
 123

LN
CS

 8
67

2

13th International Conference
Ljubljana, Slovenia, September 13–17, 2014
Proceedings

Parallel Problem Solving
from Nature - PPSN XIII

Thomas Bartz-Beielstein
Jürgen Branke
Bogdan Filipic
Jim Smith (Eds.)

Lecture Notes in Computer Science 8672
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Thomas Bartz-Beielstein Jürgen Branke
Bogdan Filipič Jim Smith (Eds.)

Parallel Problem Solving
from Nature – PPSN XIII
13th International Conference
Ljubljana, Slovenia, September 13-17, 2014
Proceedings

13

Volume Editors

Thomas Bartz-Beielstein
Cologne University of Applied Sciences
Faculty of Computer and Engineering Sciences
Steinmüllerallee 1, 51643 Gummersbach, Germany
E-mail: thomas.bartz-beielstein@fh-koeln.de

Jürgen Branke
University of Warwick, Warwick Business School
Coventry, CV8 2SY, UK
E-mail: juergen.branke@wbs.ac.uk

Bogdan Filipič
Jožef Stefan Institute, Department of Intelligent Systems
Jamova cesta 39, 1000 Ljubljana, Slovenia
E-mail: bogdan.filipic@ijs.si

Jim Smith
University of the West of England
Department of Computer Science and Creative Technologies
Bristol, BS16 1QY, UK
E-mail: james.smith@uwe.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10761-5 e-ISBN 978-3-319-10762-2
DOI 10.1007/978-3-319-10762-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946588

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This LNCS volume contains the proceedings of the 13th International Confer-
ence on Parallel Problem Solving from Nature (PPSN 2014). This biennial event
constitutes one of the most important and highly regarded international confer-
ences in evolutionary computation and bio-inspired metaheuristics. Continuing
with a tradition that started in Dortmund in 1990, PPSN 2014 was held during
September 13–17, 2014, in Ljubljana, Slovenia.

PPSN 2014 received 217 submissions from 44 countries. After an extensive
peer-review process where most papers were evaluated by at least four reviewers,
the Program Committee chairs went through all the reports and ranked the
papers. The top 90 manuscripts were finally selected for inclusion in this LNCS
volume and for presentation at the conference. This represents an acceptance
rate of 41%, which guarantees that PPSN will continue to be one of the most
respected conferences for researchers working in natural computing around the
world.

PPSN 2014 featured three distinguished keynote speakers: Jadran Lenarčič
(Jožef Stefan Institute, Slovenia), Thomas Bäck (Leiden University, The Nether-
lands), and A. E. (Gusz) Eiben (VU University Amsterdam, The Netherlands).

The meeting began with seven workshops: “Scaling Behaviors of Landscapes,
Parameters and Algorithms” (Ender Özcan, Andrew J. Parkes), “Advances in
Multimodal Optimization” (Mike Preuss, Michael G. Epitropakis, Xiaodong Li),
“Semantic Methods in Genetic Programming” (Colin Johnson, Krzysztof Kraw-
iec, Alberto Moraglio, Michael O’Neill), “In Search of Synergies Between Re-
inforcement Learning and Evolutionary Computation” (Madalina M. Drugan,
Bernard Manderick), “Natural Computing for Protein Structure Prediction”
(José Santos Reyes, Gregorio Toscano, Julia Handl), “Workshop on Nature-
Inspired Techniques for Robotics” (Claudio Rossi, Nicolas Bredeche, Kasper
Stoy), and “Student Workshop on Bioinspired Optimization Methods and their
Applications – BIOMA 2014” (Jurij Šilc, Aleš Zamuda). The workshops offered
and ideal opportunity for the conference members to explore specific topics in
evolutionary computation, bio-inspired computing, and metaheuristics in an in-
formal and friendly setting.

PPSN 2014 also included nine free tutorials: “Theory of Evolutionary Compu-
tation” (Anne Auger, Benjamin Doerr), “Low or No Cost Distributed Evolution-
ary Computation” (J.J. Merelo), “Cartesian Genetic Programming”
(Julian F. Miller), “Multimodal Optimization” (Mike Preuss), “Theory of Paral-
lel Evolutionary Algorithms” (Dirk Sudholt), “Automatic Design of Algorithms
via Hyper-heuristic Genetic Programming” (John R. Woodward, Jerry Swan,
Michael Epitropakis), “Evolutionary Bilevel Optimization” (Ankur Sinha, Pekka
Malo, Kalyanmoy Deb), “Parallel Experiences in Solving Complex Problems”

VI Preface

(Enrique Alba), and “Algorithm and Experiment Design with HeuristicLab – An
Open Source Optimization Environment for Research and Education” (Stefan
Wagner, Gabriel Kronberger).

We wish to express our gratitude in particular to the Program Committee
members and external reviewers who provided thorough evaluations of all 217
submissions. We also express our profound thanks to all the members of the
Organizing Committee and the local organizers for their outstanding efforts in
preparing for and running the conference. Thanks to all the keynote and tuto-
rial speakers for their participation, which greatly enhanced the quality of the
conference. Finally, we also express our gratitude to the sponsoring institutions
for their financial support and the conference partners for participating in the
organization of this event.

September 2014 Thomas Bartz-Beielstein
Jürgen Branke
Bogdan Filipič

Jim Smith

Organization

PPSN 2014 was organized by the Department of Intelligent Systems and the
Computer Systems Department of the Jožef Stefan Institute, Ljubljana, Slovenia.
The Jožef Stefan Institute is the leading Slovenian institution for fundamental
and applied research in natural sciences and technology.

Conference Committee

General Chair

Bogdan Filipič Jožef Stefan Institute, Slovenia

Honorary Chair

Hans-Paul Schwefel Dortmund University of Technology, Germany

Program Chairs

Thomas Bartz-Beielstein Cologne University of Applied Sciences,
Germany

Jürgen Branke University of Warwick, UK
Jim Smith University of the West of England, UK

Tutorial Chairs

Shih-Hsi “Alex” Liu California State University, Fresno, USA
Marjan Mernik University of Maribor, Slovenia

Workshop Chairs

Evert Haasdijk VU University Amsterdam, The Netherlands
Tea Tušar Jožef Stefan Institute, Slovenia

Publications Chair

Jurij Šilc Jožef Stefan Institute, Slovenia

Local Organizing Committee Chair

Gregor Papa Jožef Stefan Institute, Slovenia

VIII Organization

Local Organizing Committee

Vesna Koricki-Špetič Jožef Stefan Institute, Slovenia
Peter Korošec Jožef Stefan Institute, Slovenia
Blaž Mahnič Jožef Stefan Institute, Slovenia
Jurij Šilc Jožef Stefan Institute, Slovenia
Vida Vukašinović Jožef Stefan Institute, Slovenia

Steering Committee

Carlos Cotta Universidad de Málaga, Spain
David W. Corne Heriot-Watt University Edinburgh, UK
Kenneth De Jong George Mason University, USA
Agoston E. Eiben VU University Amsterdam, The Netherlands
Juan Julián Merelo Guervós Universidad de Granada, Spain
Günter Rudolph Dortmund University of Technology, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland
Marc Schoenauer Inria, France
Xin Yao University of Birmingham, UK

Workshops

Scaling Behaviors of Landscapes, Parameters and Algorithms
Ender Özcan and Andrew J. Parkes

Advances in Multimodal Optimization
Mike Preuss, Michael G. Epitropakis, and Xiaodong Li

Semantic Methods in Genetic Programming
Colin Johnson, Krzysztof Krawiec, Alberto Moraglio, and Michael O’Neill

In Search of Synergies Between Reinforcement Learning
and Evolutionary Computation
Madalina M. Drugan and Bernard Manderick

Natural Computing for Protein Structure Prediction
José Santos Reyes, Gregorio Toscano, and Julia Handl

Workshop on Nature-Inspired Techniques for Robotics
Claudio Rossi, Nicolas Bredeche, and Kasper Stoy

Student Workshop on Bioinspired Optimization Methods
and Their Applications – BIOMA 2014
Jurij Šilc and Aleš Zamuda

Organization IX

Tutorials

Theory of Evolutionary Computation
Anne Auger and Benjamin Doerr

Multimodal Optimization
Mike Preuss

Evolutionary Bilevel Optimization
Ankur Sinha, Pekka Malo, and Kalyanmoy Deb

Low or No Cost Distributed Evolutionary Computation
J.J. Merelo

Theory of Parallel Evolutionary Algorithms
Dirk Sudholt

Parallel Experiences in Solving Complex Problems
Enrique Alba

Cartesian Genetic Programming
Julian F. Miller

Automatic Design of Algorithms
via Hyper-heuristic Genetic Programming
John R. Woodward, Jerry Swan, and Michael Epitropakis

Algorithm and Experiment Design with HeuristicLab – An Open
Source Optimization Environment for Research and Education
Stefan Wagner and Gabriel Kronberger

Keynote Speakers

Jadran Lenarčič, Jožef Stefan Institute, Slovenia
Thomas Bäck, Leiden University, The Netherlands
Agoston E. Eiben, VU University Amsterdam, The Netherlands

Sponsoring Institutions

B2 d.o.o.
Flaška d.d.
Kolektor Group d.o.o.

Conference Partners

City of Ljubljana
GR – Ljubljana Exhibition and Convention Centre

X Organization

Slovenian Artificial Intelligence Society
Toleranca marketing d.o.o.

Program Committee

Youhei Akimoto Shinshu University, Japan
Enrique Alba University of Málaga, Spain
Dirk Arnold Dalhousie University, Canada
Gideon Avigad Braude College, Israel
Dogan Aydin Dumlupinar University, Turkey
Jaume Bacardit University of Nottingham, UK
Helio Barbosa Laboratório Nacional de Computação

Cient́ıfica, Brazil
Thomas Bartz-Beielstein Cologne University of Applied Sciences,

Germany
Simone Bassis University of Milan, Italy
Roberto Battiti Università di Trento, Italy
Gerardo Beni Bourns College of Engineering, USA
Heder Bernardino Universidade Federal de Juiz de Fora, Brazil
Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria
Mauro Birattari IRIDIA, Université Libre de Bruxelles, Belgium
Christian Blum University of Basque Country, Spain
Yossi Borenstein VisualDNA, UK
Borko Bošković University of Maribor, Slovenia
Peter Bosman Centrum Wiskunde & Informatica (CWI),

The Netherlands
Pascal Bouvry University of Luxembourg
Anthony Brabazon University College Dublin, Ireland
Jürgen Branke University of Warwick, UK
Dimo Brockhoff Inria Lille - Nord Europe, France
Will Browne Victoria University of Wellington, New Zealand
Larry Bull University of the West of England, UK
Tadeusz Burczynski Silesian University of Technology, Poland
Edmund Burke University of Stirling, UK
Stefano Cagnoni University of Parma, Italy
Ying-Ping Chen National Chiao Tung University, Taiwan
Miroslav Chlebik University of Sussex, UK
Sung-Bae Cho Yonsei University, South Korea
Siang Yew Chong University of Nottingham, Malaysia
Carlos Coello Coello CINVESTAV-IPN, México
David Corne Heriot-Watt University, UK
Ernesto Costa University of Coimbra, Portugal
Jole Costanza University of Catania, Italy
Carlos Cotta University of Malaga, Spain

Organization XI

Peter Cowling University of York, UK
Kenneth De Jong George Mason University, USA
Antonio Della Cioppa Natural Computation Lab, DIIIE, University

of Salerno, Italy
Luca Di Gaspero DIEGM - University of Udine, Italy
Benjamin Doerr Max Planck Institute for Informatics, Germany
Carola Doerr Max Planck Institute for Informatics, Germany
Marco Dorigo Université Libre de Bruxelles, Belgium
Rafal Drezewski AGH University of Science and Technology,

Poland
Jeremie Dubois-Lacoste Université Libre de Bruxelles, Belgium
Gusz Eiben Vrije Universiteit Amsterdam, The Netherlands
Aniko Ekart Aston University, UK
Talbi El-Ghazali University of Lille, France
Michael Emmerich LIACS, Leiden University, The Netherlands
Margaret Eppstein University of Vermont, USA
Anton Eremeev Omsk Branch of Sobolev Institute

of Mathematics, SB RAS, Russia
Bogdan Filipič Jožef Stefan Institute, Slovenia
Steffen Finck Vorarlberg University of Applied Sciences,

Austria
Andreas Fischbach Cologne University of Applied Sciences,

Germany
Iztok Fister University of Maribor, Slovenia
Oliver Flasch Cologne University of Applied Sciences,

Germany
Carlos M. Fonseca University of Coimbra, Portugal
Tobias Friedrich Friedrich-Schiller-Universität Jena, Germany
Martina Friese Cologne University of Applied Sciences,

Germany
Marcus Gallagher University of Queensland, Australia
Jonathan M Garibaldi University of Nottingham, UK
Mario Giacobini University of Turin, Italy
Tobias Glasmachers RUB, Germany
Roderich Gross Sheffield University, UK
Steven Gustafson GE Global Research, UK
Walter Gutjahr University of Vienna, Austria
Pauline Haddow Norwegian University of Science

and Technology, Norway
Hisashi Handa Kindai University, Japan
Julia Handl University of Manchester, UK
Nikolaus Hansen Inria Saclay, France
Jin-Kao Hao University of Angers, France
Emma Hart Napier University, UK

XII Organization

Verena Heidrich-Meisner Extraterrestrial Physics, CAU Kiel, Germany
Torsten Hildebrandt Universität Bremen, Germany
Christian Igel Institut für Neuroinformatik, Germany
Pedro Isasi Viñuela Carlos III University of Madrid, Spain
Hisao Ishibuchi Osaka Prefecture University, Japan
Christian Jacob University of Calgary, Canada
Thomas Jansen Aberystwyth University, UK
Bryant Julstrom St. Cloud State University, UK
George Karakostas McMaster University, Canada
Andy Keane University of Southampton, UK
Graham Kendall University of Nottingham, UK
Joshua Knowles University of Manchester, UK
Barbara Koroušić Seljak Jožef Stefan Institute, Slovenia
Krzysztof Krawiec Poznan University of Technology, Poland
Halina Kwasnicka Wroclaw University of Technology, Poland
Timo Kötzing Max Planck Institute for Informatics, Germany
Joerg Laessig University of Applied Sciences Zittau/Görlitz,

Germany
Dario Landa-Silva University of Nottingham, UK
Pier Luca Lanzi Politecnico di Milano, Italy
Per Kristian Lehre University of Nottingham, UK
Peter Lewis Aston University, UK
Xiaodong Li RMIT University, Australia
Tianjun Liao Université Libre de Bruxelles, Belgium
Giosue’ Lo Bosco Università di Palermo, Italy
Fernando Lobo University of Algarve, Portugal
Daniele Loiacono Politecnico di Milano, Italy
Jose A. Lozano The University of the Basque Country, Spain
Simon Lucas University of Essex, UK
Evelyne Lutton Inria, France
Manuel López-Ibáñez Université Libre de Bruxelles, Belgium
Vittorio Maniezzo University of Bologna, Italy
Elena Marchiori Radboud University, The Netherlands
Carlos Martin-Vide Rovira i Virgili University, Spain
Benedetto Matarazzo University of Catania, Italy
Giancarlo Mauri University of Milano-Bicocca, Italy
Jacek Mańdziuk Warsaw University of Technology, Poland
Alexander Melkozerov Tomsk State University of Control Systems and

Radioelectronics, Russia
J.J. Merelo Universidad de Granada, Spain
Marjan Mernik University of Maribor, Slovenia
Silja Meyer-Nieberg Universität der Bundeswehr München,

Germany
Martin Middendorf University of Leipzig, Germany
Kaisa Miettinen University of Jyväskylä, Finland
Julian Miller University of York, UK

Organization XIII

Edmondo Minisci University of Strathclyde, UK
Marco Montes de Oca University of Delaware, USA
Sipper Moshe Ben-Gurion University, Israel
Sanaz Mostaghim Institute AIFB, Germany
Boris Naujoks Cologne University of Applied Sciences,

Germany
Ferrante Neri De Montfort University, UK
Frank Neumann The University of Adelaide, Australia
Michael O’Neill University College Dublin, Ireland
Gabriela Ochoa University of Stirling, UK
Pietro Oliveto The University of Sheffield, UK
Yew-Soon Ong Nanyang Technological University, Singapore
Gregor Papa Jožef Stefan Institute, Slovenia
Gisele Pappa UFMG, Brazil
Luis Paquete CISUC, University of Coimbra, Portugal
Andrew J. Parkes University of Nottingham, UK
Ian Parmee Advanced Computational Technologies, UK
Marco Pavone Stanford University, USA
Martin Pelikan Google, USA
David Pelta University of Granada, Spain
Silvia Poles EnginSoft, Belgium
Petr Poš́ık Czech Technical University in Prague,

Czech Republic
Richard Preen University of the West of England, UK
Mike Preuss TU Dortmund University, Germany
William Rand University of Maryland, USA
Khaled Rasheed University of Georgia, USA
Tapabrata Ray University of New South Wales, Australian

Defence Force Academy, Australia
Eduardo Rodriguez-Tello CINVESTAV-Tamaulipas, Mexico
Andrea Roli Alma Mater Studiorum - Università di Bologna,

Italy
Günter Rudolph TU Dortmund University, Germany
Thomas Runarsson University of Iceland
Thomas A. Runkler Siemens Corporate Technology, Germany
Conor Ryan University of Limerick, Ireland
Erol Sahin Middle East Technical University, Turkey
Ivo Sbalzarini Max Planck Institute of Molecular Cell Biology

and Genetics, Germany
Robert Schaefer AGH University of Science and Technology,

Poland
Marc Schoenauer Inria Saclay, Orsay Cedex, France
Oliver Schuetze CINVESTAV-IPN, Mexico
Michèle Sebag University of Paris-Sud, CNRS, France
Martin Serpell University of the West of England, UK
Roberto Serra University of Modena and Reggio Emilia, Italy

XIV Organization

Marc Sevaux Lab-STICC, Université de Bretagne-Sud,
France

Jonathan Shapiro University of Manchester, UK
Christopher Simons University of the West of England, UK
Jim Smith University of the West of England, UK
Christine Solnon LIRIS CNRS UMR 5205/INSA Lyon, France
Terence Soule University of Idaho, USA
Catalin Stoean University of Craiova, Romania
Jörg Stork Cologne University of Applied Sciences,

Germany
Thomas Stuetzle Université Libre de Bruxelles, Belgium
Dirk Sudholt University of Sheffield, UK
Ponnuthurai Suganthan Nanyang Technological University, Singapore
Jerry Swan University of Stirling, UK
Kay Chen Tan National University of Singapore
Daniel Tauritz Missouri University of Science and Technology,

USA
Jorge Tavares University of Coimbra, Portugal
German Terrazas Angulo University of Nottingham, UK
Andrea Tettamanzi Université de Nice Sophia Antipolis, France
Lothar Thiele ETH Zurich, Switzerland
Dirk Thierens Universiteit Utrecht, The Netherlands
Jon Timmis University of York, UK
Jerzy Tiuryn Warsaw University, Poland
Heike Trautmann TU Dortmund University, Germany
Elio Tuci Aberystwyth University, UK
Tea Tušar Jožef Stefan Institute, Slovenia
Rasmus Ursem Grundfos Research Technology, Denmark
Leonardo Vanneschi NOVA School of Statistics and Information

Management, Portugal
Sébastien Verel Inria Lille Nord Europe, France
Markus Wagner School of Computer Science, Australia
Lipo Wang Nanyang Technological University, Singapore
Man Leung Wong Lingnan University, Hong Kong, SAR China
Ning Xiong Mälardalen University, Sweden
Shengxiang Yang De Montfort University, UK
Gary Yen Oklahoma State University, USA
Tina Yu Memorial University of Newfoundland, Canada
Yang Yu Nanjing University, China
Martin Zaefferer Cologne University of Applied Sciences,

Germany
Aleš Zamuda UM FERI, Slovenia
Christine Zarges University of Birmingham, UK
Qingfu Zhang University of Essex, UK

Table of Contents

Keynote Papers

Some Computational Aspects of Robot Kinematic Redundancy 1
Jadran Lenarčič

Power Distribution Network Reconfiguration by Evolutionary Integer
Programming . 11

Kaifeng Yang, Michael T.M. Emmerich, Rui Li, Ji Wang,
and Thomas Bäck

In Vivo Veritas: Towards the Evolution of Things . 24
Agoston Endre Eiben

Adaptation, Self-Adaptation and Parameter Tuning

Online Black-Box Algorithm Portfolios for Continuous Optimization 40
Petr Baudǐs and Petr Poš́ık

Shuffle and Mate: A Dynamic Model for Spatially Structured
Evolutionary Algorithms . 50

Carlos M. Fernandes, Juan L.J. Laredo, Juan Julian Merelo,
Carlos Cotta, Rafael Nogueras, and Agostinho C. Rosa

How to Assess Step-Size Adaptation Mechanisms in Randomised
Search . 60

Nikolaus Hansen, Asma Atamna, and Anne Auger

Maximum Likelihood-Based Online Adaptation of Hyper-Parameters
in CMA-ES . 70

Ilya Loshchilov, Marc Schoenauer, Michèle Sebag,
and Nikolaus Hansen

Run-Time Parameter Selection and Tuning for Energy Optimization
Algorithms . 80

Ingo Mauser, Marita Dorscheid, and Hartmut Schmeck

Towards a Method for Automatic Algorithm Configuration:
A Design Evaluation Using Tuners . 90

Elizabeth Montero and Maŕıa-Cristina Riff

Parameter Prediction Based on Features of Evolved Instances for Ant
Colony Optimization and the Traveling Salesperson Problem 100

Samadhi Nallaperuma, Markus Wagner, and Frank Neumann

XVI Table of Contents

Self-Adaptive Genotype-Phenotype Maps:
Neural Networks as a Meta-Representation . 110

Lúıs F. Simões, Dario Izzo, Evert Haasdijk, and Agoston Endre Eiben

The Baldwin Effect Hinders Self-Adaptation . 120
Jim Smith

On Low Complexity Acceleration Techniques for Randomized
Optimization . 130

Sebastian Urban Stich

Stopping Criteria for Multimodal Optimization . 141
Simon Wessing, Mike Preuss, and Heike Trautmann

VLR: A Memory-Based Optimization Heuristic . 151
Hansang Yun, Myoung Hoon Ha, and Robert Ian McKay

Classifier Systems, Differential Evolution
and Swarm Intelligence

A Differential Evolution Algorithm for the Permutation Flowshop
Scheduling Problem with Total Flow Time Criterion 161

Valentino Santucci, Marco Baioletti, and Alfredo Milani

A Taxonomy of Heterogeneity and Dynamics in Particle Swarm
Optimisation . 171

Harry Goldingay and Peter R. Lewis

Derivation of a Micro-Macro Link for Collective Decision-Making
Systems: Uncover Network Features Based on Drift Measurements 181

Heiko Hamann, Gabriele Valentini, Yara Khaluf, and Marco Dorigo

Messy Coding in the XCS Classifier System for Sequence Labeling 191
Masaya Nakata, Tim Kovacs, and Keiki Takadama

Reevaluating Exponential Crossover in Differential Evolution 201
Ryoji Tanabe and Alex Fukunaga

An Extended Michigan-Style Learning Classifier System for Flexible
Supervised Learning, Classification, and Data Mining 211

Ryan J. Urbanowicz, Gediminas Bertasius, and Jason H. Moore

Coevolution and Artificial Immune Systems

A Cooperative Evolutionary Approach to Learn Communities
in Multilayer Networks . 222

Alessia Amelio and Clara Pizzuti

Table of Contents XVII

Novelty Search in Competitive Coevolution . 233
Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen

An Immune-Inspired Algorithm for the Set Cover Problem 243
Ayush Joshi, Jonathan E. Rowe, and Christine Zarges

Constraint Handling

Natural Gradient Approach for Linearly Constrained Continuous
Optimization . 252

Youhei Akimoto and Shinichi Shirakawa

Evolutionary Constrained Optimization for a Jupiter Capture 262
Jérémie Labroquère, Aurélie Héritier, Annalisa Riccardi,
and Dario Izzo

Viability Principles for Constrained Optimization Using a
(1+1)-CMA-ES . 272

Andrea Maesani and Dario Floreano

Dynamic and Uncertain Environments

On the Life-Long Learning Capabilities of a NELLI*:
A Hyper-Heuristic Optimisation System . 282

Emma Hart and Kevin Sim

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 292
Wolfgang Konen and Patrick Koch

On the Effectiveness of Sampling for Evolutionary Optimization in
Noisy Environments . 302

Chao Qian, Yang Yu, Yaochu Jin, and Zhi-Hua Zhou

Estimation of Distribution Algorithms
and Metamodelling

Evolving Mixtures of n-gram Models for Sequencing and Schedule
Optimization . 312

Chung-Yao Chuang and Stephen F. Smith

A Study on Multimemetic Estimation of Distribution Algorithms 322
Rafael Nogueras and Carlos Cotta

Factoradic Representation for Permutation Optimisation 332
Olivier Regnier-Coudert and John McCall

Combining Model-Based EAs for Mixed-Integer Problems 342
Krzysztof L. Sadowski, Dirk Thierens, and Peter A.N. Bosman

XVIII Table of Contents

A New EDA by a Gradient-Driven Density . 352
Ignacio Segovia Domı́nguez, Arturo Hernández Aguirre,
and S. Ivvan Valdez

From Expected Improvement to Investment Portfolio Improvement:
Spreading the Risk in Kriging-Based Optimization 362

Rasmus K. Ursem

Distance Measures for Permutations in Combinatorial Efficient Global
Optimization . 373

Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein

Genetic Programming

Boosting Search for Recursive Functions Using Partial Call-Trees 384
Brad Alexander and Brad Zacher

Compressing Regular Expression Sets for Deep Packet Inspection 394
Alberto Bartoli, Simone Cumar, Andrea De Lorenzo,
and Eric Medvet

Inferring and Exploiting Problem Structure with Schema Grammar 404
Chris R. Cox and Richard A. Watson

Bent Function Synthesis by Means of Cartesian Genetic
Programming . 414

Radek Hrbacek and Vaclav Dvorak

Population Exploration on Genotype Networks in Genetic
Programming . 424

Ting Hu, Wolfgang Banzhaf, and Jason H. Moore

Improving Genetic Programming with Behavioral Consistency
Measure . 434

Krzysztof Krawiec and Armando Solar-Lezama

On Effective and Inexpensive Local Search Techniques in Genetic
Programming Regression . 444

Fergal Lane, R. Muhammad Atif Azad, and Conor Ryan

Combining Semantically-Effective and Geometric Crossover Operators
for Genetic Programming . 454

Tomasz P. Pawlak

On the Locality of Standard Search Operators in Grammatical
Evolution . 465

Ann Thorhauer and Franz Rothlauf

Table of Contents XIX

Recurrent Cartesian Genetic Programming . 476
Andrew James Turner and Julian Francis Miller

Multi-objective Optimisation

An Analysis on Selection for High-Resolution Approximations
in Many-Objective Optimization . 487

Hernán Aguirre, Arnaud Liefooghe, Sébastien Verel, and
Kiyoshi Tanaka

A Multiobjective Evolutionary Optimization Framework for Protein
Purification Process Design . 498

Richard Allmendinger and Suzanne S. Farid

Automatic Design of Evolutionary Algorithms for Multi-Objective
Combinatorial Optimization . 508

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

Generic Postprocessing via Subset Selection for Hypervolume and
Epsilon-Indicator . 518

Karl Bringmann, Tobias Friedrich, and Patrick Klitzke

A Provably Asymptotically Fast Version of the Generalized Jensen
Algorithm for Non-dominated Sorting . 528

Maxim Buzdalov and Anatoly Shalyto

Clustering-Based Selection for Evolutionary Many-Objective
Optimization . 538

Roman Denysiuk, Lino Costa, and Isabel Esṕırito Santo

On the Impact of Multiobjective Scalarizing Functions 548
Bilel Derbel, Dimo Brockhoff, Arnaud Liefooghe, and Sébastien Verel

Multi-objective Quadratic Assignment Problem Instances Generator
with a Known Optimum Solution . 559

Mădălina M. Drugan

Optimized Approximation Sets for Low-Dimensional Benchmark Pareto
Fronts . 569

Tobias Glasmachers

Start Small, Grow Big? Saving Multi-objective Function Evaluations . . . 579
Tobias Glasmachers, Boris Naujoks, and Günter Rudolph

Queued Pareto Local Search for Multi-Objective Optimization 589
Maarten Inja, Chiel Kooijman, Maarten de Waard,
Diederik M. Roijers, and Shimon Whiteson

XX Table of Contents

Distance-Based Analysis of Crossover Operators for Many-Objective
Knapsack Problems . 600

Hisao Ishibuchi, Yuki Tanigaki, Hiroyuki Masuda,
and Yusuke Nojima

Discovery of Implicit Objectives by Compression of Interaction Matrix
in Test-Based Problems . 611

Pawe�l Liskowski and Krzysztof Krawiec

Local Optimal Sets and Bounded Archiving on Multi-objective
NK-Landscapes with Correlated Objectives . 621

Manuel López-Ibáñez, Arnaud Liefooghe, and Sébastien Verel

Racing Multi-objective Selection Probabilities . 631
Gaetan Marceau-Caron and Marc Schoenauer

Shake Them All!: Rethinking Selection and Replacement
in MOEA/D . 641

Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe,
and El-Ghazali Talbi

MH-MOEA: A New Multi-Objective Evolutionary Algorithm Based
on the Maximin Fitness Function and the Hypervolume Indicator 652

Adriana Menchaca-Mendez and Carlos A. Coello Coello

Empirical Performance of the Approximation of the Least Hypervolume
Contributor . 662

Krzysztof Nowak, Marcus Märtens, and Dario Izzo

A Portfolio Optimization Approach to Selection in Multiobjective
Evolutionary Algorithms . 672

Iryna Yevseyeva, Andreia P. Guerreiro,
Michael T.M. Emmerich, and Carlos M. Fonseca

Using a Family of Curves to Approximate the Pareto Front
of a Multi-Objective Optimization Problem . 682

Saúl Zapotecas Mart́ınez, Vı́ctor A. Sosa Hernández,
Hernán Aguirre, Kiyoshi Tanaka,
and Carlos A. Coello Coello

Parallel Algorithms and Hardware Implementations

Travelling Salesman Problem Solved ‘in materio’ by Evolved Carbon
Nanotube Device . 692

Kester Dean Clegg, Julian Francis Miller, Kieran Massey,
and Mike Petty

Table of Contents XXI

Randomized Parameter Settings for Heterogeneous Workers
in a Pool-Based Evolutionary Algorithm . 702

Mario Garćıa-Valdez, Leonardo Trujillo,
Juan Julián Merelo-Guérvos,
and Francisco Fernández-de-Vega

PaDe: A Parallel Algorithm Based on the MOEA/D Framework
and the Island Model . 711

Andrea Mambrini and Dario Izzo

Evolution-In-Materio: Solving Machine Learning Classification
Problems Using Materials . 721

Maktuba Mohid, Julian Francis Miller, Simon L. Harding,
Gunnar Tufte, Odd Rune Lykkebø, Mark K. Massey, and
Michael C. Petty

An Analysis of Migration Strategies in Island-Based Multimemetic
Algorithms . 731

Rafael Nogueras and Carlos Cotta

Real-World Applications

Tuning Evolutionary Multiobjective Optimization for Closed-Loop
Estimation of Chromatographic Operating Conditions 741

Richard Allmendinger, Spyridon Gerontas,
Nigel J. Titchener-Hooker, and Suzanne S. Farid

A Geometrical Approach to the Incompatible Substructure Problem
in Parallel Self-Assembly . 751

Navneet Bhalla, Dhananjay Ipparthi, Eric Klemp, and Marco Dorigo

Application of Evolutionary Methods to Semiconductor Double-Chirped
Mirrors Design . 761

Rafa�l Biedrzycki, Jaros�law Arabas, Agata Jasik, Micha�l Szymański,
Pawe�l Wnuk, Piotr Wasylczyk, and Anna Wójcik-Jedlińska

Evolving Neural Network Weights for Time-Series Prediction of General
Aviation Flight Data . 771

Travis Desell, Sophine Clachar, James Higgins, and Brandon Wild

Random Partial Neighborhood Search for University Course
Timetabling Problem . 782

Yuichi Nagata and Isao Ono

Balancing Bicycle Sharing Systems: An Analysis of Path Relinking and
Recombination within a GRASP Hybrid . 792

Petrina Papazek, Christian Kloimüllner, Bin Hu,
and Günther R. Raidl

XXII Table of Contents

Multiobjective Selection of Input Sensors for SVR Applied to Road
Traffic Prediction . 802

Jiri Petrlik, Otto Fucik, and Lukas Sekanina

Evolving DPA-Resistant Boolean Functions . 812
Stjepan Picek, Lejla Batina, and Domagoj Jakobovic

Combining Evolutionary Computation and Algebraic Constructions
to Find Cryptography-Relevant Boolean Functions 822

Stjepan Picek, Elena Marchiori, Lejla Batina,
and Domagoj Jakobovic

A Memetic Algorithm for Multi Layer Hierarchical Ring Network
Design . 832

Christian Schauer and Günther R. Raidl

Scheduling the English Football League with a Multi-objective
Evolutionary Algorithm . 842

Lyndon While and Graham Kendall

Coupling Evolution and Information Theory for Autonomous Robotic
Exploration . 852

Guohua Zhang and Michèle Sebag

Theory

Local Optima and Weight Distribution in the Number Partitioning
Problem . 862

Khulood Alyahya and Jonathan E. Rowe

Quasi-Stability of Real Coded Finite Populations . 872
Jaros�law Arabas and Rafa�l Biedrzycki

On the Use of Evolution Strategies for Optimization on Spherical
Manifolds . 882

Dirk V. Arnold

Unbiased Black-Box Complexity of Parallel Search 892
Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt

A Generalized Markov-Chain Modelling Approach to (1, λ)-ES Linear
Optimization . 902

Alexandre Chotard and Martin Holeňa

Level-Based Analysis of Genetic Algorithms and Other Search
Processes . 912

Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev,
and Per Kristian Lehre

Table of Contents XXIII

Maximizing Submodular Functions under Matroid Constraints
by Multi-objective Evolutionary Algorithms . 922

Tobias Friedrich and Frank Neumann

On the Runtime Analysis of Fitness Sharing Mechanisms 932
Pietro S. Oliveto, Dirk Sudholt, and Christine Zarges

Runtime Analysis of Evolutionary Algorithms on Randomly
Constructed High-Density Satisfiable 3-CNF Formulas 942

Andrew M. Sutton and Frank Neumann

Author Index . 953

Some Computational Aspects

of Robot Kinematic Redundancy

Jadran Lenarčič

Jožef Stefan Institute, Jamova cesta 39
1000 Ljubljana, Slovenia
jadran.lenarcic@ijs.si

http://www.ijs.si

Abstract. This paper discusses some computational aspects related to
the direct and inverse kinematics problems of serial and robot parallel
mechanisms, kinematic singularities, workspace determination, manipu-
lability, and kinematic flexibility. With the focus on kinematic redun-
dancy, an example of the humanoid shoulder presents peculiarities in
robot and human motion performing different tasks, such as the manip-
ulation of heavy objects or writing. Redundancy enables to the robot to
solve different tasks and in an infinite number of ways. The robot can
thus simultaneously solve additional secondary tasks of lower priority.

Keywords: Robot kinematics, direct and inverse kinematics problem,
parallel robots, workspace, redundant robots, humanoid robots.

1 Introduction

In their early stage, robot mechanisms were simple serial mechanisms possess-
ing six or fewer degrees of freedom. A significant impulse to the development
was given in nineties by a dramatic appearance of parallel mechanisms and
later by human-like and animal-like mechanisms. Modern robots are intended
for use in uncertain, dynamic and unstructured environments and posses com-
plex morphologies of their mechanisms with large number of degrees of freedom.
Kinematic analysis and design of such mechanisms is an extensive topic and
represents an immense source of computational problems. In many aspects the
numerical complexity of these problems poses insurmountable obstacles for the
development of practical solutions in study, control, and design of robots as well
as their applications.

Computations in robotics cover a rich spectrum of problems at the junction
of mechanics, computer science, engineering, and mathematics [2]. In this paper
the emphasis is given to various computational aspects in robot kinematics, its
analysis, design and optimisation with respect to different tasks. This is related to
the problems of direct and inverse kinematics, kinematic singularities, workspace
determination, manipulability, and kinematic flexibility. Emphasis is given to the
motion of redundant robots performing different human tasks. Redundancy gives
to the robot an unlimited source of freedom to solve different tasks and in an
infinite number of ways.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 1–10, 2014.
c© Springer International Publishing Switzerland 2014

http://www.ijs.si

2 J. Lenarčič

2 Basic Problems in Robot Kinematics

The robot mechanism is usually treated as a system of rigid bodies (called links)
interconnected by joints [1]. The mechanism can be serial, parallel or serial and
parallel combined together, the chain can be open, closed or branched. The layout
of the links and joints within a kinematic chain determines the motion properties
of the mechanism. A basic property of a mechanism is its ability to move. One
of the links is usually fixed to the ground, the moving links of the mechanism
are accomplishing various tasks, such as grasping, picking and placing of the
objects. From a mathematical point of view, the degrees of freedom within a
mechanism equals the minimum number of the mechanism’s independent joint
variables. These n variables, which are related to the angular or linear displace-
ments in joints, are referred to as joint (generalised or internal) coordinates and
are denominated by the vector q of size n.

The basic equations in robot kinematics describe the position and orientation
of the mechanism’s links, along with velocities and accelerations of the links.
In non-redundant mechanisms, the position and orientation of the terminal link
(end effector), determines the pose of each of the previous links of the mecha-
nism. The variables representing the end effector pose are referred to as the task
(Cartesian or external) coordinates of the mechanism. They are denominated by
the vector p of size m.

2.1 Direct Kinematics

As is well known, in serial mechanisms the joint and the task coordinates are
connected by a system of non-linear equations

p = pq(q), (1)

where pq is the corresponding vector function in which the joint coordinates
typically appear as the arguments of trigonometric functions [2]. These equa-
tions can be developed systematically by using homogeneous matrices or other
approaches in classical mechanics.

When the joint coordinates appear in the kinematic equations as independent
variables, we are dealing with the direct kinematics problem. In serial mecha-
nisms, the direct kinematics does not represent any particular difficulty. For a
given vector of joint coordinates q we can always obtain a unique real solution
for the vector of task coordinates p without regard to their sizes n and m.

The differential linearised, the so-called Jacobian, form of Eq. (1) is given by
the following system of equations:

dp = Jp(q)dq, (2)

where Jp(q) is the well known Jacobian matrix of the size m × n, and dq and
dp are increments (or velocities) of joint and task coordinates respectively.

Some Computational Aspects of Robot Kinematic Redundancy 3

2.2 Inverse Kinematics

When the task coordinates appear in the kinematic equations as independent
variables, we are dealing with the inverse kinematics problem. However, an ex-
plicit expression of the form

q = qp(p) (3)

can only be obtained for especially simple mechanisms, for example Cartesian
mechanisms.

In solving the inverse kinematics problem of serial mechanisms we have to
face a series of difficulties associated with the non-existence of real solutions,
multiple solutions, kinematic singularities, non-existence of closed-form analyti-
cal solutions and periodic solutions (in this section we consider only mechanisms
where n = m, other cases are discussed later):

Non-existence of real solutions – In general, the inverse kinematics problem
has a solution inside an interval of values of the task coordinates related to the
so-called reachable workspace. If the given task coordinates are out of the reach
of the mechanism, no real solution for the joint coordinates exists;

Multiple solutions – In general, for values of task coordinates within the reach
of the mechanism there exist multiple solutions for the joint coordinates. They
typically appear in pairs. Combinations of joint coordinates representing solu-
tions to the inverse kinematics problem are referred to as configurations. The
largest possible number of solutions in serial mechanisms is 2n−1;

Kinematic singularities – For some values of task coordinates the number of
possible configurations is reduced. This can happen for a single point in task
coordinates or for a region. This is a kinematic singularity and is a consequence
of several solutions merging into a single solution. The kinematic singularity of a
robot mechanism is associated with the singularity of the Jacobian matrix (2). It
is a mathematical phenomenon resulting in a decreased mobility of a mechanism;

Non-existence of closed-form solutions – Some systems of kinematic equations
(1) do not have closed-form solutions to the inverse kinematics problem and the
exact solution cannot be obtained. In such cases the solution can only be found
with numeric iterative approaches, which may not converge, and as well, may
not find all possible solutions;

Periodic solutions – Since equations (1) are trigonometric, there are an infinite
number of equivalent periodic solutions for joint coordinates that are rotational.
In robot control the joint coordinates expressed as functions of time must be
continuous and cannot be allowed to skip from one period into another.

The inverse kinematics of a serial mechanism cannot be solved algebraically
for the joint coordinates, explicitly expressed as functions of external coordi-
nates, when the mechanism has more than three degrees of freedom, except in
special cases. However, even when an algebraic solution to the inverse kinematics
problem exists, searching for the algebraic solution can be rather difficult. The
usual approach is based on a transformation of trigonometric equations (1) into
a system of polynomial equations, which transforms the problem into searching
for the roots of polynomial equations.

4 J. Lenarčič

A numerical solution to the inverse kinematics problem is used when the
system of equations (1) has no algebraic solution. Numerical approaches are well
suited for computer programming. Numerous methods exist, among them the
most well-known is the Newton-Raphson method and its numerous variations.
It is based on the inverse expression of the system (2) as follows:

dq = J−1
p (q)dp, (4)

which is valid only when the Jacobian matrix is not singular. Moreover, diffi-
culties with numerical methods are associated with the number of iterations,
convergence, and with the fact that they cannot provide all possible solutions.

3 Kinematic Redundancy

A mechanism that has too many degrees of freedom with respect to the number
of the task coordinates, when

n > m, (5)

is referred to as kinematically redundant and the difference D = n − m is de-
fined as the degree of redundancy. Kinematic redundancy does not represent any
difficulty in solving the direct kinematics problem. The situation becomes more
complicated when solving the inverse kinematics problem when the number of
unknowns is greater than the number of equations. The kinematic equations (1)
and (2) are under-constrained and there exist an infinite number of solutions
which belong to the given values of task coordinates. This enables to the robot
to solve a given task in infinite number of ways. The kinematic redundancy is
normal and frequent phenomenon in human and animal motion.

The kinematic redundancy represents a mathematical complication in solving
the inverse kinematics problem, however, a redundant robot, which possesses too
many degrees of freedom for the execution of the primary task, can execute ad-
ditional secondary tasks, such as performing a movement with minimum energy
consumption, avoiding obstacles, optimising dexterity or exploiting mechanical
advantage. We can calculate the secondary task coordinates s as follows:

s = sq(q), (6)

ds = Js(q)dq, (7)

where the number of the secondary task coordinates is l and is arbitrary.

3.1 Task Priority Approach

Resolving the kinematic redundancy is challenging in mathematical and practical
terms. The most common in robotics is the so-called task priority approach [5].
This is based on the minimisation of joint displacements relative to the primary
and to the secondary task coordinates, where the primary task coordinates posses
a higher priority than the secondary task coordinates. Since n > m, the primary

Some Computational Aspects of Robot Kinematic Redundancy 5

Jacobian matrix is rectangular and an independent solution for the primary task
uses its generalised inverse

J+
p = A−1JT

p (JpA
−1JT

p)
−1 (8)

and then
dq = J+

p (q)dp. (9)

Here A is a non-singular positive definite matrix of weights.
Similarly, since l �= n, we can form the independent solution of the secondary

task as follows:
J+
s = JT

s (JsJ
T
s)

−1 (10)

and then
dq = J+

s (q)ds. (11)

Here, the matrix of weights is a unity matrix.
The priority of tasks is assured by the orthogonal complement (null space

projector) of the primary Jacobian matrix Jp,

Np = I− JpJ
T
p . (12)

Hence, the combined task-priority solution where the secondary task is subordi-
nated to the primary task is as follows:

dq = J+
p (q)dp +NpJ

+
s (q)ds. (13)

Here, the solution of the secondary task does not disturb the execution of the
primary task. Unfortunately, the execution of the primary task does interfere
with the execution of the secondary task and, therefore, numerous improvements
of equation (13) have been proposed, such as the optimisation of the matrix of
weights A.

3.2 Measure for Kinematic Redundancy

The self-motion of a redundant mechanism is defined as the displacement of
the mechanism which corresponds to unchanging values of the primary task
coordinates. It is a tool which enables the redundant mechanism to execute the
secondary task along with the primary task. The range of the self-motion can
be represented as a subspace in joint coordinates, also known as the kinematic
flexibility. It can be quantified as a D-parametric subspace in the n-dimensional
space of joint coordinates and can, therefore, serve as a measure of kinematic
redundancy [2]. It varies as a function of task coordinates depending on the
structure of the mechanism. In spite of its obvious importance in the efficient
exploitation of kinematic redundancy, it is still poorly understood and explored.
It is because its determination is computationally difficult.

An example is a planar 3R mechanism whose primary task is to position the
end-effector. In this case n = 3, m = 2 and D = 1. Thus, the self-motion is

6 J. Lenarčič

1-parametric and can be visualised by a curve in the 3-dimensional space of the
joint coordinates. It can be observed that in some regions of the task coordinates
the mechanism possesses a single closed-loop self-motion curve, while in other
regions two open-loop curves exist. To reconfigure the mechanism from one self-
motion curve to another it is necessary to violate the primary task. Because
of this property it can occur that the desired solution of the secondary task is
possible, however only along a region of the curve which is not reachable by the
mechanism.

4 Kinematic Singularity and Manipulability

Kinematic singularity is mathematically associated with the singularity of the
Jacobian matrix in equation (2). At a kinematic singularity, a serial mechanism
behaves as if at least one degree of freedom has been lost. When a mechanism
approaches a kinematic singularity with a finite velocity in task coordinates,
components of the velocity vector in joint coordinates grow to infinite values.

The regions of kinematic singularity, which can be isolated points, curves or
surfaces, can be expressed either in the space of task coordinates or joint co-
ordinates. For a long time the opinion prevailed that the kinematic singularity
represents the border between two or several configurations of a mechanism.
More recent investigations have shown that such mechanisms represent excep-
tions. A mechanism, where the neighbouring axes are inclined one with respect
to other, can move from one configuration into another without going through
the singularity.

Kinematic singularities thus represent a significant limitation in robot mo-
tion and introduce numerous computational problems in their vicinity especially
when gradient-type numerical methods are used to solve the inverse kinematics
problem. A lot of research has been devoted to the study of kinematics singu-
larities and how they effect the robot motion in particular in terms of how they
could be avoided in the process of robot design and control.

More recent investigations have shown also the positive side of kinematic sin-
gularities. In a singular configuration, in the direction of the limited motion, the
external force is transformed into zero joint torques. By the use of a proper and
more intelligent control, the robot can gain mechanical advantage. In nature, hu-
mans and animals use kinematic singularities to minimise the fatigue, for example
in lifting weights or walking. In bio-inspired and humanoid robotics, the under-
standing of kinematic singularities will, therefore, play an important role.

When the displacements in joint coordinates are of equal length and lie on
the surface of an n-dimensional sphere

dqTdq = ε, (14)

the corresponding displacement vectors of external coordinates dp lie on a sur-
face of an m-dimensional ellipsoid, called the manipulability ellipsoid [7]. The
eigenvectors of JT

pJp are the principal axes of this ellipsoid and the lengths are
the corresponding singular values of matrix Jp. The manipulability is a scalar

Some Computational Aspects of Robot Kinematic Redundancy 7

and is defined as the product of the singular values of Jp. Hence, the manipu-
lability brings the information about the volume of the manipulability ellipsoid
and therefore measures the manipulation properties of the mechanisms in a given
configuration with respect to other configurations.

In matrix algebra the singular values represent the rank of the matrix. If at
least one of the singular values is zero, the matrix is singular and the robot end-
effector cannot move in at least one direction. The shape of the manipulability
ellipsoid is, therefore, equally important. A round ellipsoid suggests that the
mechanism can produce equal velocities in all directions, which can be advan-
tageous in applications such as dexterous manipulation. Flat ellipsoids suggest
that in some directions the velocity is reduced, which is not necessarily a negative
property because in these directions the mechanism produces large forces. This
property cannot be quantified with the measure of manipulability. Another mea-
sure is of special interest, this is the ratio between the minimal and the maximal
singular value. It is called the kinematic index and is a normalised magnitude
which describes the roundness of the manipulability ellipsoid. The self-motion
in redundant mechanisms enables to change the size and shape of manipulabil-
ity ellipsoids within a given range in the same position and orientation of the
end-effector. Such robots can easily adapt to different task requirements.

Unfortunately, such a general definition and usage of manipulability ellipsoids
is not without its problems. If a mechanism is a mixture of different joint coor-
dinates, translations and rotations, as well as different task coordinates, such as
positions and orientations, it leads to undesired combination of units, making the
comparison between mechanisms difficult and questionable. The manipulability
is also size-dependent and can only be useful as a relative measure comparing
the same mechanism or very similar mechanisms in different situations.

5 Robot Workspaces

From a broader point of view, the robot workspace is a region which is reachable
by a selected point of the mechanism and in which the mechanism possesses
certain properties, for instance the ability to reach a prescribed velocity or carry
a load. The computation and visualisation of robot workspaces is extremely
time consuming and requires an enormous amount of computations. In industrial
practice, the so-called reachable and dexterous workspaces are usually used. The
volume and form of these are among the most useful criteria to represent and
evaluate the reachability of a mechanism [6].

The reachable workspace is the region encompassing all positions which can
be reached by a selected end-point of a mechanism, regardless of the orientation
of the robot end-effector. This is the basic property of the mechanism, which
for short is called the reachability. Reachability appears an indispensable infor-
mation, however, its significance is rather irrelevant. Namely, if a mechanism is
able to reach a certain point in space, this does not mean that a required task
can be accomplished at this point.

The dexterous workspace is a region encompassing all positions which can
be reached by a selected end-point with all possible orientations of the last

8 J. Lenarčič

segment or end-effector. In contrast with the reachable workspace the dexterous
workspace also reflects the ability of a mechanism to arbitrarily orient the last
segment in a selected position. It is a subspace of the reachable workspace.

In the most general case the workspace of a mechanism is determined by
computing the position of the selected point on the mechanism and the property
which is intended to be examined (such as the load capacity or velocity) using
the required kinematic equations for all possible values of joint coordinates. The
procedure is executed in such way that the domain of each particular coordinate
is divided into a finite number of discrete values. When each coordinate is di-
vided in r intervals, the number of computations is rn. For a standard mechanism
this results in thousands of billions of computations, therefore it is important
to properly formulate the involved equations and to minimise the number of
arithmetical operations. Different postulates of computational geometry can ef-
fectively be applied depending on the mechanism’s structure.

6 Parallel Mechanisms

Parallel robot mechanisms are characterised by kinematic structures where the
rigid body segments are connected by several parallel kinematics chains [4]. One
of the segments represents the fixed base and the other segment is mobile and is
called the platform. The kinematics chains connecting the platform with the base
are called legs. Unlike a serial mechanism, the degrees of freedom of a parallel
mechanism is less than the overall number of degrees of freedom contributed by
the robot joints. They can even form rigid kinematic structures.

Parallel mechanisms have only recently emerged in industrial robotics but
their history is extensive. The most popular example is the Stewart platform
designed in 1965 as a flight simulator. The mechanism, where the mobile platform
is controlled by six actuated legs, is still referred to as Stewart platform. In
practice, robots with parallel mechanisms exhibit important static and dynamic
advantages as follows:

Load capacity, rigidity, and accuracy – Load capacity, rigidity, and accuracy
in positioning and orienting are typically several times better that in comparable
serial mechanisms. This is because the base and the platform are connected with
several kinematics chains;

Excellent dynamic properties – A parallel kinematic structure allows for all
actuators and transmissions to be placed on the base and thus they are not
moving. The platform can achieve high velocities and accelerations. Also the
resonant frequency of a parallel mechanism is orders of magnitude higher;

Simple construction – As only the passive part of the mechanism is mobile,
the construction of the mechanism is simpler and less expensive.

Nevertheless, the applicability of parallel mechanisms is limited because of
the following main reasons:

Small workspace – The workspace of a parallel mechanism is an intersection
of the workspaces of particular legs and is thus significantly reduced. Parallel
mechanisms cannot avoid obstacles in their workspace;

Some Computational Aspects of Robot Kinematic Redundancy 9

Complex kinematics – The calculation and analysis of kinematics in paral-
lel mechanisms is extremely complex and lengthy. The equations are strongly
coupled in joint and in general also in task coordinates;

Kinematic singularities – Parallel mechanisms in singularities gain degrees of
freedom, which cannot be controlled. While singular poses in serial mechanisms
may be nuisance, singular poses of parallel mechanisms result in uncontrolled
motion and may be catastrophic.

Parallel mechanisms in combination with kinematic redundancy are common
in nature. The human arm, for example, is a system of many parallel subsystems
interacting between each other. Parallel mechanisms open an immense amount
of research problems and most of them represent highly complex computational
challenges associated with their control and design. Thus, the complexity of
parallel mechanisms becomes evident in their mathematical analysis.

In parallel mechanisms the calculation of the direct kinematics problem is
typically much more complicated than the calculation of the inverse kinematics.
The Stewart platform possess one solution to the inverse kinematics problem
and 40 solutions to the direct kinematics problem. This was discovered after
many years of investigations and finally proven in the middle of nineties. To
our knowledge there has been no investigation on how the parallel robot can
move from one solution to another without violating its mechanical limitations
or intersection of its legs.

7 Example of Bio-Inspired Robot Mechanism

In humans and animals, the muscles stretch over the joints and together with
bones create various kinematic structures. The shoulder complex is one of the
most illustrative examples. In [3], the human shoulder is modelled as a parallel
mechanism of four degrees of freedom associated with the shoulder girdle (Fig.1
- left), and as three intersecting perpendicular rotations associated with the
glenohumeral joint (Fig.1 - middle and right).

Hence, the humanoid shoulder mechanism possesses 7 degrees of freedom,
where the one related to the expansion of the shoulder girdle is dependent on the

Fig. 1. Humanoid shoulder

10 J. Lenarčič

girdle inclinations. Typically, the primary task of the human arm is considered
the positioning and orienting of the hand in space. The self-motion of the arm
is then expressed as the rotation of the centre of the elbow around an axis
connecting the centre of the glenohumeral joint and the centre of the wrist.
Despite of the limited amount of this rotation, the arm can drastically change
the geometry of the manipulability ellipsoid. When the arm is aligned with the
trunk and the manipulability ellipsoid is flat (Fig.1 - middle), the arm most
efficiently resists to vertical forces. When the elbow is lifted to the height of the
shoulder (Fig.1 - right), the manipulability ellipsoid becomes completely round
enabling equal displacements in all directions, which can be useful in writing.

8 Conclusions

Various computational aspects in the robot kinematics are given. These are
associated to direct and inverse kinematics problems of serial and parallel mech-
anisms, kinematic singularities, workspace determination, manipulability, and
kinematic flexibility. In the end, an example of the humanoid shoulder perform-
ing different tasks, such as the manipulation of heavy objects or writing, is briefly
discussed. It can be seen, how the kinematic redundancy enables to the robot to
solve a primary task in different ways associated with different secondary tasks
of lower priority.

References

1. Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, New York
(2007)

2. Lenarčič, J., Bajd, T., Stanǐsić, M.M.: Robot Mechanisms. Springer, Dordrecht
(2013)

3. Lenarčič, J., Stanǐsić, M.M.: Humanoid Shoulder Complex and the Humeral Point-
ing Kinematics. IEEE Trans. Robot. Autom. 19, 499–507 (2003)

4. Merlet, J.-P.: Parallel Robots. Springer, Dordrecht (2006)
5. Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-Priority Based Redundancy Con-

trol of Robot Manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)
6. Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. Springer,

London (2000)
7. Yoshikawa, T.: Manipulability of Robotic Mechanisms. Int. J. Robot. Res. 4(2), 3–9

(1985)

Power Distribution Network Reconfiguration

by Evolutionary Integer Programming

Kaifeng Yang1, Michael T.M. Emmerich1, Rui Li1,
Ji Wang2, and Thomas Bäck1

1 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
2 Central South University, 410083 Changsha, Hunan Province, China

Abstract. This paper presents and analyses new metaheuristics for
solving the multiobjective (power) distribution network reconfiguration
problem (DNRP). The purpose of DNRP is to minimize active power
loss for single objective optimization, minimize active power loss and
minimize voltage deviation for multi-objective optimization.

A non-redundant integer programming representation for the prob-
lem will be used to reduce the search space size as compared to a binary
representation by several orders of magnitudes and represent exactly
the feasible (cycle free, non-isolated node) networks. Two algorithmic
schemes, a Hybrid Particle Swarm Optimization - Clonal Genetic Algo-
rithm (HPCGA) and an Integer Programming Evolution Strategy (IES),
will be developed for this representation and tested empirically.

Conventional algorithms for solving multi-objective DNRP are con-
verting the multiple objective functions into a single objective function
by adding weights. However, this method cannot capture the trade-offs
and might fail in case of a concave Pareto front. Therefore, we extend the
HPCGA and IES in order to compute Pareto fronts using selection proce-
dures from NSGA-II and SMS-EMOA. The performance of the methods
is assessed on large scale DNRPs.

Keywords: Power Distribution Network Reconfiguration, Integer Pro-
gramming, Particle Swarm Optimization, Clonal Genetic Algorithm, Evo-
lution Strategies, Multiobjective Optimization.

