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Abstract. This paper discusses a selection scheme allowing to employ a
clustering technique to guide the search in evolutionary many-objective
optimization. The underlying idea to avoid the curse of dimensionality
is based on transforming the objective vectors before applying a cluster-
ing and the selection of cluster representatives according to the distance
to a reference point. The experimental results reveal that the proposed
approach is able to effectively guide the search in high-dimensional objec-
tive spaces, producing highly competitive performance when compared
with state-of-the-art algorithms.

1 Introduction

As problems with a large number of objectives become widespread in practice,
the issue of dealing with many-objective problems has gained a significant atten-
tion in the evolutionary multiobjective optimization (EMO) community. Some
researchers suggest to handle many-objective problems by modifying the Pareto
dominance relation, assigning different ranks to nondominated solutions, using
the decision maker’s preferences during the search, incorporating the quality
indicators or scalarizing functions into the fitness assignment, or reducing the
problem’s dimensionality whenever redundant objectives are identified. A good
review of such approaches can be found in [1]. Despite the recent advances in
solving many-objective problems, there are a number of disadvantages related
to such approaches. In particular, the practical application of the hypervolume,
which has nice mathematical properties, is limited due to the high computational
cost. The use of a scalarizing fitness assignment necessitates a set of weight vec-
tors to be provided in advance, being not always an easy task especially for high
dimensions. The use of preference information during the search allows to find
only certain regions of the Pareto front, whereas dimensionality reduction tech-
niques are only suitable for problems having redundant objectives. Thus, the
need for efficient and self-adaptive methodologies persists.

In this work, we focus on improving the scalability of Pareto-dominance based
algorithms and argue that a clustering-based diversity maintenance can be suc-
cessfully used for solving many-objective problems. For this purpose, we pro-
pose to perform a transformation on objective vectors, aimed at reducing the
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distances between solutions in high-dimensional spaces. So that a clustering can
group those solutions, which are distant in the original space but can be viewed
as representatives of similar regions of the fitness landscape. The necessary se-
lection pressure is provided by minimizing the distances of population members
to a reference point.

The remainder of this paper is organized as follows. Section 2 describes an evo-
lutionary algorithm with the proposed selection scheme. Section 3 presents the
results of a comparison study and discusses variants of the suggested selection.
Section 4 concludes the work and outlines further research opportunities.

2 Algorithm

In the following, we present an evolutionary many-objective optimization algo-
rithm with clustering-based selection (EMyO/C), considering an optimization
problem of the form:

minimize:
x∈Ω⊂Rn

f(x) = (f1(x), f2(x), . . . , fm(x))T, (1)

where m - is the number objective and n - is the number of variables.
EMyO/C reflects a general framework of an evolutionary algorithm with the

(μ + λ) selection scheme, where the mating selection, variation and environ-
mental selection are successively applied during the generation. In EMyO/C, an
initial population is randomly generated and a reference point, z, initialized as:
∀j ∈ {1, . . . ,m} : zj = min1≤i≤μ fj(x

i). In the mating selection, each popula-
tion member is selected to the mating pool. The variation procedure relies on
the DE operator, adopting the idea presented in [2]. For each individual in the
mating pool, two different individuals are randomly selected. A difference vec-
tor, v, is calculated using these individuals. To introduce additional variation,
the polynomial mutation [3] is applied on the difference vector, v. The resulting
difference vector is restricted as follows:

vj =

⎧
⎨

⎩

−δj if vj < −δj
δj if vj > δj
vj otherwise

(2)

where

δj =
ubj − lbj

2
∀j ∈ {1, . . . , n}, (3)

ubj and lbj are the upper and lower bounds of the j-th variable, respectively.
An offspring, x′, is generated by mutating the parent individual, x, as:

x′
j =

{
xj + vj if rand < CR
xj otherwise

∀j ∈ {1, . . . , n}. (4)

To ensure the offspring feasibility, it is repaired as:

x′
j = min{max{x′

j , lbj}, ubj} ∀j ∈ {1, . . . , n}. (5)



