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Abstract. The main thesis of the position paper is that in the near future it
will be possible to create populations of animate physical objects that undergo
evolution in real space and real time. The resulting systems will differ from Evo-
lutionary Computing in two crucial aspects. First, the individuals will be physi-
cal rather than digital. This requires reproduction operators for physical objects,
which forms an engineering challenge. Second, the evolutionary process will be
induced by the autonomous behavior of the individuals themselves, not by some
central evolutionary agency that orchestrates selection and reproduction. These
differences imply severe challenges for evolutionary algorithm designers because
‘tricks’ that work in in silico may not work in vivo. However, overcoming these
challenges will ignite the development of a new field that combines Evolutionary
Computing, Robotics, Artificial Life, and Embodied AI with a great potential for
engineering as well as scientific research.

Keywords: Embodied Evolution, Evolutionary Computing, Evolutionary Robo-
tics, Self-reproducing Robots.

1 Introduction

This is a position paper corresponding to the keynote I gave on the 13th International
Conference on Parallel Problem Solving from Nature, a.k.a. PPSN 2014, about what
I call the Evolution of Things or strongly Embodied Evolution.1 It builds on the ideas
presented in my TEDx talk (http://tinyurl.com/EibenTEDx) and the 2012 paper in the
Evolutionary Intelligence journal [17]. To avoid a big overlap with these, in this paper
I focus on the technical aspects from an evolutionary perspective and illuminate certain
challenges and possible solutions based on earlier work of my collaborators and myself.

Perhaps the best way to introduce the underlying vision is to contrast two types of
evolutionary processes we know today, programmable artificial evolution in computer
models (in silico) and real-world natural evolution out in the wild (in vivo), cf. Figure 1.
Note that “programmable” is meant there in a loose sense. It does not imply the abil-
ity to deterministically drive the system to some state. Rather, it means the ability to
specify the details of the individuals’ makeup and to prescribe rules for their behavior.
The subject of this paper is the new, exciting area of research in the intersection that

1 The term “embodied evolution” is used in [42] to describe the (distributed) evolution of con-
trollers in a population of physical robots with fixed morphologies. To avoid confusion one
could call that system “weakly embodied evolution” and use “strongly embodied evolution”
for systems where the bodies evolve as well.
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Fig. 1. The Evolution of Things takes place in real space and real time based on (self-)reproducing
physical -rather than digital- entities

will feature evolvable artefacts (with designable makeup and behavioral rules) in the
physical world. In other words, I will speculate about machines with evolvable bodies
and minds.

Natural evolution is the force behind the emergence of Life on Earth, as established in
the 19th century [9]. The invention of the computer in the 20th century made it possible
to create artificial worlds and actively engineer artificial evolutionary processes in digital
spaces. The resulting field, called Evolutionary Computing, was groundbreaking in that
it converted evolution from a passive explanatory theory meant to explain a past process
into an active tool meant to create new processes. However, an evolutionary computing
process and the underlying computer models only capture the ‘macro-mechanics’ of
evolution through a simplified genotype-phenotype mapping and an abstract selection-
reproduction loop. The biochemical and physical ‘micro-mechanics’ are ignored and in
the current practice the emphasis lies on (ab)using artificial evolution as an optimizer.
Nevertheless, by the development of Evolutionary Computing and related areas in Arti-
ficial Life we –the research and user communities– have gained much experience about
working with artificial evolution. We have learned to construct various forms of evolv-
able digital objects. We have invented and studied various selection and reproduction
mechanisms, including ones that do not exist in Nature, e.g., crossover mechanisms
between more than two parents [15]. And we have designed numerous evolutionary al-
gorithms inspired by natural mechanisms, but not limited by constraints of physical or
biological reality. All in all, we have developed the know-how to set up and manage
artificial evolutionary processes and to use them for solving optimization, design, and
modeling problems [2,10,18].

Evolutionary Computing is, well, computing. Producing a new individual in an evolv-
ing population is just a matter of creating a new piece of digital code. The same holds
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for evolving virtual creatures in Artificial Life [37]. However, as noted in [19], such
systems seriously lack “the richness of matter that is a source of challenges and op-
portunities not yet matched in artificial algorithms”. Going from digital evolutionary
systems to physical ones will be a game changer in several ways and will represent a
major transition from a historical perspective that brings artificial evolution closer to
natural evolution [17].

