistical technique
to apply for real-valued random variables on a factorial design. When a real
random variable is observed on different populations, established by the levels of
some factors, it is often interesting to check if the variable has a similar behaviour
on all the groups, or it performs significantly different depending on either the
effect of one of the factors or the interaction between two or more factors.

Some classical statistical methods have been previously extended to deal with
more general experimental scenarios, in which the experimental outcomes are
no longer real numbers, but intervals, sets, or fuzzy values. In particular, real
compact intervals are useful to represent experimental outcomes modelling fluc-
tuations, grouped data, ranges of variation of a magnitude over a period of time
or in a cross-section, interval-valued perceptions, among other examples [2, 14].
Additionally, intervals are also an effective tool for modelling experimental set-
tings for which the outcomes can be measured only with some imprecision, which
is reflected by a real interval rather than by a point-value [1].

Interval-valued random variables are treated in some works in the context of
fuzzy- and set-valued models; see, for instance, [3, 4, 10]. Nevertheless, a number
of methods has been developed for the interval framework specifically; see [2, 5–
7, 12, 14], among others.
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P. Grzegorzewski et al. (eds.), Strengthening Links between Data Analysis & Soft Computing,
Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_23



194 A. Blanco-Fernández and T.W. Liao

It is important to remark that the approach in this work only considers the
imprecision on the experimental data, but not on the statistical methods to
manage those data, i.e. it follows the line of research of works developing classical
statistical techniques with imprecise-valued data.

The Analysis of the Variance has been extended to this experimental scenarios
[8, 9, 11–13]. In [8] a one-way ANOVA test for fuzzy data is proposed, which is
based on functional data analysis. In [9] a bootstrap testing algorithm to solve
that problem included in the R package SAFD is described. Those previous
works are extended in [13] to the factorial ANOVA for fuzzy data. Specifically
for intervals, in [12] a two-way ANOVA problem is established and a bootstrap
test is developed theoretically. The aim of this paper is to formulate the three-
way analysis of variance for interval-valued variables and to apply the technique
to a case study. The procedure examines the significance of the effect of three
different factors as well as all the possible interactions between the factors on the
values of an interval-valued response. Theoretical results on [13] will support the
validity of the method. Besides, an alternative bootstrap process is proposed,
by following some ideas from [8], which makes easier the practical application of
the technique.

The rest of the paper is organized as follows: in Section 2 some previous con-
cepts and notions in the interval framework are recalled. Section 3 is devoted to
the formalization of the three-way ANOVA for random intervals and the adapta-
tion of a bootstrap test method to solve the problem. In Section 4 the empirical
performance of the technique is investigated with the practical application in a
case study. Finally, Section 5 includes some conclusions and future directions.

2 Preliminary Concepts

The space of real compact intervals is generally denoted as Kc(R). Each element
of this space can be represented in terms of its end-points as A = [inf A, supA],
with inf A ≤ supA, or, equivalently, in terms of its centre (midpoint) and its
radious (spread) as A = [midA± sprA], being sprA ≥ 0. In the statistical treat-
ment of intervals it is usually employed the latter representation, since the non-
negativity condition for the spreads is easier to handle in computations than the
order condition between the end-points, in general. The natural arithmetic be-
tween intervals is composed on the so-called Minkowski addition and the product
by scalars, defined as follows:

A+B = {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A} , (1)

for any A,B ∈ Kc(R) and λ ∈ R. These operations can be more intuitively
expressed in terms of the (mid,spr)-representation of intervals as follows:

A+B = [(midA+midB)± (sprA+sprB)] and λA = [λmidA± |λ|sprA] . (2)

It is straightforward to see that they are inner and natural operations in the
space of intervals. Nevertheless, the arithmetic is not linear, but semilinear, due
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to the lack of symmetric element with respect to the addition, in general. Thus,
statistical techniques in this space must be always developed by guaranteeing
the coherency of the results with the semilinear structure of (Kc(R),+, ·).

In order to measure distances between intervals, a metric is defined on the
space of intervals. Among the different alternatives existing in the literature, it
is considered in this work a family of generalized L2-type metrics exhaustively
used in statistical developments for fuzzy-valued data (see [15]). For intervals it
can be expressed as follows:

dτ (A,B) =
√
(1− τ)(midA−midB)2 + τ(sprA− sprB)2 , (3)

for certain τ ∈ (0, 1). The value of τ allows us to choose the relative importance
of the squared Euclidean distance between the spreads of the intervals (difference
in imprecision) and the squared Euclidean distance for the midpoints (difference
in location).

The elements of the space Kc(R) will represent the values of a variable mod-
elling a characteristic whose possible experimental outcomes are interval-valued.
Thus, given (Ω,A, P ) a probability space, an interval-valued random variable (or
random interval for short) is a mappingX : Ω → Kc(R) beingA|Bdτ -measurable.
The execution of the data generation process provides a simple random sample
of intervals independent and equally distributed to X , {Xi}ni=1. The expected
value of X , as the usual summary measure for central tendency, is generally
defined in terms of the Aumann’s expectation for set-valued functions; see [10].
For intervals, it admits the expression E(X) = [E(midX)±E(sprX)], whenever
those classical moments exist. The sample counterpart is defined coherently with
the interval arithmetic as X = (1/n)

∑n
i=1Xi.

3 Three-Way ANOVA for Random Intervals

The ANOVA problem for an interval-valued response variable on a 3m-factorial
design, i.e. the existence of three factors with m levels each, is formulated in this
section. A bootstrap testing method is conducted to solve the problem.

3.1 Formulation of the Problem

Let X be a random interval which is observed under three factors F1, F2 and F3,
with I1, I2 and I3 levels, respectively. Let Xi1,i2,i3,k denote the kth-observation
of X under level ij of factor Fj , j = 1, 2, 3. For the sake of simplicity on the
notation and computations, let us assume a balanced design, i.e. that the number
of observations for each group of levels (i1, i2, i3) is equal to n ∈ N, and so k =
1, . . . , n in all the groups. The total number of observations is then nT = nI1I2I3.

Each interval-valued (random) element Xi1,i2,i3,k can be modelled in terms of
the interval arithmetic as follows [13]:

Xi1,i2,i3,k = M+Ai1+Bi2+Ci3+Gi1,i2+Gi1,i3+Gi2,i3+Gi1,i2,i3+εi1,i2,i3,k , (4)

for all ij = 1, . . . , Ij , j = 1, 2, 3, where all the addends are intervals, representing:
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– the overall baseline level: M . It is the component of Xi1,i2,i3,k which is not
affected by any of the factors nor the interactions between them,

– the possible effect of each factor: Ai1 , Bi2 , Ci3 , respectively,
– the possible effect of the interactions of two factors: Gi1,i2 , Gi1,i3 , Gi2,i3 ,
– the possible effect of the interactions of the three factors: Gi1,i2,i3 , and
– the error term: εi1,i2,i3,k. It is the random component of the model. No

distribution assumptions are established for the interval-valued error.

The aim is to determine the significance of the effect of the factors on X
individually as well as by means of the interaction between two or the three of
them. The following hypothesis tests are formulated to solve this problem:

– Test (1):H
(1)
0 : A1 = A2 = ... = AI1 vs.H

(1)
1 : ∃ij1 , ij2 such that Aij1

�= Aij2
.

– Test (2):H
(2)
0 : B1 = B2 = ... = BI2 vs.H

(2)
1 : ∃ij1 , ij2 such that Bij1

�= Bij2
.

– Test (3): H
(3)
0 : C1 = C2 = ... = CI1 vs. H

(3)
1 : ∃ij1 , ij2 such that Cij1

�= Cij2
.

– Test (1,2):

H
(1,2)
0 : Gij1 ,ij2

= Gi′j1 ,i
′
j2

for all ij1 , i
′
j1

= 1, . . . , I1 and ij2 , i
′
j2

= 1, . . . , I2 vs.

H
(1,2)
1 : ∃ij1 , i′j1 ∈ 1, . . . , I1 and ij2 , i

′
j2 ∈ {1, . . . , I2} s.t. Gij1 ,ij2

�= Gi′j1 ,i
′
j2
.

– Test (1,3):

H
(1,2)
0 : Gij1 ,ij3

= Gi′j1 ,i
′
j3

for all ij1 , i
′
j1 = 1, . . . , I1 and ij3 , i

′
j3 = 1, . . . , I3 vs.

H
(1,3)
1 : ∃ij1 , i′j1 ∈ 1, . . . , I1 and ij3 , i

′
j3 ∈ {1, . . . , I2} s.t. Gij1 ,ij3

�= Gi′j1 ,i
′
j3
.

– Test (2,3):

H
(2,3)
0 : Gij2 ,ij3

= Gi′j2 ,i
′
j3

for all ij2 , i
′
j3 = 1, . . . , I2 and ij3 , i

′
j3 = 1, . . . , I3 vs.

H
(2,3)
1 : ∃ij2 , i′j2 ∈ 1, . . . , I2 and ij3 , i

′
j3 ∈ {1, . . . , I3} s.t. Gij2 ,ij3

�= Gi′j2 ,i
′
j3
.

– Test (1,2,3):

H
(1,2,3)
0 : Gij1 ,ij2 ,ij3

= Gi′j1 ,i
′
j2

,i′j3
for all ij1 , i

′
j1 = 1, . . . , I1, ij2 , i

′
j2 = 1, . . . , I2

and ij3 , i
′
j3

= 1, . . . , I3 vs.

H
(1,2,3)
1 : ∃ij1 , i′j1 ∈ 1, . . . , I1, ij2 , i

′
j2
∈ {1, . . . , I2} and ij3 , i

′
j3

= 1, . . . , I3 s.t.
Gij1 ,ij2 ,ij3

�= Gi′j1 ,i
′
j2

,i′j3
.

Tests (1), (2) and (3) study the effect of each factor F1, F2 and F3 individually
on X , respectively. Tests (1,2), (1,3) and (2,3) study the effect of the interaction
between the two corresponding factors. Finally, test (1,2,3) studies the effect of
the interaction of the three factors on X .

3.2 Bootstrap Testing Method

The resolution of the preceding tests is developed by following a bootstrap ap-
proach. The process does not require the usual assumptions of classical ANOVA
techniques on the distribution of the variable. Due to the semilinear structure
of the space of intervals, the test statistics are defined in terms of distances
(through the dτ -metric) between sample means of intervals in certain groups of
levels [12, 14]. Let us define first those sample means:
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– X···· =
1

nT

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

n∑
k=1

Xi1,i2,i3,k: sample mean of all the interval obser-

vations, in all the groups.

– Xi1··· =
1

nI2I3

I2∑
i2=1

I3∑
i3=1

n∑
k=1

Xi1,i2,i3,k: sample mean of X in the level i1 of the

factor F1, for each i1 = 1, . . . , I1.

(analogously X·i2·· and X··i3·)

– Xi1,i2·· =
1

nI3

I3∑
i3=1

n∑
k=1

Xi1,i2,i3,k: sample mean of X in the levels i1 of the

factor F1 and i2 of the factor F2, for each i1 = 1, . . . , I1 and i2 = 1, . . . , I2.

(analogously Xi1·i3· and X·i2,i3·)

– Xi1,i2,i3· =
1

n

n∑
k=1

Xi1,i2,i3,k: sample mean ofX in the group of levels (i1, i2, i3)

of the factors F1, F2 and F3, respectively, for each i1 = 1, . . . , I1, i2 =
1, . . . , I2 and i3 = 1, . . . , I3.

Let us consider the test (1). The statistic to test H
(1)
0 vs. H

(1)
1 is defined as

T (1)
n = nI2I3

I1∑
i1

d2τ (Xi1···, X····) . (5)

If H
(1)
0 is true, the sample means on all the levels i1 of F1 are equal each other

and they also equal the global mean X····, so that T
(1)
n = 0. On the contrary,

under H
(1)
1 , Xi1··· are different from X···· and so T

(1)
n > 0. As a conclusion, the

null hypothesis H
(1)
0 is rejected for large values of T

(1)
n .

The limit distribution of T
(1)
n can be obtained [13]. However, that distribution

is usually unknown in practice, so a bootstrap technique is applied, which does
not require the distribution function of the statistic to be known. Following

the bootstrap scheme proposed in [8], the bootstrap algorithm to test H
(1)
0 is

designed as follows:

Bootstrap Algorithm to Test the Significance of the Factor F1 on X

1. Compute the sample means Xi1···, for i1 = 1, . . . , I1, and X····, and the value
of the test statistic

T (1)
n = nI2I3

I1∑
i1

d2τ (Xi1···, X····) . (6)

2. For each group of levels (i1, i2, i3) of factors F1, F2 and F3, respectively,
consider the sample of intervals on this group {Xi1,i2,i3,k}nk=1, and generate
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a bootstrap sample on this group {X∗
i1,i2,i3,k

}nk=1 by re-sampling randomly
and with replacement n intervals from the preceding set. Thus, the complete
bootstrap sample of X is

I1⋃
i1=1

I2⋃
i2=1

I3⋃
i3=1

{X∗
i1,i2,i3,k}

n
k=1 . (7)

3. Based on this bootstrap sample, compute the corresponding sample means
of X , X∗

i1···, for i1 = 1, . . . , I1, and X∗····. The bootstrap test statistic is then
computed as

T (1)∗
n = nI2I3

I1∑
i1

d2τ (X
∗
i1··· +X····, X∗···· +Xi1···) . (8)

4. Repeat Steps 2 and 3 a large number B of times. Approximate the p-value

of the test by the proportion of values in {T (1)∗
n,b }Bb=1 being greater than T

(1)
n .

It can be shown that the empirical distribution of the bootstrap test statistic

{T (1)∗
n,b }Bb=1 approximates the distribution of T

(1)
n under H

(1)
0 [8].

Analogous algorithms are designed to solve the remainder hypothesis tests of
the ANOVA problem. The differences in the algorithms appear in the definition
of the statistic for each test in Eq. (6) as well as in the corresponding bootstrap

statistic in Eq. (8). T
(2)
n and T

(3)
n (and bootstrap counterparts) are analogous to

T
(1)
n . To solve the test (1, 2), we define in (6) and (8), respectively:

T (1,2)
n = nI3

I1∑
i1=1

I2∑
i2=1

d2τ (Xi1,i2·· +X····, Xi1··· +X·i2··) , and

T (1,2)∗
n =nI3

I1∑
i1=1

I2∑
i2=1

d2τ

(
(X∗

i1,i2·· +X∗····+Xi1··· +X·i2··),(X
∗
i1··· +X∗

·i2·· +Xi1,i2·· +X····)
)
.

Analogously for tests (1, 3) and (2, 3). Finally, test (1, 2, 3) is solved by defining
the test statistics in (6) and (8) as

T (1,2,3)
n = n

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

d2τ

(
(Xi1,i2,i3· +Xi1··· +X·i2·· +X··i3·),

(Xi1,i2·· +Xi1·i3· +X·i2,i3· +X····)
)
, and

T (1,2,3)∗
n = n

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

d2τ

(
(X∗

i1,i2,i3· +X∗
i1··· +X∗

·i2·· +X∗
··i3·) +

(Xi1,i2·· +Xi1·i3· +X·i2,i3· +X····),
(X∗

i1,i2·· +X∗
i1·i3· +X∗

·i2,i3· +X∗····) +

(Xi1,i2,i3· +Xi1··· +X·i2·· +X··i3·)
)
.
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4 Application in a Case Study

A case study about a sequencing problem of inbound trucks in a multi-door cross
docking system is investigated. The experimental data set follow a 33-factorial
design, where the response variable X =makespan of a truck in the cross docking
terminal is interval-valued, and the factors b ∈ {1, 2, 3}, ρ ∈ {0.1, 0.2, 0.3} and
φ ∈ {0.1, 0.2, 0.3} determine the possible values of three algorithmic parameters
of an ant colony optimization metaheuristic for solving the sequencing problem.

Let us denote F1 = b, F2 = ρ and F3 = φ. Ij = 3, for all j = 1, 2, 3. The data
set fulfils n = 5 and so nT = 1351.

The aim is to test the significance of the effect of each factor on X , as well
as the significance of the effect of any of the possible interactions between the
factors. Let τ = .25 (see [15] for details). The proposed bootstrap algorithms are
run for B = 5000 bootstrap iterations. The results are shown in Table 1.

Table 1. Bootstrap p-values for the ANOVA hypothesis tests

Test p-value

(1,2,3) .3978
(1,2) .1755
(1,3) .4434
(2,3) .7222
(1) 0
(2) 0
(3) .2356

As a conclusion, none of the interactions between factors affect significantly
the response. Individually, the effect of the factor F3 = φ on X is not significant
neither. On the contrary, it is obtained that the factors F1 = b and F2 = ρ do
affect significantly the response, i.e. the makespan behaves statistically different
for the possible values of the parameters b and ρ in the sequencing problem.

5 Conclusions and Future Directions

In this work, the three-way ANOVA for interval-valued random variables is for-
malized. Hypothesis tests to check the effects of the main factors and the inter-
actions between factors are formulated, and bootstrap algorithms to solve these
tests are designed. Besides the theoretical validity of the procedure, the test algo-
rithms have been implemented, making possible the application of the ANOVA
problem in practice. Simulation studies are to be done. A multiple significance
testing of the group of hypotheses by taking into account a kind of correction
for the significance level could also be developed in future research.

The extension to the generalm-way ANOVA problem, i.e. to consider the exis-
tence of m ∈ N factors, for an interval-valued response is theoretically straight-
forward, by introducing a heavy (but unavoidable) notation for the factorial

1 The data set is available upon request to the authors.



200 A. Blanco-Fernández and T.W. Liao

model and the corresponding sample means and test statistics [13]. This heavy
formulation implies that the implementation of the general m-way ANOVA for
intervals scheme becomes hard, and it has not been developed yet.
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1 Introduction

In investigating the relationship between random elements, regression analysis
enables to seek for some complex effect of several random elements upon another.
Regression techniques have long been relevant to many fields [1]. The random
elements considered actually in many practical application in public health, med-
ical science, ecology, social or economic and financial problems sometimes involve
vagueness, so the regression problems have to face with such a mixture of fuzzi-
ness and randomness. There are two main lines concerning regression modeling
with fuzzy data in literature: namely, the so-called fuzzy or possibilistic regres-
sion proposed by Tanaka [11] and widely analyzed since then [4,5,11] and the
so-called least squares problems of linear models [1,7,9,8,14] with fuzzy random
sets [2,10,12,13]). In the former research line, the regression models are estab-
lished based on possibilistic inclusion relationship between input and output of
the systems rather than stochastic statistical settings. The last research line is
based on statistical nonparametric settings, to consider both effects of random-
ness and fuzziness to the systems in the regression modeling, and the parameters
(vector valued or fuzzy sets valued) estimation of the linear models are solved
with least squares methods under metric between sets (see [1,2,7,9,8,14] and
literature therein), and some concrete computational formulas for parameter es-
timation for simple linear regression model have been given. However, the same
problems remain to be further investigated for the case of multivariate linear
regression with fuzzy random sets.

c© Springer International Publishing Switzerland 2015 201
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In this paper, we focus on a simple two-variate linear regression model with
fuzzy random sets under concepts of functional data analysis. Based on the sup-
port function of the fuzzy random sets, we treat the fuzzy random sets as special
functional data, and estimate the linear model within the support functional
space. An example of the case of LR fuzzy random sets is given.

2 Preliminaries

2.1 Fuzzy Set on Rn

A fuzzy set ũ of Rn equivalents to its membership function ũ : Rn → [0, 1], where
the number ũ(x) represents the degree of membership that x belongs to ũ. By
F (Rn) we denote the collection of all normal, convex and compact fuzzy sets on
Rn, i.e. for ũ ∈ F (Rn), (1) There exists x0 ∈ Rn such that ũ(x0) = 1; (2) The
α−cut of ũ, ũα := {x ∈ Rn : ũ(x) ≥ α}, α ∈ (0, 1], is a convex and compact set
of Rn; (3) ũ0 := cl{x ∈ Rn : ũ(x) > 0}, the support of ũ, is compact.

Zadeh’s extension principle [4] allows us to define addition and scalar multi-
plication on F (Rn):

(ũ⊕ ṽ)(x) = sup
s+t=x

min(ũ(s), ṽ(t)), x ∈ Rn.

(a� ũ)(x) =

{
ũ(xa ), a �= 0
0, a = 0

a ∈ R.

and [9] for any a, b ∈ R, it holds

(ab)� ũ = a� (b � ũ), a� (ũ⊕ ṽ) = (a� ũ)⊕ (a� ṽ).

But it holds only for ab ≥ 0, a, b ∈ R

(a+ b)� ũ = (a� ũ)⊕ (b� ũ).

It indicates that (F (Rn),⊕,�) is not a linear space. With Minkowski’s sets
operation it holds

(ũ⊕ ṽ)α = ũα ⊕ ṽα, α ∈ (0, 1].

(a� ũ)α = a� ũα, α ∈ (0, 1].

Definition 2.1 [14,2]. For ũ, ṽ ∈ F (Rn), if there exists h̃ ∈ F (Rn) such that
ũ = ṽ ⊕ h̃, then h̃ is said to be Hukuhara difference between ũ, ṽ and denoted
by h̃ := ũ+H ṽ.

The support function of ũ ∈ F (Rn) is defined as

Sũα(x) =

{
supt∈ũα

{x · t}, α ∈ (0, 1],
0, α = 0.

x ∈ Sn−1 = {x :‖ x ‖= 1}.

where · denotes the inner product in the Euclidean space Rn. It holds that for
ũ, ṽ ∈ F (Rn) and a ∈ R,

Sũ⊕ṽ = Sũ + Sṽ.
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Sa�ũ(x) = aSũ(x), a > 0;Sa�ũ(x) = −aSũ(−x), a < 0.

thus, it holds that

S((a�ũ)⊕(b�ṽ))α(x) =

{
(aSũα + bSṽα)(x), a, b > 0
−(aSũα + bSṽα)(−x), a, b < 0.

where α ∈ [0, 1]. Thus, the map S : F (Rn) → L2(Sn−1 × [0, 1]), ũ )→ Sũα(x)
enables us to view the fuzzy set ũ as a support function equivalently, i.e. the
map S embeds F (Rn) into a cone of functional Hilbert space [7].

We will employ the distance between ũ, ṽ proposed by [4] by the L2 metric
δ2,

δ2(ũ, ṽ) :=
(
n

∫ 1

0

∫
Sn−1

(Sũα(x)− Sṽα(x))
2μ(dx)dα

)1/2

,

where μ is a normalized Lebesgue measure. This distance has been widely used in
area of fuzzy set-valued analysis, and in recent years several alternative versions
of which as new metrics between fuzzy values have been proposed in literature,
see [2,13].

2.2 Fuzzy Random Sets (Fuzzy Random Variables)

Fuzzy random sets as an extension of the concept of random sets had been
introduced by Puri and Ralescu [10], and other definitions of fuzzy random sets
were also proposed by Kwakernaak, Kruse and Meyer and Krätschmer [9] in
different setting.

