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Abstract. Recursive functions are a compact and expressive way to
solve challenging problems in terms of local processing. These properties
have made recursive functions a popular target for genetic programming.
Unfortunately, the evolution of substantial recursive programs has proven
difficult. One cause of this problem is the difficulty in evolving both cor-
rect base and recursive cases using just information derived from running
test cases. In this work we describe a framework that exploits additional
information in the form of partial call-trees. Such trees - a by-product
of deriving input-output cases by hand - guides the search process by
allowing the separate evolution of the recursive case. We show that the
speed of evolution of recursive functions is significantly enhanced by the
use of partial call-trees and demonstrate application of the technique in
the derivation of functions for a suite of numerical functions.

Keywords: Recursion, Genetic Programming, Call-Tree, Adaptive
Grammar.

1 Introduction

Recursion is a compact and expressive way to define solutions to challenging
problems in terms of local processing. The brevity and power of recursion have
made the evolution of such functions a popular target for genetic programming
(GP) [5], [9], [6]. Unfortunately, the evolution of non-trivial recursive functions
through GP has proven difficult in practice [1]. One cause of this difficulty is the
need to simultaneously evolve correct code for base and recursive cases [1], [7]
before a good fitness score is achieved.

Several approaches to improve search been tried. These have included: the use
of niches to preserve diversity during search [7]; the automated discovery and
separate evolution of base cases [6]. Other work has narrowed the search-space
using templates expressing common patterns of recurrence [10,11].

However, while these approaches are beneficial, a central problem remains
that the test cases used to evaluate fitness in GP provide poor guidance in the
search for the recursive clause in recursive functions. In this work we improve
search using additional information in form of partial call-trees. We show how this
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Fig. 1. An example call tree for a Fibonacci function (a) and an equivalent graph (b)
with different ordering of children and shared child nodes

extra information can substantially improve GP search for recursive functions
by allowing code for recursive calls to be separately evolved.

1.1 Call Trees

A call tree, an example of which is shown in Fig 1(a), is a diagram often used
when informally reasoning about recursive problems. Part (b) of Fig 1 shows a
graph which is equivalent to part (a) from the point of view of our framework but
faster for the user to draw1. Each node in the call tree contains the parameter(s)
of the call and each child represents the the sub-calls made by that node. The
return value from a call can also be included in a call tree node. In Fig 1 these
return values are shown in brackets. In this work we only require the user to
provide call-trees with return values for some nodes. Moreover, not every child
call of each node is required and the tree can even be disjoint if the user desires.
Our framework is designed to require no more information from the user than
they might already create in the first, informal, stages of reasoning about a
recursive function. This extra information can then be harnessed to boost GP
search by allowing for the separate evolution of the code for the recursive case.

1.2 Contributions

We describe a framework that extracts information from a call-tree to boost GP
search. We demonstrate that our framework, which we name: Call-Tree-Guided
Genetic Programming (CTGGP), significantly improves the speed of search over
conventional GP search on a range of benchmarks. Moreover, we show that
the structure of partial call trees can be used to guide the choice of grammars
which further restricts the search space. This restricted search space permits the
evolution of functions with quite complex behaviour including functions that
make their calls in loops.

1 For the sake of brevity we will refer to both as trees in this article since our framework
treats both equivalently.
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The rest of this article is structured as follows. In the next section we outline
related work. In section 3 we describe CTGGP and how it processes its inputs
to produce recursive functions. In section 4 we describe our experimental setup
including the benchmarks and grammars we use. In section 5 we present our our
results and, finally, in section 6 we summarise our findings and canvas future
work.

2 Related Work

The difficulty in evolving the base and recursive case of recursive functions has
been recognised by several authors [1], [7], [6]. Nishiguchi and Fujimoto [7] im-
proved search by allowing less fit individuals to be preserved in a niche to main-
tain diversity. Moraglio et al. [6] showed that separate evolution of code for the
base-case significantly improved search. This work is the most similar to ours
in using the idea of separating the search of the cases. However, our work is
differs by separately evolving the recursive-case rather than base-case and, thus,
is complementary to Moraglio’s work.