2 Robots?

The Evolution of Things as I envision takes place in real space and real time, based on
(self-)reproducing physical -rather than digital- entities. In order to refine this vision it
is useful to distinguish ‘mindless’ things and ‘animate’ things and to state that the idea
here is to evolve animate things that can sense, make decisions, and perform actions
autonomously. Of course, it is possible to create a system of evolving mindless objects2,
but the case of animate objects is more interesting and promises more applications. This
makes robots, a.k.a. intelligent machines, relevant because robots are physical objects
that can sense, make decisions, and perform actions autonomously. One could even
extend the traditional notion of robots and postulate that any kind of animate artefact or
machine capable of sensing, making decisions, and performing actions autonomously
is a robot, regardless of the substrate that determines its physical makeup, i.e., body,
and control architecture, i.e., mind.

Carrying this view further we could say that The Evolution of (animate) Things is
the same as the evolution of robots, if only we define robots in the broad sense. It could
be argued that this definition is too limited because the notion of robots is not broad
enough. For instance, chemists working on specially engineered molecules that can
self-replicate or biologists trying to strip down living cells to make them programmable
may not see their evolving entities as robots, although they could be called ‘things’.
Furthermore, it could be incorrect to see molecules as animate entities because do not
have the ability to sense and to make decisions. However, this discussion is beyond the
scope of this paper, the point I want to make is that willing to evolve animate things
naturally leads to Evolutionary Robotics (ER).

Evolutionary Robotics is the combination of evolutionary computing and robotics
[6,12,20,33,38,39,41]. ER is a field that “aims to apply evolutionary computation tech-
niques to evolve the overall design or controllers, or both, for real and simulated au-
tonomous robots” [39]. This approach is “useful both for investigating the design space
of robotic applications and for testing scientific hypotheses of biological mechanisms
and processes” [20]. The field of ER has made much progress over the last decade and
a half. A recent overview, cf. [6], summarizes the key insights as follows:

– Manual design of a mobile robot that is autonomous and adaptive is extremely
difficult.

– As an alternative, computers can ‘evolve’ populations of robots in a simulator...

2 In such a system the objects just passively undergo evolutionary operators executed by some
‘evolution manager’ – quite like the digital individuals in a usual evolutionary algorithm.
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Fig. 2. Workflow of robot design distinguishing the design stage and the operational stage of the
robots, separated by the moment of deployment (circle in the middle). Off-line evolution takes
place in the design stage and the evolved features (usually the controllers) do not change after
deployment. On-line evolution is performed during the operational period, which means that the
robot’s features are continually changed by the evolutionary operators.

– This evolutionary approach changes the way we view robotics: ... focus shifts to
creating an evolutionary system that continuously designs and manufactures differ-
ent robots with increasing abilities.

However, as noted in [6] “the use of metaheuristics [i.e., evolution] sets this subfield of
robotics apart from the mainstream of robotics research” which “aims to continuously
generate better behavior for a given robot, while the long-term goal of Evolutionary
Robotics is to create general, robot-generating algorithms”.

From the Evolutionary Computing perspective, ER is a special application area that
is different from, say, combinatorial optimization. Somewhat oversimplifying, the main
challenge in solving optimization problems with EAs is the ruggedness of the fitness
landscape defined by the objective function. For ER applications there are two addi-
tional problems: the very weak and noisy link between controllable design details and
the target feature(s) and the great variety of conditions / requirements under which a
solution should prove good. For example, if we are to evolve NeuralNet controllers
for a robot then the NN descriptors (direct or indirect parameters of the NN topology
and weights) are the genotypes and the NN controllers form the phenotypes. Unlike
in ‘simple’ optimization, these phenotypes cannot be directly evaluated. Rather, it is
the robot behavior induced by the given controller that is observed and assessed. Thus,
in usual EC we have a 3-step chain: genotype – phenotype – fitness, while in ER the
chain is 4-fold: genotype – phenotype – behavior – fitness. Additionally, the behavior
depends on many external factors not only on the genotype and the evaluation of a con-
troller requires running the robot for a while under different circumstances. Last but not
least, desirable robot behavior is almost never defined by one single skill (except for
pure research purposes). For instance, it could be required that the robot performs well
in various arenas, under different light conditions regarding its skills for locomotion,
collision avoidance, target following, object manipulation, and cooperation with other
robots. Consequently, fitness functions in ER are inherently very noisy, very expensive,
and multi-objective in terms of behavioral requirements [32].

