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Abstract. In this work we introduce a model-building algorithm that is
able to infer problem structure using generative grammar induction. We
define a class of grammar that can represent the structure of a problem
space as a hierarchy of multivariate patterns (schemata), and a compres-
sion algorithm that can infer an instance of the grammar from a collec-
tion of sample individuals. Unlike conventional sequential grammars the
rules of the grammar define unordered set-membership productions and
are therefore insensitive to gene ordering or physical linkage. We show
that when grammars are inferred from populations of fit individuals on
shuffled nearest-neighbour NK-landscape problems, there is a correlation
between the compressibility of a population and the degree of inherent
problem structure. We also demonstrate how the information captured
by the grammatical model from a population can aid evolutionary search.
By using the lexicon of schemata inferred into a grammar to facilitate
variation, we show that a population is able to incrementally learn and
then exploit its own structure to find fitter regions of the search space,
and ultimately locate the global optimum.

Keywords: Generative grammar, compression, evolutionary algorithm,
estimation of distribution algorithm, NK fitness landscape.

1 Introduction

The field of natural computing has proposed a variety of both implicit and ex-
plicit model-building algorithms that attempt to infer the structure of a problem
from populations of above-average-fitness individuals. The intuition is that by
using these models evolutionary search can be directed to promising areas of a
high-dimensional fitness landscape by recombining multivariate features that are
commonly found in fit individuals. The best known implicit model is variation by
crossover in sexual genetic algorithms. The seminal work of Holland on “Schema
Theorem” [1] and subsequently Goldberg on the “Building Block Hypothesis”
[2] showed that, at least in theory, crossover offers a scheme under which fit mul-
tivariate patterns known as schemata can grow in frequency in an evolutionary
population. Moreover, these schemata can act as genetic building blocks that
can themselves be recombined, allowing evolutionary search to be performed
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at higher levels of organisation. More recently Estimation of Distribution Algo-
rithms (EDAs) have been proposed that attempt to build explicit, probabilistic
models of fit individuals that can be sampled in order to evolve a population
through either constructive or perturbative variation (see [3] for a review). These
methods have been shown to be competent at solving many different types of
problem, including problems that have proven difficult for crossover-based GA’s.

In this paper we present an alternative method of explicitly modelling prob-
lem structure. Unlike other explicit modelling techniques that build probabilis-
tic models of a sample population using statistical inference, we build a lossless
model using grammatical inference. By a lossless model we mean a model from
which the original samples can be recreated without any loss of information.
Indeed, we will show that the grammar induction algorithm used here is a type
of lossless compression algorithm that identifies a hierarchy of genetic schemata
with which the sample population can be more compactly described. A key fea-
ture of the “schema grammar” we introduce is that it generates combinatorial as
opposed to sequential languages, with the rules it encodes producing unordered
sets of symbols rather than ordered sequences or strings. This sets it apart from
traditional sequential grammars and enables grammatical inference in combina-
torial problem space for the first time.

We have recently demonstrated the value of this modelling technique in solving
synthetic building block problems, showing that the simple modular structure
in these problems can be correctly inferred and then reused to facilitate superior
time complexity in global search [4]. In the present paper we investigate NK-
landscape problems [5], which are irregular and unpredictable but contain an
inherent statistical structure. We show that by information about this structure
can be learned from a sample population of fit individuals using schema gram-
mar, and that by using the the lexicon of schemata inferred into a grammar
to facilitate variation, a population is able to locate fitter regions of the search
space and ultimately locate the global optimum.

2 Compression Evolutionary Algorithms

Our objectives when building a model of fit individuals in a population are to
identify any inherent structure within the fitness landscape, visible as variable
dependencies, and exploit it within the evolutionary search process. Toussaint
suggested that one way of achieving this is using Compression Evolutionary
Algorithms [6]. By compressing a sample population of phenotypes any depen-
dencies that are present in the population are factored into the structure of the
compression model, and what is left is a compressed, decorrelated representation.
The idea is that if we consider this compressed representation to be a genotype,
and the compression model a genotype-phenotype map, then random perturba-
tion of the genotype will produce phenotypes that obey the dependencies of the
problem space. The concept is somewhat similar to the Grammatical Evolution
(GE) techniques used in genetic programming [7] in which genetic programs are
evolved using a grammar as a genotype-phenotype map, although in the GE
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case the grammars are predefined using knowledge of the problem rather than
inferred.

Toussaint was able to demonstrate the concept of Compression EA’s on vari-
able length problems using sequential grammar inference as the compression
model, however the constraints of sequential grammars limit the practical use-
fulness of the technique. Specifically, only sequentially-contiguous variable de-
pendencies can be modelled, and it is not possible to infer the length constraints
or positional structure of a problem.1 The approach we outline here is an type of
Compression Evolutionary Algorithm, also using grammar inference as a com-
pression model, however we overcome the limitations described above by using a
set grammar that can produce combinatorial rather than sequential languages,
and a genetic encoding with no intrinsic sequential order. This allows us to
apply Compression Evolutionary Algorithms to a wider range of evolutionary
problems.