540 R. Denysiuk, L. Costa, and I.E. Santo

The resulting offspring, x′, is compared with its parent, x. If there is a difference
in at least one gene, then the offspring is evaluated and added to the offspring
population. Otherwise, two other individuals are selected from the mating pool,
and the above described steps - including computation of v, mutation restric-
tion, and creation of x′ - are performed until an individual different from x is
produced. This allows to avoid a situation in which the offspring identical to
its parent is evaluated and added to the population. It should be noted that
applying the polynomial mutation allows to produce new genotypes even when
the whole population is converged to a single solution. Further, each time an off-
spring is evaluated, the components of the reference point are updated if there
are smaller objective values. The environmental selection performs the nondom-
inated sorting procedure [3] and selects a new population from the multiset of
parents and offspring, according to the rank values. In a case where the last ac-
cepted front, Fl, cannot be completely accommodated, the truncation procedure
is performed to select k best individuals as follows.

1. For each individual in Fl, the Euclidean distance in the objective space to
the reference point, z, is calculated.

2. For each individual in Fl, the objectives are translated as:

fi = fi − zi ∀i ∈ {1, . . . ,m}. (6)

3. Each individual in Fl is projected onto the unit hyperplane as:

fi = fi/

m∑

j=1

fj ∀i ∈ {1, . . . ,m}. (7)

4. Using projected individuals, k clusters are formed as follows:
Step 1 Initially, each individual is treated as a separate cluster
C = {C1, C2, . . . , C|Fl|}.
Step 2 If |C| = k, stop. Otherwise, go to Step 3.
Step 3 For each pair of clusters, the distance between two clusters, d12,
is calculated as:

d12 =
1

|C1||C2|
∑

i∈C1,j∈C2

d(i, j),

where d(i, j) is the Euclidean distance between individuals i and j.
Step 4 The pair of clusters having the smallest distance is merged.
Go to Step 2.

5. In each cluster, a representative is selected and added to the new population,
where a cluster representative is an individual having the smallest distance
to the reference point.

It should be noted that the proposed selection procedure does not require
any additional parameter, being completely adaptive and easy to implement.
The complexity of the clustering algorithm is mainly governed by the number of
points in Fl, whereas it is polynomial in the number of objectives. This feature
is especially attractive to solve problems with a large number of objectives.
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3 Performance Assessment

To validate EMyO/C, it is compared with IBEA [4], MOEA/D [5], MSOPS [6],
MSOPS2 [7], and HypE [8] on the DTLZ test suite [9] with 30 decision variables
having between 2 and 20 objectives.

3.1 Performance Indicators and Statistical Comparison

The outcomes produced by the algorithms are assessed using the unary additive
epsilon (ε+) indicator [10], the hypervolume (HV) indicator [11], and the in-
verted generational distance (IGD) indicator [12]. To calculate the ε+ and IGD
indicators, for all problems, 1,000 uniformly distributed points along the Pareto
front are generated. To calculate the HV indicator, the nadir point is used as a
reference point. Solutions that do not dominate the nadir point are discarded.
If there is no solution dominating the nadir point, then the hypervolume of the
approximation set is equal to zero. Further, solutions used to calculate the hy-
pervolume are normalized using the ideal and nadir points. When the number of
objectives is more than 6 the hypervolume is approximated using 106 uniformly
sampled points, otherwise the hypervolume is computed exactly.

To provide the results with statistical confidence, the single-problem analysis
is performed using the Wilcoxon rank-sum test. The multiple-problem analysis
is performed on algorithms’ ranks using the Friedman test to determine whether
there is a significant difference among the results, and the Bonferroni proce-
dure for a post-hoc statistical analysis to detect concrete differences among the
algorithms [13]. All tests are performed at significance level of α = 0.05.

3.2 Experimental Setup

EMOy/C is implemented and tested in JavaTM, whereas IBEA and HypE are
used within the PISA [14] framework1, MOEA/D is used within the jMetal [15]
framework2, and the implementations of MSOPS and MSOPS2 are taken from
the author’s web page3.