Definition 3.1 [10]. Let (Ω,B, P ) be a complete probability space. The mapping
X̃ : Ω → F (Rn) is said to be a fuzzy random set (frs) if X̃ is B−A measurable,
where we assume A is a σ-algebra induced by X̃ associated with δ2.

Let X̃ be a frs, then for α ∈ [0, 1], SX̃α
is a special random element, for a

fixed x ∈ Sn−1, SX̃α
(x) is random variable: Ω → R, ω )→ SX̃α(ω)(x). A sample

x̃ from X̃ can be viewed as a fuzzy data, thus, Sx̃ is a special functional data,
an equivalence of x̃ [7].

Definition 3.2 [10]. Let X̃ be a frs. The Aumann expectation of X̃ is defined
as a fuzzy set EX̃ ∈ F (Rn) satisfying

∀α ∈ [0, 1] : (EX̃)α = E(X̃α),

Here E(X̃α) is the Aumann expectation of the random set X̃α defined by

E(X̃α) = {Eη : η(ω) ∈ X̃α(ω) P − a.e. and η ∈ L1(Ω,B, P )}.

Note that E(SX̃α
) = SE(X̃α) [13,14] if the expectation E(X̃α) exists, where

E(X̃α) is an Aumann expectation of (X̃α), α ∈ [0, 1] [10,9].
In the sequel, we assume that frs X̃ is with second order, i.e.

E(‖X̃‖) := E(δ22(X̃, {0})) < +∞,
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The Fréchet variance of X̃ w.r.t distance δ2 is given in [12] as

V ar(X̃) := E(δ22(X̃, E(X̃))) = n

∫ 1

0

∫
Sn−1

V ar(SX̃α
(x))μ(dx)dα.

and the Fréchet covariance of frs’s X̃, Ỹ is also given in [12] as

Cov(X̃, Ỹ ) := n

∫ 1

0

∫
Sn−1

Cov(SX̃α
(x), SỸα

(x))μ(dx)dα.

Note that,

Cov((a� X̃)⊕ (b � Ỹ ), c� Z̃) = acCov(X̃, Z̃) + bcCov(Ỹ , Z̃)

holds only for ac ≥ 0, bc ≥ 0, a, b, c ∈ R.
The independence of frs’s can be followed by the independence of the random

elements which is already defined by [13]. If two frs’s X̃ and Ỹ are indepen-
dent, then Cov(X̃, Ỹ ) = 0. However, if Cov(X̃, Ỹ ) �= 0, then X̃ and Ỹ will be
dependent in some sense of semi-linear or non-linear [3].

Remark 2.1. The Fréchet variance, covariance can be defined w.r.t. different
distances for frs (see [2,4,13]), and in general these distances such as d∞, δ2, D

ϕ
θ

[2,4,13] are not coincide each other except some special cases. We prefer to
employ Näther’s one since that the concerned distance δ2 is standard and simple
one used in functional analysis.

Fréchet Principle [12]. The E(X̃) is the solution of the optimization problem
inf Ỹ ∈F (Rn)E(δ22(X̃, Ỹ )).

Let X̃, Ỹ be frs’s, and let {X̃i}, {Ỹi}, i = 1, · · · ,m, be independent observa-
tions on X̃, Ỹ , respectively. Then equivalently we have r.v. SX̃α

(x), SỸα
(x) and

the functional data sets {SX̃iα
(x)}, {SỸiα

(x)}, i = 1, · · · ,m, and the estima-
tions of E(SX̃α

(x)), V ar(SX̃α
(x)) and Cov(SX̃α

(x), SỸα
(x)) are respectively as

follows,

̂E(SX̃α
(x)) =

1

m

m∑
i=1

SX̃iα
(x), ̂V ar(SX̃α

(x)) =
1

m

m∑
i=1

(SX̃iα
(x)− S

X̃α
)2,

̂Cov(SX̃α
(x), SỸα

(x)) =
1

m

m∑
i=1

(SX̃iα
(x)− S

X̃α
)(SỸiα

(x)− S
Ỹ α

).

So that ÊX̃ = n
∫ 1

0

∫
Sn−1

̂E(SX̃α
(x))μ(dx)dα, V̂ arX̃ = n

∫ 1

0

∫
Sn−1

̂V ar(SX̃α
(x))·

μ(dx)dα, ̂Cov(X̃, Ỹ ) = n
∫ 1

0

∫
Sn−1

̂Cov(SX̃α
(x), SỸα

(x))μ(dx)dα.

3 A Simple Multivariate Linear Regression Model with frs

Now we consider a new two-variate linear model with frs’s, i.e. the case where
the response frs Ỹ can be approximately linearly expressed by two explanatory
frs’s x̃1, x̃2 (compare with the considered models in [1,9,8,14]),

Ỹ = ã⊕ β1x̃1 ⊕ β2x̃2 ⊕ ε̃, (1)
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where ã is a fuzzy number to be estimated, β1, β2 are real number- valued param-
eters to be estimated, ε̃ is a uncertain disturbance frs with unknown probability
distribution, whose Aumann expectation is assumed to be E(ε̃) = 0̃, which
means that given the realization x̃01, x̃

0
2 of x̃1, x̃2

E(Ỹ |x̃01, x̃02) = ã⊕ β1x̃
0
1 ⊕ β2x̃

0
2 ⊕ 0̃. (2)

We assume that for the model there exists Hukuhara difference Ỹ +H (ã⊕β1x̃1⊕
β2x̃2) and frs ε̃ can be formally expressed as

ε̃ = Ỹ +H (ã⊕ β1x̃1 ⊕ β2x̃2). (3)

such that Ỹ = (ã⊕ β1x̃1 ⊕ β2x̃2)⊕ (Ỹ +H (ã⊕ β1x̃1 ⊕ β2x̃2))).
Assume that we have independent observation {Ỹi},{x̃1i},{x̃2i} on Ỹ , x̃1, x̃2, re-

spectively, equivalently we have three functional data sets {SỸiα
(x)}, {Sx̃1iα(x)},

{Sx̃2iα(x)}, i = 1, · · · ,m.
Theorem 3.1. The least squares problem

min
ã∈F (Rn),β1,β2�0 or β1,β2�0

1

m

m∑
i=1

δ22(Ỹi, ã⊕ β1x̃1i ⊕ β2x̃2i)

has solutions (1) when β1, β2 � 0,

β̂1 = max
{
0,

̂Cov(Ỹ , x̃1)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ , x̃2)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

β̂2 = max
{
0,

̂Cov(Ỹ , x̃2)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ , x̃1)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

ˆ̃a = Ỹ +H (β̂1x̃1 ⊕ β̂2x̃2).

(2)when β1, β2 � 0,

β̂1 = min
{
0,−

̂Cov(Ỹ ,−x̃1)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ ,−x̃2)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

β̂2 = min
{
0,−

̂Cov(Ỹ ,−x̃2)V̂ arx̃2 − ̂Cov(x̃1, x̃2)
̂Cov(Ỹ ,−x̃1)

V̂ arx̃1V̂ arx̃2 − [ ̂Cov(x̃1, x̃2)]2

}
,

ˆ̃a = Ỹ +H (β̂1(−x̃1)⊕ β̂2(−x̃2)).
Proof. (1) Based on Fréchet principle, we have 1

m

∑m
i=1 δ

2
2(Ỹi, ã⊕β1x̃1i⊕β2x̃2i) =

n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− S(ã⊕β1x̃1i⊕β2x̃2i)α(t))
2μ(dt)dα

=n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− Sãα(t)− β1Sx̃1iα(t)− β2Sx̃2iα(t))
2μ(dt)dα

� n
∫ 1

0

∫
Sn−1

1
m

∑m
i=1(SỸiα

(t)− β1Sx̃1iα(t)− β2Sx̃2iα(t)− (S
Ỹ α

(t)− β1SX̃1α
(t)−
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β2SX̃2α
(t)))2μ(dt)dα, which means ã = Ỹ+H(β1x̃1⊕β2x̃2) minimizes 1

m

∑m
i=1 δ

2
2 ·

(Ỹi, ã⊕β1x̃1i⊕β2x̃2i). Furthermore, set f(β1, β2) :=
1
m

∑m
i=1 δ

2
2(Ỹi, (Ỹ +H(β1x̃1⊕

β2x̃2)) ⊕ (β1x̃1i ⊕ β2x̃2i)) =V̂ arỸ + β2
1 V̂ arx̃1 + β2

2 V̂ arx̃2 − 2β1
̂Cov(x̃1, Ỹ ) −

2β2
̂Cov(x̃2, Ỹ )+2β1β2 ̂Cov(x̃1, x̃2), solving the equations ∂f

∂β1
= 0, ∂f

∂β2
= 0, then

we have the solutions β̂1, β̂2 of (1).
The proof of (2) is analogous to the proof of (1), but we should take β1x̃1 =

(−β1)(−x̃1), β2x̃2 = (−β2)(−x̃1). �

4 Simulation Example

Assume that the observed human’s pulse, diastolic pressure and systolic pres-
sure can be comprehensively expressed by Ỹ = (μy , ly)L, x̃1 = (μ1, l1)L, x̃2 =
(μ2, l2)L, the symmetric triangular fuzzy numbers (see.[13]), respectively, as
shown in Table 1.

Table 1. Data of human’s pulse, diastolic pressure and systolic pressure

i (μy, ly)L (μ1, l1)L (μ2, l2)L
1 (74,16) (145.5, 27.5) (85.5, 19.5)
2 (57.5, 10.5) (132.5, 28.5) (94.5, 23.5)
3 (73, 41) (158.5, 27.5) (85.5, 27.5)
4 (85.5, 24.5) (131, 26) (90, 28)
5 (75.5, 13.5) (149.5, 29.5) (76.5, 17.5)
6 (91, 28) (147.5, 46.5) (82, 34)
7 (73, 22) (141.5, 32.5 ) (89.5, 29.5)
8 (63.5, 14.5) (169, 41) (100.5, 24.5)
9 (55,12) (119.5, 25.5) (75.5, 28.5)
10 (78.5,23.5) (174.5, 26.5) (109, 21)
11 (65,13) (165.5, 46.5) (70, 23)
12 (69.5,14.5) (150, 28) (89, 16)
13 (81,20) (158, 31) (99.5, 25.5)
14 (78.5,13.5) (163, 50) (82, 30)
15 (52,14) (173, 32) (101, 32)
16 (60.5,12.5) (134, 35) (81, 28)
17 (78.5,19.5) (158.5, 32.5) (79, 19)
18 (73,14) (150,51) (88, 33)
19 (65.5,16.5) (154.5, 66.5) (65.5, 28.5)
20 (62.5,14.5) (148,35) (70, 15)

We obtain

β̂1 = 0.0236, β̂2 = 0.0865, μ̂a = 59.6572, l̂a = 14.8489.

Then the concerned linear regression equation is

ˆ̃Y = (59.6572, 14.8489)L⊕ 0.0236x̃1 ⊕ 0.0865x̃2.
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However, for the obtained estimators of the model, the Hukuhara difference
based residuals ˆ̃ε = (με, lε) may not exist for some data. The residuals computed
with the Hukuhara difference formula [13] are shown in Table 2, where some
residuals (fuzzy data) with negative spreads appeared.

Table 2. Data of the residual ˆ̃ε

i (με, lε) i (με, lε) i (με, lε)

1 (3.7707, -1.1851) 8 (-8.8413, -3.4364) 15 (-20.479, -4.3728)
2 (-13.4607, -7.0548) 9 (-14.01, -5.9166) 16 (-9.3281, -5.5976)
3 (2.2043, 23.1227) 10 (5.2934, 6.2087) 17 (8.2666, 2.2401)
4 (14.964, 6.6149) 11 (-4.6199, -4.9364) 18 (2.1886, -4.9078)
5 (5.6954, -3.5593) 12 (-1.3979, -2.3941) 19 (-3.471, -2.3844)
6 (20.7667, 9.1119) 13 (9.0048, 2.2131) 20 (-6.7069, -2.4729)
7 (2.2595, 3.8317) 14 (7.9009, -5.1247)

Thus, there are only 7 values of the Hukuhara difference based residuals for
the observations of Table 1, that is,

B = {(2.2043, 23.1227), (14.964, 6.6149), (20.7667, 9.1119),
(2.2595, 3.8317), (5.2934, 6.2087), (9.0048, 2.2131), (8.2666, 2.2401)}.

In the following we give an example of distributional simulation for the distur-
bance term ε̃. Taking B as a bootstrap population [6] and randomly resampling
times of 10000. Using SAS on the bootstrap data, we output the histograms
for center variable and spread variable respctively. The hypotheses about the
distributions for center variable and spread variable remain to be tested in our
future research.

Fig. 1. The histogram for center variable of ε̃
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Fig. 2. The histograms histogram for spread variable of ε̃
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Abstract. We present a method to cluster time series according to
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1 Introduction

Cluster analysis plays an important role in extracting information from a group
of different time series. It can be used, for instance, to find some dependence
information, which is a key tool in geosciences and hydrology in order to un-
derstand the relationships between different variables. In general, a time series
clustering procedure involves the choice of an adequate metric between the uni-
variate time series, which allows to group together series exhibiting common
trends occurring at different times or similar sub-patterns in the data, according
to the idea of similarity one has adopted (see [1]).

A widely used approach to measure similarity is to consider a Pearson-
correlation based distance metric. However, recent studies have underlined that
classical correlation measures are often inadequate to capture the real depen-
dence structure between individual risk factors, especially in a financial and
environmental context (see, for instance, [2], [3]). As such, several investigations
have been carried out during the last years from different perspectives, exploit-
ing tools from extreme-value analysis ([4], [5]) to the concept of tail copulas
(see, for instance, [6] and the references therein). In particular, many research
efforts have remarked on the usefulness of extreme value theory in assessing cli-
mate changes and detecting spatial clusters (see, for instance [7], [8]). Moreover,
recent developments in statistical hydrology have shown the great potential of
copulas for the construction of multivariate cumulative distribution functions
and for carrying out a multivariate frequency analysis ([9], [10]). Extreme value
copulas have been largely used to investigate the spatial dependencies between
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the involved variables, introducing a novel contribution to the interpretation of
meteorological and hydrological phenomena ([11], [12], [13]). From another per-
spective, methods have been recently proposed in order to cluster time series
observations according to a suitable copula-based dissimilarity measure, with
applications in the financial setting. Such an approach has been adopted, for
instance, in [14] focusing on the use of conditional Spearman’s correlation, and
in [15], [16] where the clustering procedure is based on the estimation of pairwise
tail dependence coefficients.

Management of environmental resources often requires the analysis of spatial
rainfall extremes which typically exhibit some form of dependence as a result
of the regional nature of hydrological phenomena. Reliable estimates of extreme
rainfall events are required for several hydrological purposes and their spatial
distribution is of both physical and practical interest, particularly in the case of
regional studies. Several approaches are available in the literature for the char-
acterization of spatial extremes, relying on a likelihood-based approach ([17],
[18]), a Bayesian approach ([19]) and cluster analysis for assessing the spatial
distribution of extremes ([20], [21]). In particular, the detection of spatial clus-
ters can help in summarizing available data, extracting useful information and
formulating hypothesis for further research. Clustering could be used in order to
identify homogeneous regions to be considered for regionalization procedures.

In the present contribution, we would like to use the Kendall distribution
function associated with a random vector in order to develop a novel clustering
procedure for grouping random vectors. We outline here briefly the possible
application of the proposed methodology to hydrological data by analysing time
series of maximum annual rainfall data collected at rain gauges of different sites
in the province of Bolzano-Bozen (Italy). Notice that according to the approach
in [22], homogeneity in the sense of Kendall’s distance implies homogeneity in
the sense of return period, a notion frequently used in environmental sciences
for the identification of dangerous events and risk assessment (see also [23],[24]).

2 Clustering via Kendall Distribution

We recall that a (bivariate) copula is a joint cumulative probability distribu-
tion function with uniform univariate margins on I = [0, 1]. If we consider a
random pair (X,Y ) with cumulative continuous distribution function H , then
the bivariate probability integral transform is the random variable defined by
W = H(X,Y ). It is known that W just depends on the copula C of (X,Y ) and
it is equal in distribution to C(U, V ), where U = FX(X) and V = FY (Y ), being
FX , FY the univariate marginals of X and Y , respectively. First introduced in
[25] for inference on Archimedean copulas, the Kendall distribution function (see
also [26]) is simply the distribution function of W and is given by

K(q) = P(W ≤ q),

where q ∈ [0, 1] is a probability level.
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There are two important particular cases for the Kendall distribution. When
X and Y are comonotonic, one finds K(q) = KM (q) = q for all 0 ≤ q ≤ 1, which
corresponds to C(u, v) = M(u, v) = min(u, v), where M is the the Fréchet-
Hoeffding upper bound copula. Under the hypothesis of independence between
X and Y , which is equivalent to consider C(u, v) = Π(u, v) = uv, K has the
form K(q) = KΠ(q) = q − q log(q), 0 ≤ q ≤ 1. Thus, on the graph of K based
on pseudo-random samples from a positively dependent bivariate vector (X,Y ),
perfect positive dependence would translate into data points aligned on the line
y = x, while the plot will be seen to match nearly the curve KΠ(q) as the data
become less and less dependent. Notice that, for each Kendall distribution K,
one has the lower bound K ≥ KM on I. Starting with [27] (see also [28]), order-
ing properties of Kendall distributions have been used to detect dependence in
copula models. Here we show how to use them to provide a clustering procedure
for time series.

Suppose that we have at disposal a set of time series Xt
1, . . . , X

t
n, correspond-

ing to n different measurements collected at time t ∈ {1, . . . , T }. Such time series
are assumed to be a random sample from an unknown vector X = (X1, . . . , Xn).
In order to interpret properly the following results it is also convenient to sup-
pose that the all the pairs in X are positively quadrant dependent, i.e. their
copula is grater than or equal to Π . We would like to group the components of
X according to the strength of their inter–dependence. To do this, following the
general principle applied in [14], we may proceed as follows:

1. Calculate the Kendall distribution function K(·) for each pair (Xi, Xj), and
denote it by Kij .

2. Define a kind of distance between Xi and Xj in terms of the related Kendall
distribution Kij = K and the Kendall distribution KM of comonotone ran-
dom variables by one of the following definitions:

d2(K,KM ) =

∫ 1

0

(q −K(q))2dq

d∞(K,KM ) = sup
q∈[0,1]

|q −K(q)|dq

Intuitively, two random variables have small distance if their Kendall distri-
bution is close to KM or, in other words, if they tend to be comonotone.

3. From these metrics, create a suitable dissimilarity matrix D := (δij), i, j =
1, . . . , n, for instance by using δij = d2(K

ij ,KM ). In fact, if the random
variables are comonotone, their dissimilarity is 0, while this number increases
when they are becoming less and less dependent. Hence, in this construction,
the larger the distance, the weaker the dependence.

4. Apply classical cluster techniques to the obtained dissimilarity matrix. In
particular, agglomerative hierarchical methods with nearest distance (single
linkage), furthest distance (complete linkage) and average distance (average
linkage) can be used as grouping criteria.

For what concerns the estimation procedure of the Kendall distribution func-
tion we rely on non-parametric estimation by using the empirical distribution
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function computed as in [29]. Suppose that (X11, X12), . . . , (XT1, XT2) is a ran-
dom sample from a distribution H with copula C. The empirical Kendall distri-
bution function KT is given, for all q ∈ [0, 1], by

KT (q) =
1

T

T∑
j=1

1(Wj ≤ q),

where, for each j ∈ {1, . . . , T },

Wj =
1

T + 1

T∑
t=1

1(Xt1 < Xj1, Xt2 < Xj2).

The limiting behaviour of the empirical process
√
T (KT −K) has been discussed

in [30], where the convergence in law to a centered Gaussian limit under mild
regularity conditions is proved.

3 An Empirical Case Study

In order to briefly illustrate a possible application of the proposed methodology
we present here a case study from environmental data. The data were collected by
“Ufficio Idrografico” of the province of Bolzano-Bozen and are available online.
They are related to daily rainfall measurements recorded at 18 gauge stations
spread across the province of Bolzano-Bozen in the North-Eastern Italy. This
results in a set of d = 18 time series originally formed by T = 18262 observations.
Tab. 1 reports the available information on the analysed rainfall records. From
these time series, we extracted annual maxima at each spatial location resulting
in a 50 × 18 matrix of time series observations X̃m

1 , . . . , X̃m
d , m ∈ {1, . . . , 50},

summarized by Fig. 1. The selection of annual maxima has two main goals: it
transforms data with strong seasonality into data that can be assumed to be
independent and identically distributed; it transforms data that may have a
general dependence structure into data that are positively dependent (actually,
they are coupled by an extreme-value copula). For more details, see [5]. The
latter property is quite relevant since it allows to apply the method described in
Section 2 in order to detect the presence of clusters of the analysed sites on the
basis of the componentwise maxima.

Specifically, we compute the dissimilarity matrix D := (δij), i, j = 1, . . . , d,
such that the dissimilarity between two time series is defined as the distance

δij = d2(K̂
ij ,KM ) =

∫ 1

0

(q − K̂ij(q))2dq,

where K̂ij is the empirical Kendall distribution function based on the maxima
observations (X̃m

i , X̃m
j ), m ∈ {1, . . . , 50}.

The choice of this metric reflects the final goal of the clustering procedure
in the sense that two strongly dependent time series will give an extremely low
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Table 1. Summary of the rainfall measurement stations

Code Station Longitude Latitude Height (m)

0220 S.VALENTINO ALLA MUTA 10.5277 46.7745 1520
0310 TUBRE 10.4775 46.6503 1119
2090 PLATA 11.1783 46.8225 1147
3140 FLERES 11.3477 46.9639 1246
3260 VIPITENO-CONVENTO 11.4295 46.8978 948
8320 BOLZANO 11.3127 46.4976 254
9150 SESTO 12.3477 46.7035 1310
0250 MONTE MARIA 10.5213 46.7057 1310
0480 MAZIA 10.6175 46.6943 1570
1580 VERNAGO 10.8493 46.7357 1700
2170 S.LEONARDO PASSIARIA 11.2471 46.8091 644
2670 PAVICOLO 11.1093 46.6278 1400
3450 RIDANNA 11.3068 46.9091 1350
4450 S.MADDALENA IN CASIES 12.2427 46.8353 1398
6650 FUNDRES 11.7029 46.8872 1159
8570 BRONZOLO 11.3111 46.4065 226
8730 REDAGNO 11.3968 46.3465 1562
9100 ANTERIVO 11.3678 46.2773 1209
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Fig. 1. Boxplot of annual maxima at each station from 1961 to 2010. The station codes
are as Tab. 1. On the y-axis the amount of rainfall is measured in millimeters.

value of their dissimilarity. The results of the clustering procedure are illustrated
by a tree diagram usually referred to as dendrogram, which represents the ar-
rangement of the clusters produced by hierarchical agglomerative clustering. In
Fig. 2, the dendrogram based on complete linkage is displayed. The vertical axis
represents the distance at which two clusters are joined. From the dendrogram it
is possible to identify, e.g., four different groups, by cutting at about height 0.06.
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Fig. 2. Dendrogram for the 18 rainfall measurement stations listed in Tab. 1 based on
the complete linkage method
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Fig. 3. Map of the rainfall measurement stations marked according the the 4-clusters
solution in the province of Bolzano–Bozen (North-Eastern, Italy)

The 4-clusters solution is visualized on the map in Fig. 3, where the stations are
marked according to their cluster.