3 Schema Grammar

Schema grammar is able to represent and compress any combinatorial expressions
that can be encoded as an unordered set of terminal symbols which represent the
“alphabet” of the problem space. In this paper we will consider n-dimensional bi-
nary spaces only. In order to encode genotypes and schemata in the required way
we adopt the Messy GA encoding of Goldberg et al [9]. The encoding offers an al-
ternative scheme to bit strings for addressing n-dimensional binary spaces using
order-independent sets of 〈locus|allele〉 tuples, for example the bit string 0110 can
be represented by the set {〈0|0〉, 〈1|1〉, 〈2|1〉, 〈3|0〉}. In an n-dimensional problem
the complete alphabet of terminal symbols,Σ, is just the set of all possible alleles:

Σ = {〈λ|α〉 : λ ∈ {0, .., n}, α ∈ {0, 1}} (1)

The grammar is a type of context-free grammar (CFG) similar to the context-
free grammar codes that are typically used for sequential compression (see [10]
for a review). It has straight-line properties such that each non-terminal sym-
bol (variable) in the grammar is only associated with one production rule and
there are no loops in production. These properties ensure that productions are
deterministic: in our context this ensures a surjective mapping from genotype to
phenotype. Production rules in the grammar are expressed in terms of set mem-
bership relations, so using the previous example we can define a non-terminal
symbol that represents an individual genotype g using the production rule:

g → {〈0|0〉, 〈1|1〉, 〈2|1〉, 〈3|0〉}
The encoding also provides a very natural way of representing variable inter-

actions as genetic schemata, including those that may overlap in locus or allele

1 The meta-Grammar Genetic Algorithm described in [8] manages to apply sequential
grammars to solving concatenated trap problems by using “wrapping operators” and
pre-defined GE grammars to overcome these limitations.
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Table 1. An example grammar extract showing two genotypes that are specified using
schemata. The phenotype expansion of each rule is shown in the second column using
standard schema notation. Note that the example shown does not constitute a compact
representation of the two genotypes - it is used to illustrate the nature of the G-P
mapping.

g0 → {s0, 〈2|0〉, 〈3|0〉} g0
∗

=⇒ 110011

g1 → {s3, 〈0|0〉, 〈2|1〉, 〈3|1〉, 〈4|0〉} g1
∗

=⇒ 011100

s0 → {s1, s2} s0
∗

=⇒ 11**11

s1 → {〈0|1〉, 〈5|1〉} s1
∗

=⇒ 1****1

s2 → {〈1|1〉, 〈4|1〉} s2
∗

=⇒ *1**1*

s3 → {〈1|1〉, 〈5|0〉} s3
∗

=⇒ *1***0

space. Moreover, the recursive properties of production rules allow schemata
to be modelled using multiple levels of sub-schemata, which can be a far more
compact representation if those sub-schemata are used in multiple places. These
qualities are illustrated in Table 1 below.

We use each instance of schema grammar to represent a genetic population
with the symbol table of the grammar providing a surjective mapping of geno-
types G to phenotypes P . We specify the mapping as the recursive expansion of
the production rules associated with each genotype (denoted using

∗
=⇒):

P = {p : g
∗
=⇒ p, g ∈ G} (2)

Similarly, we say that the phenotype mapping of each schema symbol in S is
simply the recursive expansion of the production rules associated with each sym-
bol. It is through this mapping mechanism that we later create genetic variation
operators for evolutionary search. The phenotype mappings for both complete
genotypes and individual schemata is shown in the second column of Table 1.

We can now formally define schema grammar as the 5-tuple:

GSchema = (V,G, S,Σ,R), where: (3)

V is a set of non-terminal symbols (variables), each of which defines a
sub-language of GSchema, where V � {G,S} and G ∩ S ∈ ∅

G is a non-empty set of non-terminal symbols representing the geno-
types in the sample population

S is a set of non-terminal symbols representing genetic schemata, which
may be empty

Σ is the set of terminal symbols specified in equation (1)
R is a finite set of production rules that relate each non-terminal symbol

to the expansion of an unordered set of symbols, such that R : V →
{V ∪Σ}∗
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4 Grammar Inference

In this section we describe an offline lossless compression algorithm that is able
to infer an instance of schema grammar from a population of sample genotypes.
The algorithm we use is based on an adaptation of two existing sequential com-
pression algorithms that use grammar codes: RE-PAIR (recursive pairing), an
offline algorithm from Larsson and Moffat [11] and SEQUITUR, an online algo-
rithm from Nevill-Manning and Witten [12]. The central principle of both our
algorithm and the sequential algorithms from which it derives is to infer depen-
dency from frequency of co-occurrence. In sequential compression we define co-
occurrence as two symbols appearing next to each other (in order) in a string. In
schema grammar we define co-occurrence as two symbols being members of the
same set, which is order independent. For example, in the sequential production
rule x→ abc the two co-occurrences present are ab and bc. In schema grammar
the co-occurrences in the production rule x → {a, b, c} are the 2-combinations
{a, b}, {a, c}, {b, c}.