1 Introduction

With the sustainable development of economy, there is an increasingly high de-
mand for the quality and reliability of the electricity supply in every industry.
Power distribution network reconfiguration is an important method of optimiz-
ing the distribution system, which is significant to enhancing the security, the
efficiency, and the reliability of the system. There are two types of switches in a
power network system: normally closed switches and normally open switches. See
Figure 1, for an example of a power distribution network configuration, the 119
bus system [1], where the black solid lines represent normally closed switches,
and red dashed lines represent normally open switches. Network reconfiguration
is the process of changing the topology of the power network by operating these
switches for the purpose of minimization of the power loss. Since each switch has

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 11–23, 2014.
c© Springer International Publishing Switzerland 2014

12 K. Yang et al.

Fig. 1. Initial configuration of the 119-bus test system

two conditions, for a system which has N nodes, there should be 2N−1 potential
switch configurations. To make sure that all the customers can get electricity
and no short circuit exists in the system, there are, however, two constraints for
network reconfiguration: no cycles (the radial structure of the network must be
maintained in each new structure) and no islands (all the loads must be served).

The problem of finding an optimal distribution network reconfiguration is
known to be NP hard, and larger instances with more than 100 nodes cannot yet
be solved exactly, such that several metaheuristics were proposed: Zhang et al.
[1] developed a tabu search algorithm for real power loss minimal reconfiguration
in large-scale distributed systems. Aman et al. [2] proposed to use evolutionary
programming (EP) to find the optimal topology of the distributed network for
minimizing the real power loss. Rao et al. [3] presented artificial bee colony
algorithms for determining the sectionalizing switch to be operated to solve the
real power loss minimization problem. Niknam et al. [4] presented an interactive
fuzzy satisfying method based on hybrid modified honey bee mating optimization
for aggregation-based multiple objective optimization. Kasaei [5] used an ant
colony algorithm to solve the optimal network reconfiguration and capacitor
placement problem for power loss reduction and voltage profile enhancement in
distribution networks.

The contribution of this paper is to discuss concise representations of the
problem, discuss fast and reliable evolutionary integer programming solvers,

Power Network Reconfiguration 13

and extend them for Pareto-based (set-based) multiobjective optimization. The
objective functions considered will be power loss and voltage profile enhance-
ment, but as opposed to the study in [5], we are interested in visualizing the
trade-off and the robustness by using multiobjective optimization techniques.

2 Problem Description

The network reconfiguration problem in a power distribution system is to find
the best configuration of a radial network. The objective functions are the mini-
mization of power loss and the maximization of the network’s reliability. Besides,
the network has to satisfy certain operating conditions [3].

2.1 Objective Function

The objective function for the minimization of power loss can be described
as [6]:

min floss =

b∑
i=1

kiRi
P 2
i +Q2

i

V 2
i

=

b∑
i=1

kiRi | Ii |2 (1)

subject to:
V min
i ≤ Vi ≤ V max

i (2)

Ii ≤ Imax
i , i = 1, ..., b (3)

Here b is the number of branches and for each branch i ∈ {1, ..., b}, Ri is the
branch resistance, Pi and Qi are the active power and the inactive power of a
branch terminal i, Vi is the terminal node voltage of branch i, V min

i and V max
i

are the minimum and maximum bus voltage of branch i, respectively, ki is the
status variable of i-th switch. If ki is 0, then switch i is open and if ki is 1, then
switch i is closed. Ii is the branch current and Imax

i is the maximum current in
branch i.

The objective function for minimization of voltage deviation can be ex-
pressed as follows [7][8]:

min fVDI = max{| 1− Umin |, | 1− Umax |} (4)

where Umin and Umax are respectively the minimum and maximum values of
bus voltage divided by rated voltage to normalize them to value in [0, 1].

2.2 Feasible Constraint on Network Topology

Recall that, in order to ensure the supply to all nodes and avoid short circuits,
the network must be cycle free and not contain isolated nodes. The previous
method for verifying whether an individual is feasible or not is based on the
topology checks of the structure [9]. This method can be computed fast, but
requires some manual parameter settings beforehand.

14 K. Yang et al.

A design for an automatic feasibility check is proposed next. It rests upon
the following idea of cycle free network construction: suppose there are N nodes
in a system, and there should be at least (N−1) line segments to connect all these
nodes. Then the first line segment can connect 2 arbitrary nodes to the system.
Any new line segment, which is not the first line segment, can only connect a
new node to the existing system, because otherwise a cycle would be introduced.

The feasibility check algorithm is based on the relationship between the num-
ber of the nodes and line segments. Suppose there are N bus buses and N line
branches in the system. Based on the aforementioned, we can easily conclude
that: if N line > N bus, there must be at least one cycle in the structure.
Clearly, if N line < N bus − 1, there must be at least two separated compo-
nents in the structure. Therefore, N line must equal N bus− 1, if the structure
is feasible. Given N line = N bus− 1, feasibility is implied by the non-existence
of isolated nodes, due to the following: if there is a cycle and only N bus − 1
edges can be used, at least one of the nodes cannot be connected and it will be
an isolated node. As detecting isolated nodes is simple, we can now state the
following fast and correct algorithm for checking whether a network is cycle free
and does not contain isolated nodes:

Algorithm 1. Topology Feasibility Check
Step 1 Verify N line equals N bus − 1; if not equal, the individual is not feasible,
otherwise go to step 2;
Step 2 Verify whether there is a separated component or not. If there exists a sepa-
rated component, the individual is not feasible, otherwise it is feasible.

3 Power Loss Minimization Algorithms

Two algorithms for minimizing power loss in DNRP will be discussed next, and
extended in section 6 to bi-objective optimization methods. All algorithms are
based on a concise sequence encoding of the feasible search space.

3.1 Encoding Strategy

The encoding strategy is a main part which influences the efficiency of the al-
gorithm in distribution network reconfiguration. For a genetic algorithm, it is
common to use binary encoding, and it is also straightforward in DNRP as
each switch can be associated with a binary variable. However, considering the
topology constraint, many solutions of the search space induced by binary en-
coding would be infeasible. Instead, we therefore propose to use sequence en-
coding [10], which has the following advantages: 1. It is easy to realize; 2. The
probability of generating a feasible solution is high.

The sequence encoding system regards each loop (potential cycle) as a gene.
In each loop exactly one switch has to be open, as otherwise either there would

Power Network Reconfiguration 15

be isolated components (two open switches) or there would be short circuits (no
open switch). Each loop of the power network is encoded by a natural number,
and all the switches are coded sequentially by natural numbers starting from 1.
For each gene, the value of this gene is the position of the switch that is open in
the loop represented by the gene. Sequence coding strategy can eliminate most
of the infeasible individuals from the search space.

Example 1. Figure 2, is an example of the IEEE-16 distribution system [6][11].
Here a connection of two bus nodes is also a loop. There are three loops in this
system. Loop 1 is composed by branches 5, 6, 8 and 9; loop 2 is composed by
branches 4, 7, 13, 14 and 15; loop 3 is composed by branches 10, 11 and 12.
To make sure the structure satisfying the constraints, one branch in each loop
should be opened. Therefore, the search space size is 4 × 5 × 3 = 60 using the
sequence encoding system. Compared to a search space size of 212 = 4096 using
binary encoding system the search space can be dramatically reduced.

Fig. 2. IEEE-16 distribution system after coding

However, for a real world problem, there could be hundreds or thousands of
transformers in one city, and the number of solutions in the search space is very
large, even using this sequence coding. For example, in a IEEE-69 system, the
binary encoding generates a search space of size 268 ≈ 2.95× 1020 and sequence
encoding approximately generates a search space size of 1.78× 106. For the 119
system (see Figure 1), the search space size is 2119 ≈ 6.65×1035 and 1.44×1018,
respectively, using binary coding and sequence encoding strategy.

3.2 Hybrid Particle Swarm/Clonal Genetic Algorithm

TheHybrid Particle SwarmOptimization/ClonalGenetic Algorithm (PSO-CGA)
is based on two generational transitions (variation and selection steps) that are
applied in an alternating manner. The PSO is fast for local optimization, and the
CGA is mainly integrated to the PSO in order to prevent premature convergence
and increase diversity, e.g., by a special mutation-shift operator. The flowchart of
PSO-CGA can be seen in Figure 3.

16 K. Yang et al.

Fig. 3. Flowchart of hybrid PSO-CGA

In PSO it is assumed that the solution space has dimension D, and the popu-
lation is composed by N particles X = {x1, ..., xi, ..., xn}, the position of the i-th
particle is xi = (xi1, xi2, ..., xiD)T , P best

i = (P best
i1 , P best

i2 ,...,P best
iD)T stands for

the best known position of particle i, and gbest = (gbest1 , gbest2 , ..., gbestD)T stands
for the best known position of the entire swarm, the velocity of particle i is
Vi = (vi1, vi2, ..., vid)

T . Particle xiD updates its velocity and position informa-
tion by [12]:

V k+1
id = ω × V k

id + c1 × r1 × (P best
id −Xk

id) + c2 × r2 × (gbestd −Xk
id) (5)

Xk+1
id = Xk

id + V k+1
id i = 1, 2, ..., N ; d = 1, 2, ..., D (6)

where ω is the inertia factor, c1 and c2 are the learning factors, r1 and r2 are
random real numbers within [0, 1].

Traditionally, clonal genetic algorithms (CGA) [13] use roulette wheel selec-
tion. This paper uses another selection mechanism, and this selection mecha-
nism in CGA partitions the parent population P in three subpopulations, say
PB, PM , PW , the size of which is fixed by |PB| = u1|P |, |PM | = u2|P |, and
|PM | = u3|P | with u1 + u2 + u3 = 1. The new generation is generated in three
steps:

Step 1: Select u1×100% best offspring for mutation, if there is no improvement
after mutation, choose the offspring before the mutation; the general idea is to
search for improvements nearby current best solutions.
Step 2: Select u3 × 100% worst offspring for initialization; the general idea
behind this mechanism is to maintain the population’s diversity.
Step 3: Apply mutation operator for the remaining offspring, the difference
between this step 3 and step 1, is that after step 3, the mutated individuals will
always be kept, no matter whether there is an improvement or not. This allows
slow diffusion away from a local optimum.

Power Network Reconfiguration 17

3.3 CGA Shift and Mutate Operator

The CGA variation operator is composed by shift and mutation operators [13]
[14]. The multi-shift operator adds (or subtracts) the same random offset Num-
ber Shift to all genes in a random subset of genes gene shift. A random direction
flag Direction F lag is used to decide whether to add or subtract. If the interval
boundary gets exceeded the value of the gene is set to the interval boundary.

Example 2. An example for the multi-shift operator is shown in the table below.
Where gene shift = [2, 4, 5], and the current individual is [× × 7 11 21].

Parent Number Shift Direction F lag Offspring
[× 4 × 11 21] 5 0 [× 9 × 16 26]
[× 4 × 11 21] 5 1 [× 1 × 6 16]

The mutation operator is another main part in CGA. It determines first the
genes to be mutated and then sets them to a new random value. A single-shift
(single-mutation) operator shifts (mutates) only a single gene.

4 Integer Programming Evolutionary Strategy

We studied evolution strategies for integer programming (IES) by Rudolph [15],
as an alternative search algorithm approach. It features a (μ + λ)-selection
scheme, that is λ offspring Q are generated based on μ parents P and the best μ
individuals out of P ∪Q form the next parent population. Each individual is cre-
ated by selecting randomly two parents (sexual case) or more than two parents
(panmictic case), applying discrete recombination (choose each gene randomly
from one of the parents) or intermediate recombination (averaging) to create a
single offspring, which then is mutated. The mutation operator perturbs each
gene by the difference of two geometrically distributed pseudo-random numbers.
For each gene a step-size ςi is maintained and undergoes a mutation, too, which
makes it possible for the step-size to adapt. The mutation maps an individual
(X, ς) ∈ (Zn × (R+)n) to its mutant (X′, ς ′) ∈ (Zn × (R+)n) as follows:

ς ′i = max{1, ςi exp(τNc + τ ′Ni)}, Ni ∼ Normal(0, 1), Nc ∼ Normal(0, 1)

zij =

⌊
ln(1− uij)

ln(1− ϕi)

⌋
, ϕi = 1− ζi(1 +

√
1 + ζ2i)

−1, uij ∼ Uniform(0, 1), j = 1, 2

X ′
i = Xi + zi1 − zi2, i = 1, . . . , n (7)

Since the original geometric distribution is single tailed, Rudolph proposed
the use of the difference zi1 − zi2 and could show that the resulting multivariate
distribution has 	1 symmetry, maximal entropy, and infinite support. It features
(multiple) self-adaptive mutation step sizes and, for a minimal stepsize greater
than zero, global convergence for t →∞. In case interval boundaries are exceeded
reflection at the interval boundary is used [16]. To prevent stagnation the stepsize
is bounded from below by 1. Learning rates τ and τ ′ determine the speed of step-
size adaptation. See also [16] for a detailed description, default parameters and
analysis.

18 K. Yang et al.

5 Single-objective Optimization Result

The simulation results1 are based on distribution system 119 [1]. The test sys-
tem is a 11 kV distribution system with 118 sectionalizing switches and 15 tie
switches, and the total power loads are 22709.7 kW and 17041.1 kVAr. The
topology of the distribution system 119 is shown in figure 1. All simulations were
performed in MATLAB 8.2, CPU: Intel 2 Core 3.16GHz, 2.0 GB DDR RAM (800
MHz). The power flow calculation (to calculate power loss and voltage deviation)
is using Newton Method based on MATPOWER [17], and maximum number of
iterations is 20, termination tolerance on per unit is 1e-8.

Fig. 4. The best structure

PSO-CGA Hybrid: The PSO-CGA hybrid was run with a population size of
30, and the PSO parameters were ω = 0.8, c1 = 2, c2 = 2, v max = 4 (Max
speed factor), v min = −4 (Min speed factor). For each run, 50 PSO steps (7
generations per step) and 50 CGA steps (7 generations per step) were conducted
in alternation. One run takes 15-30 minutes. In the CGA one of the operators,
single-shift, single-mutation, multi-shift, or multi-mutation is chosen randomly.
In case of multi-shift and multi-mutation the number of genes to be mutated
is chosen randomly, too, between 1 and the number of genes. An experiment
was designed to find optimal settings for parameters u1, u2, and u3 within their
bounds [0, 1] and respecting the constraint u1 + u2 + u3 = 1. A design of
experiments for mixtures was applied following parameter setting in [18].

1 The MATLAB source code of the numerical experiments is available on request by
the authors and on http://natcomp.liacs.nl/index.php?page=code.

http://natcomp.liacs.nl/index.php?page=code

Power Network Reconfiguration 19

The results (shown in Table 1) of the experimental design are visualized as
ternary diagrams (Figure 5). The best results are achieved with a low rate of
reinitialization (u3) and a relatively high rate for u1.

Fig. 5. Mixture design (left) and interpolated results (middle, right) of u1 (selection),
u2 (diffusion), and u3 (reinitialization) for CGA-PSO hybrid on Test System 119

Table 1. Experiments on Hybrid PSO-CGA

u1 1 0 0 0.5 0.5 0 0.333 0.167 0.167 0.666 0.333
u2 0 1 0 0.5 0 0.5 0.333 0.167 0.666 0.167 0.333
u3 0 0 1 0 0.5 0.5 0.333 0.666 0.167 0.167 0.333

Exp.1 875.155 1037.9 1329.96 883.828 875.155 1325.33 891.033 891.864 875.155 890.918 874.86
Exp.2 875.155 1085.33 1478.89 875.155 875.155 1120.87 875.155 990.197 875.155 874.86 874.86
Exp.3 875.539 1110.29 1487.06 874.86 890.918 1057.02 875.155 875.155 888.966 875.155 874.86
Exp.4 870.856 1209.17 1138.57 874.86 874.86 1412.98 883.858 887.39 875.155 875.155 875.155
Exp.5 875.155 1068.33 1408.56 875.155 886.437 1366.81 903.49 876.178 876.729 883.641 874.86
Exp.6 875.155 1130.18 1492.56 875.155 875.155 1405.2 875.155 874.86 874.86 874.86 875.155
Exp.7 875.155 1195.5 1492.28 883.858 875.155 1363.57 875.155 869.727 874.86 891.57 875.155
Exp.8 887.505 1081.05 1390.6 877.34 878.96 1186.35 874.86 890.918 874.86 878.209 889.16
Exp.9 874.86 1014.13 1281.5 874.86 874.86 1277.85 878.334 890.918 887.39 874.86 875.155
Exp.10 875.155 1041.54 1384.4 874.86 874.86 1177.81 875.155 875.155 1013.09 869.727 874.86
Min 870.856 1014.13 1138.57 874.86 874.86 1057.02 874.86 869.727 874.86 869.727 874.86
Max 887.505 1209.17 1492.56 883.858 890.918 1412.98 903.49 990.197 1013.09 891.57 889.16
Mean 875.969 1097.34 1388.438 876.993 878.152 1269.38 880.735 892.236 891.622 878.896 876.408

Deviation 4.27671 65.1574 114.1382 3.68630 5.78028 126.08 9.60066 35.3921 43.0215 7.37168 4.482993

Integer Programming Evolution Strategy: The parameters for the IES are as fol-
lows: μ = 15, λ = 100, σinitial = (ub− lb)/8, ubsigma = (ub− lb)/3, lbsigma = lb,
τ = 1√

2nz
and τ ′ = 1√

2
√
nz

, where ub and lb is the upper bound and lower bound

vector of the variables, N = 15 in case of the 119 system. Each run had 100
iterations and took about 5-10 minutes. For the IES preliminar experimentation
showed that the recombination type was a crucial choice. Table 2 shows results of
different recombination methods based on the Integer ES. We tested four recom-
bination types: none (1), discrete (2), panmictic discrete (3), and intermediate
(4); see [19]. The best result that was found was with a discrete recombination
on the object variables, and a panmictic discrete recombination on the step size.

20 K. Yang et al.

Table 2. Experimental results for the 119 system based on ES

s. X = 1 s. X = 2 s. X = 3 s. X = 4

s. ς = 1
Min 939.6829 893.6304 935.478 930.895
Max 1302.274 1687.879 1556.437 1904.853

s. ς = 2
Min 881.8714 874.8604 869.7271 878.3646
Max 1083.146 978.1069 974.6982 1048.195

s. ς = 3
Min 875.155 894.2617 878.3646 876.0975
Max 1009.264 1088.795 1120.487 1090.32

s. ς = 4
Min 912.3288 1103.351 950.3428 1059.776
Max 3666.716 7029.378 3071.888 10456

Both Hybrid PSO-CGA and IES can find the same optimal result, see Table 3.
The open switches in best result, whose structure is shown in Figure 4, are 42-43,
26-27, 23-24, 51-52, 62-49, 58-59, 39-40, 91-96, 71-72, 74-75, 97-98, 108-83, 105-
86, 109-110 and 34-35. Comparing PSO-CGA and IES, it is found that the former
was more robust (better average values) while the latter found better results and
converged faster (IES 5-10 min, PSO-CGA 15-30 min). All strategies perform
significantly better than PSO-CGA with settings u1 = 0, u2 = 0, u3 = 1, which
is essentially a trial and error strategy (within the sequence representation). The
improvement is by a factor of 1298.0861/869.7271 , i.e. the power loss found by
PSO-CGA or IES metaheuristics is only ca. 67% of the power loss of a solution
found by trial and error for the same number of evaluations.

Table 3. Best results for 119 system

Before reconfiguration After reconfiguration based on MATPOWER

Refference [1] [3] Matpower [1] [3] Hybrid PSO-CAG & IES
Unit: kW 1294.3 1298.09 1298.0861 887.5055 869.7271 869.7271

6 Multiobjective Optimization

We extended IES to a multiobjective optimization algorithm by replacing the
selection scheme by that of a multiobjective algorithm, namely the (μ + μ) se-
lection of NSGA-II [20] and the (μ+1) selection of SMS-EMOA [21] (which has
earlier been used also in Pareto archivers [22]). As a second objective voltage
deviation was minimized (see equation 4).

As an adaptation, we introduced a variant of SMS-EMOA and NSGA-II with a
self-adaptive single step size. Whenever more than five mutations per individual
were unsuccessful, the step size was multiplied by a constant factor of 1/1.2
(following the 1/5th success rule). Success of a generation was registered if a new
non-dominated solution entered the archive of non-dominated solutions among
all solutions encountered so far.

The results (attainment curves) for a population size of μ = 30 and 11 runs per
algorithm are shown in Figure 6, where f1 and f2 represent voltage deviation and

Power Network Reconfiguration 21

Fig. 6. Best, worst, and average attainment curves for the multiobjective optimization
of 119 DNRP

power loss. In the following discussion by Pareto front, we mean the archive of all
non-dominated solutions encountered in a single run. SMS-EMOA with a single
step size provides the best Pareto fronts in the best case and also in the average
case. Interestingly, all strategies find a Pareto front with a concave part. The
interpretation of this is that locally there is a strong conflict between power loss
minimization and voltage deviation minimization for this problem. However, the
range of voltage deviation is relatively small, so that ’from a distance’ the Pareto
front has a clear knee point region. Solutions in this region can be recommended
as good compromise solutions, whereas points located on the flanks of the Pareto
front are not recommended as small improvements in one objective will cause
large deterioration of the other objective.

7 Conclusions

In this paper two well performing optimization strategies for solving the power
distribution network reconfiguration problem have been described and tested on
a challenging problem with more than 100 switches. A concise integer repre-
sentation was chosen and it was demonstrated that it reduces the search space
size by many orders of magnitude as opposed to the binary representation used
in genetic algorithms so far. In the experiments we focused on finding a good
ratio between exploration and exploitation in the PSO-CGA and on choosing a
good recombination operator in the IES with self-adaptive mutation. This turned
out to be discrete recombination on object and step-size variables. The results
clearly show that it is much better to use metaheuristics instead of trial and

22 K. Yang et al.

error strategies when minimizing power loss. Also multiobjective optimization
algorithms, NSGA-II and SMS-EMOA, were applied to compute a Pareto front
between voltage deviation and power loss objectives. These objectives turned out
to be conflicting in the knee point region but globally, when zooming out, they
appear to be complementary. For the future work, it is recommended to test the
strategies on a broader set of benchmarks and further investigate multiobjective
problem formulations, for instance including objective functions on reliability.

Acknowledgment. Kaifeng Yang acknowledges financial support from China
Scholarship Council (CSC), CSC No.201306370037.

References

[1] Zhang, D., Fu, Z.C., Zhang, L.C.: An improved ts algorithm for loss-minimum
reconfiguration in large-scale distribution systems. Electric Power Systems Re-
search 77(5), 685–694 (2007)

[2] Aman, M.M., Jasmon, G.B., Naidu, K., Bakar, A.H.A., Mokhlis, H.: Discrete evo-
lutionary programming to solve network reconfiguration problem. In: TENCON
Spring 2013 Conference, pp. 505–509. IEEE, Sydney (2013)

[3] Rao, R.S., Narasimham, S.V.L., Ramalingaraju, M.: Optimization of distribution
network configuration for loss reduction using artificial bee colony algorithm. In-
ternational Journal of Electrical Power and Energy Systems Engineering 1(2),
116–122 (2008)

[4] Niknam, T., Meymand, H.Z., Mojarrad, H.D.: An efficient algorithm for multi-
objective optimal operation management of distribution network considering fuel
cell power plants. Energy 36(1), 119–132 (2011)

[5] Kasaei, M.J., Gandomkar, M.: Loss reduction in distribution network using si-
multaneous capacitor placement and reconfiguration with ant colony algorithm.
In: Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010, pp.
1–4. IEEE, Chengdu (2010)

[6] Qin, Y.M., Wang, J.: Distribution network reconfiguration based on particle clonal
genetic algorithm. Journal of Computers 4(9), 813–820 (2009)

[7] Chiou, J.P., Chang, C.F., Su, C.T.: Variable scaling hybrid differential evolution
for solving network reconfiguration of distribution systems. IEEE Transactions on
Power Systems 20(2), 668–674 (2005)

[8] Niknam, T.: A new hybrid algorithm for multi-objective distribution feeder re-
configuration. Cybernetics and Systems: An International Journal 40(6), 508–527
(2009)

[9] Wang, S.X., Wang, C.S.: A novel network reconfiguration algorithm implicitly
including parallel searching for large-scale unbalanced distribution systems. Au-
tomation of Electric Power Systems 24(19), 34–38 (2000)

[10] Ma, X.F., Zhang, L.Z.: Distribution network reconfiguration based on genetic
algorithm using decimal encoding. Transactions of China Electrotechnical Soci-
ety 19(10), 65–69 (2005)

[11] Bi, P.X., Liu, J., Liu, C.X., Zhang, W.Y.: A refined genetic algorithm for
power distribution network reconfiguration. Automation of Electric Power Sys-
tems 26(2), 57–61 (2002)

Power Network Reconfiguration 23

[12] Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)

[13] Li, M.J., Tong, T.S.: A partheno genetic algorithm and analysis on its global
convergence. Automatization 25(1), 68–72 (1999)

[14] Wang, J., Luo, A., Qi, M.J., Li, M.J.: The improved clonal genetic algorithm
& its application in reconfiguration of distribution networks. In: Power Systems
Conference and Exposition, PSCE 2004, pp. 1423–1428. IEEE, New York (2004)

[15] Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor,
Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp. 139–148.
Springer, Heidelberg (1994)

[16] Li, R., Emmerich, M., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., Reiber,
J.H.: Mixed integer evolution strategies for parameter optimization. Evolutionary
computation 21(1), 29–64 (2013)

[17] Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: Steady-state
operations, planning, and analysis tools for power systems research and education.
IEEE Transactions on Power Systems 26(1), 12–19 (2011)

[18] Anderson, M., Whitcomb, P.: Find the optimal formulation for mixtures (2002),
http://www.statease.com/pubs/chem-2.pdf

[19] Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press, New
York (1996)

[20] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.M.T.: A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Com-
putation 6(2), 182–197 (2002)

[21] Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Re-
search 181(3), 1653–1669 (2007)

[22] Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for storing
nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2),
100–116 (2003)

http://www.statease.com/pubs/chem-2.pdf

In Vivo Veritas: Towards the Evolution of Things

Agoston Endre Eiben

VU University Amsterdam, The Netherlands
a.e.eiben@vu.nl

Abstract. The main thesis of the position paper is that in the near future it
will be possible to create populations of animate physical objects that undergo
evolution in real space and real time. The resulting systems will differ from Evo-
lutionary Computing in two crucial aspects. First, the individuals will be physi-
cal rather than digital. This requires reproduction operators for physical objects,
which forms an engineering challenge. Second, the evolutionary process will be
induced by the autonomous behavior of the individuals themselves, not by some
central evolutionary agency that orchestrates selection and reproduction. These
differences imply severe challenges for evolutionary algorithm designers because
‘tricks’ that work in in silico may not work in vivo. However, overcoming these
challenges will ignite the development of a new field that combines Evolutionary
Computing, Robotics, Artificial Life, and Embodied AI with a great potential for
engineering as well as scientific research.

Keywords: Embodied Evolution, Evolutionary Computing, Evolutionary Robo-
tics, Self-reproducing Robots.

1 Introduction

This is a position paper corresponding to the keynote I gave on the 13th International
Conference on Parallel Problem Solving from Nature, a.k.a. PPSN 2014, about what
I call the Evolution of Things or strongly Embodied Evolution.1 It builds on the ideas
presented in my TEDx talk (http://tinyurl.com/EibenTEDx) and the 2012 paper in the
Evolutionary Intelligence journal [17]. To avoid a big overlap with these, in this paper
I focus on the technical aspects from an evolutionary perspective and illuminate certain
challenges and possible solutions based on earlier work of my collaborators and myself.

Perhaps the best way to introduce the underlying vision is to contrast two types of
evolutionary processes we know today, programmable artificial evolution in computer
models (in silico) and real-world natural evolution out in the wild (in vivo), cf. Figure 1.
Note that “programmable” is meant there in a loose sense. It does not imply the abil-
ity to deterministically drive the system to some state. Rather, it means the ability to
specify the details of the individuals’ makeup and to prescribe rules for their behavior.
The subject of this paper is the new, exciting area of research in the intersection that

1 The term “embodied evolution” is used in [42] to describe the (distributed) evolution of con-
trollers in a population of physical robots with fixed morphologies. To avoid confusion one
could call that system “weakly embodied evolution” and use “strongly embodied evolution”
for systems where the bodies evolve as well.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 24–39, 2014.
c© Springer International Publishing Switzerland 2014

In Vivo Veritas: Towards the Evolution of Things 25

Fig. 1. The Evolution of Things takes place in real space and real time based on (self-)reproducing
physical -rather than digital- entities

will feature evolvable artefacts (with designable makeup and behavioral rules) in the
physical world. In other words, I will speculate about machines with evolvable bodies
and minds.

Natural evolution is the force behind the emergence of Life on Earth, as established in
the 19th century [9]. The invention of the computer in the 20th century made it possible
to create artificial worlds and actively engineer artificial evolutionary processes in digital
spaces. The resulting field, called Evolutionary Computing, was groundbreaking in that
it converted evolution from a passive explanatory theory meant to explain a past process
into an active tool meant to create new processes. However, an evolutionary computing
process and the underlying computer models only capture the ‘macro-mechanics’ of
evolution through a simplified genotype-phenotype mapping and an abstract selection-
reproduction loop. The biochemical and physical ‘micro-mechanics’ are ignored and in
the current practice the emphasis lies on (ab)using artificial evolution as an optimizer.
Nevertheless, by the development of Evolutionary Computing and related areas in Arti-
ficial Life we –the research and user communities– have gained much experience about
working with artificial evolution. We have learned to construct various forms of evolv-
able digital objects. We have invented and studied various selection and reproduction
mechanisms, including ones that do not exist in Nature, e.g., crossover mechanisms
between more than two parents [15]. And we have designed numerous evolutionary al-
gorithms inspired by natural mechanisms, but not limited by constraints of physical or
biological reality. All in all, we have developed the know-how to set up and manage
artificial evolutionary processes and to use them for solving optimization, design, and
modeling problems [2,10,18].

Evolutionary Computing is, well, computing. Producing a new individual in an evolv-
ing population is just a matter of creating a new piece of digital code. The same holds

26 A.E. Eiben

for evolving virtual creatures in Artificial Life [37]. However, as noted in [19], such
systems seriously lack “the richness of matter that is a source of challenges and op-
portunities not yet matched in artificial algorithms”. Going from digital evolutionary
systems to physical ones will be a game changer in several ways and will represent a
major transition from a historical perspective that brings artificial evolution closer to
natural evolution [17].

2 Robots?

The Evolution of Things as I envision takes place in real space and real time, based on
(self-)reproducing physical -rather than digital- entities. In order to refine this vision it
is useful to distinguish ‘mindless’ things and ‘animate’ things and to state that the idea
here is to evolve animate things that can sense, make decisions, and perform actions
autonomously. Of course, it is possible to create a system of evolving mindless objects2,
but the case of animate objects is more interesting and promises more applications. This
makes robots, a.k.a. intelligent machines, relevant because robots are physical objects
that can sense, make decisions, and perform actions autonomously. One could even
extend the traditional notion of robots and postulate that any kind of animate artefact or
machine capable of sensing, making decisions, and performing actions autonomously
is a robot, regardless of the substrate that determines its physical makeup, i.e., body,
and control architecture, i.e., mind.

Carrying this view further we could say that The Evolution of (animate) Things is
the same as the evolution of robots, if only we define robots in the broad sense. It could
be argued that this definition is too limited because the notion of robots is not broad
enough. For instance, chemists working on specially engineered molecules that can
self-replicate or biologists trying to strip down living cells to make them programmable
may not see their evolving entities as robots, although they could be called ‘things’.
Furthermore, it could be incorrect to see molecules as animate entities because do not
have the ability to sense and to make decisions. However, this discussion is beyond the
scope of this paper, the point I want to make is that willing to evolve animate things
naturally leads to Evolutionary Robotics (ER).

Evolutionary Robotics is the combination of evolutionary computing and robotics
[6,12,20,33,38,39,41]. ER is a field that “aims to apply evolutionary computation tech-
niques to evolve the overall design or controllers, or both, for real and simulated au-
tonomous robots” [39]. This approach is “useful both for investigating the design space
of robotic applications and for testing scientific hypotheses of biological mechanisms
and processes” [20]. The field of ER has made much progress over the last decade and
a half. A recent overview, cf. [6], summarizes the key insights as follows:

– Manual design of a mobile robot that is autonomous and adaptive is extremely
difficult.

– As an alternative, computers can ‘evolve’ populations of robots in a simulator...

2 In such a system the objects just passively undergo evolutionary operators executed by some
‘evolution manager’ – quite like the digital individuals in a usual evolutionary algorithm.

In Vivo Veritas: Towards the Evolution of Things 27

Fig. 2. Workflow of robot design distinguishing the design stage and the operational stage of the
robots, separated by the moment of deployment (circle in the middle). Off-line evolution takes
place in the design stage and the evolved features (usually the controllers) do not change after
deployment. On-line evolution is performed during the operational period, which means that the
robot’s features are continually changed by the evolutionary operators.

– This evolutionary approach changes the way we view robotics: ... focus shifts to
creating an evolutionary system that continuously designs and manufactures differ-
ent robots with increasing abilities.

However, as noted in [6] “the use of metaheuristics [i.e., evolution] sets this subfield of
robotics apart from the mainstream of robotics research” which “aims to continuously
generate better behavior for a given robot, while the long-term goal of Evolutionary
Robotics is to create general, robot-generating algorithms”.

From the Evolutionary Computing perspective, ER is a special application area that
is different from, say, combinatorial optimization. Somewhat oversimplifying, the main
challenge in solving optimization problems with EAs is the ruggedness of the fitness
landscape defined by the objective function. For ER applications there are two addi-
tional problems: the very weak and noisy link between controllable design details and
the target feature(s) and the great variety of conditions / requirements under which a
solution should prove good. For example, if we are to evolve NeuralNet controllers
for a robot then the NN descriptors (direct or indirect parameters of the NN topology
and weights) are the genotypes and the NN controllers form the phenotypes. Unlike
in ‘simple’ optimization, these phenotypes cannot be directly evaluated. Rather, it is
the robot behavior induced by the given controller that is observed and assessed. Thus,
in usual EC we have a 3-step chain: genotype – phenotype – fitness, while in ER the
chain is 4-fold: genotype – phenotype – behavior – fitness. Additionally, the behavior
depends on many external factors not only on the genotype and the evaluation of a con-
troller requires running the robot for a while under different circumstances. Last but not
least, desirable robot behavior is almost never defined by one single skill (except for
pure research purposes). For instance, it could be required that the robot performs well
in various arenas, under different light conditions regarding its skills for locomotion,
collision avoidance, target following, object manipulation, and cooperation with other
robots. Consequently, fitness functions in ER are inherently very noisy, very expensive,
and multi-objective in terms of behavioral requirements [32].

Since this paper is not meant to be a survey of evolutionary robotics in the following
I only consider two features that most ER applications share: 1) the off-line character

28 A.E. Eiben

Fig. 3. Most ER applications use a quite straightforward evolutionary algorithm, only the fitness
evaluations are special: these are mainly done by a simulator, sometime including occasional
evaluations with the hardware in-the-loop

of the evolutionary process and 2) the use of simulators. From this perspective, the
Evolution of Things is beyond conventional evolutionary robotics, because it is based
on on-line evolution in the real world.

2.1 Evolutionary Robotics Version 1: Off-line Evolution

To illuminate the on-line versus off-line aspect consider Figure 2. The usual approach
in evolutionary robotics employs an evolutionary algorithm to find a good controller
before the operational period of the robot. The evolutionary algorithm (EA) is quite
straightforward, only the fitness evaluations are special: these are done by a simulator,
possibly under different starting conditions, cf. Figure 3. When the user is satisfied with
the evolved controller, then it is deployed (installed on the physical robot) and the opera-
tional stage can start. In general, the evolved controllers do not change after deployment
during the operational stage, or at least not by evolutionary operators. Naturally, there
are studies that use the ‘hardware in the loop’ for (some of the) fitness evaluations, but
this does not change the general workflow illustrated by Figure 3, most importantly, it
does not require different kinds of EAs. Let me note that this workflow also applies for
most studies that use off-line evolution for evolving morphologies. The huge majority
of work in ER falls in this category belonging to the upper half of the table shown in
Figure 6.

In Vivo Veritas: Towards the Evolution of Things 29

Fig. 4. In on-line ER applications the evolutionary algorithm runs in real-time on the robots them-
selves. Thin black arrow from the ‘DNA’ to the ‘brain’: the genotype is expressed and the cor-
responding phenotype (controller) is activated. Fat grey arrow between robots: interaction for
mating (recombining genotypes). Fitness evaluations are done on the real hardware and they can-
not be repeated for good statistics under the same conditions.

2.2 Evolutionary Robotics Version 2: On-line Evolution of Controllers

In principle, there is an option to apply on-line evolution to evolve robots controllers
during the operational period [16]. This implies that evolutionary operators can change
the robots’ control software even after deployment. Although this option has already
been investigated early on in the history of the field, see for example [35,42], relatively
little effort has been devoted to this type of systems. This preference is not surprising,
because it is fully in line with the widespread usage of EAs as optimizers, which fits
the off-line approach very well. However, natural evolution is not a function optimizer,
nor are evolutionary algorithms [11]. The natural role of evolution is that of permanent
adaptation and using artificial evolution in this role in a group of robots requires adjust-
ments to the usual EA setup as illustrated in Figure 4. This role is expected to become
more and more important in the future of robotics. The advantages of such systems is
phrased in [32] as follows:

“Advanced autonomous robots may someday be required to negotiate envi-
ronments and situations that their designers had not anticipated. The future
designers of these robots may not have adequate expertise to provide appropri-
ate control algorithms in the case that an unforeseen situation is encountered
in a remote environment in which a robot cannot be accessed. It is not always
practical or even possible to define every aspect of an autonomous robot’s envi-
ronment, or to give a tractable dynamical systems-level description of the task
the robot is to perform. The robot must have the ability to learn control without
human supervision.”

30 A.E. Eiben

Fig. 5. Artist impression of soft robots with evolving morphologies. Consecutive images illustrate
members of different generations from the start (left) to the end (right). Courtesy of Pablo Gil-
Cornaro and Claudio Rossi.

From the perspective of an evolutionary algorithm designer such systems are in-
teresting and challenging, because they have a dynamics different from usual EAs and
version 1 of ER (ER–v1). For instance, such systems have two kinds of units, the robotic
units and the evolutionary units. The robotic units are the physical, pre-engineered, and
fixed bodies that contain the computers that run the evolutionary algorithm. However,
unlike in ER–v1, these computers can move, interact, and their movements and interac-
tions depend on the evolving controllers. The evolutionary units are the controllers that
form the evolving population, they undergo selection and reproduction. These units are
digital, flexible, and continually changing. The interactions between these two types of
entities has not ben studied yet. In terms of the nomenclature introduced in Section1 this
version of ER can be called weakly embodied. One important feature of such systems is
that the number of bodies, that is robots, is given and cannot be extended. This implies
‘no-go-areas’ in the search space because a bad guess (a poor controller resulting from
an unlucky variation operator) can be ‘lethal’ for the hosting robot body if tested in real
hardware. While in usual EC bad guesses are just wasting time, in weakly embodied
ER they can waste the robots.

2.3 Evolutionary Robotics Version 3: On-line Evolution of Morphologies (and
Corresponding Controllers)

Work concerning the evolution of morphologies is scarce and either not on-line or not
physical. That is, existing work is done either in an off-line manner in computer simula-
tions only constructing the evolved robots afterwards, see for instance [30], or in an on-
line fashion but in simulation. Papers in this latter category are often positioned within
Artificial Life, investigating the evolution of ‘virtual creatures’ [37] or ‘machines’ in
general [3] , rather than robots in particular. As the question mark in Figure 6 indicates
on-line evolution of robot morphologies and the corresponding controllers has not been
done yet. The reason is quite obvious: reproduction operators for physical artefacts are
much harder to implement than for digital objects. In evolutionary computing there
are several mutation and crossover operators for all kinds of genotypes from simple
bit-strings to complex decision trees and the construction of the resulting child(ren) is
trivial in software. However, doing the same in real hardware is a different story and
self-reproducing robots form one of the Grand Challenges for Evolutionary Robotics
proposed in [13].

In Vivo Veritas: Towards the Evolution of Things 31

Fig. 6. Four categories within Evolutionary Robotics based on what is being evolved (controllers
or morphologies) and how it is evolved (off-line or on-line). The sizes of the circles indicate the
number of papers in each category. NB Circles are not at real scale.

After this brief overview, the Evolution of Things can be described from an ER
perspective: it amounts to strongly embodied evolution, that is, ER of the third type,
where morphologies and corresponding controllers evolve on-line in the real world.

3 The Evolution of Things: Why

There are several reasons to be interested in the Evolution of Things [17]. The tech-
nology of evolvable robots offers possible applications in the future, where adapting
the robot design and/or producing new robots during the operational period without hu-
man intervention is important. This can be the case in inaccessible environments, for
example, colonies of mining robots that work in extreme depths under the surface of
the Earth for extended periods, planetary missions, deep see explorations, or medical
nano-robots acting as ‘personal virus scanners’ inside the human body. Additionally,
self-reproducing robots can be evolved with the human in the loop very much like
breeding livestock. This can combine the human guidance (user selection) with the cre-
ative exploratory power of evolution as used today in in silico evolutionary design [4,5].
There are also benefits for scientific investigations including biological research where
robots can be used as the substrate to create physical, rather than digital, models of bi-
ological systems and to study biological phenomena [21,31,40]. Furthermore, this new
technology offers unprecedented opportunities for embodied Artificial Intelligence. In
an evolving population of self-reproducing robots minds and bodies can co-evolve in
the real world. This eliminates the restriction of working with fixed morphologies and
opens the possibility to studying the mind-body problem in a new way [1,7,26,27]. One
could say that with the new technology we cannot only study how the body shapes the
mind, but also how the mind shapes the body [34].

32 A.E. Eiben

To illustrate the limitations of studying virtual creatures let me consider an investi-
gation into the “Effects of Evolutionary and Lifetime Learning on Minds and Bodies
in an Artificial Society” published in [8]. The study concerns a simulated artificial en-
vironment with a population of individuals that have a body as well as a mind. That
is, some of their features effect their physical properties, like speed and strength, while
other features influence their mental preferences in interacting with the environment and
other agents. The paper compares two approaches to adapting these individuals. In the
first approach the bodies and the minds develop through evolution, i.e., body features as
well as mind features are inheritable, hence evolvable. In the second approach only the
bodies evolve and the minds are adapted by lifetime-learning. In both cases the system
is purely environment driven without a user-defined quantitative fitness measure. The
results indicate that the first approach is able to sustain larger and more stable agent
populations and maintain a higher degree of individual success. Furthermore, quite un-
expectedly, the two systems differ a lot concerning the kind of bodies that emerge over
time. That is, the individuals’ bodies in the last populations reside in completely dif-
ferent segments of the physical feature space under the two regimes even though the
environment is the same. This is an interesting outcome, because it means that all other
things being equal, the method used for mental development has a strong effect on the
development of the physical features.

Unfortunately, it is hard to establish the general relevance of this result which could
just be rooted in the properties of the overly simple model of the world, the body fea-
tures, and the interactions between them. In fact, the system can be physically implausi-
ble and violate some laws of physics. The simulated world may differ from the physical
one to such an extent that the experimental findings are the opposite of the real world ef-
fect. Conducting this or a similar study in vivo, in an evolving population of real robots
would eliminate these concerns. Phrasing it from a robotics perspective, in a strongly
embodied evolutionary system there will be no reality gap anymore.

4 The Evolution of Things: How

To provide the algorithmic underpinning of evolving robots in real-time and real-space
a conceptual framework, dubbed the Triangle of Life (ToL), has been proposed recently
[14]. The ToL scheme shown in Figure 7 does not make assumptions on the physical
substrate of the evolving organisms; these can be (modular) mechatronic robots, soft
robots, artefacts with nonconventional bodies and forms of control, even (bio)chemical
entities.3 Therefore the ToL does not contain general recipes for the birth / morphogen-
esis operator shown by the left arrow in Figure 7. How this operator is implemented
depends on the given substrate for the robot bodies. With an evolutionary computing
analogy the ToL can be perceived as the equivalent of the general evolutionary algo-
rithm loop that captures the main components of one evolutionary cycle without speci-
fying which representation is being used, cf. Fig. 2.2. in [18].

3 The paper [14] illustrated the components of this framework one by one using the modular
robots of the Symbrion project. However, Symbrion was not aiming at physically evolving
morphologies and the components of the ToL have not been integrated.

In Vivo Veritas: Towards the Evolution of Things 33

Fig. 7. The Triangle of Life after [14]. The pivotal moments that span the triangle are: 1) Concep-
tion: A new genome is activated, construction of a new organism starts. 2) Delivery: Construc-
tion of the new organism is completed. 3) Fertility: The organism becomes ready to conceive
offspring.

The proverbial Cycle of Life revolves around birth. The ToL framework adopts this
stance and defines a life cycle that does not run from birth to death, but from conception
(being conceived) to conception (conceiving one or more children). The main idea is
generic, the only significant assumption is the genotype-phenotype dichotomy. That is,
it is presumed that the evolvable objects as observed ‘in the wild’ are the phenotypes
encoded by their genotypes. In other words, the artefacts in question can be seen as
the expression of a piece of code called the genome. As part of this assumption it is
postulated that reproduction takes place at the genotypic level. This means that the evo-
lutionary operators mutation and crossover are applied to the genotypes (to the code)
and not to the phenotypes (to the physical artefacts). Nevertheless, creating new pieces
of code by crossover and mutation must be followed by the physical production of the
encoded entity by a birth or morphogenesis process. This is the most important distin-
guishing feature of the type of evolutionary systems that the ToL framework specifies.

Recall that The Triangle of Life framework is agnostic about the birth operator. How-
ever, it is important to note that birth should be implemented by a centralized system
component, by a ‘Birth Clinic’ that constructs a new organism from a building plan,
i.e., from the genome created by recombining/mutating the genomes of the parents.
Distributed solutions (‘pregnancy’ or ‘eggs’) must be avoided in favor of a system with
a single point of failure that can be used as a kill switch if the evolutionary process
needs to be halted. I consider this an important issue of principle and emphasize that
all physically embodied evolutionary systems of the future must be designed with a
shutdown guarantee.

34 A.E. Eiben

In my view such systems of evolving robots (in the broad sense) implemented through
the ToL framework represent a new class of Artificial Life. Regarding the question how
such a system might be used two contrasting applications present themselves. One as
an engineering solution to a requirement for multiple robots in extreme unknown or
dynamic environments in which the robots cannot be specified beforehand or have to be
(re)adjusted to the changing conditions. The other application is scientific. Such artificial
life systems could be used to investigate the development of embodied intelligence and
new types of evolutionary processes, not so much to model biological evolution, life as
it is, but to study life as it could be.

5 Special Algorithmic Challenges

The development of strongly embodied evolutionary systems bears special relevance
for the evolutionary computing community. The scientific and technical knowledge re-
garding artificial evolutionary systems has been accumulated within this community
over the last decades. Therefore, evolutionary computing could and should play an im-
portant role in the endeavor towards the Evolution of Things. However, the transition
from digital and centralized evolutionary processes to physical and distributed evolu-
tion changes essential properties of the systems known and used in EC. This implies that
evolutionary algorithms will have to be adjusted to cope with the new challenges. The
resulting field could be seen as the 21st century incarnation of evolutionary computing
with less emphasis on computing and more on evolutionary design, construction, and
interaction with the environment. It can be expected that this field will benefit from cer-
tain algorithmic mechanisms in EC such that the wheel will not have to be reinvented.
For instance, on-line evolutionary algorithms require on-line parameter setting mecha-
nisms [28]. For some parameters, such as mutation rates or mutation step sizes, several
methods are known in evolutionary computing and mechanisms for strongly embodied
systems could be based on these.

In the following I discuss some problems raised by the Evolution of Things and show
examples of existing work in EC that can be used to provide the first steps towards
possible solutions.

Population Management. Population management may not be the most obvious prob-
lem raised by strongly embodied evolution, but it is literally a matter of life and death. In
evolutionary computing the populations (almost) always have a fixed size, maintained
by the centralized ‘manager’ that orchestrates the evolutionary operators. The essence
of the mechanism is that survivor selection (a.k.a. replacement) is synchronized with
reproduction in such a way that adding n new individuals is only possible if n old ones
are removed. Likewise, n existing individuals are never removed without adding n new
ones. This is certainly not the case in natural evolution. In general, situated evolution
without central orchestration will rely on local, non-synchronized decisions regarding
birth and death [36]. Hence, the existing individuals can be removed without adding
new ones and new ones can be added without discarding old ones first. This implies
that populations can shrink or grow. In extreme cases this can lead to complete extinc-
tion or overpopulation such that the evolutionary process is halted. Related work in

In Vivo Veritas: Towards the Evolution of Things 35

[29,43] addresses this issue by introducing autonomous selection of would-be parents
as well as individuals targeted for termination in decentralized evolutionary algorithms.
The mechanism has the following main features:

– Locally available global information. In particular, statistical information about the
population’s fitness (e.g. average fitness, min/max fitness) is available at each indi-
vidual via a gossiping protocol.

– A locally executable function that determines selection probabilities for the given
individual based on its own fitness and the available global information.

– An adaptation method that is regulating the parameters of the selection mechanism
in each individual on-the-fly, depending on the course of the search.

Experiments demonstrate the feasibility of a fully decentralized evolutionary algorithm
in which the population size can be kept stable. It is shown that parent and survivor
selection can be done without central control, completely autonomously and asyn-
chronously by the individuals themselves, yet avoiding the risk of population explosion
or implosion.

The experiments cited above are carried out in traditional EA applications aiming at
optimizing a given fitness function. In [22] the issue of possibly exploding or imploding
populations is investigated in a more natural setting, in an ALife system where evolving
agents decide autonomously and asynchronously if/when they reproduce. This is called
natural reproduction and it is complemented by natural selection where an agent dies if
it runs out of energy. The primary focus of the paper is the effect of adding individual
learning (reinforcement learning) to the evolutionary mechanism with a learnable indi-
vidual preference for performing the mating action. This allows for runtime control of
reproduction rates and in principle it can optimally regulate population sizes. However,
this also implies the possibility of unlearning mating and this is exactly what happened
in the naive versions of the system, because reproduction offers no individual benefits
but it does imply costs (children are expensive). Experiments showed that behavior op-
timal on individual level can have catastrophic effects on population level, leading to
complete extinction. The paper also demonstrated that this effect can be counteracted
by introducing a specific reward for the mating action that gives positive feedback to the
agents, regardless the related costs. One could argue that this trick is just a reinvention
of a solution known in nature, commonly called an orgasm. The system with such a
special mating reward proved to be viable, although the right level of reward remained
an open research question.

Twofold Fitness. The real world embedding in strongly embodied evolution mandates
that the population is viable, i.e., can operate in the given environment that may be un-
known beforehand and/or changing over time. In the meanwhile, most man-made sys-
tems are meant to serve a purpose, i.e., be useful for their designers/users. This implies
that evolution should be employed for two purposes. Firstly, to provide a force for adap-
tation to the environment as it does in nature and in many artificial life implementations.
This allows the evolving population to survive. Secondly, to provide a force for opti-
mization towards the objectives set by the user as in mainstream evolutionary computing
and evolutionary robotics. Recent work in [23,24,25] offers an algorithmic framework

36 A.E. Eiben

to combine the drives for viability and utility. The Multi-Objective aNd open-Ended
Evolution method (MONEE) balances evolution between environment-driven adapta-
tion and task-driven optimization. It is based on the fact that evolutionary methods have
two basic selection mechanisms and uses these in different roles: survivor selection is
purely driven by the environment and parent selection is based on some user defined
measure of task-performance. Experiments with large swarms of (simulated) e-pucks
prove that MONEE does indeed promote task-driven behavior without compromising
environmental adaptation. Furthermore, it is shown that an additional market mecha-
nism can ensure equitable distribution of effort over multiple tasks.

6 In Vivo Veritas

The central thesis of this paper is that the Evolution of Things combines the control-
lability and programmability of artificial evolutionary systems as used in evolutionary
computing and the physical embedding of natural evolutionary systems as seen in the
biosphere. The corresponding research area will be concerned with populations of an-
imate physical objects that undergo evolution in real space and real time driven by the
environment, user preferences (if applicable), and their own decisions. Thus, as noted
in Section 2, such artefacts can be perceived as robots in the broad sense with evolvable
minds and bodies.

The emerging field can be seen as a synergetic combination of Evolutionary Com-
puting, Robotics, Artificial Life, and Embodied AI. It will bring great new opportunities
and imply great new challenges. Certainly, the EC community knows much about how
to design, use, and analyze artificial evolutionary processes, but the whole body of work
on ‘taming evolution’ in computer simulations may prove just a frivolous exercise. The
examples reviewed in the previous section suggest that some of the existing EC tech-
niques could be useful in the new setting, but in fact it is impossible to verify this
without trying them. Real (world) problems will call for real (world) solutions.

To consider another angle let us recall the biological relevance discussed in Section 3.
From this perspective strongly embodied evolutionary systems represent physical, rather
than computational, models of evolution and this makes them more suited for biologi-
cally motivated studies. Such systems may not be based on the same biochemical micro-
mechanisms as the carbon-based life on Earth, but they use the same macro-mechanisms
(selection and reproduction with heredity) and they are physically plausible. This means
that experimental findings will reveal much more about the real world than pure com-
puter simulations.

7 Concluding Remarks

In this paper I argue that the science and technology of artificial evolution is on the verge
of a major transition: from digital to physical, from software to hardware. I believe that
within a few years we will have the technology for physically reproducing artefacts.
Such artefacts may be ‘mindless’ or ‘animate’ and although evolving populations of
‘mindless’ passive artefacts will also be a novelty, the most interesting case is that of

In Vivo Veritas: Towards the Evolution of Things 37

Fig. 8. Taxonomy of artificial evolutionary systems

autonomous animate artefacts capable of sensing, decision making, and performing ac-
tions on their own. Such entities –robots in the broad sense of the word, not necessarily
based on a traditional mechatronic substrate– will be able to actively induce an evolu-
tionary process ‘from within’ –without a central evolutionary agency– in real time and
real space. This new incarnation of artificial evolution will be a complete game changer
confronting the designers of evolutionary mechanisms with unprecedented challenges.

Am I saying that Evolutionary Computing as we know it is doomed to disappear?
Certainly not. Employing evolutionary algorithms for solving complex optimization
and design problems is here to stay. The evolutionary algorithms used in these domains
will become a subcategory of the bigger class of artificial evolutionary processes, that
of disembodied / digital evolution, and I believe that this subcategory will remain rele-
vant. However, I foresee that the Next Big Thing will be the emergence of embodied /
physical artificial evolutionary systems, cf. Figure 8. Weakly embodied evolution will
work on fixed hardware, such as populations of smart devices and/or robots that collec-
tively evolve their control software without changing their physical makeup. Strongly
embodied evolution (The Evolution of Things) will concern systems where the physical
bodies co-evolve with the controllers. This will form a challenging area where I hope
for exciting developments in the years to come.

Acknowledgments. I would like to thank my (former) colleagues and co-authors, and
several fellow researchers abroad for the inspiring discussions that helped shape my
views on this subject. In particular, I am indebted to Nicolas Bredeche, Evert Haasdijk,
and Alan Winfield.

38 A.E. Eiben

References

1. Anderson, M.: Embodied cognition: A field guide. Artificial Intelligence (149), 91–130
(2003)

2. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer (2006)
3. Auerbach, J., Bongard, J.: Environmental influence on the evolution of morphological com-

plexity in machines. PLOS Computational Biology 10(1), e1003399 (2014)
4. Bentley, P. (ed.): Evolutionary Design by Computers. Morgan Kaufmann, San Francisco

(1999)
5. Bentley, P., Corne, D.: Creative Evolutionary Systems. Morgan Kaufmann, San Francisco

(2002)
6. Bongard, J.: Evolutionary robotics. Communications of the ACM 56(8), 74–85 (2013)
7. Brooks, R.: Cambrian Intelligence: The Early History of the New AI. MIT Press (1999)
8. Buresch, T., Eiben, A.E., Nitschke, G., Schut, M.: Effects of evolutionary and lifetime learn-

ing on minds and bodies in an artifical society. In: Proceedings of the IEEE Conference on
Evolutionary Computation, CEC 2005, pp. 1448–1454. IEEE Press (2005)

9. Darwin, C.: The Origin of Species. John Murray, London (1859)
10. De Jong, K.: Evolutionary Computation: A Unified Approach. The MIT Press (2006)
11. De Jong, K.: Are genetic algorithms function optimizers? In: Männer, R., Manderick, B. (eds.)

Proceedings of the 2nd Conference on Parallel Problem Solving from Nature, pp. 3–13. North-
Holland, Amsterdam (1992)

12. Doncieux, S., Bredèche, N., Mouret, J.-B. (eds.): New Horizons in Evolutionary Robotics.
SCI, vol. 341. Springer, Heidelberg (2011)

13. Eiben, A.: Grand challenges for evolutionary robotics. Frontiers in Robotics and AI 1(4)
(2014), doi:10.3389/frobt.2014.00004

14. Eiben, A., Bredeche, N., Hoogendoorn, M., Stradner, J., Timmis, J., Tyrrell, A., Winfield,
A.: The triangle of life: Evolving robots in real-time and real-space. In: Liò, P., Miglino,
O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp.
1056–1063. MIT Press (2013)

15. Eiben, A.E.: Multiparent recombination in evolutionary computing. In: Ghosh, A., Tsutsui,
S. (eds.) Advances in Evolutionary Computing. Natural Computing Series, pp. 175–192.
Springer (2002)

16. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for au-
tonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Re-
liability, Adaptability, Evolution, ch. 5.2, pp. 361–382. Springer (May 2010)

17. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution – artificial evolution-
ary systems in the 21st century. Evolutionary Intelligence 5(4), 261–272 (2012)

18. Eiben, A.E., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)
19. Fernando, C., Kampis, G., Szathmáry, E.: Evolvability of natural and artificial systems. Pro-

cedia Computer Science 7, 73–76 (2011)
20. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B., Khatib, O.

