A Memetic Algorithm for Multi Layer
Hierarchical Ring Network Design*

Christian Schauer and Giinther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria
{schauer,raidl}@ads.tuwien.ac.at

Abstract. We address the Multi Layer Hierarchical Ring Network De-
sign Problem. This problem arises in the design of large telecommuni-
cation backbones, when high reliability is emphasized. The aim is to
connect nodes that are assigned to different layers using a hierarchy of
rings of bounded length. We present a memetic algorithm that focuses
on clustering the nodes of each layer into disjoint subsets. A decoding
procedure is then applied to each genotype for determining a ring con-
necting all nodes of each cluster. For local improvement we incorporate a
previous variable neighborhood search. We experimentally evaluate our
memetic algorithm on various graphs and show that it outperforms the
sole variable neighborhood search approach in 13 out of 30 instances,
while in eight instances they perform on par.

1 Introduction

In this paper we present a memetic algorithm for the Multi Layer Hierarchi-
cal Ring Network Design (MLHRND) problem. MLHRND arises in the field of
telecommunication network design and finds applications in large, hierarchically
structured networks with a strong need of survivability. It originates from a
cooperation with an Austrian telecommunication provider.

Since our society increasingly depends on large and fast telecommunication
networks, the matter of reliability became more and more important. In partic-
ular, it has to be avoided that larger parts of the network become disconnected
in case of limited failures of devices or links. The simplest way to achieve sur-
vivability in a network is the use of a ring topology since the network stays
connected in case of a single node or link failure.

For the backbone of wide area networks a single ring would not be efficient any-
more. The failure of two nodes or links at the same time could disconnect large
parts of the network. Moreover, requirements with respect to bandwidth and
maximal delays physically limit the size of a ring. To fulfill physical constraints
and ensure a high degree of survivability in larger networks, multiple intercon-
nected rings are frequently used as backbones. To allow scalability this intercon-
nection is often realized in a hierarchical fashion using rings on every layer of the

* This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 832-841, 2014.
© Springer International Publishing Switzerland 2014

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 833

hierarchy. Such a network is hence called a Hierarchical Ring Network. If two
rings are connected over a single node (single homing), the network can compen-
sate for a link failure but does not stay connected if the concatenation node fails.
To additionally cover this situation the rings must be connected over two differ-
ent nodes on each ring, which is also called dual homing. The Multi Layer Hi-
erarchical Ring Network Design (MLHRND) deals with a hierarchical structure
spanning nodes on multiple layers using rings of bounded length and dual hom-
ing to ensure fault tolerance in case of single link and node failures. In this work
we divide MLHRND into two depending subproblems, a partitioning problem
to determine the nodes belonging to each ring and a ring computation problem
for each partition. We propose a memetic algorithm for addressing the parti-
tioning aspect, while a decoding procedure determines the actual rings for each
partition. Furthermore, we practically evaluate this approach in experiments.

The rest of the paper is organized as follows. Related work is discussed in
Section 2, while Section 3 provides a formal definition of the problem. In Sec-
tion 4 we describe our memetic algorithm. Computational results are presented
in Section 5. We conclude this paper in Section 6.

2 Related Work

In [8], we introduced MLHRND for the three-layer case and described a variable
neighborhood search (VNS) and a greedy randomized adaptive search procedure
(GRASP) for heuristically solving it. We further argued that MLHRND is NP-
hard, even for the three layer case, since the classical Capacitated Vehicle Routing
Problem can be reduced to MLHRND. To our knowledge MLHRND has not been
addressed by other authors in the literature yet. However, several other problems
are strongly related to it.

Balakrishnan et al. [1] describe the Multi-Level Network Design (MLND)
problem, a generalization of the well-known Steiner network problem [4]. Nodes
of the network are assigned to L different levels. For Two-Level Network Design
(L = 2) the authors discuss two MIP formulations and point out that those
approaches can easily be extended to a higher number of levels.