Compression starts by creating a grammar with no schemata (S = ∅) and a
direct mapping of genotypes to phenotypes using the Messy-GA encoding. The
process proceeds iteratively in a way analogous to RE−PAIR: on each iteration
the two most frequently co-occurring symbols in the genotype encodings G are
identified, choosing randomly if two co-occurrences have the same frequency. A
new non-terminal symbol is created that expands to the symbol pair and is added
to S. All co-occurrences of the two symbols in the samples are then substituted
with a single occurrence of the new non-terminal symbol. This process continues
recursively until no two symbols co-occur anywhere in the grammar more than
once. Larger schemata are formed by the recursive substitution of non-terminal
symbols.

We also adopt the rule utility constraints of SEQUITUR which allow un-
necessary nested hierarchies of symbol pairs to be collapsed into larger symbols.
The procedure is simply implemented by taking any non-terminal symbols that

Fig. 1. Illustration of the offline compression algorithm
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are referenced only once in the production rules and reversing the symbol substi-
tution. This situation can occur when a particular combinatorial pattern of size
|s| > 2 only ever appears whole in the samples, with subsets of the pattern not
appearing more frequently. Rather than creating a nested hierarchy of |s| − 1
non-terminal symbols only one is required. The end result of the process is a
compressed, decorrelated genotype representation and a G-P map implemented
using a hierarchy of schemata. The operation of the algorithm is illustrated in
Fig 1.

5 Inferring and Exploiting Problem Structure

In this section we investigate the ability of the grammar to infer problem struc-
ture from fit individuals on NK-landscapes [5], and then exploit the structure
to improve evolutionary search. NK-landscape problems use a simple bit-string
representation for candidate solutions and are parameterised by n, which speci-
fies the problem size (in bits), and k, which specifies the number of “neighbours”
of each bit. We use the nearest neighbour variant of the problem such that the
neighbours of each bit overlap in an ordered way (see [5] for details), but shuffle
the bits to remove any explicit sequential linkage. By varying neighbourhood size
k we are able to tune the degree of correlation structure present in the problem
from a completely correlated, unimodal landscape (where k = 0) to a completed
uncorrelated, random landscape (k = n− 1).

Fitness is calculated as the sum of individual bit fitnesses, each of which is
a function of its own state and that of the neighbours to which it is connected.
A lookup table fi is created for each bit that maps each of the 2k+1 possible
input states associated with bit i and its neighbours to a random fitness value
in the range 0 to 1. We define the fitness F of a n-bit bitstring X with state
(x0, x1, ..., xn−1) as:

F (X) =
1

n

n−1∑

i=0

fi(xi, Ω(i)) (4)

Where Ω(i) is the state of the k neighbours of bit i. Within the framework of
schema grammar a phenotype bitstring X is generated from a schema grammar
genotype g by the phenotypic expansion of the production rules associated with
g (see Section 3), and rendering the resulting set of terminal symbols as a bit
string.

In order to identify individuals of above-average fitness we used the schema
search process described in Algorithm 1 below. Schema search is a stochastic lo-
cal search process that is able to use the symbols of schema grammar as variation
operators. The search operates in phenotype space and implements phenotypic
variation using the recursive expansions of each variation symbol (overwriting
any symbols occupying the same loci). The set of symbols used for schema search
specify the search neighbourhood, and when it is used with terminal symbols (i.e.
individual allele values) it is equivalent to a stochastic bit-flip hill climber.
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Algorithm 1. Schema Search Pseudocode

input : initial phenotype bitstring pi
input : variation symbol set Λ
output: phenotype bitstring po
po ← pi
for λ ∈ RandomPermutation(Λ) do

candidate p← po
ExpandInto(candidate p, λ)
if F (candidate p) > F (po) then

po ← candidate p
end

end

We generated populations of fit individuals on NK-landscapes with varying
epistasis k. For each population we randomised phenotypes and use schema
search with terminal symbol (bit-flip) variation operators, and we also ensured
that each individual was unique in the population. The resulting phenotypes
were compressed into an instance of schema grammar using the method detailed
in Section 4. We then measured the compressibility of each population using the
entropy of the resulting grammar code (as specified in [10]). This is illustrated in
Figure 2, together with a control which is the entropy of a grammar induced from
random bit strings of the same size. The figure shows that when there is minimal
epistasis (k = 1), with a significant degree of correlation structure present in the
landscape, the sample population is highly compressible with low entropy. As
epistasis is increased then the compressibility of the population is reduced until,
in the limit, it is no more compressible than a population of random bit strings.