(eds.) Springer Handbook of Robotics, vol. Part G.61, pp. 1423–1451. Springer (2008)
21. Floreano, D., Keller, L.: Evolution of adaptive behavior in robots by means of darwinian

selection. PLOS Biology 8(1), e1000292 (2010)
22. Griffioen, A., Smit, S.K., Eiben, A.E.: Learning benefits evolution if sex gives pleasure. In:

Michalewicz, Z., Reynolds, B. (eds.) Proceedings of the 2008 IEEE Congress on Evolu-
tionary Computation, Hong Kong, China, pp. 2073–2080. IEEE Computational Intelligence
Society. IEEE Press (2008)

23. Haasdijk, E., Bredeche, N.: Controlling task distribution in MONEE. In: Liò, P., Miglino,
O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp.
671–678. MIT Press (2013)

In Vivo Veritas: Towards the Evolution of Things 39

24. Haasdijk, E., Bredeche, N., Eiben, A.E.: Combining environment-driven adaptation and task-
driven optimisation in evolutionary robotics. PLoS ONE 9(6), e98466 (2014)

25. Haasdijk, E., Weel, B., Eiben, A.: Right on the MONEE. In: Blum, C., et al. (eds.) Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO-2013), Amsterdam,
The Netherlands, July 6-10, pp. 207–214. ACM (2013)

26. Hoffmann, M., Pfeifer, R.: The implications of embodiment for behavior and cognition: an-
imal and robotic case studies. In: Tschacher, W., Bergomi, C. (eds.) The Implications of
Embodiment: Cognition and Communication, pp. 31–58. Imprint Academic (2012)

27. Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.): Embodied Artificial Intelligence. LNCS
(LNAI), vol. 3139. Springer, Heidelberg (2004)

28. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms:
Trends and challenges. IEEE Transactions on Evolutionary Computation (to appear, 2014),
doi:10.1109/TEVC.2014.2308294

29. Laredo, J., Eiben, A.E., van Steen, M., Merelo, J.J.: EvAg: a scalable peer-to-peer evolution-
ary algorithm. Genetic Programming and Evolvable Machines 11, 227–246 (2010)

30. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Na-
ture 406, 974–978 (2000)

31. Long, J.: Darwin’s Devices: What Evolving Robots Can Teach Us About the History of Life
and the Future of Technology. Basic Books (2012)

32. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey
and analysis. Robotics and Autonomous Systems 57(4), 345–370 (2009)

33. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of
Self-Organizing Machines. MIT Press, Cambridge (2000)

34. Pfeifer, R., Bongard, J.: How the Body Shapes the Way We Think. MIT Press (2006)
35. Pollack, J.B., Lipson, H., Ficici, S.G., Funes, P., Hornby, G., Watson, R.A.: Evolutionary

techniques in physical robotics. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 175–186. Springer, Heidelberg (2000)

36. Schut, M., Haasdijk, E., Eiben, A.E.: What is situated evolution? In: Proceedings of the
2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, May 18-21, pp.
3277–3284. IEEE Press, Piscataway (2009)

37. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4),
353–372 (1994)

38. Trianni, V.: Evolutionary Swarm Robotics – Evolving Self-Organising behaviors in Groups
of Autonomous Robots. SCI, vol. 108. Springer, Heidelberg (2008)

39. Vargas, P., Paolo, E.D., Harvey, I., Husbands, P. (eds.): The Horizons of Evolutionary Robo-
tics. MIT Press (2014)

40. Waibel, M., Floreano, D., Keller, L.: A quantitative test of Hamilton’s rule for the evolution
of altruism. PLOS Biology 9(5), e1000615 (2011)

41. Wang, L., Tan, K., Chew, C.: Evolutionary Robotics: from Algorithms to Implementations.
World Scientific Series in Robotics and Intelligent Systems, vol. 28. World Scientific (2006)

42. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an evolutionary
algorithm in a population of robots. Robotics and Autonomous Systems 39(1), 1–18 (2002)

43. Wickramasinghe, W., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary algorithms with
adaptive autonomous selection. In: D. T., et al. (eds.) GECCO 2007: Proc of the 9th Confer-
ence on Genetic and Evolutionary Computation, pp. 1460–1467. ACM Press (2007)

Online Black-Box Algorithm Portfolios

for Continuous Optimization

Petr Baudǐs and Petr Poš́ık

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Technická 2, 166 27 Prague 6, Czech Republic
pasky@ucw.cz, petr.posik@fel.cvut.cz

Abstract. In black-box function optimization, we can choose from a
wide variety of heuristic algorithms that are suited to different functions
and computation budgets. Given a particular function to be optimized,
the problem we consider in this paper is how to select the appropriate
algorithm. In general, this problem is studied in the field of algorithm
portfolios; we treat the algorithms as black boxes themselves and consider
online selection (without learning mapping from problem features to best
algorithms a priori and dynamically switching between algorithms during
the optimization run).

We study some approaches to algorithm selection and present two
original selection strategies based on the UCB1 multi-armed bandit pol-
icy applied to unbounded rewards. We benchmark our strategies on the
BBOB workshop reference functions and demonstrate that algorithm
portfolios are beneficial in practice even with some fairly simple strate-
gies, though choosing a good strategy is important.

1 Introduction

Continuous black-box optimization concerns itself with the problem of finding
a minimum value of a real-parameter function that has inaccessible analytical
form. This is a rich area of research that produced many algorithms over the
last 50 years — from the venerable Nelder-Mead simplex algorithm [1] to various
gradient descent methods to population-based methods.

However, if a function is truly “black-box” and its features are hard to predict,
the key question in the face of such variety is “which algorithm should I choose?”
We can turn for help at a common platform for performance comparison — the
currently accepted de-facto standard is the COmparing Continuous Optimisers
COCO platform [2] [3] that was originally developed for the BBOB workshop se-
ries and which provides (most importantly) a set of diverse reference benchmark
functions. But there is still a long way from previously published performance
results on reference functions to a decision about which algorithm to use on an
arbitrary function provided by the user. A method to automate the process is
certainly desirable.

The problem of algorithm selection is not new [4] and was so far popular
mainly when applied to combinatorial problem solvers [5]. In our work, we adopt

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 40–49, 2014.
c© Springer International Publishing Switzerland 2014

Online Black-Box Algorithm Portfolios 41

the prism of algorithm portfolios [6]. Let us have a set of heuristic algorithms
(each suitable for a different class of problem instances). Given a problem in-
stance, we apply a selection strategy to pick and apply an algorithm from this
portfolio. We can perform the selection once or along a fixed schedule based on
features of the problem instance (offline selection), or in multiple rounds allo-
cating time to portfolio members based on their performance in previous rounds
(online selection). In successive rounds, algorithms can be either resumed from
their previous state or restarted; we take the approach of resuming them, reserv-
ing the restart schedule to be an internal matter of each algorithm.

Using algorithm portfolios for continuous black-box optimization is still a
fresh area of research. The main results so far lie either in modifications of pop-
ulation methods that combine a variety of genetic algorithms together, e.g. the
MultiEA [7], AMALGAM-SO [8] and PAP [9] methods; or in offline methods
based on exploratory landscape analysis [10] which were also recently applied
to the BBOB workshop scenario [11]. We could also draw ideas from hyper-
heuristics and adaptive strategies for operator selection within population-based
algorithms [12] [13]. A Multi-Armed Bandit scenario has been already considered
in the field of function optimization for determining online restart schedules [14].

In our work, we enforce the distinction between algorithms and selection
strategies — we regard the algorithms as black-box, completely avoiding any
modification and simply repeatedly resuming them and allowing them to make
another optimization step. This allows any already implemented state-of-art al-
gorithms to be easily combined in a single portfolio and also extends to other
than population-based methods. Furthermore, we focus on online adaptive se-
lection that selects algorithms based on their performance so far and does not
require possibly expensive or brittle feature extraction and training.

We aim to confirm whether using an algorithm portfolio is advantageous com-
pared to investing the whole budget in a single overally dominant algorithm, and
how do selection strategies influence the portfolio performance.

In section 2, we investigate algorithm selection through the paradigm of the
Multi-Armed Bandit Problem, motivating the proposed selection strategies. In
section 3, we describe the exact strategies we have compared in our experiments.
We present the experimental results in section 4 and draw our conclusions and
outline some directions for future work in section 5.

2 Algorithm Selection as Multi-armed Bandit Problem

When considering an action selection strategy that operates in an initially un-
known environment, we face the fundamental dilemma of balancing exploitative
actions maximizing the reward based on our current model of the environment
and exploratory actions that refine the model. Multi-Armed Bandit Problem [15]
is a reference statistical problem that allows abstract study of the exploration-
exploitation dilemma.

42 P. Baudǐs and P. Poš́ık

2.1 Multi-armed Bandit Problem

In its typical formulation [16], a K-armed bandit problem is defined by a se-
quence of random rewards Xit ∈ [0, 1], i = 1, . . . ,K, t ∈ N, where i is an index of
the arm of a bandit (in other words, a gambling machine) and t denotes succes-
sive pulls of the arm. All rewards are independent random variables and rewards
of a single arm follow an identical stationary distribution, but the distribution
and expected value are originally unknown. A bandit policy π is then a function
that selects the next arm to be pulled based on the sequence of rewards up to
that point. The goal is to maximize cumulative reward over time; the policy
aims to pull the arm with highest expected reward (exploitation), but needs to
continually update its belief about which arm has the best reward (exploration).

The measure of policy performance is its “regret”, i.e. cumulative reward loss
compared to a hypothetical oracle policy. Let μi denote the true expected reward
of arm i, μ∗ the true expected reward of the optimal arm, Ti(n) the number of
times arm i has been pulled up to the n-th pull, and Rn the current regret:

Rn = nμ∗ −
K∑
i=1

E [Ti(n)]μi

It was proven early [16] that the lower asymptotic bound for the regret Rn is
Ω(lnn), and many (even very simple) policies achieve this bound.

Perhaps the simplest policy is the epsilon-greedy policy, simply choosing
the arm with the highest estimated expectation with probability 1 − ε and a
uniformly random arm with probability ε. Therefore, the ratio of exploration
and exploitation actions is fixed and uniform exploration strategy is applied.

The Upper Confidence Bound (UCB1) policy [17] implicitly negotiates
the exploration-exploitation dilemma by adding a relative measure of uncertainty
(bias) to the estimated expectation; therefore, even low-expectation arms are
occassionally explored when the uncertainty is too high compared to other arms:

πUCB1(n) = argmaxi

(
μ̂i(n) + c

√
2 lnn

Ti(n)

)
(1)

The policy quickly gained popularity as a reference Multi-Armed Bandit pol-
icy since it can be proven that the policy follows the logarithmic regret bound not
just asymptotically but also uniformly (after a burn-in period) if the parameter
c is tuned for the optimal exploration-exploitation ratio.

2.2 Action Rewards versus Optimization Performance

To apply the Multi-Armed Bandit Problem on algorithm selection, we (analo-
gously to e.g. [14]) represent each algorithm as an arm and in each algorithm
iteration decide which arm(s) to step once next. However, the key question is
how to represent the reward estimates1 used for the decision.

1 In some of the algorithm selection literature, this is termed “credit” of the algorithm.

Online Black-Box Algorithm Portfolios 43

In the simplest form, the reward estimate μ̂ may be represented simply by
the negative of the raw value of the function in the current iteration of the
algorithm — therefore, the algorithm currently closest to the optimum will be
associated with the highest reward estimate.

This approach may be problematic if the reward needs to be bounded in a fixed
interval; a normalization strategy is proposed below in Sec. 2.3. However, when
the value does not approach the optimum smoothly, absolute value difference
may not correspond well to algorithm performance difference. The approach of
value rank [13] sidesteps the issue by ranking algorithms based on the values
they yield in each round and using that rank (normalized by linear rescaling to
[0, 1]) as the reward estimate.

An extension of these approaches is, instead of considering just the latest
normalized reward, to use an exponentially decaying average of recent normal-
ized rewards with an adaptation rate α [12], also known as the exponentially
weighted moving average (EWMA).

The Multi-Armed Bandit Problem assumes that the reward distributions are
stationary and rewards are independent. But this is clearly not the case in our
setting — as each algorithm proceeds through the functional landscape, its rate
of improvement changes and previous results are tied to its future performance.
These assumption violations may not be fatal in practice and we test the per-
formance of considered algorithms without regard to them. Furthermore, it has
been proven that the UCB1 policy can be used as-is for non-stationary distribu-
tions [18] (provided that the c parameter has been set correctly).

2.3 Raw Values and the UCB1 Policy

The UCB1 policy sums the reward estimate μ̂ with a bias term (multiplied by a
fixed constant). A key assumption here is that μ ∈ [0, 1] (being a reward expec-
tation), but our raw values are entirely unbounded and exponentially skewed. A
simple work-around is to use the value rank instead, but the actual difference
between values may be useful during the decision, therefore we also propose a
raw value normalization approach.

Every time we invoke the UCB1 policy, we re-normalize values of all arms,
taking two assumptions. First, we use values relative to the supposed optimum by
always assuming that we are just short of it, i.e. putting the fopt? = min f −Δf
where Δf = 10−8 is the target precision of COCO. Secondly, we assume that
the algorithms converge exponentially fast2, therefore differences (relative to the
supposed optimum fopt?) between 103 and 102 should be considered on the same
scale as differences between 10−6 and 10−7.

With these two assumptions, a log-rescaling process is straightforward. First,
we convert the absolute fi values to values relative to the supposed optimum
and rescale the values logarithmically:

gi = log(fi − fopt?)

2 A similar idea appears within the MetaMax algorithm [14] and is also supported by
practical observations.

44 P. Baudǐs and P. Poš́ık

Second, we assign rewards by linear rescaling of the preprocessed values:

μi = 1− gi −minj gj
maxj gj −minj gj

3 Algorithm Selection Strategies

The strategies and reward schemes outlined above offer a wide variety of possible
combinations. To focus the scope of our research, we considered only combina-
tions already proposed in the literature, in addition to a baseline strategy and
two new applications of the UCB1 policy we propose. We performed a rough
parameter tuning of each of the considered strategies on a portfolio of seven
algorithms (see Sec. 4 and [19]); the performance is not very sensitive to exact
values of the parameters. Our main loop consist of selecting an algorithm to
step, then running it for a single iteration, then repeating the selection etc.

RR: As one baseline strategy, we used a round robin policy that samples
each algorithm equally, in their portfolio order. (This is different from a “run in
parallel” strategy in that the algorithms consume different budgets to sample a
single iteration.)

EG: The epsilon-greedy policy with ε = 0.5.
RUCB: The UCB1 policy with EWMA-recent ranks as reward estimates (μ̂i

in Equation 1), with c = 8 and adaptation rate α = 0.9.
LUCB: The UCB1 policy with EWMA-recent log-rescaled values as reward

estimates (μ̂i in Equation 1), with c = 16 and adaptation rate α = 0.7.
We also tested Probability Matching and Adaptive Pursuit [12], Threshold

Ascent [20], MetaMax variants [14] and UCB1 with Sum-of-Ranks and Area-
Under-the-Curve rewards [13]. However, their results were not competitive with
the strategies above and we cannot elaborate on them due to space limititations3.

4 Experiments and Results

To benchmark against the BBOB testbed, we used the reference COCO frame-
work [2] [3]. Our “COCOpf” extension [19] provides a common algorithm port-
folio codebase, including algorithm stepping and publication reports generation.

We use the reference portfolio of seven optimization algorithms — the CMA-
ES algorithm [21] and six numerical optimization algorithms distributed along
the SciPy software package [22]. Description and comparison of the individual
algorithms is detailed in [19].

Within the COCO framework, functions are classified based on their prop-
erties to separable, multi-modal, etc. Here, we deliberately did not adopt this
classification as we do not study the behavior of individual algorithms4, but the
behavior of strategies that depend on the performance of portfolio members.

3 Their results are included in an extended version of this paper, the raw datasets and
generated reports at http://pasky.or.cz/sci/cocopf-opt13.

4 See [19] for plots of performance of the portfolio members in the reference COCO
function classes.

http://pasky.or.cz/sci/cocopf-opt13

Online Black-Box Algorithm Portfolios 45

Table 1. The assignment of individual COCO benchmark functions to the classes we
have devised, determined on the performance of our portfolio on the functions. Vertical
lines delineate the standard function classes used by COCO.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

By solvers (s/m) m s s s m s s m m s s s s m s s s s s s s s s m
By winner (g/b) b b b b b g g b b g g g g b b g g g b b g g g b
By converg. (s/v) s s s s s v s v v v v v v v v s s s v v v v v v

Fig. 1. Typical volatile (left) and stable (right) portfolio convergence. (We distinguish
only the portfolio’s best algorithm for each considered function.)

With respect to a particular portfolio, we propose the following function clas-
sification:

– By solvers based on whether a single algorithm dominated others in perfor-
mance (single-solver), or if multiple algorithms converged similarly quickly
(multi-solver). The latter favors strategies that do not focus sharply on a
single algorithm. We consider algorithms to perform similarly if one takes at
most twice as many evaluations to reach the optimum than another.

– By winner as the clear overall winning algorithm in our portfolio is CMA,
converging first on most functions (CMA-good), but there are many functions
on which CMA actually performs relatively very poorly (CMA-bad). Splitting
functions along these lines allows us to quantify the loss caused by using a
portfolio instead of a single algorithm.

– By convergence based on the algorithm behavior before finding optimum.
In some cases, the algorithms that yield the best function values early con-
tinue to dominate throughout the convergence progression and eventually in-
deed converge first — these are the stable functions where strategies can early
focus on the best algorithms. On the other hand, especially in a landscape
rich on difficult-to-escape local optima, the pace of convergence of convential
algorithms stays the same or even slows down throughout their run, while
an algorithm (often CMA) that produced lukewarm results with smaller

46 P. Baudǐs and P. Poš́ık

Table 2. The average rank of portfolio algorithms and strategies (computed over both)
by the order in which they converge

Solver all multi single volatile stable CMA-good CMA-bad

CMA 6.4 11.2 4.8 4.7 9.2 1.3 11.4
BFGS 9.4 4.7 11.0 7.5 12.7 12.2 6.6

L-BFGS-B 9.7 3.8 11.7 8.1 12.5 13.0 6.5
SLSQP 10.9 6.0 12.6 9.5 13.2 13.5 8.3
N.-M. 12.0 10.0 12.7 9.9 15.6 12.0 12.0
Powell 12.9 12.9 12.9 15.9 7.9 14.6 11.3
CG 13.3 6.6 15.6 13.0 13.8 15.8 10.8

LUCB 6.5 10.5 5.1 7.2 5.3 4.4 8.5
RUCB 6.8 8.2 6.3 6.5 7.2 6.5 7.1
EG 7.1 7.2 7.1 8.3 5.2 6.6 7.6
RR 9.3 11.0 8.7 9.1 9.7 8.2 10.4

budget suddenly and unexpectedly improves in a dramatic way, achieving
convergence early after5 — we term these volatile functions. These are obvi-
ously much harder for purely online strategies. We consider a function to be
volatile if the algorithm that converges first in budget |portfolio|k for some

k was not the best algorithm in budget |portfolio|k−2.

We illustrate the typical convergence progression on volatile vs. stable func-
tions in figure 16. Table 1 shows the classification of functions for our portfolio.

In all results, we show measurements with maximum function evaluation bud-
get dim · 105 and use the performance on 5D functions as at least one algorithm
converges within our budget for almost all functions in this dimension.

Table 2 shows the average final rank of each algorithm and portfolio strategy
(in terms of budget required for convergence, i.e. 1 is best) averaged over the
individual classes. Table 3 shows the average7strategy log-slowdowns in terms of
difference between budget b required for certain algorithm or strategy to converge
and budget bo required for the oracle strategy (which runs only the single best
algorithm for each function) to converge, computed as log|portfolio|(b/bo). I.e. a
slow-down of 0 means perfect performance and slow-down of 1 means that it is
as if we simply run all algorithms in parallel8.

We can observe that the LUCB strategy performs best; while in total average
it is superseded by the winner algorithm CMA, that is not very surprising as this
algorithm performs best on its own on half of the functions and portfolios will
always introduce an overhead. At the same time, the LUCB strategy exhibits

5 We did not observe a situation where the initially best algorithm temporarily loses
its first place only to eventually converge first.

6 Interested readers may find portfolio convergence graphs for all functions as well as
raw datasets at http://pasky.or.cz/sci/cocopf-opt13.

7 Within a single function, the median instance is considered. Across functions within
a class, the slowdown is averaged.

8 Functions on which no algorithm converges in the assigned budget are not included
in the average. We assign a log-slowdown of 3 to strategies not converging in time.

http://pasky.or.cz/sci/cocopf-opt13

Online Black-Box Algorithm Portfolios 47

Table 3. The average log-slowdown of portfolio algorithms and strategies compared
to oracle strategy (i.e. the best algorithm for each function)

Solver all multi single volatile stable CMA-good CMA-bad

CMA 0.7 1.1 0.6 0.5 1.1 0.0 1.5
CG 2.3 0.8 2.7 2.3 2.3 2.8 1.7

BFGS 1.5 0.7 1.8 1.4 1.7 2.2 0.8
L-BFGS-B 1.9 0.6 2.3 1.8 1.9 2.5 1.1
Nelder-Mead 2.1 0.8 2.6 2.0 2.4 2.5 1.8

SLSQP 2.3 1.0 2.8 2.4 2.3 2.9 1.8
Powell 2.3 2.0 2.4 3.0 1.2 3.0 1.6

LUCB 0.9 0.9 0.9 1.3 0.3 1.1 0.8
RUCB 1.3 0.9 1.4 1.4 1.1 1.7 0.8
EG 1.4 1.0 1.6 1.6 1.1 2.0 0.9
RR 1.5 1.1 1.7 1.8 1.2 2.1 1.0

less performance variation (in terms of log-slowdown) from class to class, and
on stable functions it outperforms all other strategies and algorithms by a large
margin. The RUCB and EG strategies can also outdo the LUCB strategy on
function-by-function basis in some classes, as is apparent from the average ranks.

5 Discussion and Conclusion

The results demonstrate a good case for the usage of algorithm portfolios for
black-box optimization. Overally, our proposed LUCB and RUCB strategies per-
form the best, but the very simple EG strategy also performed very well. We
belive both the LUCB and EG strategies are easy to implement and can be used
as reference strategies in further research.

As expected, the portfolios were very beneficial especially in case of non-
volatile functions. More work is clearly needed to deal with volatile functions.
That will further benefit even non-volatile performance as all our strategies are
currently very explorative — investment in even bad-looking algorithms is im-
portant in cases of volatile functions. Regardless of function classes, algorithm
portfolios also offer a more stable performance than an individual algorithm in
the face of unknown (as even CMA can fail miserably on some of the functions).

We can observe a significant stratification among the tested selection strate-
gies. We can conclude that a selection strategy matters, and even a simple strat-
egy like EG will bring a big improvement over a round-robin selection strategy
which is still the de-facto standard for algorithm portfolios when they are used.

5.1 Future Work

We hope that performance can be improved by a future portfolio that is more
diverse and balanced (either thanks to more algorithms or parameter tuning to

48 P. Baudǐs and P. Poš́ık

refocus different algorithms to specific function classes). Another step in this di-
rection is to study the influence of portfolio size and composition on preformance
of various strategies9.

Clearer measures for adaptation lag when the best algorithm changes in
volatile functions or the suitability of using function value differences in strate-
gies would be very desirable.

Many approaches to algorithm selection in terms of Multi-Armed Bandit Poli-
cies and reward assignment were proposed in the literature. We could not con-
sider them all, but we think that especially performance-modeling approaches
like modifications of the MultiEA [7] or GambleTA [23] algorithms are worth
investigating in the future.

Aside of that, we attempted to give the problem a modular structure; this
allows e.g. a full-scale comparison of reward assignment and bandit policy com-
binations on top of what has been proposed in the literature so far. Furthermore,
the usage of UCB1 is not theoretically very sound and we assume it should be
possible to develop a more suitable policy formula.

We have investigated just a purely online, black-box mode of action so far,
but there is certainly a room to grow in the direction of previously introduced
approaches. Offline learning can be combined with online methods at least to
initialize them or detect function classes. Intermediate solutions could be shared
and migrated between individual algorithms.

Acknowledgements. This research was supported by the CTU grant SGS14
/194/OHK3/3T/13 “Automatic adaptation of search algorithms”. We would like
to thank the Department of Applied Mathematics of the Charles University in
Prague for providing the computational resources that made our experiments
possible. Matteo Gagliolo’s introduction to the research landscape helped us
much in the beginning of our work.

References

1. Nelder, J.A., Mead, R.: A simplex method for function minimization. The Com-
puter Journal 7(4), 308–313 (1965)

2. Hansen, N., et al.: Comparing continuous optimisers: Coco,
http://coco.gforge.inria.fr/

3. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2012: Experimental setup. Technical report, INRIA (2012)

4. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

5. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. AI
Magazine (2014)

6. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1), 43–62
(2001)

9 For example, it surprised us that it seems trimming the current portfolio by worst
performing algorithms does not improve overall performance. However, we still con-
sider this result preliminary.

http://coco.gforge.inria.fr/

Online Black-Box Algorithm Portfolios 49

7. Yuen, S.Y., Chow, C.K., Zhang, X.: Which algorithm should i choose at any point
of the search: An evolutionary portfolio approach. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation. GECCO 2013, pp.
567–574. ACM, New York (2013)

8. Vrugt, J.A., Robinson, B.A., Hyman, J.M.: Self-adaptive multimethod search for
global optimization in real-parameter spaces. IEEE Trans. on Evolutionary Com-
putation 13(2), 243–259 (2009)

9. Peng, F., Tang, K., Chen, G., Yao, X.: Population-based algorithm portfolios for
numerical optimization. IEEE Transactions on Evolutionary Computation 14(5),
782–800 (2010)

10. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: The algorithm selection problem on the
continuous optimization domain. In: Moewes, C., Nürnberger, A. (eds.) Computa-
tional Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 75–89. Springer,
Heidelberg (2013)

11. Bischl, B., Mersmann, O., Trautmann, H., Preuss, M.: Algorithm selection based on
exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the
Fourteenth International Conference on Genetic and Evolutionary Computation
Conference, pp. 313–320. ACM (2012)

12. Thierens, D.: Adaptive strategies for operator allocation. In: Lobo, F.G., Lima,
C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI,
vol. 54, pp. 77–90. Springer, Heidelberg (2007)

13. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive op-
erator selection. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pp. 767–774. ACM (2010)

14. György, A., Kocsis, L.: Efficient multi-start strategies for local search algorithms.
J. Artif. Int. Res. 41(2), 407–444 (2011)

15. Robbins, H.: Some aspects of the sequential design of experiments. Bulletin of the
American Mathematics Society 58, 527–535 (1952)

16. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics 6, 4–22 (1985)

17. Auer, P., Bianchi, N.C., Fischer, P.: Finite-time Analysis of the Multiarmed Bandit
Problem. Machine Learning 47(2/3), 235–256 (2002)

18. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

19. Baudǐs, P.: COCOpf: An algorithm portfolio framework. In: Poster 2014 — the
18th International Student Conference on Electrical Engineering, Czech Technical
University, Prague, Czech Republic (2013)

20. Streeter, M.J., Smith, S.F.: A simple distribution-free approach to the max k-armed
bandit problem. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 560–574.
Springer, Heidelberg (2006)

21. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. STUDFUZZ, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

22. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for
Python (2001)

23. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem
with unbounded losses. Annals of Mathematics and Artificial Intelligence 61(2),
49–86 (2011)

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 50–59, 2014.
© Springer International Publishing Switzerland 2014

Shuffle and Mate: A Dynamic Model for Spatially
Structured Evolutionary Algorithms

Carlos M. Fernandes1,2, Juan L.J. Laredo3, Juan Julian Merelo2, Carlos Cotta4,
Rafael Nogueras4 and Agostinho C. Rosa1

1 LaSEEB-ISR-IST, University of Lisbon, Portugal
2 Department of Architecture and Computer Technology, Univ. of Granada, Spain

3 Faculty of Sciences, Technology and Communications, Univ. of Luxembourg
4 Departamento de Lenguages y Ciencias de la Computación, Univ. of Malaga, Spain

{cfernandes,acrosa}@laseeb.org, juan.jimenez@uni.lu,
{jjmerelo,rafael.nogueras}@gmail.com, ccottap@lcc.uma.es

Abstract. This paper studies a self-organized framework for modeling dynamic
topologies in spatially structured Evolutionary Algorithms (EAs). The model
consists of a 2-dimensional grid of nodes where the individuals interact and
self-organize into clusters. During the search process, the individuals move
through the grid, following a pre-defined simple rule. In order to evaluate the
model, a dynamic cellular Genetic Algorithm (dcGA) is built over the proposed
topology and four different movement rules are tested. The results show that
when the ratio between the number of nodes in the grid and the population size
is above 4:1, the individuals self-organize into highly dynamic clusters and sig-
nificantly improve results attained by standard cGAs with static topologies on a
set of deceptive and multimodal functions.

1 Introduction

In panmictic populations, every individual is allowed to interact with every other
individual. Standard Evolutionary Algorithms (EAs) mimic this strategy for parent
selection and recombination, but large-scale problems or deceptive functions with
multiple local optima may require other type of population structures. In recent years,
non-panmictic EAs [10], which restrict the interaction according to a pre-defined or
evolving structure, are gaining increasing attention by the community.

In non-panmictic EAs, the population structure specifies a network of acquain-
tances over which individuals can interact (i.e., mating or selection is restricted to
neighborhoods within the network). These non-panmictic EAs are also known as
spatially structured EAs [10], a category that includes fine-grained approaches such
as cellular EAs (cEAs) [1] and coarse-grained approaches such as island models [2].
In cEAs, the population is distributed in a grid and the interaction is restricted to the
individuals’ neighborhood. In island EAs, different subpopulations evolve isolated
from each other and occasionally exchange individuals using a predefined strategy
which specifies the rate and quantity of information to transfer.

 Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms 51

The main disadvantage with island and cellular EAs is that their base-structures,
which have a great influence on the algorithm performance, require extra designing
and tuning effort. In the case of island models, this added complexity translates in
deciding policies for the migration frequency, selection and replacement of migrants
and the topology itself. As for traditional cEAs, they use static structures that impose
a rigid connectivity between the individuals.

Furthermore, even though cEAs may achieve a better management of the genetic
diversity in the population when compared to panmictic EAs, the balance between
exploration and exploitation may not be sufficient for problems with deceptive or
epistatic fitness landscapes. Since the population is globally connected, information
may spread quickly and local optima can easily take over the entire population. The
investigation in this paper is an attempt to design a simple dynamic topology for
cEAs, with a varying neighborhood degree and an intrinsic clustering behavior that
approaches the cEA to an island model, keeps genetic diversity at a higher level and
prevents sub-optimal solutions to take over the population.

In the proposed topology, individuals are distributed in a 2-dimensional nodes
grid where it holds . Every time-step, each individual tries to recombine with one
of the individuals in its Moore neighborhood (if there are any). Furthermore, the struc-
ture is dynamic: in each time-step, every chromosome updates its position by moving to
a neighboring node (if there are empty nodes in the individual’s neighborhood), accord-
ing to a pre-defined rule that selects the destination. The position update rule, which is
implemented locally and without any knowledge on the global state of the system, can
be based on stigmergy [5] or Brownian movements.

When stigmergic behavior is induced by a stigmergic rule (i.e., individuals com-
municate via the environment), different niches of individuals appear and disappear at
run-time. This clustering behavior is an emergent property of the model, and the re-
sulting cEA has certain resemblance with an island model, with dynamic clusters (or
sub-populations) of individuals with varying size.

We hypothesize that with this scheme the population diversity decreases at a lower
rate (when compared to a standard topology), and, as a consequence, the performance
of the cEA on deceptive and hard problems is improved. In this paper, the dynamic
topology is tested on a cellular Genetic Algorithm (cGA). Four different strategies are
described for the position update rule and the resulting algorithms are tested with a set
of deceptive and epistatic functions that challenge EAs’ abilities to combine building-
blocks. The results show that when the ratio between the number of nodes in the grid
and population size is above 4:1, the dynamic cGAs converge more often to the global
optimum and significantly improve the performance of standard cGAs.

The remaining of the paper is structured as follows: Section 2 gives a background
review on cEAs and on dynamic alternative topologies for cEAs; Section 3 describes
the proposed system; Section 4 describes the experiments and discusses the results;
Section 5 concludes the paper and outlines future lines of work.

2 Background Review

The initial objective of spatially structured EAs was to develop a framework for stud-
ying massive parallelization. However, the need to provide traditional EAs with a

52 C.M. Fernandes et al.

proper balance between exploration and exploitation and overcome standard
EAs drawbacks, like synchronicity, rigid connectivity and strong dependence on the
problem, motivated several lines of research that explore the potentiality of different
population structures in maintaining genetic diversity [10]. Additionally, complex
population structures have been studied, some of them under the knowledge provided
by recent developments in network theory.

In [1], Alba and Dorronsoro dynamically change the ratio that defines the neigh-
borhood of interaction. Since the ratio may affect selection pressure, the authors
analyze the influence of its value on the balance between exploration and exploitation.
However, the base-structure of the cellular EA is maintained throughout the run. In
[11], Whitacre et al. focus on two important conditions missing in EA populations: a
self-organized definition of locality and interaction epistasis. With that purpose in
mind, they proposed a dynamic structure and concluded that the two features, when
combined, provide behaviors not present in the traditional spatially structured EAs.
The most noticeable change is an unprecedented capacity for sustainable coexistence
of genetically distinct individuals within a single population. The authors state that the
capacity for sustained genetic diversity is not imposed on the population; instead, it
emerges as a natural consequence of the dynamics of the system. Laredo et al. [7]
proposed a framework for EAs based on peer-to-peer networks [9]. Within a simu-
lated network, they model the dynamics of real networks and conclude that their sys-
tem is able to achieve better performance than traditional EAs on a wide range of
problems, while being scalable and resilient to the volatility of nodes in the network.

In order to deal with the specific issues that may affect the design and performance
of spatially structured EAs, Fernandes et al. [3] devised a complex adaptive system to
be used as a dynamic structure for populations. This model, which can be regarded as
a cellular automaton [6] with short-term memory, uses stimergic communication and
simple rules for movement on a grid of nodes, giving rise to self-organized clusters of
particles. A noticeable feature of these clusters is that they keep evolving and chang-
ing shape, thus providing some kind of highly dynamic order. The authors demon-
strate that the proposed system has indeed emergent properties that may prove useful
for spatially structured EAs, or other spatially structured population-based metaheu-
ristics.

In fact, this framework has been recently used to implement a spatially structured
Particle Swarm Optimization (PSO) algorithm, in which the particles’ interaction is
defined by their position on the grid [4]. In this case, the position update rule is based
on Brownian movement. Recently, Nogueras et al. [8] adapted the model in [3] to a
spatially structured multimemetic algorithm with dynamic topology. The authors
show that the dynamic topology maintains genetic diversity at a higher level and re-
duces the rate of convergence to local optima.

In this paper we take a different approach and test the framework as a dynamic to-
pology for cellular Genetic Algorithms (cGAs), using position update rules that model
Brownian movement and stigmergic behavior. The base model and the proposed
topology are described in the following section.

 Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms 53

3 Dynamic Topology

This section gives a formal description of the network and the transition rules that
define the proposed model for dynamic population structures.

Let us consider a rectangular grid of size . Each cell of the grid is
a tuple , , where 1, … , • and • , for some
domain . The value indicates the index of the individual that occupies the posi-
tion , in the grid. If • then the corresponding position is empty. However,
that same position may still have information, namely a mark (or clue) , that is
placed by the individuals and provides a form of communication between them. If

= • then the position is empty and unmarked. Please note that when , the
topology is the standard static 2-dimensional structure.

The marks are placed by individuals that occupied that position in the past and they
consist of information about those individuals (captured by domain), like their
fitness or a copy of their genotype , as well as a time stamp that indicates the
iteration in which the mark was placed. The marks have a lifespan of iterations,
after which they are deleted.

Initially, •,• for all , . Then, individuals are placed randomly on the
grid (only one individual per node). Afterwards, all individuals are subject to a
movement phase (or position update), followed by an evolutionary phase. The process
(position update and evolutionary phase) repeats until a stop criterion is met.

The evolutionary phase is the standard iteration of a cEA, comprising selection, re-
combination mutation and replacement. The only difference to a cEA with static
structure is that in this case an individual may find empty nodes in its neighborhood,
and the selection pool is restricted to the individuals that occupy adjacent nodes. If at
a given time-step an individual has no neighbors, then there is no recombination event
for that individual in that specific iteration.

In the position update phase, each individual moves to an adjacent empty node.
Adjacency is defined by the Moore neighborhood of radius , so an individual at , can move to an empty node , for which , , , .
If no empty position is available, the individual stays in the same node. Otherwise, it
picks a neighboring empty node according to the marks on them. If there are no
marks, the destination is chosen randomly amongst the free nodes.

We consider two possibilities for the position update phase: stimergic, whereby the
individual looks for a mark that is similar to itself; and Brownian, whereby the indi-
vidual selects an empty neighbor regardless of the marks. For the first option, let , , , … , , be the collection of empty neighboring nodes
and let be the individual to move. Then, the individual attempts to move to a node
whose mark is as close as possible to its own corresponding trait (fitness or genotype)
or to an adjacent cell picked at random if there are no marks in the neighborhood.
This strategy leads to the self-organization of the population into dynamic clusters [3],
[8]. In the alternative Brownian policy, the individual moves to an adjacent empty
position picked at random. In either case, the process is repeated for the whole popu-
lation. The following section describes the results attained by dynamic cGAs with
stigmergic and Brownian movement.

54 C.M. Fernandes et al.

4 Results and Discussion

In order to investigate their performance, the proposed dynamic topologies were tested
on a set of functions that challenge the EAs ability to combine building-blocks and de-
mand a careful balance between exploration and exploitation: the near-deceptive order-3
trap, the recursive epistatic H-IFF and the needle in the haystack Trident problem.

A trap function is a piecewise-linear function defined on unitation (number of ones
in a string), with two distinct regions in the search space, one leading to the global
optimum and the other leading to a local optimum. The trap in this test is defined by: ,1 , (1)

where u() is the unitation function and is the problem size (and also the fitness of
the global optimum). With these definitions, order-3 traps are in the region between
deceptive and non-deceptive, while order-2 are non-deceptive and order-4 are fully
deceptive. For the experiments, an order-3 trap function was constructed by juxtapos-
ing 100 subproblems, which corresponds to 300-bit string. The fitness of the best
solution (a string of 1 s) is 300.

Trident functions are needle in the haystack problems that exploit the ability of
EAs to mix good but significantly different solutions. The fitness function of the Tri-
dent used in this work has two components, base and contribution: base contribution . The base depends on unitation and is described by: 2. u l (2)

where is the chromosome length and u() is the unitation function. The contribution
rewards certain configurations of strings that have an equal number of 0’s and 1’s.
Let be the first half of the binary string of length and the second half. The
contribution is described by Equation 5: 2. ,0, (3)

where is the bitwise negation of . The Trident accepts strings of length 2 , where 2. For this paper, 128-bit strings were used and the optimal fitness is 256.
Finally, the H-IFF function is a recursive epistatic problem with hierachical struc-

ture. The landscape requires a search for increasingly higher-order schemata, chal-
lenging the EAs’ abilities to identify and combine good building blocks. The problem
is defined using a recursive function. If the bit string being considered consists of all
zeros or all ones, the fitness of the string is equal to its length; otherwise it has a fit-
ness of 0. This same criterion is then applied recursively on each half of the string,
until it can be subdivided no further. Adding the fitness of all substrings together
yields the fitness of the whole. Formally, the HIFF fitness function can be defined as: 1, | | 1| | , | | 1, 0 1 (4)

where B is a block of bits … , | | is the size of the block (and therefore equal
to , which must be an integer power of 2), is the ith element of B, and are

 Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms 55

the left and right halves of B. For the tests, a problem 128-bit strings has been con-
structed. The best solution has a fitness value of 1024.

With this set of functions it is possible to test the ability of the dynamic cGAs in
combining the raw building blocks of the initial population and escape local optima
traps. These functions challenge standard strategies, which converge very often to
local optima, especially in the H-IFF and trap functions. If the proposed dynamic
topology is effective in maintaining genetic diversity, then it is expected that the rate
of convergence to global optima is improved.

All the cEAs used in the experiments are synchronous (i.e., the offspring are placed
in a temporal population and replacement is done after every individual generates one
child). Parameterization was done after [1]: the population size was set to 400;
the recombination operator is the double point crossover with 1.0; mutation is
bit-flip with 1/ , where is the chromosome length; tournament selection. Only
one offspring is placed in the temporary population (randomly chosen from the set of
two children). In the replacement stage, the offspring replaces its parent if it is better.

The stop criteria are: to find the global optimum or to achieve a maximum of 3,000,000 function evaluations. The number of evaluations required to meet the best
solution is recorded and averaged over 50 runs. A success measure (successful runs)
is defined as the number of runs in which the algorithm attains the global optimum.

Four different strategies have been considered for the position update phase of the
proposed algorithm. In the first one, which will be referred to as dynamic cGA with
Brownian movement (the individuals ignore the marks and chose randomly
the destination cells amongst the empty ones in their neighborhood. In the dynamic
cGA with fitness marks (), the individuals deposit marks with their fitness val-
ue. A similar strategy is used by the hierarchical dynamic cGA with fitness marks

, except that in this case the individual only considers a mark if the fitness
value is better than its own fitness. Finally, in the dynamic cGA with genotype marks
(, the individuals leave copies of their genotypes in the cells, and when choos-
ing the destination cell, the individual computes the Hamming distance between its
genotype and the marks. The destination cell is then the one that minimizes the dis-
tance. The radius of the Moore neighborhood and marks lifespan were set to 1.

At every time-step, the individuals are ranked according to their fitness, so that the
best individuals’ positions are updated first. This strategy has been devised for the

, but in order to make fair comparisons it has been implemented in every
cGA. In fact, some preliminary tests showed that ranking the individuals tends to
improve the performance of the algorithms.

In order to evaluate the efficiency of the algorithms, the dynamic cGAs are
compared with static cGAs with Moore (cGAM) and von Neumann (cGAvN)
neighbourhoods on a 20 20 grid. The evolutionary phase begins only when the
average clustering degree (the number of neighbours of an individual, including the
individual itself) rises above 2.5. This ad hoc strategy is used for avoiding the initial
distribution stage in which many individuals are still isolated (i.e., with none or only a
few neighbours). Typically, the individuals start to cluster in a few generations and
the evolutionary phase begins at a very early stage. Although the threshold is imposed
here by a centralized decision, a local decentralized (self-organized) strategy is also
possible. For instance, the evolutionary phase could be triggered individually,

56 C.M. Fernandes et al.

Table 1. Average best fitness values (plus standard deviation)

 X×Y H-IFF Trident 3-trap

 20×20 877.17±90.95 243.20±38.79 296.58±2.07
 20×20 915.84±91.86 243.20±38.79 297.70±1.71

30×30 856.67±100.59 184.32±64.18 295.18±2.30
40×40 905.33±99.92 235.52±47.40 296.58±1.95
50×50 902.33±92.51 235.52±47.40 297.78±1.43
60×60 926.67±102.08 232.96±49.68 297.76±1.70
70×70 928.96±87.00 219.43±58.42 297.86±1.54

30×30 871.68±109.82 194.56±64.60 294.42±2.82
40×40 870.08±94.51 230.40±51.72 294.70±3.26
50×50 917.76±94.67 250.88±25.34 296.54±2.19
60×60 944.96±90.19 256.00±0.00 297.58±1.48
70×70 954.88±85.37 256.00±0.00 298.16±1.45

30×30 862.400±97.36 192.00±64.65 294.28±2.38
40×40 884.80±112.17 235.52±47.40 294.76±2.60
50×50 921.60±94.80 245.76±35.08 295.90±3.09
60×60 940.80±93.24 253.44±18.10 296.56±2.55
70×70 965.12±79.27 248.32±30.71 297.42±1.71

30×30 875.84±92.10 222.72±56.72 295.88±2.16
40×40 929.60±98.38 253.44±18.10 297.14±1.83
50×50 924.48±92.86 250.88±25.34 297.86±1.52
60×60 947.84±84.27 256.00±0.00 298.68±1.12

70×70 979.84±77.28 256.00±0.00 298.74±1.28

for each chromosome. However, such strategy introduces a transitory phase in which
the population only recombines partially (steady-state). This could make a compari-
son with static strategies more difficult and potentially unfair and therefore it has been
left for future work.

The objectives of the first experiment are to study the performance of the dynamic
cGAs and the effects of the grid size on their behaviour. For that purpose, grids with
different size have been tested, starting with a 30 30 grid. The averaged final fit-
ness value attained by each algorithm in each function is shown in Table 1.

The first conclusion is that the Brownian version, in general, does not improve sig-
nificantly the performance of the cGAvN (the best static strategy). A dynamic topology
per se is not sufficient to overcome the drawbacks of standard cEAs. Some kind of
organization must take place in order to generate a better interaction between the
individuals. When stigmergy is introduced in the model, the results are clearly im-
proved, as seen in Table 1.

The dynamic topologies with stigmergic-based movement rules increase standard
cGAs performance when the grid is larger than 40 40. In general, dynamic popula-
tions with stigmergic rule moving on 60 60 and 70 70 grids significantly improve
the standard cGAs. For instance, the on a 70 70 grid is significantly better than
the standard cGAs in every function (according to Kolmogorov-Smirnov statistical tests
with a 0.05 level of significance). The fact that smaller grids do not necessarily improve
the static cGA performance suggests that it is not the movement of the individuals that
makes the algorithm better in this set of functions, but instead some kind of global island-
like pattern that emerges when the grid is larger.

 Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms 57

 0 10 50 75

 100 101 102 103

Fig. 1. Distribution of the individuals on the grid at different iterations of the search process.
 and Trident function. 60 60 grid.

Figure 1 shows the distribution of the individuals at different iterations () of the
search process for a grid with size 60×60. The evolutionary phase begins at 50.
Clusters of individuals emerge already at an early stage. Those clusters are highly
dynamic and in a few generations the global pattern radically changes (please note the
distributions between iteration 100 and 103). The topology self-organizes
into a kind of dynamic island model, in which the communication between the clus-
ters is also an emergent property, arising from the global behavior of the system.
After 50, when the evolutionary phase is introduced (and therefore several fitness
values and genotypes are changing in each time-step), the clusters are sparser, but this
an expected outcome due to the variation introduced by the evolutionary process.

Table 2 shows the number of successful runs attained by the cGAs. Again, under
this criterion, the dynamic versions outperform the static topologies. The similarity-
based strategy is particularly efficient, attaining the best success rates.

The previous results show that the dynamic cGAs are able to converge more often
to global optimum. Therefore, they have a better balance between exploration and
exploitation for these fitness functions: with the same raw building-blocks, the dy-
namic cGAs combine more efficiently the solutions. This is probably because the
emergent structures, with their clustering degree and dynamical behaviour, are more
efficient at maintaining genetic diversity. In order to investigate this hypothesis,

Table 2. Number of successful runs
 H-IFF Trident 3-trap

 11 45 2
 19 45 5 70 70 21 36 8 70 70 29 50 9 70 70 31 48 5 70 70 37 50 13

58 C.M. Fernandes et al.

Fig. 2. Genetic diversity

the algorithms were tested without mutation and the number of genes that converge
(i.e., genes with alleles 0 or 1 in the entire population) during the run was computed
and plotted. The results are in Figure 2. The diversity is in fact maintained at a higher
level by the structures. Furthermore, increasing the grid increases the diversity (left-
hand graph in Figure 2). As for the different strategies, the best strategy (similarity-
based) is also the one that maintains diversity at a higher level (right-hand graph).

Finally, since the dynamic topologies maintain genetic diversity at a higher level,
therefore increasing exploration and reducing the risk of convergence to local optima,
it is expected that the convergence speed is reduced, a typical payoff for increasing
robustness. Table 3 shows the averaged number of evaluations required by each algo-
rithm to reach the global optimum (only runs in which the global optimum has been
found are considered). The static structures are faster, but as seen in Table 1 and
Table 2, at the expenses of a significant drop of the performance levels.

5 Conclusions and Future Work

This paper investigates a dynamic cellular Genetic Algorithms (cGA) in which the
individuals communicate via a grid of nodes and self-organized its structure on that
grid. The global behavioral patterns emerge from local interactions defined by simple
rules. When compared to static topologies, the dynamic structure maintains genetic
diversity at a higher level, resulting in an improvement of the convergence rates to
global optimum on a set of functions that defy the GAs abilities to combine building-
blocks. Such behavior is attained when the ration between the number of nodes in the
grid and the population size is above 4:1. With these settings, the distribution of

Table 3. Convergence speed (function evaluations)

 H-IFF Trident 3-trap

 39600.00±9248.29 44035.56±5678.77 93000.00±3400.00
 48191.30±15320.04 47377.78±5265.71 100560.00±13716.21
 49808.57±9093.29 55168.47±13663.58 108822.75±4795.37
 114608.86±36325.71 75936.81±12991.56 266100.11±48188.63
 104568.00±27233.83 69546.29±9204.14 212348.20±20325.13
 127981.38±41261.71 95204.48±15756.53 298350.47±20739.19

0

100

200

300

400

500

600

0 40000 80000 120000 160000 200000

gn
es

s
fu

lly
 c

on
ve

rg
ed

function evaluations

cGAM

cGAvN

dcGAf (30×30)

dcGAf (40×40)

dcGAf (50×50)
0

100

200

300

400

500

600

0 40000 80000 120000 160000 200000

ge
ne

s
fu

lly
 c

on
ve

rg
ed

function evaluations

dcGAf (50×50)

dcGAg (50×50)

dcGAfh (50×50)

 Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms 59

individuals in the grid emerges into a global island-like model, highly dynamic and
with frequent communication between the clusters.

Future work will be focused on the traits of the system and their effects on the be-
havior of the population and on the performance of the algorithm. Radius of the
neighborhood and marks’ lifespan will be investigated. Different stigmergic strate-
gies will be tested, namely those that favor recombination between dissimilar individ-
uals. Finally, the experiments will be extended to other type of functions (unimodal
and multimodal) in order to achieve a better comprehension of the structure’s working
mechanism and potential as an alternative cGA network.

Acknowledgements. The first author wishes to thank FCT, Ministério da Ciência e
Tecnologia, his Research Fellowship SFRH/BPD/66876/2009. The work was sup-
ported by FCT PROJECT [PEst-OE/EEI/LA0009/2013], Spanish Ministry of Science
and Innovation projects TIN2011-28627-C04-02 and TIN2011-28627-C04-01, Anda-
lusian Regional Government P08-TIC-03903 and P10-TIC-6083, CEI-BioTIC UGR
project CEI2013-P-14, and UL-EvoPerf project.

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic
algorithms. IEEE Trans. Evol. Computation 9, 126–142 (2005)

2. Cantú-Paz, E.: Migration Policies, Selection Pressure, and Parallel EAs. Journal of Heuris-
tics, 311–334 (2001)

3. Fernandes, C.M., Laredo, J.L.L., Merelo, J.J., Cotta, C., Rosa, A.C.: Towards a 2-
dimensional Framework for Structured Population-based Metaheuristics. In: Proc. of IEEE
International Conference on Complex Systems, pp. 1–6 (2012)

4. Fernandes, C.M., Laredo, J.L.L., Merelo, J.J., Cotta, C., Rosa, A.C.: A Study on Time-
Varying Partially Connected Topologies for the Particle Swarm. In: Proc. of the IEEE
Congress on Evolutionary Computation, pp. 2450–2456. IEEE (2013)

5. Grassé, La, P.-P.: reconstrucion du nid et les coordinations interindividuelles chez bellico-
sitermes et cubitermes sp. La théorie de la stigmergie: Essai d’interpretation du comporte-
ment des termites constructeurs. Insectes Sociaux 6, 41–80 (1959)

6. Ilachinski, A., Cellular Automata, A.: Discrete Universe, World Scientific (2001)
7. Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.M.: Resilience to

churn of a peer-to-peer evolutionary algorithm. International Journal of High Performance
Systems Architecture 1(4), 260–268 (2008)

8. Nogueras, R., Cotta, C., Fernandes, C.M., Jiménez Laredo, J.L., Merelo, J.J., Rosa, A.C.:
An analysis of a selecto-lamarckian model of multimemetic algorithms with dynamic self-
organized topology. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A.
(eds.) TPNC 2013. LNCS, vol. 8273, pp. 205–216. Springer, Heidelberg (2013)

9. Steinmetz, R., Wehrle, K. (eds.): Peer-to-Peer Systems and Applications. LNCS,
vol. 3485. Springer, Heidelberg (2005)

10. Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer (2005)
11. Whitacre, J.M., Sarker, R.A., Pham, Q.: The self-organization of interaction networks

for nature-inspired optimization. IEEE Transactions on Evolutionary Computation 12,
220–230 (2008)

How to Assess Step-Size Adaptation Mechanisms
in Randomised Search

Nikolaus Hansen, Asma Atamna, and Anne Auger

Inria�

LRI (UMR 8623), University of Paris-Sud (UPSud), France

Abstract. Step-size adaptation for randomised search algorithms like evolution
strategies is a crucial feature for their performance. The adaptation must, depend-
ing on the situation, sustain a large diversity or entertain fast convergence to the
desired optimum. The assessment of step-size adaptation mechanisms is therefore
non-trivial and often done in too restricted scenarios, possibly only on the sphere
function. This paper introduces a (minimal) methodology combined with a prac-
tical procedure to conduct a more thorough assessment of the overall population
diversity of a randomised search algorithm in different scenarios. We illustrate
the methodology on evolution strategies with σ-self-adaptation, cumulative step-
size adaptation and two-point adaptation. For the latter, we introduce a variant
that abstains from additional samples by constructing two particular individuals
within the given population to decide on the step-size change. We find that results
on the sphere function alone can be rather misleading to assess mechanisms to
control overall population diversity. The most striking flaws we observe for self-
adaptation: on the linear function, the step-size increments are rather small, and
on a moderately conditioned ellipsoid function, the adapted step-size is 20 times
smaller than optimal.

1 Introduction

In this paper we consider a fitness or objective function, f : Rn → R, to be minimised
in a black-box optimisation scenario, and an evolutionary algorithm, or randomised
search method, generating λ offspring according to

x
(t)
k = x(t) + σ(t) × z

(t)
k , k = 1, . . . , λ , (1)

where x(t) ∈ Rn denotes the incumbent solution at iteration t and z
(t)
k ∈ Rn are i.i.d.

random vectors. The “overall variance” of the offspring population in (1) is determined
by the diversity parameter σ(t). More generally, we rely on two assumptions: (i) we have
a valid measurement for the “global diversity” of the offspring population, denoted as
σ(t), and (ii) the shape of the offspring population (determined by the distribution of
z
(t)
k in (1)) does not change remarkably during the investigated time range of t.

Controlling the overall diversity in the population plays a crucial role in randomised
search and has been typically approached by step-size adaptation. Two conflicting ob-
jectives are in place. On the one hand, diversity should be as large as possible to prevent

� Research centre Saclay–Île-de-France, TAO team, lastname@lri.fr

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 60–69, 2014.
c© Springer International Publishing Switzerland 2014

How to Assess Step-Size Adaptation Mechanisms 61

premature convergence or convergence to the very next local optimum. On the other
hand, fast convergence to a global (or a good local) optimum is desired which is usually
accompanied and facilitated by a fast decrease of diversity.

While adaptation of the shape of the sample distribution appears to be a solved prob-
lem in moderate dimension [6,10,11] (e.g. by CMA), the effective adaptation of the
overall population diversity seems yet to pose open questions, in particular with recom-
bination or without entire control over the realised distribution. For example, cumulative
step-size adaptation is prone to fail when repair or rejection sampling is used.

In this context, we propose a basic assessment procedure to evaluate the capability of
step-size control, or the entire search algorithm for that matter, to keep the overall diver-
sity, or step-size σ(t), within reasonable limits. This procedure might be used during an
algorithm designing process, however we like to remind the general scientific principle
that a procedure used to systematically tune parameters of an algorithm is forfeited to
assess the resulting algorithm.

In the next section we introduce the assessment methodology. Section 3 introduces
the algorithms used in the case study in Section 4. We also introduce a simplified two-
point adaptation and tune its damping parameter on the sphere function in Section 3.
Section 5 provides a short discussion and summary.

2 Step-Size Evaluation Methodology

General demands on the behaviour of evolutionary algorithms were suggested previ-
ously, e.g. in [4,11]. Here, we propose a methodology to specifically investigate and as-
sess the overall population diversity, or step-size, towards meeting reasonable demands
via the following scenarios:

Random Fitness (and flat fitness). On the random fitness, all f -values, f(x), are
i.i.d., independently of x as a continuous random variable. For algorithms invariant un-
der order-preserving transformations of f , i.e., algorithms based on f -rankings only (as
those investigated in this paper), testing a single continuous f -distribution is sufficient.
Generally, we desire stationarity or unbiasedness of parameters under random fitness
[11] and here we expect to see an unbiased random walk in log-scale. For the flat fit-
ness, where f is constant, we expect the same behaviour. In contrast, [4] argues for an
exponentially increasing step-size on the flat fitness which, however, involves the risk
of divergence when the selection pressure is weak [7].

The linear function, where f : x �→ x1 is the prototypical instantiation (see paragraph
Invariance below). A linear function tests whether and how quickly the diversity can
increase. With step-size to zero, any smooth function appears to be an instantiation of
the linear function (unless at a local optimum or saddle point) and the diversity should
increase in this case. We demand a fast exponential increase, that is, a linear increase
on the log-scale [4]. The rate should be at least comparable to the rate of decrease on
the sphere function or at least a factor of 1.1 within n evaluations or at least a factor of
2 in n iterations.