Other authors have improved performance by reducing the search space by:
restricting grammars to common patterns of computation [11]; or by adapting
grammars to the application [10].

Finally, the use of direct inference about the relationship between recursive
calls is a feature of inductive programming [3,4]. This work has been very effective
in performing direct search. However, such work is typically restricted to list
functions where operators can be more readily inferred from I/O cases.

3 CTGGP

The search algorithms in CTGGP take a partial-call-tree as input and produce
a recursive function in C as output. In our current experiments, CTGGP is
restricted to discovering functions of one or two integer parameters producing
an integer result2. The input tree is quickly authored by the user using a Java
GUI forming part of the system.

The search process in CTGGP is built on Grammatical Evolution [8] using the
C++ GELib (0.26) distribution. Grammatical Evolution (GE) is a GP frame-
work that allows the user to specify an arbitrary grammar for a target language.
GE is then able to use this grammar to guide a genotype-to-phenotype mapping
that maps a bit-string genome into a syntactically correct individual program.
Because this mapping is guided by the grammar, all individuals produced are
syntactically correct in the target language.

CTGGP’s search process has two phases. These are shown in Fig 2. Phase
one evolves code determining the recursive calls of the target function and also
selects grammars to be used in phase two. Phase two evolves the remainder of the
target function. The second phase is a conventional application of GE using the

2 Though we forsee no barriers to generalisation to other types.
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Step1: Extract 
Tree Fragments

Step2: Create
Grammars

Step3: Evolve
Recursive Parameters

Phase 1:

Evolve full recursive function   

Full grammar + test cases

  Partial call tree

Recursive function

Phase 2:

Fig. 2. Evolutionary process of CTGGP

input and output values (the ones in brackets in Fig 1) as tests in the evaluative
function. As such we won’t describe phase two in further detail. The primary
contribution of this article is in phase one and we describe this next.

3.1 Phase One Search

Phase one has three steps. Step one, extracts tree fragments from the partial
call-tree provided by the user. Step two, adapts and chooses grammars for phase
one and phase two search. Step three uses GE to evolve the code that determines
the parameters to the recursive calls in the recursive case. The code from step
three will be embedded in the candidate programs generated in phase two. We
outline each step in phase one next.

Step One: Producing Tree Fragments. Step one traverses the user-supplied
call tree and, for each non-leaf node, i produces a target tree fragment of the form
(tpi, tci) where tpi is the input parameter to the parent node and target child
list: tci is an unordered list of the child node input parameters. To illustrate: the
list of target fragments for both parts of Fig 1 is

[(3, [1, 2]), (2, [0, 1])] (1)

These target fragments are compared to those produced by candidate individuals
in step three of phase one.

Step Two: Grammar Production. Step two inspects the call tree provided
by the user and, with confirmation from the user, builds the grammars to guide
phase one and phase two search. CTGGP guesses the grammars to be used based
on the number of children per node in the tree. If there are two children per-
node as there are in Fig 1 then it will guess that there are two recursive calls.
In contrast, if there are a variable number of children per node it will guess that
the recursive calls take place in a loop. CTGGP will also guess the number of
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<expr_root> ::= <var> <op> <digit> | 
  <digit> <op> <var>
<op> ::= - | * | + | /
<digit> ::= 0 | 1 | 2 | <big_digit>
<big_digit> ::= 3 | 4 | 5 | <bigger_digit>
<bigger_digit> ::= 6 | 7 | <huge_digit>
<huge_digit> ::= 8 | 9
<var> ::= x

<expr_root>::= <guard> -- <param>
<guard> ::= (<var> < i) | 
  (<var> % i) == 0 | 
  (TRUE)
<param> ::= i <op> <var> | <var> <op> i | 
  <var> - i
<op> ::= * | + | /
<var>::= x

(a) (b)

Fig. 3. Phase one grammars (a) for fixed numbers of calls and (b) for calls in a loop

base cases based on the number of calls. Since the tree provided by the user is
not required to be complete, these initial guesses could be wrong and so the user
is asked to confirm and correct the number of call and base cases.