The Ring Spur Assignment Problem (RSAP) was introduced by Carroll and
McGarraghy in [2]. The authors present a MIP formulation using connectivity
constraints and an attempt for a cutting plane approach to solve larger problem
instances. In RSAP the network is structured by a tertiary ring to which local
rings connect to. Additionally, some nodes can be connected to a local ring by a
single edge, which the authors call a spur. Thus, the resulting network is a three
level network with rings on the top two levels and spurs on the third.

Gendreau et al. describe in [6] the Ring Design Problem, where nodes on
a single layer are connected via interconnected rings, and propose an integer
programming formulation with a quadratic objective function. The authors argue
that heuristic techniques are needed to solve large size instances. Therefore, they
present three ring construction heuristics based on TSP heuristics and three
destroy and reconstruct approaches for post-optimization.

834 C. Schauer and G.R. Raidl

Proestaki and Sinclair present in [7] a variant of MLND using rings and dual
homing for matters of survivability, where the node to level assignment is not
given a priori but to determine during the optimization process. The objective
function incorporates both the traffic on the rings and the overall ring length. As
an exact approach the authors present a binary integer linear programming for-
mulation. Additionally, they discuss a partition, construct, and perturb heuristic
that iteratively, for each level, creates a solution.

Similarities further exist between MLHRND and some variations of capaci-
tated vehicle routing problems when considering satellite depots. For instance
Schwengerer et al. [9] study the Two-Echelon Location-Routing Problem, a com-
bination of the VRP and the Facility Location Problem (FLP). To solve the
problem the authors present a variable neighborhood search. As in MLHRND
the node set is split into three subsets, which are platforms (layer 1), satellites
(layer 2), and customers (layer 3). In the context of vehicle routing dual homing
is not a meaningful requirement.

3 Multi Layer Hierarchical Ring Network Design

This section gives a formal definition of MLHRND and discusses some observa-
tions concerning this problem.

Let G = (V, E) be an undirected graph with vertex set V' and edge set E.
A weighting function assigns costs ¢;; > 0 to each edge (¢,j) € E. Moreover,
V' is partitioned into K > 3 disjoint subsets Vi,..., Vi representing the layers
each node belongs to. Edges exist between all pairs of nodes of the same and the
successive layer, i.e., F = Uk:1,...,K(Vk x Vi) U Uk:l,m,Kfl(V’f X Viet1)-

A feasible solution to MLHRND is a subgraph G = (V, E) connecting all
nodes in V' and satisfying the following conditions; see Figure 1 for an example.

1. All nodes in V; are connected by a single independent ring containing no
other node.

2. The remaining layers are connected by K — 1 respective sets of paths con-
taining no nodes from other layers. Each node must appear in exactly one
path, i.e., the paths are node and edge disjoint to ensure reliability.

3. The end nodes of each path at layer k € {2,..., K} are further connected
to two different nodes (hubs) in layer k — 1, i.e., dual homing is realized. We
refer to the edges connecting paths to hubs as uplinks.

4. The two hub nodes, a path is connected to, must themselves be connected
by a simple path at their layer, i.e., the connection to a ring may not be
established via more than two layers.

5. The lengths of layer k£ € {2,..., K} paths in terms of the number of edges
is bounded below and above by b}€ > 1 and b} > b%c, respectively.

The objective is to find a feasible solution with minimum total costs:

C(EL) = Z(i,j)GEL Cij
From condition 1 we can conclude that finding the layer 1 ring resembles the
classical Traveling Salesman Problem (TSP). Since there are no further lim-
itations for the layer 1 ring, this subproblem can be solved independently.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 835

Layer 1 node O
Layer 2 node O
O Layer 3 node O

10w o0

(a) (b)

Fig.1. Schematic representations for K = 3, of (a) a feasible solution and (b) an
infeasible solution (the numbers in brackets indicate the violated constraints)

The situation changes when considering the remaining layers. Through the com-
bination of the dual homing aspect (condition 3) and the connection of the hubs
via simple paths (condition 4) the optimal structures of layers k € {2,..., K}
strongly depend on each other and cannot be treated separately. This combi-
nation marks the challenging aspect of MLHRND both to model and solve it.
Note that relaxing either condition 3 or condition 4, each layer could be solved
independently to achieve an overall optimal solution.