For the hydrological interpretation of the results it seems that several factors
should be taken into account in order to determine correlated rainfall extremes.
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In fact, not only the geographical proximity plays a role, but also the strong
heterogeneity in morphological and climatic features.

4 Conclusions

We have presented a procedure for grouping time series according to a copula-
based dependence function among them. In particular, we considered a dis-
similarity measure that is based on the Kendall distribution associated to two
continuous random variables, since such a function provides useful information
in terms of environmental risk, as shown in [22]. The proposed approach comple-
ments similar methods provided by the authors about copula-based clustering
of time series (see, e.g., [14], [16]).
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Abstract. We present some connectedness measures for an economic
system that are derived from the spatial contagion measure. These mea-
sures are calculated directly from time series data and do not require
any parametric assumption. The given definitions are illustrated in an
empirical analysis of the behavior of European banking and insurance
sector in the recent years.
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1 Introduction

The recent financial crisis has renewed the interest in the interconnectedness
among different financial institutions located in various countries. In particular,
“systemic risk” has become a standard concept that relates to the risk imposed
by interlinkages and interdependencies in a system or market, where the failure
of a single entity or group of entities can cause potential difficulties to other
entities, which could potentially bankrupt or bring down the entire system.

As stressed by [2], studies about systemic risk can be divided into two ma-
jor groups. One approach consists of using network analysis and works directly
on the structure and the nature of relationships between financial institutions
in the market. Another approach investigates the impact of one institution on
the market and its contribution to the global system risk [1]. Hence, the latter
methodology requires the knowledge of the joint behavior of the financial insti-
tutions and is related to previous works about the so-called financial contagion
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[9]. Roughly speaking, contagion refers to a significant increase in comovements
of prices and quantities across markets, conditional on a crisis occurring in one
market or group of markets.

Recently, the notion of financial contagion has been reformulated in terms of
copulas in [7] (see also [4,6,8]). Specifically, it refers to the change of strength of
dependence in the tail and in the center of the joint distribution associated with
two financial positions. This concept has been further developed in [5], where a
spatial contagion measure has been defined in order to quantify (in a normalized
scale) the influence of one market over the others.

In this contribution, we review the notion of spatial contagion measure by
pointing some of its main features. Then, inspired by [3], we define some simple
measures of connectedness that can be used in order to investigate systemic risk
in a set of financial institutions. The second part of the contribution is devoted to
the empirical investigation of spatial contagion in a set of asset returns related to
banking and insurance sectors, which have become increasingly interconnected
especially during the last decade.

2 The Spatial Contagion Measure

The notion of spatial contagion measure has been introduced in [5]. Basically, it
focuses on the discrepancies between tail and central sets of probability distri-
bution function of two financial returns. This approach is based on the geometry
of the underlying distribution and, for this reason, it is called spatial contagion.
Formally, it is defined in the following way.

Let X and Y be two random variables on a suitable probability space rep-
resenting the returns (or log-returns) of financial markets whose dependence is
described by means of a copula C. Consider the following Borel sets of R2:

– the tail set Tα1,α2 given by

Tα1,α2 = [−∞, qX(α1)]× [−∞, qY (α2)],

where α1, α2 ∈ [0, 1] and qX and qY are the quantile functions associated
with X and Y , respectively.

– the central set (or mediocre set) Mβ1,β2 given by

Mβ1,β2 = [qX(β1), qX(1− β1)]× [qY (β2), qY (1− β2)]

where β1, β2 ∈ [0, 1/2].

Intuitively, Tα1,α2 represents the “risky scenario” for the pair (X,Y ), since it
includes the bivariate observations that are less than a given threshold; while
Mβ1,β2 represents the so-called “untroubled scenario”, since it is related to all
the observations that are in the central region of the joint distribution (being
the extreme values excluded).
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Definition 1. Let L ⊆ (0, 0.5). The (spatial) contagion measure from X to Y
is defined by the formula

γ(X → Y ) =
1

λ(L)
λ({α ∈ L | ρ(Tα,1)− ρ(Mα,0) > 0}), (1)

where λ is the Lebesgue measure, ρ(Tα,1) (respectively, ρ(Mα,0)) denotes the
Spearman’s correlation of the conditional distribution function of [(X,Y ) | (X,Y )
∈ Tα,1] (respectively, [(X,Y ) | (X,Y ) ∈Mα,0] ).

The introduced measure depends hence on the Spearman’s rank correlation
and avoids to restrict to the use of linear correlation. Moreover, the estimation of
the contagion measure can be done mainly in a non-parametric way, as illustrated
in [5].

Roughly speaking, the contagion measure counts how many times the corre-
lation in the tail of the joint distribution is larger than the correlation in the
central region for some predefined set of possible levels α ∈ L, where L is usually
chosen by the decision maker according to her/his risky attitude. Notice that
the mapping α→ Δα = ρ(Tα,1)− ρ(Mα,0) for every α ∈ L = [a, b] depends only
on the copula of (X,Y ) (since it is based on rank correlation). Moreover, it can
be positive, negative or changing in sign depending on the involved dependence.
For instance:

– If (X,Y ) has copula equal to the ordinal sum of comonotonicity and inde-
pendence copula with respect to the partition ([0, a], [a, 1]), then Δα ≥ 0 for
every α ∈ L.

– If (X,Y ) has copula equal to the ordinal sum of independence and comono-
tonicity copula with respect to the partition ([0, a], [a, 1]), then Δα ≤ 0 for
every α ∈ L.

– If (X,Y ) has Gaussian copula with correlation ρ > 0, then Δα changes sign
in (0, 0.5) (see [8] for more details).

Starting with this definition, we consider now some derived measures of con-
nectedness, inspired by the motivations presented in [3].

Let us consider historical time series from different asset returns X1, . . . , Xd

that are operating in the same sector and/or geographic region. Let J be a subset
of indices in {1, 2, . . . , d}. Let μ(Xi → Xj) be the contagion measure from asset
i to asset j. Then we can define the following measure of connectedness that
may help in the identification of contagion effects from one asset to a group of
assets or between groups of assets.

Definition 2. Let J be a subset of indices in {1, 2, . . . , d}, let i ∈ {1, . . . , d}\J .
We define contagion from Xi to {Xj: j ∈ J } as

μ(Xi → {Xj : j ∈ J }) =
1

|J |
∑
j∈J

μ(Xi → Xj).

Obviously, μ(Xi → {Xj : j ∈ J }) = 0 when μ(Xi → Xj) = 0 for each choice
of the indices j’s in J . Analogously we can define the following measure.
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Definition 3. Let I,J be disjoint subset of {1, . . . , d}. We define contagion
from {Xi: i ∈ I} over {Xj: j ∈ J } as

μ({Xi: i ∈ I} → {Xj: j ∈ J }) =
1

|I|
∑
i∈I

μ(Xi → {Xj: j ∈ J }).

Both these measures of connectedness are obtained by aggregating spatial
contagion measures at individual levels. They will be used below to provide
some insights in understanding systemic risk.

3 Empirical Analysis

We consider the daily log-returns of the European banks and insurance com-
panies characterizing the STOXX Europe 600 Index. The financial list counts
84 institutions and covers 16 countries1 and 7 currencies2. The companies are
divided into two sectors, Bank and Insurance, containing 47 and 37 assets, re-
spectively. Moreover, each sector is divided into three groups according to the
market capitalization. As result, we cluster the 84 assets by their capital size and
sector into the following groups: 25 large banks, 8 medium banks, 14 small banks,
15 large insurance companies, 8 medium insurance companies, and 14 small in-
surance companies. Following [3], the emphasis on market returns is motivated
by the desire to incorporate the most current information in our measures. On
the other hand, the clustering procedure by market capitalization is designed for
taking into account possible different trading liquidity and financial instability
within groups of large-, medium- and small-sized companies.

The dataset refers to time interval January 3rd, 2005-December 31st, 2012. In
order to compare the time-variation of the connectedness measures between the
sectors and within the sectors, we fix two four-years time windows: 2005-2008
and 2009-2012; shortly, the “before the crisis” and the “after the crisis” period,
respectively.

As mentioned in Section 2, the definitions of connectedness from one single
financial institution to a sector of institutions and from one sector to another

Table 1. Contagion measure between different financial sectors in both periods using
Definition 3. Letter B stands for the bank sector, while letter I for the insurance sector.

μ(B → B) μ(B → I) μ(I → B) μ(I → I)

2005-2008 0.43 0.37 0.40 0.32
2009-2013 0.23 0.24 0.20 0.23

1 Shortly, AT, BE, CH, CZ, DE, DK, ES, FI, FR, GB, IE, IT, NL, NO, PT, and SE.
2 British Pound, Czech Koruna, Danish Krone, Euro, Norwegian Krone, Swedish
Krona, and Swiss Franc.
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sector are based on the spatial contagion measure proposed in [5], which requires
some ad-hoc algorithm to be computed. In this work, we calculate our measures
directly on the data (without any preliminary ARMA-GARCH filter); for the
computation, we refer to the Algorithm 4.2 and the Algorithm 4.3 as described
in [5].

Firstly, for every single financial institution Xi, we calculate μ(Xi → S) in
the two considered periods, where S is formed by all institutions beloning to a
specific sector (i.e., bank or insurance). In Figure 1, each line corresponds to the
(smoothed) empirical density of the histograms related to all the measurements
of type μ(Xi → S) in a specific time period, where Xi is varying in a specific
sector, while S equals bank, insurance, or both sectors. As can be seen, regardless
of the choice of a different set S, the distribution of the spatial contagion measure
moves towards smaller values during the second period. In order to highlight
such a finding, we compute the contagion from one sector to another one in both
periods; see Table 1. We note that, in the latter period, the overall contagion risk
between financial institution sectors seems to be reduced. Nevertheless, for banks
this change is more clear, since the two sets of three density curves seem to be
unimodal; see the upper panel in Figure 1. For insurance companies, however, the
evidence is different because after crisis the density curves seems to be bimodal,
implying that for a large subset of these corporations contagion risk remains
high; see the lower panel in Figure 1.

In order to give a graphical representation of the evolving relations, we provide
a network diagram to show the linkages among different financial institutions by
plotting a line connection when the contagion measure from institution Xi to
institution Xj is larger that 0.5; see Figure 2. The charts highlight the fact that
the contagion measures within and between sectors decreased after the crisis
since the number of extreme edges in the previous period is much larger than in
later period.

As can be noticed in Figure 2, when we look at the contagion within sectors
before the crisis period, the large-sized banks are heavily connected, but they are
less affected by medium- and small-sized banks. When we focus on the insurance
sector, the situation is just the opposite. Here, large-sized insurance companies
are more easily affected by medium- and small-sized companies, especially the
small-sized ones. If we consider the contagion measure between sectors, conta-
gion effects from banks to insurance companies are less likely than those from
insurance companies to banks.

In the second period, however, all these effects seems to considerably reduce. A
flight-to-quality evidence towards different markets and investments (e.g., bond
market and cash equivalent) appears a possible explanation.
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Fig. 1. The density curve of the contagion measure from a single financial institution,
namely bank (upper chart) and insurance company (lower chart), to different sets: the
bank sector (solid), the insurance sector (dashed), and both sectors (dotted). Black and
gray colors refer to the before and after the crisis period, respectively.
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Fig. 2. Extreme (> 0.5) asymmetric contagion measures within the sectors: Panels
a and b refer to the bank sector B, while c and d the insurance sector I. Extreme
(> 0.5) asymmetric contagion measures between the sectors: Panels e and f show the
effects from bank to insurance sector, while g and f from insurance to bank sector.
First column charts concern 2005-2008, while second column charts 2009-2012. The
red, yellow, and green vertices stand for the large-, medium-, and small-sized banks,
respectively; the cyan, blue, and purple vertices stand for the large-, medium-, and
small-sized insurance companies, respectively.
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4 Conclusions

We proposed the spatial contagion measure due to [5] for analyzing the connect-
edness from a single institution to one sector, and within and between the bank
and insurance sectors, before and after the 2008 subprime crisis.

We found the contagion measures from single insurance companies to bank
sector seem to be larger (or at least equal) than those from banks to the insur-
ance sector. Moreover, while large-sized banks are more connected and affected
by each other, insurance companies are more affected by medium- and small-
sized companies. Finally, after the crisis, the contagion risk between financial
institutions seems to reduce.
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Abstract. In this paper a robust fuzzy methodology for simultaneously
clustering objects and variables is proposed. Starting from Double k-
Means, different fuzzy generalizations for categorical multivariate data
have been proposed in literature which are not appropriate for heteroge-
neous two-mode datasets, especially if outliers occur. In practice, in these
cases, the existing fuzzy procedures do not recognize them. In order to
overcome that inconvenience and to take into account a certain amount
of outlying observations a new fuzzy approach with noise clusters for the
objects and variables is introduced and discussed.

1 Introduction

Two-mode clustering consists in simultaneously clustering modes (e.g., objects,
variables) of an observed two-mode data matrix. This idea arises to face with sit-
uations in which objects are homogeneous only within subsets of variables, while
variables may be strongly associated only on subsets of objects (see Fig. 1). There
are many practical applications presenting the above situations. For example, in
DNA microarrays analysis groups of genes are generally co-regulated within sub-
sets of samples and groups of samples share a common gene expression pattern
only for some subsets of genes. In market basket analysis customers have similar
preference patterns only on subsets of products and, vice-versa, classes of prod-
ucts are more frequently consumed and preferred by subgroups of customers.
Other applications include biology, psychology, sociology and so on. By using
a standard one-mode cluster analysis, the clusters of the objects are identified
without considering that clusters of variables are present in the data. This prob-
lem can be overcome by simultaneously clustering the two modes. In this way
all the information contained in heterogeneous datasets is completely taken into
consideration. In case of heterogeneity outliers are likely to occur. These can be
indicative of measurement errors or they are generated by a different data gener-
ation processes. An outlier can be an intermediate value between two clusters or
can be far from all the remaining data. In two-mode dataset outliers can be due
to different objects and variables generation mechanisms. In this work we pro-
pose a robust fuzzy two-mode clustering procedure in order to take into account
different kinds of outliers. Starting from Double k-Means [9], we briefly recall
some fuzzy extensions to categorical multivariate datasets, and we introduce a
Fuzzy Double k-means with noise clusters. This procedure results to be robust
to outliers.

c© Springer International Publishing Switzerland 2015 225
P. Grzegorzewski et al. (eds.), Strengthening Links between Data Analysis & Soft Computing,
Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_27
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Fig. 1. Example of a 10× 4 data matrix characterized by 3× 2 homogeneous blocks

1.1 Notation

For the convenience of the reader the terminology used in this paper is listed
here:

– n and p are the number of objects and of variables to be classified, respec-
tively;

– I = {o1, · · · , oi, · · · , on} is the set of n objects to be classified;
– V = {v1, · · · , vj , · · · , vp} is the set of p variables to be classified;
– P = {P1, · · · , Pg, · · · , Pk} is the partition of I into k classes, where Pg is the
g-th class of P ;

– Q = {Q1, · · · , Qh, · · · , Qc} is the partition of V into c classes, where Qh is
the h-th class of Q;

– U = [uig] is the n×k membership function matrix, assuming values in [0, 1],
specifying for each object oi its membership to class Pg. Matrix U, in this
case, identifies a fuzzy classification of objects. When values of U are 1 or
0, i.e., uig = 1, object oi belongs to Pg, while when uig = 0, object oi does
not belong to Pg. In this last case matrix U is binary and it identifies a hard
classification of objects;

– V = [vjh] is the p× c membership function matrix, assuming values in [0, 1],
specifying for each variable vj its membership to class Qh. Matrix V, in this
case, identifies a fuzzy classification of variables. In the hard case the values
of V are 1 or 0;
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– Y = [ygh] is the k × c centroid matrix specifying the centroid of variable vj
in the class Qh.

2 Double k-Means

Two-mode heterogeneous data are obtained by different generation mechanisms.
They are characterized by different two-mode blocks that correspond to sub-
matrices. Each sub-matrix contains objects homogeneous only on a subsets of
variables and variables associated only on subsets of objects. For example, in
Fig. 1 is reported a 10× 4 matrix containing 3× 2 blocks.

The standard or hard k-means [4] produces the partition of n objects into
k clusters such that the sum of the within sum of squares of each cluster is
minimized. A generalization of this approach in the two-mode case, the double
k-means model, has been introduced in [9]. It is formally specified as follows:

X = UYV′ +E, (1)

where matrix E is the error component matrix. The first term in (1) represents
the information contained in the matrix X explained by the simultaneous classi-
fication of objects and variables. By using different constraints on the elements
of the membership matrices U and V, different classification structures can be
defined.

In the standard or hard case the optimization problem is

min
U,V,Y

JDkM =
n∑

i=1

p∑
j=1

k∑
g=1

c∑
h=1

(xij − ygh)
2
uigvjh

s.t. uig, vjh ∈ {0, 1},
k∑

g=1
uig = 1,

c∑
h=1

vjh = 1

(2)

Since the problem in (2) involves only binary variables uig and vjh and a hard
partition of objects and variables is required, double k-means can be solved using
an alternating least squares (ALS) algorithm.

3 Fuzzy Clustering for Categorical Multivariate Data

In literature there are different proposals of fuzzy two-mode clustering for the
specific case of categorical multivariate data. In a categorical multivariate dataset
n individuals are described by a set of qualitative variables with p categories.
These data are contained in tables, whose rows are the individuals and the
columns are the categories. These are called cross-classification tables, contin-
gency tables or in general co-occurrence matrices.

Since standard or fuzzy k-means type clustering algorithms (see, for example,
[1]) are based on the distances from cluster centers (prototypes) to data points,
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it is not possible to consider them in this context. It is inappropriate to calculate
those distances with respect to categorical data ([6]). Oh et al. [6] propose a gen-
eralization of fuzzy k-means [1] for categorical multivariate data. In details, the
fuzziness is represented by an entropy regularization as in [5]. The optimization
problem is defined as

min
U,V

JFCCM =
n∑

i=1

p∑
j=1

k∑
g=1

dijuigvjg

−Tu

n∑
i=1

k∑
g=1

uig lnuig − Tv

p∑
j=1

k∑
g=1

vjg ln vjg

s.t. uig, vjg ∈ [0, 1],
k∑

g=1
uig = 1,

p∑
j=1

vjg = 1,

(3)

where dij represents the co-occurrence of object i and category j. Tu and Tv

are the degrees of fuzziness of the objects partition and of the variables par-
tition, respectively. It is important to note that, for each i-th individual, the
sum of the membership degrees of this individual to all the clusters and, for
each g-th cluster, the sum of the membership degrees of all the categories to
this cluster have to be equal to 1. The last constraint is different from that in
(2). The membership degrees uig and vjg have different constraints. In this case
the optimization problem is minimized when only one variable in each cluster is
completely relevant and the remaining ones are irrelevant. Hence, this turns out
to be a ”variable selection” procedure. The problem is solved by means of an
iterative algorithm. Unfortunately, in presence of large numbers of individuals
and categories, FCCM can imply numerical instabilities. In order to overcome
that drawback, Fuzzy Codok was proposed by Kummamuru et al. [3]. It consists
in considering as fuzzifier the Gini index rather than entropy in the objective
function. As for fuzzy entropy, the Gini index is maximized when all uig and vjg
are equally distributed. The optimization problem is:

min
U,V

JFCODOK =
n∑

i=1

p∑
j=1

k∑
g=1

dijuigvjg

−Tu

n∑
i=1

k∑
g=1

u2ig − Tv

p∑
j=1

k∑
g=1

v2jg

s.t. uig, vjg ∈ [0, 1],
k∑

g=1
uig = 1,

p∑
j=1

vjg = 1,

(4)

Since Fuzzy Codok allows the membership to take negative values, an additional
step to perform clipping and renormalization is required in the optimization. Tjhi
and Chen [7] propose to overcome that drawback by introducing a single term
fuzzifier in the optimization problem. In details, the problem is formalized in the
following way
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min
U,V

JFCC−STF =
n∑

i=1

p∑
j=1

k∑
g=1

dijuigvjg

−T
n∑

i=1

k∑
g=1

p∑
j=1

((uig + vjg)− uigvjg)
2

s.t. uig, vjg ∈ [0, 1],
k∑

g=1
uig = 1,

p∑
j=1

vjg = 1,

(5)

where T is the parameter of fuzziness. It has been proved that in this way the
algorithm converges faster.

Unfortunately, the above methods are not appropriate for heterogeneous two-
mode datasets.

4 Fuzzy Double k-Means

In this section a fuzzy approach for clustering heterogeneous two-mode datasets
is proposed. The optimization problem JDkM can be defined also for the fuzzy
case when elements uig and vjh assume values in [0, 1]. In that case the double
k-means can be solved using a sequential quadratic programming algorithm (see,
for more details, [9]). Following the idea proposed by Bezdek [1], by introducing
two parameters of fuzziness, m and l, the optimization problem can be written
as

min
U,V,Y

JFDkM =
n∑

i=1

p∑
j=1

k∑
g=1

c∑
h=1

(xij − ygh)
2 umigv

l
jh

s.t. uig, vjh ∈ [0, 1],
k∑

g=1
uig = 1,

c∑
h=1

vjh = 1.

(6)

The parameters m and l represent the degrees of fuzziness of the objects and
variables partitions, respectively.

By using Lagrangian multipliers the optimization problem is solved by means
of derivatives with respect to the parameters and by means of an iterative algo-
rithm. The updates of the membership degrees and the centroids are given by

uig =
1

k∑
g′=1

⎛⎝ p∑
j=1

c∑
h=1

(xij−ygh)
2vl

jh

p∑
j=1

c∑
h=1

(xij−hg′h)
2
vl
jh

⎞⎠
1

m−1

, i = 1, · · · , n, g = 1, · · · , k, (7)

vjh =
1

c∑
h′=1

⎛⎝ n∑
i=1

k∑
g=1

(xij−ygh)
2um

ig

n∑
i=1

k∑
g=1

(xij−hgh′)
2
um
ig

⎞⎠
1

l−1

, j = 1, · · · , p, h = 1, · · · , c, (8)
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ygh =

n∑
i=1

p∑
j=1

xiju
m
igv

l
jh

n∑
i=1

p∑
j=1

umigv
l
jh

, g = 1, · · · , k, h = 1, · · · , c. (9)

It is simple to prove that, when the number of variables clusters c is exactly
equal to the number of variables p, we obtain vjh = 1, ∀j = 1, · · · , p, and the
fuzzy double k-means corresponds to the fuzzy k-means.