These results suggest that grammar induction is detecting structure where it is
present and using it to compress a population. However by themselves the results
do not confirm whether it is detecting the “right” structure, or structure that can
be exploited to improve evolutionary search. Some further insight can be gained
by looking at the schemata inferred from the population. Figure 3 shows the
inferred schema hierarchy for a single above-average fitness individual on an NK-
landscape (shown unshuffled for presentation). Although the structure is broadly
irregular, as may be expected given the randomised nature of the landscape,
patterns reflecting the intrinsic neighbourhood structure of the problem can
clearly be seen in the grammar, particularly at higher levels. This decomposition
suggests that the schema structure in the grammar may be encoding useful
neighbourhood structure from the problem landscape. The figure also illustrates
the hierarchical nature of the grammar, with larger building blocks forming from
multiple building blocks at lower levels.

We then used a multi-scale search algorithm to investigate whether the in-
formation contained in the compression model of a fit population could be ex-
ploited to aid evolutionary search. We created a population of fit individuals,
each initialised using schema search (Algorithm 1) with bit flip variation oper-
ators, which were then modelled using schema grammar induction as described
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Fig. 2. The average entropy of compressed grammars for populations of local optima
with increasing k (n = 50, population size = 200). As k increases the compressibility
of a population reduces, indicating a reduction in detectable structure.

Fig. 3. An example schema grammar hierarchy for a single fit individual on an NK
landscape (n = 50, k = 5, shown unshuffled). The top row shows the complete indi-
vidual (black = 0, white = 1 at each locus), with the schemata it is compressed with
shown in the rows below (in dependency order). The annotations illustrate part of the
dependency hierarchy.

in previous sections. We examined the mutant spectra of the population using
the schema symbols in the compressed representation of the population as vari-
ation operators (all symbols present in the production rules of each genotype).
Although each mutation is a point mutation in compressed genotype space, the
hierarchical grammatical expansions of the symbols in phenotype space include
mutations with many interacting variables. We compared against two controls:
random macro-mutation variation using an instance of the grammar but with
shuffled terminal symbols, and uniform crossover and mutation (mutation rate
= 1/n). The results in Figure 4 from a representative problem instance show
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Fig. 4. Mutant spectra of a fit population using schema grammar to facilitate variation,
as well as two controls (n = 50, k = 4, population size = 200). The area under the
positive tail of each distribution represents fitness-improving mutations, which were
7.64% of schema grammar mutations, compared to 0.11% of random macro-variations
and 0.04% of crossover/mutation variations. The average hamming distance of fitness-
improving grammar mutations was 5.66 bits.

that inferred schema structure provides a variation neighbourhood that includes
many more fitness-improving mutations than either of the two controls.

We conducted a second experiment to investigate the extent to which the
fitness of a population could be improved, solely using the specific schema struc-
ture inferred by the grammar to facilitate macro-variation. On each iteration of
the algorithm the population was modelled using schema grammar, then schema
search was run on the population using the grammar’s schema symbols as vari-
ation operators. If any beneficial moves were found then this process was re-
peated, continuing until more moves could be made or the global optimum was
located. To help maintain diversity any duplicate phenotypes in the population
were re-initialised prior to compression. We ran the algorithm on multiple, ran-
dom NK-landscapes, with the global optima identified in advance using Pelikan’s
branch and bound solver [13]. We investigated problems between lengths n = 20
and n = 50 with k varying in the range 1 − 5, and tested 400 random problem
instances for each configuration. In every run of the algorithm the global opti-
mum was successfully located. In less than 2% of problem instances it was found
using single-bit hill-climbers (particularly when k = 1), however in all other
cases the schema structure inferred from the population contained information
that allowed search to continue and find fitter regions of the search space, until
ultimately the global optimum was found. Further work is planned to test the
scalability of these techniques, including comparisons with other model-building
solvers such as BOA and LTGA, which are able to efficiently solve nearest-
neighbour NK landscapes [14,15].
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6 Conclusions

In this paper we have introduced a new class of generative grammar that is
capable of modelling combinatorial structure. We have demonstrated that on
NK-landscape problems, schema grammar is able to compress a population of
individuals using a hierarchy of schema symbols that reflect the intrinsic struc-
ture of the landscape. We have also shown that the schemata inferred into the
grammar can be exploited by facilitating multi-scale variation during evolution-
ary search. Our results suggest that the schema grammar is an effective type of
compression EA that can demonstrably discover and exploit complex structural
regularity in evolutionary problem solving.
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