4 A Memetic Algorithm for MLHRND

As already mentioned, layer 1 corresponds to the classical TSP and can be solved
independently. As the TSP is well studied and our primary interest lies in the
structurally more complex further layers, we use in our experiments the Concorde
TSP solver [3] to determine an optimal layer 1 ring. The following memetic algo-
rithm (MA) is therefore used to solve the remaining layers. The main idea behind
the MA is to split MLHRND into two subproblems: the first, to cluster the nodes
of each layer into different subsets; the second, to compute Hamiltonian paths
through the subsets and determine the uplinks for the paths in order to form
together with the upper layer feasible rings. While the MA is used to optimize
the clusters, a decoding procedure is used for calculating the paths and rings.

4.1 Representation and Decoding Procedures

A main problem, when genetic algorithms (GAs) are applied to clustering prob-
lems, is to find a proper encoding scheme for the genotype that is independent
from the order of the clusters and the order of the elements within each cluster of
the phenotype. An encoding scheme that compensates these problems is linear
linkage encoding (LLE) proposed by Du et al. [5]. This representation stores for
each gene the index of a fellow gene within the same cluster. By requesting that
the stored index must be greater or equal than the own index, LLE provides a
unique representation for each individual without the mentioned encoding prob-
lem. For MLHRND we label all nodes with indices 1, ..., |V] to define a natural

836 C. Schauer and G.R. Raidl

order on V. By sorting the nodes within each cluster and the clusters according
to the first node of each cluster, both in ascending order, we achieve a unique
representation of a candidate solution similar to LLE. Our tests showed that the
computational effort for this encoding process is negligible.

Since finding a minimum weight Hamiltonian path is an NP-complete task,
we implemented a heuristic decoding procedure. The idea is to first compute
the path through the nodes of a cluster and in a second step determine the up-
links for the end nodes of the path. Preliminary tests showed that a decoding
procedure based on the nearest neighbor principle for the TSP performed best
in terms of solution quality and runtime. This procedure uses the shortest edge
within a cluster as initial path, which is then iteratively extended by greedily
appending nodes on both ends. The next node to be appended is always the
nearest one to one of the end nodes. Ties are broken in favor of the node with
the smaller index to keep the heuristic deterministic. This procedure is repeated
until all nodes within a cluster are connected to a Hamiltonian path. Moreover,
tests showed that improving each path with local search using a two edge ex-
change neighborhood structure pays off considering the increase of runtime and
the improvement potential. To additionally speed up the decoding we store all
decoded partitions with their resulting paths in an archive for later reuse.

Moreover, we designed a decoding strategy based on integer linear program-
ming techniques to optimally determine the Hamiltonian path together with the
uplinks. This approach allows an optimal decoding of the genotype but it per-
forms too slowly to decode every partitioning created by the MA. Instead we
use it only in the end to exactly decode the best solution found by the MA.

4.2 Initial Population

For the initial population we create one third of individuals using the randomized
construction heuristic we proposed in [8]. This heuristic appends a path based
on the nearest neighbor idea until b} is reached and then starts a new path,
which results in solutions with few but long paths. For this work we adapted
this heuristic by also considering hub nodes and therefore to close a path in an
earlier stage in case a hub node is nearer than a node on the same layer. Another
third of the individuals is generated by a version of this heuristic, randomized
in the same way as the first one, which creates solutions with more and shorter
paths. Furthermore, we implemented another construction heuristic based on
the savings principle. This heuristic iteratively creates paths for each layer by
computing the savings for every pair of nodes on the layer and sorting them in
descending order. Then we iterate over the savings until all nodes of the layer
are connected to feasible paths, which results in solutions with many but short
paths. By randomly shuffling instead of sorting the positive savings on layer 2 we
obtain a randomized construction heuristic to create the remaining individuals.
For the remaining layers we use the sorted savings lists, otherwise the solutions
obtained would be too random. Using these three heuristics with their different
solution characteristics leads to a promising and diverse initial population.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 837
4.3 Recombination and Mutation

We designed two crossover operators using two parents and creating two de-
scendants. Both operators recombine on the cluster level employing the same
strategy for each layer k € {2,... K}.