62 N. Hansen, A. Atamna, and A. Auger

The sphere function, f : x �→ ∑n
i=1 x

2
i = ‖x‖2, is the most simple quadratic func-

tion, demanding a rapid decrease of the step-size. Arguably, no other function requires
a faster step-size decrement. Step-size control should not reduce the fastest possible
(optimal) convergence rate on the sphere function by more than a factor of about three.

To achieve linear (i.e. fast) convergence on the sphere function we need to have, at
least approximately, σ(t) ∝ f(x(t))1/2, implying that σ and f1/2 converge at the same
rate. More specifically, on the sphere function with isotropic sample distribution, there
is a constant σ∗

opt(n) such that the step-size

σ(t) =
σ∗
opt(n)

n
× f(x(t))1/2 (2)

achieves optimal convergence speed and σ∗
opt(n) = Θ(n0) = Θ(1). When running

a real algorithm, the proportionality can only be satisfied in a stochastic sense, i.e. the
random variableσ(t)/f(x(t))1/2 is stable (for example whenx(t)/σ(t) is an irreducible,
recurrent and ergodic Markov Chain [3]).

A similar reasoning on σ(t) holds true on the ellipsoid function, where the direct
link between σ(t) and f(x(t))1/2 is less obvious, however presumed in the following to
obtain the optimal convergence rates to compare with.

The ellipsoid function, f : x �→ ∑n
i=1 α

(i−1)/(n−1)x2
i , is arguably the most basic

function where, for α �= 1, an isotropic distribution of the new offspring is not optimal.
The parameter α represents the condition number of the Hessian matrix of f .

With isotropic sample distribution in (1) and α > 10, the realised convergence rates
are roughly proportional to 10/α [12]. Recalling that f1/2(x(t)) and the optimal value
for σ(t), are linked to each other (Eq. (2)), we observe that with larger α, when ap-
proaching the optimum, the optimal step-size changes more slowly (because the re-
alised convergence rate is small). The task to estimate the optimal step-size becomes
more relevant than the task to follow the change of the optimal step-size. In this paper,
experiments are done for α = 1, 10, 100.

The stationary sphere is an artificial model, resembling the sphere function in that an
isotropic sample distribution is optimal, but with stationary optimal step-size. While the
sphere function tests the ability to decrease the step-size quickly, the stationary sphere
function tests the ability to adapt the step-size close to the optimal step-size in the same
sphere-like topography without approaching the optimum. With global intermediate or
weighted recombination, as used below, the stationary sphere is simulated by setting the
norm of the resulting recombination vector (super-parent) to one and re-normalisation
of all other individuals or solutions in the algorithm’s state by the same factor (see, e.g.,
lines 5–6 in Algorithm 3). When the population is never reduced to a single point, an ap-
propriate normalisation factor needs to be identified (omitted due to space restrictions).
The stationary sphere model is arguably the easiest model for step-size adaptation and
we expect to observe close to the optimal step-sizes.

Convergence Rate and Optimal Step-Size. On the last three functions, we compute
from a single run with t iterations the consistent estimator

How to Assess Step-Size Adaptation Mechanisms 63

ĉ = − 1

T

t−1∑
s=t−T

1

2
ln

(
f(x(s+1))

f(x(s))

)
(3)

for the convergence rate [2, Eq. (24)], where x(s) ∈ Rn is the solution proposed at time
step s, and the burn-in time t−T diminishes the possible bias due to initialisation. In this
paper we use T = �t/2�, i.e. half of the overall time steps for aggregated measurements.
If necessary (e.g., when we terminate due to numerical precision, but want more data),
we average ĉ over several runs.

We obtain the values for the optimal step-size and convergence rate empirically by
measuring the convergence rate with σ(t) set according to (2) and sweeping through
different values for σ∗

opt. Generally, we demand the “real” algorithm to perform within
a factor of three of this optimal convergence rate, and we prefer larger step-sizes to
smaller ones, given the same performance is observed.

Invariance is an important concept in the assessment of algorithms. For example, all
linear functions are identical for the below assessed algorithms, because the algorithms
are invariant under affine transformations of f and under rotations of the search space.
In the case where algorithms do not exhibit certain invariances (e.g. rotation invariance),
it is advisable to test different instantiations (e.g. different rotations) of the above sce-
narios. Scale invariance on the other hand is a prerequisite to measure (3) independently
of initial step-size or the distance to the optimum.

We now apply our methodology to three step-size adaptation methods. Due to the
space limits, we do not always display single runs, but we consider investigating the
evolution of f and σ (both displayed in the log scale) in single runs in all scenarios part
of the assessment procedure [15].

3 Considered Step-Size Adaptation Methods

In the following, we consider the (μ/μ, λ)-ES with weighted recombination [11]. The

offspring are generated as in (1) where the i.i.d. z(t)
k follow the standard multivariate

normal distributions, i.e., z(t)
k = Nt,k(0, I). They are sorted according to their fitness

such that
f
(
x
(t)
1:λ

)
≤ f
(
x
(t)
2:λ

)
≤ · · · ≤ f

(
x
(t)
λ:λ

)
, (4)

thereby defining the index k : λ used in the following. The μ best individuals are then
recombined according to

x(t+1) =

μ∑
k=1

wkx
(t)
k:λ , (5)

where wk’s are chosen to be optimal on the infinite-dimensional sphere function [1].
We set μ = �λ/2� and therefore have only positive weights while λ = 4 + �3 lnn�.

We consider here three ways to adapt the step-size in (1). Self-Adaptation (SA) [14]
and Cumulative Step-size Adaptation (CSA) [11] are given in Algorithm 1 and 2. The
used default parameter settings for the latter are taken from [9] as cσ = μw+2

n+μw+5 ,

64 N. Hansen, A. Atamna, and A. Auger

Algorithm 1. The (μ/μ, λ)-σSA-ES

0 given n ∈ N+, λ, μ, wk, τ = 1/
√
2n

1 initialize x(0) ∈ Rn, σ(0) ∈ R+

2 while not happy

3 if stationary sphere :

4 x(t) = x(t)/‖x(t)‖
5 for k ∈ {1, . . . , λ}
6 ξ

(t)
k = τNt,k(0, 1)

7 z
(t)
k = Nt,k(0, I)

8 σ
(t)
k = σ(t) × exp(ξ

(t)
k)

9 x
(t)
k = x(t) + σ

(t)
k × z

(t)
k

10 σ(t+1) =

μ∑
k=1

wkσ
(t)
k:λ

11 x(t+1) =

μ∑
k=1

wkx
(t)
k:λ

12 t = t+ 1

Algorithm 2. The (μ/μ, λ)-CSA-ES

0 given n ∈ N+, λ, μ, wk, cσ, d

1 initialize x(0) ∈ Rn, σ(0) ∈ R+, p
(0)
σ = 0

2 while not happy

3 if stationary sphere :

4 x(t) = x(t)/‖x(t)‖
5 for k ∈ {1, . . . , λ}
6 z

(t)
k = Nt,k(0, I)

7 x
(t)
k = x(t) + σ(t) × z

(t)
k

8 p(t+1)
σ = (1− cσ)p

(t)
σ +√

cσ(2− cσ)/
∑μ

k w2
k

μ∑
k=1

wkz
(t)
k:λ

9 σ(t+1) = σ(t) × exp
cσ
d

(
‖p(t+1)

σ ‖
E‖N (0, I)‖ − 1

)

10 x(t+1) = x(t) + σ(t)
μ∑

k=1

wkz
(t)
k:λ

11 t = t+ 1

d = 1 + 2 max
(
0,
√

μw−1
n+1 − 1

)
+ cσ . The third method considered for step-size

adaptation is presented in the following.

Two-Point Step-Size Adaptation (TPA). We consider a tidied version of Two-Point
Step-Size Adaptation (TPA) based on [8,13]. Conceptually, TPA implements a very
coarse line search along the direction of the latest mean shift from x(t−1) to x(t). In
our version, we sample the first two offspring of the next iteration along this line. These
two offspring are generated as a mirrored pair, symmetric about the current mean vector
x(t),

x
(t)
1/2 = x(t) ± σ(t) × ‖Nt(0, I)‖ x(t) − x(t−1)

‖x(t) − x(t−1)‖ , (6)

instead of (1). Their ranking according to the fitness is used to adapt the step-size: if
x
(t)
1 is better than x

(t)
2 the step-size is increased, because there are better points in the

direction of the mean shift vector, beyond of where the mean has been moved. Other-
wise, the step-size is decreased. By using individuals that are likely to be sampled by the
current distribution, information on the “signal strength” is available, because we can
compare their fitness to the fitness of the remaining population. Accordingly, we take the

difference between the f -ranks of x(t)
1 and x

(t)
2 in the population, rank(x(t)

2)−rank(x(t)
1)

λ−1 ∈
[−1, 1]. This normalised rank difference is averaged in s(t) and used to finally update the
step-size σ(t+1) = σ(t)×exp

(
s(t)/dσ

)
, where the damping, dσ , moderates the step-size

changes. The details are shown in Algorithm 3.
The constant for which σ(t) in (2) achieves optimal convergence rate depends on the

sampling. For TPA-like sampling, we denote it σ∗
opt TPA.

How to Assess Step-Size Adaptation Mechanisms 65

Algorithm 3. The (μ/μ, λ)-ES with TPA
0 given n ∈ N+, λ, μ, cσ = 0.3, dσ =

√
n, wk

1 init x(0) ∈ Rn, σ(0) ∈ R+, t = 0, s(0) = 0

2 while not happy

3 if stationary sphere :

4 if t > 0 :

5 x(t−1) = x(t−1)/‖x(t)‖
6 x(t) = x(t)/‖x(t)‖
7 for k ∈ {1, . . . , λ}
8 z

(t)
k = Nt,k(0, I)

9 if t > 0 and k = 1:

10 z
(t)
1 = ‖Nt(0, I)‖ × (x(t) − x(t−1))

‖x(t) − x(t−1)‖

11 if t > 0 and k = 2:

12 z
(t)
2 = −z(t)

1

13 x
(t)
k = x(t) + σ(t) × z

(t)
k

14 x(t+1) =

μ∑
k=1

wkx
(t)
k:λ

15 if t > 0 :

16 s(t) = (1− cσ)s
(t−1)+

cσ
rank(x(t)

2)− rank(x(t)
1)

λ− 1

17 σ(t+1) = σ(t) × exp

(
s(t)

dσ

)
18 t = t+ 1

Fig. 1. Left: number of function evaluations versus damping dσ for TPA, averaged over 101 runs
with target f -value 10−8. Right: solid lines depict, from bottom to top, (i) the smallest damping
where all runs reached the target value; (ii) the smallest and largest “reasonable” damping with
a performance not worse than three times the best (lowest) value in the respective graph on the
left; (iii) the damping with best performance, d∗σ; (iv) the smallest and largest damping with
performance no more than two times worse than the best value in the respective graph on the
left, all plotted against dimension. The dashed line depicts

√
n. The filled area corresponds to

damping values with at most 20% performance loss compared to the optimal damping.

The Damping Factor. Here we identify a default value for the damping dσ . To this
aim, we follow a standard procedure: dσ is tuned on the sphere function. For each value
of dσ, the algorithm is run 101 times with target f -value 10−8 (the f -value that stops
the algorithm when reached), and if all runs reached the target, the average number of
f -evaluations is recorded, see Figure 1, left. We observe a steep incline to the left (small
values of dσ), where missing points indicate the failure of at least one run to reach the
target. To the right, the number of f -evaluations increases linearly with the damping and
no failures are observed. We extract four damping values per dimension as shown and
described in Figure 1, right. We then choose the damping to be (a) more than three times
larger than the smallest “reasonable” value and (b) larger than the optimal value such
that (c) reducing dσ by a factor of two leads to a better performance than increasing it by
a factor of two without (d) loosing more than a factor of two in performance compared
to the best damping (see also [5]). The default choice becomes dσ =

√
n. Note that we

66 N. Hansen, A. Atamna, and A. Auger

Fig. 2. Evolution of σ(t) on the random fitness for 5 runs of SA (green), CSA (blue), and TPA
(red) in 4-D (left) and 40-D (right)

identified the damping only for the given default population size. The same procedure
needs to be repeated to identify a damping parameter for different population sizes.

4 A Case Study

Experiments are conducted in dimensions between 2 and 100. The algorithms are run
with the default parameter settings (Section 3) and initial x(0) = (1, 0, . . . , 0)T. On
random, linear, and ellipsoid function we have σ(0) = 1, on the sphere and stationary
sphere we have σ(0) = σ∗

opt/n (respectively σ∗
opt TPA/n) for SA and CSA (respectively

TPA). Interquartile ranges are depicted as notched bars with the median at the notch.

Random Fitness. Figure 2 displays the evolution of σ(t) for 5000 iterations in 4- and
40-D, five runs for each algorithm. As expected by design, CSA and TPA show an
unbiased random walk of log σ, where TPA reveals a larger variance. In contrast, due to
the combination of geometric mutation and arithmetic recombination of the step-sizes,
the random walk of SA is biased [7] and log σ increases linearly with a rate of a little
above (below) 100.07 ≈ 1.17 in n iterations for n = 40 (n = 4, respectively).

Linear Function. On the linear function, the algorithms are run 100 times for 400 iter-
ations. Figure 3 shows geometric average and quartiles of the step-size change realised
after n evaluations, (σ(t+1)/σ(t))n/λ, compared to results obtained on the random and
the sphere function.

For CSA and TPA, the step-size increases by at least a factor of 1.14 within n eval-
uations. This factor increases slowly with increasing dimension (but never exceeds a
factor of two) and the increment on the linear function is at least about three times
faster than the decrement on the sphere function.

Self-Adaptation realises only an increment of a factor between 1.03 and 1.05 within
n function evaluations, where also decrements appears frequently. The step-size grows
faster than on the random function but up to four times slower than it shrinks on the
sphere function. This latter observation, together with the observed slow changes rates,
fails to meet our original demand.

Sphere. On the sphere function, the target f -value is 10−100. Figure 4 shows nine
single runs (left) with σ(0) = 10−5, the step-size as geometric average (middle), and
the convergence rate ĉ× n/λ (right, see (3)), both averaged over 100 runs.

How to Assess Step-Size Adaptation Mechanisms 67

Fig. 3. Step-size change after n evaluations, (σ(t+1)/σ(t))n/λ, on the linear (red), the sphere
(green), and the random function (blue)

Fig. 4. Single runs (left), step-size (middle) and convergence rate (right) on the sphere function,
for SA (green), CSA (blue), and TPA (red) and the respective optimal values. Filled areas cor-
respond to step-size values with at most 20% performance loss compared to σopt (or σopt TPA,
respectively).

All algorithms realise a too large step-size. In small dimensions, this leads to a loss in
performance by about a factor of five, thereby failing our original demand. Fortunately,
with increasing dimension the effect diminishes. For n = 100, TPA and SA reveal close
to optimal convergence rates, whereas CSA is about two times slower.

Supposedly, we observe larger-than-optimal step-sizes, because the optimal step-size
changes during the run and is therefore a moving target. Indeed, decreasing the damping
parameters d or dσ in CSA or TPA by a factor of two or increasing τ in SA improves
the convergence speeds thereby meeting just about the original demand. However for
SA, this impairs the performance on the ellipsoid function with α = 10.

Ellipsoid. Complementing the observations on the sphere function, which coincides
with the ellipsoid function with α = 1, the algorithms are investigated on the ellipsoid
function with α ∈ {10, 100}. These are very moderate condition numbers, where an
isotropic distribution can still realise comparatively high convergence rates. We con-
duct 100 runs with target f -value1 of 10−50. Figure 5 shows the step-size as geometric
average and the convergence rate ĉ from (3).

With increasing condition number the realised step-sizes become across the board
smaller (compared to the optimal step-size). For α = 10, the step-size is still slightly too
large with CSA and TPA, while SA shows already too small step-sizes. With α = 100,
SA realises a 20 times smaller than optimal step-size. Then, for n ≥ 10, SA performs
four to six times slower than optimal, while the other two methods reveal close-to-
optimal convergence rates.

Stationary Sphere. On the stationary sphere model, the algorithms are run for t =
5000 iterations. The convergence rate ĉ from (3) is estimated from 100 runs.

Figure 6 shows step-sizes (as geometric average) and convergence rates. The CSA
achieves close to optimal step-sizes and convergence rates in all dimensions. The TPA

1 In general, we can use such a small target f -value only because the optimum is located at zero
and because the distribution shape does not change over the iterations (see Section 1).

68 N. Hansen, A. Atamna, and A. Auger

Fig. 5. Results on the ellipsoid with condition number 10 (left) and 100 (right). Top: normalised
step-size. Shaded areas depict the step-size range with at most 20% loss in convergence rate.
Bottom: convergence rate according to (3).

Fig. 6. Step-size (left) and convergence rate (right) of SA (green), CSA (blue), and TPA (red) on
the stationary sphere together with the respective optimal values. Shaded areas reflect step-sizes
with no more than 20% loss in the achieved convergence rate.

reveals very similar step-sizes in larger dimensions, however for TPA they are some-
what too large, because the optimal step-size is somewhat smaller. Yet, only in smaller
dimensions a (moderate) performance loss is observed.

In contrast, SA adapts always a too small step-size. The gap to the optimal step-size
is a factor of two in 2-D and increases to a factor of 6 in 100-D. The loss in conver-
gence rate is (slightly) above a factor of three only in 100-D. These observations are
(qualitatively) similar to those on the ellipsoid function with condition number 100.

Compared to the sphere function, the observed step-sizes are in all cases consider-
ably smaller, again supporting the hypothesis that too large step-sizes are observed on
the sphere function mainly because the optimal step-size is a moving target2.

5 Discussion and Summary

We have introduced a methodology to assess the overall population diversity, for exam-
ple determined via step-size adaptation, by describing the desired outcomes on basic

2 Experiments with varying damping- or τ -values give additional strong support. Increasing
damping impairs the performance on the sphere function (cp. Fig. 1) by reducing the change
rate of the step-size, while it (slightly) improves the performance on the stationary sphere.

How to Assess Step-Size Adaptation Mechanisms 69

scenarios. We conducted a case study assessing evolution strategies with weighted re-
combination and three different step-size adaptation mechanisms.

Despite the small number of investigated algorithms, we find in each test scenario,
arguably with exception of the random function, limitations of at least one method: a
(too) slow step-size increase on the linear function; a (too) slow step-size decrease on
the sphere function in small dimensions; adaptation of a far too small step-size on the
ellipsoid and stationary sphere. The results suggest that both, design and assessment of
step-size adaptation methods is more intricate than one would have hoped for.

Acknowledgments. This work was supported by the grant ANR-2012-MONU-0009
(NumBBO) of the French National Research Agency.

References

1. Arnold, D.V.: Optimal weighted recombination. In: Wright, A.H., Vose, M.D., De Jong, K.A.,
Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 215–237. Springer, Heidelberg (2005)

2. Auger, A., Hansen, N.: Reconsidering the progress rate theory for evolution strategies in
finite dimensions. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pp. 445–452. ACM (2006)

3. Auger, A., Hansen, N.: On Proving Linear Convergence of Comparison-based Step-size
Adaptive Randomized Search on Scaling-Invariant Functions via Stability of Markov Chains
(2013) ArXiv eprint

4. Beyer, H.-G., Deb, K.: On self-adaptive features in real-parameter evolutionary algorithms.
IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)

5. Brockhoff, D., Auger, A., Hansen, N., Arnold, D.V., Hohm, T.: Mirrored sampling and se-
quential selection for evolution strategies. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 11–21. Springer, Heidelberg (2010)

6. Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., Schmidhuber, J.: Exponential natural evolu-
tion strategies. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, pp. 393–400. ACM (2010)

7. Hansen, N.: An analysis of mutative σ-self-adaptation on linear fitness functions. Evolution-
ary Computation 14(3), 255–275 (2006)

8. Hansen, N.: CMA-ES with two-point step-size adaptation. CoRR, abs/0805.0231 (2008)
9. Hansen, N.: The CMA evolution strategy: A tutorial (2011)

10. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions.
In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp.
282–291. Springer, Heidelberg (2004)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

12. Hansen, N., Ros, R., Mauny, N., Schoenauer, M., Auger, A.: Impacts of invariance in search:
When CMA-ES and PSO face ill-conditioned and non-separable problems. Applied Soft
Computing 11(8), 5755–5769 (2011)

13. Salomon, R.: Evolutionary algorithms and gradient search: Similarities and differences.
IEEE Transactions on Evolutionary Computation 2(2), 45–55 (1998)

14. Schwefel, H.-P.: Evolution and Optimum Seeking. In: Sixth-Generation Computer Technol-
ogy, Wiley Interscience, New York (1995)

15. http://hal.inria.fr/hal-00997294

http://hal.inria.fr/hal-00997294

Maximum Likelihood-Based Online Adaptation

of Hyper-Parameters in CMA-ES

Ilya Loshchilov1, Marc Schoenauer2,3, Michèle Sebag3,2,
and Nikolaus Hansen2,3

1 Laboratory of Intelligent Systems,
École Polytechnique Fédérale de Lausanne, Switzerland

Ilya.Loshchilov@epfl.ch
2 TAO Project-team, INRIA Saclay - Île-de-France

3 Laboratoire de Recherche en Informatique (UMR CNRS 8623)
Université Paris-Sud, 91128 Orsay Cedex, France

FirstName.LastName@inria.fr

Abstract. The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) is widely accepted as a robust derivative-free continuous op-
timization algorithm for non-linear and non-convex optimization prob-
lems. CMA-ES is well known to be almost parameterless, meaning that
only one hyper-parameter, the population size, is proposed to be tuned
by the user. In this paper, we propose a principled approach called self-
CMA-ES to achieve the online adaptation of CMA-ES hyper-parameters
in order to improve its overall performance. Experimental results show
that for larger-than-default population size, the default settings of hyper-
parameters of CMA-ES are far from being optimal, and that self-CMA-
ES allows for dynamically approaching optimal settings.

1 Introduction

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES [5]) is a
continuous optimizer which only exploits the ranking of estimated candidate so-
lutions to approach the optimum of an objective function f : Rn → R. CMA-ES
is also invariant w.r.t. affine transformations of the decision space, explaining the
known robustness of the algorithm. An important practical advantage of CMA-
ES is that all hyper-parameters thereof are defined by default with respect to
the problem dimension n. Practically, only the population size λ is suggested to
be tuned by the user, e.g. when a parallelization of the algorithm is considered or
the problem at hand is known to be multi-modal and/or noisy [1,8]. Other hyper-
parameters have been provided robust default settings (depending on n and λ),
in the sense that their offline tuning allegedly hardly improves the CMA-ES per-
formance for unimodal functions. In the meanwhile, for multi-modal functions it
is suggested that the overall performance can be significantly improved by offline
tuning of λ and multiple stopping criteria [16,11]. Additionally, it is shown that
CMA-ES can be improved by a factor up to 5-10 by the use of surrogate models
on unimodal ill-conditioned functions [14]. This suggests that the CMA-ES per-
formance can be improved by better exploiting the information in the evaluated
samples (x, f(x)).

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 70–79, 2014.
c© Springer International Publishing Switzerland 2014

Maximum Likelihood-Based Online Adaptation 71

This paper focuses on the automatic online adjustment of the CMA-ES hyper-
parameters. The proposed approach, called self-CMA-ES, relies on a second
CMA-ES instance operating on the hyper-parameter space of the first CMA-
ES, and aimed at increasing the likelihood of generating the most successful
samples x in the current generation. The paper is organized as follows. Section 2
describes the original (μ/μw, λ)-CMA-ES. self-CMA-ES is described in Section 3
and its experimental validation is discussed in Section 4 comparatively to related
work. Section 5 concludes the paper.

2 Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy [6,7,5] is acknowledgedly
the most popular and the most efficient Evolution Strategy algorithm.

The original (μ/μw, λ)-CMA-ES (Algorithm 1) proceeds as follows. At the t-th

iteration, a Gaussian distribution N
(
mt, σt2C t

)
is used to generate λ candidate

solution xk ∈ Rn, for k = 1 . . . λ (line 5):

xtk = N
(
mt, σt2C t

)
= mt + σtN (0,C t

)
, (1)

where the mean mt ∈ Rn of the distribution can be interpreted as the current
estimate of the optimum of function f , C t ∈ Rn×n is a (positive definite) co-
variance matrix and σt is a mutation step-size. These λ solutions are evaluated
according to f (line 6). The new mean mt+1 of the distribution is computed
as a weighted sum of the best μ individuals out of the λ ones (line 7). Weights
w1 . . . wμ are used to control the impact of selected individuals, with usually
higher weights for top ranked individuals (line 1).

The adaptation of the step-size σt, inherited from the Cumulative Step-Size
Adaptation Evolution Strategy (CSA-ES [6]), is controlled by the evolution path

pt+1
σ . Successful mutation steps mt+1−mt

σt (line 8) are tracked in the sampling
space, i.e., in the isotropic coordinate system defined by the eigenvectors of the
covariance matrix C t. To update the evolution path pt+1

σ , i) a decay/relaxation
factor cσ is used to decrease the importance of previous steps; ii) the step-
size is increased if the length of the evolution path pt+1

σ is longer than the
expected length of the evolution path under random selection E ‖N (0, I)‖; iii)
otherwise it is decreased (line 13). Expectation of ‖N (0, I)‖ is approximated by√
n(1− 1

4n + 1
21n2). A damping parameter dσ controls the change of the step-size.

The covariance matrix update consists of two parts (line 12): a rank-one update
[7] and a rank-μ update [5]. The rank-one update computes the evolution path

pt+1
c of successful moves of the mean mt+1−mt

σt of the mutation distribution in
the given coordinate system (line 10), along the same lines as the evolution path
pt+1
σ of the step-size. To stall the update of pt+1

c when σ increases rapidly, a hσ

trigger is used (line 9).
The rank-μ update computes a covariance matrixC μ as a weighted sum of the

covariances of successful steps of the bestμ individuals (line 11).Covariancematrix

72 I. Loshchilov et al.

Algorithm 1. The (μ/μw, λ)-CMA-ES

1. given n ∈ N+, λ = 4 + �3lnn�, μ = �λ/2�, wi =
ln(μ+ 1

2
)−ln i∑μ

j=1
(ln(μ+ 1

2
)−ln j)

for i = 1 . . . μ,

μw = 1∑μ
i=1 w2

i
, cσ = μw+2

n+μw+3
, dσ = 1 + cσ + 2max(0,

√
μw−1
n+1

− 1), cc = 4
n+4

,

c1 = 2
(n+1.3)2+μw

, cμ = 2 (μw−2+1/μw)

(n+2)2+μw

2. initialize mt=0 ∈ Rn, σt=0 > 0, pt=0
σ = 0,pt=0

c = 0,C t=0 = I, t← 0
3. repeat
4. for k = 1, . . . , λ do
5. xk = mt + σtN (0,C t

)
6. fk = f(xk)
7. mt+1 =

∑μ
i=1 wixi:λ // the symbol i : λ denotes i-th best individual on f

8. pt+1
σ = (1− cσ)p

t
σ +

√
cσ(2− cσ)

√
μwC

t− 1
2 mt+1−mt

σt

9. hσ = 11‖pt+1
σ ‖<√1−(1−cσ)2(t+1)(1.4+ 2

n+1
) E‖N(0,I)‖

10. pt+1
c = (1− cc)p

t
c + hσ

√
cc(2− cc)

√
μw

mt+1−mt

σt

11. C μ =
∑μ

i=1 wi
xi:λ−mt

σt × (xi:λ−mt)T

σt

12. C t+1 = (1− c1 − cμ)C
t + c1 pt+1

c pt+1
c

T︸ ︷︷ ︸
rank−one update

+cμCμ︸︷︷︸
rank−μ update

13. σt+1 = σtexp(cσ
dσ

(
‖pt+1

σ ‖
E‖N(0,I)‖ − 1))

14. t = t+ 1
15. until stopping criterion is met

C itself is replaced by a weighted sum of the rank-one (weight c1 [7]) and rank-μ
(weight cμ [5]) updates, with c1 and cμ positive and c1 + cμ ≤ 1.

While the optimal parameterization of CMA-ES remains an open problem, the
default parameterization is found quite robust on noiseless unimodal functions
[5], which explains the popularity of CMA-ES.

3 The Self-CMA-ES

The proposed self-CMA-ES approach is based on the intuition that the optimal
hyper-parameters of CMA-ES at time t should favor the generation of the best
individuals at time t, under the (strong) assumption that an optimal parame-
terization and performance of CMA-ES in each time t will lead to the overall
optimal performance.

Formally, this intuition leads to the following procedure. Let θtf denote the
hyper-parameter vector used for the optimization of objective f at time t (CMA-
ES stores its state variables and internal parameters of iteration t in θt and the
’.’-notation is used to access them). At time t+1, the best individuals generated
according to θtf are known to be the top-ranked individuals xt

1:λ . . . xtμ:λ, where

xti:λ stands for the i-th best individual w.r.t. f . Hyper-parameter vector θtf would
thus have been all the better, if it had maximized the probability of generating
these top individuals.

Maximum Likelihood-Based Online Adaptation 73

Along this line, the optimization of θtf is conducted using a second CMA-ES
algorithm, referred to as auxiliary CMA-ES as opposed to the one concerned
with the optimization of f , referred to as primary CMA-ES. The objective of
the auxiliary CMA-ES is specified as follows:

Given: hyper-parameter vector θif and points (xi1:λ, f(x
i
1:λ)) evaluated by

primary CMA-ES at steps i = 1, . . . , t (noted as θi+1
f .f(x1:λ) in Algorithm 2),

Find: θt,∗f such that i) backtracking the primary CMA-ES to its state at time

t−1; ii) replacing θtf by θt,∗f , would maximize the likelihood of xti:λ for i = 1 . . . μ.
The auxiliary CMA-ES might thus tackle the maximization of gt(θ) computed

as the weighed log-likelihood of the top-ranked μsel individuals at time t:

gt(θ) =

μsel∑
i=1

wsel,i log
(
P (xti:λ|θtf = θ

)
), (2)

where wsel,i ≥ 0, i = 1 . . . μsel,
∑μsel

i=1 wsel,i = 1, and by construction

P (xi|mt,Ct) =
1√

(2π)
n|Ct|

exp (−0.5(mt − xti)C
t−1

(mt − xt
i)), (3)

where Ct is the covariance matrix multiplied by σt2 and |Ct| is its determinant.
While the objective function for the auxiliary CMA-ES defined by Eq. (2)

is mathematically sound, it yields a difficult optimization problem; firstly the
probabilities are scale-sensitive; secondly and overall, in a worst case scenario, a
single good but unlikely solution may lead the optimization of θtf astray.

Therefore, another optimization objective ht(θ) is defined for the auxiliary
CMA-ES, where ht(θ) measures the agreement on xti:λ for i = 1 . . . μ between i)
the order defined from f ; ii) the order defined from their likelihood conditioned
by θtf = θ (Algorithm 3). Procedure ReproduceGenerationCMA in Algorithm 3
updates the strategy parameters described from line 7 to line 14 in Algorithm
1 using already evaluated solutions stored in θtf .xi:λ. Line 4 computes the Ma-
halanobis distance, division by step-size is not needed since only ranking will be
considered in line 5 (decreasing order of Mahalanobis distances corresponds to
increasing order of log-likelihoods). Line 6 computes a weighted sum of ranks of
likelihoods of best individuals.

Finally, the overall scheme of self-CMA-ES (Algorithm 2) involves two in-
terdependent CMA-ES optimization algorithms, where the primary CMA-ES is
concerned with optimizing objective f , and the auxiliary CMA-ES is concerned
with optimizing objective ht, that is, optimizing the hyper-parameters of the pri-
mary CMA-ES1. Note that self-CMA-ES is not per se a “more parameterless“
algorithm than CMA-ES, in the sense that the user is still invited to modify the
population size λ. The main purpose of self-CMA-ES is to achieve the online
adaptation of the other CMA-ES hyper-parameters.

1 This scheme is actually inspired from the one proposed for surrogate-assisted opti-
mization [13], where the auxiliary CMA-ES was in charge of optimizing the surrogate
learning hyper-parameters.

74 I. Loshchilov et al.

Algorithm 2. The self-CMA-ES
1. t← 1
2. θtf ← InitializationCMA() { primary CMA-ES aimed at optimizing f }
3. θth ← InitializationCMA() { auxiliary CMA-ES aimed at optimizing ht }
4. fill θtf with corresponding parameters stored in mean of distribution θth.m
5. θt+1

f ← GenerationCMA(f , θtf)
6. t← t+ 1
7. repeat
8. θt+1

f ←GenerationCMA(f, θtf)

9. θt+1
h ←GenerationCMA(ht, θ

t
h)

10. fill θt+1
f with corresponding parameters stored in mean of distribution θt+1

h .m
11. t← t+ 1
12. until stopping criterion is met

Specifically, while the primary CMA-ES optimizes f(x) (line 8), the auxiliary
CMA-ES maximizes ht(θ) (line 9) by sampling and evaluating λh variants of θtf .
The updated mean of the auxiliary CMA-ES in the hyper-parameter space is
used as a local estimate of the optimal hyper-parameter vector for the primary
CMA-ES. Note that the auxiliary CMA-ES achieves a single iteration in the
hyper-parameter space of the primary CMA-ES, with two motivations: limiting
the computational cost of self-CMA-ES (which scales as λh times the time com-
plexity of the CMA-ES), and preventing θtf from overfitting the current sample

xti:λ, i = 1 . . . μ.

Algorithm 3. Objective function ht(θ)

1. Input: θ, θt+1
f ,θt−1

f , θtf , μ, wsel,i for i = 1, . . . , μ

2. θ
′t−1
f ← θ

3. θ
′t
f ←ReproduceGenerationCMA(f, θ

′t−1
f) using already evaluated θtf .xi:λ

4. di ←
∥∥∥θ′t

f .
√
C−1 · (θt+1

f .xt
i − θ

′t
f .m)

∥∥∥ ; for i = 1, . . . , θt+1
f .λ

5. pi ← rank of di, i = 1 . . . λ sorted in decreasing order
6. h(θ)←∑μ

i=1 wsel,ipi:λ { i : λ denotes the rank of θt+1.xi }
7. Output: h(θ)

4 Experimental Validation

The experimental validation of self-CMA-ES investigates the performance of
the algorithm comparatively to CMA-ES on the BBOB noiseless problems [4].
Both algorithms are launched in IPOP scenario of restarts when the CMA-ES
is restarted with doubled population size once stopping criteria [3] are met2.

2 For the sake of reproducibility, the source code is available at
https://sites.google.com/site/selfcmappsn/

https://sites.google.com/site/selfcmappsn/

Maximum Likelihood-Based Online Adaptation 75

1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1
F1 Sphere 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

1000 2000 3000 4000 5000 6000 7000 8000
10

−8

10
0

10
2

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

1000 2000 3000 4000 5000 6000 7000
0

0.5

1
F1 Sphere 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

1000 2000 3000 4000 5000 6000 7000
10

−8

10
0

10
2

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

2000 4000 6000 8000 10000 12000 14000
0

0.5

1
F1 Sphere 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000 14000
10

−8

10
0

10
3

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

2000 4000 6000 8000 10000 12000
0

0.5

1
F1 Sphere 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000
10

−8

10
0

10
3

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

0.5

1
F8 Rosenbrock 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

10
−8

10
0

10
5

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1
F8 Rosenbrock 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−8

10
0

10
5

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0

0.5

1
F8 Rosenbrock 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

10
−8

10
0

10
6

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1
F8 Rosenbrock 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

10
−8

10
0

10
6

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

Fig. 1. Evolution of learning rates c1, cμ, cc (lines with markers, left y-axis) and
log10(objective function) (plain line, right y-axis) of CMA-ES (left column) and self-
CMA-ES (right column) on 10- and 20-dimensional Sphere and Rosenbrock functions
from [4]. The medians of 15 runs are shown.

76 I. Loshchilov et al.

2000 4000 6000 8000 10000 12000
0

0.5

1
F10 Rotated Ellipsoid 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000
10

−8

10
0

10
6

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

0.5

1
F10 Rotated Ellipsoid 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
10

−8

10
0

10
7

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1
F10 Rotated Ellipsoid 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5 3

x 10
4

10
−8

10
0

10
7

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5

x 10
4

0

0.5

1
F10 Rotated Ellipsoid 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5

x 10
4

10
−8

10
0

10
7

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

2000 4000 6000 8000 10000 12000 14000 16000 18000
0

0.5

1
F13 Sharp Ridge 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000 14000 16000 18000
10

−8

10
0

10
4

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

2000 4000 6000 8000 10000 12000 14000
0

0.5

1
F13 Sharp Ridge 10−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

2000 4000 6000 8000 10000 12000 14000
10

−8

10
0

10
4

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.5

1
F13 Sharp Ridge 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
−8

10
0

10
4

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1
F13 Sharp Ridge 20−D

Number of function evaluations

P
ar

am
et

er
 v

al
ue

0.5 1 1.5 2 2.5 3

x 10
4

10
−8

10
0

10
4

lo
g1

0(
O

bj
ec

tiv
e

fu
nc

tio
n)

c
1

cμ c
c

Fig. 2. Evolution of learning rates c1, cμ, cc (lines with markers, left y-axis) and
log10(objective function) (plain line, right y-axis) of CMA-ES (left column) and self-
CMA-ES (right column) on 10- and 20-dimensional Rotated Ellipsoid and Sharp Ridge
functions from [4]. The medians of 15 runs are shown.

Maximum Likelihood-Based Online Adaptation 77

The population size λ is chosen to be 100 for both CMA-ES and self-CMA-
ES. We choose this value (about 10 times larger than the default one, see the
default parameters of CMA-ES in Algorithm 1) to investigate how sub-optimal
the other CMA-ES hyper-parameters, derived from λ, are in such a case, and
whether self-CMA-ES can recover from this sub-optimality.

The auxiliary CMA-ES is concerned with optimizing hyper-parameters c1, cμ
and cc (Algorithm 1), responsible for the adaptation of the covariance matrix of
the primary CMA-ES. These parameters range in [0, .9] subject to 0 ≤ c1+ cμ ≤
0.9; the constraint is meant to enforce a feasible C update for the primary
CMA-ES (the decay factor of C should be in [0, 1]). Infeasible hyper-parameter
solutions get a very large penalty, multiplied by the sum of distances of infeasible
hyper-parameters to the range of feasibility.

We set wsel,i = 1/μ for i = 1, . . . , μ and μ = �λ/2� to 50. The internal
computational complexity of self-CMA-ES thus is λh = 20 times larger than
the one of CMA-ES without lazy update (being reminded that the internal time
complexity is usually negligible compared to the cost per objective function
evaluation).

4.1 Results

Figures 1 and 2 display the comparative performances of CMA-ES (left) and
self-CMA-ES (right) on 10 and 20-dimensional Sphere, Rosenbrock, Rotated El-
lipsoid and Sharp ridge functions from the noiseless BBOB testbed [4] (medians
out of 15 runs). Each plot shows the value of the hyper-parameters (left y-axis)
together with the objective function (in logarithmic scale, right y-axis). Hyper-
parameters c1, cμ and cc are constant and set to their default values for CMA-ES
while they are adapted along evolution for self-CMA-ES.

In self-CMA-ES, the hyper-parameters are uniformly initialized in [0, 0.9]
(therefore the medians are close to 0.45) and they gradually converge to val-
ues which are estimated to provide the best update of the covariance matrix
w.r.t. the ability to generate the current best individuals. It is seen that these
values are problem and dimension-dependent. The values of c1 are always much
smaller than cμ but are comparable to the default c1. The values of cμ and cc
and c1 are almost always larger than the default ones; this is not a surprise for
c1 and cμ, as their original default values are chosen in a rather conservative way
to prevent degeneration of the covariance matrix.

Several interesting observations can be made about the dynamics of the pa-
rameter values. The value of cμ is high most of the times on the Rosenbrock
functions, but it decreases toward values similar to those of the Sphere func-
tions, when close to the optimum. This effect is observed on most problems;
indeed, on most problems fast adaptation of the covariance matrix will improve
the performance in the beginning, while the distribution shape should remain
stable when the covariance matrix is learned close to the optimum.

The overall performance of self-CMA-ES on the considered problems is com-
parable to that of CMA-ES, with a speed-up of a factor up to 1.5 on Sharp
Ridge functions. The main result is the ability of self-CMA-ES to achieve the

78 I. Loshchilov et al.

online adaptation of the hyper-parameters depending on the problem at hand,
side-stepping the use of long calibrated default settings3.

4.2 Discussion

self-CMA-ES offers a proof of concept for the online adaptation of three CMA-ES
hyper-parameters in terms of feasibility and usefulness. Previous studies on pa-
rameter settings for CMA-ES mostly considered offline tuning (see, e.g., [16,11])
and theoretical analysis dated back to the first papers on Evolution Strategies.
The main limitation of these studies is that the suggested hyper-parameter values
are usually specific to the (class of) analyzed problems. Furthermore, the sug-
gested values are fixed, assuming that optimal parameter values remain constant
along evolution. However, when optimizing a function whose landscape gradu-
ally changes when approaching the optimum, one may expect optimal hyper-
parameter values to reflect this change as well.

Studies on the online adaptation of hyper-parameters (apart from σ, m and
C) usually consider population size in noisy [2], multi-modal [1,12] or expensive
[9] optimization. A more closely related approach was proposed in [15] where the
learning rate for step-size adaptation is adapted in a stochastic way similarly to
Rprop-updates [10].

5 Conclusion and Perspectives

This paper proposes a principled approach for the self-adaptation of CMA-ES
hyper-parameters, tackled as an auxiliary optimization problem: maximizing the
likelihood of generating the best sampled solutions. The experimental validation
of self-CMA-ES shows that the learning rates involved in the covariance ma-
trix adaptation can be efficiently adapted on-line, with comparable or better
results than CMA-ES. It is worth emphasizing that matching the performance
of CMA-ES, the default setting of which represent a historical consensus between
theoretical analysis and offline tuning, is nothing easy.

The main novelty of the paper is to offer an intrinsic assessment of the al-
gorithm internal state, based on retrospective reasoning (given the best current
solutions, how could the generation of these solutions have been made easier)
and on one assumption (the optimal hyper-parameter values at time t are ”suffi-
ciently good“ at time t + 1). Further work will investigate how this intrinsic
assessment can support the self-adaptation of other continuous and discrete
hyper-parameters used to deal with noisy, multi-modal and constrained opti-
mization problems.

Acknowledgments. We acknowledge anonymous reviewers for their construc-
tive comments. This work was supported by the grant ANR-2010-COSI-002
(SIMINOLE) of the French National Research Agency.

3 cc = 4
n+4

, c1 = 2
(n+1.3)2+μw

, cμ = 2 (μw−2+1/μw)

(n+2)2+μw
.

Maximum Likelihood-Based Online Adaptation 79

References

1. Auger, A., Hansen, N.: A Restart CMA Evolution Strategy With Increasing Popu-
lation Size. In: IEEE Congress on Evolutionary Computation, pp. 1769–1776. IEEE
Press (2005)

2. Beyer, H.-G., Hellwig, M.: Controlling population size and mutation strength by
meta-es under fitness noise. In: Proceedings of the Twelfth Workshop on Founda-
tions of Genetic Algorithms XII, FOGA XII 2013, pp. 11–24. ACM (2013)

3. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 function
testbed. In: GECCO Companion, pp. 2389–2396 (2009)

4. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Optimization
Benchmarking 2010: Experimental Setup. Technical report, INRIA (2010)

5. Hansen, N., Müller, S., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

6. Hansen, N., Ostermeier, A.: Adapting Arbitrary Normal Mutation Distributions in
Evolution Strategies: The Covariance Matrix Adaptation. In: International Con-
ference on Evolutionary Computation, pp. 312–317 (1996)

7. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolu-
tion Strategies. Evolutionary Computation 9(2), 159–195 (2001)

8. Hansen, N., Ros, R.: Benchmarking a weighted negative covariance matrix update
on the BBOB-2010 noisy testbed. In: GECCO 2010: Proceedings of the 12th An-
nual Conference Comp on Genetic and Evolutionary Computation, pp. 1681–1688.
ACM, New York (2010)

9. Hoffmann, F., Holemann, S.: Controlled Model Assisted Evolution Strategy with
Adaptive Preselection. In: International Symposium on Evolving Fuzzy Systems,
pp. 182–187. IEEE (2006)

10. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algo-
rithms. Neurocomputing 50, 105–123 (2003)

11. Liao, T., Stützle, T.: Benchmark results for a simple hybrid algorithm on the
CEC 2013 benchmark set for real-parameter optimization. In: IEEE Congress on
Evolutionary Computation (CEC), pp. 1938–1944. IEEE Press (2013)

12. Loshchilov, I., Schoenauer, M., Sebag, M.: Alternative Restart Strategies for CMA-
ES. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 296–305. Springer, Heidelberg
(2012)

13. Loshchilov, I., Schoenauer, M., Sebag, M.: Self-Adaptive Surrogate-Assisted Co-
variance Matrix Adaptation Evolution Strategy. In: Genetic and Evolutionary
Computation Conference (GECCO), pp. 321–328. ACM Press (July 2012)

14. Loshchilov, I., Schoenauer, M., Sebag, M.: Intensive Surrogate Model Exploita-
tion in Self-adaptive Surrogate-assisted CMA-ES (saACM-ES). In: Genetic and
Evolutionary Computation Conference, pp. 439–446. ACM (2013)

15. Schaul, T.: Comparing natural evolution strategies to bipop-cma-es on noiseless
and noisy black-box optimization testbeds. In: Genetic and Evolutionary Compu-
tation Conference Companion, pp. 237–244. ACM (2012)

16. Smit, S., Eiben, A.: Beating the ‘world champion’ Evolutionary Algorithm via
REVAC Tuning. IEEE Congress on Evolutionary Computation, 1–8 (2010)

Run-Time Parameter Selection and Tuning

for Energy Optimization Algorithms

Ingo Mauser1, Marita Dorscheid2, and Hartmut Schmeck2

1 FZI Research Center for Information Technology
76131 Karlsruhe, Germany

mauser@fzi.de
2 Karlsruhe Institute of Technology – Institute AIFB

76128 Karlsruhe, Germany
marita.dorscheid@partner.kit.edu, schmeck@kit.edu

Abstract. Energy Management Systems (EMS) promise a great poten-
tial to enable the sustainable and efficient integration of distributed energy
generation from renewable sources by optimization of energy flows. In this
paper, we present a run-time selection and meta-evolutionary parameter
tuning component for optimization algorithms in EMS and an approach
for the distributed application of this component. These have been applied
to an existing EMS, which uses an Evolutionary Algorithm. Evaluations of
the component in realistic scenarios show reduced run-timeswith similar or
even improved solution quality, while the distributed application reduces
the risk of over-confidence and over-tuning.

1 Introduction

Today, the integration of distributed generation, mainly from renewable sources,
into energy systems is a major challenge. Techniques, which make loads more
flexible, seem to be an efficient way to meet this challenge [10]. One of these
techniques is the automated management of energy consumption, generation,
and storage in buildings [2]. The differing setups of devices, preferences of the
user, and dynamically changing environments at the run-time of an Energy Man-
agement System (EMS) require an adaptive design of the applied optimization
algorithm.

The major contribution of this paper is a run-time parameter selection and
meta-evolutionary tuning component for optimization algorithms in EMS. These
algorithms are confronted with a wide variety of search and solution spaces,
due to the varying scenarios as depicted in Section 2: The scenarios cannot be
completely known at design-time of the optimization algorithm, what demands
for a concept to adapt the algorithms at run-time of the system. The architecture
and mechanisms are described in Section 3. Moreover, a distributed application
of the component is presented, which enables collaborative parameter tuning
and overcomes the obstacles of over-tuning and over-confidence.

Many approaches to energy management use linear or mixed integer linear
programming for optimization [6,8,11]. These systems use an a priori formula-
tion of the problem instances that have to be solved. It is assumed that building

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 80–89, 2014.
c© Springer International Publishing Switzerland 2014

Run-Time Parameter Selection and Tuning 81

EMS External
Signals
€

CHP and Hot
Water Storage

Fig. 1. Smart building scenario with EMS

equipment, user preferences concerning device interaction, and external circum-
stances form an a priori known scheduling problem, which can then be solved
by a state-of-the-art system. The broad applicability of EMS in many different
buildings is necessary for the integration of distributed energy resources. Thus,
the system and its optimization algorithm should be executable on low-power
computers with limited system resources. In this context, the running time of the
optimization algorithm is crucial, because frequent rescheduling is quite likely.
Therefore, the concept of parameter selection and tuning, and its distributed
application are applied to an EMS that uses an Evolutionary Algorithm (EA)
with dynamic formulation of the problem instances at run-time.

Realistic experimental setups for the parameter selection and tuning com-
ponent and its distributed application are described in Section 4. Results show
that problem-specific parameter choices decrease the number of evaluations while
keeping or even improving the solution quality in the investigated scenarios.

2 Energy Management Scenario

The focused scenario (see Fig. 1) is the energy management and optimization in
smart buildings, which use intelligent energy consuming devices and decentral-
ized energy generation, like photovoltaic systems and combined heat and power
plants (CHP). Additionally, batteries or hot water tanks can be installed and
controlled, which decouple generation and consumption.

Different devices offer distinct capabilities in terms of influencing the electrical
load shape and the overall energy profile of the building. The generators may
cause feed-in into the grid or charging of the storage systems. Some energy
consuming devices, e.g., household appliances, can be delayed in their operation
or interrupted at certain points in their operation cycle. These capabilities allow
for a flexible planning of the electrical load by an optimization algorithm.

Load and time variable energy tariffs mirror the external conditions in the
grid and on markets. The configuration of the smart building, capabilities of
the devices, the variable tariffs as well as goals and preferences of the user form
the problem instances in the energy management scenario that the respective
optimization algorithm is confronted with. These problem instances are not com-
pletely known at the design-time of optimization algorithm. Moreover, all of
these aspects vary dynamically over the the run-time of the EMS. These factors
call for an adaptive concept for algorithm design.

82 I. Mauser, M. Dorscheid, and H. Schmeck

Fig. 2. Calibration Engine: Overview

3 Parameter Selection and Tuning

The a priori unknown factors in the energy management scenario may vary the
search and solution spaces dramatically. Thus, the configuration of the respective
optimization algorithms should be realized at the run-time of the EMS, i.e., after
the installation process at the building. This can be realized using an additional
component in the EMS.

3.1 Calibration Engine: Architecture

The EMS, which has a configurable Optimization Algorithm, is enhanced by
an additional component, the Calibration Engine (see Fig. 2) that provides the
required run-time adaptivity of parameter settings to the algorithm.

The Calibration Engine has two major modules: The first module is the Pa-
rameter Memory that stores parameter settings for known energy management
scenarios. These are stored according to the devices and their respective capa-
bilities in the smart building. Moreover, user’s goals and external conditions are
part of the storage schema. The second module is the Parameter Adaptor that
is supposed to find better parameter settings for the concrete problem instances
which occur in different scenarios. Additionally, the Calibration Engine has two
functionally oriented parts: Firstly, the Information Distributor that manages
the necessary information, which includes objectives of the user and external
signals. Secondly, the 2nd Level Invoker that determines whether an adaptation
of the algorithm’s parameters is necessary.

The Optimization Algorithm gets suitable parameter settings at run-time of
the EMS by the Parameter Memory. These settings have already been adapted
to scenarios that are similar to the current one in terms of the concrete smart
building scenario. The 2nd Level Invoker invokes the Parameter Adaptor, when
the scenario changes, e.g., due to the installation of new devices or novel user
objectives. Then, the Parameter Adaptor systematically tries to find better pa-
rameter settings. It therefore uses a Simulation Model of the EMS, which is
operating in the real-world smart building, to evaluate a parameter setting. By
that, the evaluation process does not affect the productive system (comp. Fig.
3). At the end of parameter tuning process, the Parameter Adaptor updates the
Parameter Memory with new parameter settings for the current scenario.

Run-Time Parameter Selection and Tuning 83

Parameter Adaptor
Simulation Model

Simulation
Agents

Simulated Building Energy
Management System

Real World
Scenario Screenplay Building Configuration

Parameter
Setting

Meta-EA

Population

Fitness
(Screen-

play)

User Basic Objectives Meta Objectives

Xover/
Mutation

Selection
Evaluation

Termination

Best
Parameter
Settings

Load Optimization

Fig. 3. Structural overview of parameter adaption process and data

3.2 Parameter Adaptor and Process of Parameter Tuning

Parameter tuning requires a systematic selection and evaluation of different pa-
rameter settings. It has to be ensured that the search space of different combina-
tions is at the same time explored as already good solutions are exploited by some
local search. Several approaches to parameter tuning have already shown good
results in improving the solution quality of meta-heuristic algorithms. These in-
clude, Iterated Local Search algorithms [9], which utilize iterative mechanisms of
local search and acceptance criteria, and Sequential Parameter Optimization [3],
which is based on statistically derived models of the search space.

The mechanism presented hereafter, which is used for the generation of the
parameter settings, extends a meta-evolutionary parameter tuning approach by
[7] and adapts it to optimization algorithms in EMS. Its main advantage is the
simple and flexible structure that allows for a distributed, parallel evaluation of
candidate solutions in the domain of energy management. Additionally, the EA
can be used twice: If an EA is already used in the load optimization, which has
been presented in [1], this EA can be re-used for the parameter tuning. This
simplifies the system design of an EMS and reduces its complexity.

Parameter tuning by the Parameter Adaptor (see Fig. 3) for a certain build-
ing and situation requires extensive information about the concrete real world
scenario and the user objectives. The scenario consists of the Building Config-
uration, i.e., the available devices and their specific capabilities, as well as the
Screenplay that is the recorded pattern of user behavior and interaction, device
usage, and further relevant information. The objectives of the Meta-EA have
to mirror the ones in the real system, e.g., overall cost minimization, but can
also take additional sub-objectives into account, e.g., reduction of evaluations
while keeping a certain solution quality. Candidate parameter settings are rep-
resented as real-valued genes of the meta-individuals of an EA. The evaluation
of a meta-individual is realized by loading the Simulation Model, which consists
of replica of the productive real world EMS, the building and the devices. This
model is necessary to simulate the usage of energy and to calculate the fitness of
parameter settings. The optimization is applied to a certain Screenplay, which,
for comparability reasons, has to be the same for each individual evaluated in
the Meta-EA.

84 I. Mauser, M. Dorscheid, and H. Schmeck

Calibration Coordination Entity

Population

Xover/
Mutation

Selection

Evaluation

Termination
Meta-EA

Sending Meta-Individual, Receiving Fitness Value
Returning Best Parameter Setting

Simulation
Model

Simulation
Model

Simulation
Model

Meta-EA

Meta-EA

Bu
ild

in
g

G
ro

up
 1

Building Group 2

Fig. 4. Calibration Coordination Entity with different groups of buildings

3.3 Distributed Evaluation

As the target platforms of the EMS in real-world scenarios are low-power comput-
ers with limited resources, the described parameter tuning process can only be
performed in the otherwise idle time of the system. Therefore, the EMS should
take advantage of a wider range of information from similar buildings and a
distributed evaluation of parameter settings as follows.

The working of the parameter tuning is now enhanced to a distributed ap-
proach using multiple buildings. Similar buildings, i.e. similar scenarios, are
grouped according to their equipment, objectives, energy consumption, and typi-
cal behavior of users. These grouping criteria are called characteristic parameters.
The Calibration Coordination Entity (CCE) shown in Fig. 4 executes a Meta-
EA for every group of similar buildings. The evaluation of a parameter setting,
which is represented by a meta-individual, is performed in a distributed manner
in the EMS of the buildings. There, the simulation model described in the previ-
ous section calculates a local fitness by applying the parameter setting from the
CCE to the optimization using the locally recorded Screenplay. The resulting
fitness is communicated to the CCE, where it is averaged over all buildings of
one group. The fitness of a meta-individual is thus the averaged fitness of similar
buildings.

At the end of the distributed parameter adaption process, the found parameter
settings are more closely adapted to the characteristic parameters than to a spe-
cific Screenplay. Therefore, they are better applicable throughout all buildings
of their respective group and their typical, not their one-time behavior repre-
sented in a single Screenplay. Additionally, this distributed approach is sensitive
towards data privacy, since the Screenplays, which reflect very intimate data of
the users, do not have to be exchanged with an instance outside of the building.

Run-Time Parameter Selection and Tuning 85

4 Experimental Setup

In order to investigate the parameter selection and tuning component for opti-
mization algorithms in EMS and the distributed application of this component,
they were implemented for an EMS that is already in use in two exemplary smart
buildings1.

This EMS uses EA for optimization purposes [1]. The parameters that have to
be selected and tuned for this EA are crossover and mutation probability. Addi-
tionally, the ratio of population size and number of generations are investigated
to reduce the running time of the algorithm. Thus, it supports the execution of
the EMS on low-power computers with limited system resources.

In the following section, the energy management scenarios for the experiments,
the test scenarios, are described. From these test scenarios, Screenplays were gen-
erated, which represent the problem instances occurring in the concrete energy
management scenario. Afterward, the experiments are depicted in Section 4.2.

4.1 Test scenarios

There are a few major factors that determine an energy management scenario:
First of all, there is the configuration of the smart building concerning the avail-
able devices. Furthermore, the capabilities of these devices in terms of influencing
the load shape by optimization are distinct.

Five basic appliances and a combined heat and power plant (CHP) with dif-
ferent capabilities form the basis for the test scenarios in this paper (see Tab.
1a). A non-delayable device’s operation always starts immediately when used
and thus does not have to be optimized, though it still has to be considered. In
contrast, the operation time of a delayable device may be shifted by the optimiza-
tion, while complying with the user’s preferences. Additionally, an interruptible
device offers the capability to be paused at certain points in its operation cycle.

The capabilities of the CHP, which are both connected to a hot water storage
system, are differentiated into non-controllable and controllable by the EMS.
Non-controllable stands for a thermal management of the CHP, meaning that it
is switched on and off according only to the thermal demands in the building. In
contrast, the controllable CHP can be switched on, whenever capacity is left in
the storage. Of course, the thermal demand and local limitations of the storage
system, e.g., the minimum threshold temperature, still have to be respected.

