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Abstract. It is known that different classes of permutation problems
are more easily solved by selecting a suitable representation. In particu-
lar, permutation representations suitable for Estimation of Distribution
algorithms (EDAs) are known to present several challenges. Therefore,
it is of interest to investigate novel representations and their proper-
ties. In this paper, we present a study of the factoradic representation
which offers new modelling insights through the use of three algorithmic
frameworks, a Genetic Algorithm (GA) and two EDAs. Four classic per-
mutation benchmark problems are used to evaluate the factoradic-based
algorithms in comparison with published work with other representa-
tions. Our experiments demonstrate that the factoradic representation
is a competitive approach to apply to permutation problems. EDAs and
more specifically, univariate EDAs show the most robust performance on
the benchmarks studied. The factoradic representation also leads to bet-
ter performance than adaptations of EDAs for continuous spaces, overall
similar performance to integer-based EDAs and occasionally matches re-
sults of specialised EDAs, justifying further study.

Keywords: Estimation of Distribution Algorithms, Factoradics, Per-
mutation.

1 Introduction

The permutation representation is widely used to model solutions to optimisation
problems. Although it is often seen as a natural way to represent solutions,
it also appears to be a challenging domain to model because of alleles being
interconnected. Recent work has highlighted this challenge for Estimation of
Distribution Algorithms (EDAs) and proposed solutions that model the space
of permutations by means of specialised distribution models [1].

A different approach to overcome challenges encountered when handling per-
mutations is to introduce alternative genotypes. In Evolutionary Algorithms
(EAs), the term genotype is often used to describe the domain searched by the
algorithms, that is the search space on which operators are applied. In order to
assess solutions, a phenotype is required. The phenotype represents the domain
in which a solution can be evaluated, or in other words, a domain that can be
read by the fitness function. Not only does using alternative genotypes allow
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some problems to be modelled efficiently by EAs, but it may also map a prob-
lem to a domain which is more adapted to these algorithms. Consequently, it has
been shown that using many representations within the same search procedure
may yield improved results by balancing out between the biases introduced by
each representation [2].

With respect to permutations, the random key (RK) genotype has widely been
used [3]. Yet, it is known to display some features that may inhibit the search in
some contexts [4]. There also exist in the literature mentions of an alternative
genotype for permutations based on the factorial numbering system, also re-
ferred to as factoradics [5]. Despite interesting features, the factoradic genotype
has been little studied by the EA community. The present paper proposes di-
rections to using the factoradic representation for optimisation. The paper aims
to understand whether the factoradic representation can support search in EAs
and identify the contexts in which it is more likely to do so, through the inves-
tigation of different specialised operators and algorithmic frameworks including
a Genetic Algorithm (GA), and two distinct EDAs.

2 Factoradic Representation

The factoradic system is a numbering system of dimension n, which uniquely
represents each number between 0 and n! − 1 as a string of factoradic digits.
Each position i, i ∈ [0, n− 1] can be assigned a digit taking a value between 0
and i. The base of each position increases with i and so does its place value, i.e.
the size of the factorial. Thus, the place value at position i is i!. The factoradic
a(!) can be transformed into its decimal form a(10) as follows:

a(10) =

n−1∑

i=0

a(!)i × i!, (1)

where a(!)i represents the i-th element of a(!). The potential of factoradics
goes beyond the simple numbering system as it represents a way to easily repre-
sent permutations. For example, the factoradic 422100 denotes the permutation
where the 4th, 2nd, 2nd, 1st, 0th and 0th items are drawn successively with-
out replacement from the set of items. Figure 1 illustrates how this factoradic
number represents the permutation 423105.

The factoradic representation allows representation of a permutation by a
string of integers of similar size, in which each digit is a number in [0, i]. In
addition, it introduces different weights between positions. These characteristics
of factoradics allow a straightforward application of EA and more precisely EDA
techniques in the permutation domain without losing problem properties. To
our knowledge, most of the applications of factoradics in EAs have focused on
Particle Swarm Optimisation (PSO) to turn permutations into a usable form for
the algorithms [6]. Factoradics have also proved useful in allowing restriction of
the search to sub spaces [5]. We refer the reader to the latter study for a more
detailed description of factoradics.
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Fig. 1. Mapping from factoradic to permutation