One Point Crossover (1PX) chooses a random splitting point between the
list of clusters on each layer. In a first step, the clusters before the splitting point
are copied from parent one to offspring one and from parent two to offspring
two, respectively. Afterwards, the clusters after the splitting point are passed
vice versa from parent two to offspring one and from parent one to offspring
two, respectively. Now care must be taken that none of the nodes occurs twice
in different clusters. Therefore, a check is needed for each node whether it can be
added to the cluster or must be dropped. If too many nodes are dropped and b}€
is not satisfied, the cluster is not added to the offspring at all. This means on the
other hand that some nodes might be skipped. Thus, in a third step remaining
nodes are iteratively added to clusters containing nodes located nearby and not
fulfilling b}. The idea is that the increase of length of the Hamiltonian path
might be smaller if there are other nodes closely located to the new one. If all
clusters have size b}, then a new cluster is created and the node is added there.

Uniform Crossover (UX) decides randomly from which parent the next
cluster is passed to the offspring. This means that the next cluster can either
be passed from parent one or two to offspring one and correspondingly either
from parent two or one to offspring two. If the number of clusters differs for
the parents, the remaining clusters are added to both descendants. As in 1PX
clusters not satisfying b}f are not added to the offspring at all. Again care must
be taken that none of the nodes is added twice to an offspring. To add remaining
nodes UX uses the same insertion strategy as 1PX.

The mutation operators are based on neighborhood structures described in Sec-
tion 4.4. A mutation of an individual resembles a single random move in the
respective neighborhood.

Two Node Exchange Mutation (2NE-M) swaps two nodes from different
clusters on the same layer. At first, a layer, two clusters on this layer, and two
nodes on the respective clusters are determined randomly. These two nodes are
then swapped between the two clusters. Since no constraints could be violated
this mutation is always applicable without further restrictions.

One Node Move Mutation (1NM-M) shifts a single node from one clus-
ter to another on the same layer. The layer, the two clusters, and the shifted node
are all determined randomly and then the mutation is performed. For INM-M
care must be taken that neither b}f for the original cluster nor b} for the desti-
nation cluster are violated. If no such clusters exist on the chosen layer then the
mutation is automatically tried on another layer.

Merge Cluster Mutation (MC-M) merges two clusters on the same layer.
The layer and the two clusters are chosen randomly. The two clusters must be
selected so that after the merge b} is not exceeded. In case a merge is not possible
on the chosen layer an attempt on another layer is made.

838 C. Schauer and G.R. Raidl

Split Path Mutation (SP-M) operates on a decoded path of the phenotype
and splits this path at a given position into two new paths. Since the nodes within
a cluster in the genotype are stored in ascending order, dividing a cluster into
two would not be meaningful. The layer and the splitting point on the path are
determined randomly ensuring that the two new paths both exceed b}f. Again if
a split is not possible on the chosen layer another layer is tried.

4.4 Local Improvement by Variable Neighborhood Search

For local improvement we use a downgraded version of the general variable
neighborhood search (VNS) proposed in [8]. It includes an embedded variable
neighborhood descent (VND), in which we consider the following neighborhood
structures:

Two Edge Exchange (2EE) is applied to every path on every layer sepa-
rately starting with the first uplink and ending with the second investigating
all feasible candidate solutions that differ in at most two edges.

Change Uplinks (CU) finds the optimal uplinks for each path considering
that the hub nodes must be different and connected via a simple path.
Split Rings (SR) divides a long path into two feasible shorter paths and con-

nects them to the preceding layer.

Two Node Exchange (2NE) swaps two nodes from different paths on the
same layer.

One Node Move (1INM) shifts a single node from one path to another on
the same layer taking care that neither b}f on the original path nor b}; on the
destination path is violated.

Append Rings (AR) can be seen as inversion of SR and connects the end
nodes of two short paths to a feasible long path.

We did not use the Three Edge Exchange (3EE) and Merge Rings (MR) neigh-
borhood structures from [8] because tests showed that their application was time
consuming but had only a minor impact on the solution quality.