Since this paper is not meant to be a survey of evolutionary robotics in the following
I only consider two features that most ER applications share: 1) the off-line character
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Fig. 3. Most ER applications use a quite straightforward evolutionary algorithm, only the fitness
evaluations are special: these are mainly done by a simulator, sometime including occasional
evaluations with the hardware in-the-loop

of the evolutionary process and 2) the use of simulators. From this perspective, the
Evolution of Things is beyond conventional evolutionary robotics, because it is based
on on-line evolution in the real world.

2.1 Evolutionary Robotics Version 1: Off-line Evolution

To illuminate the on-line versus off-line aspect consider Figure 2. The usual approach
in evolutionary robotics employs an evolutionary algorithm to find a good controller
before the operational period of the robot. The evolutionary algorithm (EA) is quite
straightforward, only the fitness evaluations are special: these are done by a simulator,
possibly under different starting conditions, cf. Figure 3. When the user is satisfied with
the evolved controller, then it is deployed (installed on the physical robot) and the opera-
tional stage can start. In general, the evolved controllers do not change after deployment
during the operational stage, or at least not by evolutionary operators. Naturally, there
are studies that use the ‘hardware in the loop’ for (some of the) fitness evaluations, but
this does not change the general workflow illustrated by Figure 3, most importantly, it
does not require different kinds of EAs. Let me note that this workflow also applies for
most studies that use off-line evolution for evolving morphologies. The huge majority
of work in ER falls in this category belonging to the upper half of the table shown in
Figure 6.
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Fig. 4. In on-line ER applications the evolutionary algorithm runs in real-time on the robots them-
selves. Thin black arrow from the ‘DNA’ to the ‘brain’: the genotype is expressed and the cor-
responding phenotype (controller) is activated. Fat grey arrow between robots: interaction for
mating (recombining genotypes). Fitness evaluations are done on the real hardware and they can-
not be repeated for good statistics under the same conditions.

2.2 Evolutionary Robotics Version 2: On-line Evolution of Controllers

In principle, there is an option to apply on-line evolution to evolve robots controllers
during the operational period [16]. This implies that evolutionary operators can change
the robots’ control software even after deployment. Although this option has already
been investigated early on in the history of the field, see for example [35,42], relatively
little effort has been devoted to this type of systems. This preference is not surprising,
because it is fully in line with the widespread usage of EAs as optimizers, which fits
the off-line approach very well. However, natural evolution is not a function optimizer,
nor are evolutionary algorithms [11]. The natural role of evolution is that of permanent
adaptation and using artificial evolution in this role in a group of robots requires adjust-
ments to the usual EA setup as illustrated in Figure 4. This role is expected to become
more and more important in the future of robotics. The advantages of such systems is
phrased in [32] as follows:

“Advanced autonomous robots may someday be required to negotiate envi-
ronments and situations that their designers had not anticipated. The future
designers of these robots may not have adequate expertise to provide appropri-
ate control algorithms in the case that an unforeseen situation is encountered
in a remote environment in which a robot cannot be accessed. It is not always
practical or even possible to define every aspect of an autonomous robot’s envi-
ronment, or to give a tractable dynamical systems-level description of the task
the robot is to perform. The robot must have the ability to learn control without
human supervision.”
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Fig. 5. Artist impression of soft robots with evolving morphologies. Consecutive images illustrate
members of different generations from the start (left) to the end (right). Courtesy of Pablo Gil-
Cornaro and Claudio Rossi.