Another determining factor of energy management scenarios is the user. On
the one hand, the overall goal of the user is cost minimization. On the other
hand, the user behavior has to be considered. Her preferences are represented
by the electrical demand, e.g., when the appliances are used and how long they
may be delayed if possible. The maximum delay is set to eight hours across all
test scenarios. The user’s thermal demand is modeled as a 5-person-household.

The last determining factors are the external conditions. They are mirrored by
a time-variable energy tariff based upon a market simulation as described in [4].

1 KIT Energy Smart Home Lab http://www.izeus.kit.edu/english/ and FZI House
of Living Labs http://www.fzi.de/en/fzi-house-of-living-labs/

http://www.izeus.kit.edu/english/
http://www.fzi.de/en/fzi-house-of-living-labs/

86 I. Mauser, M. Dorscheid, and H. Schmeck

Table 1. Devices and configurations of households used in simulation
(a) Different devices

Name Device Capability

D1N Hob Non-delayable

D2N Dishwasher Non-delayable

D2D Dishwasher Delayable

D3N Oven Non-delayable

D4N Dryer Non-delayable

D4D Dryer Delayable

D4I Dryer Interruptible

D5N Washing machine Non-delayable

D5D Washing machine Delayable

CHP0 CHP Non-controllable

CHP1 CHP Controllable

(b) Configurations of households

Configuration Devices

H0
D1N, D2N, D3N,
D4N, D5N, CHP0

H1
D1N, D2D, D3N,
D4D, D5D, CHP1

H2
D1N, D2D, D4N,
D4I, D5D, CHP1

H3
D1N, D2D, D3N,
D4D, D5D, CHP0

H4
D1N, D2D, D3N,
D4I, D5D, CHP0

The tariff changes every hour and ranges from 3 to 39 ct/kWh with a mean
value of 24 ct/kWh, respectively. Moreover, a load limit is set to 3 kW across
all H0 –H4. When the power limit is violated, the amount of energy consumed
above the limit is penalized by a doubling of electricity costs. The decentralized
generator, the CHP, produces electrical and thermal energy by the consumption
of natural gas. The gas price of 6 ct/kWhth

2 is constant. If the electricity gener-
ation exceeds the current consumption in the building, the difference is fed into
the grid, receiving constant feed-in compensations of 5 ct/kWhel.

From the devices above, five configurations for smart buildings had been as-
sembled (see Tab. 1b). These configurations are furthermore referred to as house-
holds H0–H4. The problem instances for the parameter tuning process—the
Screenplays—were generated according to typical times of use for each house-
hold. To reflect differing thermal demands that effect the optimization of the
CHP, ten Screenplays per household are located in January (winter) and ten
Screenplays are located in July (summer).

4.2 Experiments

The Calibration Engine and its distributed application are confronted with a set
of experiments that are based on the test scenarios described in the last section.
The reference parameter setting of the EA consists of a crossover probability of
0.7, a mutation probability of 0.1, a binary tournament selection of parents, a
single-point-crossover with two offspring and a bit-flip-mutation using an elitist
(μ,λ)-strategy with a rank based survivor selection. The stopping criteria is a
maximum number of evaluations, determined by varying numbers of generations
and individuals. The Meta-EA has been set up as follows: ten generations of 24
individuals, SBXCrossover [5] with a probability of 0.7, and polynomial mutation
with a probability of 0.3, both with a distribution index of 20.

The fitness of a certain parameter setting is evaluated by the calculation of the
average electricity costs (AEC). AEC are given by the average price per kWh

2 Due to the constant degree of efficiency, the price is non-varying over kWhel, too.

Run-Time Parameter Selection and Tuning 87

that results from consumption from the grid as well as from the generation by
the CHP and its consumption of natural gas.

In the first experiment, the Parameter Adaptor is confronted with one problem
instance (Screenplay) per household. Afterward, the found settings are applied
to all ten corresponding Screenplays. This proceeding should simulate the us-
age of the Parameter Memory in a single building with EMS. Moreover, risks
of over-tuning and over-confidence should be identifiable. In the second and
third experiment, the Calibration Engine is used in the distributed application.
The Parameter Adaptor evaluates the fitness of the found parameter setting ac-
cording to the averaged resulting fitness of three respective five Screenplays per
household. Afterward, the parameter settings are applied to all ten correspond-
ing problem instances. This experiment investigates the potential of reduction
of the risk of over-tuning and over-confidence by the distributed approach.

5 Results and Discussion

A comparison of two exemplary fitness landscapes in Fig. 5 visualizes the seasonal
influences on the parameters, which mainly result from seasonally different device
usage and thermal demand. The result of the Meta-EA for the configurations
H1 and H2, different maximum number of evaluations and included Screenplays
with corresponding outcomes of Avg. EC are shown in Fig. 6. ”Average” in this
case means that the results of all ten Screenplays of buildings were averaged.

The results show that on the one hand the parameter tuning is able to ex-
ploit considerable potentials of optimization. On the other hand, the advantage
induced by adapting the parameter settings is remarkable due to the possibil-
ity to reduce evaluations, while resulting in the same level of solution quality
compared to the run with 10,000 evaluations and the initial parameters. This
means that individual parameters can successfully reduce execution time of the
EA in the EMS, without worsen its results. Moreover, the results also show

 0.
1

 0.
2

 0.
3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
8

 0.
9

Crossover Probability

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

M
u
ta

ti
o
n
 P

ro
b
ab

ili
ty

 27

 27.5

 28

 28.5

 29

A
vg

.
E
le

ct
ri
ci

ty
 C

o
st

s
[c

t/
kW

h
]

(a) H1, January, 10 individuals,
50 generations

 0.
1

 0.
2

 0.
3

 0.
4

 0.
5

 0.
6

 0.
7

 0.
8

 0.
9

Crossover Probability

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

M
u
ta

ti
o
n
 P

ro
b
ab

ili
ty

 22.5

 23

 23.5

 24

 24.5

 25

A
vg

.
E
le

ct
ri
ci

ty
 C

o
st

s
[c

t/
kW

h
]

(b) H1, July, 10 individuals,
50 generations

Fig. 5. Fitness landscapes of January and July showing distinct areas of good param-
eter settings

88 I. Mauser, M. Dorscheid, and H. Schmeck

24

25

26

27

28

29

30

31

non-opt. 100 500 1k 10k

Av
er

ag
e

el
ec

tr
ic

ity
 co

st
s [

ct
/k

W
h]

Maximum number of evaluations

P0
P1M1N1
P1M1N3
P1M1N5

n/
a

n/
a

n/
a

(a) H1: Avg. EC

24

25

26

27

28

29

30

31

non-opt. 100 500 1k 10k

Av
er

ag
e

el
ec

tr
ic

ity
 co

st
s [

ct
/k

W
h]

Maximum number of evaluations

P0
P2M1N1
P2M1N3
P2M1N5

n/
a

n/
a

n/
a

(b) H2: Avg. EC

Fig. 6. Simulation results of H1 and H2 with default (P0) and optimized parameter
settings (P1, P2) using N Screenplays in January (M1)

0
20
40
60
80

100
120
140

0 20 40 60 80 100

N
um

be
r o

f G
en

er
at

io
ns

Population Size

H1

H2

H3

H4

(a) Number of Generations and
Population Size

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Cr
os

so
ve

r P
ro

ba
bi

lit
y

Mutation Probability

H1

H2

H3

H4

(b) Mutation Probability and
Crossover Probability

Fig. 7. Resulting parameter settings for households H1 –H4

that the distributed optimization approach tends to result in better parameter
settings, which are better applicable throughout the ten Screenplays of similar
households.

Resulting parameter settings differ across the building configurations. Fig. 7
visualizes optimized parameter settings for all test scenarios H1 –H4. Simulation
setups with a controllable CHP (H1 and H2) tend to have lower ratios of popu-
lation size to number of generations (see Fig. 7a) and more clustered parameter
combinations of crossover and mutation probability (see Fig. 7b), whereas setups
with a non-controllable CHP (H3 and H4) show a larger spreading.

The potential of parameter tuning has been shown across different experimen-
tal setups. The Calibration Engine was able to exploit potentials, although it
sometimes produces parameters settings with worse results when applied to all
corresponding Screenplays than the initial settings. Nevertheless, the Calibra-
tion Coordination Entity was able to tackle this issue by averaging the fitness
of parameter settings. This is important, because Screenplays always represent
past behavior of households which is likely to never happen exactly the same
again. Therefore, a better fitness with Screenplays of other similar households
will lead to better results within the same household in a similar future month.

Run-Time Parameter Selection and Tuning 89

6 Summary and Outlook

This paper presented a run-time parameter selection and tuning component for
optimization algorithms in Energy Management Systems and an approach to a
distributed application of this component. An implementation for an EMS, which
uses a run-time formulation of the problem instances and an EA to optimize
them, is presented. In this context, the component has been tested and has shown
potential to decrease the average electricity costs while reducing the running
time per optimization process. The parameter tuning has reacted sensitively to
different configurations of devices, capabilities of devices and user preferences.

It has been shown that parameter tuning in the domain of EMS and thus
enhances a broad applicability of EMS at the level of buildings. Future work
shall further validate the component, also taking into account more parameters
and other optimization algorithms. Moreover, it shall be applied to other real-
world implementations of EMS.

References

1. Allerding, F., Premm, M., Shukla, P.K., Schmeck, H.: Electrical Load Management
in Smart Homes Using Evolutionary Algorithms. In: Hao, J.-K., Middendorf, M.
(eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 99–110. Springer, Heidelberg (2012)

2. Allerding, F., Schmeck, H.: Organic smart home: architecture for energy manage-
ment in intelligent buildings. In: Proceedings of the 2011 Workshop on Organic
Computing, pp. 67–76 (2011)

3. Bartz-Beielstein, T., Lasarczyk, C.W., Preuß, M.: Sequential parameter optimiza-
tion. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 773–780
(2005)

4. Dallinger, D.: The contribution of vehicle-to-grid to balance fluctuating genera-
tion: Comparing different battery ageing approaches. Tech. rep., Working Paper
Sustainability and Innovation (2013)

5. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 1–34 (1994)

6. Di Giorgio, A., Pimpinella, L.: An event driven Smart Home Controller enabling
consumer economic saving and automated Demand Side Management. Applied
Energy 96, 92–103 (2012)

7. Freisleben, B., Härtfelder, M.: Optimization of genetic algorithms by genetic algo-
rithms. In: Artificial Neural Nets and Genetic Algorithms, pp. 392–399. Springer
(1993)

8. Ha, D.L., Joumaa, H., Ploix, S., Jacomino, M.: An optimal approach for electrical
management problem in dwellings. Energy and Buildings 45, 1–14 (2012)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic al-
gorithm configuration framework. Journal of Artificial Intelligence Research 36(1),
267–306 (2009)

10. Palensky, P., Dietrich, D.: Demand side management: Demand response, intelligent
energy systems, and smart loads. IEEE Transactions on Industrial Informatics 7(3),
381–388 (2011)

11. Zhang, D., Papageorgiou, L.G., Samsatli, N.J., Shah, N.: Optimal scheduling of
smart homes energy consumption with microgrid. In: ENERGY 2011, pp. 70–75
(2011)

Towards a Method for Automatic Algorithm

Configuration: A Design Evaluation Using Tuners

Elizabeth Montero and Maŕıa-Cristina Riff�

Department of Computer Science
Universidad Técnica Federico Santa Maŕıa

Valparáıso, Chile
{Elizabeth.Montero,Maria-Cristina.Riff}@inf.utfsm.cl

Abstract. Metaheuristic design is an incremental and difficult task. It
is usually iterative and requires several evaluations of the code to obtain
an algorithm with good performance. In this work, we analyse the design
of metaheuristics by detecting components which are strictly necessary
to obtain a good performance (in term of solutions quality). We use a
collective strategy where the information generated by a tuner is used
to detect the components usefulness. We evaluate this strategy with two
well-known tuners EVOCA and I-RACE to analyse which one is more
suitable and provides better results to make this components detection.
The goal is to help the designer either to evaluate during the design
process different options of the code or to simplify her/his final code
without a loss in the quality of the solutions.

Keywords: Automated algorithm tuning, automated algorithm config-
uration, metaheuristics.

1 Introduction

In order to obtain a metaheuristic with good performance, we have to make
several design decisions. The design process is usually iterative, and at each
step, the involved components must be evaluated. On the other hand, the final
code of the metaheuristic can be extremely complex. Thus, analysing and un-
derstanding its results becomes difficult, and this is often a very time consuming
task. Unexperienced designers usually tend to include more and more compo-
nents during the iterative design process of a metaheuristic, without evaluating
the usefulness of previously incorporated ones. We propose to have interme-
diate refining steps, during the design process, in order to help the designer
to obtain a simpler design with similar performance. Our motivation is to as-
sist the designer to make good decisions in order to produce an efficient meta-
heuristic (e.g. in terms of the solutions quality). In this paper, we study the
information produced by the tuners, and compare their ability in helping the
designer. We briefly revise published works related to this subject in section 2.

� This work is supported by the Fondecyt project 1120781 and Postdoctoral Fondecyt
project 3130754. Maŕıa Cristina Riff is partially supported by the Centro Cient́ıfico
Tecnológico de Valparáıso (CCTVal) No. FB0821.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 90–99, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Method for Automatic Algorithm Configuration 91

In section 3, we introduce the general problem when designing metaheuristics and
give a general idea on how design should be achieved. As a particular instance of
this idea, we show how we can use the Evolutionary Calibrator (EVOCA) [13]
and I-RACE [3] tuners that can work with categorical and numerical parame-
ters [10]. We provide details on how to use a collective strategy based on these
tuners in section 4. To evaluate our proposal, we use two well-known metaheuris-
tics: A genetic algorithm that solves the NK-landscapes problems (NK-GA) [11],
and a more complex one which is an artificial immune system algorithm that
solves multiobjective problems (MOAIS-HV) [12]. These metaheuristics have
already shown good performance to solve these kind of problems. Moreover,
MOAIS-HV has a quite complex implementation and uses several components
with several explicit and implicit parameters (not detailed in its description),
which makes it a very interesting case for our work. We give brief description
of both NK-GA and MOIAS-HV in section 5, as well as the results of a set of
experiments to evaluate our solution. This section also provide a statistical com-
parison between the results obtained using EVOCA and I-RACE tuners. It is
important to remark that our goal is not to find the best solution to the problem
to be solved, but to focus on the way to detect the components that are strictly
required from the ones that are unnecessary. Finally, we present the conclusions
and future work in section 6. The contributions of this paper are: A general
iterative method to select the best components and simplify the metaheuristic
code, a comparison of the suitability of the EVOCA and I-RACE tuners to help
into designing by refining of metaheuristics, and an in-depth analysis of the data
generated by both tuners which can be used to make better decisions during the
design process.

2 Related Work

Our approach shares much of its motivation with existing work on automated pa-
rameter tuning and algorithm configuration [5]. In automated parameter tuning
the design space is defined by an algorithm whose behavior is controlled by a set
of parameters, and the task is to find performance-optimizing settings of these
parameters. For this, various methods can be used ranging from well-known nu-
merical optimization procedures such as gradient-free CMA-ES algorithm [7] to
discrete approaches based on experimental design methods [2], response-surface
models [1] or stochastic local search procedures [8]. In automated algorithm con-
figuration, the design space is defined by an algorithm scheme that contains a
number of instantiable components, along with a discrete set of concrete choices
for each of these. It can be mapped as a tuning problem, in which categori-
cal parameters are used to select a set of components to instantiate the given
scheme. However, only ParamILS and a genetic programming procedure applied
to the configuration of local search algorithms for SAT [6] have been obtained
promising results. Our approach is also related to the hyperheuristic methods [4].
When designing hyperheuristics, the goal is to find a good design with sufficient
quality, and not to find the best algorithm. It is very useful to tackle real-world
problems which must be quickly solved.

92 E. Montero and M.-C. Riff

3 The Problem When Designing Metaheuristics

We can identify two problems when designing metaheuristics: The On-the-fly
design problem and the post-design problem or refining problem. The first one
occurs during the design process and is about the decisions to make when build-
ing efficient metaheuristics. Some of these decisions are related to the compo-
nents or procedures to append to the algorithm to improve its performance. The
On-the-fly Metaheuristic Design problem (OMD) can be stated as follows: given
an intermediate design step, the current code of a metaheuristic M , and a set
of candidate components S = {C1, . . . , Cn} to be included in M . The OMD
consists in finding a code M ′ for the metaheuristic using the selected compo-
nents among the already included and the new candidates, in order to improve
the performance of M . Unlike parameter control strategies, OMD problem is
focused on how solution tool is constructed by selecting useful components from
a set of possible options, like in a hyperheuristic approach.

The second problem occurs during post-design of the metaheuristic when we
are interested in simplifying its code without performance loss.

Fig. 1. Illustration of the designing problems

The Refining Metaheuristic Design problem (RMD) can be stated as follows:
given M , a target algorithm or metaheuristic, a set of parameters for the al-
gorithm and a set of input data. The RMD consists in finding a reduced code
for the metaheuristic which gives, at least, the same performance with the same
input data than M . Figure 1 illustrates both problems. For the OMD problem
(doted lines), when we are building My Code we evaluate the inclusion of new
components to improve its performance. After this evaluation a current code
Ccode is obtained, which can follows a new procedure of inclusion of new com-
ponents. For the RMD problem when the code is finished it follows an evaluation
step in order to identify, when this is possible, an alternative code which uses a
reduced number of its components but has at least the same performance.

4 Strategy to Use Tuners for Designing Metaheuristics

Collective Strategy : The key idea in the collective strategy is to generate a
competition between the components that we are evaluating. The role of the
tuner is to help us in the decision process. In this work we map RMD and
OMD to a configuration problem, where new parameters are introduced to the
algorithm in order to identify alternative designs for M . More formally,

Towards a Method for Automatic Algorithm Configuration 93

Definition 1. Given a metaheuristic code M , an instance of the problems con-
sists in a 6-tuple P = (M,S,Θ,Π, κmax,M

′), where S is the set of new binary
parameters introduced in M that allows to either turn on or off some compo-
nents. M ′ is the modified version of M that includes S. Θ is the configurations
space for M ′. Π is the set of input problem instances, g(θ,Π) is a function that
computes the expected gain (e.g., the quality of the solutions) of running M ′ us-
ing instance π ∈ Π when using configuration θ. κmax is a time out after which
all instances of M ′ will be terminated if they are still running.
Any configuration θ ∈ Θ is a candidate configuration of P . The gain of a candi-
date configuration θ is given by:

GP (θ) = meanπ∈Π(g(θ, π)) (1)

This definition considers the mean of gain induced by g(θ, π), but any other
statistic could be used instead (e.g. median, variance). Given GM , the gain of
metaheuristic M using its best parameter configuration, an alternative code
defined by the configuration θ∗ has a value GP (θ) such that:

GP (θ
∗) ≥ GM (2)

In this definition for the OMD problem M is the current code and M ′ also
includes the alternative components to be evaluated. For the RMD M is the
final metaheuristic code. We define the collective strategy as the evaluation of
the metaheuristic M ′ using different parameter configurations. For this strategy,
we use the tuner to obtain the P1, P2, . . . , Pk binary values that indicate which
of the k components must be turned on in the M ′ code. The evaluation of the
performance of the algorithm with its best set of parameters values is used to
decide whether or not the algorithm can be modified.

Definition 2. Given M a metaheuristic with a performance GM and M1, . . . ,Ml

alternative algorithms with performances GM1(θ1), . . . , GMl
(θl) for a maximiza-

tion problem. Mi belongs to the set of alternative designs Sd if and only if
GMi(θi) ≥ GM . We define Mi as the best alternative design such that
GMi(θi) ≥ GMj (θj), ∀Mi,Mj ∈ Sd, i �= j

When two or more best alternative designs are identified, the decision will be to
use the simplest one. When we use the collective strategy during the post-design
we are looking for a possible alternative code that allows the metaheuristic M ′

to solve the problems as M does with at least the same performance, but using
a reduced number of its initial components. Given its stochastic nature, it is
noteworthy to mention that the refined algorithm could show better performance
than the initial one. When we use the collective strategy during the design we
are looking for a code M ′ which has better performance than M and is composed
by a new set of components.

4.1 How to Use Tuners during the Design Process

The designer usually follows an incremental procedure for the components se-
lection. At the beginning, the designer has a first set of components that he/she

94 E. Montero and M.-C. Riff

believes to be some good candidates to include in the code. The typical question
is therefore: Which of these components are more suitable to be included in my
code?. In other words, which of these components do have the best performance
to solve my problem. Using the collective strategy, the designer can determine
which are the best code alternatives according to the information provided by
the calibrator when using these components. Let’s call CCode the current code,
which corresponds to the best one obtained by this evaluation. Then, the de-
signer can add to the CCode a set of new components that he/she thinks they
could improve the metaheuristic. A new evaluation is made with the collective
strategy to determine which components among the previously selected and the
new ones allows the algorithm to have the best performance, that is which is the
best alternative for the new CCode. Note that all the components can be turn
on or off during the evaluation and therefore, previous selected ones may be dis-
carded at this step. This is mainly because some new components could do the
same search than previous selected ones, but more efficiently. The same process
is repeated until the designer does not have more components to add. The final
CCode is then the best one determined by the collective strategy. Figure 2 shows
an example where 4 components (C1, C2, C3, C4) are initially considered to be
included into the code. The information provided by the calibrator allows to
select a CCode that includes (C1, C2) as the best alternative. Then, in a second
step, the designer considers to include components (C5, C6, C7) into the code.
The evaluation of the tuner suggests to include components (C6, C7), but in this
case to discard C1 which has been selected in the previous step. The design pro-
cess continues until obtaining a Final Code of high quality. Many other design
options can be considered. For instance, the inclusion of a component associated
to a particular method could be easily evaluated together. Moreover, it is also
possible to consider the inclusion of a component that was previously discarded
before and to evaluate its inclusion at the current time of the design process.

Components
selection

Components
selection

Components
selection

Evaluation

TUNER

Initial Components

C1,C2,C3,C4

CCode
(C1,C2)

Evaluation

TUNER

New Components

C5,C6,C7

CCode
(C2,C6,C7)

Evaluation

TUNER

New Components

C8,C9

Final Code
(C2,C6,C9)

Parameters Parameters Parameters

Fig. 2. Example for using the Collective Strategy

5 Experiments

The purpose of these experiments is to analyse different scenarios of using the col-
lective strategy. Any tuning method able to calibrate categorical parameters can

Towards a Method for Automatic Algorithm Configuration 95

be used by our framework: sampling,model-based, screening ormeta-evolutionary
methods [5]. In our studyweconsider the following I-RACE [2] and theEVOCA[13]
tuners.

I-RACE or Iterated F-Race: Iterated F-Race1. is an iterative version of F-Race
algorithm [2]. At each iteration, Iterated F-Race uses a number of surviving
candidate parameter configurations to bias the sample of new candidate con-
figurations. Iterated F-Race follows the framework of model-based search: (1)
construct a candidate solution based on some probability model; (2) evaluate all
candidates and (3) update the probability model of biasing the next sample.

The EVOlutionary CAlibrator: EVOCA2 is itself an evolutionary algorithm that
works with a population of parameter configurations. It uses two operators.
Wheel-crossover constructs one child from the whole population. The child re-
places the worst individual in the current population. The mutation operator is
a hill climbing procedure. The child generated by mutation replaces the second
worst individual in the current population, when finding a better individual.

5.1 Experiments with NK-GA

For these experiments we use a genetic algorithm that solves unrestricted NK
landscape problems [9], proposed in [11].

NK-GA: This genetic algorithm (GA) evolves a population of fixed-length bi-
nary strings. New solutions are created by applying variation operators to the
population of selected solutions. The algorithm has three genetic operators bit-
flip mutation, uniform crossover and two-point crossover.

Test Suite: We perform our experiments using a set of unrestricted NK land-
scape instances with k ranging from k = 2 to k = 6. A total number of 15
problem categories are considered. The minimization of the number of evalua-
tions required by the genetic algorithm to solve all the instances is considered as
a criteria to evaluate the parameter configuration. We consider a budget of 3500
runs for both tuners. We focus here on the use of the three genetic operators:
Uniform crossover(U), two-points crossover (T) and bit-flip mutation (M). We
run each tuner 20 times and we show the best 5 results as well as the execution
time in table 1. For both tuners, the set of alternative designs Sd includes com-
binations that use less components than the original algorithm. They solve all
the instances. Thus, using both tuners we can identify that both crossover com-
ponents are not necessary to the algorithm for solving the 15 categories of the
problem. We can also remark that using only one or two components instead of
the three initial ones neither implies a significant increase of the number of eval-
uations nor of the execution time. In conclusion, both the uniform crossover and
the two-points crossover are not strictly necessary to the algorithm performance.
Similar results were obtained using a reduced number of NK-GA evaluations.

1 I-RACE is available from CRAN , http://cran.r-project.org
2 EVOCA is available in our website comet.informaticae.org

http://cran.r-project.org
comet.informaticae.org

96 E. Montero and M.-C. Riff

Table 1. Algorithms selected by EVOCA and I-RACE

EVOCA I-RACE
Average Average Average Average Average Average

solved success Evaluations Time [s] solved success Evaluations Time [s]

UM 15 100 116.2 0.01 UTM 15 100 106.3 0.01
M 15 100 121.0 0.01 UTM 15 100 113.1 0.01
UTM 15 100 125.6 0.01 UTM 15 100 122.5 0.01
TM 15 100 131.4 0.01 M 15 100 137.4 0.01
UM 15 100 144.5 0.01 UM 15 100 141.1 0.01

5.2 Experiments with MOAIS-HV

We now use the MOAIS-HV algorithm proposed in [12] to solve multiobjective
optimization problems, to show the effectiveness of our proposal.

MOAIS-HV: The main idea of MOAIS-HV is to maintain an online population
of antigens and antibodies. In this case antigens are considered to be good qual-
ity solutions and antibodies are the bad ones. The antigens are cloned and a
mutation operator is applied. The mutated clones and the best antigens found
are merged and the size of the main population is maintained by discarding
individuals that contribute the least to maximize the hypervolume.

Test Suite: In this case, we want to analyze the design of the MOAIS-HV’s
hypermutation process. In MOAIS-HV, hypermutation is applied to each vari-
able according to a probability value. Each time a variable has to be mutated,
the probability is recomputed. This probability indicates a trade-off between the
Global Gaussian (G) and the Local Gaussian (L). The probability changes as the
algorithm goes on and the hypermutation will perform more/less local searches.
The changing probability criteria is based on the computation of a complex for-
mula that uses explicit and some implicit values which are obtained by other
procedures on the code.

The goal of our experiments is to analyse if the algorithm really needs this
complex hypermutation process. We evaluate the use of the Global and the Local
mutation to obtain a good performance. We also evaluate if it is really required
to change the probability of using L during the search. For our experiments we
use well-known 2-objectives standard functions: zdt1-zdt4, zdt6 and 3 objec-
tives: dtlz1-dtlz7. These are the same functions used by the authors to introduce
MOAIS-HV. For the 2-objectives functions, we consider a population of size 100
and a maximum of 200 iterations. For the 3-objectives functions, the population
size is 200, and there is a maximum of 500 iterations. The test consists in the
maximization of the hypervolume of the previously mentioned functions. This
maximization is used to evaluate each configuration. Source code of MOAIS-
HV is also available in our website3. In this experiment, we want to evaluate
both the inclusion of the three components in the code: Global mutation(G),

3 comet.informaticae.org

comet.informaticae.org

Towards a Method for Automatic Algorithm Configuration 97

Table 2. Algorithms and their performance found by EVOCA and I-RACE

EVOCA I-RACE
Algorithm Average Average Algorithm Average Average

Hypervolume Time [s] Hypervolume Time [s]

LR 0.790047 1.29 GR 0.777034 1.73
GL 0.775806 1.32 GLR 0.789478 1.81
LR 0.786416 1.71 GLR 0.787906 1.72
LR 0.781908 1.82 GLR 0.789524 1.80
GLR 0.781233 1.80 GLR 0.784471 1.43
GLR 0.784627 1.69 GLR 0.789200 1.64
GLR 0.783951 1.68 GLR 0.789115 1.67
GLR 0.785932 1.69 GLR 0.789502 1.63
GLR 0.784209 1.68 GLR 0.785856 1.64
LR 0.787449 1.65 GLR 0.789323 1.68
GLR 0.785943 1.69 G 0.780221 1.65
GLR 0.784256 1.67 GLR 0.780044 1.67
LR 0.790048 1.66 GLR 0.786530 1.67
GL 0.784752 1.67 GLR 0.788129 1.64
LR 0.790048 1.66 GLR 0.788683 1.67

Local mutation(L) and Random mutation(R) and the method to apply them.
Thus, we initially consider a code where the mutation components have the same
fixed and equally probability to be applied. The tuning process considers all the
functions together. When using EVOCA, the relative difference to the best solu-
tion found was used to compare the performance of different test functions. For
both tuners, 12000 runs are set as maximum budget.

Analysis: Table 2 shows the algorithms found by EVOCA and I-RACE, their
execution times and the performance measured in their 15 executions. The per-
formance is the average hypervolume of 50 runs with different seeds. Differences
in performance when the same algorithms were selected are due to differences in
the parameters values tuned at each execution. For EVOCA, the best code uses
the Local and Random Mutation, and a fixed probability value. For I-RACE,
the best option uses the three mutations, also with a fixed probability value.
This code also improves the average performance of the MOAIS-HV, but less
significantly than the algorithm selected by EVOCA.

Statistical Evaluation: Table 3 shows the statistical analysis indicators obtained
usingWilcoxon test. Considering p-value=0.05, the algorithms identified by both,
EVOCAand I-RACE, outperform the original algorithm.Moreover, EVOCA’s al-
gorithm in 364 cases is better than original MOAIS-HV and I-RACE’s algorithm
in 336. Table 4 shows the performance obtained by the algorithm when solving
each function. We observe that both, the original algorithm and the algorithm
found by I-RACE, obtained the best performance in 3 functions, and the algo-
rithm defined by EVOCA shows a better performance in 6 functions. In terms
of the execution time, the algorithm selected using EVOCA and the one using
I-RACE are similar. In both cases the code obtained is much simpler than the

98 E. Montero and M.-C. Riff

Table 3. Wilcoxon ranks

MOAIS-HV - EVOCA MOAIS-HV - I-RACE

Ranks N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 364 322.80 117497.5 336 346.90 116559.0
Positive Ranks 179 168.71 30198.50 208 152.31 31681.00
Ties 57 56
Total 600 600

Statistics

Z -11.93 -11.57
Asymp. Sig. (2-tailed) 0.00 0.00

Table 4. Performance comparison

Function MOAIS-HV EVOCA’s Algorithm I-RACE’s Algorithm

zdt1 0.871372 0.868736 0.870774
zdt2 0.538028 0.535536 0.537482
zdt3 1.328516 1.326314 1.327164
zdt4 0.814616 0.825334 0.813102
zdt6 0.504312 0.504320 0.504300
dtlz1 0.314374 0.316040 0.316274
dtlz2 0.744758 0.748010 0.747234
dtlz3 0.670666 0.735176 0.741356
dtlz4 0.741330 0.749178 0.749238
dtlz5 0.434040 0.434300 0.431530
dtlz6 0.431980 0.437506 0.436822
dtlz7 1.987018 2.000120 1.999014

original one with a same or best level of performance. There is especially no
more complex formula to compute the dynamic probability for the mutations.

6 Conclusions and Future Work

In this work, we have analysed two problems about the metaheuristics design.
The On-the-fly metaheuristics design problem (OMD) occurs during the de-
sign process and the Refining Metaheuristics Design problem (RMD) which is
a post-design problem. The OMD problem, which concerns the selection of the
components and methods to include in the code is always present when designing
metaheuristics, but the RMD problem does not always necessary and strongly
depends on the designer goals. We have compared two well-known tuners to help
the designer during the evaluation process, but any tuning method able to work
with categorical parameters can be used. We have evaluated the code selected
by EVOCA and I-RACE for two metaheuristics: a genetic algorithm (NK-GA)
and an artificial immune algorithm (MOAIS-HV). Both tuners have shown to be
able to detect the most suitable components, and to produce simpler and effi-
cient algorithms. Moreover, in terms of the performance, there is not a statistical
significant difference between their identified algorithms. The results obtained
indicate the suitability of both tuners for helping the designer evaluation task

Towards a Method for Automatic Algorithm Configuration 99

and could be used in the future for including on a framework for automatic
configuration algorithms or hyperheuristics.

Acknowledgment. We thank Dr. Carlos Coello for MOAIS-HV code and Mrs.
Leslie Pérez for her support with I-RACE implementation.

References

1. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series. Springer (2006)

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for
Configuring Metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 11–18. Morgan Kaufmann, USA (2002)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race:
An Overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010)

4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Oper-
ations Research & Management Science, vol. 57, pp. 457–474. Springer, US (2003)

5. Eiben, A.E., Smit, S.K.: Parameter Tuning for Configuring and Analyzing Evolu-
tionary Algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

6. Fukunaga, A.: Automated Discovery of Composite SAT Variable Selection Heuris-
tics. In: Proceedings of the National Conference on Artificial Intelligence (AAAI),
pp. 641–648 (2002)

7. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test
Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J.,
Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

9. Kauffman, S.A.: Adaptation on Rugged Fitness Landscapes. Lecture Notes in the
Sciences of Complexity 1, 527–618 (1989)

10. Montero, E., Riff, M.C., Neveu, B.: A Beginner’s Guide to Tuning Methods. Ap-
plied Soft Computing 17(0), 39–51 (2014)

11. Pelikan, M.: Analysis of Estimation of Distribution Algorithms and Genetic Algo-
rithms on NK landscapes. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO, pp. 1033–1040. ACM, USA (2008)

12. Pierrard, T., Coello Coello, C.A.: A Multi-Objective Artificial Immune System
Based on Hypervolume. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N.,
Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 14–27.
Springer, Heidelberg (2012)

13. Riff, M.C., Montero, E.: A New Algorithm for Reducing Metaheuristic Design
Effort. In: IEEE Congress on Evolutionary Computation (CEC 2013), Cancún,
México, pp. 3283–3290 (June 2013)

Parameter Prediction Based on Features
of Evolved Instances for Ant Colony Optimization

and the Traveling Salesperson Problem

Samadhi Nallaperuma, Markus Wagner, and Frank Neumann

Optimisation and Logistics
School of Computer Science

The University of Adelaide, Australia

Abstract. Ant colony optimization performs very well on many hard optimization
problems, even though no good worst case guarantee can be given. Understanding
the reasons for the performance and the influence of its different parameter set-
tings has become an interesting problem. In this paper, we build a parameter pre-
diction model for the Traveling Salesperson problem based on features of evolved
instances. The two considered parameters are the importance of the pheromone
values and of the heuristic information. Based on the features of the evolved in-
stances, we successfully predict the best parameter setting for a wide range of in-
stances taken from TSPLIB.

1 Introduction

Ant colony optimization (ACO) [3] has become very popular in recent years to solve a
wide range of hard combinatorial optimization problems. Throughout the history of
heuristic optimization, attempts have been made to analyze ACO algorithm perfor-
mance theoretically [6, 17] and experimentally [11, 19]. However, much less work has
been done towards the goal of explaining the impact of the problem instance structure
and the algorithm parameters on performance.

The study in [19] provides an overview of existing parameter prediction/tuning ap-
proaches for ACO in two major directions: (1) parameter choosing before running the
algorithm (offline configuration and tuning), and (2) adaptation during runtime (on-
line tuning). It has been shown in [12] that offline tuning outperformes online tuning
for the Max-Min Ant System (MMAS) applied to the Traveling Salesperson problem
(TSP). However, the drawback of existing offline parameter configuration techniques
is that they are time consuming and use a lot of computing power as they need to run
iteratively on training instances. We refer the reader to [5] for a discussion on general
parameter tuning and prediction methods. To the best of our knowledge, none of the
existing approaches have taken structural features of evolved problem instances into
consideration when setting the algorithm’s parameters.

In early research, the problem hardness analysis of the TSP was based on only a
few features that describe the edge cost distribution [14, 20], and the algorithms were
typically run on predetermined instances. Later on, more sophisticated methods were

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 100–109, 2014.
c© Springer International Publishing Switzerland 2014

Parameter Prediction Based on Instance Features 101

introduced for the instance generation, and the investigated problem features have be-
come more diverse [7, 10, 15]. However, a comprehensive analysis of ACO and TSP
problem features has not been conducted so far.

We study the potential of feature-based characterization to be used in automatic algo-
rithm configuration for ACO and consider the well-known Max-Min Ant System [18]
for the TSP. One important question in the configuration of ACO algorithms is to what
extent the pheromone values and the heuristic information should influence the be-
haviour of the algorithm—the importance of these two components is determined by the
parameters α (for pheromone values) and β (for heuristic information). We first inves-
tigate statistical features of evolved (hard, easy, and in-between) instances from [9] and
their impact on the appropriate choice of these two parameters. Based on this we build a
prediction model in order to predict the right choice for instances of TSPLIB [13]. The
potential strength of the prediction model relies on the wide range and on the diversity
of the evolved instances, and on the expressiveness of the selected structural features.
Our experimental investigations show that the considered features and evolved instances
are well suited to predict an appropriate choice for setting the parameters α and β of
MMAS.

The outline of the paper is as follows. In Section 2, we introduce the algorithm and
the framework of our investigations. In Section 3, we report on easy and hard instances
for different parameter combinations and carry out a feature-based analysis. Subse-
quently, we use these insights to predict parameters for given instances from TSPLIB
in Section 4, and we finish with some concluding remarks.

2 Preliminaries

The Traveling Salesperson problem (TSP) is one of the most famous NP-hard combi-
natorial optimization problems. Given a set of n cities {1, . . . , n} and a distance matrix
d = (dij), 1 ≤ i, j ≤ n, the goal is to compute a tour of minimal length that visits each
city exactly once and returns to the origin. We consider the still NP-hard Euclidean TSP,
where cities are given by points in the plane and distances are given by the Euclidean
distances between these points.

As above-mentioned, our study is focused on the well-known ACO algorithm called
Max-Min Ant System (MMAS) [18]. Solutions are constructed by ants visiting cities
sequentially, according to a probabilistic formula defined as

pij =
[τij]

α ∗ [ηij]β(
Σh∈Nk

[τih]
α ∗ [ηih]β

) ,
where Nk represents the set of unvisited nodes of ant k, [τih] and [ηih] having exponents
α and β that represent pheromone and heuristic information respectively. A detailed
description and analysis of this algorithm on TSP can be found in the textbook of Dorigo
and Stützle (Chapter 3) [3].

To evolve easy and hard instances for the ant algorithms we use the evolutionary
algorithm approach previously studied on 2-opt [7] and approximation algorithms [10]
for the TSP. The only difference in the instance generation process here is that we

102 S. Nallaperuma, M. Wagner, and F. Neumann

consider several algorithm instances with different parameter settings instead of a single
algorithm.

The approximation ratio αA(I) of an algorithm A for a given instance I is defined as

α(I) = A(I)/OPT (I)

where A(I) is the tour length produced by algorithm A for the given instance I , and
OPT(I) is the value of an optimal solution of I . OPT(I) is obtained by using the exact
TSP solver Concorde [2].

3 Features of Hard and Easy Instances

For each ACO algorithm instance with a specific parameter setting of α and β, a set
of 100 random TSP instances is generated in two-dimensional unit square [0, 1]2 and
placed on a discretized grid. The evolutionary algorithm runs on them for 5000 genera-
tions in order to generate a set of hard and a set of easy instances. Each ACO execution
is limited to two seconds. In each iteration, the ACO algorithm is run once on a single
instance, and then the approximation ratio is calculated. In separate runs, either a higher
approximation ratio is favoured to generate hard instances, or a lower ratio is favoured
to generate easy instances. This process is repeated for instances of sizes 25, 50, 100
and 200 with the goal of generating easy and hard instances respectively. The instance
generation is performed on an Unix cluster with 48 nodes where each node has 48 cores
(4 AMD 6238 12-core 2.6Ghz CPUs) and 128GB memory (2.7GB per core).

This study considers 47 features including distances of edge cost distribution, angles
between neighbors, nearest neighbor statistics, mode, cluster and centroid features as
well as features representing minimum spanning tree heuristics and of the convex hull.
A detailed description of these features can be found in [10].

The algorithm parameters considered in this study are the most popular and critical
ones in any ACO algorithm, namely the exponents α and β, which represent the influ-
ence of the pheromone trails and of the heuristic information respectively. We consider
three parameter settings for our analysis: setting 1 represents default parameters (α = 1,
β = 2), and settings 2 and 3 represent extreme settings with highest and lowest values
in a reasonable range (α = 0, β = 4 and α = 4, β = 0). The general idea behind the
choice is that we have to isolate the conditions to investigate the effect which is usually
considered in traditional scientific experiments. The rest of the parameters are set in
their default values (ρ = 0.2, ants = 20) as in the original MMAS implementation by
Stützle [16].

3.1 Feature Analysis

Our experimental results for the MMAS with the first parameter setting (α = 1, β =
2) show the following.1 For the first and the second parameter settings, the standard
deviation of angles of the easy instances are significantly smaller than the values of the

1 Due to space limitations here we present only a few significant findings. We refer to Nallape-
ruma et al. [9] for some preliminary results of the feature analysis.

Parameter Prediction Based on Instance Features 103

Fig. 1. Boxplots of the standard deviations of the angles between adjacent cities on the optimal
tour for parameter setting 2 (α = 0, β = 4) on the left and setting 3 (α = 4, β = 0) on the right

Fig. 2. Feature variation with instance difficulty for mean (left) and standard deviation (right) of
distances for the three parameter settings 1 (top), 2 (middle) and 3 (bottom)

hard instances. With increasing instance size, these values change differently for easy
and hard instances. Interestingly, this structural difference is even obvious to a human
observers who perceive different “shapes” for easy/hard and smaller/larger instances. In
contrast to the patterns of the first two parameter settings, the third combination (α =
4, β = 0) shows an increasing pattern of standard deviation values (with increasing
instance size), whereas these values follow a decreasing pattern in the case of the second
setting (see Figure 1).

We also study the feature variation for the instances of intermediate difficulty. In
order to do this, it is required to generate instances with varying difficulty levels in-
between the two extreme difficulties hard and easy. This can be achieved through
morphing, where we create instances with varying difficulty levels by forming con-
vex combinations of easy and hard instances. Here, the point matching is done using
a greedy strategy where the points of minimum Euclidian distance are matched. These
matched instances are then used to produce a set of instances with intermediate diffi-
culty by taking the convex combination based on the convex combination parameter
αc ∈ {0, 0.2, ..., 0.8, 1} where 0 represents hardest instances and 1 easiest.

Generally, for all three considered parameter settings, most features show similar
patterns exhibiting systematic nonlinear relationships with instance difficulty. However,
there are a few “contrast patterns” (the feature is increasing in value over instance diffi-
culty for one parameter setting and decreasing for another parameter setting) observed
among different parameter settings. For example, the distance mean and the standard
deviation show contrast patterns for the second parameter setting (α = 0, β = 4) from
the other two (see Figure 2). Moreover, we observe that the sharp increasing pattern
over instance difficulty for the third parameter setting (α = 4, β = 0) has slowed down

104 S. Nallaperuma, M. Wagner, and F. Neumann

Fig. 3. Performance of the second parameter setting (top) and the third (bottom) on the easy (grey)
and hard (black) instances of the first parameter setting

for the default parameter setting, and even converted to a decreasing pattern for the sec-
ond setting. This provides strong evidence on the impact of parameters. Similar contrast
patterns are observed in the other feature groups as well, such as convex hull and near-
est neighbour. These contrast patterns suggest the dependence of problem hardness on
the algorithm parameters. This dependence further indicates that algorithms with dif-
ferent settings can have complimentary problem-solving capabilities. We believe that
such capabilities can provide insights to automatic parameter configuration. Therefore,
we further investigate these capabilities by comparing the approximation ratios of the
three algorithms achieved on each others’ easy and hard instances.

3.2 Comparison of Parameter Settings

As shown in Figure 3, both the second (α = 0, β = 4) and the third (α = 4, β = 0)
parameter settings have obtained worse approximation ratios for the easy instances of
the first parameter setting (α = 1, β = 2) than the first parameter setting. In the case
of the hard instances, the second parameter setting has achieved better approximation
ratios than the first parameter setting itself. The outcomes of the other two cross-checks
are comparable: given the hard instances of one algorithm configuration, the other two
settings achieve better results. This is strong support for our previous conjecture on the
complimentary capabilities of different parameter settings.

4 Parameter Prediction

In order to build a reliable model, we significantly extend our collection of data
gained from the experiments in Section 3. We generate 1500 instances: 10 hard and
easy ones, with sizes 25, 50 and 100, and for each of the 25 parameter combinations
α, β ∈ {0, 1, 2, 3, 4}.

Parameter Prediction Based on Instance Features 105

c1

cp
Problem features

Inputs

θ1

θq

Algorithm parameters

ρ
Performance

OutputsHardness model

g (c, θ)

Fig. 4. Prediction Model. It predicts the algorithm performance based on the problem features ci,
1 ≤ i ≤ p and the possible algorithm parameters θj , 1 ≤ j ≤ q.

4.1 Prediction Model

We build a simple prediction model merely as a proof of concept that a problem hard-
ness model can be used for ACO parameter prediction. Therefore, we use a popular
basic technique for model building. A high level overview of the model is shown in
Figure 4. Instead of predicting the allegedly optimal parameters, we actually predict the
approximation values given the 25 possible parameter combinations. Then, we select
amongst those 25 the combination that achieves the best approximation as the model’s
output. Hence, the actual model construction is based on the approximation ratio as the
dependent variable. Note that a similar model architecture is used in the recent work
of Munoz et al. [8] for the prediction of algorithm performance based on landscape
features and parameters.

To build our prediction model, we use the classical pattern classification technique
introduced by Aha et al. [1], as implemented in the Weka data mining framework [4].
In the training phase, we feed the generated instances into this nearest neighbour search
based classifier. As we have seen in the previous hardness analysis, not all problem
features appear to be significantly different for easy and hard instances. Consequently, a
smaller subset with 15 strong features out of the whole (47) feature set is selected: angle
mean, angle median, angle sd, centroid mean distance to centroid, centroid max distance
to centroid, points on hull, distance mean, distance median, distance max, distance sd,
mst distance mean, mst distance max, mst distance sd, nearest neighbour distance sd
and nearest neighbour distance coefficient of variance.

4.2 Prediction Results

First, we test our model on a set of 30 randomly generated TSP instances of instance
size 100. In the first step, their approximation values are calculated (by averaging the
outcomes of 50 repetitions) for all (25) considered parameter combinations. Then the
actual best-performing parameter setting is found based on those 25 approximation
values (see Table 1 (a) for results).

For more than half of the 30 instances, the model predicts the correct minimal ap-
proximation ratio, as both winning parameters are the best actual values. Almost all
remaining predictions are close to the optimal combination, predicting the actual sec-
ond best parameter combination. Even though our model is relatively simple, we believe

106 S. Nallaperuma, M. Wagner, and F. Neumann

Table 1. (a): Predicted and actual parameter settings (α, β) for 30 random test instances of
size 100. The columns ”best” and ”second” show the parameter combinations for which the best
approximation and second best approximations are achieved in both prediction and actual exper-
iments. (b): Results of the Wilcoxon signed rank tests on the predicted and actual approximation
ratios for same instances for the hypothesis ”actual > predicted” (Test 1) and ”predicted > actual”
(Test 2), positive rank sum (W) and confidence (p) values are displayed accordingly.

(a)

inst
predicted actual

best/second best/second match second match
1 (4 , 4) / (1, 4) (1, 4) no yes
2 (1, 2) (1,3) / (1, 2) no yes
3 (4, 3) (4, 3) yes
4 (1, 3) (1, 3) yes
5 (1, 4) (1, 4) yes
6 (1, 4) (1, 4) yes
7 (1, 4) (1, 4) yes
8 (1, 4) (1, 4) yes
9 (1, 3) (1, 3) yes
10 (2, 3) (2, 3) yes
11 (1, 3) (1, 3) yes
12 (1, 3) (1, 4)/(1, 3) no yes
13 (1, 3) (1, 3) yes
14 (4, 4) (1, 4)/(4, 4) no yes
15 (1, 2) (1, 4)/(1, 2) no yes
16 (3, 4) (3, 4) yes
17 (1, 4) (1, 3)/ (1, 4) no yes
18 (1, 2) (1, 3)/ (1, 2) no yes
19 (4, 4) (2, 4)/ (4, 4) no yes
20 (1, 3) (1, 2)/ (1, 3) no yes
21 (4, 4) (4, 4) yes
22 (1, 4) (1, 4) yes yes
23 (1, 1) (1, 3) no no
24 (1, 1) (1, 1) yes
25 (1, 4) (1, 3)/(1, 4) no yes
26 (1, 4) (1, 4) yes
27 (1, 2) (1, 2) yes
28 (1, 3) (1, 3) yes
29 (1, 3) (1, 3) yes
30 (3, 4)/ (1, 4) (1, 4) no yes

(b)

inst
Test 1 Test 2

W p-value W p-value
1 99 0.9305 201 0.0714
2 565.5 0.6797 659.5 0.3221
3 1296.5 0.5371 1331.5 0.4639
4 2191 0.6233 2369 0.3774
5 3404 0.6666 3736 0.3339
6 4956.5 0.7049 5483.5 0.2954
7 6808.5 0.7276 7556.5 0.2727
8 8735 0.8028 9986 0.1973
9 11117 0.7959 12536 0.2042
10 14274.5 0.5590 14405.5 0.4411
11 16863 0.6171 17328 0.3831
12 20273.5 0.6086 20767.5 0.3915
13 24308.5 0.4869 23896.5 0.5132
14 28605 0.4325 27675 0.5676
15 32799.5 0.4094 31461.5 0.5907
16 37968.5 0.3269 35567.5 0.6732
17 43214 0.2709 39814 0.7291
18 49679 0.1532 43849 0.8468
19 54671 0.1863 49069 0.8138
20 61524 0.1248 53916 0.8753
21 68491.5 0.0712 58264.5 0.9288
22 75075 0.0710 64053 0.9290
23 80356.5 0.1497 71719.5 0.8504
24 88700.5 0.0856 76899.5 0.9144
25 96134 0.0750 82967 0.9250
26 104622.5 0.0627 89753.5 0.9373
27 113339 0.0552 96937 0.9449
28 122681.5 0.0362 103446.5 0.9639
29 130368 0.0564 112188 0.9436
30 140646.5 0.0394 119634.5 0.9606

that this first result already supports our initial claim that parameters can be predicted
based on preceding instance analyses.

Although the model cannot produce the best parameter setting for all instances, the
raw approximation values for the predicted and the actual performance are very similar.
Therefore, we conduct a rank test to observe any significant difference between the
predicted values. We choose the Wilcoxon signed rank test [21], as there is no guarantee
about the distribution, and the results are paired as they are based on the TSP instance
on which the approximation ratio is obtained. For each TSP instance the predicted and
actual approximation ratios obtained for all parameter settings are considered for the
test. For the first test we set the hypothesis that the actual values are greater than the
predicted values, and then the test is repeated with the counter hypothesis. For both
tests and for most instances, the resulting p values are reasonably large, hence both
of the alternative hypothesis are rejected (see Table 1 (b)). Thus, we fail to reject the
null hypothesis, meaning that both distributions are equal. Only for two instances we

Parameter Prediction Based on Instance Features 107

Table 2. Predicted and actual parameter settings (α, β) for 25 TSPLIB instances of size in range
51–264. Note, that the underlying model is based only on our analysis of instances of size 100.

inst
predicted actual

best/second best/second match second match
bier127.tsp (2, 3) (2, 3) yes
ch150.tsp (1, 3)/(2,3) (2, 3) no yes
eil51.tsp (1, 3) (1, 3) yes
kroA100.tsp (3,3)/(1,3) (1, 3) no yes
kroB100.tsp (1,3) (1, 3) yes
kroC100.tsp (1,3) (1, 3) yes
kroD100.tsp (1,2) (1, 2) yes
pr107.tsp (2,4) (2, 4) yes
pr76.tsp (2, 3) (2, 3) yes
st70.tsp (1, 1) (1, 1) yes
ch130.tsp (2, 3) (2, 4)/(2,3) no yes
eil101.tsp (2, 2)/(2,3) (2, 3) no yes
kroA150.tsp (2, 2) (2, 2) yes
lin105.tsp (3,2)/(1,3) (1, 3) no yes
pr124.tsp (4,3)/(1,3) (1,3) no yes
rat99.tsp (2, 4)/(1,2) (1, 4)/(1,3) no no
kroB150.tsp (1, 2)/(1, 3) (2, 3)/(3,4) no no
eli79.tsp (3,4)/(1,2) (1, 3)/(1,2) no yes
kroE100.tsp (1,1)/(1,3) (1, 4)/(1,3) no yes
kroA200.tsp (3, 3) (3, 3) yes
kroB200.tsp (3, 4) (3, 4) yes
tsp225.tsp (2, 3)/ (3, 4) (4, 4)/(3, 4) no yes
pr264.tsp (4, 4) (4, 4) yes
gil262.tsp (2, 3)/(1, 4) (4, 4)/ (4, 3) no no
pr226.tsp (2, 3)/(1, 3) (4, 3)/(3, 3) no no

observe p values less than 0.05, and thus we fail to reject the alternative hypothesis with
95% significance (thus reject the null hypothesis) that they are different.

Second, we test our model on a set of famous benchmark instances from
TSPLIB [13] and the results are shown in Table 2. Interestingly, they are qualitatively
similar to the results of the test on random TSP instances (Table 1), even though these
“real world” instances have never been part of the model building process. Therefore,
this second investigation provides further evidence on the accuracy of the model-based
performance predictions. We conjecture that the reasons for this strong performance are
(1) the large distribution of the training set varying from extreme hard to extreme easy
TSP instances and (2) the strength of the selected feature set in expressing problem
hardness for ACO algorithm instances with specified parameter settings. In order to use
this model for prediction, a very short prepossessing step is required that calculates the
15 above-mentioned feature values for the input instance.

5 Conclusions

In this paper, we have shown how to predict the parameter setting of ACO algorithms
based on features of evolved problem instances. We considered the parameters α and
β which determine the importance of the pheromone concentration and heuristic infor-
mation, respectively. Based on instance features for the classical Traveling Salesperson
Problem, we built a prediction model to determine the values of α and β. Our investiga-
tions on a wide range of instances from TSPLIB show that the instance features allow

108 S. Nallaperuma, M. Wagner, and F. Neumann

for a reliable prediction of well-performing algorithm setups. For future work, we plan
on improving the prediction model by integrating other ACO parameters such as the
number of ants and the pheromone update strength.

Acknowledgements. We thank Bernd Bischl for early discussions, Heike Trautmann
and Olaf Mersmann for the feedback on the preliminary version of this research. This
research has been supported by the Australian Research Council (ARC) under grant
agreement DP140103400.

Bibliography

[1] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991)

[2] Applegate, D., Cook, W.J., Dash, S., Rohe, A.: Solution of a Min-Max Vehicle Routing
Problem. Journal on Computing 14(2), 132–143 (2002)

[3] Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company (2004)
[4] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data

mining software: An update. SIGKDD Explororations Newsletter 11(1), 10–18 (2009)
[5] Hoos, H.: Automated algorithm configuration and parameter tuning. In: Hamadi, Y., Mon-

froy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71. Springer, Heidelberg (2012)
[6] Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical analysis of two ACO approaches

for the traveling salesman problem. Swarm Intelligence 6, 1–21 (2012)
[7] Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann, F.: A novel

feature-based approach to characterize algorithm performance for the traveling salesperson
problem. In: Annals of Mathematics and Artificial Intelligence, pp. 1–32 (2013)

[8] Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm
performance for continuous optimization problems. In: Coello, C.A.C., Cutello, V., Deb,
K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp.
226–235. Springer, Heidelberg (2012)

[9] Nallaperuma, S., Wagner, M., Neumann, F.: Ant colony optimisation and the traveling sales-
person problem: Hardness, features and parameter settings (extended abstract). In: 15th An-
nual Conference Companion on Genetic and Evolutionary Computation Conference Com-
panion (GECCO Companion), pp. 13–14. ACM (2013)

[10] Nallaperuma, S., Wagner, M., Neumann, F., Bischl, B., Mersmann, O., Trautmann, H.: A
Feature-based Comparison of Local Search and the Christofides Algorithm for the Travel-
ling Salesperson Problem. In: International Conference on Foundations of Genetic Algo-
rithms, FOGA (2013)

[11] Pellegrini, P., Favaretto, D., Moretti, E.: On MAX – MIN ant system’s parameters. In:
Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.)
ANTS 2006. LNCS, vol. 4150, pp. 203–214. Springer, Heidelberg (2006)

[12] Pellegrini, P., Stützle, T., Birattari, M.: Off-line vs. on-line tuning: A study on
MAX −−MIN ant system for the TSP. In: Dorigo, M., Birattari, M., Di Caro, G.A.,
Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E.,
Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 239–250. Springer,
Heidelberg (2010)

[13] Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on Comput-
ing 3(4), 376–384 (1991)

Parameter Prediction Based on Instance Features 109

[14] Ridge, E., Kudenko, D.: Determining Whether a Problem Characteristic Affects Heuristic
Performance. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evol. Comp. SCI,
vol. 153, pp. 21–35. Springer, Heidelberg (2008)

[15] Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP difficulty by learning from
evolved instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280.
Springer, Heidelberg (2010)

[16] Stützle, T.: Software package: Acotsp.v1.03.tgz (2012)
[17] Stützle, T., Dorigo, M.: A short convergence proof for a class of Ant Colony Optimization

algorithms. IEEE Trans. on Evolutionary Computation, 358–365 (2002)
[18] Stützle, T., Hoos, H.H.: MAX-MIN Ant system. Future Generation Computer Sys-

tems 16(9), 889–914 (2000)
[19] Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca, M., Birattari, M.,

Dorigo, M.: Parameter Adaptation in Ant Colony Optimization. In: Autonomous Search,
pp. 191–215. Springer (2012)

[20] Stützle, T., Hoos, H., Merz, P.: An Analysis of the Hardness of TSP Instances for Two
High-performance Algorithms. In: 6th Metaheuristics International Conference (MIC), pp.
361–367 (2005)

[21] Wilcoxon, F.: Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6),
80–83 (1945)

Self-Adaptive Genotype-Phenotype Maps:

Neural Networks as a Meta-Representation

Lúıs F. Simões1, Dario Izzo2, Evert Haasdijk1, and Agoston Endre Eiben1

1 Vrije Universiteit Amsterdam, The Netherlands
2 European Space Agency, The Netherlands

{luis.simoes,e.haasdijk,a.e.eiben}@vu.nl, dario.izzo@esa.int

Abstract. In this work we investigate the usage of feedforward neural
networks for defining the genotype-phenotype maps of arbitrary con-
tinuous optimization problems. A study is carried out over the neural
network parameters space, aimed at understanding their impact on the
locality and redundancy of representations thus defined. Driving such an
approach is the goal of placing problems’ genetic representations under
automated adaptation. We therefore conclude with a proof-of-concept,
showing genotype-phenotype maps being successfully self-adapted, con-
currently with the evolution of solutions for hard real-world problems.