Taking a closer look one can observe that a move within 2EE and CU only
affects a single path while a move in the other neighborhood structures affects
greater parts of the solution. Therefore, we separated 2EE and CU from the
others in an intra-VND, which is called every time a move within one of the
other neighborhood structures was performed and only applied to the affected
paths. The operators in the main VND are applied in the order as listed before.

For shaking we used the same strategy as in [8], i.e., 2K — 2 shaking neigh-
borhood structures ./\/‘17___72;(_2 defined as follows:

N; = one random move in 2NE on layer K —i+1, Vi=1,..., K —1
N; = one random move in 1NM on layer 2K — 1, Vi=K,...,2K -2
Since the VNS operates on the solution graph the shaking neighborhood struc-

tures cannot be compared with the mutation operators, which permute the clus-
ters. Therefore, it makes sense to not only apply the VND but also to perform

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 839

shaking within the local improvement phase. In this case, we terminate the VNS
if no improvement after shaking in Mok _o was found. Therefore, the increase in
runtime pays off in relation to the improvement obtained.

5 Results

For testing purposes we focus on the K = 3 layer scenario and use the same
TSPLIB! based benchmark instances as in [8] for the VNS and GRASP. Ad-
ditionally, we extended the test set by new random instances especially to in-
crease the variety of smaller instances. For this purpose, we randomly placed
nodes in a grid of size 10000 x 10000, used k-means clustering to determine
the layer 1 and layer 2 nodes, and added corresponding edges. In this way
we obtained a total of 74 test instances with up to 439 nodes. By using dif-
ferent combinations of upper bounds b} for the path lengths we obtained 380
test cases. For the lower bound b}€ we always assumed one edge as the min-
imum length for all paths. All these test instances can be downloaded from
www.ads.tuwien.ac.at/w/Research/Problem Instances.

We tested our MA using either 1PX or UX as crossover operators. As pa-
rameter setting for all test cases we used a population size of 50 individuals,
tournament selection over three individuals and elitism for the best five. As
stopping criterion we used a time limit as indicated in Table 1. We did not allow
duplicates within the population of the same generation. The mutation rate was
set to 9% for 2NE-M, INM-M, and MC-M and 4.5% for SP-M. We performed lo-
cal improvement on the best five individuals every 500 generations. For instances
with less than 300 nodes we used the VNS for larger instances the VND only,
since the increase in runtime was too high. In the end, the best solution found
by the MA is always improved by VNS and finally the exact decoding procedure
is applied. We implemented our approach in Java 1.6 using IBM CPLEX 12.6
for the exact decoding procedure. For each of the test cases we performed 30
runs executed on a single core of an Intel Xeon (Nehalem) Quadcore CPU with
2.53GHz and 3GB of RAM. For comparison we adapted the VNS from [8] by
using the intra-VND (with 3EE on the second position) with the main VND
(with MR on the last position) and executed this approach on all test cases.

Results are summarized in Table 1. The columns have the following meaning:
instance indicates the underlying graph our derived test cases are based on
(with the number of nodes in the graph at the end of the name); # denotes
the number of different test cases for each graph; b3y and b§ lists the different
upper layer bounds, where all combinations were tested; ¢ refers to the runtime
limit in seconds; for the MA with 1PX and UX crossover and VNS the average
objective values (score) together with their standard deviations (dev) are listed;
columns pap show a statistical comparison between approach A and B based
on a Student’s t-test with an error level of 5%, < (>) means that A performs
better(worse) than B, = indicates no significant difference between A and B.