For each algorithm, 30 independent runs are performed on each problem with
a population size of μ = 300, running for 500 generations. The other parameter
settings for EMyO/C are: CR = 0.15, ηm = 20, and pm = 1/n (n is the num-
ber of decision variables). The other algorithms use the default settings, except
common parameters with EMyO/C, which use the same values to guarantee a
fair comparison.

3.3 Performance Comparison

Table 1 presents the median values of the quality indicators and the statistical
comparison of the algorithms. In the table, the small values of the ε+ indicator

1 available at http://www.tik.ee.ethz.ch/pisa
2 available at http://jmetal.sourceforge.net
3 available at http://code.evanhughes.org
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Table 1. Median values of the epsilon (the lower the better), hypervolume (the higher
the better), and IGD (the lower the better) indicators after 30 runs. The superscripts
1, 2, 3, 4, 5, and 6 indicate whether the respective algorithm performs significantly
better than EMyO/C, IBEA, MOEA/D, MSOPS, MSOPS2, and HypE, respectively.

EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE

2-objectives

DTLZ1
ε+ 0.0022,3,4,5,6 0.213,4,5 7.6965 6.8435 14.489 0.0342,3,4,5

HV 0.4982,3,4,5,6 0.1363,4,5 0 0 0 0.4392,3,4,5

IGD 0.0012,3,4,5,6 0.1213,4,5 10.0245 9.0995 19.336 0.022,3,4,5

DTLZ2
ε+ 0.0052,4,6 0.0064,6 0.0021,2,4,5,6 0.0076 0.0041,2,4,6 0.046

HV 0.2134,6 0.2134,6 0.2131,2,4,6 0.2126 0.2131,2,3,4,6 0.203

IGD 0.0022,4,6 0.0056 0.0011,2,4,5,6 0.0022,6 0.0011,2,4,6 0.009

DTLZ3
ε+ 0.0052,3,4,5,6 0.3413,4,5 22.4785 28.0015 40.545 0.122,3,4,5

HV 0.2132,3,4,5,6 0 0 0 0 0.132,3,4,5

IGD 0.0022,3,4,5,6 0.3973,4,5 27.5794,5 37.675 48.984 0.0612,3,4,5

DTLZ4
ε+ 0.0052,4,5,6 0.0054,5,6 0.0021,2,4,5,6 0.0095,6 0.265 0.0265

HV 0.2134,5,6 0.2131,4,5,6 0.2131,2,4,5,6 0.2125,6 0.051 0.2085

IGD 0.0022,4,5,6 0.0055 0.0011,2,4,5,6 0.0022,5,6 0.226 0.0055

DTLZ7
ε+ 0.0062,4,5,6 0.0185,6 0.0041,2,4,5,6 0.0112,5,6 3.77 0.0935

HV 0.3362,3,4,5,6 0.3354,5,6 0.3362,4,5,6 0.335,6 0 0.2935

IGD 0.0022,3,4,5,6 0.0074,5,6 0.0022,4,5,6 0.0085,6 2.945 0.1365

3-objectives

DTLZ1
ε+ 0.0212,3,4,5,6 0.2763,4,5,6 9.3995 4.0253,5 100.495 1.1873,4,5

HV 0.8062,3,4,5,6 0.2653,4,5,6 0 0 0 0

IGD 0.0122,3,4,5,6 0.1873,4,5,6 14.4585 5.8843,5 133.662 1.333,4,5

DTLZ2
ε+ 0.0513,4,6 0.0471,3,4,6 0.0876 0.0663,6 0.0431,2,3,4,6 0.121

HV 0.4393,4,6 0.4411,3,4,6 0.4196 0.4373,6 0.4421,2,3,4,6 0.397

IGD 0.0322,3,4,6 0.0616 0.0392,6 0.0342,3,6 0.031,2,3,4,6 0.077

DTLZ3