We consider simple operators for the factoradic representation. We note first
that standard single-point, multi-point and uniform crossover can be applied to
factoradics without alteration. Mutation operators require more care because of
the variable limit on the ith digit. We present three mutation operators suitable
for the factoradic representation. First, the point mutation (PM) only affects
one allele of the mutated solution. However, because of the characteristics of
the factoradic representation, the position of the allele influences the amount of
disruption to the solution. Hence, PM needs to be defined in conjunction with
a mutation distance as defined in [7] for permutations. The mutation distance
d denotes the position of the gene to mutate. Note that the gene at position
zero can only take the zero value and is thus never considered during operations.
An allele is mutated by sampling randomly its value from the range [0, d]. The
second mutation defined for the factoradic domain is the multi-point mutation
(MPM), which performs a PM on all alleles at a position of similar or lower
value than the specified mutation distance. Consequently, MPM is expected to
be more disruptive than the simple PM. Finally and in order to offer an even more
disruptive operator, the random multi-point mutation (RMPM) is introduced.
RMPM selects at random d alleles to mutate, regardless of their order.

3 Factoradic Algorithms

Factoradic Genetic Algorithm. The basic concept of the GA developed for
the experiments is presented in Algorithm 1. ε denotes the size of the elitism,
while crossover and mutation rates are referred to as α and β. Starting from
an initial randomly generated population pop, the GA copies the best solutions
according to ε, select solutions par1 and par2 for recombination and performs
successively crossover and mutation with respect to α and β. Generated solutions
are added to the new population popnew until it reaches the population size, in
which case it replaces the old population before being re-evaluated.

Factoradic Univariate Estimation of Distribution Algorithm. An EDA
is based on the concept of evaluating a population of solutions and building a
model from a selected subset of this population. This model can then be used
to sample new solutions. In a univariate EDA, we construct a fully factorised
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Algorithm 1. GA

Generate and evaluate pop
for each generation g do

popnew = ∅

Add ε best solutions to popnew

repeat
Select parents par1 and par2
Generate offspring off by applying crossover to par1 and par2, with probability
α or by copying par1 with probability (1− α)
Apply mutation to off with probability β
Add off to popnew

until (|popnew| = |pop|)
pop = popnew

Evaluate pop
end for
Return pop

probabilistic model which is sampled as a set of independent marginals. Algo-
rithm 2 describes the univariate EDA used in the present study, based on the
Population-Based Incremental Learning algorithm (PBIL) [8], but applied to
the factoradic representation. First, the model M(i, j) is initialised with uni-
form probabilities. M(i, j) essentially gathers the marginal probability for each
item j to be in position i. A population pop is generated at random and evalu-
ated. At each generation g, a subset of pop, popsel is selected and the model is
updated. This is done using the relative frequency of each item j at each position
i in popsel. Note that the notation popsel(k) is used to denote the kth solution
of popsel. A model Mtemp(i, j) is first created, considering only the frequencies
obtained from the current population. This model is then used to update the
previous model M(i, j). The learning rate γ defines how conservative the update
is. A high γ results in the model being mostly based on the current population,
while a low γ implies that the model keeps a lot of features from the previous
generation. Note that setting γ to 1 results in the algorithm to be the Univariate
Marginal Distribution Algorithm (UMDA) [9], where the model used at each
generation is only built from the information obtained from the current popula-
tion. Once updated, the model is sampled to generate the new population and
the process repeated over several generations.

Factoradic COMpetitive Mutating Agents. The COMMA framework [7]
evolves a population of agents. Each agent is assigned a solution whose fitness is
used to rank agents within the population. COMMA generates a distribution of
solutions spaced within a disruption distance of each agent’ solutions. This dis-
tribution is geometrically sampled by means of mutation operators to produce a
new solution for each agent. As illustrated in Algorithm 3 for minimisation opti-
misation, the principle of COMMA is to apply different operators to the agents
according to their rank in order to perform both exploration and exploitation of
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Algorithm 2. PBIL

Initialize model M(i, j) with uniform probabilities
Generate and evaluate pop
for each generation g do