! http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

840 C. Schauer and G.R. Raidl

Table 1. Experimental results for the MA using either 1PX or UX as crossover operator
and the VNS with average objective values and their standard deviations. Columns pag
show a statistical comparison between approach A and B based on a Student’s t-test
with an error level of 5%. The first columns list the instance name, the number of test
cases, test values for b5 and b3, and the runtime limit for each instance.

kroB100 18 4,7,11 300 40759.91 1068.90 ~~ 40780.24 1122.37~ 40826.96 1219.67
bierl27 12 7, 7,11,14 300 202817.43 2601.11 ~ > 202674.00 2836.98 >201500.32 2445.40
ch150 18 7,11 7,11,14 300 11719.20 236.62~> 11715.27 246.43 > 11638.03 230.24
rand175 18 7,11 7,11,14 300 184434.64 4073.46 ~> 184749.36 4161.79 > 182736.31 3843.28
kroA200 18 7,11 7,11,14 300 53045.74 986.66 <> 53183.41 1089.88 > 52854.56 1018.72
kroB200 18 7,11 7,11,14 300 53148.67 1024.49~> 53229.85 1023.96 > 52984.27 1020.04
gr229 12 11,16 11,16,19 600 2840.61 66.71~ > 2842.48 65.43> 2821.13 71.97
rand250 12 11,16 11,16,19 600 214841.28 2983.39 ~ > 215245.46 3347.49 > 212409.05 2223.95
rand275 18 11,16 11,16,19 600 219517.82 4488.71 <> 220505.76 4672.04 >217118.47 3608.25
pr299 18 11,16 11,16,19 600 88667.95 1264.57 <> 88920.18 1383.50 > 87873.12 1033.80
lin318 18 11,16 11,16,19 600 77173.81 1718.17 <~ 77612.38 1835.81 > 77019.39 1264.34
rand350 18 11,16 11,16,19 600 248766.28 5152.62 < < 250009.87 5706.74 ~ 250113.76 4810.65
rand375 18 11,16 11,16,19 600 259471.79 5313.26 <~ 261068.47 6000.87 > 259992.72 5100.66
rand400 18 11,16 11,16,19 900 269699.91 5854.83 <~ 271924.26 6542.30 >269349.24 5199.97
gr431 18 11,16 11,16,19 900 3373.65 57.92< < 3401.35 63.94 < 3455.16 65.91
pr439 18 11,16 11,16,19 900 201790.51 6992.98 < < 204776.11 7414.42 < 206108.42 8830.63

1PX S UX > VNS

. && S
instance # by by t[s] score dev score dev score dev
ulysses22 2 4 4,6 150 123.31 0.28 >~ 123.20 0.24 < 123.36 0.27
rand25 2 4,6 150 71255.47 221.34x< 71255.47 221.34< 72820.93 801.01
rand30 4 4 4,6 150 88484.53 3542.46 ~ < 88365.69 3422.10 < 89373.55 2975.65
rand35 4 4 4,6 150 89182.22 2888.34~~ 89167.36 2874.31~ 89457.32 3067.79
rand45 4 4 4,6 150 99145.13 2039.62 ~ < 99126.84 1992.77 < 101496.14 3640.91
att48 4 4 4,6 150 59663.81 632.16~< 59596.17 681.46 < 60169.25 966.66
eil51 4 4 4,6 150 743.72 1556 ~ =~ 743.02 15.63~ 746.89 16.28
berlin52 4 4 4,6 150 13370.03 201.04~< 13364.96 197.50< 13451.39 279.67
rand55 4 4 4,6 150 111846.88 2971.71 ~ < 111882.44 2878.37 < 113360.76 2299.75
rand70 12 4,7 4,7,11 150 126402.60 2322.23 > < 125926.40 2264.46 < 127383.39 3835.20
eil76 12 4,7 4,7,11 150 902.71 21.82~ = 902.03 23.09= 903.94 24.27
rand85 18 4,7 4,7,11 150 136312.04 3237.14 &~ < 136050.13 3227.32 < 136995.32 3755.33
gro6 18 4,7 4,7,11 300 925.80 21.40=< 926.07 22.21< 930.99 21.11
kroA100 18 4,7 4,7,11 300 40043.51 1132.73 ~~ 39992.35 1151.43~ 40066.80 1152.69