Keywords: Genotype-Phenotypemap, Neuroevolution, Self-adaptation,
Adaptive representations, Redundant representations.

1 Introduction

Automated design of Evolutionary Algorithms (EAs) has been on the research
agenda of the Evolutionary Computing community for quite some years by now.
The two major approaches for finding good values for the numeric and/or sym-
bolic parameters (a.k.a. EA components) are parameter tuning and parameter
control, employed before or during the run, respectively. The current state of the
art features several techniques to find ‘optimal’ values or instances, for all pa-
rameters and components, with one notable exception: the genotype-phenotype
(G-P) mapping, a.k.a. the representation. In contrast to all other parameters
related to selection, variation, and population management, there are only a
handful of papers devoted to adapting representations. Considering the widely
acknowledged importance of having a good representation, the lack of available
techniques to ‘optimise’ it is striking. One could say that the challenge of tuning
and/or controlling the representation in an EA is the final frontier in automated
EA design.

In this paper we investigate the possibility of using adjustable genotype-
phenotype maps for continuous search spaces. In particular, we propose neu-
ral networks (NN) as the generic framework to represent representations (i.e.,
NNs as a meta-representation). This means that for a given phenotype space
Φp ⊂ IRn and a genotype space Φg ⊂ IRm the set of all possible representations
we consider is the set of all NNs mapping Φg to Φp.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 110–119, 2014.
c© Springer International Publishing Switzerland 2014

Self-Adaptive Genotype-Phenotype Maps 111

In the technical sections of the paperwe investigate this approach,with regard to
its expressiveness, and learnability. Informally, we consider a meta-representation
expressive if it is versatile enough to define a wide range of transformations, grant-
ing it the potential power to restructure arbitrary fitness landscapes into more effi-
ciently explorable genotype spaces for the underlying optimizer.As for learnability,
we are pragmatic. All we want to demonstrate at this stage, is the existence of a
learning mechanism that can change the NN during the run of the given EA, in
such a way that the EA performance (measured by solution quality) is improved.
Thus, in terms of the classic tuning-control division, we want to demonstrate the
existence of a good control mechanism for NN-based representations.

2 Related Work

A fundamental theoretical result by Liepins & Vose [7], shows that “virtually
all optimizable (by any method) real valued functions defined on a finite do-
main [are] theoretically easy for genetic algorithms given appropriately chosen
representations”. However, “the transformations required to induce favorable
representations are generally arbitrary permutations, and the space of permuta-
tions is so large that search for good ones is intractable”. Nevertheless, [7] still
calls for research into approaches that adapt representations at a meta-level.
In particular, [7] shows affine linear maps to provide sufficient representational
power to transform fully deceptive problems into easy ones.

In the over two decades since [7], a vast body of work emerged, addressing
ways to automatically adapt and control all sorts of Evolutionary Algorithm
components [4,8]. The genetic representation, and its genotype-phenotype map,
however, despite their recognized role as critical system components, have only
sporadically been addressed in the literature. De Jong, in [2], considers that
“perhaps the most difficult and least understood area of EA design is that of
adapting its internal representation.”

In a series of papers culminating in [3], Ebner, Shackleton & Shipman pro-
posed several highly-redundant G-P maps, the cellular automaton (CA) and ran-
dom boolean network (RBN) mappings, in particular, being of special relevance
to the present research. In them, chromosomes are composed of a dynamical
system’s definition (CA or RBN rule table, and also the cell connectivity graph
in the case of RBN), along with the system’s initial state. Decoding into the
phenotype space takes place by iterating the dynamical system for a number of
steps, from its initial state, according to the encoded rule table.

3 Neural Networks as Genotype-Phenotype Maps

We have chosen to use neural networks as the basis of our approach for two
reasons. First, they are global function approximators. In principle, they are ca-
pable of expressing any possible G-P map (given a sufficiently large number of

112 L.F. Simões et al.

hidden layer neurons). Second, they are learnable, even evolvable. There is much
experience and know-how about ‘optimising’ neural nets by evolution [5,11].

Formally, and following Rothlauf’s notation [9, Sec. 2.1.2], we then have that,
under an indirect representation scheme, evolution is guided by a fitness func-
tion f that is decomposed into a genotype-phenotype map fg, and a phenotype-
fitness mapping fp. Genetic operators such as recombination and mutation are
applied over genotypes xg ∈ Φg (where Φg stands for the genotypic search
space). A genotype-phenotype map fg : Φg → Φp decodes genotypes xg into
their respective phenotypes xp ∈ Φp (where Φp is the phenotypic space), and
fitness assignment takes place through fp : Φp → IR, which maps phenotypes
into fitness values. In summary, individuals in the population of genotypes are
evaluated through f = fp ◦ fg, the fitness of a genotype xg being given by
f(xg) = fp(fg(x

g)). When considering an EA that searches in a continuous
genotypic space, for solutions that decode into continuous phenotypes, we then
have that Φg ⊂ IRm, and Φp ⊂ IRn, where m and n stand, respectively, for the
dimensionalities of the considered genotypic and phenotypic spaces. A genotype-
phenotype map is then a transformation fg : IRm → IRn.

Let N be a fully connected, feedforward neural network with l layers and dk

neurons on its k-th layer (k = 1..l). If Lk is the vector representing the states of
the dk neurons in its k-th layer, then the network’s output can be determined
through

Lk
i = σ(bki +

dk−1∑
j=1

wk
ijLk−1

j), i = 1..dk,

where bk represents the biases for neurons in the k-th layer, and wk
i the weights

given to signals neuron Lk
i gets from neurons in the preceding layer. A sigmoidal

activation function σ(y) = 1/(1 + e−y) is used throughout this paper. The net-
work’s output, Ll, is then uniquely determined through b, w, and L1, the input
vector fed to its input layer.

Without loss of generality, in the sequel we assume that the given phenotype
space is an n dimensional hypercube. (If needed, the interval [0, 1] can be mapped
with a trivial linear transformation to the actual user specified lower and upper
bounds for each variable under optimization.) Using a neural network as a G-P
map, we then obtain a setup where the number of output neurons dl = n and

the mapping itself is fg : [0, 1]d
1 → [0, 1]d

l

. To specify a given G-P mapping
network we will use the notation N (mp,ma), where mp and ma are the map
parameters1 and map arguments, defined as follows. The vector mp ∈ [−1, 1]d

contains the definition of all weights and biases in the network, while the vector
ma designates the input vector fed into the network. With this notation, we
obtain a formal framework where genotypes are map arguments to the neural
net and the representation is fg = N (mp, .). Given a genotype xg ∈ [0, 1]d

1

, the

corresponding phenotype is fg(x
g) = N (mp, x

g) ∈ [0, 1]d
l

.
As shorthand for a considered NN architecture, we will use notation such as

30-5-10, to indicate a fully connected feeedforward neural network with l = 3

1 “Map parameters” named by analogy with the strategy parameters (e.g., standard
deviations of a Gaussian mutation) traditionally used in Evolution Strategies.

Self-Adaptive Genotype-Phenotype Maps 113

layers, having d1 = 30 neurons in its input layer, d2 = 5 neurons in the hidden
layer, and d3 = 10 neurons in the output layer (Φg = [0, 1]30, Φp ⊂ IR10).

4 Expressiveness

The expressiveness challenge facing a representation of G-P maps, is that of
ensuring the “language” used to represent representations supports the specifi-
cation of widely distinct transformations between both spaces. Given our use of
neural networks to represent G-P maps, and the knowledge that their expres-
siveness needs to be traded-off with their learnability, we will then address the
following research question:

– what is the expressiveness retained by small to medium sized neural net-
works?

We will focus our analysis on two often-studied representation properties: local-
ity and redundancy [9,1]. A representation’s locality [9, Sec. 3.3] describes how
well neighboring genotypes correspond to neighboring phenotypes. In a repre-
sentation with perfect (high) locality, all neighboring genotypes correspond to
neighboring phenotypes. Theoretical and experimental evidence [9,1] support
the view that high locality representations are important for efficient evolution-
ary search, as they do not modify the complexity of the problems they are used
for. A redundant encoding, as the name implies, provides multiple ways for a
phenotype to be encoded in the genotype. In [9, Sec. 3.1] different kinds of re-
dundancies are identified, the advantages and disadvantages of each one being
then subjected to theoretical and experimental study.

4.1 Map Characterization

We characterize here the expressive power of different NN architectures, in terms
of the locality and redundancy of the G-P maps they can define. We conduct our
analysis over the G-P map design space, by sampling random NN configurations
within given architectures.

Setup. The G-P map design space is explored by randomly sampling (with
uniform probability) NN weights and biases, in the range [−1, 1], thus providing
the definition of map parameters, mp. We follow by generating a large number
of map arguments, ma (10000, to be precise), in the range [0, 1], according to
a quasi-random distribution. Sobol sequences are used to sample the genotype
space (ma ∈ Φg), so as to obtain a more evenly spread coverage. The ma scat-
tered in the genotype space are subsequently mapped into the phenotype space.
The Euclidean metric is used to measure distances between points within both
the genotype and phenotype spaces.

The analysis conducted here is fitness function independent, but for illustra-
tion purposes (Figure 1), and for defining the phenotypic space in which distances
will be measured, we consider the well known Rastrigin function2.

2 Rastrigin: fp(x
p
1, . . . , x

p
n) = 10n+

∑n
i=1

[
(xp

i)
2 − 10 cos(2πxp

i)
]
, Φp = [−5.12, 5.12]n.

114 L.F. Simões et al.

Fig. 1. Genotype-phenotype maps de-
fined by 2-32-2 (left) and 6-2-2 (right)
neural networks. Shown: fitness land-
scapes at the genotype (bottom) and phe-
notype (middle) levels, along with posi-
tioning of the representable phenotypes
within the genotype space (top). Green
star indicates a possible input (ma) to
the G-P map, and scattered points show
solutions reachable through mutations of
fixed magnitude to either just that ma,
or also to the G-P map’s definition (mp).

Measuring locality. We characterize the locality of representations definable by
a given neural network architecture, by randomly sampling the space of possible
network configurations (mp) in that architecture. A sample of 1000 points is
taken, out of the 10000 ma given by the Sobol sequence (mentioned above),
and a mutated version generated. A mutation is always a random point along
the surface of the hypersphere centered on the original genotype, and having a
radius equal to 1% the maximum possible distance in the Φg hypercube. The
mutated ma is mapped into the phenotype space, and its distance there to
the original point’s phenotype measured. Given we wish to consider phenotype
spaces having distinct numbers of dimensions, and importantly, given the fact
that each different G-P map encodes a different subset of the phenotype space,
it becomes important to normalize phenotypic distances, in a way that makes

Self-Adaptive Genotype-Phenotype Maps 115

them comparable. To that end, we identify the hyperrectangle that encloses
all the phenotypes identified in the initial scatter of 10000 points, and use the
maximum possible distance value there to normalize phenotype distances.

Measuring redundancy. To characterize a representation’s redundancy, we will
want to relate phenotypes to the distinct genotypes capable of encoding them.
In a representation with high locality, the extent to which dissimilar genotypes
express similar phenotypes, provides an indication of its redundancy.

Given a randomly generated NN, and the set of 10000 solutions sampled in
genotype space through a Sobol sequence (as previously described), we ran-
domly select 200 of the obtained phenotypes. For each, we perform a k-Nearest
Neighbor search, in phenotype space, for its 5 closest phenotypes. Having all
our phenotypes been obtained from known genotypes, we are then able to map
those nearest neighbors back to the genotypes that led to their expression. One
data point in our analysis is then composed of the distances in both genotype
and phenotype spaces, between a queried solution, and one of those neighbors.
Analysis of one NN is in this setup then given by 200 · 5 data points. To al-
low for comparisons of distances across NN architectures, phenotype distances
are normalized over the maximum possible distance within the hyperrectangle
enclosing the space of 10000 phenotypes obtained through the Sobol process.
Additionally, also distances in genotype space are normalized, in this case over
the maximum possible distance within the d1-dimensional hypercube.

Results. Figure 1 shows the mappings defined by two randomly defined G-P
maps (plots obtained by spreading an evenly spaced grid of 106 ma in genotype
space, mapping them to phenotype space, and evaluating them). Top panels
show the phenotypes expressible by each G-P map, color coded based on the ma

that led to their expression. The continuous color gradients observed in each case
show that nearby genotypes are being decoded into nearby phenotypes, and are
therefore evidence of two high locality representations (low locality would have
resulted in a randomization of the colors present in small neighborhoods). In
Figure 1 (top left) we see a genotype space that folds on itself as it gets mapped
onto the phenotype space, leading some of its expressible phenotypes to become
redundantly representable, as seen in the bottom and middle panels.

Figure 2 characterizes the locality of representations definable by different NN
architectures. Each of the shown distributions was obtained by analyzing 1000
randomly generated G-P maps having that architecture, and thus represents a
total of 106 measured phenotype distances. We consistently observe high locality
representations resulting from all studied NN architectures: a mutation step of
1% the maximum possible distance in genotype space is in all cases expected
to take us across a distance in phenotype space of at most ∼ 1% the maximum
possible distance among phenotypes representable by the considered G-P map.

Figure 3 characterizes the redundancy of representations definable by different
NN architectures. Each of the shown bivariate distributions was obtained by an-
alyzing 1000 randomly generated G-P maps having that architecture, and thus

116 L.F. Simões et al.

Fig. 2. Locality of representations
expressible by different sized neural
networks. Shown: empirical cumulative
distribution functions of distances in phe-
notype space between pairs of neighbor-
ing genotypes.

Fig. 3. Redundancy of representations
expressible by different sized neural net-
works. Shown: multivariate distribution
relating a phenotype’s distance to one of
its k-nearest neighbors, with the distance
at which the pair lies in genotype space.

represents a total of 106 measured phenotype and genotype distances. We clearly
see the number of neurons in the input layer as the primary factor determining the
expected degree of redundancy in NNs sampled according to a given architecture.
Nearest neighbors, which in all cases lie at approximately the same distance in
phenotype space (on average, 2 to 6% the span of possible distances in Φp), turn
out to be representable through genotypes at distances between themselves going
on average from roughly 10, to 25, and 40% the span of possible distances in Φg,
as the number of input neurons grows from 5 to 30.

Discussion. The view emerging from these results is that NN-based G-P maps,
as defined in Section 3, tend to generate high-locality representations, with a
tuneable degree of expected redundancy.

Given a random G-P map, its genotype space will most likely decode into
a limited region of the full phenotype space (as seen in Figure 1). This could
be problematic if G-P maps were to be defined off-line, for unknown search
spaces, where the risk of being unable to express the global optimum would be
considerable. In an on-line adaptation scenario, however, the G-P map is instead
at every point of the search devoting its resources to learning a representation of
a momentarily relevant portion of phenotype space, while retaining the power to
adapt itself, towards expression of newly identified superior phenotypic regions.

5 Learnability

In this section we want to establish the existence of a learning mechanism, that
can change the NN-based G-P map during the run of a given EA, in such a way
that the EA performance (measured by solution quality) is improved.

Self-Adaptive Genotype-Phenotype Maps 117

When designing a suitable learning mechanism we face a couple of principal
decisions, namely: which learning mechanism to use, and how to measure G-P
maps’ quality, so as to steer the learning mechanism towards superior ones?
We answer these questions by employing a self-adaptation scheme, whereby the
parameter vector that specifies a G-P map, mp, is added to the chromosome
and co-evolves with the solution (ma). By the very nature of self-adaptation,
this option elegantly solves the second problem. In particular, we do not need
to specify an explicit quality measure for the G-P map. Instead, the G-P map is
evaluated implicitly: it is good if it leads to good solutions.

In neuroevolution, recombination-based EAs are known to face some difficul-
ties when optimizing NNs. This is known as the competing conventions problem
[5,11]. To avoid this problem, we decide to use a mutation-only EA.

Having made these choices, the issue of learnability addressed in this section
can now be phrased as follows:

– can a self-adaptive mechanism within a mutation-only EA effectively learn
useful G-P mappings that lead to increased EA performance?

5.1 Experimental Evaluation

We experimentally evaluate here the performance achieved by EA setups that
self-adapt G-P maps, through comparison with identical optimizer setups that
work instead directly over the phenotype space.

Setup. Our experimental validation compares, for the same problem, optimiza-
tion using a direct representation xg = xp, against optimization using an indirect
representation, where a NN-based G-P map is self-adapted in the chromosome,
together with its input, xg = [mp,ma].

We evaluate the different setups by searching for solutions to the Cassini 1 and
Messenger full problems. These are difficult, real-world problems, of spacecraft
interplanetary trajectory design. Their full specification can be found online,
in the GTOP Database [10]3. In the indirect representation experiments we
demonstrate the usage of distinct neural network architectures: in Cassini 1
we ask the optimizer to learn and exploit highly redundant encodings of the
phenotype space, by using 20-3-6 G-P maps; In Messenger full we ask it instead
to learn minimally redundant, lower dimensional projections of the problem’s 26-
dimensional phenotype space, by using 2-2-26 G-P maps.

We make use of the Improved Fast Evolutionary Programming (IFEP) algo-
rithm introduced in [12], extended with the success rate based dynamic lower
bound adaptation (DLB1) described in [6]. The optimizer was tuned as follows:
population size μ = 25, and tournament size q = 2. The strategy parameters
in individuals’ chromosomes, which parameterize their mutation operators, were
initialized to values of η = 0.03, and had initial lower bounds of η = 0.015,
adapted by DLB1, every 5 generations, using a reference success rate of A = 0.3.

3 http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html

http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html

118 L.F. Simões et al.

Fig. 4. Comparison of direct and indirect representations on the Cassini 1 (left) and
Messenger full (right) problems. Shown: empirical cumulative distribution functions of
the best fitness value reached in an EA run.

In each IFEP run, evolution proceeded for a total of 5000 generations. IFEP has
each parent generating two mutated offspring, one according to a Gaussian, and
another according to a Cauchy distribution4. As such, 50 solutions were gener-
ated per generation, leading to a total of 250000 fitness evaluations per run. The
indirect representation setups used bounds of mpi ∈ [−1, 1], and mai ∈ [0, 1]. For
increased fairness in the comparison between direct and indirect representations,
chromosomes were in both cases normalized at the optimizer level, into the unit
hypercube, xg ∈ [0, 1]d, and scaled back at decoding and evaluation time.

Results. Figure 4 presents the distributions of best found solutions’ fitness
values, in 100 independent EA runs performed under each optimization setup.

Both Cassini 1 and Messenger full are minimization problems. In Cassini 1 we
see a median fitness of 11.9 being found with a direct representation, and 11.2
with an indirect one. Peak performance was however lower on the indirect rep-
resentation runs: 5.3, against 5.1 for the direct representation. In Messenger full
the indirect representation improved median performance from 17.4, to 15.9, as
well as peak performance (7.9, against 8.8). We see also in it a considerable
improvement to worst case performance (from 32.0 to 25.4).

Analysis. Extending chromosomes with the definition of their own G-P maps,
naturally places a significant burden on top of the optimization process: Cassini
1 goes from being a 6-dimensional optimization problem in the direct represen-
tation case, to a 107-dimensional one when simultaneously learning a 20-3-6

G-P map. Similarly, the Messenger full problem goes from 26 to 86 dimensions
when adding a 2-2-26 G-P map. Still, as seen in Figure 4, EA performance is
matched, or even surpassed, by the G-P maps’ addition.

Back in Section 4 we saw in Figure 1 (middle panels), regarding mutation
over vectors containing [mp,ma], that it is possible to conduct a robust search
simultaneously over the G-P map’s definition, and its inputs: mutated offspring
tend to encode phenotypes in the vicinity of those of their parents. The results
reported in this section show that such variation, in an evolutionary setting,

4 The lognormal self-adaptation of strategy parameters employed by EP is not used in
the indirect representation setups to adapt the (also self-adapted) map parameters.
Instead, their variation takes place through the Gaussian (or Cauchy) mutation.

Self-Adaptive Genotype-Phenotype Maps 119

indeed allows for the self-adaptation of G-P maps to take place concurrently
with the search for problem solutions.

6 Conclusion

We investigated the usage of neural networks as a meta-representation, suited
to the encoding of genotype-phenotype maps for arbitrary pairings of fitness
landscapes and metaheuristics that are to search on them.

Small to moderately sized feedforward neural networks were found to define,
on average, high locality representations (where structure of the phenotypic fit-
ness landscape is locally preserved in the genotype space), and having a degree
of redundancy tuneable through the number of neurons in the input layer.

An exploration into the feasibility of evolving genotype-phenotype maps, con-
currently with the problem solution, showed this to be a viable approach.

Acknowledgements. Lúıs F. Simões was supported by FCT (Ministério da
Ciência e Tecnologia) Fellowship SFRH/BD/84381/2012.

References

1. Correia, M.B.: A study of redundancy and neutrality in evolutionary optimization.
Evolutionary Computation 21(3), 413–443 (2013)

2. De Jong, K.: Parameter Setting in EAs: a 30 Year Perspective. In: Lobo, et al.
(eds.) [8], pp. 1–18

3. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolv-
ability. Complexity 7(2), 19–33 (2001)

4. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

5. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence 1(1), 47–62 (2008)

6. Liang, K.H., Yao, X., Newton, C.S.: Adapting Self-Adaptive Parameters in Evolu-
tionary Algorithms. Applied Intelligence 15(3), 171–180 (2001)

7. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal
of Experimental & Theoretical Artificial Intelligence 2(2), 101–115 (1990)

8. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)

9. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn.
Springer, Heidelberg (2006)

10. Vinkó, T., Izzo, D.: Global optimisation heuristics and test problems for prelimi-
nary spacecraft trajectory design. ACT technical report GOHTPPSTD. European
Space Agency, the Advanced Concepts Team (September 2008)

11. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9),
1423–1447 (1999)

12. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Trans-
actions on Evolutionary Computation 3(2), 82–102 (1999)

The Baldwin Effect Hinders Self-Adaptation

Jim Smith

Department of Computer Science and Creative Technologies,
University of the West of England,

Bristol, BS161QY, UK
james.smith@uwe.ac.uk

http://www.cems.uwe.ac.uk/~jsmith

Abstract. The “end-game” of evolutionary optimisation is often largely
governed by the efficiency and effectiveness of searching regions of space
known to contain high quality solutions. In a traditional EA this role is
done via mutation, which creates a tension with its other different role of
maintaining diversity. One approach to improving the efficiency of this
phase is self-adaptation of the mutation rates. This leaves the fitness
landscape unchanged, but adapts the shape of the probability distri-
bution function governing the generation of new solutions. A different
approach is the incorporation of local search – so-called Memetic Al-
gorithms. Depending on the paradigm, this approach either changes the
fitness landscape (Baldwinian learning) or causes a mapping to a reduced
subset of the previous fitness landscape (Lamarkian learning). This pa-
per explores the interaction between these two mechanisms. Initial results
suggest that the reduction in landscape gradients brought about by the
Baldwin effect can reduce the effectiveness of self-adaptation. In contrast
Lamarkian learning appears to enhance the process of self-adaptation,
with very different behaviours seen on different problems.

1 Introduction

Evolutionary Algorithms (EAs) are a class of population-based global search
heuristics that have proved highly successful in many optimisation domains [5].
Randomised mutation and crossover operators create a non-uniform probability
distribution function (pdf) over the search space for sampling new candidate so-
lutions. The shape of this pdf is governed by a parent pool selected from the cur-
rent population, the choice of recombination and mutation operators, and their
associated parameters. A broader pdf allows exploration of the search space, and
hence the ability to escape local optima. A narrower pdf allows exploitation of
hard-won information by focussing sampling in the vicinity of promising solu-
tions. The way in which the trade-off between these two factors is managed has
a major impact on both the effectiveness and efficiency of search.

One common approach is to couple the randomised nature of EAs with a more
systematic local search method to create Memetic Algorithms (MAs). This may
be done in a number of ways – see e.g. [9] for a description and taxonomy and
[11] for a recent survey. This paper will examine the simplest and most common:

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 120–129, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cems.uwe.ac.uk/~jsmith

The Baldwin Effect Hinders Self-Adaptation 121

after recombination and mutation, each offspring undergoes local search for
a specified number of iterations. In a Baldwinian paradigm, akin to life-term
learning, the offspring has its fitness replaced with that of the fittest neigh-
bour found by the local search. The Lamarkian paradigm is more drastic –
both the “genome” and fitness of the offspring are replaced. Studies of these
two paradigms with the EC date back to the mid-1990s. Both process alter the
search landscape “seen” by the EA, but in different ways (see Section 2).

Another very common approach, is parameter adaptation. Typically an ini-
tially more uniform pdf is “narrowed” to focus more on promising regions of the
search space over time. In both the combinatorial and real-valued domains, the
majority of research and applications have focussed on adapting the mutation
parameters [4]. Whether adaptation is driven implicitly (e.g. via self-adaption)
or explicitly via the application or an “external” algorithm, a key factor is the
presence of some form of evidence of the utility of an operator, or parame-
ter value in generating high quality solutions from the current population. In
the self-adaptive paradigm the evidence is implicit - successful strategies are
those that produce offspring that survive, and increase their representation via
association with above average quality solutions. These approaches have been
successfully combined with a focus on adaptation at the memetic level [18,19],
but little or no attention has been paid to the potential issues even with sim-
ple “first-generation” MAs, when the action of local search potentially destroys
the link between strategies and offspring survival that is considered essential for
successful self-adaptation to occur.

This paper represents a start at understanding this issue by examining the
patterns of behaviour observed when applying a simple MA with self-adaptation
of mutation rates to some well-understood combinatorial problems, where the
“building blocks” are of different orders, so that some cannot be discovered
by local search alone. Specifically it examines the following hypotheses: H1
One-step Baldwinian learning has a “blurring” effect on the fitness landscape
that reduces the effect of different mutation rates, and hence the selection pres-
sure between them, hindering effective self-adaptation; H2 One-step Lamarkian
learning behaves differently. The mapping to a reduced search space occurring
when offspring are replaced by fitter neighbours effectively increases the selection
pressure towards lower mutation rates; H3 On problems with single-bit building
blocks, using multiple steps of local search compounds the effects seen above and
increases the selective pressure towards lower mutation rates; H4 In contrast, on
problems with higher order building blocks, the effect of multiple steps of local
search is to act as a repair function, which preserves higher mutation rates.

Section 2 provides a brief introduction to the key concepts. Section 3 describes
the algorithms, test problems, and methods used to generate and analyse results.
The results are presented in Section 4 and discussed in Section 5. Section 6 draws
conclusions and suggests future work.

122 J. Smith

2 Background

The practice and theory of self-adaptation of mutation rates has been docu-
mented in the continuous domain since the 1960s (see, e.g., [14,3]), the binary
domain since the 1990s (see [1,20,16]) and more recently for permutations [15].
A recent survey is [10]. To achieve the necessary selection pressure it has been
found preferable to use a survivor:offspring ration of around1:5 which tallies
with previous work in Evolution Strategies. For combinatorial problems there is
evidence that the use of a continuous variable to encode for the mutation rate,
and subject to log-normal adaptation, can be outperformed by a simpler scheme
[21,16,17]. In this scheme the gene encoding for the mutation rate has a discrete
set of alleles, and when itself subject to mutation is randomly reset with a small
probability. In particular it was shown that the mechanism for adapting the en-
coded mutation rate is important – allowing the operator to work “on-itself” (as
per [2,20]) will lead to premature convergence to sub-optimal attractors. Similar
theoretical [13] and experimental (e.g. [7]) results have been found in the contin-
uous domain. Extensive experimentation revealed that in binary search spaces
different variants of self-adaptation do offer performance advantages [12], but
that a deeper understanding of the processes involved is still needed.

The field of Memetic Computation encompasses a wide range of algorithms
based on the concept of memes as methods for generating or improving individual
solutions to one or more problem instances. Ong et. al. [11] consider a more
general paradigm which uses “the notion of meme(s) as units of information
encoded in computational representations for the purposes of problem solving”.
This enticing view nevertheless requires a better understanding of the basic
processes at work before more complex systems can be built. Therefore this paper
is restricted to a simple first generational memetic algorithm where a greedy local
search mechanism is applied to each offspring after it is created by mutation in
an Evolutionary Algorithm. The number of successive neighbourhoods examined
before returning to the main EA loop is controlled by a depth parameter.

Within a memetic algorithm, one can consider the local search stage to occur
as an improvement, or developmental learning phase within the evolutionary
cycle, and it is a design choice whether the changes made to the individual
(acquired traits) should be kept in the genotype (the Lamarkian paradigm), or
whether the just resulting improved fitness should be awarded to the original
(pre-local search) member of the population (the Baldwin paradigm). In a classic
early study, Hinton and Nowlan [8] showed that the Baldwin effect could be used
to improve the evolution of artificial neural networks, and a number of researchers
have studied the relative benefits of Baldwinian versus Lamarckian algorithms.
These two approaches both alter the fitness landscape:

– The Baldwin effect is to replace the fitness of each point with that of its
fittest neighbour. To extend the landscape metaphor, this has the effect of
broadening peaks and ridges, raising the height of valleys, and generally
“blurring” the landscape structure and removing gradients and fine-grained
structural features in a process similar to noise removal in image processing.

The Baldwin Effect Hinders Self-Adaptation 123

– The effect of Lamarkian learning is that the fitness of points in the landscape
is unchanged, but a translation occurs to the higher neighbour, so that whole
swathes of low-fitness points are effectively removed from the search space.

The aim of this paper is to examine whether the impact of these two different
transformations is to reduce the size of the effect of different search strategies,
and hence the information available to the self-adaptation process.

3 Experimental Methodology

3.1 Algorithm

The core EA used a very standard Genetic Algorithm (GA) following the pa-
rameter values suggested by previous authors. A (100,500) selection strategy
with one point crossover (with probability 0.7), and bit-flipping mutation. Local
search used a Hamming neighbourhood of distance one, with a greedy pivot rule
accepting the first improvement, and depths of 0,1,2 or 5 successive neighbour-
hoods. Note that a local search depth of 0 equates to a standard GA.

The Self-adaptation process used the scheme outlined in [16,17,21]. Each solu-
tion encodes a choice from a discrete set of values, 1.0/l∗{0.001, 0.005, 0.01, 0.05,
0.1, 0.2, 1.0, 2, 5, 10} where l is the length of the problem encoding. Prior to mu-
tating the solution encoding, the gene encoding for the mutation rate is randomly
reset with probability Psm = 0.1. Although these operators and parameter values
were taken as fairly standard from the literature, preliminary experimentation
(not show for reasons of space) suggests that the effects observed below occur
over a wide range of parameter values. One point crossover was chosen for its
positional bias which matches that of the problem encodings used.

3.2 Test Functions

The first set of problems were versions of the Royal Road fitness function [6].
In these the fitness is given by the number of blocks “aligned” to the target
string (all 1s) in a problem with L blocks, each of length K. To examine the
effect of learning as the size of the partitions (plateaus) increased, while keeping
the size of the search space the same, 60 bit problems were used with K ∈
{2, 3, 4, 5, 6, 10, 15, 20}. A well known property of these functions is that for K >
1 they possess “plateaus” of equal fitness, that represent entropic barriers to
evolutionary search. Search on these problems typically proceeds via a series
of “epochs”. During transitions the entropy of the population is reduced as the
correct alignment is found for the next block, and fixated through the population.

To understand the effect of learning on these problems, let us consider the
partition of the search space corresponding to a single block. Applying one step
of local search means that now K of the possible 2K solutions in that partition
now contribute to the global fitness instead of just 1. The effect of multiple steps
of learning will depend on whether any of the blocks have unitation of K−1. The
“Baldwin effect” on these landscapes is that the plateaus effectively grow in size

124 J. Smith

to occupy a proportion (K+1)/2K of the partition. Regardless of mutation rate,
it becomes more probable that mutation will cause a jump onto the plateau, but
higher rates are more likely to destroy previously existing blocks, unless these
can be repaired by multiple applications.

The effect of Lamarkian learning is subtly different - points with unitation in
the partition between 0 and K−2 are unchanged, but those with unitation K−1
are removed as offspring created in those regions are moved to the single sub-
solution with a unitation K. Thus the proportion of the partition corresponding
to the high-fitness values is now 1/(2k −K) which is smaller than the Baldwin
version. Thus more of these points are at Hamming distance greater than 1, so
we might expect to see the selection of higher mutation rates which are more
likely to cause jumps to points at distance 1 from the optimal sub-solution.

The second class of static problems are deceptive ones, that present a fitness
barrier, rather than an entropic one, to evolutionary progress to the global op-
timum. These so-called L “Trap” or deceptive functions of size K. This paper
will consider functions composed L contiguous sub-functions. Each of these is a
deceptive partition of size K bits, where the reward was 100/L for all 1s, other-
wise 0.88 ∗ (K − u(i))/L where u(i) is the unitation in the ith partition. Again
we used 60 bit problems and the same set of values for K.

The final problem is used to explore the interaction between learning, and self-
adaptation’s well known ability to respond automatically to changes in the fitness
landscape. Hence the third test problem used is a 200-bit variant of the unimodal
OneMax function, switching to the opposite (ZeroMax) after 25 generations:
Before the landscape shift, the effect of Baldwinian learning with depth d on
this landscape is to assign to each genome the fitness of a individual with d
more bits set to 1 - in other words the shape of the landscape is left untouched
except for those few solutions with a neighourhood H(i, j) = d of the global
optimum, where the landscape is flat. The effect of Lamarkian search is to move
each point d steps up the slope of the hill - ie. effectively to remove those points
with u(i) < d from the search space. In both cases the underlying structure of
the problem is left unchanged, so except for the more rapid convergence to the
global optimum, it is hypothesized that the self-adaptation of mutation rates
will follow a similar pattern to the GA.

These values of length used were chosen to provide similar levels and speed of
convergence for each problem given the selection regime and population sizes.

3.3 Methods for Analysis

Each configuration of EA without local search (GA), and with Baldwin (B) or
Lamarkian (L) learning with depths 1, 2 and 5 (B-d1, ..., B-d5, L-d1 etc.) was
run 100 times on each problem, with a termination criteria of 50 generations.
After each generation of each run data was recorded for the best, worst and mean
fitness, mean and standard deviation of mutation rates in the current population,
and the total number of evaluations used.

The Baldwin Effect Hinders Self-Adaptation 125

As this paper is primarily concerned with the effect on the learning of mutation
rates, algorithms are compared generation-by-generation, ignoring the fact that
the local search variants make more calls to the evaluation function.

In separate experiments the mean best fitness, average evaluations to solution
and success rates were compared for the seven algorithms above, and variants
using a fixed mutation rate of pm = 1/l. Where appropriate, algorithms have
been compared using statistical analysis - either at snapshots of specific genera-
tions, or averaged over the whole runs. We used SPSS v20 to conduct ANalysis
of VAriance (ANOVA) followed by appropriate post-hoc testing to look for “ho-
mogenous subsets” which fail pairwise tests for statistically significant differences
at the 95% confidence level. Results shown in the form A < {B,C} < {C,D}
mean that values for set A are significantly lower than those for sets B,C and
D. Values for B are not significantly lower than those for C but are for D.

4 Results

4.1 Benchmarking Self-Adaptation

Comparing effectiveness, by pooling results and performing ANOVA on the max-
imum fitnesses, with the function and algorithm as independent factors showed
that although there were small differences between algorithms, by 49 generations
there were no statistically significant differences between fixed and self-adaptive
mutation rates. Comparing the final mean mutation rates, those of the MA-
B-d5 algorithm were significantly higher than the other methods, which were
otherwise not significantly different.

Comparing the efficiency, as measured by when the best fitness was recorded
for each run, showed that the self-adaptive variants were always faster, more
significantly so with increased depth of local search. Lamarkian variants were
always significantly faster than their Baldwinian counterparts and increase of
depth from 0 (GA) through to 5 caused a significant increase in evaluations.

The mean best fitness results showed that there was no difference between the
fixed and adaptive mutation rates for Lamarkian search, but these were always
significantly better than the GA and Baldwinian MAs. In contrast, adding self-
adaptation to the Baldwinian MAs significantly reduced the mean best fitness
for each different depth of search.

4.2 Analysis of Evolved Behaviours on Different Functions

The next set of experiments concentrate on the effect of selection at the level of
mutation rates in the presence of different forms of local search. To this end, the
“strategy adaptation” parameter Psm was set to 0, so each member of the initial
population had its mutation rate randomly set to one of the permissible values,
and offspring inherited mutation rates unchanged from their parents. The results
are shown graphically in Figure 1, which shows how the patterns of the evolved
behaviour change between problems and algorithms. Five characteristics of the
population (best, mean, worst fitness, mean and standard deviation of mutation
rate) (y-axis) are plotted against the number of generations (x-axis).

126 J. Smith

Gen

40200

Me
an

100

75

50

25

0

40200 40200 40200 40200 40200 40200

Algorithm

MA-L-d5MA-L-d2MA-L-d1MA-B-d5MA-B-d2MA-B-d1GA

Me
an

100

75

50

25

0

Algorithm

MA-L-d5MA-L-d2MA-L-d1MA-B-d5MA-B-d2MA-B-d1GA

Gen

40200 40200 40200 40200 40200 40200 40200

Gen

40200

Me
an

100

75

50

25

0

40200 40200 40200 40200 40200 40200

Algorithm

MA-L-d5MA-L-d2MA-L-d1MA-B-d5MA-B-d2MA-B-d1GA

Fig. 1. Illustrative Evolving Behaviour: population best, mean and worst fitness (out of
100), mean (dashed line) and standard deviation(dotted) of mutation rates (probability
x 10000). Switcher (top), Royal Road with K=8 (middle) and Trap with K=4 (bottom).

The Baldwin Effect Hinders Self-Adaptation 127

Evolution of Mutation Rates for OneMax. For both paradigms the mu-
tation rates stabilised more slowly, and to values that decrease with increasing
search depth. However for Baldwinian search, the values at generation 49 are
not significantly different to the GA. The effect of selection is much more no-
ticeable with Lamarkian learning. The mutation rates converge faster, and to
lower values than the GA - not significantly so for depth 1, but the evolved rates
for depths 2 and 5 are significantly different to the GA, and each other. The re-
duction in the standard deviation shows that this is a learned effect rather than
simple drift. To confirm this, experiments were run where the function switched
from OneMax to Zeromax after 25 generations. Figure 1 (top) shows a clear
spike in the mutation rates after the switch. The subsequent rapid recovery in
fitness, most notably for MA-L-D5, is evidence of effective self-adaption.

Results for Royal Road Functions. Figure 1 (middle) shows the evolution
of behaviour on the Royal Road function with partitions of size 8. In addition to
the difference in effectiveness of search, the key point to note is the consistently
higher, and more varied mutation rates for Lamarkian search with depth 5, a
feature that increases when the size of the sub-blocks to be optimised increased.
Mutation rates also increase with depth of Baldwinian search, but the differences
are not significant by generation 49

Results for Deceptive Functions. Figure 1 (bottom) shows the evolution of
behaviour on the deceptive function with blocks of size 4. Note the difference
in effectiveness of search. On both functions, at generation 49 the statistically
homogenous subsets are, ranked according to increasing fitness; (B-d5, GA, B-d1,
B-d2) < L-d1 < (L-d5, L-d2), where the suffix MA is omitted for brevity.

On the functions with 4-bit partitions, the Baldwin behaviour is not statisti-
cally significantly different to the GA, but there are consistently lower mutation
rates for the Lamarkian learning. This difference is significant even up to gener-
ation 49 when the best value had stopped increasing. With the trap-8 function,
the values are no longer statistically significant by generation 49 - but of course
there are far fewer sub-functions to be optimised. Considering instead the mean
mutation rates across the whole run, there is now a statistically significant dif-
ference - the values for Lamarkian learning are significantly lower than for the
GA, and then in turn for the Baldwinian learning. These values reflect the speed
of the adaptive process- higher mean values meaning slower adaptation.

5 Discussion

The first set of benchmarking comparisons confirmed that self-adaptation out-
performed a single fixed mutation rate, as expected - working just as effectively
at finding good solutions but more efficiently. Lamarkian learning improved the
mean best fitness discovered. However, the interplay between the Baldwin effect
and self-adaptation was not always beneficial - particular on the Royal Road
landscapes where the plateaus form entropic barriers to improvement and the
Baldwin effect extends those plateaus.

128 J. Smith

On the OneMax function, the hypothesis predicted that Lamarkian learning
would demonstrate faster adaptation (H2) and to lower (H3) values of mutation
rates than the GA. This was supported by the observations. The hypothesis
H1 and H3 suggested competing effects would results from Baldwinian learning.
Results confirmed that and indeed with depth 1 a slower adaption to higher rates
than the GA was seen, an effect which diminished with increased local search
depth, but the differences were not statistically significant by the end of even
these relatively brief runs.

The results on the switcher function confirmed that self-adaptation is able
to occur effectively and efficiently with Lamarkian learning up to a depth 5,
possibly even suggesting a synergistic effect when compared to the GA alone.

On the Royal Road functions the hypothesised effects were not really seen
except for with depth 5, where as predicted by H4, the Lamarkian search main-
tains higher mutation rates - which in turn lead to the continued discovery of
sub-solutions. For example even after averaging over 100 runs, the middle right
figure of Figure 1 shows an increase in fmax around 30 generations.

On the trap functions the differences are most evident in the speed of adap-
tation: as predicted by H1 the “blurring” effect of Baldwin learning significantly
reduces the rate of adaptation to lower mutation values than the GA. In con-
trast, as predicted by H2, the rate of adaptation is faster for Lamarkian learning
than for the GA, and hence the overall mean across all generations is lower.

6 Conclusions

This paper set out to examine the interaction between two different forms
of memetic learning, and the self-adaptation of mutation rates. The primary
empirical results suggest that whereas Lamarkian learning seems to reinforce
self-adaptation, the Baldwin effect often hinders the process, sometimes with
detrimental results on the effectiveness and efficiency of the overall search. The
message of this paper is therefore perhaps unsurprising: that it is unwise to
rashly mix algorithmic adaptations that work well in isolation. Clearly further
studies are needed to model these effects so that the twin forces of memetics and
self-adaptation can be brought to bear with reliable and predictable results.

References

1. Bäck, T.: The interaction of mutation rate, selection and self-adaptation within
a genetic algorithm. In: Männer, R., Manderick, B. (eds.) Proceedings of the 2nd
Conference on Parallel Problem Solving from Nature, pp. 85–94. North-Holland,
Amsterdam (1992)

2. Bäck, T.: Self adaptation in genetic algorithms. In: Varela, F., Bourgine, P. (eds.)
Toward a Practice of Autonomous Systems: Proceedings of the 1st European Con-
ference on Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)

3. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, New York (2001)

The Baldwin Effect Hinders Self-Adaptation 129

4. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter Control in Evo-
lutionary Algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter
Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg
(2007)

5. Eiben, A., Smith, J.: Introduction to Evolutionary Computation. Springer (2003)
6. Forrest, S., Mitchell, M.: Relative building block fitness and the building block hy-

pothesis. In: Whitley, L. (ed.) Foundations of Genetic Algorithms 2, pp. 109–126.
Morgan Kaufmann, San Francisco (1992)

7. Glickman, M., Sycara, K.: Reasons for premature convergence of self-adaptating
mutation rates. In: 2000 Congress on Evolutionary Computation (CEC 2000), pp.
62–69. IEEE Press, Piscataway (2000)

8. Hinton, G., Nowlan, S.: How learning can guide evolution. Complex Systems 1,
495–502 (1987)

9. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: Model, tax-
onomy and design issues. IEEE Transactions on Evolutionary Computation 9(5),
474–488 (2005)

10. Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In:
Parameter setting in evolutionary algorithms, pp. 47–75. Springer, Heidelberg
(2007)

11. Ong, Y.S., Lim, M.H., Chen, X.: Memetic Computation—Past, Present & Future.
IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

12. Preuss, M., Bartz-Beielstein, T.: Sequential parameter optimization applied to self-
adaptation for binary-coded evolutionary algorithms. In: Lobo, F.G., Lima, C.F.,
Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54,
pp. 91–119. Springer, Heidelberg (2007)

13. Rudolph, G.: Self-adaptive mutations lead to premature convergence. IEEE Trans-
actions on Evolutionary Computation 5, 410–414 (2001)

14. Schwefel, H.-P.: Numerical Optimisation of Computer Models. Wiley (1981)
15. Serpell, M., Smith, J.: Self-adaption of mutation operator and probability for per-

mutation representations in genetic algorithms. Evolutionary Computation 18(3),
491–514 (2010)

16. Smith, J.: Modelling GAs with self-adaptive mutation rates. In: Spector, L., et
al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), pp. 599–606. Morgan Kaufmann, San Francisco (2001)

17. Smith, J.: Parameter perturbation mechanisms in binary coded gas with self-
adaptive mutation. In: Rowe, Poli, DeJong, Cotta (eds.) Foundations of Genetic
Algorithms 7, pp. 329–346. Morgan Kaufmann, San Francisco (2003)

18. Smith, J.: Co-evolving memetic algorithms: A review and progress report. IEEE
Transactions in Systems, Man and Cybernetics, Part B 37(1), 6–17 (2007)

19. Smith, J.: Estimating meme fitness in adaptive memetic algorithms for combina-
torial problems. Evolutionary Computation 20(2), 165–188 (2012)

20. Smith, J., Fogarty, T.: Self adaptation of mutation rates in a steady state genetic
algorithm. In: Proceedings of the 1996 IEEE Conference on Evolutionary Compu-
tation, pp. 318–323. IEEE Press, Piscataway (1996)

21. Stone, C., Smith, J.: Strategy parameter variety in self-adaption. In: Langdon, W.,
et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002), 9-13 July, pp. 586–593. Morgan Kaufmann, San Francisco (2002)

On Low Complexity Acceleration Techniques

for Randomized Optimization

Sebastian Urban Stich

Institute of Theoretical Computer Science
ETH Zürich, 8092 Zürich, Switzerland

sstich@inf.ethz.ch

Abstract. Recently it was shown by Nesterov (2011) that techniques
form convex optimization can be used to successfully accelerate simple
derivative-free randomized optimization methods. The appeal of those
schemes lies in their low complexity, which is only Θ(n) per iteration—
compared to Θ(n2) for algorithms storing second-order information or
covariance matrices. From a high-level point of view, those accelerated
schemes employ correlations between successive iterates—a concept look-
ing similar to the evolution path used in Covariance Matrix Adaptation
Evolution Strategies (CMA-ES). In this contribution, we (i) implement
and empirically test a simple accelerated random search scheme (SARP).
Our study is the first to provide numerical evidence that SARP can ef-
fectively be implemented with adaptive step size control and does not
require access to gradient or advanced line search oracles. We (ii) try to
empirically verify the supposed analogy between the evolution path and
SARP. We propose an algorithm CMA-EP that uses only the evolution
path to bias the search. This algorithm can be generalized to a family
of low memory schemes, with complexity Θ(mn) per iteration, following
a recent approach by Loshchilov (2014). The study shows that the per-
formance of CMA-EP heavily depends on the spectra of the objective
function and thus it cannot accelerate as consistently as SARP.

Keywords: Gradient-free optimization, accelerated random search, evo-
lution path, adaptive step size, Covariance Matrix Adaptation, spectra.

1 Introduction

The Gradient Method [1, 2]—one of the most fundamental schemes in con-
vex optimization—has iteration complexity Θ(n), where n is the dimension. On
strongly convex functions its convergence rate is linear, depending only on the
condition number of the objective function. To overcome the difficulty imposed
by ill-conditioned problems, second-order methods like Newton’s method or first
order Quasi-Newton methods such as the BFGS scheme [3–5] are a welcome
alternative. Those schemes maintain a quadratic model of the objective func-
tion and their complexity is bounded by Ω(n2). Limited memory schemes like
L-BFGS [6, 7] trade-off linear iteration complexityΘ(mn) (where m is a fixed pa-
rameter), versus convergence rate. Accelerated versions of the Gradient Method

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 130–140, 2014.
c© Springer International Publishing Switzerland 2014

On Low Complexity Acceleration Techniques 131

have linear complexity Θ(n) per iteration and converge with optimal rate among
all first-order methods. On strongly convex problems the convergence rate is pro-
portional to the square root of the condition number [1, 2, 8–10].

Randomized (gradient-free) schemes do not require first-order information,
they operate by only querying function values. Such schemes are nowadays a
ubiquitous tool for solving many practical problems in science and engineering
where first-order information is difficult to compute or does not exist. Among the
first proposed schemes that are still of considerable (theoretical) importance are
Adaptive Step Size Random Search (aSS) [11] and the (almost identical) well-
known (1+1)-Evolution Strategy (ES) [12] in Evolutionary Computation. More
recent schemes comprise Random Pursuit (RP) [13, 14], or Random Gradient
Descent [15]. Those schemes can be viewed as generalizations of the Gradient
Method to zeroth-order, with iteration complexity Θ(n). Likewise, analogues
of the second-order schemes try to estimate an approximation of the Hessian
by finite difference computations [16, 17] or by estimating correlations among
search directions. A very popular algorithm of this kind is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [18, 19]. Limited memory variants
have been proposed in [20, 21], with iteration complexity Θ(mn). Especially, the
later variant due to Loshchilov shows excellent convergence in high dimensions
also for small values of m. Zeroth-order analogues of the accelerated gradient
schemes have been introduced [15, 22]. Those schemes massively outperform
the simple random search schemes on convex problems. This performance gain
does not come for free, as those schemes require valid bounds on the condition
number as input parameters. However, their low iteration complexity of Θ(n)
could make them a promising choice for large scale problems, where the fully-
quadratic schemes inherently fail. We focus on a very simple accelerated random
search scheme, which we call SARP.

By inspecting closely the accelerated search schemes, one could conclude that
the difference to the classical schemes can be explained by an additional “drift”
term [2, 10] that takes into account correlations of the last iterates. In the pop-
ular CMA-ES, correlations between successive iterates are accumulated in the
evolution path [23]. In this work, we are interested, if the evolution path can be
used for acceleration, competitive to the accelerated zeroth-order schemes form
convex optimization. To this end, we introduce a variant of CMA-ES, called
EP-CMA, that only uses the information stored in the evolution path to bias
the direction of the search. Similar to the approach proposed in [21], this scheme
can be generalized to a family of schemes, which we call EP-CMA-m. However,
we do not present an efficient, i.e. Θ(mn), implementation of those schemes as
this was not required here with dimension n ≤ 100 in our empirical study.

The remainder of this paper is structured as follows. In Section 2 we present
the accelerated random search scheme SARP and detail the EP-CMA-m schemes.
In Section 3 we empirically test the performance of all schemes on three quadratic
and the non-convex Rosenbrock function, and highlight the key results. We dis-
cuss these results and conclude the paper in Section 4.

132 S.U. Stich

lineSearch(x,u, [σ, p])

1 if exact then return exactLS(x,u/‖u‖)
2 else return aSS(x,u, σ, p)

exactLS(x,u, [σ])

1 σ+ ← minλ f(x+ λu); x+ ← x+ σ+u
2 return (x+, σ+)

aSS(x,u, σ, p) (adaptive step size)

1 if f(x+ σu) ≤ f(x) then
2 x+ ← x+ σu; σ+ ← σ · exp(1/3)

else

3 x+ ← x; σ+ ← σ · exp
(
− p

3(1−p)

)
4 return (x+, σ+)

Fig. 1. Line search oracles for gradient-free optimization

2 Algorithms

We here present the optimization schemes considered in this study. We first
detail two Random Pursuit algorithms and a simplistic variant of a standard
(1+1)-CMA-ES. Then we introduce the new EP-CMA-m schemes.

RP. Random Pursuit is a basic optimization scheme that iteratively gener-
ates a sequence of approximate solutions to the global optimization problem
minx∈Rn f(x). In each step a search direction is drawn uk ∼ N (0,1n). In Ran-
dom Pursuit with exact line search (RP-exact), first proposed in [13] and ana-
lyzed in [14], the step size σ is determined by minimizing the objective function in
direction u, i.e. σ = argminλ f(x+λu). For quadratic functions f(x) := 1

2x
TAx

with Hessian A, the expected one-step progress can be estimated as:

E [f(x+) | x] ≤ (1− λmin(A)/Tr[A]) f(x) , (1)

where x is the current iterate, x+ := x+σu denotes the next iterate. This state-
ment can also be generalized to arbitrary smooth convex functions [14]. Stich
et al. [14] show that RP-exact still converges if the line search is not performed
exactly, but allowing relative errors. Therefore, we also consider Random Pursuit
with adaptive step sizes (RP) instead of exact line search. In RP the step size is
dynamically controlled such as to approximately guarantee a certain probability
p of finding an improving iterate. Depending on the underlying test function,
different optimality conditions can be formulated for the value p. Schumer and
Steiglitz [11] suggest the setting p = 0.27 which is considered throughout this
work. We use immediate exponential step size control as explicitly formulated
in the aSS sub-routine in Fig. 1. RP is identical to the well known (1+1)-ES.

SARP. Accelerated random search schemes are fundamentally different from
the simple random search schemes. Instead of generating only one sequence of
iterates, those algorithms typically maintain two or more sequences simultane-
ously (here essentially xk and yk, see Fig. 2). Those sequences allow to store
gathered knowledge on the objective function which yields better performance.
In Fig. 2 we present a simple version of the accelerated random search scheme
proposed in [14] and refer to it as simple accelerated random search (SARP).
Like RP, SARP can (in practice) be used with exact line search oracles or with
adaptive step size control, although convergence for those oracles has not been
proven yet. For Nesterov’s accelerated random search scheme [15], the expected
one-step progress can be estimated as

On Low Complexity Acceleration Techniques 133

RP(x0, N, [σ0, p])

1 for k = 1 to N do
2 uk ∼ N (0, In)
3 (xk, σk)← lineSearch(xk−1,uk, [σk−1])

4 return xN

EP-CMA-m (x0, N, σ0, p, cc, ccov)

1 p̂0 ← 0; p̂1, . . . , p̂m−1 ← 0; q = 0
2 for k = 1 to N do
3 Ck ← In
4 for i = 1 to m− 1 do

Ck ← (1− ccov)Ck + ccovp̂ip̂
T
i

5 Ck ← (1− ccov)Ck + ccovpk−1p
T
k−1

6 uk ∼ N (0, Ck)
7 (xk, σk)← aSS(xk−1,uk, σk−1)
8 yk ← (xk − xk−1)/σk−1

9 if yk
= 0 (success) then

10 pk ← (1− cc)pk−1 +
√

cc(2− cc)yk

11 else pk ← (1− cp)pk−112 if k > q + n2/m
then
p̂1 ← p̂2, . . . , p̂m−2 ← p̂m−1; q = k

13 return xN

SARP(x0, N,m,L, [σ0])

1 y0 ← x0; v0 ← x0; θ ←
√

m
2n2L

2 for k = 1 to N do
3 uk ∼ N (0, In)
4 (xk, σk)← lineSearch(yk−1,uk, [σk−1])
5 yk ← (θvk−1 + xk)/(1 + θ)

6 vk ← (1− θ)vk−1 + θyk + θn L
m
σkuk

7 return xN

(1+1)-CMA(x0, N, σ0, p, cc, ccov)

1 C0 ← In; p0 ← 0
2 for k = 1 to N do
3 uk ∼ N (0, Ck−1)
4 (xk, σk)← aSS(xk−1,uk, σk−1)
5 yk ← (xk − xk−1)/σk−1

6 if yk
= 0 (success) then

7 pk ← (1− cc)pk−1 +
√

cc(2− cc)yk

8 Ck ← (1− ccov)Ck−1 + ccovpkp
T
k

else
9 Ck ← Ck−1; pk ← (1− cp)pk−1

10 return xN

Fig. 2. RP, EP-CMA and CMA-ES schemes

E [f(x+) | x] ≤
(
1− (n

√
κ)−1

)
f(x) , (2)

where condition κ = L/m and the two parameters m ≤ λmin(A) and L ≥
λmax(A) are required as input to the algorithm (and always provided in our
numerical study). This rate is much better than (1) and we hope to see that
SARP attains comparable performance. SARP is not a monotone scheme, that
is, the function values of the iterates are not monotonically decreasing. SARP
is closely related to the first-order accelerated search scheme of Nesterov [2].
This scheme also simultaneously maintains two sequences x′

k and y′
k of iterates

(but requires access to the gradient in every iteration). For Nesterov’s first-order
scheme it is known [2, p.79] that the sequence y′

k obeys

y′
k+1 = x′

k+1 + β′ (x′
k+1 − x′

k

)
, (3)

for β′ = 1 − 2/
√
κ + O(1/κ). Thus the additional (x′

k+1 − x′
k) acts like a drift

term, cf. [1]. For SARP with parameter θ′ =
√
1/(n2κ) (only slightly different

from θ in Fig. 2) the same reformulation of the update reveals

yk+1 = xk + β (xk+1 − xk) , (4)

for β = (1− θ′)/(1 + θ′) = 1− 2/(n
√
κ) +O(1/κ). The main term contributing

to the drift is approximately only an 1/n-fraction of the step, accounting for the
uncertainty emerging form the randomness.