5 Fuzzy Double k-Means with Noise

In many practical applications we have to take into account the presence of
outliers. They are generated by a different mechanism with respect to the rest
of the data and are not expected to belong to any two-mode block. In general
outliers are significantly far from the closest block (see, for example, Fig. 2).
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Fig. 2. Example of a 12× 6 data matrix characterized by 2 Objects Outliers (4 and 9)
and 2 Variables Outliers (3 and 6)

The performance of k-means or fuzzy k-means type algorithms is affected by
outliers or noisy data. That problem is due to the constraints of the membership
degrees. Each point is required to be assigned to one of the clusters in the
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standard case and in the fuzzy case the sum of the membership degrees is equal
to 1. In this way also the outliers have to be assigned to the clusters and the
results are strongly affected by these noisy points. In order to overcome that
drawback Davé [2] introduced the concept of ”Noise Cluster”. The idea is to
obtain an additional cluster containing all the outliers. It is assumed that the
noise prototype has the same distance from all the points of the dataset. That
distance is fixed a priori. We consider k good clusters for the objects and c for
the variables. The (k + 1)-th objects cluster and the (c+ 1)-th variables cluster
are the noise ones. We fix a distance δ = (xij − y(k+1)(c+1))

2, for all i = 1, · · · , n
and j = 1, · · · , p. Splitting the objective function (6) in two parts, one related
to the good clusters and the other related to the noise clusters, we obtain

min
U,V,Y

JFDkMN =
n∑

i=1

p∑
j=1

k∑
g=1

c∑
h=1

(xij − ygh)
2
umigv

l
jh

+
n∑

i=1

p∑
j=1

δ2
(
ui(k+1)

)m (
vj(c+1)

)l
s.t. uigvjh ∈ [0, 1],

k+1∑
g=1

uig = 1,
c+1∑
h=1

vjh = 1.

(10)

Taking into account the above constraints, the optimization function becomes

min
U,V,Y

JFDkMN =
n∑

i=1

p∑
j=1

k∑
g=1

c∑
h=1

(xij − ygh)
2
umigv

l
jh

+
n∑

i=1

p∑
j=1

δ2

(
1−

k∑
g=1

uig

)m(
1−

c∑
h=1

vjh

)l (11)

The performance of this approach has been investigated by means of simula-
tion studies.

This approach can be used for different fuzzy double clustering algorithms,
also those defined for categorical multivariate datasets.

6 Concluding Remarks

In this work we propose a robust fuzzy double k-means algorithm which in-
cludes as special case the standard fuzzy k-means. By introducing the concept
of noise clusters in two-mode clustering, the results are not affected by objects
and variables outliers.
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Abstract. Sugeno integral-based confidence intervals for the theoretical
h-index of a fixed-length sequence of i.i.d. random variables are derived.
They are compared with other estimators of such a distribution char-
acteristic in a Pareto i.i.d. model. It turns out that in the first case we
obtain much wider intervals. It seems to be due to the fact that a Sugeno
integral, which may be applied on any ordinal scale, is known to ignore
too much information from cardinal-scale data being aggregated.

1 Introduction

Let X = (X1, . . . , Xn) be a sequence of i.i.d. random variables with a common
monotone strictly increasing c.d.f. F with support I = [0,∞). The theoretical
h-index, cf. [11], Hn = Hn(X) ∈ (0, n) is a solution to:

1− F (Hn) = Hn/n.

The theoretical h-index is a sample-size dependent location characteristic of
a probability distribution. For example, if X follows a Pareto/Lomax distribution
with F (x) = 1− 1/(1 + x), then Hn = (

√
4n+ 1− 1)/2.

Among estimators of Hn we find the generalized Hirsch [12] index:

ĥn(X) =

n∨
i=1

X(n−i+1) ∧ i = max
{
min{X(n), 1}, . . . ,min{X(1), n}

}
,

where X(i) denotes the ith smallest value in X. Statistic ĥn is an OWMax [3,4]
(and thus an OM3 [7]) operator corresponding to the Sugeno [14] integral of X
with respect to the counting measure, see also [10,15]. What is important, it has
already been shown (see [9] for the proof) that ĥn(X)/n is an asymptotically
unbiased estimator of Hn/n.

It is well-known that the h-index, originally defined for a sample with elements
in N0, has many fruitful applications, for example in bibliometrics [6], quality
engineering [5] and information sciences [13]. However, still little is known on
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the stochastic properties of such a measure. In [9,11] the properties of ĥn and
other Sugeno integrals in an i.i.d. setting are considered, while in e.g. [1] its
behavior in a more complex model is investigated. Moreover, in [8] a statistical
test for the difference of h-indices in two Pareto-distributed random samples
of equal lengths is derived and it turns out that such a tool has a very weak
discriminatory power.

In this contribution we are interested in constructing Sugeno integral-based
confidence intervals for the theoretical h-index, which is done in the section to
follow. In Sec. 3 we provide some numeric examples for the Pareto distribution
family. The obtained estimates are compared with different ones. It turns out
that the ĥn-based intervals are very wide, which is probably due to the fact that
a Sugeno integral is known to ignore too much information from data. Finally,
Sec. 4 concludes the paper.

2 Derivation of Sugeno Integral-Based Confidence
Intervals

Fix n. Let Θ = (0, n) be a parameter space that induces an identifiable statistical
model (I, {Prθ : θ ∈ Θ})n in which for X ∼ Prθ we have θ = Hn(X) for all θ ∈ Θ,
i.e. such that the theoretical h-index of X is equal to the value of parameter θ.

Definition 1. Let α ∈ [0, 1]. A random interval
(
θ(X), θ(X)

)
is called an (1 −

α)-confidence interval for parameter θ if:

(∀θ ∈ Θ) Pr θ
(
θ(X) ≤ θ ≤ θ(X)

)
≥ 1− α.

Of course, here we are interested in constructing the smallest confidence in-
tervals which bounds are determined solely by the observed value of ĥn. Addi-
tionally, we will assume a kind of symmetry of the intervals. The lower bound,
θ(X), will be defined via the smallest function dα : (0, n)→ (0, n) such that for
all θ ∈ (0, n) it holds

Pr θ

(
ĥn(X) ≤ dα(θ)

)
≥ 1− α/2.

Given the observed random sample realization x and h = ĥn(x), the lower bound
will be determined by calculating d−1

α (h) = sup{θ : dα(θ) ≤ h}. Thanks to such
a setting we will have Prθ(d

−1
α (ĥn(X)) ≤ θ) ≥ 1− α/2.

On the other hand, the upper bound shall be given by the greatest function
gα such that

Pr θ

(
ĥn(X) ≥ gα(θ)

)
≥ 1− α/2,

which is equivalent to Prθ

(
ĥn(X) < gα(θ)

)
≤ α/2. This will provide us with

Prθ(θ ≤ g−1
α (ĥn(X))) ≥ 1− α/2.

By [9, Lemma 2] we have:

Pr θ(ĥn(X) ≤ h) = I(Pr θ(X ≤ h);n− 1h2, 1h2+ 1),



Sugeno Integral-Based Confidence Intervals for the Theoretical h-Index 235

where I(p; a, b) denotes the incomplete beta function of p with parameters a, b.
We see that the c.d.f. of ĥn can be discontinuous even for continuous c.d.f. of X .
Therefore,

θ(x) = d−1
α (h) = sup {θ : I (Pr θ(X < h);n− 1h2, 1h2+ 1) ≥ 1− α/2} ,

and

θ(x) = g−1
α (h) = inf {θ : I (Pr θ(X ≤ h);n− 1h2, 1h2+ 1) ≤ α/2} .

Unfortunately, in most cases the confidence interval bounds can only be calcu-
lated numerically.

3 Numerical Examples

For the sake of illustration let us consider the Pareto distribution family, P(k),
with scale parameter k > 0. Such a distribution is sometimes used, cf. [11], in
modeling empirical phenomena in the application scope of the h-index.

The cumulative distribution function of X ∼ P(k) is defined by:

F (x) = 1− 1

(x+ 1)k
(x ≥ 0).

We have EX = 1/(k − 1) for k > 1 and suppX = [0,∞).
In order to guarantee that this family of distributions fits our statistical

model’s assumptions, we should introduce the following reparametrization. Let
ϑn(k) = Hn(X) for X ∼ P(k). Such a function may easily be calculated nu-
merically with very good accuracy using some nonlinear root finding algorithm.
Thus, we may consider P ′(θ) ≡ P(ϑ−1(θ)), θ ∈ (0, n).

Figures 1 and 2 depict the 95%-confidence intervals bounds for n = 10 and
25, respectively. Note that the bounds are not continuous functions of ĥn: they
have jumps in points from the set {1, . . . , n − 1}. For example, for n = 10 and
observed value of ĥn = 5, we obtain an interval (3.341, 7.779). On the other
hand, for ĥn = 5− we get (2.840, 7.021).

We should also keep in mind that even though the obtained intervals are the
smallest possible (at a confidence level of 95%), in fact the true probability of
covering a theoretical h-index may sometimes be greater that 95%. This phe-
nomenon, depicted in Figures 3 and 4, is of course consistent with the provided
definition of a confidence interval. A similar behavior is observed e.g. for the
Neyman-Clopper-Pearson (beta distribution-based, see [2]) confidence intervals
for the probability of success in a Bernoulli experiment, cf. [16].
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Fig. 1. Bounds for the Sugeno integral-based 95%-confidence intervals for the theore-
tical h-index; Pareto distribution family; n = 10
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Fig. 2. Bounds for the Sugeno integral-based 95%-confidence intervals for the theore-
tical h-index; Pareto distribution family; n = 25
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Fig. 3. Actual coverage of the true Hn by Sugeno integral-based 95%-confidence inter-
vals; Pareto distribution family; n = 10
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Comparison to other estimates. It might easily be shown that for (X1, . . . , Xn)
i.i.d. P(k) the statistic

k̂∗n(X) = (n− 1)/

n∑
i=1

log(1 +Xi)

is an unbiased and consistent estimator of k. What is more,
∑n

i=1 log(1+Xi) ∼
Γ (n, k).

We may thus try using ĥ∗n = ϑn(k̂
∗
n) as an estimator of Hn. Numerical results

indicate that ĥ∗n/n may only be asymptotically unbiased estimator of Hn/n. By
the above-mentioned fact, if (X1, . . . , Xn) i.i.d. P ′(ϑ(k)), then

Pr ϑ(k)(ĥ
∗
n(X) ≤ h) = 1−Gn,k

(
n− 1

ϑ−1(h)

)
,

where Gn,k is the c.d.f. of the gamma distribution Γ (n, k). This time, such an
estimator has a continuous distribution.

A ĥ∗n-based (1−α)-confidence interval may be derived in a manner similar (but
much simpler due to continuity) to the previously considered one. It is a random
interval (θ∗(X), θ

∗
(X)) such that θ∗(X) = d−1

α
∗
(h) and θ

∗
(X) = g−1

α
∗
(h) for

which it holds

Pr d−1
α

∗
(h)(ĥ

∗
n(X) ≤ h) = α/2,

Pr g−1
α

∗
(h)(ĥ

∗
n(X) ≤ h) = 1− α/2.

Again, these equations may be solved numerically with a nonlinear root finder.
This time we obtain a confidence interval which is exactly at a confidence level
of 1− α for each θ.

Figure 5 depicts ĥ∗n-based 95%-confidence interval bounds for n = 25. We ob-
serve that they are of smaller length than those presented in Figure 2. Moreover,
interval lengths for different sample sizes are given in Figure 6. We note that ĥ∗n
are better quality estimates than the Sugeno integral-based ones.

4 Conclusions

In this paper we derived Sugeno integral-based confidence intervals for the the-
oretical h-index, which is a location-type characteristic of a probability distri-
bution. Large widths of the Sugeno integral-based intervals for a sample from
the Pareto distribution family may possibly be due to the fact that this ag-
gregation method is known not to utilize “full information” in input data. For
example, for n = 6, ĥn(x) = 3 is obtained for x = (3, 3, 3, 0, 0, 0) as well as for
x = (∞,∞,∞, 3, 3, 3).

Taking into account the close relationship between confidence intervals and
statistical hypothesis tests, the presented results are consistent with conclusions
of [8]: the nature of Sugeno integral allows its application on any ordinal scale,
but the prize we are paying for its robustness is the lack of good performance
for cardinal scales.



240 M. Gagolewski

Acknowledgments. The author would like to thank the anonymous reviewers
for comments and suggestions.

References

1. Burrell, Q.L.: Hirsch’s h-index: A stochastic model. Journal of Informetrics 1, 16–25
(2007)

2. Clopper, C., Pearson, E.: The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika 26, 404–413 (1934)

3. Dubois, D., Prade, H.: Semantics of quotient operators in fuzzy relational
databases. Fuzzy Sets and Systems 78(1), 89–93 (1996)

4. Dubois, D., Prade, H., Testemale, C.: Weighted fuzzy pattern matching. Fuzzy Sets
and Systems 28, 313–331 (1988)

5. Franceschini, F., Maisano, D.A.: The Hirsch index in manufacturing and quality
engineering. Quality and Reliability Engineering International 25, 987–995 (2009)

6. Franceschini, F., Maisano, D.A.: Structured evaluation of the scientific output of
academic research groups by recent h-based indicators. Journal of Informetrics 5,
64–74 (2011)

7. Gagolewski, M.: On the relationship between symmetric maxitive, minitive, and
modular aggregation operators. Information Sciences 221, 170–180 (2013)

8. Gagolewski, M.: Statistical hypothesis test for the difference between hirsch indices
of two pareto-distributed random samples. In: Kruse, R., Berthold, M., Moewes,
C., Gil, M.A., Grzegorzewski, P., Hryniewicz, O., et al. (eds.) Synergies of Soft
Computing and Statistics. AISC, vol. 190, pp. 359–367. Springer, Heidelberg (2013)

9. Gągolewski, M., Grzegorzewski, P.: S-statistics and their basic properties. In:
Borgelt, C., González-Rodríguez, G., Trutschnig, W., Lubiano, M.A., Gil, M.Á.,
Grzegorzewski, P., Hryniewicz, O., et al. (eds.) Combining Soft Computing and
Statistical Methods in Data Analysis. AISC, vol. 77, pp. 281–288. Springer, Hei-
delberg (2010)

10. Gagolewski, M., Mesiar, R.: Monotone measures and universal integrals in a uni-
form framework for the scientific impact assessment problem. Information Sci-
ences 263, 166–174 (2014)

11. Glänzel, W.: On some new bibliometric applications of statistics related to the
h-index. Scientometrics 77(1), 187–196 (2008)

12. Hirsch, J.E.: An index to quantify individual’s scientific research output. Proceed-
ings of the National Academy of Sciences 102(46), 16569–16572 (2005)

13. Hovden, R.: Bibliometrics for internet media: Applying the h-index to YouTube.
Journal of the American Society for Information Science and Technology 64(11),
2326–2331 (2013)

14. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo
Institute of Technology (1974)

15. Torra, V., Narukawa, Y.: The h-index and the number of citations: Two fuzzy
integrals. IEEE Transactions on Fuzzy Systems 16(3), 795–797 (2008)

16. Zieliński, R.: Confidence intervals for proportions (Przedziały ufności dla frakcji).
Matematyka Stosowana 10, 51–68 (2009) (in Polish)



Using Changes in Distribution to Identify

Synchronized Point Processes

Christian Braune, Stephan Besecke, and Rudolf Kruse

Otto-von-Guericke-University of Magdeburg
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Abstract. In neurobiology the analysis of spike trains is of particular
interest. Spike trains can be seen as point processes generated by neu-
rons emitting signals to communicate with other neurons. According to
Hebb’s seminal work on neural encoding information is processed in the
brain in ensembles of neurons that reveal themselves by synchronized
behaviour. One of the many competing hypotheses to explain this syn-
chrony is the spike-time-synchrony hypothesis. The relative timing of
spikes emitted by different neurons should explain the processing of in-
formation. In this paper we present a novel method to decide for each
single neuron whether it is part of (at least) one assembly by analyzing
changes in the distribution of spiking patterns.

Keywords: point processes, distribution change, spike train analysis.

1 Introduction

Point processes occur in many situations such as the number of incoming phone
calls in a call-center, sensor readings or as abstraction of biological processes such
firing neurons. If a neuron is excited by collecting enough neuro-transmitters via
its dendritical connections it releases an electrical discharge which travels along
its axon and initiates the release of neuro-transmitters itself. This electrical dis-
charge can be recorded by micro-electrode arrays. If the recorded electrical po-
tential exceeds a certain threshhold, a spike can be detected and its point in
time is recorded. The list of such points is called a spike train. Spike trains may
be the result of in-vivo or in-vitro measurements of neuronal activity. Figure 1
shows two set of spike trains. While the right plot only shows random noise, the
left one includes one assembly of 20 neurons that fire together more often (not
always) than can be expected just by chance. Even the trained eye will only
recognize noise in both plots. While the process of single neurons firing is fairly
well understood and developments such as the Hudgkin-Hoxley model [8] allow
to precisely model the electrical potential emitted by a single neuron, and the in-
teractions between different regions of the brain as well, the interactions between
larger groups of single neurons is still not understood. Many different theories
have been developed so far that try to explain the cooperation of neurons, most
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Fig. 1. Two sets of parallel spike trains, right one shows only random noise, left one has
an ensemble of 20 neurons inserted by injecting coincident spike events (1ms precision)
(see also: [6,5,1]).
x-axis: Time (10s), binned with 1ms precision, y-axis: spike train id

remarkably the neuron assembly theory introduced by Hebb [7]. Within this
theory neurons are organized in so-called assemblies that exhibit themselves by
increased synchronous behaviour. Such behaviour might be a simultaneous in-
crease of their firing rate whenever a stimulus is presented or spikes that are
emitted at (roughly) the same time. Since the recording of hundreds of spike
trains in parallel is possible nowadays through the use of multielectrode arrays
(MEAs), methods for the analysis of such relatively large data sets are needed.

In this work we will investigate further into how neurons that belong to an
assembly can be efficiently distinguished from those that do not. This task can
be seen as a binary classification problem where all data points are unlabeled at
the beginning. The two classes we may assign to a point are assembly or noise
neuron, indicating that the neuron either is part of an assembly or not. Common
approaches try to focus on assigning the first label correctly and each noise
neuron that is labeled as an assembly neuron can be seen as false positives. Thus,
the common null hypothesis is: All neurons are independent of each other. For
this work we will investigate how reversing this task influences the classification
accuracy. Thus our null hypothesis is: All neurons are dependent of each other.
This leads to our goal of identifying those neurons that are not part of any
assembly.

In the following section we will review some methods that are currently used
to identify neuronal assemblies and how they differ from our proposed method.
In Section 3 we will present our approach and evaluate it in Section 4. The paper
ends with a conclusion and an outlook into some future applications in Section 5.

2 Related Work

In [4] a first algorithm for detecting neuronal assemblies has been presented.
It relies on the pairwise comparison of binned spike train data and a χ2 test
for independence for these. Two spike trains for which the null hypothesis of
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independence could be rejected are subsequently merged and the process is re-
peated until no further pair could be found. The order in which spike trains
where merged determines a graph structure in which assemblies are revealed as
cliques.

Lower-level algorithms only determine whether an assembly is present in the
given data or not [9,11,12] or they test whether a single neuron belongs to such an
assembly [1]. Higher-level algorithms are able to identify the assembly structure
(such as in [10,2,3]) even under difficulties such as selective participation (i.e.
not every neuron that belongs into an assembly takes part in a coincidence)
or temporal imprecision (spikes are not perfectly aligned across different spike
trains).

Similar to our approach are the surrogate-based algorithms (e.g. [1]) in which
certain properties of a spike train are retained while others are purposely de-
stroyed. Whenever a synchronous pattern (such as the number of coincidences
with other spike trains) occurs in the independently generated surrogate it might
be explained by pure randomness and the likelihood of a true synchronous be-
havior is reduced. By simply counting the number of times a synchronous pattern
emerges or a more extreme value of any test statistic used is observed in the sur-
rogate data and dividing by the number of surrogates generated, an empirical
p-value can be gained.

3 Method

First we will start by formalizing how we understand a spike train to help analyse
the spike trains’ population’s structure. Thus, let T = {t1, t2, . . . , tm} be an
ordered set with p0 ≤ t1 < . . . < ti < . . . < tn ≤ p1, ti ∈ R, ∀1 < i < m
and m = ‖T ‖. Such a set we call spike train and each ti ∈ T represents the time,
when a spike was recorded as being emitted from a neuron within a recording of
length p1 − p0 = p. Usually each ti is either given in seconds or milliseconds.

A set of parallel spike trains is a set of spike trains S = {T1, . . . , Tn} if for every
T ∈ S p0 and p1 are identical, i.e. the recordings of the spike trains happened
at the same time (e.g. by means of a MEA).

A binned spike train is a vector over {0, 1}k whereas k is the number of
non-intersecting, fixed-length windows that can be laid over the period p, i.e.
k = 3p/w4 for w being the window length. Usually windows are chosen to be
1ms long. The j-th compnent of a binned spike train T ∈ {0, 1}k is equal to 1
if and only if there exists a spike in the frame represented by this component.
I.e. T [j] = 1 ↔ ∃t ∈ T : j · w ≤ t < (j + 1) · w, where T [j] refers to the j-th
component of the vector T . Such binning might lead to a loss of information
since the real number of spikes might be higher than the number of components
in the vector which are one (this is the case, if more than one spike lie in the
same time bin and is referred to as clipping).
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With this, every component of a binned spike train can be seen as a simple
Bernoullli experiment. The probability for each spike train to yield a one for a
component can be estimated as p̂T = 1

k

∑k
j=1 T [j] by the number of time bins

which contain at least one spike over the total number of time bins. As such, we
can count how many bins exist in which no, only one, two, etc. spike trains were
active. If the spike trains were truly independent this distribution should follow
a binomial distribution [1]. Assemblies, which activate synchronously, yield a
higher amount of activations around their respective assembly size while reducing
the number of activations for lower numbers. A simple χ2 test could therefore
reveal the presence of an assembly fairly easily [5]. What we are interested in is
to answer the question whether each single spike belongs to an assembly or not.