From the perspective of an evolutionary algorithm designer such systems are in-
teresting and challenging, because they have a dynamics different from usual EAs and
version 1 of ER (ER–v1). For instance, such systems have two kinds of units, the robotic
units and the evolutionary units. The robotic units are the physical, pre-engineered, and
fixed bodies that contain the computers that run the evolutionary algorithm. However,
unlike in ER–v1, these computers can move, interact, and their movements and interac-
tions depend on the evolving controllers. The evolutionary units are the controllers that
form the evolving population, they undergo selection and reproduction. These units are
digital, flexible, and continually changing. The interactions between these two types of
entities has not ben studied yet. In terms of the nomenclature introduced in Section1 this
version of ER can be called weakly embodied. One important feature of such systems is
that the number of bodies, that is robots, is given and cannot be extended. This implies
‘no-go-areas’ in the search space because a bad guess (a poor controller resulting from
an unlucky variation operator) can be ‘lethal’ for the hosting robot body if tested in real
hardware. While in usual EC bad guesses are just wasting time, in weakly embodied
ER they can waste the robots.

2.3 Evolutionary Robotics Version 3: On-line Evolution of Morphologies (and
Corresponding Controllers)

Work concerning the evolution of morphologies is scarce and either not on-line or not
physical. That is, existing work is done either in an off-line manner in computer simula-
tions only constructing the evolved robots afterwards, see for instance [30], or in an on-
line fashion but in simulation. Papers in this latter category are often positioned within
Artificial Life, investigating the evolution of ‘virtual creatures’ [37] or ‘machines’ in
general [3] , rather than robots in particular. As the question mark in Figure 6 indicates
on-line evolution of robot morphologies and the corresponding controllers has not been
done yet. The reason is quite obvious: reproduction operators for physical artefacts are
much harder to implement than for digital objects. In evolutionary computing there
are several mutation and crossover operators for all kinds of genotypes from simple
bit-strings to complex decision trees and the construction of the resulting child(ren) is
trivial in software. However, doing the same in real hardware is a different story and
self-reproducing robots form one of the Grand Challenges for Evolutionary Robotics
proposed in [13].
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Fig. 6. Four categories within Evolutionary Robotics based on what is being evolved (controllers
or morphologies) and how it is evolved (off-line or on-line). The sizes of the circles indicate the
number of papers in each category. NB Circles are not at real scale.

After this brief overview, the Evolution of Things can be described from an ER
perspective: it amounts to strongly embodied evolution, that is, ER of the third type,
where morphologies and corresponding controllers evolve on-line in the real world.

3 The Evolution of Things: Why

There are several reasons to be interested in the Evolution of Things [17]. The tech-
nology of evolvable robots offers possible applications in the future, where adapting
the robot design and/or producing new robots during the operational period without hu-
man intervention is important. This can be the case in inaccessible environments, for
example, colonies of mining robots that work in extreme depths under the surface of
the Earth for extended periods, planetary missions, deep see explorations, or medical
nano-robots acting as ‘personal virus scanners’ inside the human body. Additionally,
self-reproducing robots can be evolved with the human in the loop very much like
breeding livestock. This can combine the human guidance (user selection) with the cre-
ative exploratory power of evolution as used today in in silico evolutionary design [4,5].
There are also benefits for scientific investigations including biological research where
robots can be used as the substrate to create physical, rather than digital, models of bi-
ological systems and to study biological phenomena [21,31,40]. Furthermore, this new
technology offers unprecedented opportunities for embodied Artificial Intelligence. In
an evolving population of self-reproducing robots minds and bodies can co-evolve in
the real world. This eliminates the restriction of working with fixed morphologies and
opens the possibility to studying the mind-body problem in a new way [1,7,26,27]. One
could say that with the new technology we cannot only study how the body shapes the
mind, but also how the mind shapes the body [34].
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To illustrate the limitations of studying virtual creatures let me consider an investi-
gation into the “Effects of Evolutionary and Lifetime Learning on Minds and Bodies
in an Artificial Society” published in [8]. The study concerns a simulated artificial en-
vironment with a population of individuals that have a body as well as a mind. That
is, some of their features effect their physical properties, like speed and strength, while
other features influence their mental preferences in interacting with the environment and
other agents. The paper compares two approaches to adapting these individuals. In the
first approach the bodies and the minds develop through evolution, i.e., body features as
well as mind features are inheritable, hence evolvable. In the second approach only the
bodies evolve and the minds are adapted by lifetime-learning. In both cases the system
is purely environment driven without a user-defined quantitative fitness measure. The
results indicate that the first approach is able to sustain larger and more stable agent
populations and maintain a higher degree of individual success. Furthermore, quite un-
expectedly, the two systems differ a lot concerning the kind of bodies that emerge over
time. That is, the individuals’ bodies in the last populations reside in completely dif-
ferent segments of the physical feature space under the two regimes even though the
environment is the same. This is an interesting outcome, because it means that all other
things being equal, the method used for mental development has a strong effect on the
development of the physical features.