Two sets of grammars are produced. The basic grammar choices for phase
one are shown in Fig 3. Part (a) shows the grammar for the parameters when
the number of calls is fixed. Note there is only one variable allowed: the input
variable x to the recursive function itself. Part (b) shows the grammar used
when the calls take place in a loop. This grammar has two parts: a guard, which
contains a condition determining when a recursive call can be made, and param
forming the call’s parameter.

Figure 4 shows three examples of recursive grammars used in phase two search.
The bolded param and guard keywords indicate where the code from phase
one search is inserted. The examples given are the body: of a Fibonacci function
(part (a)); of a simple linear-recursive function (part (b)) and of a function
making calls in a loop (part (c)). Note, the grammar in part (c) assumes that
the loop is bounded by a control variable, c, whose initial value is passed in as
a parameter to a helper function: aux. The presence of a control variable and
guard allows interesting enumerations to be expressed – beyond those found so
far in the GP literature. Also note that no explicit production for op is given in
part (c). In this case the syntax for op is a pairing of an operator (e.g. +) and
its left-identity (e.g. 0). The variable result is initialised with this left-identity
in the section of code abbreviated as preamble in part (c).

Step Three: Evolving the Recursive Parameters. Step three performs GE
search to evolve parameter expressions of the recursive calls using the phase one
grammar. During this search individuals are evaluated by executing them against
inputs tpi to produce a list of one or more child parameter expressions: cci these
can then be compared to their corresponding target child list tci extracted in
step one. A penalty is assessed in proportion to the mismatch between each tci
and cci all of these penalties are summed to derive the total penalty for the
individual. Thus, in our Fibonacci example, a candidate individual consisting
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<expr_root> ::= 
  if(<var> < <digit>){
    return <lit>;
  }else{
    return <expr1> <op> <expr2>;
  }
<expr1> ::= <rec1> | 
  (<rec1> <op> <lit>) |
  (<lit> <op> <rec1>)
<expr2> ::= <rec2> | 
  (<rec2> <op> <lit>) |
  (<lit> <op> <rec2>)
<rec1> ::= recurse(param1)
<rec2> ::= recurse(param2)
<op> ::= - | * | +
<lit> ::= <digit> | <var>
... as per phase 1 grammar…

<expr_root> ::= 
  if (<var> < <digit>) {
 return <lit>;
} else {
 return <expr1>;
}
<expr1> ::= <rec1> | 
  <rec1> <op> <lit> | 
  <lit> <op> <rec1>
<rec1> ::= recurse(param)
<op> ::= - | * | +
<lit> ::= <digit> | <var>
... as per phase 1 grammar..

<expr_root> ::= 
 aux(x,<small_digit>) --
 int aux(int x, int c){
   .. preamble ..
   if(<var> <rel> <small_digit>){
     return <lit>
   }else{
     .. preamble ...
     for(i=<rl>; i< <ru>; i++){
       if(guard)
         result = 
            result <op> aux(param,i);
     }
     return result
<rl> ::= c | <lit>
<ru> ::=  (<var> + <digit>) |
  (<var> - <digit>) | 
  (<digit> - <var>) | <var>
<rel> ::=  < | >

(a) (b) (c)

Fig. 4. Phase two grammar for the parameter to the recursive call for Fibonacci. The
param function where the phase one grammar will be substituted is marked in bold.
Note the digit and var productions are the same as for the phase one grammar.