With an estimate for the overall firing probability of a spike train across the
whole spike train population

p̂ =
1

n · k

n∑
i=1

k∑
j=1

Ti [j] (1)

we can give the distribution of expected numbers of spike train activations per
time bin (spike pattern) as the probability mass function of a binomial distribu-
tion with paramter p̂:

f(k;n, p̂) =

(
n
k

)
p̂k(1− p̂)n−k. (2)

Figure 2 shows how the distribution of spike patterns changes if an assembly
is present or not. Spike trains that are part of an assembly contribute more to
the dent in the empirical distribution than truly independent neurons do. As
such, replacing them by randomly generated neurons with similar characteris-
tics (i.e. the firing probability or number of spikes stays the same) should change
the distribution towards the binomial distribution estimate. On the other hand,
replacing a neuron that is not part of an assembly should at most slightly change
the distribution. Based upon this observation we can derive a test for classify-
ing each single spike train by replacing it with a spike train that is generated
independently from all other spike trains. By looking at the distribution change
induced by replacing the spike train we can reason whether or not the neuron in
question belongs into an assembly or is truly independent. Hence, a significantly
lower χ2 value would indicate that the original, replaced spike train contributed
to the difference to a truly independent distribution. Thus, we calculate the ratio
between the old χ2 value and the new χ2 value as ρi = χ2

i/χ2
all (if the ith spike

train was replaced) to make the assessment of the difference between assem-
bly and non-assembly spike trains independent of the size of a possibly existing
assembly. Values of ρi that are significantly smaller than one indicate a more
independent distribution, thus hinting at a synchronized spike train having been
replaced.

If – on the other hand – this ratio is not substantially smaller than one it
indicates the original data and the surrogate are both truly independent. Since
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Fig. 2. Left: Theoretical distribution with estimated p̂ (dotted line) and ob-
served/empirical distribution for a set of independent processes.
Right: Theoretical distribution with estimated p̂ (dotted line) and observed/empirical
distribution for a set with an assembly.

we want to find out which spike trains are independent of the rest, we can
exclude spike trains that led to a very small value of ρi. Values close to one
indicate that no significant change happened and thus the replaced spike train
might be as independent as the one it has been replaced with. The effects of
either replacement can be seen in Figure 3.

A test solely based on such a test statistic that was used to identify the
synchronized spike trains, would indeed yield a lot of false positive results. Let
us consider two independent spike trains. Any number of coincidences between
those two that is large enough will distort the ideal distribution and lead to high
χ2 values. Replacing those independent spike trains by other independent spike
trains will therefor produce small values for their respective ratios ρi. Since we
are not testing for the dependent trains but want to identify the independent
ones, we can consider these cases as false negatives. Thus, we implemented a
second identfication phase in which all processes that could not be marked as
independent with absolute certainty form a new, smaller population and the
test is repeated for these spike trains. Since usually a lot of the processes can
already be marked in the first step, the proportion of independent spike trains
is smaller and the identification becomes easier. All points that could already be
marked as ones in the first step (by exceeding a empirically derived threshold)
were excluded from the data set and only those points where the classification
result remained unclear were tested again in a second tagging step.
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Fig. 3. Left: Original distribution with changes indicated by solid lines if an indepen-
dent spike train is replaced. No distribution change is recognizable.
Right: Original distribution with changes indicated by solid lines if an assembly spike
train is replaced. a distribution change is obvious.

4 Evaluation

To show the effectiveness of our method we generated several sets of artificial
parallel spike trains. This has the advantage that we have a ground truth to
validate our results with. Spike trains were modeled as Poisson processes of 10s
length and with an average firing rate of 20Hz. Assemblies of different sizes were
injected and their spikes copied into the otherwise independently generated spike
trains with probabilities of either 1.0, 0.8 or 0.6. Spike trains which could still
not be labeled explicitly were given the label ′?′.

Figures 4,5 and 6 show the results of 1000 tests performed each for a data set
of 100 processes of which 10, 20 or 30 were synchronized. The number of false
positive classifications naturally increases with decreasing copy probabilities,
but always stays below 0.02% for results obtained from the second phase. This
comes at the cost that several spike trains that were originally independent were
tagged as synchronized since they fired more often than the average spike train
together with other processes (eventually the assembly). Thus the number of
false positives is relatively high at constantly around 6%. Also, the algorithm
may abstain classifying a point at all, which occurs with the same likelihood.
The results indicate that we can increase the certainty of a classification of a
spike train as independent but only at the cost of having more points labeled
as ?, thus decreasing type II errors.
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Fig. 4. Test results for first (left) and second tagging phase for 1000 samples of 100
spike trains each, with 10 synchronized processes injeected

Fig. 5. Test results for first (left) and second tagging phase for 1000 samples of 100
spike trains each, with 20 synchronized processes injeected

Fig. 6. Test results for first (left) and second tagging phase for 1000 samples of 100
spike trains each, with 30 synchronized processes injeected

5 Conclusion and Future Work

In this paper we showed that the identification of synchronized and independent
point processes can be achieved by a method that uses changes in the empirical
distribution of spike patterns as decision criterion. Classifications can be made for
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the whole population or for a single process only which enables us to investigate
active learning scenarios for assembly detection.

Especially in conjunction with tagging algorithms that are testing for the
dependent processes we can generate nearly certain labels for either class and
only if the methods contradict each other we omit any label and can use this in
semi-supervised learning.

Although there is spike train data available that has been obtained from real
neurons, and our algorithm could analyze those data sets the validity of any
result cannot be verified. Neural information encoding is still not well enough
understood to actually verify the results we are having and we can merely present
the tools needed to perform the analysis.
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Abstract. The aim of this paper is to provide a correct definition of
lift measure for fuzzy association rules, to study some of it’s interesting
mathematical properties, and to provide an algorithm for fast computa-
tion of fuzzy lift during the process of fuzzy association rules mining.
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1 Introduction

Searching for association rules is a broadly discussed, developed and accepted
data mining technique [9,2]. An association rule is an expression X → Y , where
antecedentX and consequent Y are conditions – the former usually in the form of
elementary conjunction. Such rules are usually interpreted as implication state-
ment “if X is satisfied, then Y is true very often, too”. Two traditional measures
of intensity of an association rule are often used, support and confidence. An
objective is to find rules with support and confidence above some user-defined
thresholds.

Searching for association rules fits particularly well on binary or categorical
data and many has been written on that topic [9,2,3,18]. For association analysis
on numeric data, a prior discretization is proposed e.g. by Srikant et al. [17].
Another alternative is to take advantage of the fuzzy sets theory.

The use of fuzzy sets in connection with association rules has been motivated
by many authors (see [11] for recent overview). Fuzzy association rules are ap-
pealing also because of the use of vague linguistic terms such as “small”, “very
big” etc. [7,14]. Fuzzy rule mining algorithms are usually based on well-known
algorithms developed for binary data such as Apriori [2,16] or FP-tree [10].

In this paper, we focus on lift, a measure of intensity of a relationship among
conditions of a rule. Lift was initially developed for non-fuzzy (i.e. “crisp”) as-
sociation rules and it is probably firstly described in [4] under its original name
“interest”. Lift has been well studied for association rules on binary data [4,13,8]
Moreover, a nice overview of many other crisp rule measures provides [12].

As quite many was written about lift for crisp association rules, not so much
has been done on lift for fuzzy rules. Some authors believe the generalization of
lift for fuzzy rules is as trivial as substituting crisp terms with analogous fuzzy
terminology inside of a crisp lift definition – see e.g. [5,15]. Unfortunately, as
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P. Grzegorzewski et al. (eds.), Strengthening Links between Data Analysis & Soft Computing,
Advances in Intelligent Systems and Computing 315, DOI: 10.1007/978-3-319-10765-3_30



250 M. Burda

discussed in this paper, such over-simplication may lead to erroneous outputs.
In order to preserve some nice mathematical properties of lift, one must take
care to define fuzzy lift appropriately.

In Section 2, a brief theoretical background for both binary and fuzzy asso-
ciation rules is provided. Section 3 gives a correct definition of fuzzy lift and
discusses some of its interesting mathematical properties. The difference of lift
w.r.t. underlying t-norm is also highlighted there. Section 4 introduces a fast
algorithm for computation of fuzzy lift together with it’s time and space com-
plexity analysis. Finally, the last section summarizes the achieved goals and
draws possible directions of future research.

2 Theoretical Background

2.1 Binary Association Rules

Let O := {o1, o2, . . . , on}, n > 0, be a finite set of objects and A := {a1, a2, . . . ,
am}, m > 0 be a finite set of attributes (features). Each attribute can be con-
sidered as a logical predicate: ai(oj) is true (i.e. ai(oj) = 1), resp. false (i.e.
ai(oj) = 0), if the i-th attribute applies, resp. does not apply, to object oj . For a
subset X ⊆ A of attributes, let us define a new predicate of a logical conjunction
of the attributes contained in X :

X(oj) :≡ ∀ai ∈ X : ai(oj). (1)

An association rule is a formula X ⇀ Y , where X ⊂ A is an antecedent,
Y ⊂ A is a consequent and X ∩ Y = ∅. Both X and Y are also called itemsets.
Please consider the following rule as an example: {tequila, salt} → {lemon}.

There are defined many quality measures for the association rules [12]. Among
them, the most common are support and confidence [2,1]:

supp(X) :=

∣∣{o ∈ O | X(o)}
∣∣

n
, (2)

supp(X ⇀ Y ) := supp(X ∪ Y ), (3)

conf(X ⇀ Y ) :=
supp(X ⇀ Y )

supp(X)
, (4)

where n = |O|.
If O is a random sample, then choosing o into O is a random event. Then

a random event X (resp. Y) may be defined on the basis of the truth value
of the predicate X(o) (resp Y (o)). Then support supp(X) (resp. supp(Y )) is
an estimate of a probability P(X) (resp. P(Y)). (Please note that supp(X ∪ Y )
equals to the probability of events X and Y occuring together, i.e. P(X ∧ Y).)
Confidence conf(X ⇀ Y ) is then an estimate of conditional probability P(Y|X).

Lift (originally called interest in [4]) is defined as:

lift(X ⇀ Y ) :=
conf(X ⇀ Y )

supp(Y )
. (5)
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If X and Y are stochastically independent, P(Y|X) = P(Y). Hence lift is a ratio
of observed confidence to the confidence that is expected under the assumption
of independence.

Another view angle on lift is provided by the fact that

lift(X ⇀ Y ) = lift(Y ⇀ X) =
supp(X ⇀ Y )

supp(X) · supp(Y )
.

If X and Y are stochastically independent, P(X ∧ Y) = P(X) · P(Y). Lift

is therefore a ratio P(X∧Y)
P(X)·P(Y) of the observed probability and the probability

expected under the assumption of independence of X and Y, or, in other words,
lift is a ratio of observed and expected support.

Generally, everyone is interested in association rules with non-zero support.
For that rules, lift is always greater than 0. If X and Y are independent, lift(X ⇀
Y ) equals 1. Values greater than 1 indicate positive dependency, values lower
than 1 indicate negative dependency.

2.2 Fuzzy Association Rules

For fuzzy association rules, domain of each fuzzy attribute a ∈ A is not binary
(or “crisp”) {0, 1}, but graded (or “fuzzy”), i.e. interval [0, 1]. That is, for each
a ∈ A and o ∈ O, a(o) ∈ [0, 1]. For a subset X ⊆ A of fuzzy attributes, we define
a new predicate of a logical conjunction (similarly to binary case (1)) by using
a t-norm ⊗:

X(oj) :=
⊗
a∈X

a(oj). (6)

T-norm ⊗ is a generalized logical conjunction, i.e. a function [0, 1]× [0, 1]→
[0, 1] which is associative, commutative, monotone increasing (in both places)
and which satisfies the boundary conditions α ⊗ 0 = 0 and α ⊗ 1 = α for each
α ∈ [0, 1]. Some well-known examples of t-norms are:

– product t-norm: ⊗prod(α, β) = αβ;

– minimum t-norm: ⊗min(α, β) = min(α, β);

– �Lukasiewicz t-norm: ⊗�Luk(α, β) = max(0, α+ β − 1).

Let a ∈ A, o ∈ O, n = |O|, n > 0, and X,Y ⊂ A, X �= ∅, Y �= ∅, X ∩ Y = ∅.
Several quality measures may be defined as follows:

fsupp(X) :=

∑
o∈OX(o)

n
, (7)

fsupp(X ⇀ Y ) := fsupp(X ∪ Y ), (8)

fconf(X ⇀ Y ) :=
fsupp(X ⇀ Y )

fsupp(X)
. (9)
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3 Lift on Fuzzy Association Rules

A naive approach for introducing lift to the fuzzy association rules framework
is to use simply the definition of lift (5) for binary rules and replace binary
support (2, 3) and confidence (4) with their fuzzy alternatives (7, 8, 9) as e.g. in
[5,15]. Unfortunately, that approach works only if product t-norm is in use (see
section 3.1). If using minimum or �Lukasiewicz t-norms, this may lead to errors
(see sections 3.2 and 3.3).

In this section, a proper definition of lift for fuzzy association rules is pre-
sented. Later, some features of that definition are studied.

As noted in Section 2.1, lift can be understood as a ratio of the observed
support fsupp(X ⇀ Y ) to the expected support E [fsupp(X ⇀ Y )]. The observed
support is simply (8), but, given sets X and Y of fuzzy attributes, what support
is expected if X and Y are independent? Moreover, what does independency of
fuzzy attributes mean?

For the sake of simplicity, let us assume X and Y be sets containing a single
fuzzy attribute, |X | = |Y | = 1. For more complex cases, a new attribute can be
created from the set of fuzzy attributes by using (6).

If objects o ∈ O are selected randomly, one can treat the membership values,
X(o) and Y (o), as random variables X and Y, and treat the independence of
fuzzy attributes as stochastic independence of random variables X and Y. Two
random variables X,Y are stochastically independent, if the combined random
variable

(
X,Y

)
has a joint probability density

fX,Y(x, y) = fX(x)fY(y). (10)

If X and Y are two independent random variables from interval [0, 1] then

σ(x, y) :=
x⊗ y

n
(11)

is a random variable with probability density function fσ(x, y) = fX,Y(x, y).
Generally, expected value E [Z] of a random variable Z is a weighted aver-

age of all possible values. More formally, E [Z] =
∫∞
−∞ zfZ(z)dz, where fZ is a

probability density function of random variable Z.
Similarly, an expected value E [σ(x, y)] is a weighted average of all possible

(x, y) pairs, namely

E [σ(x, y)] =

∫ 1

0

∫ 1

0

σ(x, y)fσ(x, y) dxdy. (12)

In reality, fσ(x, y) is unknown, but we can estimate its values from data
(i.e. from objects O and their fuzzy attributes A) by using the assumption of
independence (10):

fσ(x, y) = fX(x)fY(y) ≈
countX(x)

n
· countY (y)

n
, (13)
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where countA(a) is the number of objects from O that belong to A with degree
a, i.e. countA(a) =

∣∣{o ∈ O|A(o) = a}
∣∣.

Assuming x ∈ {X(o)|o ∈ O} and y ∈ {Y (o)|o ∈ O}, we obtain

E [σ(x, y)] ≈
n∑

i=1

n∑
j=1

X(oi)⊗ Y (oj)

n3

by inserting (11), (13) into (12). Since X and Y are independent,
E [fsupp(X ⇀ Y )] = n · E [σ(x, y)] and hence

E [fsupp(X ⇀ Y )] ≈
n∑

i=1

n∑
j=1

X(oi)⊗ Y (oj)

n2
. (14)

Definition 1. Let ⊗ be a t-norm, X,Y be sets of fuzzy attributes such that
fsupp(X) > 0 and n > 0. Then the expected fuzzy support fsûpp(X ⇀ Y ) and
the expected fuzzy confidence fĉonf(X ⇀ Y ) are defined as follows:

fsûpp(X ⇀ Y ) :=
n∑

i=1

n∑
j=1

X(oi)⊗ Y (oj)

n2
,

fĉonf(X ⇀ Y ) :=
fsûpp(X ⇀ Y )

fsupp(X)
.

Theorem 1. Let X,Y be sets of fuzzy attributes. Then:

1. if fsupp(X ⇀ Y ) > 0 then fsûpp(X ⇀ Y ) > 0,
2. fsûpp(X ⇀ Y ) ≤ min(fsupp(X), fsupp(Y )).

Proof. 1) If fsupp(X ⇀ Y ) > 0 then
∑n

i=1X(oi) ⊗ Y (oi) > 0 and hence also∑n
i=1

∑n
j=1X(oi)⊗ Y (oj) > 0. Therefore fsûpp(X ⇀ Y ) > 0.

2) For any t-norm ⊗, X(oi)⊗ Y (oj) ≤ Y (oj). Therefore:

n∑
i=1

n∑
j=1

X(oi)⊗ Y (oj)

n2
≤

n∑
i=1

n∑
j=1

Y (oj)

n2
= fsupp(Y ),

and similarly for fsupp(X). Hence fsûpp(X ⇀ Y ) ≤ min(fsupp(X), fsupp(Y )).

Definition 2. Let X,Y be sets of fuzzy attributes such that fsupp(X ⇀ Y ) > 0
and n > 0. Then fuzzy lift of rule X ⇀ Y is defined as follows:

flift(X ⇀ Y ) :=
fsupp(X ⇀ Y )

fsûpp(X ⇀ Y )
.

We assume ⊗ be an arbitrary (but fixed) t-norm. Where it is important to
explicitly denote the concrete used t-norm ⊗, we put ⊗ in subscript and write
e.g. flift⊗(X ⇀ Y ) instead of flift(X ⇀ Y ).

In accordance with the discussion above, if the (sets of) fuzzy attributesX and
Y are independent, the value of flift(X ⇀ Y ) is close to 1. For flift(X ⇀ Y ) > 1
(resp. < 1), there is higher (resp. lower) occurence of X∪Y than expected, there-
fore flift(X ⇀ Y ) > 1 (resp. < 1) indicates positive (resp. negative) dependency
among X and Y .
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Definition 3. We call sets of fuzzy attributes X and Y to be:

1. positively dependent if flift(X ⇀ Y ) > 1;

2. negatively dependent if flift(X ⇀ Y ) < 1.

The order of X and Y in the previous definition is not important, because,
as can be seen in the subsequent theorem, flift(X ⇀ Y ) = flift(Y ⇀ X).

Theorem 2. Let X,Y be sets of fuzzy attributes. Then:

1. flift(X ⇀ Y ) = flift(Y ⇀ X),

2. flift(X ⇀ Y ) = fconf(X⇀Y )
fĉonf(X⇀Y ) ,

3. 0 ≤ flift⊗(X ⇀ Y ) ≤ n,

4. if fsupp(X ⇀ Y ) > 0 then flift(X ⇀ Y ) > 0.

Proof. 1) and 2) directly follow from the definitions and from the fact that t-
norms are commutative.

3) Since the membership degrees are defined on interval [0, 1], their sums
cannot be negative either. Hence flift(X ⇀ Y ) ≥ 0. Next, assume to the contrary
that flift(X ⇀ Y ) > n. Then

∑n
i=1X(oi)⊗ Y (oi) >

∑n
i=1

∑n
j=1X(oi)⊗ Y (oj),

which is a contradiction.
4) If fsupp(X ⇀ Y ) > 0 then from Theorem 1 we know that also fsûpp(X ⇀

Y ) > 0. Therefore flift(X ⇀ Y ) exists and is greater than 0.

Theorem 2 shows fuzzy lift’s properties that are analogous to those of crisp
lift that were discussed in section 2.1.

3.1 Fuzzy Lift with Product T-norm

In this sub-section, properties of fuzzy lift are studied for the special case of
⊗ := ⊗prod, i.e. for the product t-norm being used.

Theorem 3. Let X,Y be sets of fuzzy attributes such that fsupp(X ⇀ Y ) > 0
and n > 0. Then:

flift⊗prod
(X ⇀ Y ) =

fsupp(X ⇀ Y )

fsupp(X) · fsupp(Y )
.

Proof. If fsupp(X ⇀ Y ) > 0, then evidently fsupp(X) > 0 and fsupp(Y ) > 0.

Assume ⊗ := ⊗prod, then: fsûpp(X ⇀ Y ) =
∑n

i=1 X(oi)
∑n

i=1 Y (oi)

n2 = fsupp(X) ·
fsupp(Y ).

Note that Theorem 3 holds for product t-norm only. For other t-norms such
as minimum or �Lukasiewicz t-norm, the Definition 2 of fuzzy lift must not be
over-simplified that way.
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3.2 Fuzzy Lift with Minimum T-norm

If minimum t-norm is used (i.e. ⊗ := ⊗min), the following theorem holds.

Theorem 4. Let X,Y be sets of fuzzy attributes such that fsupp(X ⇀ Y ) > 0
and n > 0. Then:

fsupp(X ⇀ Y )

min(sX , sY )
≤ flift⊗min(X ⇀ Y ) ≤ fsupp(X ⇀ Y )

sX · sY
,

where sX = fsupp(X) and sY = fsupp(Y ).

Proof. The first inequality directly follows from theorem 1. The second inequality

follows from ⊗min(x, y) ≥ x · y: fsûpp(X ⇀ Y ) =
∑n

i=1

∑n
j=1

X(oi)⊗minY (oj)
n2 ≥∑n

i=1

∑n
j=1

X(oi)·Y (oj)
n2 = sX ·sY . Note also, if fsupp(X ⇀ Y ) > 0, then evidently

fsupp(X) > 0 and fsupp(Y ) > 0.

3.3 Fuzzy Lift with �Lukasiewicz T-norm

Finally, fuzzy lift’s properties are studied if defined with the �Lukasiewicz ⊗�Luk

t-norm.

Lemma 1. Let X,Y be sets of fuzzy attributes, n > 0. Then:

max
i∈{1,...,n}

(X(oi)) + max
i∈{1,...,n}

(Y (oi)) ≤ 1 iff
n∑

i=1

n∑
j=1

X(oi)⊗�Luk Y (oj) = 0.

Proof. Let max∀i(X(oi)) + max∀i(Y (oi)) ≤ 1, then ∀i, j ∈ {1, 2, . . . , n},
X(oi)⊗�Luk Y (oj) = 0 and hence

∑n
i=1

∑n
j=1X(oi)⊗�Luk Y (oj) = 0.

Let now
∑n

i=1

∑n
j=1X(oi)⊗�LukY (oj) = 0 and let us take such i, j that X(oi)

is maximum among X and Y (oj) is maximum among Y . Then also X(oi)⊗�Luk

Y (oj) = 0, hence max∀i(X(oi)) + max∀i(Y (oi)) ≤ 1.

Theorem 5. Let X,Y be sets of fuzzy attributes with fsupp(X) = sX and
fsupp(Y ) = sY and let fsupp(X ⇀ Y ) > 0, n > 0. Then:

fsupp(X ⇀ Y )

sX · sY
≤ flift⊗�Luk

(X ⇀ Y ) ≤ fsupp(X ⇀ Y )

sX ⊗�Luk sY
.

Proof. The first inequality follows from ⊗�Luk(x, y) ≤ x ·y, because then we have

fsûpp(X ⇀ Y ) =
∑n

i=1

∑n
j=1

X(oi)⊗�LukY (oj)
n2 ≤

∑n
i=1

∑n
j=1

X(oi)·Y (oj)
n2 = sX ·sY .