(1+1)-CMA-ES. In contrast to the presented Random Pursuit schemes, in
CMA-ES new search points are sampled from a multivariate normal distribution

134 S.U. Stich

uk ∼ N (0, Ck) whose parameter Ck is updated in each iteration based on the
evaluation of the samples. The covariance matrix can be adapted using different
rank-1 [18, 24] or rank-k updates [19]. In addition, the CMA-ES scheme is aug-
mented by an auxiliary variable called evolution path that takes into account
the correlation of successive means taken over a finite horizon. In [18, 23], the
evolution path pk is updated as

pk+1 = (1− cc)pk +
√

cc(1− cc)uk . (5)

Cumulative information about successive steps is stored in the variable pk. We
use a simplistic CMA-ES variant, closely following [18], see Fig. 2. We use the
simple Adaptive Step Size control aSS to determine the step size σk, the covari-
ance matrix update solely uses the information of the evolution path like in [24]
and for simplicity we refrain from implementing any regularization features, in
contrast to [24]. We use the same parameters that were proposed in [24] for the
(1+1)-CMA-ES, namely cc = 2/(n+ 2), cp = 1/12 and ccov = 2/(n2 + 6).

EP-CMA-1. The evolution path pk accumulates information over successful
steps. This accumulation can be seen as a smoothing of the noisy information
obtained in single steps, at the effect that the evolution path points into direction
of more promising function values [18]. In this study, we are interested if the
evolution path can be used in a similar way as the drift term in (3) or (4),
respectively, to accelerate the search. There are several ways to incorporate the
evolution path pk into the update scheme. We suggest to use the path pk in the
following way: in the simple random search scheme RP (equivalent to (1+1)-ES),
we sample in iteration k a direction from uk ∼ N (0, (1 − ccov)In + ccovpkp

T
k),

with bias along the direction indicated by pk. This has the effect that we only
follow successful steps, but the drift imposed by the evolution path might be
smaller than it ideally should be. The scheme EP-CMA-1 is detailed in Fig 2,
we used cc and cp as above, and ccov = 1/5. This approach is similar to [25].

EP-CMA-m. The proposed EP-CMA-1 can easily be generalized to a whole
family of optimization schemes by an approach presented in [21]. In EP-CMA-1,
only the information stored in the current evolution path pk is used to bias the
search direction. But we could also afford to temporarily store a small number
m of past pk′ for k′ < k, and use the information collectively to bias the search.
As two successive evolution paths are likely highly correlated, we propose to
store the evolution path only every n2/m-th generation (and up to at most
(m − 1) copies simultaneously). The resulting scheme is detailed in Fig. 2. We
used cc = 2/(n + 2) as in CMA-ES, and for m > 1, ccov = 2/(6 + m) for
EP-CMA-m. If implemented carefully, EP-CMA-m has Θ(mn) complexity per
iteration (not shown in Fig 2). For m = n2, the updates of EP-CMA-m are
identical to the updates of (1+1)-CMA-ES, if limited to a finite horizon of n2

steps. In contrast, the low memory method proposed in [20] behaves similar to
CMA-ES already for m = n, but has iteration complexity Θ(nm2).

On Low Complexity Acceleration Techniques 135

1e2 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

fu
n
c
ti
o
n
 v

a
lu

e

RP

RP-exact

CMA-ES

1e2 1e3 1e4 1e5 1e6 1e7

1e-8

1e-4

1e0

1e4

e
x
p

1e2 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

#ITS / n

fu
n
c
ti
o
n
 v

a
lu

e

SARP

SARP-exact

1e2 1e3 1e4 1e5 1e6 1e7

1e-8

1e-4

1e0

1e4

#ITS / n

lin

EP-CMA-1

EP-CMA-2

EP-CMA-4

EP-CMA-n
1/2

EP-CMA-n

Fig. 3. Evolution of FVAL vs. #ITS on fexp (top) and flin (bottom) with L = 1e4 (left)
and L = 1e6 (right) in n = 100 dimensions. For 51 (11 for RP on flin with L = 1e6)
runs we recorded #ITS needed to reach FVAL of 1e-9. The trajectory realizing the
median values is depicted, mean and one standard deviation are indicated by markers.
(RP on flin with L = 1e6 reaching FVAL < 1e-2 after 1e6.5n #ITS.)

3 Empirical Study

We now present the setup of our empirical study. We focus on the following
schemes: (i) the two Random Pursuit schemes with adaptive step size control
(denoted as RP and SARP) and with exact line search (denoted as RP-exact
and SARP-exact), (ii) the simplified (1+1)-CMA-ES and (iii) the EP-CMA-m
schemes as introduced in Sec. 2, see Fig. 2. We use EP-CMA-m with param-
eters m = 1, 2, 4,

√
n, n. This totals in 10 different schemes, all of which were

implemented in MATLAB and will be made available on the authors website.
We tested the performance of all algorithms on three variants of the ellipsoidal

benchmark function [18] and the non-convex Rosenbrock function, detailed in
Table 1. The quadratic functions were chosen in such a way that the extremal
values of their spectra (1 and L) both agree. We considered the quadratic func-
tions with parameters L = 1e4 and L = 1e6 each, and repeat the experiments
in dimensions n = 20, 40, 60, 80, 100.

For all experiments, initial settings were x0 = 1, σ0 = 1 and p = 0.27 (for
schemes with the aSS routine). We count the number of iterations (#ITS) needed
to decrease the function value (FVAL) below 1e-9. A graphical summary of our
results can be found in Fig. 3-5. Results not depicted here are reported in the sup-
plementary online material [26]. We now proceed by discussing some of the key
results.

Table 1. List of benchmark functions

fexp(x) =
1

2

n∑
i=1

L
i−1
n−1 x2

i frosen(x) =

n−1∑
i=1

(
100 · (x2

i − xi+1

)2
+ (xi − 1)2

)

flin(x) =
1

2

n∑
i=1

(
1 + i

(L− 1)

(n− 1)

)
x2
i ftwo(x) =

1

2

�n/2�∑
i=1

x2
i +

L

2

∑
i=�n/2�

x2
i

136 S.U. Stich

1e2 1e3 1e4 1e5 1e6

1e-8

1e-4

1e0

1e4

fu
n
c
ti
o
n
 v

a
lu

e

RP

SARP

CMA-ES

EP-CMA-1

1e2 1e3 1e4 1e5 1e6 1e7

1e-8

1e-4

1e0

1e4

n
 =

 2
0

1e2 1e3 1e4 1e5 1e6

1e-8

1e-4

1e0

1e4

#ITS / n

fu
n
c
ti
o
n
 v

a
lu

e

EP-CMA-2

EP-CMA-4

EP-CMA-n
1/2

EP-CMA-n

1e2 1e3 1e4 1e5 1e6 1e7

1e-8

1e-4

1e0

1e4

#ITS / n

n
 =

 8
0

Fig. 4. Evolution of FVAL vs. #ITS on fexp with L = 1e4 (left) and L = 1e6 (right)
in n = 20 and n = 80 dimensions. For 51 runs we recorded #ITS needed to reach
FVAL of 1e-9. The trajectory realizing the median values is depicted, mean and one
standard deviation are indicated by markers.

Line Search. Both RP and SARP were tested with exact line search oracle and
adaptive step size control. In Fig. 3 we see that the exact schemes outperform
their adaptive variants in n = 100 dimensions by a factor of roughly 2-3. This
pattern is observed throughout the whole benchmark in all dimensions. Thus we
omit to display the results for exact line search in subsequent Figs. 4-5.

SARP vs. EP-CMA-1. The picture is twofold. In Fig. 3 we see that EP-CMA-
1 outperforms SARP by a factor of roughly 5 on flin with L = 1e4 (factor 24 for
L = 1e6). The smallest eigenvalue of this function is separated form the second
largest by a gap of roughly n. Hence, knowledge of one important direction
reduces the conditioning of the function by a large factor. This factor becomes
smaller in higher dimension. This scaling in the dimensions is indeed observed
empirically, and depicted in [26].

On the other three functions, SARP performs consistently better than EP-
CMA-1. On fexp with L = 1e4 in n = 100 dimensions the factor is roughly 3,
its roughly 14 for L = 1e6 (Fig. 3), and exceeds 10 on both ftwo and frosen
(Fig. 5). Considering the scaling in dimension (Figs. 4-5; and [26]), we observe
that the relative performance (#ITS/n) of SARP remains constant on all four
benchmark functions, as predicted by theory for a similar method [15, 22].

EP-CMA-schemes. The EP-CMA-m schemes consistently work better for in-
creasing values of m throughout the whole benchmark (Figs. 3-5). On fexp with
L = 1e4 the difference in #ITS between EP-CMA-n and EP-CMA-1 is roughly
a factor of 10, and 20 for L = 1e6 (Fig. 3). The gap becomes gradually smaller
on flin, ftwo (especially for L = 1e6, see [26]), and is insignificant on frosen
(Fig. 5). On flin the EP-CMA-m schemes perform extremely well, already for
small m. EP-CMA-4 performs approximately as good as CMA-ES, for both pa-
rameters L = 1e4 and L = 1e6 (Fig. 3). On fexp in n = 100 dimensions and
parameter L = 1e4, both SARP and EP-CMA-4 need about the same #ITS. For
parameter L = 1e4 the performance of SARP is the same as the performance
of EP-CMA-

√
n (Fig. 3). On both ftwo and frosen, the EP-CMA-m scheme can-

not reach the performance of SARP, though on frosen the EP-CMA-m schemes
perform as good as CMA-ES (Fig. 5).

On Low Complexity Acceleration Techniques 137

1e2 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

fu
n
c
ti
o
n
 v

a
lu

e

1e3 1e4 1e5 1e6

1e-8

1e-4

1e0

1e4

n
 =

 2
0

RP

SARP

CMA-ES

EP-CMA-1

1e2 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

fu
n
c
ti
o
n
 v

a
lu

e

1e3 1e4 1e5 1e6

1e-8

1e-4

1e0

1e4

n
 =

 8
0

EP-CMA-2

EP-CMA-4

EP-CMA-n
1/2

EP-CMA-n

Fig. 5. Evolution of FVAL vs. #ITS on ftwo with L = 1e4 (left) and frosen (right) in
n = 20 and n = 80 dimensions. For 51 runs we recorded #ITS needed to reach FVAL
of 1e-9. The trajectory realizing the median values is depicted, mean and one standard
deviation are indicated by markers.

CMA-ES. Fig. 4 shows nicely the quadratic dependence of the performance
of CMA-ES on the dimension n, see also [26] where we report the data for all
considered dimensions. The #ITS of the Random Pursuit schemes (RP, SARP)
to reach the target accuracy increases only linearly (the relative performance
(#ITS/n) is constant over the dimensions). In the dimensions n ≤ 100 considered
here, CMA-ES is the best performing scheme on fexp (Fig. 3) and ftwo (Fig. 5);
on flin the EP-CMA-m schemes match its performance for m ≥ 4 (Fig. 3). A
notable exception is the behavior on the non-convex frosen, where only SARP
can accelerate and the other schemes, including CMA-ES, require over 10 times
more #ITS to reach the same accuracy (Fig. 5).

4 Discussion and Conclusions

In this contribution we emphasize the importance of accelerated random gradient
schemes [15, 22]. Each iteration in SARP has only linear complexity, yet the
scheme takes correlations between successive iterates into account. In CMA-
ES, such correlations are collected in the evolution path [18, 23] and stored in
the covariance matrix. This requires Θ(n2) simple operations per iteration. The
proposed EP-CMA-1 uses as well the information of the evolution path to bias
the search, but does not store a full-rank covariance matrix.

Line Search. We empirically tested two Random Pursuit algorithms with an
exact line search oracle. Such an oracle is in general not available for general
black-box optimization problems and the line search must for instance be im-
plemented as bisection search (cf. [14, 27]) at the expense of additional function
evaluations per iteration. The empirical data shows that both Random Pursuit
algorithms do perform well if a simple adaptive step size scheme is used instead
of the line search. This makes both schemes (especially SARP) promising candi-
dates for black-box optimization, also in high dimension, as the runtime scales
only linearly with the dimension. Up to our knowledge, no experimental results
for SARP with adaptive step size have been published yet (the authors in [14]
considered a line search with high accuracy, almost like SARP-exact).

138 S.U. Stich

Acceleration in EP Schemes. Our empirical results show that the sole use
of the evolution path can lead to astonishingly good performance—depending on
the problem and its eigenvalue spectrum. The speed-up of EP-CMA-1 on flin can
be explained by the fact that the condition number of the problem drops once
the algorithm has learned the most insensitive direction. Hence, the acceleration
can be explained by formula (1) rather than (2). For SARP the situation is
more promising. The data indicates that the convergence on fexp and ftwo is
as described in (2). The same seems to be true on the non-convex frosen where
SARP needs an order of magnitude less #ITS than all other schemes, including
CMA-ES. Only on flin this does not to hold, as SARP is only one order of
magnitude faster than RP. Consider the update (4). By expansion we obtain

yk+1 = xk + β (σk+1uk+1 + β (xk − xk−1)) = xk +

k+1∑
i=1

βk+2−iσiui . (6)

We see that the drift is a weighted average of the previous steps σiui. The dis-
count factor β is the expected convergence rate. Therefore, the influence of a
step σiui on yk+1 is roughly the same for all i = 1, . . . , k. In contrast to this,
the evolution path pk stores only information of the directions of the last steps
(but no step sizes). The discount factor is approximately 1 − 2/n. Although
the evolution path pk is a cumulation of all old steps, the weigh of old steps
is exponentially small compared to the influence of the newest steps. We might
conclude that the mechanism of accelerated random schemes like SARP is there-
fore inherently different to the concept of the evolution path, supporting reports
in [27]. However, we cannot rule out the possibility, that with a different choice
of internal parameters of EP-CMA-1 the difference to SARP could be reduced.

Limited Memory Schemes. The performance of the proposed EP-CMA-m
schemes uniformly increases for larger parameters m, as well as the complexity
of each single iteration. An optimal trade-off for the parameterm has to be found,
depending on the dimension n and the cost of individual function evaluations.
The data shows that the EP-CMA-m schemes can dramatically improve the
performance of simple random search already for small values of m. The speed-
up depends crucially on the eigenvalue spectra of the objective function. It seems
that these schemes can not reach the performance of the related variants in [21].

We generally conclude, that the here proposed algorithmic schemes with linear
iteration complexity could be a promising way to handle high dimensional black-
box optimization problems. However, the empirical data suggest that there is
an intrinsic limitation for the EP schemes, as they depend on the eigenvalue
spectrum of the objective function. This behavior is not observed for SARP.
We like to advocate that features of accelerated schemes (like SARP) should
therefore be taken seriously into account when facing high dimensional problems.

References

1. Polyak, B.: Introduction to Optimization. Optimization Software - Inc. (1987)
2. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer (2004)

On Low Complexity Acceleration Techniques 139

3. Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algo-
rithms 1. General Considerations. IMA J. of Appl. Math. 6(1), 76–90 (1970)

4. Fletcher, R.: A new approach to variable metric algorithms. The Computer Jour-
nal 13(3), 317–322 (1970)

5. Goldfarb, D.: A Family of Variable-Metric Methods Derived by Variational Means.
Mathematics of Computation 24(109), 23–26 (1970)

6. Nocedal, J.: Updating Quasi-Newton Matrices with Limited Storage. Mathematics
of Computation 35(151), 773–782 (1980)

7. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(1-3), 503–528 (1989)

8. Nesterov, Y.: A method of solving a convex programming problem with conver-
gence rate O(1/k2). Soviet Mathematics Doklady 27(2), 372–376 (1983)

9. Nesterov, Y.: Smoothing technique and its applications in semidefinite optimiza-
tion. Mathematical Programming 110(2), 245–259 (2007)

10. Tseng, P.: On accelerated proximal gradient methods for convex-concave optimiza-
tion. Submitted to SIAM Journal on Optimization (2008)

11. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Transactions
on Automatic Control 13(3), 270–276 (1968)

12. Rechenberg, I.: Evolutionsstrategie; Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog (1973)

13. Mutseniyeks, V.A., Rastrigin, L.A.: Extremal control of continuous multi-
parameter systems by the method of random search. Eng.Cyb. 1, 82–90 (1964)

14. Stich, S.U., Müller, C.L., Gärtner, B.: Optimization of convex functions with Ran-
dom Pursuit. SIAM Journal on Optimization 23(2), 1284–1309 (2013)

15. Nesterov, Y.: Random Gradient-Free Minimization of Convex Functions. Technical
report, ECORE (2011)

16. Leventhal, D., Lewis, A.S.: Randomized Hessian estimation and directional search.
Optimization 60(3), 329–345 (2011)

17. Stich, S.U., Gärtner, B., Müller, C.L.: Variable Metric Random Pursuit (2012)
(submitted), http://arxiv.org/abs/1210.5114

18. Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaption in Evolution
Strategies. Evolutionary Computation 9(2), 159–195 (2001)

19. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

20. Knight, J.N., Lunacek, M.: Reducing the Space-time Complexity of the CMA-ES.
In: GECCO 2007, pp. 658–665. ACM (2007)

21. Loshchilov, I.: A Computationally Efficient Limited Memory CMA-ES for Large
Scale Optimization. To appear GECCO (2014),
http://arxiv.org/abs/1404.5520

22. Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems. In: FOCS, pp. 147–156. IEEE (2013)

23. Ostermeier, A., Gawelczyk, A., Hansen, N.: Step-size adaptation based on non-
local use of selection information. In: Davidor, Y., Männer, R., Schwefel, H.-P.
(eds.) PPSN 1994. LNCS, vol. 866, pp. 189–198. Springer, Heidelberg (1994)

24. Igel, C., Suttorp, T., Hansen, N.: A Computational Efficient Covariance Matrix Up-
date and a (1+1)-CMA for Evolution Strategies. In: GECCO, pp. 453–460 (2006)

http://arxiv.org/abs/1210.5114
http://arxiv.org/abs/1404.5520

140 S.U. Stich

25. Sun, Y., Schaul, T., Gomez, F., Schmidhuber, J.: A linear time natural evolu-
tion strategy for non-separable functions. In: Proc. 15th Genetic and Evolutionary
Computation Conference Companion, pp. 61–62. ACM (2013)

26. Stich, S.U.: Supplementary Online Mat (2014), http://arxiv.org/abs/1406.2010
27. Stich, S.U., Müller, C.L.: On Spectral Invariance of Randomized Hessian and Co-

variance Matrix Adaptation Schemes. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491,
pp. 448–457. Springer, Heidelberg (2012)

http://arxiv.org/abs/1406.2010

Stopping Criteria for Multimodal Optimization

Simon Wessing1, Mike Preuss2, and Heike Trautmann2

1 Department of Computer Science, TU Dortmund, Germany
simon.wessing@tu-dortmund.de

2 Information Systems and Statistics Group, University of Münster, Germany
{mike.preuss,trautmann}@uni-muenster.de

Abstract. Multimodal optimization requires maintenance of a good
search space coverage and approximation of several optima at the same
time. We analyze two constitutive optimization algorithms and show that
in many cases, a phase transition occurs at some point, so that either
diversity collapses or optimization stagnates. But how to derive suitable
stopping criteria for multimodal optimization? Experimental results in-
dicate that an algorithm’s population contains sufficient information to
estimate the point in time when several performance indicators reach
their optimum. Thus, stopping criteria are formulated based on sum-
mary characteristics employing objective values and mutation strength.

Keywords: Multimodal optimization, global optimization, multiobjec-
tive selection, convergence detection, stopping criteria.

1 Introduction

For quite some time, global optimization has been the predominant research
direction in single-objective evolutionary computation (EC). While algorithms
for obtaining more than one good solution at once have been investigated already
in the 1970s (see [1] for a survey), the term multimodal optimization (MMO) has
become publicly known only lately. It may be seen as superordinate concept that
contains niching and related approaches, with the overall task to obtain a set of
diverse but very good solutions. It is easy to imagine that such behavior is useful
in many real-world applications, because it leaves more options to the decision
maker (related arguments apply to multiobjective optimization).

In contrast to global optimization methods, MMO algorithms always employ
populations and/or archives, and next to objective values, diversity is an impor-
tant issue: the finally chosen best solutions should not at all be similar but be
located in different search space regions. However, the interplay between reach-
ing good objective values but keeping search diverse has not been investigated
much from a general perspective, without focusing on a certain algorithm and/or
optimization problem. Authors usually refer to exploitation/exploration balance,
which means that there is a contradiction between improving solutions and cov-
ering the search space well. However, recent work on multiobjectivization-based
selection criteria for MMO [2] suggests that it is possible to realize compromises

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 141–150, 2014.
c© Springer International Publishing Switzerland 2014

142 S. Wessing, M. Preuss, and H. Trautmann

between the two, such that diversity is kept and still the good solutions are
improved further. In §3, we show that in most cases, the balance holds only tem-
porarily: after some time, it usually breaks and multimodal performance (dealt
with in §2) degrades again. Phenomenologically, this means that the algorithm
moves in direction of one extreme (see Fig. 1): either it focuses on one or few
attraction basins or it emphasizes diversity so that local optimization in the
separate basins becomes ineffective. This naturally calls for stopping criteria as
they are, e. g., known in multiobjective optimization (see §4). We do not state
that at the determined point in time, optimization shall just be cancelled. But it
undergoes a phase transition after which the algorithm does not sufficiently bal-
ance both goals any more, so that it may be supplemented with other techniques
as local searches. It does not seem reasonable just to continue runs.

The first goal of this paper is to document this phase transition and provide
data on where it can be expected in a run for different selection types, based on
a simple model algorithm that may serve as blue print for more complex meth-
ods in MMO. The second goal is to suggest (§4), experimentally assess (§5) and
discuss (§6) stopping criteria that detect the right time for a behavior change
of the algorithm. Differently from the situation in single- or multiobjective op-
timization, the important indicators cannot be observed directly in a real-world
application scenario. We would have to know in advance where the different
optima are located to compute the indicators. However, we can offer criteria
for mutation adaptive and non-adaptive optimization algorithms that provide a
good estimation of the point in time when the phase transition occurs, so that
measures against a degeneration of the optimization process can be taken.

2 MMO Performance Indicators and Model Algorithms

Several different approaches exist to measure performance of multimodal opti-
mization algorithms [3]. To precisely assess the approximation of the optima, at
least their locations and objective values have to be known. This information,
and above all the exact shape of corresponding attraction basins, is of course
only available for benchmarking purposes. In this case, the goal in one way or
another is to measure deviations from the local optima in objective and/or in
decision space. After carrying out our initial investigations (see §3) for all indi-
cators in [3], we are focusing the presentation on the quality indicator averaged
Hausdorff distance (AHD) [4], which is a natural advancement of the well-known
indicator peak distance (PD) [3,5]. It is defined as

AHD(P ,Q) = max

{
1

m

m∑
i=1

dnn(zi,P),
1

μ

μ∑
i=1

dnn(xi,Q)

}
,

where P = {x1, . . . ,xμ} is the approximation set, Q = {z1, . . . , zm} is the set
of optima, and dnn(x,P) = min{‖x− y‖2 | y ∈ P \ {x}}. PD is equivalent to
the first term inside the maximum (which is also known as inverted generational
distance). AHD is attractive, because it exhibits a continuous behavior over the

Stopping Criteria for Multimodal Optimization 143

0 5 10 15 20
0

5

10

15

20

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0 5 10 15 20
0

5

10

15

20

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

Fig. 1. Populations (black dots) after 5000 function evaluations with different selection
variants (left: SV4, right: SV7). White crosses mark the local optima, a white circle the
global one. Gray circles denote the mutation strengths of the respective individuals.

whole range from very bad to very good approximations. This is in contrast to,
e. g., the basin ratio (BR), which measures the fraction of attraction basins that
contain a point of the population. However, BR is still an informative indicator,
as it has known minimal and maximal values. Other indicators, as PD or peak
inaccuracy, are somewhat correlated to AHD, and thus our developments should
be transferable to some extent.

Two simple evolutionary algorithms (EA) are considered in this paper. While
both employ nearest-better distances dnb(x,P) = min{‖x−y‖2 | f(y) < f(x)∧
y ∈ P} in their selection and use gaussian mutations for variation, they exhibit
very different behaviors. The first algorithm uses a multiobjective selection with
dnb(x,P) as a second objective. The ranking is established by non-dominated
sorting (and each non-dominated front is sorted by objective value). The second
algorithm uses truncation selection on a lexicographic ordering according to the
tuples (−dnb(x,P), f(x)). (Note that reversing the order of the criteria would
essentially lead to a conventional single-objective EA.) These selections have
been defined as SV4 and SV7, respectively, in [2], and we adopt these names in
the following. Details and pseudocode also can be found in [2].

3 Initial Investigations

For the analysis of the algorithms’ behavior, we use the following experimental
setup. A budget of 105 objective function evaluations is allocated for optimiza-
tion of the multimodal test problems described in [2] with a (100+100)-EA. The
test problems are generated by taking the minimum of random samples of uni-
modal functions (so-called peaks, although pointing downwards). These samples
can exhibit different global structures, which will be called random, linear, and
funnel in the following. For further details we refer to [2]. For variation, we are
using an isotropic mutation operator with gaussian random numbers and initial

144 S. Wessing, M. Preuss, and H. Trautmann

random topology, 40 peaks, n = 10

log10(Function evaluations)

In
d
ic

a
to

r
v
a
lu

e
s

−
1
.4

−
1
.0

−
0
.6

2.5 3.0 3.5 4.0 4.5 5.0

log10(BOV)

SV4
1
5

2
0

2
5

AHD

SV4

0
.0

0
.2

0
.4

2.5 3.0 3.5 4.0 4.5 5.0

BR

SV4

0
.0

0
.5

1
.0

1
.5

MedianSigma

SV4

−
1
.6

−
1
.2

−
0
.8

log10(BOV)

SV7

2.5 3.0 3.5 4.0 4.5 5.0

8
1
0

1
2

14

AHD

SV7

0
.5

5
0
.6

5
0
.7

5

BR

SV7

2.5 3.0 3.5 4.0 4.5 5.0

0
2
0

4
0

6
0

8
0

1
0
0

MedianSigma

SV7

funnel topology, 5 peaks, n = 5

log10(Function evaluations)

In
d
ic

a
to

r
v
a
lu

e
s

−
1
5

−
1
0

−
5

0

2.5 3.0 3.5 4.0 4.5 5.0

log10(BOV)

SV4

5
1
0

AHD

SV4

0
.2

0
.4

0
.6

0
.8

1
.0

2.5 3.0 3.5 4.0 4.5 5.0

BR

SV4

0
.0

0
.5

1
.0

1
.5

MedianSigma

SV4

−
2
.5

−
1
.5

log10(BOV)

SV7

2.5 3.0 3.5 4.0 4.5 5.0

7
8

9
1
0

11
1
2

AHD

SV7

0
.9

0
0
.9

4
0
.9

8

BR

SV7

2.5 3.0 3.5 4.0 4.5 5.0

0
1
0
0
0
0
0

2
5
0
0
0
0

MedianSigma

SV7

Fig. 2. EAs with fixed (blue) and self-adaptive (dark green) σ. Solid lines show mean
values of 25 repeats, dashed lines are 95% pointwise confidence bands. BOV denotes
best objective value and MedianSigma the median mutation strength in a population.

step size σinit = 1. This operator can be used with either fixed or self-adaptive
step sizes. In the latter case, the learning parameter is τ = 1/

√
2n, according to

recommendations of [6] for multimodal problems. Recombination is disabled.
Survivor selection is done by the two alternatives described in §2. Figure 1

shows snapshots of self-adaptive SV4- and SV7-EAs after 5000 function evalu-
ations on a two-dimensional problem with 20 peaks and funnel topology. It can
be seen that solutions close to optima possess small mutation strengths, while
other solutions exhibit diverging step sizes. From Fig. 2 it is evident that SV7-EA
constantly explores the search space, while SV4-EA will sooner or later converge

Stopping Criteria for Multimodal Optimization 145

to a single optimum. The figure shows the average performance on two selected
problem classes over time. For SV4, step size adaptation first leads to a slight
increase of σ before the conventional convergence to zero starts. Therefore, the
self-adaptive SV4-EA is the best suited for global optimization among the tested
algorithms, as it does converge to one single optimum at some point, but does
this later than a conventional single-objective EA. Note that SV4-EA has the
same structure as [7], but is expected to yield better global optimization perfor-
mance due to step-size adaptation and use of dnb. In this case, also the existing
stopping criteria for single-objective optimization (see §4) can be applied.

SV7, on the other hand, exhibits a permanent tendency towards larger σ,
which is sometimes beneficial but often leads to a deterioration of quality in the
late stages of the run. Additionally, the algorithms’ performance also depends on
problem features as the search space dimension and the number of local optima.
Here, low-dimensional, weakly multimodal problems favor SV4, while SV7 seems
more adequate in the opposite case. Thus, if a diverse set of good solutions is
sought as a result, special stopping criteria for multimodal optimization should
be employed in any case.

4 Stopping Criteria

So far, research on stopping criteria within the field of EAs concentrated on
assessing the convergence behavior of the respective algorithms. Formal analysis
of convergence behavior is difficult and only possible for special and usually sim-
plified cases. As optimality criteria such as the Karush-Kuhn-Tucker conditions
usually cannot be applied in the black-box scenario due to the lack of sufficient
gradient information, heuristic approaches were introduced to check whether the
expected improvement in convergence is worth the additional amount of func-
tion evaluations which has to be spent. So far, to the best of our knowledge,
no specific stopping criteria for multimodal optimization have been introduced,
which have to be designed to focus on tracking the trade-off between maintaining
diversity and ensuring sufficient convergence.

An overview about recent approaches for multiobjective optimization is pro-
vided in [8]. As most of the methods rely on analyzing (single-objective)
performance indicators, the approaches in principle could be transferred to single-
objective optimization tasks as well. However, none of these criteria allows for
adequately terminating an EA in the multimodal situation in which the pop-
ulation is desired to converge while simultaneously maintaining diversity. In
single-objective optimization the same problem exists. In [9] existing termina-
tion conditions in the single-objective case are discussed which consist of either
theoretically motivated approaches [10,11], movement criteria [12], or qualified
runtime distributions [13]. To our knowledge, criteria based on statistical hy-
pothesis testing are surprisingly uncommon. It shall also be stated that contrary
to intuition, deriving criteria for single-objective algorithms is not necessarily
simpler than for multiobjective ones. As, e. g., the list of criteria in [14] demon-
strates, there is much more information available for the latter case, so that many

146 S. Wessing, M. Preuss, and H. Trautmann

SV4 fixed mutation, linear topology, 20 peaks, n=5

iterations

n
o
rm

a
liz

e
d
 r

a
w

 v
a
lu

e
s
 a

n
d
 s

ta
ti
s
ti
c
s

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50

variation coefficient obj. value
window median(10)
median of differences

AHD
average obj. value

SV7 fixed mutation, random topology, 40 peaks, n=5

iterations

n
o
rm

a
liz

e
d
 r

a
w

 v
a
lu

e
s
 a

n
d
 s

ta
ti
s
ti
c
s

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50

variation coefficient obj. value
window median(10)
median of differences

AHD
average obj. value

Fig. 3. Exemplary runs of SV4- and SV7-EAs with fixed σ. In both cases, the variation
coefficient of the objective value is a suitable signal for stopping. The optimal stopping
point is marked with a black dotted line, the actual stopping point with a red one.

more generic criteria may be established. Algorithm internal criteria, as, e. g., in-
tegrated into CMA-ES, focus on a concentrated population and the convergence
to a single optimum, which is reflected by a fading mutation strength. Thus,
the challenges of multimodal optimization are not properly reflected within the
existing criteria which focus on stagnation related to desired convergence.

Stopping Criteria for Multimodal Optimization (SMMO): In contrast to the
requirements for single- and multiobjective stopping criteria, we cannot directly
observe the measures we are actually interested in (there: best objective value
and hypervolume, respectively). In order to find a signal that can be exploited
as stopping criterion due to its correlation to the course of the AHD indicator,
we have investigated a large number of time series by visual inspection, e. g.,
the best and average objective values, the standard deviation of the objective
values, the average mutation strength, its standard deviation, the coefficients of
variation (standard deviation divided by mean value, CV) of objective values
and mutation strengths, and diversity indicators [3].

We found two signals that appear to be useful. For the self-adaptive case, the
mutation strength on average (Fig. 2) experiences a peak when the AHD reaches
its minimum. In most cases, this behavior can also be found when looking at
individual runs. A slightly less obvious correspondence that may be used for the
fixed mutation strength algorithms exists between the CV of the objective values
and the AHD. In many cases, the CV starts to decline when the AHD passes its
minimum, as displayed in Fig. 3. As the raw signal shows fluctuations in both
cases, we employ the window median x̃w(t) = median(x(t−w+1):t), where xt is a
time series and t runs from 1 to tmax, over the median mutation strength and
the CV of the objective values, respectively. After some initial experimentation,
we chose w = 10 as window size. From that, we compute the window median
x̃′
w(t) of the forward differences of x̃w(t) in order to find the point in time when

the original value is decreasing considerably. We stop as soon as the median of

Stopping Criteria for Multimodal Optimization 147

Table 1. Factors for the experiment in §5

Factor Type Symbol Levels

Problem topologies environmental {random, linear, funnel}
Number of variables environmental n {2, 3, 5, 10}
Number of peaks environmental N {5, 20, 40}
Selection variants control {SV4, SV7}
Mutation strength control {fixed, self-adaptive}

Table 2. Differences between the optimal (w.r.t. AHD) stop generation and the sug-
gested one as well as the percentages of generations after StopGen with higher AHD

StopGenAHD − StopGen % higher AHD after

Strategy Criterion LQ Median UQ LQ Median UQ

SV4
SA MutStrength −6 1 21 97.1 99.4 99.9

NonSA VarCoeffObj −38 −11 95 67.9 95.1 98.9

SV7
SA MutStrength −57 351 680.5 14.5 35.1 61.2

NonSA VarCoeffObj 304.8 568 784.2 0.9 12.1 41.2

differences, x̃′
w(t) = x̃w(x̃w(t) − x̃w(t − 1)), gets negative for the first time (the

first w time steps are ignored).

5 Experimental Evaluation of SMMO

Research Question: Do the stopping criteria of §4 provide a reasonable per-
formance?
Pre-experimental Planning: The stopping criteria in §4 were selected after a
first visual inspection of several summary characteristics. After some preliminary
investigations, we decided to test the CV-based criterion only with fixed σ as
the mutation strength criterion seemed superior (when available).
Task: The task of the stopping criteria is to abort the runs early with as few
loss of performance as possible. The key criterion for us is the AHD indicator.
Setup: The bulk of the setup was already described in §3. Table 1 summarizes all
the factors for this full-factorial experiment. For each configuration, five random
test instances are drawn and five independent algorithm runs are carried out per
problem instance, leading to a total of 25 repeats per configuration.
Results: Figures 4 and 5 show how much worse the obtained AHD values are for
early stopping in comparison to the best value of the same algorithm run that
would be obtained sometime during the full 105 function evaluations. Table 2
contains another investigation of the same data, focusing on the differences of
the actual stop generation and the respective one with minimum AHD value.
Furthermore, the percentage of generations after the stop generation where the
obtained AHD value was higher than the one in the stop generation is provided.

148 S. Wessing, M. Preuss, and H. Trautmann

2 3 5 10 2 3 5 10 2 3 5 10

0
5

10
15

20
Mutation Strength, SV4

Dimension

A
H

D
lo

ss
 (%

)

5, rand 5, linear 5, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

Mutation Strength, SV4

Dimension
A

H
D

lo
ss

 (%
)

20, rand 20, linear 20, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

Mutation Strength, SV4

Dimension

A
H

D
lo

ss
 (%

)

40, rand 40, linear 40, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0
5

10
15

20
25

30

Mutation Strength, SV7

Dimension

A
H

D
lo

ss
 (%

)

5, rand 5, linear 5, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Mutation Strength, SV7

Dimension

A
H

D
lo

ss
 (%

)

20, rand 20, linear 20, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

Mutation Strength, SV7

Dimension
A

H
D

lo
ss

 (%
)

40, rand 40, linear 40, funnel

Fig. 4. Performance losses through the stopping criterion based on σ

Observations: For SV4, the loss of AHD performance is decreasing with in-
creasing n if N is 20 or 40. SV7 shows the opposite behavior, especially with
the CV-based criterion. If the problem contains only five peaks, the AHD loss
is generally higher, especially with the σ-criterion (although the absolute values
may still be better than with the CV). Table 2 reflects that the recommended
stop generation does not differ much from the respective one with minimum
AHD for SV4. Moreover, an almost neglectable percentage of obtained AHD
values after stopping results in smaller AHD. SV7 shows a different behavior,
the interquartile ranges of both statistics are relatively large and the median
levels differ quite much from the respective ones of SV4.
Discussion: The seemingly worse performance with five peaks may occur be-
cause these problems are relatively easy and therefore the obtained AHD values
are close to zero. So, even small absolute deviations appear as high relative devi-
ations. On SV7 the losses are smaller, which is probably because the AHD values
are generally fluctuating less. For SV7, the statistics in Table 2 reflect that the
AHD quality usually does not show an obvious decreasing tendency after Stop-
GenAHD but rather a fluctuating behavior around the minimum AHD. Applied
to SV4, the suggested stopping criteria successfully detect an adequate stopping
generation in the vicinity of StopGenAHD.

Stopping Criteria for Multimodal Optimization 149

2 3 5 10 2 3 5 10 2 3 5 10

0
1

2
3

4
Variation Coefficient Objective Value, SV4

Dimension

A
H

D
lo

ss
 (%

)

5, rand 5, linear 5, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Variation Coefficient Objective Value, SV4

Dimension
A

H
D

lo
ss

 (%
)

20, rand 20, linear 20, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Variation Coefficient Objective Value, SV4

Dimension

A
H

D
lo

ss
 (%

)

40, rand 40, linear 40, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

2.
0

Variation Coefficient Objective Value, SV7

Dimension

A
H

D
lo

ss
 (%

)

5, rand 5, linear 5, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
5

1.
0

1.
5

Variation Coefficient Objective Value, SV7

Dimension

A
H

D
lo

ss
 (%

)

20, rand 20, linear 20, funnel

2 3 5 10 2 3 5 10 2 3 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Variation Coefficient Objective Value, SV7

Dimension
A

H
D

lo
ss

 (%
)

40, rand 40, linear 40, funnel

Fig. 5. Performance losses through the criterion based on the variation coefficient

6 Conclusions and Outlook

By means of systematic experiments we are able to show that transition phases
between maintaining diversity and converging to single optima exist. While this
is intuitive for classical evolution strategies, this effect also can be observed for
strategies which explicitly address multimodality as SV4. Structural differences
compared to SV7 are present, for which a large percentage of local optima are
successfully approximated during the whole algorithm run due to extensive ex-
ploration of the search space.

Decreasing AHD between the set of local optima and the population coin-
cides with increasing approximation quality in the multimodal setting. Indica-
tors based on the mutation strength (self-adaptive strategies) or the variation
coefficient of objective values (fixed step sizes) could be set up which appropri-
ately reflect the AHD behavior over time which is naturally unknown within
the actual algorithm run. The suggested stopping criteria, in most cases, recom-
mended stopping generations which simultaneously ensure the coverage of the
modes as well as sufficient proximity to the latter. However, they face greater
challenges for decreasing number of modes but improve for increasing search
space dimensionality for the mutation strength criterion.

In future work, we will explicitly analyze the influence of self-adaption of the
mutation strength on algorithm performance. Moreover, the suggested stopping
criteria will be included into more sophisticated MMO algorithms.

150 S. Wessing, M. Preuss, and H. Trautmann

Acknowledgments. Heike Trautmann and Mike Preuss acknowledge support
by the European Research Center for Information Systems (ERCIS).

References

1. Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary mul-
timodal optimization – a survey of the state-of-the-art. Swarm and Evolutionary
Computation 1(2), 71–88 (2011)

2. Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neigh-
bor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Com-
putation (CEC), pp. 103–110 (2013)

3. Preuss, M., Wessing, S.: Measuring multimodal optimization solution sets with
a view to multiobjective techniques. In: Emmerich, M., Deutz, A., Schütze, O.,
Bäck, T., Tantar, E., Tantar, A.A., Moral, P.D., Legrand, P., Bouvry, P., Coello,
C.A. (eds.) EVOLVE – A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation IV. AISC, vol. 227, pp. 123–137. Springer, Heidelberg
(2013)

4. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Haus-
dorff distance as a performance measure in evolutionary multiobjective optimiza-
tion. IEEE Transactions on Evolutionary Computation 16(4), 504–522 (2012)

5. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by
means of a topological species conservation algorithm. IEEE Transactions on Evo-
lutionary Computation 14(6), 842–864 (2010)

6. Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

7. Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on
the noiseless BBOB testbed. In: Proceeding of the Fifteenth Annual Conference
companion on Genetic and Evolutionary Computation Conference Companion,
GECCO 2013 Companion, pp. 1217–1224. ACM (2013)

8. Wagner, T., Trautmann, H., Mart́ı, L.: A taxonomy of online stopping criteria for
multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner,
E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 16–30. Springer, Heidelberg
(2011)

9. Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., Mehnen, J.: Statistical meth-
ods for convergence detection of multi-objective evolutionary algorithms. Evolu-
tionary Computation Journal 17(4), 493–509 (2009)

10. Hernandez, G., Wilder, K., Nino, F., Garcia, J.: Towards a self-stopping evolution-
ary algorithm using coupling from the past. In: GECCO 2005: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pp. 615–620. ACM
(2005)

11. Safe, M., Carballido, J.A., Ponzoni, I., Brignole, N.B.: On stopping criteria for
genetic algorithms. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI),
vol. 3171, pp. 405–413. Springer, Heidelberg (2004)

12. Zielinski, K., Laur, R.: Stopping criteria for a constrained single-objective particle
swarm optimization algorithm. Informatica 31(1), 51–59 (2007)

13. Hoos, H.H., Stützle, T.: Stochastic Local Search – Foundations and Applications.
Morgan Kaufmann, San Francisco (2004)

14. Sastry, K.: Single and multiobjective genetic algorithm toolbox for Matlab in C++.
Technical Report 2007017, Illinois Genetic Algorithms Laboratory, University of
Illinois at Urbana-Champaign (2007)

VLR: A Memory-Based Optimization Heuristic

Hansang Yun, Myoung Hoon Ha, and Robert Ian McKay

School of Computer Science and Engineering, Seoul National University
Seoul, 151-744, Republic of Korea

Abstract. We suggest a novelmemory-basedmetaheuristic optimization
algorithm, VLR, which uses a list of already-visited areas to more effec-
tively search for an optimal solution. We chose the Max-cut problem to
test its optimization performance, comparing it with state-of-the-art
methods. VLRdominates the previous best-performing heuristics.We also
undertake preliminary analysis of the algorithm’s parameter space, not-
ing that a larger memory improves performance. VLR was designed as a
general-purpose optimization algorithm, so its performance on other prob-
lems will be investigated in future.

Keywords: Optimization, Metaheuristics, Max-cut problem, memory.

1 Introduction

We introduce a novel metaheuristic optimization algorithm which uses a list
of already-visited areas (the Visited-Local-Region – VLR) to improve the effi-
ciency of exploration. VLR extends a general local search approach, guiding the
system to avoid regions which are unlikely to have favorable solutions or near
which we have already searched. The VLR technique is inspired by the biologi-
cal mechanisms of microRNA, small non-coding RNA molecules which regulates
gene expression [1]. The search step size is controlled by a “threshold of uncer-
tainty” (TU), which resembles the temperature in Simulated Annealing (SA).
Unlike SA’s temperature, TU does not decrease monotonically, but depends on
the VLR – we describe it in detail later. We apply VLR to the Maximum Cut
(Max-cut) problem with good results.

The remainder of this paper is organized as follows. In Section 2, we introduce
previous work on the Max-cut problem. Section 3 describes the VLR heuristic
and its application. Section 4 presents the experiment settings for Max-cut, with
the computational results being presented in Section 5. We draw conclusions and
point out future directions in the last section.

2 Background

2.1 Search Methods

We propose a stochastic local search algorithm and evaluate it on the Max-cut
problem, though it is general in form, and may be useful for other problems. Most

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 151–160, 2014.
c© Springer International Publishing Switzerland 2014

152 H. Yun, M.H. Ha, and R.I. McKay

stochastic search methods do not employ an explicit long-term memory, either
foregoing memory altogether (stochastic hillclimbing and its variants) or relying
on an implicit memory either in the population (genetic and swarm algorithms)
or in a probability structure (estimation of distribution and ant algorithms).
Only a few algorithms, of which tabu search [2] is the most prominent, explicitly
remember details of the search space. The algorithm we propose here resembles
tabu search in retaining an explicit memory of areas in the search space that it
has previously visited. However tabu search uses the memory to determine its
neighborhood structure; this algorithm differs in many details, most obviously in
using the memory to affect the acceptance criterion rather than the neighborhood
structure. It will be described in more detail in the next section.

2.2 The Max-Cut Problem

Let V be a set of n vertices, E a set of edges(i, j) with i, j ∈ V , and W a set
of weights wij on the edges (i, j) ∈ E. For a graph G = (V, E), the Max-cut
problem seeks a cut(S, Sc) that maximizes the sum of the weights on the edges
between S and its complement Sc:

maxcut(G) = max
S⊆V

(
∑

u∈S,v∈Sc

wuv)

In spite of its simple conceptualization, this problem is remarkable for its
practical applications such as the design of VLSI circuits [3,4], and the deter-
mination of ground states of spin-glass models in statistical physics [5]. Since
Karp [6] proved it NP-Complete, various algorithms have been used to achieve
better solutions with limited computing resources.

Most recent studies focused on heuristic techniques. Burer et al. [7] proposed
a rank-2 relaxation heuristic, CirCut, that achieves better solutions than any
previous, and can handle bigger problems in shorter computational time. Festa
et al. [8] combined a greedy randomized adaptive search procedure (GRASP),
variable neighborhood search (VNS), and path relinking (PR) to form a hybrid
randomized method. Their VNSPR produces high quality solutions, but with
high computational effort (time). These methods can be further hybridized with
others, such as CirCut or the Goemans and Willamson algorithm.

The subsequent Scatter Search (SS) heuristic of Mart́ı et al. [9] obtained better
performance than CirCut. Kochenberger et al. [10] applied a new Tabu Search
algorithm, Diversification-Driven Tabu Search (DDTS) [11], demonstrating its
solution quality and computational efficiency on Max-cut problems up to 10,000
vertices. Song and Li’s [12] HMA combines a memetic algorithm (MA) with
semidefinite programming for initialization, as in [13] GW+Random. It creates
a better initial population leading to a higher score for Max-cut than the SS
in [9] over many different problems.

We compared our approach with state-of-the-art heuristics, namely SS, HMA,
DDTS. Our new method out-performs these older heuristics in most cases.

VLR: A Memory-Based Optimization Heuristic 153

3 Method

Visited-Local-Region (VLR) is a general-purpose metaheuristic optimizing a tar-
get function f(x) over solution vectors x. In the Max-cut problem, x is a binary
vector representing which elements belong to set S, and f(x) denotes the value
sum for the cut(S, Sc).

We begin with a simpler version, Visited-Local-Hill (VLH), with two main
characteristics. It memorizes already-visited local hills, represented by their local
optima. Each hill has an attribute, the escape count (EC), proportional to the
number of visits (with user-set constant of proportionality d). It controls the
extent of exploration by a “threshold of uncertainty” τ , differing from SA’s
temperature in two ways:

1. Its value is reversed (low values mean more exploration).

2. It can both increase and decrease during search.

We give the explanation in three parts: exploration control in the Uncertain-
Climbing method, the VLH heuristic, and the VLR extension of VLH. To sim-
plify the explanation, we limit it to Boolean domains.

3.1 Exploration

UncertainClimbing (Algorithm 1) iteratively seeks a local optimum x. To permit
crossing between hills, we allow it to climb down (the probability varying over
time), unlike the random exploration that traditional stochastic hill climbing
undertakes when it is stuck in a local optimum. Let x′ be a bit-flip neighbor of
x. We define h(x) and p(x → x′) as:

h(x) = max(f(x) − τ, 0)

p(x → x′) =

{
h(x′)/(h(x) + h(x′)) , if (h(x) + h(x′)) > 0

0 , otherwise

Algorithm 1. Pseudocode of UncertainClimbing
01: procedure UncertainClimbing(x, τ)
02: repeat
03: for i = 1 to N do // N is length of x
04: let x′ be a neighbor of x obtained by flipping the i’th bit of x
05: pick a random real r between 0 and 1
06: h(x) = max(f(x)− τ, 0), h(x′) = max(f(x′) − τ, 0)
07: if h(x) + h(x′) > 0 and r < h(x′)/(h(x) + h(x′)) then
08: replace x with x′

09: end if
10: end for
11: increase τ
12: until (x is a local optimum)
13: return (x, τ)
14: end procedure

154 H. Yun, M.H. Ha, and R.I. McKay

Algorithm 2. Pseudocode of VLHmain
01: procedure VLHmain()
02: initialize x with a random solution and τ with f(x) .
03: repeat
04: (x, τ) = UncertainClimbing(x, τ)
05: if x /∈ V LH.keys then enroll x in V LH end if
06: V LH[x].ec = V LH[x].ec + d
07: τ = τ − V LH[x].ec
08: until (end condition)
09: return the best found solution
10: end procedure

p(x → x′) is the probability of accepting x′ as the next solution: solutions bet-
ter than x have higher rates, but worse solutions have some chance of acceptance.
The propensity for exploration is managed by τ . For f(x′) ≤ τ , p(x → x′) = 0,
so x′ is rejected; for f(x′) > τ , p(x → x′) > 0 and x′ may be accepted. Until the
process finds the local optimum, τ increases, decreasing the acceptance rate and
making the process more eager, so that it eventually reaches the local optimum.

3.2 Visited-Local-Hill (VLH)

RNA silencing works like this: when a messenger RNA contains a genetically
vulnerable feature – coding say for diabetes or cancer – microRNAs evolve to
silence them by inactivating the matching sequence. VLH acts in a similar way,
changing τ to move the search away from previously matched features.

VLH lists previously visited local optima, implemented as a TRIE structure.
This gives match determination time dependent on the search space dimension,
but not the list size. When we find a new local optimum not in the VLH list,
we add it and initialize the escape count (EC) to a constant d. EC is used
to decrement τ , determining the acceptance rate for exploration, and thus the
distance to the next target. If EC is small relative to the basin of attraction of
the local optimum, the process may revisit the same peak, in which case, we
increase EC until it is large enough to exit the basin.

Overall, τ works as follows. When the process is seeking a local optimum, τ
increases; when it reaches one, τ suffers a large reduction (by EC) and escapes
the basin of attraction. Thus the system can act as both a local optimization
method and a global one, with τ and EC adapting the algorithm to the scale of
the fitness landscape. Algorithm 2 provides the full details.

3.3 Visited-Local-Region(VLR)

VLH is simple and performs competitively. However a small extension can im-
prove it. Searching and escaping from each hill can limit the search scope. We
broaden it by defining a local region embracing a few minor hills, represented
by the fittest solution, y, detected in the region. During this phase, τ increases
– eventually, it will exceed the maximum available f(x) in the region, so search
stalls; τ suffers a reduction by EC and x can move again. VLR is described in
detail in Algorithms 3 and 4.

VLR: A Memory-Based Optimization Heuristic 155

Algorithm 3. Pseudocode of VLRmain
01: procedure VLRmain()
02: initialize x with a random solution and τ with f(x) .
03: repeat
04: (x, y, τ) = UncertainClimbing2(x, τ)
05: if y /∈ V LR.keys then enroll y in V LR end if
06: V LR[y].ec = V LR[y].ec+ d
07: τ = τ − V LR[y].ec
08: until (end condition)
09: return the best found solution
10: end procedure

Algorithm 4. Pseudocode of UncertainClimbing2
01: procedure UncertainClimbing2(x, τ)
02: y = x
03: repeat
04: for i = 1 to N do // N is length of x
05: let x′ be a neighbor of x obtained by flipping the i’th bit of x
06: pick a random real r between 0 and 1
07: h(x) = max(f(x)− τ, 0), h(x′) = max(f(x′) − τ, 0)
08: if h(x) + h(x′) > 0 and r < h(x′)/(h(x) + h(x′)) then
09: replace x with x′

10: if f(x) > f(y) then y = x end if
11: end if
12: end for
13: increase τ
14: until (x has been stuck) // i.e. x is a local optimum and τ ≥ f(x)
15: return (x, y, τ)
16: end procedure

4 Experiments

We compared VLR with three leading metaheuristics from section 2: SS [9],
HMA [12], and DDTS [10]. SS is the best known algorithm for Max-cut, outper-
forming well-known methods such as VNSPR [8] and CirCut [7]. HMA has better
performance than SS in most cases, but does not dominate. DDTS has even bet-
ter performance on the same instances, and has been tested on larger problems
(3000 to 10000), beyond the range on which SS and HMA were tested. All had
been tested on the Gset test set of Helmberg and Rendl [14] of 54 problems,
varying from 800 to 3000 vertices, so we used Gset for comparison.

The HMA tests used 30 min. on an Intel Core i5-750 2.67GHz. To calibrate
with our Intel Core i7-870 2.93GHz system, we used SPEC2006 benchmarks,
giving us a time budget of 27 min. We were able to compare also with SS
because [12] provided timings for the same problems under both HMA and SS.
[10] does not provide timing details for DDTS, so it is difficult to determine
the fairness of the comparison, but we nevertheless provide the comparative
attainments of the algorithms.

Ideally, such comparisons should be tested for statistical significance. This was
not possible, because the per-run data for previous systems were not available,
and the number of runs were too small for statistical stability. To support such
comparisons in future, all our tests used 50 runs, and the raw data are available at

156 H. Yun, M.H. Ha, and R.I. McKay

http://hdl.handle.net/10371/91260. Suitable parameter settings were deter-
mined by some more detailed exploration of VLR’s parameter space, which we
detail below.

To test the importance of the region search in VLR, we compared VLH and
VLR performance on G16, G21, G32, G37, and G52 from Gset. We tested the
impact of list size by comparing two extreme cases, VLR lists of sizes 1 and
8,000, on G37. Finally, we tested the sensitivity of VLR’s performance to the
value of the user-set parameter d, trying an exponentially increasing series of
sizes –

√|V |/4,√|V |/2, √|V |, 2√|V |, 4√|V | – on G16, G21, G37, and G52.
Detailed parameter settings for the experiments are shown in Table 1.

Table 1. Experimental Parameter Settings

Parameter Value Parameter value

d
√|V | the amount of τ

increment
1

V Problem dependant Number of Runs 50

list size 1 GByte
(size of 1list item)×|V |

5 Result and Discussion

Table 2 shows the results of comparisons between VLR and earlier methods. We
show the best known record to date, together with the available data from [12]
and [10]. For SS and HMA, we show their best and average performance from 10
runs. Curiously for a stochastic algorithm, the results for DDTS in [10] appear
to be from single runs, so that is all we can present. For VLR, we show the best,
average and median values from 50 runs, and the success rate.1

Bold values indicate best-known performance on a problem. The values en-
closed in square brackets are new best-known records. Comparing VLR with
SS, VLR has superior performance on 37 problems and worse on one. Compar-
ing with HMA, VLR wins on 30 problems and loses on one. Thus VLR almost
dominates SS and HMA; although we cannot statistically test the comparison,
it seems that VLR is overall a better performer. The comparison with DDTS is
difficult because of the single runs for DDTS, but VLR wins on 27 problems and
DDTS on 3. Overall VLR performed well, finding 20 new best-known solutions,
while failing to find a known-best solution on only 3 problems. Overall, VLR’s
performance on Max-cut is clearly of a high order.

Table 3 compares the performance of VLH and VLR. The result of one sample
t-test whether all pairwise difference differ from 0 suggests that the region struc-
ture brings performance gains on average, though differences are fairly small.

1 For skewed data such as typically arises in optimization, the median is generally
more informative than the mean.

http://hdl.handle.net/10371/91260

VLR: A Memory-Based Optimization Heuristic 157

Table 2. Comparative Results on Gset Instances

ID
of
Verts

Best
Known

SS
Best

SS
Avg.

HMA
Best

HMA
Avg.

DDTS
VLR
Best

VLR
Avg.