of just one parameter expression x-1 generates for the tpi in (1) above the
candidate child lists: [[2], [1]]. with [2] being generated from the input 3 and [1]
being generated from 2. After candidates cci are generated our phase 1 evaluative
function gauges the match between the cci and their corresponding targets tci.
In our example this means we try to match [1, 2] with [2] and [0, 1] with [1]. Every
match attempt generates a penalty by the assess match procedure shown in
Fig 5. This procedure works by repeatedly: finding the numerically closest pair
of values between targlist and candlist (a process labeled bestMatch in Fig 5);
calculating a distance penalty; and removing matched items from both lists as
it goes. The main loop terminates when one of the lists is depleted. After the
loop, the presence of surplus target expressions means that the candidate list
didn’t cover the target list (i.e. there weren’t enough calls) and a large penalty
is applied. Conversely, surplus candidate expressions could, benignly, indicate
that user didn’t supply all of the child nodes when drawing the partial tree.
A small penalty is applied in proportion to the number of extra candidates. In
our example, when matching candidate [2] with target [1, 2] assess match will
match the 2’s (penalty: 0) and then have [1] remaining in the target list with
a total penalty of BIG PENALTY. The same penalty is assessed for the match
between [1] and [0, 1] and penalties are summed resulting in a total penalty of
2×BIG PENALTY. The values of BIG PENALTY and SMALL PENALTY are
set so that BIG PENALTY is larger than any expected difference in result values
and SMALL PENALTY is much smaller than 1.0. The penalties are summed to
form an evaluative score for an individual. Evolution proceeds until either an
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assess match(targlist,candlist)
penalty = 0;
while (|targlist| > 0 ∧ |candlist| > 0)

(targlisti, candlistj) = bestMatch(targlist, candlist)
penalty = penalty + |targlisti − candlistj |
targlist = targlist \ targlisti
candlist = candlist \ candlistj

end while
penalty = penalty + |targlist| ∗ BIG PENALTY
penalty = penalty + |candlist| ∗ SMALL PENALTY
return penalty

end

Fig. 5. Procedure to assess match between target and candidate lists

individual with zero penalty is found or a set number of generations has elapsed.
Note, that for grammars with more than one recursive call, we run step-three
search once for each recursive call, excluding previously found solutions as we
go. Also note that for grammars with loops we apply the guard to restrict the
calls made but we have to assume large loop bounds. Loop-bounds will not be
evolved precisely until phase two. This can lead to surplus candidate calls and
the small fitness penalty that this entails.

4 Experimental Setup

In our experiments, we compare the search performance of CTGGP to standard
GE. The benchmarks for our experiments are, for an integer parameter (n):
factorial returns the factorial of n; odd-evens returns 0 if nmod 2 = 0 and 1
otherwise; log2 finds �log2 n�; fib and fib3 calculates the Fibonacci and Fibonnaci-
3 number for n; lucas calculates the nth Lucas number; factorings returns the
number of unique factorings of n. sums returns the number of unique sum-
decompositons of n. These latter two benchmarks are not trivially coded by
humans and are not found elsewhere in the literature on recursive GP.

The input is a small tree drawn by CTGGP’s GUI. Trees for three benchmarks
are shown in Fig 6. Note how in part (a) and part (b) we have shared some child
nodes between sub-trees and in (a) we have included some disjoint single node
trees. Trees for our other benchmarks are of very similar size to these.

In both phases of evolution we used GE running on an underlying steady-
state GA with tournament selection. The replacement probability used was 0.25
and probabilities for crossover and mutation were, respectively, 0.9 and 0.01. In
both phases individuals were evaluated by using scripts to insert evolved code
into test harnesses and running Tiny-C-Compiler [2] (TCC) to quickly generate
binaries.

For phase one evolution we used small population of 100 individuals run-
ning for ten generations. For phase two we ran with populations of 200 for the
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Fig. 6. A selection of input trees: log2a, part (a), lucas part (b), factorings part (c)

smaller factorial, log2 and oddeven benchmarks, and with 1000 for the remaining
benchmarks. All phase two experiments were run for 100 generations.