To prove the second inequality, it suffices to prove

fsûpp(X ⇀ Y ) ≥ max(0, sX + sY − 1), (15)

which is obvious for sX+sY ≤ 1. Let us therefore assume sX+sY > 1, then (15)

can be rewritten as:
∑n

i=1

∑n
j=1

X(oi)⊗�LukY (oj)
n2 ≥ sX + sY − 1. The double sum∑n

i=1

∑n
j=1X(oi) ⊗�Luk Y (oj) equals

∑n
i=1

∑n
j=1

(
X(oi) + Y (oj)

)
−
∑

∀k(tk) −
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Table 1. Examples of How Dependency Orientation Can Change If Using Different
T-norms

X Y flift⊗(X ⇀ Y ) dependency of X and Y

o1 o2 o3 o1 o2 o3 ⊗min ⊗prod ⊗�Luk ⊗min ⊗prod ⊗�Luk

0.99 0.04 0.22 0.25 0.27 0.01 0.84 1.18 – neg. pos. –
0.17 0.04 0.00 0.26 0.08 0.93 1.17 0.56 – pos. neg. –
0.11 0.36 0.44 0.61 0.92 0.05 – 0.88 1.18 – neg. pos.
0.12 0.25 0.19 0.12 0.52 0.83 – 1.10 0.55 – pos. neg.
0.78 0.03 0.97 0.02 0.25 0.31 0.86 – 1.33 neg. – pos.
0.17 0.09 0.54 0.96 0.25 0.54 1.13 – 0.81 pos. – neg.

|r|, where t is a sequence of numbers
(
X(oi) + Y (oj)|X(oi) + Y (oj) < 1

)
and

r = {(i, j)|X(oi) + Y (oj) >= 1}, for i, j ∈ {1, 2, . . . , n}. Since |t| + |r| = n2

and each tk < 1, we can immediately see that
∑n

i=1

∑n
j=1X(oi) ⊗�Luk Y (oj) ≥∑n

i=1

∑n
j=1

(
X(oi) + Y (oj)

)
−n2 = n2sX +n2sY −n2 = n2(sX + sY − 1), hence

(15) holds.

3.4 Comparison of T-norms w.r.t. Fuzzy Lift

Observation: Fuzzy lift does not preserve order, if switching t-norms. Even worse,
positive dependency may be changed to negative (and vice versa), only by se-
lecting a different t-norm. (Positive/negative dependency is understood as in
definition 3).

Please consider Table 1: each row is an example of the X and Y attributes’
membership degrees for objects o1, o2, o3. Columns 7–9 are fuzzy lifts computed
for the minimum ⊗min, product ⊗prod or �Lukasiewicz ⊗�Luk t-norm being used,
respectively. Unimportant values are omitted with “–”.

As you can see, there can be found such fuzzy sets, for whose the used t-norm
derermines whether the resulting fuzzy lift shows positive or negative depen-
dency. For instance, data from the first row result in flift⊗min(X ⇀ Y ) indi-
cating negative dependency (< 1), whereas flift⊗prod

(X ⇀ Y ) evaluated on the
same data indicates positive dependency (> 1). Second row shows the opposite
situation, and so on.

4 Fast Computation of Fuzzy Lift

Besides combinatorial explosion caused by rule generation, a time-effectivity
bottleneck of association rules mining algorithms (both crisp and fuzzy) is com-
putation of rule support [6], because a relatively slow scan of a source dataset
has to be performed for each itemset [2], [1]. Once computed, support is used
in search tree pruning conditions and for computations of other measures such
as crisp (4) and fuzzy confidence (9). Also crisp lift (5) and fuzzy lift with the
product t-norm (see Theorem 3) can be computed directly from support. Unfor-
tunately, it seems not to be the case for fuzzy lift with minimum or �Lukasiewicz
t-norms.
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Algorithm 1. Fast computation of fuzzy lift with minimum or �Lukasiewicz
t-norms.

Variables that are assumed to exist:

n – number of rows in dataset (n := |O|);
sa – fuzzy support of a (based on ⊗min for fliftmin, resp. ⊗�Luk for flift�Luk); we

assume sa > 0 for each a ∈ A;
ta[i] – membership degrees a(o) (for o ∈ O) sorted in ascending order (for i ∈

{1, 2, . . . , n} and ta[0] := 0); only needed for any a ∈ A that may appear in
consequent;

ca – array of cummulative sums of ta, i.e. ca[0] := ta[0], ca[i] := ta[i] + ca[i − 1] (for
i ∈ {1, 2, . . . , n}).

1: function fliftmin(x, y)
2: r ← 0
3: for i ∈ {1, 2, . . . , n} do
4: li ← index of x[i] in ty (or of largest smaller value) found with binary search

5: r ← r + x[i] · (n− li) + cy[li]
6: end for
7: return n2sxy/r
8: end function

9: function flift�Luk(x, y)
10: r ← 0
11: for i ∈ {1, 2, . . . , n} do
12: li ← index of (1− x[i]) in ty (or of largest smaller value) found with binary

search
13: r ← r + x[i] · (n− li) + cy[n]− cy [li]− n+ li
14: end for
15: return n2sxy/r
16: end function

A naive approach for computation of fuzzy lift with ⊗min or ⊗�Luk, for single
rule X ⇀ Y , uses Definition 2 and therefore leads to the O(n2) time complexity
algorithm, because of the nested sums in the definition of expected fuzzy support
fsûpp(A ⇀ B). Here n is the number of rows in a dataset, i.e. n is typically a
very large number.

In this section, an algorithm for fuzzy lift evaluation is presented that has
O(n log n) time complexity.

The algorithm assumes all attributes a ∈ A that may appear in rule’s conse-
quent to be preprocessed as follows:

1. first, all membership degrees of a are sorted in ascending order and stored
into array ta indexed from 1; moreover, ta[0] := 0;
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2. next, an array ca of cummulative sums of values in ta is computed: ca[0] :=
ta[0], ca[i] := ta[i] + ca[i− 1] (for i ∈ {1, 2, . . . , n}).

These preprocessing steps can be computed only once, at the beginning of the
rule mining process.

It is also expected the underlying association rules searching algorithm has al-
ready computed fuzzy supports sXY := fsupp(X ⇀ Y ) in order to perform prun-
ing and computations of other interest measures such as fuzzy confidence (9).
The algorithm is valid only for sXY > 0, since for zero support, the fuzzy lift is
undefined.

For ⊗min, the computation of fuzzy lift (fliftmin in Algorithm 1) runs as
follows. Firstly, r is computed in steps 2 to 6 so that

r =
n∑

i=1

(
x[i](n− li) +

li∑
k=0

ty[k]

)
, (16)

where li is such index that ty[li] ≤ x[i] < ty[li+1]. Because we have set ty[0] := 0,
formula (16) can be rewritten as

∑n
i=1

∑n
j=1 min(x[i], y[i]), hence we are con-

vinced that fliftmin really returns flift⊗min(X ⇀ Y ).
Regarding flift�Luk, the value of r computed in steps 10 to 14 equals to

n∑
i=1

⎛⎝x[i](n− li) +

n∑
j=1

ty[j]−
li∑

k=0

ty[k]− n+ li

⎞⎠ , (17)

where li is now such index that ty[li] ≤ (1 − x[i]) < ty[li + 1]. Formula (17) is

equivalent to
∑n

i=1

(
nx[i]− lix[i] +

∑n
j=1 y[j]−

∑li
k=0 ty[k]− n+ li

)
, which can

be rewritten to
∑n

i=1

(∑n
j=1

(
x[i] + y[j]− 1

)
−
∑li

k=0 ty[k]− lix[i] + li

)
, which

in turn equals to
∑n

i=1

∑n
j=1 max(0, x[i] + y[i]− 1), and it proves that flift�Luk

returns flift⊗�Luk
(X ⇀ Y ).

Let us now analyze time and space complexity. Step 4 (resp. 12) performs
binary search in an ordered array, which is known to have O(log n) time com-
plexity. Together with the for-loop in step 3 (resp. 11) it gives the overall time
complexity of O(n log n).

For fliftmin (resp. flift�Luk) to work properly, we need to have pre-computed
the arrays ta and sa. It is known that the time complexity of a sort algorithm
is O(n logn) (for ta), whereas computing cummulative sums sa can be done
in O(n). Moreover, that steps need to be done only once at the beginning of
the association rules mining algorithm and then shared accross multiple calls of
fliftmin (resp. flift�Luk). Taking all of that into account, the time complexity
still remains O(n log n).

In addition, two arrays (per consequent fuzzy attribute a), ta and ca, need to
be stored in memory. Therefore, the space complexity of fuzzy lift computation
is in O(2m′n), where m′ is the number of fuzzy attributes that may appear in
any rule’s consequent.
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5 Conclusion

Lift is a ratio of observed support (resp. confidence) to the support (resp. con-
fidence) that is expected under the assumption of independence. In this paper,
a correct definition of fuzzy lift was provided. It should be stressed here that
there already exist some research papers that use incorrect definition of fuzzy
lift (e.g. [15]).

Besides definition, some interesting mathematical properties of fuzzy lift were
studied and the values of lift were compared if computed with different t-norms.

Fuzzy lift has equivalent definition to the “crisp” lift (i.e. lift on binary data)
if the t-norm being used is product ⊗prod. For �Lukasiewicz ⊗�Luk and minimum
⊗min t-norms, a more complicated computation takes place. Therefore, an algo-
rithm was developed in Section 4 for fast evaluation of fuzzy lift. It has been also
proven that the algorithm’s time complexity is in O(n logn), for n being the num-
ber of objects in dataset, while the space complexity is linear with respect to the
number of fuzzy attributes that may appear in rule consequents. (An equivalent
naive algorithm’s time complexity is O(n2); space complexity is linear.)

A future research will address improvements of assocition rules search al-
gorithms by introducing heuristics based on boundary conditions provided by
Theorems 4 and 5. The idea is to store rules with best lift only and to not to
traverse through fuzzy attribute combinations that do not have a potential to
provide lift that is good-enough to the user. Also other interest measures may
be studied and their applicability on fuzzy rules considered.
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9. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypotheses de-

termination. Computing 1, 293–308 (1966)
10. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate

generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1),
53–87 (2004)

11. Kalia, H., Dehuri, S., Ghosh, A.: A survey on fuzzy association rule mining. Inter-
national Journal of Data Warehousing and Mining (IJDWM) 9(1), 1–27 (2013)

12. Lallich, S., Teytaud, O., Prudhomme, E.: Association rule interestingness: Measure
and statistical validation. In: Guillet, F., Hamilton, H.J. (eds.) Quality Measures
in Data Mining. SCI, vol. 43, pp. 251–275. Springer, Heidelberg (2007)

13. McNicholas, P.D., Murphy, T.B., O’Regan, M.: Standardising the lift of an associ-
ation rule. Comput. Stat. Data Anal. 52(10), 4712–4721 (2008)
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Abstract. As there are many various methods for time series predic-
tion developed but none of them generally outperforms all the others,
there always exists a danger of choosing a method that is inappropriate
for a given time series. To overcome such a problem, distinct ensemble
techniques, that combine more individual forecasts, are being proposed.
In this contribution, we employ the so called fuzzy rule-based ensemble.
This method is constructed as a linear combination of a small number
of forecasting methods where the weights of the combination are deter-
mined by fuzzy rule bases based on time series features such as trend,
seasonality, or stationarity. For identification of fuzzy rule base, we use
linguistic association mining. An exhaustive experimental justification is
provided.

Keywords: Fuzzy rule-based ensemble, time series, fuzzy rules, ensem-
ble, perception-based logical deduction, linguistic associations mining.

1 Introduction

A time series is given as a finite sequence y1, y2, . . . , yT of real numbers and
the task is to predict future values yT+1, yT+2, . . . , yT+h where h denotes so
called forecasting horizon. There are many different methods for this task that
are nowadays widely used in practice. Unfortunately, there is no single forecast-
ing method that generally outperforms any other. Thus, there is a danger of
choosing a method which is inappropriate for a given time series. Note that even
searching for methods, that outperform any other for narrower specific subsets
of time series, has not been successful yet, see e.g. [2], where the authors stated:
“Although forecasting expertise can be found in the literature, these sources of-
ten fail to adequately describe conditions under which a method is expected to be
successful”.

In order to eliminate the risk of choosing an inappropriate method, distinct
ensemble techniques (ensembles in short) have been designed and successfully
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applied. The main idea of ensembles consists in an appropriate combination of
more forecasting methods. Typically, an ensemble technique is constructed as
a linear combination of individual ones. It can be described as follows. Let us
assume that we are given a set of M individual methods and let for a given
times series y1, y2, . . . , yT and a given forecasting horizon h, the j-th individual
method provides us with the following prediction:

ŷ
(j)
T+1, ŷ

(j)
T+2, . . . , ŷ

(j)
T+h, j = 1, . . . ,M.

Then the ensemble forecast is given by the following formula:

ŷT+i =
1∑M

j=1 wj

·
M∑
j=1

wj · ŷ(j)T+i, i = 1, . . . , h,

where wj ∈ R is a weight of the j-th individual method. These weights are

usually normalized, that is,
∑M

j=1 wj = 1.
Let us recall that it was perhaps Bates and Granger [4] who firstly showed

significant gains in accuracy through combinations. Another early work by New-
bold and Granger [19] combined various time series forecasts and compared the
combination against the performance of the individual methods. They showed
that for set of forecasts, a linear combination of these forecasts achieved a fore-
cast error variance smaller than the individual forecasts. They found that the
better combining procedures did produce an overall forecast superior to individ-
ual forecasts on the majority of tested time series.

How to combine methods, i.e., how to determine appropriate weights, is still a
relatively open question. For instance, Makridakis et al. [16] showed that taking
a simple average alias the so called “equal-weights combining” [6], is a benchmark
that is hard to beat and finding appropriate non-equal weights leads rather to a
damage of the averaging idea that causes the improvements in robustness.

Although the equal-weights ensemble performs as accurately as mentioned
above, there are works that promisingly show the potential of more sophisticated
approaches. We recall [15] that described an approach using meta-learning for
time series forecasting based on the features of time series such as: standard
deviation, skewness, etc. Given time series were clustered and individual methods
were ranked according to their performance on each cluster and then three best
methods for each cluster were selected. For a given new time series, the closest
cluster was determined and the given three best methods were combined.

This approach was one of our main motivations because it demonstrates that
there exists a dependence between time series features and a performance of
a forecasting method. The second major motivation stems from the so called
Rule-Based Forecasting (RBF) developed by Collopy and Armstrong [2,6]. It is
an expert system that uses domain knowledge to combine forecasts from various
forecasting methods. Using IF-THEN rules, RBF determines what weights to
give to the forecasts.

We follow the main ideas of rule-based forecasting [2] and of using time series
features [15] to obtain an interpretable and understandable ensemble model.
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2 Fuzzy Rule-Based Ensemble

As mentioned above, RBF uses the rules to determine weights [2]. However,
only few of these rules are directly used to set up weights. Most of them set up
a rather specific model parameters, e.g. the smoothing factors of the Brown’s
exponential smoothing with trend. Moreover, in antecedents, the rules very often
use properties that are not crisp but rather vague, e.g. expressions such as: “trend
has been changing; unstable recent trend” etc., see [6]. For such cases, using crisp
rules seems to be less natural than using fuzzy rules. Similarly, the use of crisp
consequents such as: “add 10% to the weight; subtract 0.4 from beta” etc., seems
to be less intuitive than using vague expressions that are typical for fuzzy rules.

2.1 General Structure of the Model

Therefore, our goal was to propose a method that uses fuzzy rules instead of
crisp rules in order to capture the omnipresent vagueness in the expressions; to
use only quantitative features (no domain knowledge) in the antecedent variables
which enable to fully automatize the method; to use only individual forecast-
ing method weights as the consequent variables. The result of such motivated
investigation is the Fuzzy Rule-Based Ensemble (FRBE) [23,26].

The FRBE method uses a single linguistic description, i.e. fuzzy rule base with
evaluative linguistic expressions [21], to determine a weight of each forecasting
method based on fuzzy/linguistic rules, such as:

“IF Strength of Seasonality is Small AND Coefficient of Variation is Roughly
Small THEN Weight of the j-th method is Big”.

After an appropriate inference method is applied (see Section 2.2), a defuzzi-
fication method is employed and thus, a crisp result (weight of a particular
method) is determined. All such weights are then used to determine the final
combined output as given by (1).

2.2 Components of the Model

In order to estimate (set up) a particular value of the weight of each forecasting
method with help of the fuzzy rules, an appropriate fuzzy inference mechanism
has to be employed. As mentioned above, the FRBE method employs linguistic
descriptions, i.e. fuzzy rule bases with so called evaluative linguistic expressions.
These are expressions of natural language that are based on the expressions of the
basic trichotomy Small (Sm), Medium (Me), and Big (Bi). The expressions of
the basic trichotomy may be modified using linguistic hedges either with nar-
rowing or widening effect. The hedges with narrowing effect, ordered according
to the narrowing effect, are Very (Ve), Significantly (Si) and Extremely (Ex).
The hedges with widening effect, ordered according to the narrowing effect, are
More or Less (ML), Roughly (Ro) and Quite Roughly (QR).

Such linguistic expressions have their theoretical model of semantics based
on intension, context, and extension, which is in detail described in the referred
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literature [21]. For the purpose of this contribution, it is sufficient to mention
that extensions, that model the meaning in a given context [vL, vR], are fuzzy
sets that are depicted in Figure 1. One may see the influence of the modifiers on
the shape of the extensions.

Sm
Bi

Me

vL vR

1 ML Sm

Ex Sm

ML Me

DEE(Bi)DEE(Sm)

DEE(Ex Sm)

DEE(Me)

Fig. 1. Shapes of extensions (fuzzy sets) of evaluative linguistic expressions

If a fuzzy rule base is viewed as a linguistic description, and thus uses the above
recalled evaluative linguistic expressions with their model of semantics, one can
neither model them as a conjunction of implicative rules nor as a disjunction
of conjunctions (Mamdani-Assilian model). The used expressions, mainly the
full inclusion of their models (fuzzy sets), require a specific inference method –
Perception-based Logical Deduction (PbLD) [20]. This method models each fuzzy
rule

Ri := IF X is Ai THEN Y is Bi,

by a fuzzy relation Ri on X × Y given as follows:

Ri(x, y) = Ai(x)→�L Bi(y), x ∈ X, y ∈ Y

where →�L is the �Lukasiewicz implication given by a→�L b = 1∧ (1− a+ b). For
the sake of clarity, let us note that X, Y denote the so called linguistic variable
that take values from a set of linguistic expressions, these linguistic expressions
are modelled by fuzzy sets (extensions) on given universes (contexts) X,Y , and
finally, x ∈ X and y ∈ Y .

However, unlike in the case of implicative rules, the rules are not aggregated
conjunctively. The PbLD uses a specific algorithm (perception) that chooses only
some rules to be used in the inference, particularly, the most specific ones among
the most fired rules. Only outputs obtained based on these fuzzy rules are finally
aggregated by the intersection. For details, we refer to [7,25].

Finally, the inferred output is defuzzified by the Defuzzification of Evalua-
tive Expressions (DEE) that has been designed specifically for the outputs of
the PbLD inference mechanism. In principle, DEE is a combination of First-Of-
Maxima (FOM), Mean-Of-Maxima (MOM) and Last-Of-Maxima (LOM) that
are applied based on the classification of the inferred output fuzzy set. If the
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inferred fuzzy set is of the type Small, the LOM is applied; if the inferred
output is of the type Medium, the MOM is applied; and finally, if the inferred
output is of the type Big, the FOM is applied, see Figure 1. In the case of the
FRBE method, the defuzzification DEE is applied after the inference, so that
the deduced weights are already crisp numbers.

2.3 Fuzzy Rule Base Identification

The last missing point is the identification of the linguistic descriptions. This
may be done by distinct approaches. One could expect a deep applicable expert
knowledge, however, neither our experience nor the experience of others con-
firms this expectations. Let us once more refer to the observation of Armstrong,
Collopy, and Adya in [2], already recalled in Section 1.

Because of the missing reliable expert knowledge, we focus on data-driven
approaches that may bring us the interpretable knowledge hidden in the data.

However, before we apply any data-mining technique, we have to clarify how
we interpret the weights in the data. Naturally, the individual method weights
should be proportionally higher if a given method is supposed to provide lower
forecasting error and vice-versa. Thus, it is natural to put

wj = 1− accj , j = 1, . . . ,M

where accj denotes an appropriate normalized forecasting error of the j-th
method. Now, any appropriate data-mining technique may be applied in order
to determine the dependence between features and the weight of each method.

3 Fuzzy GUHA – Linguistic Associations Mining

In this paper, we employ the so called linguistic associations mining for the fuzzy
rule base identification. This approach, mostly known as mining association rules
[1] and firstly introduced as GUHA method [8,9], finds distinct statistically ap-
proved associations between attributes of given objects. Particularly, the GUHA
method deals with Table 1 where o1, . . . , on denote objects, X1, . . . , Xm denote
independent boolean attributes, Z denotes the dependent (explained) boolean
attribute, and finally, symbols aij (or ai) ∈ {0, 1} denote whether an object oi
carries an attribute Xj (or Z) or not.

Table 1. Standard GUHA Table

X1 . . . Xm Z

o1 a11 . . . a1m a1

...
...

. . .
...

...
on an1 . . . anm an
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The original GUHA allowed only boolean attributes to be involved [10]. Since
most of the features of objects are measured on the real interval, standard ap-
proach assumed to binarize the attributes by a partition of the interval into
subintervals. The goal of the method is to search for associations of the form

A(X1, . . . , Xp) . B(Z)

where A, B are predicates containing only the connective AND and X1, . . . , Xp for
p ≤ m are all variables occurring in A. The A, B are called the antecedent and
consequent, respectively.

The relationship between the antecedent and consequent is described by the
so called quantifier .. There are many quantifiers that characterize validity of
the association in data [9]. For our task, we use the so called binary multitudinal
quantifier . := �γ

r . Let a denotes the number of positive occurrences of A as
well as B in the data; let b be the number of positive occurrences of A and of
negated B, i.e. of ‘not B’. Then the above mentioned quantifier is taken as true if

a

a+ b
> γ and

a

n
> r,

where γ ∈ [0, 1] is a degree of confidence and r ∈ [0, 1] is a degree of support.
In many situations, including ours, the fuzzy variant of the GUHA method

[14,22] seems to be more appropriate. We adopt the variant first used in [26]
where the attributes are not boolean but vague, particularly expressed by means
of evaluative linguistic expressions.With three basic expressions Small, Medium,

Big and seven different linguistic hedges (including the empty one), we define 18
fuzzy sets for every quantitative variable (hedges with narrowing effect and ex-
pression Medium are omitted). The values aij (or ai) are elements of the interval
[0, 1] that express membership degrees to these fuzzy sets.