Select popsel from pop
for each index i, i < n do

for each item j, j < i do

Mtemp(i, j) =
∑|popsel|

k=0
xi

|popsel| , with

{
xi = 1, if popsel(k) = j

xi = 0, otherwise
M(i, j) = γMtemp(i, j) + (1− γ)M(i, j)

end for
end for
popnew = ∅

repeat
Sample solution from M(i, j) and add to popnew

until (|popnew| = |pop|)
pop = popnew

Evaluate pop
end for

the search space. Applying such operators allows to sample new solutions more
or less distant in the search space from the agents’ solutions. The combinations
of solutions and operators represent the model in COMMA. In the case of the
factoradic implementation, the operators defined in Section 2 are adapted be-
cause they present a notion of mutation distance. COMMA operates as follows.
For each position posj in the population pop sorted in ascending order, a muta-
tion distance dj is set such that for two agents at positions e and f , de ≤ df if
e < f . Each agent ai is initially assigned a random solution si. The population
is then sorted by fitness. At each generation, each agent mutates si using the
distance disti ∈ [1, dr] defined according to its position r in the population. Note
that if the boolean parameter fixedDistance is true, disti = dr If the mutated
solution snew has a better fitness than si , ai replaces si with snew.

4 Experiments

4.1 Test Problems

Travelling Salesman Problem. Based on a given set of k cities and a matrix
of distances dij between all pairs of cities {i, j}, the TSP aims to determine a
shortest possible route r that visits each city exactly once. The route may start
at any city, but should end where it started. Hence r is a vector of length k.
Formally and using ra to denote the a-th city in r, the TSP is expressed as:

min{(
k−1∑

a=0

dra,ra+1) + drk,r0} (2)
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Algorithm 3. COMMA (for minimisation)

Initialize pop of σ agents with random solutions, distance vector d of size σ
repeat

Sort pop by fitness in descending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in pop
if fixedDistance then

disti = dr
else

Select disti with uniform probability from [1, dr]
end if
Sample new solution snew with fitness fitnew by mutating si with distance disti

if fitnew < fiti then
Assign si = snew

end if
end for

until Stopping condition met

Permutation Flowshop Scheduling Problem. In the PFSP [10], a set of
jobs is given that need to be run on a set of machines. Each of the jobs has to
be processed on every machine exactly once and only one job can be handled
by a given machine at a given time. It is assumed that each job is processed on
the machines in a set order and that the time required to process jobs varies
between jobs and between machines. The objective of the PFSP is to minimize
the time of completion of the last submitted job on the last machine. The general
expression to calculate the time of completion cπi of a given job πi on a machine
j, given its corresponding processing time tπi,j is given in (3). The fitness of
a sequence of jobs represented as the permutation π can be derived as in (4),
where n and m respectively stand for the total number of jobs and machines.

cπi,j = max{cπi−1,j , cπi,j−1}+ tπi,j (3)

cπ = cπn,m (4)

Quadratic Assignment Problem. In QAP [11], n facilities are to be assigned
to n locations in such way that the total amount of resources being transfered
between locations is minimized. Flows fa,b between all pairs of facilities (a, b)
and distances dl(a),l(b) between all pairs of locations l(a), l(b) are known. Math-
ematically the problem can be formulated as (5).

min{
∑

a,b

fa,bdl(a),l(b)} (5)
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Linear Ordering Problem. The aim of the LOP is to find a simultaneous
permutation ω of the rows and columns of a matrix D = (dij) that maximizes
the sum of the superdiagonal entries. Formally, its objective is defined as follows.

max{
n−1∑

i=1

n∑

j=i+1

dωi,ωj} (6)

4.2 Experimental Settings

Because of the wide range of EDAs for permutation problems considered, [12]
was chosen as the basis for comparison. A similar limit on fitness evaluations was
set, that is 1000n2 for each problem of size n and 10 runs were needed to compute
each result set. In order to reduce the importance given to parameter setting,
default parameter values were initially chosen and the algorithms run with every
possible combination. Default values are given in Table 1. Note that crossover
and mutation rates were respectively set to 0.9 and 0.1. Algorithm performance
was measured by best fitness found at the end of the run and by computing
the relative percentage deviation (RPD) to the known optimum, as described
in [1]. For all comparisons, statistical significance (95% confidence interval) was
measured by means of unpaired t-test, applying Bonferroni correction.