ε+ 0.0532,3,4,5,6 0.473,4,5,6 20.9745 17.6455 244.304 6.7173,4,5

HV 0.4392,3,4,5,6 0 0 0 0 0

IGD 0.0332,3,4,5,6 0.5533,4,5,6 28.4435 27.7965 327.555 7.0023,4,5

DTLZ4
ε+ 0.0533,4,5,6 0.0471,3,4,5,6 0.0815,6 0.063,5,6 0.634 0.0985

HV 0.4373,4,5,6 0.4411,3,4,5,6 0.4255,6 0.4363,5,6 0.241 0.4145

IGD 0.0322,3,4,5,6 0.065,6 0.0392,5,6 0.0342,3,5,6 0.247 0.0635

DTLZ7
ε+ 0.0512,3,4,5,6 0.0573,4,5,6 0.1675,6 0.1323,5,6 5.044 0.4285

HV 0.3642,3,4,5,6 0.3613,4,5,6 0.3095,6 0.3123,5,6 0 0.235

IGD 0.0372,3,4,5,6 0.0923,4,5,6 0.1034,5,6 0.1585,6 3.277 0.375

5-objectives

DTLZ1
ε+ 0.0752,3,4,5,6 0.3253,4,5,6 7.6195,6 2.163,5,6 102.255 15.7155

HV 0.932,3,4,5,6 0.4093,4,5,6 0 0 0 0

IGD 0.0692,3,4,5,6 0.2433,4,5,6 11.5025,6 3.3443,5,6 159.717 18.4515

DTLZ2
ε+ 0.1443,4,6 0.1311,3,4,5,6 0.186 0.1593,6 0.1351,3,4,6 0.377

HV 0.7053,4,5,6 0.7251,3,4,5,6 0.6516 0.73,5,6 0.6963,6 0.343

IGD 0.1642,3,4,6 0.214,6 0.2032,4,6 0.2166 0.1591,2,3,4,6 0.408

DTLZ3
ε+ 0.1432,3,4,5,6 0.5843,4,5,6 16.6885,6 11.7243,5,6 325.935 32.8665

HV 0.7032,3,4,5,6 0 0 0 0 0

IGD 0.1642,3,4,5,6 0.713,4,5,6 20.8955,6 16.9463,5,6 464.898 32.4645

DTLZ4
ε+ 0.1443,4,5,6 0.131,3,4,5,6 0.1836 0.1583,6 0.1746 0.213

HV 0.7033,5,6 0.7271,3,4,5,6 0.6666 0.7023,5,6 0.6626 0.604

IGD 0.1682,3,4,5,6 0.213,4,6 0.2466 0.2293,6 0.182,3,4,6 0.253

DTLZ7
ε+ 0.2314,5,6 0.2574,5,6 0.2174,5,6 0.465,6 8.895 0.8335

HV 0.3233,4,5,6 0.3371,3,4,5,6 0.2714,5,6 0.1995 0 0.2174,5

IGD 0.2612,3,4,5,6 0.3853,4,5,6 0.4134,5,6 0.5185,6 4.913 0.6485

10-objectives

DTLZ1
ε+ 0.2122,3,4,5,6 0.3343,4,5,6 2.5475,6 1.1513,5,6 65.446 11.5615

HV 0.4843,4,5,6 0.7291,3,4,5,6 0 0 0 0

IGD 0.2723,4,5,6 0.3043,4,5,6 3.4785,6 1.7663,5,6 108.78 17.8755

DTLZ2
ε+ 0.2492,3,4,5,6 0.2593,5,6 0.2895,6 0.2593,5,6 0.3646 0.656

HV 0.9173,4,5,6 0.9231,3,4,5,6 0.8675,6 0.9113,5,6 0.8216 0.348

IGD 0.4422,3,4,6 0.4814,6 0.4542,4,6 0.496 0.4151,2,3,4,6 0.679

DTLZ3
ε+ 0.4112,3,4,5,6 0.6323,4,5,6 5.6285,6 6.0455,6 209.395 25.3395

HV 0.552,3,4,5,6 0 0 0 0 0

IGD 0.5472,3,4,5,6 0.8493,4,5,6 7.1384,5,6 8.7625,6 266.516 25.635

DTLZ4
ε+ 0.2673,5,6 0.2481,3,4,5,6 0.3226 0.273,5,6 0.2823,6 0.988

HV 0.9263,4,5,6 0.9311,3,4,5,6 0.8886 0.9163,5,6 0.8916 0

IGD 0.4953,4,5,6 0.4751,3,4,5,6 0.5656 0.5453,6 0.5213,4,6 1.087

DTLZ7
ε+ 0.7272,3,4,5,6 0.7914,5,6 0.762,4,5,6 0.8265,6 13.077 0.8325

HV 0.0195 0.1831,3,4,5,6 0.0225 0.0331,3,5 0 0.1121,3,4,5

IGD 0.9473,4,5,6 0.973,4,5,6 1.0214,5,6 1.6225 7.274 1.0634,5
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EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE

15-objectives

DTLZ1
ε+ 0.3455,6 0.3364,5,6 0.1361,2,4,5,6 0.4245,6 21.212 5.2765

HV 0.0075,6 0.8351,4,5,6 0.9181,4,5,6 0.0015,6 0 0

IGD 0.5864,5,6 0.321,4,5,6 0.211,2,4,5,6 0.775,6 35.516 7.4955

DTLZ2
ε+ 0.312,3,5,6 0.3485,6 0.3322,5,6 0.3142,3,5,6 0.376 0.646

HV 0.9663,4,5,6 0.9681,3,4,5,6 0.9065,6 0.9483,5,6 0.8116 0.515

IGD 0.6092,4,6 0.6626 0.5231,2,4,6 0.6132,6 0.5331,2,4,6 0.752

DTLZ3
ε+ 0.3962,3,4,5,6 0.6674,5,6 0.5012,4,5,6 3.1175,6 65.966 11.8385

HV 0.822,3,4,5,6 0 0.7012,4,5,6 0.0012 0.0012 0.0012

IGD 0.6672,4,5,6 0.9394,5,6 0.6922,4,5,6 4.9075,6 76.096 11.6915

DTLZ4
ε+ 0.3343,4,5,6 0.3151,3,4,5,6 0.3696 0.3483,5,6 0.3616 1.055

HV 0.9782,3,4,5,6 0.9733,4,5,6 0.956 0.9573,6 0.9553,6 0

IGD 0.6823,4,5,6 0.6511,3,4,5,6 0.6956 0.7036 0.6986 1.275

DTLZ7
ε+ 0.7722,3,4,5,6 3.6255 0.7932,4,5,6 0.8292,5,6 14.944 0.8412,5

HV 0.0015 0.0831,3,4,5,6 0.0011,5 0.0161,3,5,6 0 0.0131,3,5

IGD 1.4192,4,5 1.574,5 1.4352,4,5 3.3335 7.372 1.4122,3,4,5

20-objectives

DTLZ1
ε+ 0.1112,4,5,6 0.3635,6 0.0631,2,4,5,6 0.262,5,6 2.239 1.751

HV 0.6974,5,6 0.8024,5,6 0.9971,2,4,5,6 0.3635,6 0 0

IGD 0.1872,4,5,6 0.3514,5,6 0.1421,2,4,5,6 0.435,6 3.251 2.77

DTLZ2
ε+ 0.3832,6 0.4346 0.3321,2,5,6 0.3371,2,5,6 0.3591,2,6 0.638

HV 0.983,4,5,6 0.9813,4,5,6 0.8995,6 0.953,5,6 0.8136 0.559

IGD 0.72,6 0.7816 0.6071,2,4,5,6 0.651,2,6 0.6331,2,6 0.813

DTLZ3
ε+ 0.4072,4,5,6 0.994,5,6 0.3792,4,5,6 2.0485 8.54 3.0935

HV 0.9752,3,4,5,6 0.0164,5,6 0.832,4,5,6 0 04 05

IGD 0.7022,4,5,6 0.9934,5,6 0.6881,2,4,5,6 2.8165 13.802 2.865

DTLZ4
ε+ 0.44,5,6 0.3761,4,5,6 0.3851,4,5,6 0.4065,6 0.4266 0.927

HV 0.992,3,4,5,6 0.9873,4,5,6 0.9696 0.9696 0.9723,4,6 0.01

IGD 0.7934,5,6 0.7591,3,4,5,6 0.7721,4,5,6 0.7985,6 0.8076 1.173

DTLZ7
ε+ 0.7952,3,4,5,6 10.519 0.8052,4,5 0.8392,5 11.53 0.8032,4,5

HV 0.001 0.0291,3,4,5,6 0.0011,5 0.0011,3,5 0.0011 0.0011,3,5

IGD 1.8272,4,5 3.2044,5 1.8022,4,5 3.806 3.892 1.7651,2,3,4,5

suggest that approximation sets produced by EMyO/C are relatively close to
the true Pareto fronts. The HV values for EMyO/C are always greater than
zero, suggesting that EMyO/C generates solutions being within the bounds of
the Pareto fronts. Although the IGD indicator is non-Pareto compliant, the
small values of IGD indicate the closeness to the Pareto front and adequate
distributions of approximations obtained by EMyO/C.

From Table 1, it can be seen that EMyO/C dominates the other algorithms
regarding the quality indicators on DTLZ1,3,7 problems with up to 10 objec-
tives, besides IBEA and MOEA/D that give better results with respect to the ε+
and HV indicators on DTLZ7 in some dimensions. DTLZ1 and DTLZ3 are mul-
timodal problems with the linear and concave Pareto fronts, whereas the main
characteristic of DTLZ7 is the disconnected Pareto front. Thus, EMyO/C ap-