The binary multitudinal quantifier is constructed analogously to the one in
crisp GUHA. The difference is that the numbers a, b are not summations of
1s and 0s, but summations of membership degrees of objects into fuzzy sets
representing the antecedent A and consequent B, or its complement, respectively.
Naturally, the fact, that antecedent A as well as consequent B hold simultaneously,
leads to the natural use of a t-norm. In our case, we use the Gödel t-norm, i.e.,
the minimum. For example, if an object oi belongs to a given antecedent in a
degree 0.7 and to a given consequent in a degree 0.6, the value that enters the
summation equals to min{0.7, 0.6} = 0.6. Summation of such values over all the
objects equals to the value a, the other value b is determined analogously. The
rest of the ideas of the method remain the same.

By using fuzzy sets, we generally get more precise results, and, more impor-
tantly, we avoid undesirable threshold effects [24]. The further advantage is that
the method searches for implicative associations that may be directly interpreted
as fuzzy rules for the PbLD inference system. In our case, for each individual
forecasting method, we have transformed the training data set of time series
with their normalized features into a table similar to Table 2.

The rest of this section deals with ARIMA method. Of course, the same
process has been applied for all the other forecasting methods in our ensemble.
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Table 2. Transformed Training Data Set for the ARIMA Forecasting Method

ΦExSm
1 . . . ΦExBi

q WExSm
AR . . . WExBi

AR

TS1 0.9 . . . 0.7 0 . . . 0.9
...

...
. . .

...
...

. . .
...

TSn 0.1 . . . 0.2 0.8 . . . 0

Objects TS1, . . . ,TSn in Table 2 are the time series from the training set;
Φ1, . . . , Φq are normalized features of given time series. Note that there are sig-
nificantly more columns in this part of Table 2 because each evaluative linguistic
expression leads to a single column for a single feature Φi, i.e. for the expression
ExSm, there are q columns: ΦExSm

1 , . . . , ΦExSm
q , where q denotes the number of

features. Once more, let us recall that we construct 18 linguistic expressions.
SymbolWAR stands for the weight (inverted accuracy) of the ARIMA method,

and again, there are as many columns in this part of the Table 2 as there exist
evaluative linguistic expressions, i.e. 18 in the chosen setting. The fuzzy GUHA
then combinatorically generates hypotheses that are immediately statistically
either declined or confirmed as linguistic associations based on the chosen quan-
tifier parameters. For our purposes, based on a set of experiments, we set up the
thresholds for γ = 0.65 and r = 0.05.

Note that the above described application of the fuzzy GUHA method gen-
erates linguistic description determining the weight of a single method – in our
example of the ARIMA method. Thus, the method, including the transformation
of training data set into a table similar to Table 2, has to be applied as many
times as is the number of methods (and consequently of the linguistic descrip-
tions). In our case, this led to the fourfold use of the method as we deal with
four individual forecasting methods.

4 Implementation

To develop and validate the model, we have used 2829 time series from the
M3 data set repository that contains 3003 time series from the M3-Competition
[17]. We have omitted time series with other than yearly, quarterly, and monthly
frequencies. Note, that the M3 set of time series serves as a generally accepted
benchmark database provided by the authority of the International Institute of
Forecasters. This selected data set was divided into two distinct sets simply by
putting time series with even or odd IDs into the training set and the testing
set, respectively.

The training set was used for an identification of our model, that is, for gen-
eration of our fuzzy rule base. The testing set was used for testing whether the
determined knowledge encoded in the fuzzy rules works generally also for time
series “not seen” by the rule base generating GUHA algorithm.

All forecasts were computed with the R software, version 3.1.0 beta, and
package forecast version 5.3 [13]. We have chosen the often used forecast-
ing methods: seasonal Autoregressive Integrated Moving Average (R-ARIMA),
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Exponential Smoothing (R-ES), Random Walk process (R-RW) and Theta (R-
Theta). For details about these methods, we only refer to the relevant literature
[3,5,11,18].

These methods were executed with fully automatic parameter selection and
optimization which made it possible to concentrate the investigation purely on
the combination technique. Moreover, their arithmetic mean (R-AM), i.e., the
equal weights ensemble method, was also determined and used as a benchmark.

There are many accuracymeasures that are used to analyze the performance of
the various forecasting methods. However, very popular measures such as Mean
Absolute Error or (Root) Mean Squared Error are inappropriate for comparison
across more time series because they are scale-dependent. We use Symmetric
Mean Absolute Percentage Error (SMAPE) that is scale-independent and thus,
appropriate in order to compare methods across different time series [12].

Let a given time series y1, y2, . . . , yT be of the frequency F , i.e. F = 1, 4, 12,
for yearly, quarterly, and monthly time series, respectively. Based on experi-
ments and previous publications [15], the following features were considered in
introductory studies [23,26] as well as in this paper.

The normalized frequency is given by the reciprocal value of F , i.e., it is given
as 1/12, 1/4, and 1 in case of the monthly, quarterly, and yearly time series,
respectively. The normalized length of the time series is given by min (T/100, 1)
where T denotes the number of known time lags. Further, the skewness, the
kurtosis and the coefficient of variation as standard statistics are also normalized
and taken into account. Finally, the strength of trend, strength of seasonality
and the stationarity are also considered. These features are obtained as (1− p)
values, where p is a p-value of an appropriate statistical test, e.g., the Augmented
Dickey–Fuller test in the case of stationarity.

5 Results

As mentioned above, the associations generated by GUHA method are implica-
tive. Thus, they may be directly interpreted as fuzzy rules. Due to the large
amount of such generated rules, a redundancy removal [7,25] and size reduction
algorithms were applied on these rules, which significantly reduced the numbers
of rules.

In order to judge its performance, the fuzzy rule-based ensemble was applied
on 1415 time series from the testing set, i.e. on all monthly, quarterly and yearly
times series with odd IDs in the M3 competition. Table 3 shows that arithmetic
mean and standard deviation of SMAPE forecasting errors over all testing time
series is better for fuzzy rule-based ensemble than any individual forecasting
method from the R package used in the ensemble. Moreover, the equal-weights,
i.e. arithmetic mean (R-AM), and the three best methods from the M3 compe-
tition according to the average precision on the testing set (M3-THETA, M3-
ForecastPro, M3-ForcX) have been outperformed as well.

To indicate superiority of our method, a statistical test of significance has been
performed. Namely, we have performed Wilcoxon signed rank test with conti-
nuity correction for the null hypothesis that the median of the random variable
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Table 3. Average and Standard Deviation of the SMAPE Forecasting Errors

Method Error Average Error Std.Dev.

FRBE 13.29 14.05

M3-THETA 13.56 15.42
R-AM 13.66 14.22
M3-ForecastPro 13.67 15.50
M3-ForcX 13.76 15.26
R-ES 13.95 15.23
R-ARIMA 14.58 16.77
R-THETA 14.73 15.33
R-RW 16.53 17.20

(SMAPER-method− SMAPEFRBE) equals to zero, with the non-zero equality al-
ternative hypothesis. The null hypothesis was rejected for all methods from R
including the R-AM in the standard significance level α = 0.05 . Particularly, the
obtained p-value adjusted for multiple comparisons was less than 1.80 × 10−3

for R-ES, less than 5.41× 10−7 for R-ARIMA, less than 1.38× 10−24 for R-AM,
etc. Similar hypotheses could be rejected for M3-ForcX only on the significance
level α = 0.10 as the p-value equaled to 8.22× 10−2 but could not be rejected
for the other two M3 methods.

Let us stress that the best performance has been reached also in the robustness
(standard deviation of the SMAPE forecasting errors, see Table 3), which is
perhaps even more important w.r.t. the goals of ensemble methods. To compare
variances of SMAPEAM and SMAPEFRBE, the F-test was performed. As a result,
null hypothesis of ratio of variances being equal to 1 was rejected for all methods
excepting for the R-AM where the adjusted p-value was equal to 0.66 .

6 Critical Discussion and Future Directions

The obtained results showed an improvement in the accuracy as well as in the
standard deviation of the accuracy that confirms the improvement in the sense
of “robustness”. Let us now open a short discussion related to the results and
the approach. Undoubtedly, the results confirm some sort of improvement. One
could surely express objections to the too slight improvement and also to the
too difficult and technologically demanding approach.

Related to the first objection, we have to stress that we have tested the im-
provement in accuracy not only compared to the arithmetic mean but also
compared to all the individual methods (with p-value adjustment for multi-
ple comparisons). The suggested FRBE method was found significantly better
in median error than all the used individual methods in R including the equal
weights method, which confirms the significantly positive influence of the ensem-
ble. Moreover, the ensemble, composed only from the standard methods included
in R, outperformed all three top M3 methods although not significantly. The null
hypothesis of the variance F-test was rejected in all cases with the only exception
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of R-AM. In other words, all the used methods, either those participating on the
ensemble or those best methods according to M3 competition, were significantly
outperformed either in precision, or in robustness, or in both criteria.

As a future direction, we plan to employ a stochastic optimization task im-
plemented on a high performance computer in order to find the optimal setting
of all “bricks” building the FRBE. This does not relate only to the individual
methods, but also to the features itself, and their normalization. For example,
the used (1 − p)-values (strength of trend, strength of seasonality, stationarity)
lie in the [0, 1]-interval and thus, are not further normalized anymore. However,
(1 − p)-values around 0.7 or 0.8 are extremely low from the statistical point of
view, as p-value around 0.2 usually does not allow to reject null hypothesis. But
within the standard context [0, 1], the values around 0.8 are found rather big.
Narrowing the interval of p-values and consequently the derived features given
by (1−p)-values seems to be necessary. Nevertheless, the particular realization of
the narrowed normalization is again an open question that may be solved within
the more general optimization task performed by the stochastic optimization
implemented on a supercomputer.

Regarding the second objections, let us stress that the difficulty appears only
in the construction phase. In the final phase, that is planned to be reached,
we expect to have a rather simple (from a user point of view) tool that will
automatically determine a given time series features, use the pre-determined
fuzzy rules to set-up weights of individual methods, perform individual method
forecasts, combine them according to the determined weights, and finally, provide
a user with a single accurate yet robust forecast.
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Abstract. We consider multistage control problem under fuzzy con-
straints on controls applied and fuzzy goals on states attained, with a
stochastic system under control (a Markov chain). We seek an optimal
sequence of controls which maximizes the probability of attaining the
fuzzy goal subject to the fuzzy constraints, over a finite, fixed and spec-
ified planning horizon. We present an extension of Kacprzyk’s [10,12]
approach, based on a traditional genetic algorithm, by employing a bac-
terial evolutionary algorithm in the setting of Nawa and Furuhashi [18].
We show that it yields an improved efficiency, and potentials for future
extensions.

Keywords: fuzzy control, multistage fuzzy control, fuzzy dynamic pro-
gramming, stochastic system under control, genetic algorithm, pseudo-
bacterial genetic algorithm, bacterial evolutionary algorithm.

1 Introduction

We consider multistage fuzzy optimal control under fuzzy constraints on inputs
(controls) and fuzzy goals on outputs (states attained) in the setting of Bellman
and Zadeh [1], comprehensibly extended by Kacprzyk, notably in his books [6,9].

In the basic case of a deterministic system under control, given as a state tran-
sition equation xt+1 = f(xt, ut), t = 0, 1, . . . , N − 1, ≤ ∞, where xt, xt+1 ∈ X =
{s1, . . . , sn} are the states (outputs) at control stages t and t + 1, respectively,
and ut ∈ U = {c1, . . . , cm} is the control at control stage t, at each control stage
t, t = 0, 1, . . . , N − 1, ut ∈ U is subjected to a fuzzy constraint, μCt(ut), and on
xN ∈ X a fuzzy goal, μGN (xN ) is imposed; N is the termination time which is
fixed and specified in advance. The initial state x0 ∈ X is known in advance.

The fuzzy decision (performance function) is

μD(u0, . . . , uN−1 | x0) = μC0(u0) ∧ · · · ∧ μCN−1(uN−1) ∧ μGN (xN ) (1)

and the problem is as to find an optimal sequence of controls u∗0, . . . , u
∗
N−1,

u∗t ∈ U , t = 0, 1, . . . , N − 1, such that

μD(u∗0, . . . , u
∗
N−1 | x0) = max

u0,...,uN−1∈U
μD(u0, . . . , uN−1 | x0) (2)
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We assume here a stochastic system under control with state transitions given
by the conditional probability p(xt+1 | xt, ut); t = 0, 1, . . . , N − 1, and show the
problem formulation in Section 2, and its solution by dynamic programming. In
Section 3 we outline the solution by a traditional genetic (GA) algorithm due
to Kacprzyk [8], [10], [12]. In Section 4 we propose the solution by a bacterial
evolutionary algorithm (BEA) due to Nawa and Furuhashi [18]. We show its good
efficiency vs. the ordinary GA. We provide conclusions and point out potentials,
notably using a novel concept of a memetic bacterial algorithm (MBA) due to
by Kóczy and his collaborators (cf. [2], [3], [4]).

2 Multistage Control of a Stochastic System in a Fuzzy
Environment

We deal with the control problem (2) with a stochastic system under control, i.e.
with a joint occurrence of fuzziness and randomness (cf. [7] for a general review).

The stochastic system under control is a Markov chain with dynamics (state
transitions) governed by a conditional probability function p(xt+1 | xt, ut), t =
0, 1, . . . , N , N ≤ ∞, which specifies the probability of attaining xt+1 ∈ X =
{s1, . . . , sn} from xt ∈ X , under ut ∈ U = {c1, . . . , cm}.

At each t = 0, 1, . . . , N − 1, ut ∈ U is subjected to a fuzzy constraint μCt(ut),
and on xN ∈ X a fuzzy goal μGN (xN ) is imposed. The value of μD(u0, . . . , nN−1 |
x0) is a random variable, and we employ the expected value in the problem
formulation.

Basically the two different problem formulations are used:

1. due to Bellman and Zadeh’s [1], that is: we seek u∗0, . . . , u
∗
N−1 such that

u∗0, . . . , u
∗
N−1 that

μD(u∗0, . . . , u
∗
N−1 | x0) = max

u0,...,uN−1

[μC0(u0) ∧ . . .

. . . ∧ μCN−1(uN−1) ∧ EμGN (xN )] (3)

2. due to Kacprzyk and Staniewski [14] (cf. Kacprzyk [9]), that is, we seek
u∗0, . . . , u∗N−1 such that

μD(u∗0, . . . , u
∗
N−1 | x0) = max

u0,...,uN−1

EμD(u0, . . . , uN−1 | x0) =

= max
u0,...,uN−1

E[μC0(u0) ∧ . . . ∧ μCN−1(uN−1) ∧ μGN (xN )] (4)

We will employ the classic Bellman and Zadeh’s [1] formulation (3) which is
more commonly used, and better suits our purpose.

First, GN is regarded as a fuzzy event in X , and the conditional probability
of GN given xN−1 and uN−1 is

EμGN (xN ) = EμGN (xN | xN−1, uN−1) =
∑

xN∈X

p(xN | xN−1, uN−1) · μGN (xN )

(5)
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Clearly, the structure of problem (3) makes the use of dynamic programming
possible (cf. Kacprzyk [9]), and the dynamic programming recurrence equations
are:

⎧⎨⎩
μGN−1(xN−1) = maxuN−1 [μCN−i(uN−i) ∧ EμGN−i+1(xN−i+1)]
EμGN−1+1(xN−i+1) =

∑
xN−i∈X p(xN−i+1 | xN−i, uN−i)× μGN−i+1(xN−i+1)

i = 1, . . . , N
(6)

The successive maximizing values of uN−i, u
∗
N−i, i = 1, 2, . . . , N , give the

optimal control policies a∗N−i : X −→ U such that u∗N−i = a∗N−i(xN−i), i =
1, . . . , N .

Though dynamic programming finds an optimal solution to (3), it suffers
the from known infamous curse of dimensionality – cf. Kacprzyk [9]. Therefore,
Kacprzyk [8,12] proposed the use of a genetic algorithm which proved to be
conceptually simple and numerically efficient,and will now be outlines to provide
a point of departure for this paper.

3 Using a Genetic Algorithm for the Multistage Fuzzy
Control of a Stochastic System

This essence of Kacprzyk’s [8,10,12] approach, for the stochastic system con-
sidered, is as follows. By an individual we mean a particular solution, values of
controls at the consecutive control stages, u0, . . . , uN−1. It is evaluated by the
fuzzy decision [maximized in 3], the fitness function. The population is a set of
potential solutions, here of a fixed size. We initially assume some initial pop-
ulation which is randomly generated. Then, some members of the population,
the parents, undergo reproduction through crossover and mutation to produce
off-springs (children), i.e. some new solutions. Then, the best ones (the fittest)
“survive”, i.e. are used while repeating this process. Finally, at the end of such
a process one may expect to find a very good (if not optimal) solution.

More formally:

– the problem is represented by strings of controls u0, . . . , uN−1, and we use
real coding;

– the fitness (evaluation) function is the fuzzy decision, i.e.

μD(u0, . . . , uN−1 | X0) = μC0(u0) ∧ μCN−1(uN−1) ∧ EμGN (xN ) (7)

– a standard random selection, crossover and mutation, and a standard termi-
nation condition, mainly a predefined number of iterations, or iteration-to-
iteration improvement lower than a threshold, are used.

For the problem class considered, we assume the following granulation: the state
andcontrol spaces are real intervals, i.e. - respectively -X = [s1, sn], s1, s2, . . . , sn ∈
R, s1 < s2 < . . . < sn; U = [c1, cm], c1, c2, . . . , cm ∈ R, c1 < c2 < . . . < cm; n and
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m are properly chosen, and the partitioning s1, . . . , sn and c1, . . . , cm need not be
evenly spaced over [s1, . . . , sn] and [c1, . . . , cm],respectively.

The genetic operations in our case are standard: if we have two individuals
(solutions), i.e. strings of controls, u0, u1, . . . , uN−1, i.e.{

S1 = (u10, u
1
1, . . . , u

1
k−1, u

1
k, u

1
k+1, . . . , u

1
m−1, u

1
m, u

1
m+1, . . . u

1
N−1)

S2 = (u20, u
2
1, . . . , u

2
k−1, u

2
k, u

2
k+1, . . . , u

2
m−1, u

2
m, u

2
m+1, . . . u

2
N−1)

(8)

then we randomly generate two points, k and m, 1 < k ≤ m < N − 1, and apply
the classic two-point crossover to generate the two off-springs{

Sa
1 = (u10, u

1
1, . . . , u

1
k−1, u

2
k, u

2
k+1, . . . , u

2
m−1, u

1
m, u

1
m+1, . . . u

1
N−1)

Sb
2 = (u20, u

2
1, . . . , u

2
k−1, u

1
k, u

1
k+1, . . . , u

1
m−1, u

2
m, u

2
m+1, . . . u

2
N−1)

(9)

As for the mutation, we apply the dynamic non-uniform mutation (cf. Her-
rera, Lozano and Verdegay [5]), that is, if we have a solution S = (u0, u1, . . . , uk,
. . . , u1N−1), and we randomly select the gene uk (control at stage k) to be mu-
tated, and randomly generate a number v ∈ {−1, 0, 1}, then the mutated gene,
uk, is

uk = uk + v × δ (10)

where δ is some small value from U = [c1, cm]. Therefore, (10) slightly changes
the control at t = k in an individual, to the nearest ck ∈ {c1, . . . , cm}. Moreover,
optionally we can dynamically change δ in (10) so that its value in early iter-
ations may be higher than at later ones, e.g. in the spirit of (Michalewicz and
Janikow[16]).

The genetic algorithm works is now basically:

begin
t := 0
set the initial population P (t) consisting of randomly generated strings

of controls (i.e. of randomly generated real numbers from [0, 1]);
for each u0, . . . , uN−1, in each string in P (t), find the resulting xt+1 by using

the state transition equation xt+1 = f(xt, ut), and use (1) to evaluate each
string in P (t);

while t < maximum number of iterations do
begin

t =: t+ 1
assign the probabilities to each string in P (t− 1) which are proportional
to the value of (1) for each string;
randomly (using those probabilities) generate the new population P (t);
perform crossover and mutation on the strings in P (t);
calculate the value of (1) for each string in P (t).

end
end

For more details on this genetic algorithms, and some “trickery” applied, cf.
Kacprzyk [12].
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4 Using a Bacterial Evolutionary Algorithm (BEA) for
the Multistage Fuzzy Control of a Stochastic System

Though the use of a genetic algorithm for the solution of the problem considered
outlined in the previous section has proved to be conceptually simple, and quite
effective and efficient, in this paper we extend that approach by employing a
novel approach, a bacterial evolutionary algorithm (BEA), originally proposed
for fuzzy rule extraction and optimization of a much more general applicability,
notably for our the problem.

Due to lack of space we will only outline the idea of BEA. We should however
start with its predecessor, the pseudo-bacterial genetic algorithm (PBGA) pro-
posed by Nawa, Hashiyama, Furuhashi and Uchikawa [17]. Its idea boils down to
a new genetic operation called a bacterial mutationmimicking bacterial evolution
which intends to improve parts of chromosomes contained in each bacteria using
a mechanism of transferring genes to other bacteria. The first step is to deter-
mine how the problem can be encoded in a particular bacteria (chromosome). In
our case, these are the particular values of controls over the consecutive stages.
i.e. given by (8).

Then, the pseudo-code of a PBGA can roughly written as:

begin
t =: 0
set the initial population NInd consisting of randomly generated

strings of controls (i.e. of randomly generated real numbers from [c1, cm],
taking the nearest c{.});

for each u0, . . . , uN−1,
evaluate each string (8) in NInd using (1)
create clones (clones) of the solutions selected;

while all clones are mutated and tested exactly once do
apply the bacterial mutation to each solution (string of controls) selected

consecutively;
choose the same copies of the selected solutions (“clones”);
choose the same part or parts randomly from the clones and mutate it

(except for one clone that is unchanged);
select the best clone and transfer its mutated part or parts

to the other clones;
end;
leave the best clones only and remove other ones;
while t < maximum number of iterations do
begin – GA STEP

t := t+ 1
assign the probabilities to each string remaining in NInd which are

proportional to the value of (1) for each string;
randomly (using those probabilities) generate the new population P (t);
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perform crossover and mutation on the strings in P (t);
calculate the value of (1) for each string in P (t).

end
end

Though the above PBGA algorithm works quite well, also for the solution of
our problem, many authors have reported good results with a further extension
which results in a bacterial evolutionary algorithm (BEA) proposed by Nawa
and Furuhashi [18] in which, basically, a new operation is added to the PBGA
called a gene transfer operation which sets relationships between solutions in the
population. Briefly, in in the above pseudo-code of the PBGA, in GA STEP
we use instead of the usual selection, crossover and mutation the following gene
transfer operations:

– Sort the population of solutions according to the fitness values (1) and divide
it in two halves: of better (superior half) and worse (inferior half) solutions;

– Choose one solution (the “source chromosome”) from the superior half and
another one (the “destination chromosome”) from the inferior half;

– Transfer a part (selected randomly) from the source chromosome to the
destination chromosome;

– Repeat the steps above NInd times.