4,7

7,11

Firstly, we observe that by using our new VND approach we are able to improve
the VNS results significantly compared to [8]. The GA without local improve-
ment cannot compete with the VNS except for rand25. Therefore and due to
space limitations, we do not present the results for the GA alone. Of greater
interest is the comparison between the MA and VNS. For all 15 instances with
up to 100 nodes the MA with both crossover operators outperforms the VNS in
terms of solution quality, in ten cases the difference is significant (see columns
pas). In many cases UX delivers the best results. For instances of this size the
MA can cover a large search space, while the VNS gets stuck in a local optimum
too early. The situation changes for instances with 127-300 nodes, were VNS al-
ways performs significantly better. Here the VNS can show its strength and cover
a larger search space because the application of VND is still fast and many it-
erations are performed. For more nodes the MA, especially with 1PX, performs
again better than the VNS except for 1lin318 and rand400, where the VNS is
not significantly better, and for rand375, where 1PX is not significantly better.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 841

As already mentioned the application of VND becomes very time consuming for
larger instances and only some iterations for the VNS are possible in the given
time limit. The MA still can compute at least 3000 generations especially with
1PX, which in practice is faster than UX. Therefore, we conclude that especially
for larger instances the MA is the algorithm of choice.

6 Conclusions and Future Work

We presented a memetic algorithm to solve the Multi Layer Hierarchical Ring
Network Design problem. The basic concept is to use the MA to cluster the
nodes of each layer into disjoint subsets, while a decoding procedure computes
a Hamiltonian path through each cluster and finds uplinks to determine a fea-
sible solution. The approach includes a variant of a previously published VNS
with an embedded VND. The VND has been adapted by distinguishing between
neighborhood structures that work on the path level or on the whole solution.
In this way we were able to speedup the VND significantly and also obtained
better results for the VNS alone. The MA outperforms the VNS on instances
with up to 100 and more than 350 nodes. In the future we will focus on de-
composition techniques, e.g., Benders decomposition for solving medium sized
instances exactly, and the design of large neighborhood structures.

References

1. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: The Multi-level Network Design
Problem. Tech. Rep. 3366-91, Massachusetts Institute of Technology (1991)

2. Carroll, P., McGarraghy, S.: Investigation of the ring spur assignment problem. In:
Bigi, G., Frangioni, A., Scutella, M. (eds.) Proceedings of the 4th International
Network Optimization Conference (INOC 2009). pp. MB1-3 (2009)

3. Cook, W.J.: Concorde TSP Solver, http://www.math.uwaterloo.ca/tsp/concorde/
(accessed: March 13, 2014)

4. Dreyfus, S., Wagner, R.A.: The Steiner Problem in Graphs. Networks 1, 195-207
(1972)

5. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that em-
ploys genetic algorithm with new representation scheme and multiple objectives. In:
Kambayashi, Y., Mohania, M., W68, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp.
219-228. Springer, Heidelberg (2004)

6. Gendreau, M., Labbé, M., Laporte, G.: Efficient heuristics for the design of ring
networks. Telecommunication Systems 4(1), 177-188 (1995)

7. Proestaki, A., Sinclair, M.: Design and dimensioning of dual-homing hierarchical
multi-ring networks. IEE Proceedings Communications 147(2), 96-104 (2000)

8. Schauer, C., Raidl, G.R.: Variable Neighborhood Search and GRASP for Three-
Layer Hierarchical Ring Network Design. In: Coello Coello, C.A., Cutello, V., Deb,
K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491,
pp. 458-467. Springer, Heidelberg (2012)

9. Schwengerer, M., Pirkwieser, S., Raidl, G.R.: A variable neighborhood search ap-
proach for the two-echelon location-routing problem. In: Hao, J.-K., Middendorf,
M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 13-24. Springer, Heidelberg (2012)

http://www.math.uwaterloo.ca/tsp/concorde/

	A Memetic Algorithm for Multi Layer
Hierarchical Ring Network Design

	1 Introduction
	2 Related Work
	3 Multi Layer Hierarchical Ring Network Design
	4 A Memetic Algorithm for MLHRND
	4.1 Representation and Decoding Procedures
	4.2 Initial Population
	4.3 Recombination and Mutation
	4.4 Local Improvement by Variable Neighborhood Search

	5 Results
	6 Conclusions and Future Work
	References