Unfortunately, it is hard to establish the general relevance of this result which could
just be rooted in the properties of the overly simple model of the world, the body fea-
tures, and the interactions between them. In fact, the system can be physically implausi-
ble and violate some laws of physics. The simulated world may differ from the physical
one to such an extent that the experimental findings are the opposite of the real world ef-
fect. Conducting this or a similar study in vivo, in an evolving population of real robots
would eliminate these concerns. Phrasing it from a robotics perspective, in a strongly
embodied evolutionary system there will be no reality gap anymore.

4 The Evolution of Things: How

To provide the algorithmic underpinning of evolving robots in real-time and real-space
a conceptual framework, dubbed the Triangle of Life (ToL), has been proposed recently
[14]. The ToL scheme shown in Figure 7 does not make assumptions on the physical
substrate of the evolving organisms; these can be (modular) mechatronic robots, soft
robots, artefacts with nonconventional bodies and forms of control, even (bio)chemical
entities.3 Therefore the ToL does not contain general recipes for the birth / morphogen-
esis operator shown by the left arrow in Figure 7. How this operator is implemented
depends on the given substrate for the robot bodies. With an evolutionary computing
analogy the ToL can be perceived as the equivalent of the general evolutionary algo-
rithm loop that captures the main components of one evolutionary cycle without speci-
fying which representation is being used, cf. Fig. 2.2. in [18].

3 The paper [14] illustrated the components of this framework one by one using the modular
robots of the Symbrion project. However, Symbrion was not aiming at physically evolving
morphologies and the components of the ToL have not been integrated.
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Fig. 7. The Triangle of Life after [14]. The pivotal moments that span the triangle are: 1) Concep-
tion: A new genome is activated, construction of a new organism starts. 2) Delivery: Construc-
tion of the new organism is completed. 3) Fertility: The organism becomes ready to conceive
offspring.

The proverbial Cycle of Life revolves around birth. The ToL framework adopts this
stance and defines a life cycle that does not run from birth to death, but from conception
(being conceived) to conception (conceiving one or more children). The main idea is
generic, the only significant assumption is the genotype-phenotype dichotomy. That is,
it is presumed that the evolvable objects as observed ‘in the wild’ are the phenotypes
encoded by their genotypes. In other words, the artefacts in question can be seen as
the expression of a piece of code called the genome. As part of this assumption it is
postulated that reproduction takes place at the genotypic level. This means that the evo-
lutionary operators mutation and crossover are applied to the genotypes (to the code)
and not to the phenotypes (to the physical artefacts). Nevertheless, creating new pieces
of code by crossover and mutation must be followed by the physical production of the
encoded entity by a birth or morphogenesis process. This is the most important distin-
guishing feature of the type of evolutionary systems that the ToL framework specifies.

Recall that The Triangle of Life framework is agnostic about the birth operator. How-
ever, it is important to note that birth should be implemented by a centralized system
component, by a ‘Birth Clinic’ that constructs a new organism from a building plan,
i.e., from the genome created by recombining/mutating the genomes of the parents.
Distributed solutions (‘pregnancy’ or ‘eggs’) must be avoided in favor of a system with
a single point of failure that can be used as a kill switch if the evolutionary process
needs to be halted. I consider this an important issue of principle and emphasize that
all physically embodied evolutionary systems of the future must be designed with a
shutdown guarantee.
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In my view such systems of evolving robots (in the broad sense) implemented through
the ToL framework represent a new class of Artificial Life. Regarding the question how
such a system might be used two contrasting applications present themselves. One as
an engineering solution to a requirement for multiple robots in extreme unknown or
dynamic environments in which the robots cannot be specified beforehand or have to be
(re)adjusted to the changing conditions. The other application is scientific. Such artificial
life systems could be used to investigate the development of embodied intelligence and
new types of evolutionary processes, not so much to model biological evolution, life as
it is, but to study life as it could be.