pears to be capable of dealing with such problem properties in high-dimensional
objective spaces. The competitive results for these problems in 15 and 20 di-
mensions confirm these observations. DTLZ2 and DTLZ4 do not present much
difficulties in terms of the convergence. The best indicator values for these prob-
lems in dimensions higher than 3 are obtained by IBEA and MOEA/D, apart
DTLZ2 with 5 and 10 objectives, being MSOPS the best algorithm with re-
spect to IGD. The superior performance of IBEA regarding the ε+ and HV
indicators is not surprising, since its selection procedure relies on the concept of
ε-dominance. On the other hand, MOEA/D uses a set of uniformly distributed
weight vectors that contributes to the high selection pressure and the uniform
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Table 2. Mean ranks achieved by different algorithms. The superscripts 1, 2, 3, 4,
5, and 6 indicate whether the respective algorithm performs significantly better than
EMyO/C, IBEA, MOEA/D, MSOPS, MSOPS2, and HypE, respectively.

Indicator EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE

ε+ 1.734,5,6 2.635,6 3.105,6 3.505 5.27 4.87

HV 2.083,4,5,6 2.103,4,5,6 3.63 3.82 4.67 4.70

IGD 1.734,5,6 2.975,6 2.905,6 3.97 4.77 4.67

distribution of solutions. Nevertheless, EMyO/C provides a highly competitive
performance on all the considered problems.

The overall performance of the algorithms is compared by calculating ranks on
each problem with respect to the quality indicators. It should be noted that test-
ing DTLZ1-4,7 problems in 6 different dimensions there is a total of 30 distinct
problems. Table 2 presents the mean ranks and statistical comparison. From the
table, it can be seen that EMyO/C has the best mean ranks regarding all three
indicators, though no difference is detected between EMyO/C and IBEA, as
well as there is no difference between EMyO/C and MOEA/D regarding the ε+
and HV indicators. These results emphasize the competitiveness of the proposed
approach.

3.4 Selection on Different Shapes

We also investigate a generalized EMyO/C, which consists in controlling the
shape of Fl for performing the clustering. It can be defined by the following
transformation:

f̄i = fp
i ∀i ∈ {1, . . . ,m}, (8)

where p ∈ (0, inf) is a parameter controlling the shape, fi is the value obtained
in (7), and f̄i ∈ (0, 1) is the resulting value. For p > 1 solutions in Fl are
projected onto a convex shape, for p < 1 solutions in Fl are projected onto a
concave shape. According to p, we define three variants of EMyO/C:

1. EMyO/C-linear (p = 1).
2. EMyO/C-convex (p = 2).
3. EMyO/C-concave (p = 0.5).

We run these three variants with the aforementioned settings, including an EMO
algorithm referred as EMO/C. The difference between EMyO/C and EMO/C is
that the latter performs clustering on the original objective vectors.