Table 1. Default parameter values

Parameter Default values Parameter Default values

pop size 50, 100, 500, 1000 tournament size 0.1, 0.25, 0.5

elitism 0, 1 selection ratio 0.1, 0.25, 0.5, 0.75

mutation PM, MPM, RMPM learning rate 0.5, 0.7, 0.9, 1

crossover 1-point, 2-point fixed distance true, false

5 Results and Discussion

Suitability of Frameworks for Factoradics. Figure 2 shows the RPD of
all methods on each problem. Over all instances, COMMA and PBIL show the
best performance, with the exception of TSP. On PFSP and QAP, COMMA and
PBIL are the most robust methods, although COMMA presents smaller standard
deviations than PBIL. LOP is the problem on which the biggest difference in
performance is observed. While COMMA shows relatively poor results, PBIL is
significantly better than the other methods. Overall, PBIL appears as a good
compromise to handle the factoradic representation across problems. It was also
observed that setting high learning rates brought enhanced results. Consequently
and as can be seen in Table 2, UMDA often outperforms PBIL.
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Fig. 2. RPD of the factoradic frameworks on the four problems

Suitability of Factoradics for the Selected Problems. To evaluate the
suitability of the factoradic representation for permutation optimisation, the re-
sults of the best algorithm with the most efficient settings is compared with the
suite of methods investigated in [12] for each problem. Results are presented
in Table 2, showing the best factoradic framework and the fitness of the best
obtained solution. Table 2 also shows for each problem the EDAs that outper-
form the factoradic methods and the EDAs that match their results. Overall, the
performance obtained using factoradics is close to the one of the best integer-
based EDAs used for permutation optimisation, that is UMDA, MIMIC and
EBNABIC , described as providing good solutions. Continuous EDAs, such as
UMDAc and EGNAee, generally show poor performance on permutation prob-
lems. As one might expect of a more natural representation, the factoradic im-
plementations exhibit solutions of greater quality. Experiments from [12] showed
that specialised EDAs are the most efficient and more precisely the EDAs using
edge and node histogram models, EHBSA and NHBSA. Although the compar-
ison with these algorithms shows that factoradic methods do not always match
their results, there exist problems where performances are of the same mag-
nitude. Also note that the IDEA-ICE permutation-based EDA never exhibits
better outcome than the factoradic frameworks.



340 O. Regnier-Coudert and J. McCall

Finally, the recursive EDA (REDA) and OmeGA, a GA based on the RK
representation, are generally behind the proposed methods. Direct comparison
between the factoradic GA and OmeGA shows that the two algorithms perform
at the same level on four instances, mostly on PFSP. However, the factoradic
GA outperforms OmeGA to a significant extent on all LOP and TSP instances
and most of the QAP ones. This comparison highlights the advantage of using
factoradics over RK in a GA.

Table 2. Results from unpaired t-tests. A �symbol denotes the algorithms whose
performance is not significantly different from the best factoradic implementation on
the problem. � shows algorithms whose results outperform those of the factoradic
algorithms. Empty cells show methods that are outperformed by implementations using
the factoradic representation.
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TSP-bays29 PBIL 2387.4 (179.5) � � � � � � �
TSP-berlin52 PBIL 11440.7 (481.6) � � � � � � �
TSP-fri26 COMMA 982.3 (38.8) � � � � � � � � �

TSP-dantzig42 PBIL 805.3 (72.9) � � � � � � � � �
PFSP-tai20-5-0 PBIL 1291.7 (8.2) � � � � � � � � � � �
PFSP-tai20-10-0 COMMA 1630.4 (12.8) � � � � � � �
PFSP-tai20-5-1 COMMA 1364.4 (2.9) � � � � � � � � � �
PFSP-tai20-10-1 COMMA 1723.9 (9.8) � � � � � � �

QAP-tai15a COMMA 399889 (2610) � � � � � � �
QAP-tai40a PBIL 3327464 (14966) � � � � �
QAP-tai15b COMMA 52002721 (54819) � � � � � � �
QAP-tai40b UMDA 699677162 (14205322) � � � � � � � �
LOP-t65b11 UMDA 350134 (2379) � � � � � �
LOP-be75np UMDA 709328 (4182) � � � � � �
LOP-be75oi PBIL 110323 (287) � � � � � �

6 Conclusions

In this paper, we have presented the factoradic representation as a genotype for
permutations, along with frameworks that can be employed to make use of it. Ex-
periments on benchmark problems have shown that the factoradic representation
is suitable for permutation optimisation, especially when used within algorithms
such as univariate EDAs. Comparison with other studies has demonstrated that
algorithms using factoradics present matching performance with integer-based
EDAs and can compete with some specialised EDAs. Future work should fo-
cus on building a deeper understanding of the relation between factoradics and
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problem characteristics. Alternative ways to model factoradics such as tree-based
approaches could also be explored. Finally, given the promising results of PBIL,
the development of multivariate factoradic-based EDAs represents an interesting
avenue for further research.
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