5 Special Algorithmic Challenges

The development of strongly embodied evolutionary systems bears special relevance
for the evolutionary computing community. The scientific and technical knowledge re-
garding artificial evolutionary systems has been accumulated within this community
over the last decades. Therefore, evolutionary computing could and should play an im-
portant role in the endeavor towards the Evolution of Things. However, the transition
from digital and centralized evolutionary processes to physical and distributed evolu-
tion changes essential properties of the systems known and used in EC. This implies that
evolutionary algorithms will have to be adjusted to cope with the new challenges. The
resulting field could be seen as the 21st century incarnation of evolutionary computing
with less emphasis on computing and more on evolutionary design, construction, and
interaction with the environment. It can be expected that this field will benefit from cer-
tain algorithmic mechanisms in EC such that the wheel will not have to be reinvented.
For instance, on-line evolutionary algorithms require on-line parameter setting mecha-
nisms [28]. For some parameters, such as mutation rates or mutation step sizes, several
methods are known in evolutionary computing and mechanisms for strongly embodied
systems could be based on these.

In the following I discuss some problems raised by the Evolution of Things and show
examples of existing work in EC that can be used to provide the first steps towards
possible solutions.

Population Management. Population management may not be the most obvious prob-
lem raised by strongly embodied evolution, but it is literally a matter of life and death. In
evolutionary computing the populations (almost) always have a fixed size, maintained
by the centralized ‘manager’ that orchestrates the evolutionary operators. The essence
of the mechanism is that survivor selection (a.k.a. replacement) is synchronized with
reproduction in such a way that adding n new individuals is only possible if n old ones
are removed. Likewise, n existing individuals are never removed without adding n new
ones. This is certainly not the case in natural evolution. In general, situated evolution
without central orchestration will rely on local, non-synchronized decisions regarding
birth and death [36]. Hence, the existing individuals can be removed without adding
new ones and new ones can be added without discarding old ones first. This implies
that populations can shrink or grow. In extreme cases this can lead to complete extinc-
tion or overpopulation such that the evolutionary process is halted. Related work in
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[29,43] addresses this issue by introducing autonomous selection of would-be parents
as well as individuals targeted for termination in decentralized evolutionary algorithms.
The mechanism has the following main features:

– Locally available global information. In particular, statistical information about the
population’s fitness (e.g. average fitness, min/max fitness) is available at each indi-
vidual via a gossiping protocol.

– A locally executable function that determines selection probabilities for the given
individual based on its own fitness and the available global information.

– An adaptation method that is regulating the parameters of the selection mechanism
in each individual on-the-fly, depending on the course of the search.

Experiments demonstrate the feasibility of a fully decentralized evolutionary algorithm
in which the population size can be kept stable. It is shown that parent and survivor
selection can be done without central control, completely autonomously and asyn-
chronously by the individuals themselves, yet avoiding the risk of population explosion
or implosion.

The experiments cited above are carried out in traditional EA applications aiming at
optimizing a given fitness function. In [22] the issue of possibly exploding or imploding
populations is investigated in a more natural setting, in an ALife system where evolving
agents decide autonomously and asynchronously if/when they reproduce. This is called
natural reproduction and it is complemented by natural selection where an agent dies if
it runs out of energy. The primary focus of the paper is the effect of adding individual
learning (reinforcement learning) to the evolutionary mechanism with a learnable indi-
vidual preference for performing the mating action. This allows for runtime control of
reproduction rates and in principle it can optimally regulate population sizes. However,
this also implies the possibility of unlearning mating and this is exactly what happened
in the naive versions of the system, because reproduction offers no individual benefits
but it does imply costs (children are expensive). Experiments showed that behavior op-
timal on individual level can have catastrophic effects on population level, leading to
complete extinction. The paper also demonstrated that this effect can be counteracted
by introducing a specific reward for the mating action that gives positive feedback to the
agents, regardless the related costs. One could argue that this trick is just a reinvention
of a solution known in nature, commonly called an orgasm. The system with such a
special mating reward proved to be viable, although the right level of reward remained
an open research question.