The algorithm is conceptually simple and easily implementable if we already
have, as we do, an implemented GA a PBGA algorithms for our problem.

5 Application of the Bacterial Evolutionary Algorithm
for the Multistage Fuzzy Control of a Stochastic
System

We will illustrate now this algorithm by a simple example, showing first the
results obtained by employing the traditional GA (cf. Kacprzyk [12]), and com-
paring them with those obtained for the new BEA.

Suppose that the state space is X = {s1, . . . , s10}, the control space is U =
{c1, . . . , c8}, the planning horizon is N = 10, and the initial state is x0 = s1. The
state transitions are governed by the following conditional probability [notice
that the particular values of ut and xt correspond to the rows while those of
xt+1 to the columns]:

p(xt+1 | xt, ut) =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
ut = c1 s1 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

s2 0.0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
ut = c2 s1 0.0 0.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0

s2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
ut = c8 xt = s1 0.0 0.0 0.0 0.0 0.5 0.4 0.1 0.0 0.0 0.0

s2 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.2 0.0 0.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
s10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6

The fuzzy constraints and goal are:

C0 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 0.6/c4 + 0.3/c5 + 0.1/c6 + 0.0/c7 + 0.0/c8
C1 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 0.6/c4 + 0.3/c5 + 0.1/c6 + 0.0/c7 + 0.0/c8
C2 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 0.7/c4 + 0.5/c5 + 0.3/c6 + 0.2/c7 + 0.1/c8
C3 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 0.9/c4 + 0.7/c5 + 0.5/c6 + 0.4/c7 + 0.2/c8
C4 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 0.9/c5 + 0.6/c6 + 0.5/c7 + 0.4/c8
C5 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 1.0/c5 + 0.7/c6 + 0.6/c7 + 0.5/c8
C6 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 1.0/c5 + 0.8/c6 + 0.7/c7 + 0.6/c8
C7 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 1.0/c5 + 0.9/c6 + 0.8/c7 + 0.7/c8
C8 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 1.0/c5 + 1.0/c6 + 0.9/c7 + 0.8/c8
C9 = 1.0/c1 + 1.0/c2 + 1.0/c3 + 1.0/c4 + 1.0/c5 + 1.0/c6 + 1.0/c7 + 0.9/c8

G10 = 0.0/s1 + 0.0/s2+

+0.0/s3 + 0.1/s4 + 0.1/s5 + 0.2/s6 + 0.2/s7 + 0.3/s8 + 0.4/s9 + 1.0/s10

We assume that the main parameters are: the population size is 250, the
number of trials is 1,000, the crossover rate is 0.6, and the mutation rate is
0.001.

The best (“optimal”) result obtained is

u0 = c1 u1 = c0 u2 = c0
u3 = c1 u4 = c0 u5 = c1
u6 = c7 u7 = c7 u8 = c7
u9 = c6

with μD(. | .) = 0.5553.
A similar best result was obtained by using the BEA:

u0 = c1 u1 = c0 u2 = c0
u3 = c1 u4 = c0 u5 = c1
u6 = c7 u7 = c7 u8 = c7
u9 = c6

with μD(. | .) = 0.5554.
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The results are quite similar, which is no surprise for such a small example,
and the speed of convergence is also similar, though – roughly speaking, a very
good value of μD(. | .) was obtained after ca. 500 iterations in the case of GA,
and after ca. 400 in the case of BEA. However, since a further extension of the
BEA, the so called bacterial memetic algorithms (BMA) have been reported by
Kóczy and his collaborators [2,3,4]) to have a good efficiency, mainly due to the
use of an inside gradient based local optimization, we believe that the BEA can
be an interesting solution for our problem, and a point of departure for a further
extension to the BMA so that is why we first proposed the use of the BEA.

6 Concluding Remarks

We proposed the use of a bacterial evolutionary algorithm (BEA) for the multi-
stage fuzzy control of a stochastic system. The algorithm yielded good results,
better than the traditional genetic algorithm(GA). However, as our approach is
directly extendable to accomodate the bacterial memetic algorithm (BMA) pro-
posed by Kóczy et al. [2,3,4], which was reported to have shown an even better
efficiency, we think that our approach is relevant by being a step in a proper
direction.
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Abstract. Fuzzy association analysis extracts relationships from data.
The result of fuzzy association analysis depends on a chosen t-norm that
is used for calculating confidence and support measures of mined as-
sociation rules. We show that the set of mined association rules might
change depending on the t-norm. We measure the distances of sets of
mined rules with different t-norms and also with set of rules mined by
crisp association analysis. We experiment with various datasets and par-
titioning methods to examine relationships of mined rules by different
t-norms. Our experiments shed new light on application of fuzzy associ-
ation mining and confirm that fuzzy association analysis usually brings
signifficantly different results when compared to results given by crisp
(non-fuzzy) association analysis.

Keywords: fuzzy association analysis, t-norm, association rules.

1 Introduction

Association rule mining is well established field in data mining [1], originally
studied in more general framework under the name GUHA [5]. The original
methods were designed for boolean variables having only two values 0 and 1. The
generalization to multinomial variables was straightforward as every category is
translated into its own boolean variable. Quantitative variables are translated
into nominal variables by a discretization of the interval from which the values
are, but in this case a lot of information (e.g. distribution) is lost. Alternative
approach to that is to define fuzzy sets on the variable domain (for definitions
see Section 2).

Recently there was a discussion whether the presence of fuzzy association rule
mining is defendable. In [9] Verlinde et. al compared the rules mined by fuzzy
association analysis and crisp association analysis. They restricted themselves
to a smaller amount of variables in the data studied, to rules with only one an-
tecedent and one succedent mined and only one partitioning method, which is
not sound towards fuzzy association mining – we show it in Section 3.1. Further-
more, only the order based on confidence or support measure of the rules were
compared with Spearman correlation index. In this very special scenario the

c© Springer International Publishing Switzerland 2015 283
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fuzzy association analysis was denounced as not useful method for calculating
support and confidence measures of association rules.

In response to [9] Hüllermeier and Yi in [6] explored association mining in
a more general setting. Association rules with more than one antecedent were
mined and various partitioning techniques were used. The differences between
top-50 and top-100 rules sorted by confidence were studied and in case of an-
tecedents of length 4 the similarity of mined rules by crisp association analysis
and fuzzy association analysis disappeared absolutely.

In [6] only the minimum t-norm was used for calculating the supports of
rules. In [9] also other t-norms were used but was claimed it does not make a
difference. We consider all three prominent t-norms, i.e. �Lukasiewicz, Minimum
and Product t-norm, respectively. We also argue against fuzzy c-means as a
technique for partitioning the domains of variables as it was used in [9]. We
propose alternative data-driven partitioning technique to fuzzy c-means that is
semantically sound to fuzzy association mining.

We present here neither the arguments for or against the fuzzy association
analysis, but we empirically investigate the consequences of choosing fuzzy or
crisp association analysis for mining information from quantitative variables.
Moreover, in case of fuzzy association analysis, we discuss the influence of a
chosen t-norm. The question is not which one is better, but whether we want to
model the imprecisions of data or get rid of them before the search for a model
starts and if we want to model the imprecision than how particular t-norm
influences our data mining result.

The next section presents some preliminaries. In Section 3 we describe the
partitionings of variable domains. Section 4 contains a brief summary of data
sets used in our experiments. We define measures for describing the relationships
of mined rules in Section 5. We follow with a discussion of our results in Section 6
and conclude with Section 7.

2 Preliminaries

In this section we are going to define an association rule between real-valued
attributes in a data set. Let there be a 2 dimensional data set D with rows/ob-
jects o1, . . . , on and columns/attributes A1, A2, . . . , Am. We will denote the value
of attribute Ai for object oj in data set D as Ai(oj). We define a domain
of an attribute Ai as dom(Ai) = [mini,maxi], where mini = minj Ai(oj) and
maxi = maxj Ai(oj).

For every attribute Ai we define a set of basic fuzzy attributes A1
i , A

2
i , . . . , A

pi

i

which are mappings from dom(Ai) to [0, 1]. They are in fact fuzzy sets defined
on domains of attributes. We will simply write Aj

i (ok) instead of Aj
i (Ai(ok)) to

denote the value of a basic fuzzy attribute Aj
i for an object ok (i.e. membership

degree of ok in a fuzzy set Aj
i ).

We define fuzzy attributes as combination (resp. a conjunction) of basic fuzzy
attributes by a t-norm ⊗
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A(ok) =
⊗
i

Aj
i (ok).

Basic t-norms we are going to use are the �Lukasiewicz, Minimum and Product
t-norm, respectively, denoted (�l,m,p):

�l(a, b) = max(a+ b− 1, 0), m(a, b) = min(a, b), p(a, b) = a · b.

Let A and B be disjoint and non-empty sets of fuzzy attributes then we can
define a support (supp⊗(A → B)) and confidence (conf⊗(A → B)) of a rule
(A→ B) in the following way:

supp⊗(A→ B) =

∑
o∈D A(o)⊗B(o)

n
, (1)

conf⊗(A→ B) =

∑
o∈D A(o) ⊗B(o)∑

o∈D A(o)
. (2)

We call A in a rule (A → B) antecedent and B succedent. If A (resp. B) is
a fuzzy attribute combined from n basic fuzzy attributes then we say that a
rule (A → B) has n antecedents (resp. n succedents). In our experiments, we
searched for rules with only one succedent.

Usually a t-norm chosen in applications of fuzzy association mining is the
Minimum t-norm. And there are also semantical reasons for that as it was shown
in [3] that it is the only t-norm for which the following holds: if for each o ∈ D
holds A(o) ≤ B(o) then equality conf⊗(A→ B) = 1 is true. In [3] general class of
admissible t-norms for calculating fuzzy association rules is defined and showed
to fulfill the condition: ∀a, b, c ∈ [0, 1] : (a ≤ b)⇒ (b ⊗ c)− (a⊗ c) ≤ b − a. The
�Lukasiewicz t-norm being the smallest of them – originally shown in [7].

The set of all association rules mined from data D using a t-norm ⊗ is denoted
as R⊗. Usually in the output of an association analysis the rules with highest
confidence are given. We denote the first n rules with highest confidence mined
from data D using a t-norm ⊗ as Rn

⊗.
By crisp associations we mean association rules mined from data where at-

tributes have only values 0 and 1. The definition of support and confidence of
crisp association rule is the same as for fuzzy association rule defined by (1) and
(2) independently on the chosen t-norm. It is easy to see that our definition of
support and confidence coincides with the definitions in classical literature on
association rule mining.

In our experiments we define crisp attributes via partioning the domains of
attributes into intervals. Based on these intervals we define fuzzy attributes
(for details see Section 3). Hence there is the same amount of crisp and fuzzy
attributes in paralell. The crisp association rules mined from data D (paralell
crisp attributes) are denoted Rc.



286 J. Kupka and P. Rusnok

3 Partitioning

Verlinde et. al in [9] partiotioned every variable through clustering into three
clusters with fuzzy c-means, corresponding to linguistic terms Small, Medium
and Big. The corresponding cluster centers were taken as the initial centers for
crisp k-means clustering. The resulting crisp clusters were more or less the same
as applying the maximum function to the membership degrees of fuzzy clusters.
Nonetheless, the presence of outliers lead to unwanted membership functions. In
Figure 1, we can see that highest values are Big to the degree 0.5 and are at the
same time Small to the degree 0.25, which does not make sense. Even when we
get rid of the outliers by preprocessing the issue of non-monotonicity remains.
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Fig. 1. Effect of outliers on membership functions

In our experiments we use three crisp partitions (namely, clustering-, equi-
width- and equi-frequency-based one) and three fuzzy ones (each of them induced
from a chosen crisp partition). We cluster the data with k-means algorithm.
The clusters centers are assigned degree 1 to the respective fuzzy sets and 0 to
neighbouring clusters. The inbetween clusters means are assigned a degree 0.5
to both clusters and the points are linearly connected. You can see the resulting
partitions in Figure 2. Our data driven partitioning has more correct semantical
base and the functions are non-decreasing (resp. non-increasing) for terms Big
(resp. Small). We call this partition cluster partition.

We also used the equi-width and equi-frequency methods of crisp partitioning.
We created the membership functions parallel to the crisp intervals resulting
from equi-width (resp. equi-frequency) method analogically to the clustering
case.

K-means is unstable and prone to get stuck in local minima and therefore we
performed multiple runs in our experiments to obtain optimal solution.
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min x̄1 x̄2 x̄3x̄12 x̄23 max

K-means

1

0.5

clusters

1st cluster 2nd cluster 3rd cluster

Fig. 2. Triangular partition derived from k-means clustering. Where x̄i is the mean
of i-th cluster and x̄ij is the mean of the i-th cluster maximum and the j-th cluster
minimum.

3.1 Semantic Issues in Comparing the Crisp and Fuzzy Association
Mining

In [6] and [9] the sets of rules mined by fuzzy association analysis and crisp asso-
ciation analysis were compared. This article also provides this comparison partly
while paying attention more to comparing different sets of mined rules depending
on the chosen t-norm. We want to mention one semantical issue that is hidden
in comparing the fuzzy and crisp associations. As it was stated in Section 2,
crisp associations are special case of fuzzy associations, but to compare fuzzy
associations with crisp we define the same amount of crisp/fuzzy attributes. It
is possible to view the crisp attributes as fuzzy attributes given by characteristic
functions. Comparison of R⊗ with Rc is in fact comparison of two results of
fuzzy association analysis but in the latter case with different fuzzy attributes.
We are basically comparing two absolutely different sets of rules. We should bear
in mind this semantical issue when interpreting our results. However, to some-
how compare fuzzy and crisp association analysis we have to do such semantical
skip.

4 Data Sets

We have used four different data sets for our experiments. We have purposefully
chosen differing types of datasets to eliminate its influence on our findings. The
first data set Entry, which was also used in [6] and [9] consists of medical data
about patients.1 Second data set Abalone consists of physical measurements
for predicting the age of abalone. The third dataset SML2010 consists of time
series collected from a monitoring system mounted in a domotic house. The last
dataset Yeast consists of various scores for predicting the cellular localization

1 This data set was obtained from website
http://lisp.vse.cz/challenge/ecmlpkdd2004

http://lisp.vse.cz/challenge/ecmlpkdd2004
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sites in proteins. The latter three data sets were downloaded from URI Machine
learning repository [2]. On every data set, the results of our experiments were
the same in relation to the trends of distances and we present in Tables 2-10
only the results calculated on data set Yeast.

5 Measures for Comparison of Mined Rules Set

Before we start discussing our results we want to mention one peculiar feature
of association rules. Assume you are given data D and mapped all the attributes
in data D into fuzzy attributes. Then in general for fuzzy attributes Ai, Aj , Bi

and Bj , t-norms ⊗1, ⊗2 from inequality conf⊗1(Ai → Bi) < conf⊗1(Aj → Bj)
does not follow that conf⊗2(Ai → Bi) < conf⊗2(Aj → Bj).

Example 1. For example look at the simple data example from Table 1. By
calculation of confidence according to (2) with values from Table 1 we obtain
the following relations between confidences: conf �l(A1 → B1) < conf �l(A2 → B2)
but we get confm(A1 → B1) > confm(A2 → B2). For another pair of rules the
situation is opposite: conf �l(A3 → B3) > conf �l(A4 → B4) but we get confm(A3 →
B3) < confm(A4 → B4). The product t-norm orders the first two rules according
to confidence in the same way as the �Lukasiewicz t-norm and in the second case
as the Minimum t-norm.

Table 1. Example of different rules ordering depending on chosen t-norm

A1 B1 A2 B2 A3 B3 A4 B4

o1 0.8 0.8 0.8 0.8 0.8 0.2 0.6 0.8
o2 0.8 0.8 1 0.9 0.9 0.9 0.5 0.5

We define for a rule r ∈ Rn
⊗ its rank as rank(r) = j where j stands for the j-th

best position in Rn⊗ when Rn⊗ is ordered descending according to the confidence
measure. Kn was used in [6] and originally proposed in [4].

For two sets Rn
⊗1

and Rn
⊗2

, where ⊗i ∈ {�l, p,m} ordered by confidence we
define a distance Kn(Rn⊗1

,Rn⊗2
) ∈ [0, 1] as:

Kn(Rn
⊗1
,Rn

⊗2
) =

1

n · (n+ 1)

∑
r∈Rn

⊗1
∪Rn

⊗2

|rank1(r) − rank2(r)|, (3)

where rank i(r) is the rank of a rule r in Rn
⊗i
. If r �∈ Rn

⊗i
then rank i(r) = n+ 1

(i ∈ {1, 2}). This definition is extended also to the case of Rn
c .
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We also define absolute difference Dn of two rule sets as a cardinality of a set
difference:

Dn(Rn
⊗1
,Rn

⊗2
) = #{Rn

⊗1
\Rn

⊗2
}. (4)

Kn = 0 when the rules in Rn⊗1
and Rn⊗2

are the same and ordered the same
way. Kn = 1 when there is no rule in common (Rn

⊗1
∩Rn

⊗2
= ∅). Dn ∈ [0, n] and

might equal 0 even when Kn is non zero. Also note that Dn = n when Kn = 1.

6 Results

The distances of all mined sets from Yeast data set are in Tables 2-10. Gener-
ally with increasing number of antecedents the sets grow appart, but there are
interesting patterns showing up.

Rules mined with the �Lukasiewicz t-norm tend to be closer to crisp association
rules than the rules mined by other t-norms in case of equi-width partitioning.
In equi-width partitioning we are more likely to encounter the bordering effect
described e.g. in [8]. The �Lukasiewicz t-norm reduces the bordering effect as
values near 0.5 are mapped near 0, see Tables 8-10. In this context we might
view �Lukasiewicz t-norm as least fuzzy.

For rule sets with only one antecedent and cluster partitioning (Table 2) we
obtain results similar to Verlinde et. al in [9]. This is however not the case for
equi-frequency partitioning, see Table 5.

As stated, increasing the number of antecedents increases the distances, but
not in the same extent for minimum and product t-norm that tend to be still
close enough (see Tables 2-4, 5-7 or 8-10).

It was shown in [6] that the distance K100 between R100
c and R100

m , reaches
1 when considering rules with 4 antecedents. In Table 10, we can see that the
distance between R200

�l and R200
p is 1 already for rules with 3 antecedents. We

may obtain more differing results with fuzzy association analysis when only
considering different t-norms then when switching between fuzzy and crisp case.
This we consider as the most interesting result of our experiments.

Table 2. Distances of rules with 1
antecedent mined from dataset Yeast

with cluster partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.09 0.12 0.11

R200
�l 12 x 0.12 0.08

R200
m 16 17 x 0.04

R200
p 15 12 6 x

Table 3. Distances of rules with 2 an-
tecedents mined from dataset Yeast

with cluster partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.4 0.38 0.34

R200
�l 68 x 0.53 0.48

R200
m 62 84 x 0.11

R200
p 54 74 14 x
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Table 4. Distances of rules with 3 an-
tecedents mined from dataset Yeast

with cluster partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.85 0.83 0.89

R200
�l 161 x 0.95 0.96

R200
m 145 184 x 0.22

R200
p 163 190 45 x

Table 5. Distances of rules with 1
antecedent mined from dataset Yeast

with equi-frequency partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.42 0.41 0.41

R200
�l 48 x 0.19 0.09

R200
m 47 18 x 0.11

R200
p 47 13 8 x

Table 6. Distances of rules with 2 an-
tecedents mined from dataset Yeast

with equi-frequency partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.77 0.66 0.54

R200
�l 149 x 0.7 0.62

R200
m 129 122 x 0.39

R200
p 102 101 67 x

Table 7. Distances of rules with 3 an-
tecedents mined from dataset Yeast

with equi-frequency partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.93 0.62 0.53

R200
�l 179 x 0.84 0.91

R200
m 113 153 x 0.51

R200
p 100 172 93 x

Table 8. Distances of rules with 1
antecedent mined from dataset Yeast

with equi-width partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.16 0.19 0.18

R200
�l 22 x 0.15 0.11

R200
m 29 24 x 0.06

R200
p 25 12 14 x

Table 9. Distances of rules with 2 an-
tecedents mined from dataset Yeast

with equi-width partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.38 0.62 0.76

R200
�l 53 x 0.59 0.7

R200
m 112 94 x 0.21

R200
p 141 123 35 x

Table 10. Distances of rules with 3
antecedents mined from dataset Yeast
with equi-width partition

D200\K200 R200
c R200

�l R200
m R200

p

R200
c x 0.59 0.85 0.99

R200
�l 91 x 0.89 1

R200
m 166 171 x 0.43

R200
p 191 197 68 x
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7 Conclusions and Future Work

Our results show that it is reasonable to mine fuzzy associations with various
t-norms, because of different results that might be obtained. In our future work
we are going to device some techniques that would choose the best from various
data mining runs or valid rules for all t-norms.

Using k-means is not optimal and application of clustering that reflects shapes
of data sets should be considered. Other possibility for improvement is to extend
the study to other confidence measures (resp. implicational quantifiers [5]). A
study of distinct shapes of partitions will be also included in our future work.
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5. Hájek, P., Havránek, T.: Mechanizing Hypothesis Formation (Mathematical Foun-
dations for a General Theory). Springer-Verlag (1978)

6. Hullermeier, E., Yi, Y.: In defense of fuzzy association analysis. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics 37(4), 1039–1043 (2007)

7. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York
(1983)

8. Sudkamp, T.: Examples, counterexamples, and measuring fuzzy associations. Fuzzy
Sets and Systems 149(1), 57–71 (2005)

9. Verlinde, H., De Cock, M., Boute, R.: Fuzzy versus quantitative association rules: a
fair data-driven comparison. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 36(3), 679–684 (2005)

http://archive.ics.uci.edu/ml


Author Index

Anzilli, Luca 37

Bacovský, Martin 97
Besecke, Stephan 241
Blanco-Fernández, Angela 193
Braune, Christian 241
Bronevich, Andrey G. 167
Burda, Michal 249, 261

Coletti, Giulianella 71
Colubi, Ana 185

de la Rosa de Sáa, Sara 123
de Sáa, Sara de la Rosa 133
Dubois, Didier 3
Durante, Fabrizio 209, 217

Facchinetti, Gisella 37
Fargier, Hélène 3
Ferraro, Maria Brigida 225
Filzmoser, Peter 133
Foscolo, Enrico 217

Gagolewski, Marek 233
García Bárzana, Marta 185
García-Pérez, Alfonso 115
Gil, María Ángeles 123, 133
Grzegorzewski, Przemysław 55, 151
Guillaume, Romain 3

Hron, Karel 29
Hryniewicz, Olgierd 13, 79

Jaworski, Piotr 217

Kacprzyk, Janusz 273
Kaczmarek, Katarzyna 79

Kontoghiorghes, Erricos John 185
Kruse, Rudolf 241
Kupka, Jiří 283
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