As a control, we ran all benchmarks in a single conventional GE phase with
with a grammar including the recursive case clauses used in phase one. Note, to
better expose the impact of CTGGP these larger grammars were specialised to
each benchmark so that the only difference between the conventional GE and
the CTGGP runs is the former is required to evolve the recursive parameter
code along with the rest of the code3. When evaluating CTGGP we sum the
total number of evaluations required for both phases. All benchmarks were run
on a 2.4GHz Intel core i7 with 4GB of RAM.

5 Results and Discussion

We ran both phases of CTGGP on all benchmarks 100 times. We did likewise
for our single phase comparison benchmarks for conventional GE. Phase one of
CTGGP succeeded in finding the correct code for parameters in all benchmarks
in all runs.

The results comparing the combined cost of phase 1 and phase 2 of CTGGP
with conventional GE are shown in Table 1 The columns show, respectively, the
mean number of evaluations, the sample standard deviation of the evaluation
count, and the percentage of runs yielding a correct result for conventional GE
and CTGGC. Note, that because we limit experiments to 100 generations the
value of x is a lower bound when not all runs are correct. Statistical significance
was assessed using a log-rank test to take account of this truncation.

3 This is perhaps generous to conventional GE which would not be able to select the
correct grammar in the absence of tree information.
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Table 1. Mean number of evaluations and number of correct answers for raw GE and
CTGGP. Significantly better (p << 0.01) means are marked in bold.

problem
Conventional GE CTGGP
x σ correct x σ correct

factorial 1984 1461 99 436 79 100

oddevens 507 343 100 484 160 100

log2 7756 2138 24 3618 3520 81

fib2 32933 10700 53 2156 256 100

fib3 31375 3437 3 7863 4852 100

lucas 32012 10577 40 11713 7736 99

factorings 28266 15695 60 1937 1071 100

summands 38912 7611 26 24926 11642 91

The data from our runs show that, in most benchmarks, CTGGC, significantly
out-performs conventional GE both in terms of the reduced number of evalu-
ations required and the number of times a benchmark was correctly evolved.
The only benchmark that did not show a significant improvement was odde-
ven which presented an easier target than other benchmarks, partly because
it admits a reasonable diversity of solutions. In contrast, the log2 benchmark
exhibited a tendency to prematurely converge toward locally strong solutions.
Likewise, summands exhibited similar tendencies as well being sensitive to the
upper bound of its loop.

Another observation to be made was the high variance in the number of
evaluations required. In CTGGP this is caused by the significant number of
runs which found solutions in the first one or two generations.

In terms of experimental run times we observed TCC to be fast and we set
the timeouts for phase two runs to be small so the average evaluation time for
an individual in both phases is 2 millseconds. Runtimes for phase one evolution
varied from less than five seconds to just over a minute. Runtimes of phase
two evolution varied from less than 20 seconds (for factorial) to several minutes
(for lucas). A final observation to make is that all of the trees used in these
experiments were very easy to draw. This ease of use and the short runtimes are
positive indicators for GTGGP’s future implementation as a practical tool.

6 Conclusions and Future Work

In this article we have shown that incorporating call-tree information into the
GP search process can significantly improve performance at only a small cost in
terms of human effort. The work here is most applicable where code is required
to implement a completely unknown recurrence and the drawing of a partial
call-tree is a natural part of the exploratory process. The usefulness of CTGGP
is in automating the non-trivial step of deriving code from this partial call-tree.

This work can be enhanced in several ways. We could exploit the relationships
implicit in return values to separately derive code combining results of recursive
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calls. We could exploit existing libraries of sequences to express more complex
recurrences in loops. We could combine Moraglio’s technique for discovering
base-cases with ours. Finally, we could integrate hand-drawn-graph-recognition
software into CTGGP to allow direct derivation of recursive code from paper
sketches, completing the chain from pictures to programs.
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