Twofold Fitness. The real world embedding in strongly embodied evolution mandates
that the population is viable, i.e., can operate in the given environment that may be un-
known beforehand and/or changing over time. In the meanwhile, most man-made sys-
tems are meant to serve a purpose, i.e., be useful for their designers/users. This implies
that evolution should be employed for two purposes. Firstly, to provide a force for adap-
tation to the environment as it does in nature and in many artificial life implementations.
This allows the evolving population to survive. Secondly, to provide a force for opti-
mization towards the objectives set by the user as in mainstream evolutionary computing
and evolutionary robotics. Recent work in [23,24,25] offers an algorithmic framework
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to combine the drives for viability and utility. The Multi-Objective aNd open-Ended
Evolution method (MONEE) balances evolution between environment-driven adapta-
tion and task-driven optimization. It is based on the fact that evolutionary methods have
two basic selection mechanisms and uses these in different roles: survivor selection is
purely driven by the environment and parent selection is based on some user defined
measure of task-performance. Experiments with large swarms of (simulated) e-pucks
prove that MONEE does indeed promote task-driven behavior without compromising
environmental adaptation. Furthermore, it is shown that an additional market mecha-
nism can ensure equitable distribution of effort over multiple tasks.

6 In Vivo Veritas

The central thesis of this paper is that the Evolution of Things combines the control-
lability and programmability of artificial evolutionary systems as used in evolutionary
computing and the physical embedding of natural evolutionary systems as seen in the
biosphere. The corresponding research area will be concerned with populations of an-
imate physical objects that undergo evolution in real space and real time driven by the
environment, user preferences (if applicable), and their own decisions. Thus, as noted
in Section 2, such artefacts can be perceived as robots in the broad sense with evolvable
minds and bodies.

The emerging field can be seen as a synergetic combination of Evolutionary Com-
puting, Robotics, Artificial Life, and Embodied AI. It will bring great new opportunities
and imply great new challenges. Certainly, the EC community knows much about how
to design, use, and analyze artificial evolutionary processes, but the whole body of work
on ‘taming evolution’ in computer simulations may prove just a frivolous exercise. The
examples reviewed in the previous section suggest that some of the existing EC tech-
niques could be useful in the new setting, but in fact it is impossible to verify this
without trying them. Real (world) problems will call for real (world) solutions.

To consider another angle let us recall the biological relevance discussed in Section 3.
From this perspective strongly embodied evolutionary systems represent physical, rather
than computational, models of evolution and this makes them more suited for biologi-
cally motivated studies. Such systems may not be based on the same biochemical micro-
mechanisms as the carbon-based life on Earth, but they use the same macro-mechanisms
(selection and reproduction with heredity) and they are physically plausible. This means
that experimental findings will reveal much more about the real world than pure com-
puter simulations.

7 Concluding Remarks

In this paper I argue that the science and technology of artificial evolution is on the verge
of a major transition: from digital to physical, from software to hardware. I believe that
within a few years we will have the technology for physically reproducing artefacts.
Such artefacts may be ‘mindless’ or ‘animate’ and although evolving populations of
‘mindless’ passive artefacts will also be a novelty, the most interesting case is that of
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Fig. 8. Taxonomy of artificial evolutionary systems

autonomous animate artefacts capable of sensing, decision making, and performing ac-
tions on their own. Such entities –robots in the broad sense of the word, not necessarily
based on a traditional mechatronic substrate– will be able to actively induce an evolu-
tionary process ‘from within’ –without a central evolutionary agency– in real time and
real space. This new incarnation of artificial evolution will be a complete game changer
confronting the designers of evolutionary mechanisms with unprecedented challenges.

Am I saying that Evolutionary Computing as we know it is doomed to disappear?
Certainly not. Employing evolutionary algorithms for solving complex optimization
and design problems is here to stay. The evolutionary algorithms used in these domains
will become a subcategory of the bigger class of artificial evolutionary processes, that
of disembodied / digital evolution, and I believe that this subcategory will remain rele-
vant. However, I foresee that the Next Big Thing will be the emergence of embodied /
physical artificial evolutionary systems, cf. Figure 8. Weakly embodied evolution will
work on fixed hardware, such as populations of smart devices and/or robots that collec-
tively evolve their control software without changing their physical makeup. Strongly
embodied evolution (The Evolution of Things) will concern systems where the physical
bodies co-evolve with the controllers. This will form a challenging area where I hope
for exciting developments in the years to come.
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