Figure 1 shows the graphical representation of the median values of the quality
indicators obtained by the EMyO/C variants and EMO/C on the benchmark
functions with varying dimensions. From the figure, it can be seen that EMO/C
performs poorly on high-dimensional problems, having zero hypervolume and
large values of the ε+ and IGD indicators. All of the EMyO/C variants have
quite similar performance on DTLZ2,4,7. However, the three variants perform
differently on multimodal problems. EMyO/C-concave works better on DTLZ1,
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(d) DTLZ2 (the lower the better)
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(f) DTLZ2 (the lower the better)
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(g) DTLZ3 (the lower the better)
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(h) DTLZ3 (the higher the better)
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(i) DTLZ3 (the lower the better)
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(j) DTLZ4 (the lower the better)
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(k) DTLZ4 (the higher the better)
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(l) DTLZ4 (the lower the better)
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(m) DTLZ7 (the lower the better)
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Fig. 1. Performance comparison of EMyO/C-linear, EMyO/C-convex, EMyO/C-
concave, and EMO/C on the DTLZ1-4,7 test problems. The plots present the median
values of the epsilon (left-hand side), hypervolume (center), and IGD (right-hand side)
indicators over 30 runs.
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Table 3.Mean ranks achieved by the EMyO/C variants and EMO/C. The superscripts
1, 2, 3, and 4 indicate whether the respective algorithm performs significantly better
than EMyO/C-linear, EMyO/C-convex, EMyO/C-concave, and EMO/C, respectively.

Indicator EMyO/C-linear EMyO/C-convex EMyO/C-concave EMO/C

ε+ 1.632,4 2.90 2.074 3.40

HV 1.872,4 2.924 1.502,4 3.72

IGD 1.472,3,4 2.574 2.434 3.53

whereas EMyO/C-linear and EMyO/C-concave produce different performance in
different dimensions. The three variants perform better on DTLZ1 with m = 20
than with m = 15 due to the smaller number of distance parameters in the
former. The obtained results reveal that performing the clustering on different
shapes not only affects the distribution of solutions but the convergence and
entire performance of the algorithm. Thus, controlling the parameter p can be
beneficial for search.

Finally, Table 3 presents the mean ranks and statistical comparison for the
performed experiments. It can be seen that the EMyO/C variants are statisti-
cally better than EMO/C regarding all three indicators, except for EMyO/C-
convex concerning the ε+ indicator. EMyO/C-linear gives the best results with
respect to the ε+ and IGD indicators, whereas EMyO/C-concave performs the
best with regard to the HV indicator.

4 Conclusions

In this paper, we proposed a clustering-based selection scheme to guide the
search in high-dimensional objective spaces. The experimental results obtained
on problems with up to 20 dimensions reveal that the proposed scheme is capable
of dealing with many-objective problems, producing a highly competitive per-
formance when compared with the state-of-the-art algorithms. Furthermore, we
discussed different variants of the proposed approach, showing their advantages
and the relevance of the proposed approach.

As future work, we intend to extend the proposed selection to the domain
of GA-based algorithms, developing an effective parent selection mechanism.
Further, the self-adaptation of the parameter controlling the shape is another
promising direction, as well as calculating the distances in different spaces can
bring new opportunities.
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J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

5. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 13(2), 284–302 (2009)

6. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2003, pp. 2678–2684 (2003)

7. Hughes, E.J.: MSOPS-II: A general-purpose many-objective optimiser. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, pp.
3944–3951 (2007)

8. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multi-objective optimization. Technical Report 112, Swiss Federal Institute
of Technology, Zurich, Switzerland (2001)

10. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

11. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
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