VLR
Median

VLR
Succ.
Rate

Number of Runs 10 1 50

G1 800 11624 11624 11624.0 11624 11624 11624 11624 11622.9 11624 47

G2 800 11620 11620 11620.0 11620 11620 11620 11620 11620.0 11620 50

G3 800 11622 11622 11619.5 11622 11622 11620 11622 11622.0 11622 50

G4 800 11646 11646 11638.5 11646 11646 11646 11646 11646.0 11646 50

G5 800 11631 11631 11630.4 11631 11631 11631 11631 11631.0 11631 50

G6 800 2178 2178 2174.1 2178 2178 2178 2178 2178.0 2178 50

G7 800 2006 1996 1988.9 2006 2006 2006 2006 2006.0 2006 50

G8 800 2005 1996 1994.7 2005 2005 2005 2005 2005.0 2005 50

G9 800 2054 2054 2051.2 2054 2053 2054 2054 2054.0 2054 50

G10 800 2000 2000 1999.1 2000 1999.1 2000 2000 1999.5 2000 44

G11 800 564 564 563.8 558 558 564 564 564.0 564 50

G12 800 556 554 550.6 556 552 556 556 556.0 556 50

G13 800 580 578 575.8 578 578 580 [582] 582.0 582 50

G14 800 3063 3063 3060.8 3060 3058.1 3061 3063 3061.3 3061 1

G15 800 3050 3040 3036.8 3049 3048.8 3050 3050 3049.1 3049 7

G16 800 3052 3044 3043.7 3050 3048.8 3052 3052 3051.0 3051 10

G17 800 3046 3040 3038.4 3045 3043.6 3046 [3047] 3045.5 3046 1

G18 800 991 991 985.8 989 986.9 991 [992] 991.3 991 19

G19 800 906 905 898.9 906 904.1 904 906 905.2 906 31

G20 800 941 941 941.0 941 941 941 941 941.0 941 50

G21 800 931 931 931.0 931 930.9 931 931 930.8 931 47

G22 2000 13359 13349 13314.8 13358 13349.8 13359 13359 13345.8 13358 9

G23 2000 13342 13323 13312.6 13337 13329.3 13342 [13344] 13335.8 13337 9

G24 2000 13337 13318 13307.8 13330 13321.8 13337 13337 13322.9 13324 6

G25 2000 13332 13320 13313.8 13330 13322 13332 [13335] 13325.4 13328 4

G26 2000 13328 13308 13299.7 13323 13310 13328 13326 13315.8 13316 8

G27 2000 3336 3332 3312.0 3334 3325.8 3336 [3341] 3326.8 3330 4

G28 2000 3295 3275 3264.9 3294 3286.9 3295 [3298] 3291.0 3294 11

G29 2000 3404 3385 3376.0 3404 3386.5 3391 [3405] 3385.8 3386 4

G30 2000 3407 3395 3384.5 3407 3402.8 3403 [3412] 3402.5 3403 15

G31 2000 3305 3275 3265.8 3305 3296.3 3288 [3310] 3299.6 3301 2

G32 2000 1406 1400 1393.2 1396 1392.2 1406 [1410] 1404.4 1404 1

G33 2000 1378 1364 1359.4 1372 1368.4 1378 1378 1374.5 1374 3

G34 2000 1378 1368 1361.6 1378 1375 1378 [1382] 1380.1 1380 15

G35 2000 7680 7654 7648.5 7680 7673 7678 [7683] 7678.9 7679 2

G36 2000 7670 7667 7654.5 7670 7665.7 7670 [7675] 7671.0 7671 1

G37 2000 7682 7667 7660.3 7682 7674.6 7682 [7687] 7685.4 7686 9

G38 2000 7683 7668 7659.8 7678 7669.9 7683 [7687] 7684.2 7685 3

G39 2000 2406 2395 2388.0 2406 2396.9 2397 [2408] 2399.6 2399 9

G40 2000 2393 2380 2375.9 2393 2389.2 2390 [2399] 2390.7 2394 1

G41 2000 2405 2391 2385.7 2405 2401.7 2400 2405 2398.0 2405 26

G42 2000 2478 2462 2458.1 2478 2469.1 2469 [2480] 2471.0 2472 2

G43 1000 6660 6660 6656.2 6660 6658.7 6660 6660 6659.1 6660 48

G44 1000 6650 6650 6648.8 6650 6649.7 6639 6650 66467.0 6650 30

G45 1000 6654 6646 6643.0 6654 6650.1 6652 6654 6648.7 6650 16

G46 1000 6649 6647 6640.4 6649 6645.8 6649 6649 6645.4 6648 18

G47 1000 6665 6655 6652.9 6656 6655.2 6665 6657 6651.3 6650 9

G48 3000 6000 - - 6000 6000 6000 6000 6000.0 6000 50

G49 3000 6000 - - 6000 6000 6000 6000 6000.0 6000 50

G50 3000 5880 - - 5880 5880 5880 5876 5859.6 5874 15

G51 1000 3847 3843 3839.4 3847 3843.9 3847 3847 3846.0 3846 9

G52 1000 3849 3841 3836.1 3848 3844.8 3849 [3851] 3849.1 3849 3

G53 1000 3849 3845 3844.3 3849 3844.9 3848 3849 3846.7 3846 2

G54 1000 3851 3849 3846.0 3845 3842.5 3851 3851 3850.1 3850 4

158 H. Yun, M.H. Ha, and R.I. McKay

Table 3. VLH-VLR Performance Comparison

VLH
Best

VLH
Avg.

VLR
Best

VLR
Avg.

t p value mean

G16 3052 3050.9 3052 3051.06 8.593 <2.2e-16 0.16

G21 931 930.76 931 930.94 11.6283 <2.2e-16 0.18

G32 1408 1404.88 1410 1404.84 -0.6851 0.4934 -0.04

G37 7688 7683.78 7687 7684.7 12.8641 <2.2e-16 0.92

G52 3850 3848.74 3851 3849.08 16.462 <2.2e-16 0.34

Table 4. Performance Comparison for VLR Parameter d

√|V |/4 √|V |/2 √|V | 2
√|V | 4

√|V | t p-value mean

G16 3049.1 3051.58 3051.06 3048.6 3045.22 175.1456 <2.2e-16 6.36

G21 921.46 929.26 930.94 931 930.32 64.8215 <2.2e-16 9.54

G32 1392.12 1397.6 1404.84 1400.64 1393.16 131.3383 <2.2e-16 12.72

G37 7677.9 7682.62 7684.7 7678.88 7665.5 218.2509 <2.2e-16 19.2

G52 3847.04 3850 3849.08 3844.88 3840.76 236.2583 <2.2e-16 9.24

Table 4 shows the sensitivity analysis for user-set parameter d. We can see
that the performance is fairly sensitive to d from the result of one sample t-test
for all pairwise difference the best and the worst. Since even small differences
in objective values are crucial for optimization performance, setting d correctly
is clearly important – however for individual problems, the performance curve
seems to be unimodal, with the best settings not varying much. The setting
we used in the main experiments (

√|V |) appears to have been a reasonable

0 100 200 300 400
0

1

2

3

4

5
·10−3

0 100 200 300 400
0

1

2

3

4

5
·10−3

0 100 200 300 400

evaluation(10millions)

d
ev

ia
ti
on

VLR size = 1

VLR size = 8k

Fig. 1. VLR List Size Comparison: Distribution of Deviation Current Best from Best
Known Value every 107 Evaluations (Median and Quartiles over 50 Runs) on G37

VLR: A Memory-Based Optimization Heuristic 159

choice, though a value between
√|V |/2 and

√|V | may have been better. The
unimodality of the search means that adaptive measures could be used to choose
d, but we leave this for future work.

Figure 1 illustrates the effect of VLR list size. The best solutions found each 10
million evaluations from 50 runs on the G37 form the raw data. The vertical axis
indicates the deviation from the best known solution. The dotted lines show the
median, and the translucent areas indicate the interquartile ranges (rank statis-
tics are more useful here because the distributions are highly skewed). Larger
list sizes consistently lead to better performance (though there is substantial
overlap). Larger VLR sizes come with a memory cost, but a VLR size of 8,000 is
trivial today; because of the use of the TRIE structure, there is little additional
time cost. Thus it seems sensible to use reasonably large VLR sizes, even though
the performance gains are relatively small. We conclude that the larger list has
better performance since the t-test results for all pairwise difference at the end of
the runs are t = 11.9942, p− value < 2.2e− 16, and mean = 0.064, respectively.

6 Conclusion

The VLH mechanism, inspired by MicroRNA, and extended by the region struc-
ture in the VLR algorithm, has shown good performance on the Max-cut prob-
lem. VLR’s design uses adaptive feedback to maintain the balance between explo-
ration and exploitation through more effective use of information gathered from
the search process. We think the performance of VLR derives from its targeted
exploration, adapting to the fitness landscape rather than exploring randomly. It
thus adopts good features from two important heuristics, namely simulated an-
nealing and Tabu search, combining them in ways that yield useful increments in
performance.

In the future we plan to test VLR’s performance on a wider range of opti-
mization problems. We also plan to explore the parameter space and algorithm
details more deeply – finding ways to determine the optimum list size, and test-
ing whether there are more effective ways to change the EC parameter than
the current linear increase and decrease. There is also potential to explore more
informed and efficient search operators. Preliminary work in these directions has
yielded improved results, but detailed results are not yet available.

Acknowledgements. This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Science, ICT & Future Plan-
ning(MSIP) / National Research Foundation of Korea (NRF) (Grant NRF-2008-
0062609). The ICT at Seoul National University provided research facilities for
this study.

References

1. Chen, K., Rajewsky, N.: The evolution of gene regulation by transcription factors
and microRNAs. Nature Reviews Genetics 8(2), 93–103 (2007)

2. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

160 H. Yun, M.H. Ha, and R.I. McKay

3. Chang, K.C., Du, D.: Efficient algorithms for layer assignment problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 6(1),
67–78 (1987)

4. Pinter, R.Y.: Optimal layer assignment for interconnect. Adv. VLSI Comput.
Syst. 1(2), 123–137 (1984)

5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combi-
natorial optimization to statistical physics and circuit layout design. Operations
Research 36(3), 493–513 (1988)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Jünger, M., Liebling,
T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G.,
Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958-2008, pp. 219–241.
Springer, Heidelberg (2010)

7. Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-two relaxation heuristics for max-cut
and other binary quadratic programs. SIAM Journal on Optimization 12, 503–521
(2000)

8. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the
max-cut problem. Optimization Methods and Software 17(6), 1033–1058 (2002)

9. Mart́ı, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut prob-
lem. INFORMS J. on Computing 21(1), 26–38 (2009)

10. Kochenberger, G.A., Hao, J.K., Lü, Z., Wang, H., Glover, F.: Solving large scale
max cut problems via tabu search. Journal of Heuristics 19(4), 565–571 (2013)

11. Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained
binary quadratic problems. 4OR, Q. J. Oper. Res. 8(3), 239–253 (2010)

12. Song, B., Li, V.: A hybridization between memetic algorithm and semidefinite
relaxation for the max-cut problem. In: Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference, GECCO 2012,
pp. 425–432. ACM, New York (2012)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization 10, 673–696 (1997)

A Differential Evolution Algorithm

for the Permutation Flowshop Scheduling
Problem with Total Flow Time Criterion

Valentino Santucci, Marco Baioletti, and Alfredo Milani

Department of Mathematics and Computer Science
University of Perugia, Italy

{valentino.santucci,baioletti,milani}@dmi.unipg.it

Abstract. In this paper a new discrete Differential Evolution algorithm
for the Permutation Flowshop Scheduling Problem with the total flow-
time criterion is proposed. The core of the algorithm is the distance-based
differential mutation operator defined by means of a new randomized
bubble sort algorithm. This mutation scheme allows the Differential Evo-
lution to directly navigate the permutations search space. Experiments
were held on a well known benchmark suite and the results show that
our proposal outperforms state-of-the-art algorithms on the majority of
the problems.

Keywords: Differential Evolution, Permutation Flowshop Scheduling
Problem, Randomized Bubble Sort.

1 Introduction and Related Works

The Permutation Flowshop Scheduling Problem (PFSP) is a type of schedul-
ing problem widely encountered in areas such as manufacturing and large scale
products fabrication [1]. The goal of PFSP is to determine the best permutation
π = 〈π[1], . . . , π[n]〉 of n jobs that have to be processed through a sequence of m
machines.

Here we focus on the Total Flow Time (TFT) criterion that consists in mini-
mizing the objective function

f(π) =

n∑
j=1

c(m,π[j]) (1)

where c(i, π[j]) is the completion time of job π[j] on machine i and is recursively
calculated in terms of the processing times pi,π[j] as:

c(i, π[j]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi,π[j] if i = j = 1

pi,π[j] + c(i, π[j − 1]) if i = 1 and j > 1

pi,π[j] + c(i− 1, π[j]) if i > 1 and j = 1

pi,π[j] +max{c(i, π[j − 1]), c(i− 1, π[j])} if i > 1 and j > 1

(2)

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 161–170, 2014.
c© Springer International Publishing Switzerland 2014

162 V. Santucci, M. Baioletti, and A. Milani

The PFSP with the TFT criterion has been demonstrated to be NP hard
for two or more machines. Therefore, even due to its practical interest, many
researches have been devoted to finding high quality and near optimal solutions
by means of heuristic or meta-heuristic approaches [1,2]. A report of the state-
of-the-art methods for PFSP-TFT has been recently provided in [2] where it
is shown that the most performing meta-heuristics are: VNS4 [3], AGA [4] and
GM-EDA together with its hybrid variant HGM-EDA [2]. VNS4 applies a vari-
able neighborhood search (VNS) to an initial permutation built by means of a
constructive heuristic called LR(n/m) [5]. AGA is an asynchronous genetic algo-
rithm hybridized with VNS. GM-EDA is an estimation of distribution algorithm
that adopts a probabilistic model for the permutations space known as general-
ized Mallows model, while HGM-EDA represents the hybridization of GM-EDA
with a VNS scheme.

Differential Evolution [6] is one of the many approaches to evolutionary com-
putation [7,8,9]. Although its effectiveness in numerical spaces, DE applications
to combinatorial problems, and in particular to permutation-based problems,
are still unsatisfactory. To the best of our knowledge, all the DE algorithms for
the PFSP proposed in literature (see for example the schemes reported in [10]
or the more recent ones [11,12]) adopt some transformation scheme to encode
permutations into numerical vectors. This distinction between the phenotypic
and genotypic space introduces large plateaus in the numerical landscape and
is probably the reason of their poor performances. To address this issue, in this
paper we propose a discrete DE scheme for the PFSP-TFT problem that works
directly on the permutations space. Since the differential mutation operator has
been generally considered the key component of DE [13], our approach mainly re-
lies on a differential mutation operator that directly handles permutations, thus
trying to fruitfully bring the DE search properties from the numerical space to
the combinatorial space of permutations. Furthermore, a new O(n2) randomized
bubble sort algorithm is provided.

The rest of the paper is organized as follows. The permutation-based differ-
ential mutation operator and the new randomized bubble sort algorithm are
introduced and motivated in Section 2. The full DE scheme for PFSP-TFT is
described in Section 3. An experimental analysis of the proposed approach is
provided in Section 4. Finally, conclusions are drawn in Section 5 and some
future lines of research are depicted.

2 Differential Mutation in the Permutations Space

Differential Evolution (DE) [6] is a popular and powerful evolutionary algorithm
over continuous search spaces using the differential mutation operator as its key
component [13]. In the most common variant, for each population individual
xi ∈ Rn, three different parents xr0 , xr1 , xr2 are randomly selected from the
current population and a mutant vi ∈ Rn is generated according to

vi = xr0 + F · (xr1 − xr2) (3)

A Differential Evolution Algorithm for the PFSP with TFT Criterion 163

where the scalar parameter F usually lies in (0, 1]. It has been argued that
the differential mutation confers to DE the “contour matching” property (term
coined by Price et al. in [13]), i.e., it allows DE to automatically adapt both
mutation step size and orientation to the objective function landscape.

Here we propose a differential mutation scheme that directly works on the
permutations space and that inherits, in some geometric sense, the “contour
matching” property of its numerical counterpart.

The permutations of the set {1, 2, . . . , n}, together with the usual permuta-
tions composition operator ◦, form a group denoted by S(n) where each π ∈ S(n)
has its inverse, denoted by π−1.

It is possible to bring the classical concepts of sum and difference of Rn in
S(n). Indeed, by defining the sum of π1, π2 ∈ S(n) as π1 ◦π2, their difference can
be straightforwardly defined as π−1

2 ◦ π1 since π1 = π2 ◦
(
π−1
2 ◦ π1

)
. Therefore,

by temporarily omitting the scale factor F , equation (3) can be rewritten for
permutations as:

νi = πr0 ◦
(
π−1
r2 ◦ πr1

)
(4)

In order to introduce the scale factor F in equation (4) we need to define
an operation which, given a scalar F ∈ [0, 1], scales down a permutation π
to a “truncated” permutation F · π. A possible approach is to choose a set of
generators G ⊆ S(n) and decompose π in the compositions chain g1 ◦ · · · ◦ gL
where g1, . . . , gL ∈ G. Therefore, by defining F ·π = g1◦· · ·◦gk, with k = �F ·L�,
it is finally possible to provide a differential mutation for permutations as:

νi = πr0 ◦
(
F · (π−1

r2 ◦ πr1

))
(5)

Interestingly, the introduction of a generators set G allows a useful geometric
interpretation of the search space. Indeed, given G ⊆ S(n), it is possible to
represents the permutations search space as a Cayley graph Γ , i.e., a regular
graph whose vertices are the permutations of S(n) and, for any π ∈ S(n) and
g ∈ G, the vertices corresponding to π and π ◦ g are joined by an edge labeled
with g. This allows in turn: (1) to derive a metric distance function corresponding
to the length of a shortest path between two permutations in Γ , (2) to view the
difference between π1 and π2 as the compositions chain of the edges labels in a
shortest path from π2 to π1 in Γ , and (3) to interpret the scaled difference as a
truncated shortest path.

However, different sets of generators are possible for S(n). Each one may lead
to a different search space structure thus have a different impact on the search
algorithm. Here, we consider the three main generators sets of S(n) [15]:

– the set of all transpositions T = {(i, j)T : 1 ≤ i < j ≤ n}, where (i, j)T
denotes the permutation which only swaps the elements at places i and j,

– the set of all insertions I = {(i, j)I : i �= j and 1 ≤ i, j ≤ n}, where (i, j)I
denotes the permutation that shifts the element at place j to place i,

– the set of all simple transpositions ST = {(i, i+1)T : 1 ≤ i ≤ n − 1},
i.e., the permutations which only swap two adjacent elements (note that
(i, i+1)T = (i, i+1)I = (i+1, i)I).

164 V. Santucci, M. Baioletti, and A. Milani

T and I have respectively
(
n
2

)
and (n− 1)2 elements, and both produce a search

space diameter of n−1. Their induced distance functions are known in literature
as, respectively, Cayley distance and Ulam distance [15]. Instead, ST , which is
a proper subset of both T and I, has n− 1 elements and provides a diameter of(
n
2

)
. Its induced distance function is known as Kendall-τ distance [15] and equals

the number of inversions of either π−1
2 ◦ π1 or π−1

1 ◦ π2.
The choice among these sets of generators has been made by exploiting the

hypothesis that a smoother objective function landscape is a benefit for an evo-
lutionary algorithm. In order to detect which among T , I and ST produces the
smoothest landscape on the PFSP-TFT problem, we made two experimental
investigations. For several instances of the Taillard benchmark problems (see
Section 4) we have generated 10 000 random permutations. For each one, and
for d = 1, . . . , 10, we have tabulated its TFT relative difference after the appli-
cation of a random transposition of the type (i, i+d)T (first experiment) and a
random insertion of the type (i, i+d)I (second experiment). From the box-plots
reported in Figures 1a and 1b for the first instance of the Taillard problems
100 × 5 (other instances have the same behavior) it is possible to deduce that
d = 1 provides the smoother TFT variation and that this variation increases
with d. Therefore, by recalling the fact that both transpositions and insertions
reduce to simple transpositions when d = 1, the search space for the differential
mutation operator has been structured using ST as set of generators.

(a) using T (b) using I

Fig. 1. Relative TFT variations on the first instance of the 100× 5 Taillard problems

The truncated permutation F ·π can be computed using the well known bubble
sort algorithm. However, F ·π is not unique in general because π can have several
different shortest representations as compositions chain of simple transpositions.
Hence, in order to design a mutation scheme as fair as possible, we propose a
randomized version of bubble sort that is outlined in Algorithm 1.

The RandBS algorithm sorts the permutation π (and any array of sortable
elements) with the optimal number of adjacent swaps. Indeed, at each iteration

A Differential Evolution Algorithm for the PFSP with TFT Criterion 165

Algorithm 1. Randomized Bubble Sort

1: function RandBS(π,n)
 π is the permutation of degree n to sort
2: CC ←<>
 CC will be the sequence of simple transpositions that sorts π
3: LST ← {i : π[i] > π[i+ 1]}
4: while LST
= ∅ do
5: i ← RemoveRandomElement(LST)
6: Swap π[i] and π[i+ 1]
7: Append i to CC
8: if i > 0 and i − 1
∈ LST and π[i− 1] > π[i] then
9: Add i − 1 to LST

10: if i < n − 1 and i + 1
∈ LST and π[i+ 1] > π[i+ 2] then
11: Add i+ 1 to LST

12: end while
13: return CC
14: end function

of the while loop: (1) a simple transposition is applied to π, thus reducing by
one the Kendall-τ distance to e (the ordered permutation), (2) LST contains
exactly the simple transpositions that “move” π towards e. This allows also to
limit the number of iterations to

(
n
2

)
= O(n2). Then, it is easy to prove that the

time complexity of RandBS is O(n2) as the one of its classical counterpart.
Furthermore, it is worthwhile to notice that RandBS produces, as a second

result, CC, i.e., a minimal-length sequence of simple transpositions that sorts π.
By reversing the sequence CC, the compositions chain of simple transpositions of
π is obtained. Interestingly, CC equals to a sequence of edges labels obtained by
a “never go back” random walk from π towards e in the subgraph of Γ composed
by the permutations σ such that dK(π, σ) + dK(σ, e) = dK(π, e), where dK(·, ·)
is the Kendall-τ distance.

Hence, the application of RandBS to π−1
r2 ◦ πr1 allows to randomly produce

one of its decompositions. Then, by truncating it as aforementioned we obtain
F ·(π−1

r2 ◦ πr1

)
and thus we have a procedure to compute the differential mutation

of equation (5).

3 Differential Evolution for Permutations

The Differential Evolution for the Permutations space (DEP), outlined in Al-
gorithm 2, directly evolves a population of NP permutations π1, . . . , πNP . Its
main scheme resembles that of the classical DE with the introduction of a restart
mechanism and a memetic local search procedure. Moreover, important varia-
tions have been made to the population initialization and to the genetic operators
of mutation, crossover and selection. All these components are described in the
following.

The population is initialized with NP − 1 random permutations and the
remaining one is obtained by means of the constructive heuristic LR(n/m) [5].

For each population individual πi, a mutant permutation νi is generated ac-
cording to equation (5) and using the procedure described in Section 2. In order
to avoid the setting of the scale factor F , the self-adaptive scheme proposed in
jDE [16] has been used for its online adaptation.

166 V. Santucci, M. Baioletti, and A. Milani

Algorithm 2.Differential Evolution for Permutations

1: Initialize Population
2: while evaluations budget is not exhausted do
3: for i← 1 to NP do
4: νi ← DifferentialMutation(i)

5: υ
(1)
i , υ

(2)
i ← Crossover(πi, νi)

6: Evaluate f(υ
(1)
i) and f(υ

(2)
i)

7: for i← 1 to NP do
8: πi ← Selection(πi, υ

(1)
i , υ

(2)
i)

9: if restart criterion then
10: Perform a Baldwinian Local Search on πbest

11: Restart Population

12: end while

The crossover between the population individual πi and the mutant νi is
performed according to the two-point crossover version II (TPII) proposed in [7]
and used by AGA [4]. Differently from the classical DE crossover, TPII produces

two offspring individuals, i.e., υ
(1)
i and υ

(2)
i . Two indices j, k, such that 1 < j <

k < n, are randomly generated. υ
(1)
i [h] = πi[h] for j ≤ h ≤ k and the missing

jobs are placed in υ
(1)
i using the order of their appearance in νi. Finally, υ

(2)
i is

filled in the same way but by reversing the role of πi and νi.
In order to choose the trial υi that will compete with πi, a preliminary se-

lection between the two offspring individuals is performed according to υi =

argmin
{
f(υ

(1)
i), f(υ

(2)
i)
}
.

The new population individual π′
i is chosen by a “biased” selection between

υi and πi performed according to:

π′
i =

{
υi if f(υi) < f(πi) or r < max {0, 0.01−Δi}
πi otherwise

(6)

where r is a random number in [0, 1] and Δi is the relative fitness variation
(f(υi) − f(πi))/f(πi). Similarly to classical DE selection, υi enters the next
generation population if it is fitter than πi. Otherwise, υi may be selected with
a small probability that linearly shades from 0.01 when Δi = 0 to 0 when
Δi = 0.01. This criterion allows: (1) to slow down the population convergence,
(2) to reduce the number of restarts, and (3) to mitigate the super-individual
effect observed in some preliminary experiments.

Finally, a restart mechanism has been introduced in order to completely avoid
the stagnation of the population. When the population fitnesses are the same, the
best individual is kept and the other NP − 1 permutations are randomly reini-
tialized. Furthermore, a local search procedure is applied to the best individual
using a Baldwinian approach, that is, the result of the local search is collected
but does not enter the DEP population. The local search scheme employed is
similar to VNS4 [3] without shakes. A greedy local search using the interchange

A Differential Evolution Algorithm for the PFSP with TFT Criterion 167

neighborhood is carried out until a local minimum is found. Then, the best neigh-
bor in its insertion neighborhood is chosen and the process is iterated until a local
minimum for both neighborhoods is reached. Moreover, it is worth to notice that
the interchange local search iterates by randomly scanning the permutation com-
ponents at every step and selecting the first improvement found.

4 Experiments

The performances of DEP have been evaluated on the well known 120 benchmark
problems proposed by Taillard in [17]. For each problem instance 20 runs were
made and the results have been compared with those provided in [2] for the
four PFSP-TFT state-of-the-art methods: AGA, VNS4, GM-EDA and HGM-
EDA. DEP population size has been set to NP = 100 after some preliminary
experiments and, in order to provide a fair comparison, the same caps of objective
function evaluations reported in [2, Table III] have been adopted.

The performance measure employed is the average relative percentage devia-
tion (ARPD):

ARPD =

(
20∑
i=1

(Algi −Best)× 100

Best

)
/20 (7)

where Algi is the final TFT value found by the algorithm in its ith run, and
Best is the best known TFT value for the problem instance at hand.

In order to detect the statistical differences between the performances of DEP
and each of the other algorithms, as suggested in [18], we applied to every n×m
problem configuration the non-parametric 1×N Friedman’s test and the Finner
post-hoc procedure to the average TFT results produced by each algorithm on
every instance.

The best TFT values and the ARPDs of each algorithm are reported in Table
1. The TFTs in bold indicates when DEP reaches the best value and the asterisk
denotes when it is a new known optimal TFT. Minimal ARPDs are reported in
bold.

Furthermore, for each problem configuration the Friedman’s average ranking
of all the algorithms are provided. Values in bold denote that DEP significantly
outperforms the algorithm, while values in italic denote that DEP is significantly
outperformed by the algorithm.

In 79 instances over 120, DEP reaches the best TFT, and, most remarkably,
in 45 cases they are the new known best values. Moreover, it is worth to notice
that DEP has obtained new optima for 23 over 30 instances of size 100×m and
for 18 over 20 instances of size 200×m, which are reputed to be difficult.

The robustness of DEP is proved by the fact that it presents the lowest ARPD
results in 96 instances. Again, in almost all 100 and 200 jobs problems, DEP is
the best algorithm in average.

Except the case of 500 jobs, DEP has always the lowest Friedman’s average
rank. The results can be summarized as follows:

168 V. Santucci, M. Baioletti, and A. Milani

Table 1. Experimental Results

Instance Best AGA VNS4 GM-EDA HGM-EDA DEP Instance Best AGA VNS4 GM-EDA HGM-EDA DEP

20× 5 14033 0.00 0.00 0.18 0.00 0.00 100× 5 ∗253605 0.29 1.25 0.87 0.23 0.05
15151 0.00 0.00 0.48 0.00 0.00 ∗242579 0.30 1.80 1.08 0.35 0.05
13301 0.00 0.00 0.50 0.00 0.00 ∗238075 0.22 1.49 0.85 0.26 0.07
15447 0.00 0.00 0.43 0.00 0.00 227889 0.17 1.29 0.78 0.20 0.06
13529 0.00 0.00 0.21 0.00 0.00 240589 0.21 1.29 0.80 0.23 0.02
13123 0.00 0.00 0.08 0.00 0.00 ∗232689 0.32 1.52 0.90 0.28 0.06
13548 0.00 0.00 0.79 0.00 0.00 240669 0.15 1.34 1.00 0.34 0.25
13948 0.00 0.00 0.18 0.00 0.00 ∗231064 0.29 1.79 1.06 0.35 0.07
14295 0.00 0.00 0.18 0.00 0.00 ∗248039 0.40 1.66 1.05 0.38 0.09
12943 0.00 0.00 0.46 0.00 0.00 ∗243258 0.19 1.44 1.00 0.28 0.07

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.2 5 4 2.7 1.1

20× 10 20911 0.00 0.00 0.45 0.00 0.00 100× 10 ∗299101 0.43 1.63 1.80 0.44 0.16
22440 0.00 0.00 0.54 0.00 0.00 ∗274566 0.60 1.58 2.08 0.69 0.28
19833 0.00 0.00 0.31 0.00 0.00 ∗288543 0.37 1.57 1.74 0.38 0.18
18710 0.00 0.00 0.75 0.00 0.00 ∗301552 0.50 1.79 2.08 0.53 0.18
18641 0.00 0.00 0.35 0.00 0.00 ∗284722 0.61 1.64 1.95 0.54 0.22
19245 0.00 0.00 0.77 0.00 0.00 ∗270483 0.42 1.76 1.83 0.45 0.19
18363 0.00 0.00 0.47 0.00 0.00 ∗280257 0.37 1.58 1.65 0.40 0.25
20241 0.00 0.00 0.47 0.00 0.00 ∗291231 0.49 1.77 2.03 0.61 0.27
20330 0.00 0.00 0.27 0.00 0.00 302624 0.36 1.46 1.76 0.41 0.20
21320 0.00 0.00 0.24 0.00 0.00 ∗291705 0.48 1.84 1.68 0.50 0.06

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.1 4.1 4.9 2.9 1

20× 20 33623 0.00 0.00 0.65 0.00 0.00 100× 20 ∗366438 0.80 1.70 2.26 0.67 0.37
31587 0.00 0.00 0.28 0.00 0.00 ∗373138 0.55 1.43 2.04 0.58 0.25
33920 0.00 0.00 0.04 0.00 0.00 371417 0.47 1.31 1.93 0.36 0.21
31661 0.00 0.00 0.28 0.00 0.00 ∗373574 0.60 1.36 1.92 0.45 0.26
34557 0.00 0.00 0.26 0.00 0.00 ∗369903 0.57 1.35 1.92 0.47 0.19
32564 0.00 0.00 0.30 0.00 0.00 ∗372752 0.51 1.46 2.17 0.42 0.30
32922 0.00 0.00 0.61 0.00 0.00 ∗373447 0.70 1.82 2.19 0.63 0.33
32412 0.00 0.00 0.52 0.00 0.00 385456 0.46 1.41 1.96 0.43 0.20
33600 0.00 0.00 0.56 0.00 0.00 ∗375352 0.62 1.52 2.01 0.52 0.41
32262 0.00 0.00 0.41 0.00 0.00 379899 0.48 1.29 2.05 0.49 0.46

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.8 4 5 2.2 1

50× 5 64803 0.05 0.78 0.79 0.12 0.05 200× 10 1047662 0.48 1.25 1.19 0.17 0.21
68062 0.06 0.88 0.94 0.12 0.08 ∗1035783 0.94 1.54 1.49 0.32 0.15
63162 0.19 1.21 1.34 0.38 0.21 ∗1045706 0.66 1.62 1.30 0.32 0.15
68226 0.17 1.12 1.27 0.22 0.13 ∗1029580 0.77 1.65 1.38 0.45 0.12
69392 0.09 0.87 0.89 0.15 0.09 ∗1036464 0.68 1.35 1.37 0.19 0.13
66841 0.10 0.80 0.82 0.18 0.04 1006650 0.50 1.36 1.39 0.19 0.23
66258 0.03 0.74 0.95 0.07 0.02 ∗1052786 0.95 1.66 1.23 0.24 0.10
64359 0.05 0.89 0.97 0.23 0.05 ∗1044961 0.62 1.51 1.39 0.25 0.11
62981 0.09 0.83 0.81 0.14 0.05 ∗1023315 0.81 1.61 1.29 0.28 0.24

∗68843 0.15 1.13 1.01 0.29 0.10 ∗1029198 0.97 1.87 1.48 0.39 0.25

Avg Rank 1.6 4.2 4.8 3 1.4 Avg Rank 3 4.8 4.2 1.8 1.2

50× 10 ∗87204 0.33 1.12 2.11 0.39 0.18 200× 20 ∗1225817 0.72 1.44 1.68 0.34 0.16
82820 0.22 1.09 2.45 0.60 0.30 ∗1239246 1.07 1.67 1.66 0.54 0.21
79987 0.23 1.07 1.84 0.36 0.22 ∗1263134 1.08 1.65 1.57 0.48 0.26

∗86545 0.21 0.94 1.87 0.36 0.16 ∗1233443 1.25 1.84 1.73 0.58 0.24
86450 0.14 0.90 2.02 0.38 0.25 ∗1220117 1.12 1.79 1.93 0.53 0.17
86637 0.13 0.77 1.55 0.29 0.11 ∗1223238 1.17 1.69 1.69 0.46 0.19
88866 0.25 0.89 1.97 0.48 0.42 ∗1237116 1.03 1.65 1.66 0.64 0.15

∗86820 0.19 0.95 2.04 0.36 0.01 ∗1238975 1.25 1.72 1.72 0.51 0.19
85526 0.29 1.11 2.10 0.42 0.28 ∗1225186 1.44 1.91 1.80 0.59 0.14
88077 0.09 0.76 2.00 0.45 0.42 ∗1244200 1.16 1.62 1.68 0.52 0.11

Avg Rank 1.6 4 5 3 1.4 Avg Rank 3 4.5 4.5 2 1

50× 20 125831 0.10 0.65 1.76 0.39 0.14 500× 20 6708053 0.11 0.35 8.90 2.02 1.00
119259 0.04 0.51 1.58 0.22 0.06 6829668 0.25 0.38 8.58 1.94 0.66
116459 0.19 0.73 2.24 0.44 0.28 6747387 0.24 0.41 8.46 2.04 1.07
120712 0.22 0.61 1.92 0.34 0.34 6787054 0.26 0.45 8.75 1.89 0.84
118184 0.40 0.86 2.30 0.52 0.39 6755257 0.39 0.41 8.72 1.92 0.74
120703 0.19 0.62 1.78 0.35 0.16 6751496 0.19 0.42 8.58 2.13 0.32
122962 0.38 0.71 2.10 0.47 0.36 6708860 0.27 0.45 9.15 2.05 0.93
122489 0.16 0.75 2.24 0.55 0.14 6769821 0.31 0.58 8.62 2.09 0.73
121872 0.16 0.76 1.79 0.37 0.12 6720474 0.15 0.46 8.69 1.91 0.96
124064 0.23 0.90 1.95 0.42 0.29 6767645 0.19 0.44 8.51 2.00 0.86

Avg Rank 1.5 4 5 3 1.5 Avg Rank 1 2.1 5 4 2.9

A Differential Evolution Algorithm for the PFSP with TFT Criterion 169

– For problems with 20 jobs, all the algorithms perform the same, except GM-
EDA which is significantly worse.

– For problems with 50 jobs, DEP has the lowest average rank values and is
significantly better than VNS4, GM-EDA and HGM-EDA.

– For problems with n = 100, DEP has the average rank values very close to
1 and has no clear competitor.

– A similar behaviour is found for problems with 200 jobs, but HGM-EDA,
although having a worse average rank and obtaining only two best values
over 20, is not significantly worse than DEP.

– The only weakness for DEP is found in problems with 500 jobs, where it is
outperformed by AGA and VNS4. Indeed, we observed that the number of
restarts was very small or even zero, thus indicating a low convergence rate
probably due to the large diameter of the search space.

The conclusion of this analysis is that DEP can be considered among the
state-of-the-art PFSP-TFT algorithms and is the best one on the majority of
the benchmark problems.

5 Conclusions and Future Works

In this work, a new discrete Differential Evolution algorithm for Permutation
spaces (DEP) has been proposed. The main contribution is the differential mu-
tation operator which is defined by means of a randomized bubble sort algorithm
and extends the “contour matching” property of classical DE to the permutations
space. Moreover, a randomly biased selection operator that allows to improve
the population diversity in order to mitigate the super-individual effect has been
proposed.

The experimental results on PFSP-TFT show that DEP outperforms the other
state-of-the-art algorithms and found 45 new optimal solutions previously un-
known.

Promising lines of research for further improvements will focus on the anal-
ysis of the contributions of each single DEP component (mutation, crossover,
selection, restart, local search) and the tuning of their parameters.

Furthermore, we are planning to investigate the application of the DEP algo-
rithm to other permutation-based problems (like TSP, QAP, LOP, etc.).

Acknowledgments. This work was partially supported by Italian Ministry
of Education, University and Research (MIUR) under the PRIN 2010-11 grant
no. 2010FP79LR 003 “Logical methods of information management”, by the
University of Perugia, DMI Project “Mobile Knowledge Agents in Evolutionary
Environments” and by the services provided by the European Grid Infrastructure
(EGI), the Italian Grid Infrastructure (IGI) and the National Grid Initiatives
for the Virtual Organization (VO) COMPCHEM.

170 V. Santucci, M. Baioletti, and A. Milani

References

1. Gupta, J., Stafford, J.E.: Flowshop scheduling research after five decades. European
Journal of Operational Research 169, 699–711 (2006)

2. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A Distance-based Ranking
Model Estimation of Distribution Algorithm for the Flowshop Scheduling Problem.
IEEE Transactions on Evolutionary Computation 99, 1–16 (2013)

3. Costa, W.E., Goldbarg, M.C., Goldbarg, E.G.: New VNS heuristic for total flow-
time flowshop scheduling problem. Expert Systems with Appl. 39, 8149–8161
(2012)

4. Xu, X., Xu, Z., Gu, X.: An asynchronous genetic local search algorithm for the
permutation flowshop scheduling problem with total flowtime minimization. Expert
Systems with Appl. 38, 7970–7979 (2011)

5. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the
P//

∑
Ci scheduling problem. European Journal of Operational Research 132,

439–452 (2001)
6. Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Jour. of Global Opt. 11, 341–359
(1997)

7. Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling
problems. Computers & Ind. Eng. 30(4), 1061–1071 (1996)

8. Milani, A., Santucci, V.: Community of scientist optimization: An autonomy ori-
ented approach to distributed optimization. AI Commununications 25, 157–172
(2012)

9. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evaluation of
pheromone models in ACOPlan. Ann. Math. Artif. Intell. 62(3-4), 187–217 (2011)

10. Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for
Global Permutation-Based Combinatorial Optimization. SCI, vol. 175. Springer,
Heidelberg (2009)

11. Cickova, Z., Stevo, S.: Flow Shop Scheduling using Differential Evolution. Manage-
ment Information Systems 5(2), 8–13 (2010)

12. Li, X., Yin, M.: An opposition-based differential evolution algorithm for permu-
tation flowshop scheduling based on diversity measure. Adv. Eng. Soft. 55, 10–31
(2013)

13. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Ap-
proach to Global Optimization. Springer, Berlin (2005)

14. Moraglio, A., Poli, R.: Geometric crossover for the permutation representation.
Intelligenza Artificiale 5(1), 49–63 (2011)

15. Schiavinotto, T., Stutzle, T.: A review of metrics on permutations for search land-
scape analysis. Computers & Oper. Res. 34(10), 3143–3153 (2007)

16. Brest, J., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Prob-
lems. IEEE Trans. on Evol. Comp. 10(6), 646–657 (2006)

17. Taillard, E.: Benchmarks for basic scheduling problems. European Jour. of Oper.
Res. 64(2), 278–285 (1993)

18. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18
(2011)

A Taxonomy of Heterogeneity and Dynamics

in Particle Swarm Optimisation

Harry Goldingay and Peter R. Lewis

Aston Lab for Intelligent Collectives Engineering (ALICE),
Aston Institute for Systems Analytics, Aston University, Birmingham, UK

{goldinhj,p.lewis}@aston.ac.uk

Abstract. We propose a taxonomy for heterogeneity and dynamics of
swarms in PSO, which separates the consideration of homogeneity and
heterogeneity from the presence of adaptive and non-adaptive dynamics,
both at the particle and swarm level. It supports research into the sepa-
rate and combined contributions of each of these characteristics. An anal-
ysis of the literature shows that most recent work has focussed on only
parts of the taxonomy. Our results agree with prior work that both het-
erogeneity, where particles exhibit different behaviour from each other at
the same point in time, and dynamics, where individual particles change
their behaviour over time, are useful. However while heterogeneity does
typically improve PSO, this is often dominated by the improvement due
to dynamics. Adaptive strategies used to generate heterogeneity may end
up sacrificing the dynamics which provide the greatest performance in-
crease. We evaluate exemplar strategies for each area of the taxonomy
and conclude with recommendations.

1 Introduction

There has recently been a sharp rise in interest in heterogeneity of swarms for
particle swarm optimisation (PSO). Since early results (e.g. [1]) showed the
potential benefit of heterogeneity to PSO, it has been shown to offer a high
robustness to unknown problems [2]. In an effort to improve the performance
and robustness of heterogeneous PSO variants, more recent work (e.g. [3,4]) has
focussed on heterogeneity driven by particle-level adaptation, based on run-time
information. However, in this drive to add complexity to PSO by incorporating
heterogeneity, behavioural dynamics and run-time adaptation, there is a key
question which has not yet been fully addressed: are the observed performance
improvements due to better heterogeneity itself, run-time adaptation based on
state information, or simply the increase in behavioural dynamics? In this paper
we tease out these three components of modern adaptive heterogeneous PSO
variants, in order to provide some insight into this question.

Our first contribution is a taxonomy of heterogeneity and dynamics in PSO,
into which we place existing PSO variants from prior work. Accordingly we show
that most recent research has focussed on only part of the design space arising
from our taxonomy, in particular neglecting non-adaptive dynamic PSO in both

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 171–180, 2014.
c© Springer International Publishing Switzerland 2014

172 H. Goldingay and P.R. Lewis

heterogeneous and homogeneous cases. Our second contribution is to show that
these neglected regions of the taxonomy contain PSO variants which outper-
form similar adaptive heterogeneous variants. Furthermore, the introduction of
dynamics often has a greater impact on performance than the introduction of
heterogeneity. Therefore, this paper provides insight into existing PSO variants
and makes recommendations for future PSO research.

Montes de Oca et al. [2] describe a heterogeneous swarm as one in which at
least two particles differ from each other. They found that heterogeneous swarms
typically outperform the worst, and in some cases the best homogeneous swarm
on a particular problem. They propose that heterogeneity mitigates the risk
of choosing the “wrong” variant of PSO for an unknown problem. They iden-
tify three types of heterogeneity: i) static heterogeneity, in which particles in a
heterogeneous swarm never change their configuration (i.e. behaviour), ii) dy-
namic heterogeneity, in which particles’ configurations change either randomly
or according to some predetermined sequence over time, and iii) adaptive hetero-
geneity, where particles’ configurations change based on the state of the swarm;
we use these three classes as a starting point for our taxonomy. From their anal-
ysis, they conclude that future work should focus on adaptive heterogeneity to
improve robust performance of PSO across different problems.

Nipomucino and Engelbrecht [5] define dynamic swarms as those in which
particles change their behaviours during the search, also drawing the distinction
between static, dynamic and adaptive heterogeneous swarms. PSO variants in
the above categories have been proposed by Spanevello and Montes de Oca [6],
Li and Yang [7], Engelbrecht [3] and Nipomucino and Engelbrecht [8]. While
much of the work on dynamic swarms focuses on heterogeneity, dynamics have
also proven useful in homogeneous swarms. In one of the most successful early
variants of PSO, Shi and Eberhart [9] proposed varying particles’ inertial weight
over a swarm’s lifetime. Later variants attempt to improve on this with more
complex models. Chatterjee and Siarry [10] propose a non-linear update scheme
for inertial weights suggesting, however, that an adaptive mechanism for on-
line parameter choice would make their algorithm more robust. Such adaptive
algorithms have shown good empirical performance [11–13]. Other homogeneous
PSO variants use feedback to choose between a discrete set of behaviour types.
Riget and Vesterstrøm [14] propose a variant which monitors diversity in order to
prevent premature convergence, switching behaviour when particles are closely
clustered. Similarly, Evers and Ghalia [15] propose a variant which performs a
one-time update of particle positions when diversity drops below some threshold.

2 Forms of Heterogeneity and Dynamics in PSO

Firstly, we focus on whether or not the swarm is homogeneous or heterogeneous.
Homogeneous swarms are those in which at each point in time, all particles
exhibit the same behaviour as each other. Heterogeneous swarms are those in
which at some point in time, at least two particles exhibit different behaviours
from each other. In this description, we focus on particle update behaviour.

A Taxonomy of Heterogeneity and Dynamics 173

However, our taxonomy can also be used to describe other forms of swarm het-
erogeneity.We further break down homogeneous and heterogeneous PSO variants
according to how the distribution of behaviours in the swarm changes over time:

– In static swarms, the behaviour of each particle does not change over time.
– In constrained dynamic swarms, there is a stationary proportion of each

behaviour, under expectation, between time windows of a predefined size.
Therefore, in constrained dynamic homogeneous swarms, the entire swarm
might progress through a static sequence of behaviours in synchrony.

– In dynamic swarms, the proportion of each behaviour changes over time.
In dynamic homogeneous swarms the entire swarm might progress through
a sequence of behaviours in synchrony, and this sequence varies over time.

– In adaptive swarms, the proportion of each behaviour changes over time in
response to the state of the algorithm as perceived by the particles.

The majority of PSO variants use static homogeneous swarms. Most re-
cent work on heterogeneity in PSO has focussed on the use of adaptive strate-
gies to generate particle behaviour, and therefore use adaptive heterogeneous
swarms. However, these results have often been used to argue that heterogene-
ity of a swarm per se is beneficial, despite the characteristics of heterogeneity,
particle-level and swarm-level dynamic behaviour and adaptivity being conflated.
By dividing both homogeneous and heterogeneous swarms into the above groups,
we can study heterogeneity separately from dynamics and adaptation. Table 1
shows a classification of existing literature in terms of the taxonomy. This clas-
sification includes the earlier categorisation of PSO variants with update rule
heterogeneity due to Montes de Oca et al. [2]. It builds on it firstly by consider-
ing work in the context of our expanded taxonomy which accounts for dynamics
and adaptivity apart from any heterogeneity present, and secondly by includ-
ing the significant amount of work on heterogeneous PSO since 2009. It is clear
that, despite the recent work on heterogeneity in PSO, a great deal of the space
defined by the taxonomy remains to be explored.

3 Experimental Analysis of Heterogeneity in PSO

Table 1 shows that despite the recent work on heterogeneity in PSO, there is a
large part of our taxonomy yet to be explored. Next, we present an experimen-
tal study which establishes that such exploration would be fruitful. We differ-
entiate between update particles on the basis of parameters and by using two
qualitatively different behaviours: Standard PSO [16] and Barebones PSO [17].
These use different information (Standard PSO requires velocity while Bare-
bones PSO does not); however, so that a particle can switch freely between
behaviours, we require that particles maintain all information required by either
behaviour. We say that this is the particle’s cognitive information: the set
Cp(t) = {xp(t),vp(t),hp(t)} where: xp(t) is the particle’s position, vp(t) is the
particle’s velocity and hp(t) is the particle’s historic best position. We as-
sume that the aim of a PSO algorithm is to find an input that minimizes the

174 H. Goldingay and P.R. Lewis

Table 1. A classification of existing PSO variants, in terms of the proposed taxonomy

Characteristic → Homogeneous Heterogeneous
Behaviour ↓
Static

Static homogeneity Static heterogeneity

– Many PSO variants, including
standard PSO [16], barebones
PSO [17] etc.

– Static heterogeneous PSO
(details not available) [6].

– sHPSO: (random
assignment) [3].

– Static heterogeneous PSO
(various fixed proportions) [2].

– Predator & prey particles [1].
– Neutral & charged

particles [18].
– Fitness-distance-ratio and

standard particles [19].
– Quantum particles [20].
– Extra central particle [21].

Constrained
Dynamic

Constrained dynamic
homogeneity

Constrained dynamic
heterogeneity

– None. – Different maximum velocities
after restarts (constrained
after initialisation phase) [22].

Dynamic
Dynamic homogeneity Dynamic heterogeneity

– Inertia weight decay:
time-based linear [9] and
non-linear [10] update.

– None.

Adaptive
Adaptive homogeneity Adaptive heterogeneity

– Fuzzy adaptive PSO [11] and
fuzzy adaptive informed
PSO [13]: inertia weight of
entire swarm updated based on
fuzzy system.

– Adaptive PSO: swarm
parameters updated based on
evolutionary state
estimation [12].

– ARPSO: particles
simultaneously switch between
two behaviours based on
diversity [14].

– RegPSO: all particles perform
a one-time position update at
low diversity [15].

– Stagnation threshold [6].
– Difference proportional

probability [6].
– dHPSO: win-stay-lose-shift [3].
– pHPSO and pHPSO-lin:

inspired by ants [5].
– fk-PSO: probability of

behaviour based on prior
performance [8].

– ALPSO: particle-level
probability matching [7].

– SLPSO: biased probability
matching & super-particle [4].

– Cooperator and defector
particles [23].

– Various adaptive heterogeneous
parameters (see [2]).

result of a cost function f , and so a particle’s historic best position is simply
the lowest cost position it has visited so far. When updating cognitive informa-
tion, particles may make use of information from their neighbourhood: a set of
particles whose states they can observe. In this paper, we assume that all parti-
cles neighbour each other, allowing particles to make use of the global historic
best position ĥp(t): the lowest cost position discovered by any particle.

In Standard PSO a particle p updates its velocity in dimension d as follows:

vp,d(t+ 1) = η vp,d(t) + φ1 · r1,d (hp,d(t)− xp,d(t)) + φ2 · r2,d (ĥd(t)− xp,d(t))

where η is the inertial weight coefficient and r1,d, r2,d are independent random
numbers drawn from U [0, 1]. Particles are attracted to cognitively and socially

A Taxonomy of Heterogeneity and Dynamics 175

determined positions (hp(t) and ĥ(t) respectively) and the constants φ1, φ2 de-

termine the relative importance of these positions. If hp(t) = ĥ(t), then the
social component of equation 3 is ommited (effectively φ2 is set to 0).

In Barebones PSO a particle updates its position in dimension d as follows:

xp,d(t+ 1) ∼ N

(
hp,d(t) + ĥd(t)

2
, |hp,d(t)− ĥd(t)|

)
where N(μ, σ) is the Normal distribution with mean μ and standard deviation
σ. Barebones PSO does not make use of a velocity component but, for it to be
compatible with standard PSO, we set vp(t+ 1) = xp(t+ 1)− xp(t).

We say that a particle’s behaviour at time t, bp(t) is the update function
it is using at that time. In order for a swarm to be dynamic or heterogeneous
its particles must be capable of expressing more than one behaviour. A PSO
variant is comprised of a set of update functions and a strategy for selecting
between these functions. In our study, we make use of two such behaviour sets
composed of variants of standard PSO and barebones PSO.

The first behaviour set, cognitive-biased and social-biased (CBSB) con-
tains two parametrically different versions of standard PSO. The cognitive-biased
function (let φ = 0.5+log 2 then φ1 = 5φ

3 , φ2 = φ
3 , η = 1

2 log 2) makes more use of
cognitive information and is suited to exploration, while the social-biased func-
tion (φ1 = φ

3 , φ2 = 5φ
3 , η = 1

2 log 2) makes more use of social information and
is more suited to exploitation. This set allows us to investigate if an algorithm
expressing two behaviours which, intuitively, are suited to performing different
search tasks, is capable of improving on the best static homogeneous variant.
The second behaviour set, cognitive-biased and barebones (CBBB) con-
tains two quantitatively different functions: the cognitive-biased function above
and barebones PSO. Unlike the CBSB set, the roles of the two functions dur-
ing search is not so clearly complementary. This allows us to investigate if any
results obtained with CBSB only apply when we have clearly complementary
behaviours or whether they apply more generally.

3.1 Exemplar Strategies

We now consider the concrete strategies which particles use to select behaviours.
The strategies used are simple exemplars, allowing us to realise the full range
of swarm-level characteristics described in section 2. With the exception of the
adaptive strategies they are equally applicable to homogeneous and heteroge-
neous swarms to allow a direct comparison. Particles in static swarms, by defi-
nition, never update their behaviour and so set bp(t+ 1) = bp(t).

Particles in constrained dynamic swarms update their behaviour such that
the proportion of behaviours is static over some defined time window. For homo-
geneous swarms, a constrained dynamic selector must be deterministic. We use
a time-based selector which cycles through all possible behaviours, with the time
spent using each given by τ = (τ1, ..., τNu) where τb is the number of time-steps
a particle can spend in behaviour b before switching. After this time has expired,
particles deterministically change to the next behaviour b with τb �= 0.

176 H. Goldingay and P.R. Lewis

For comparability with the constrained dynamic selector, we use a determin-
istic time-based dynamic selector. Similarly to the inertia weight decay used
in [9], it is based on the intuition that certain behaviours are advantageous at
the start of search while others are advantageous at the end. τ becomes non-
static, given by a linear progression from τ start to τ end based on the fraction
of the evaluation budget used. Behaviour is then updated as in the constrained
dynamic case. We choose τ such that we have 10 behavioural cycles per run
(10 ·∑τ∈τ τ = budget where budget is the swarm’s budget of function evalua-
tions) which we have empirically found to be reasonable. Unless specified, τ1 = τ2
in the constrained dynamic case and τ start1 = |τ |, τend2 = |τ | in the dynamic case.

For the above selectors, homogeneity and heterogeneity differ only in initial-
ization. Homogeneous swarms are initialized uniformly with the desired ini-
tial behaviour while heterogeneous swarms are initialized according to a swarm
fraction ρ = (ρ1, ..., ρNu) where ρb is the fraction of particles initialized with
bp(1) = b. This fraction is analagous to the time vector τ with ρb =

τb
|τ | .

We use an adaptive selector based on win-stay-lose-shift [3]. Homogeneous
(respectively heterogeneous) particles keep track of the time υp(t) since the global
best (respectively, their historic best) position improved. If this time exceeds a
threshold θ then the particle will choose another behaviour uniformly at random.
Note that an adaptive selector can only be guaranteed to produce a homogeneous
swarm if it acts based on global information. In both the homogeneous and the
heterogeneous cases, particles are initialized with bp(1) = b.

3.2 Experimental Set Up

We use the homogeneous and heterogeneous versions of each of the strategies
defined previously to represent the areas of our taxonomy. Concrete variants of
PSO are created by combining these strategies with the two update function sets.
We investigate these variants using the well-known set of test functions described
by Hansen et al. [24]. As we are conducting a qualitative investigation rather
than attempting to establish the best possible variant, we omit the full set of
functions in favour of analysing six functions in more detail: Sphere, Ellipsoidal,
Rosenbrock, Rastrigin, Weierstrass and Schaffer F7. The problems have been
chosen so that we have three unimodal, three multi-modal, three separable and
three non-separable functions. The bounds of the search space for all functions
are set to [−5, 5]D, where D is the dimensionality. A trial terminates after an
evaluation budget of D ∗ 1000. All results are based on an average over 50 trials.

3.3 Experimental Results

Here we summarise key results from our experiments, giving more detailed results
in our accompanying technical report [25]. Our initial experiment investigates
whether heterogeneity or dynamics are sufficient in themselves to improve upon
static homogeneous solutions. We evaluate static homogeneous, static hetero-
geneous, constrained dynamic homogeneous and constrained dynamic hetero-
geneous variants using the CBSB and CBBB behaviour sets. Comparing these

A Taxonomy of Heterogeneity and Dynamics 177

(a) (b)

(c) (d)

Fig. 1. Mean of best cost across 50 trials as a function of the fraction of cognitive
particles in a swarm for the Rosenbrock (1a and 1c) and Rastrigin (1b and 1d) functions.
1a and 1b use the CBSB update function set, 1c and 1d use the CBBB update function
set. Note that with fraction 0 or 1, the swarm exhibits static homogeneity.

strategies allows us to ask whether it is more important that particles express
different behaviours over their lifetimes, or are different from each other. We
look at the performance of our variants on the 30 dimensional Rosenbrock and
Rastrigin functions, controlling for swarm composition by running the experi-
ment for varying values of ρ and τ (as described in section 3.1) from (0.0, 1.0)
(no cognitive-biased particles) to (1.0, 0.0) (all cognitive-biased particles).

The results, shown in figure 1 indicate that heterogeneity and dynamics im-
prove on pure homogeneity, particularly compared to the worst of their two
component behaviours. While the type of strategy has a small effect on maxi-
mum performance, some strategies are feasible over wider ranges of swarm com-
position than others. However, a relatively wide range of swarm compositions
perform well, confirming results from the literature on heterogeneous swarms and
allowing us to draw these same conclusions about constrained dynamic swarms.

To validate the above results more generally and to evaluate the benefits of
the dynamic and adaptive models, we test all strategies on 10− 30− and 100−
dimensional versions of all evaluation problems. The results in this paper are for
the CBBB set, but qualitatively similar results were obtained for the CBSB set,
albeit with lower absolute performance. The absolute results do not show a clear
pattern by inspection, except for that the best static homogeneous algorithm is
typically worse than all heterogeneous or dynamic variants. For simpler analysis

178 H. Goldingay and P.R. Lewis

of the variants, we present the median improvement over the best homogeneous
case (here defined as h−v

h , where h is the mean cost of the best homogeneous
variant and v is the mean cost of a variant on a given problem) in table 2.

Table 2. Median improvement of each variant over the best static homogeneous case

Characteristic → Homogeneous Heterogeneous
Behaviour ↓
Static N/A 21%
Constrained Dynamic 56% 46%
Dynamic 33% 45%
Adaptive 37% 23%

Similarly to our first experiment, all dynamic and heterogeneous strategies
improved upon the best static homogeneous behaviour, indicating benefits to
dynamics. However, we do not see clear improvements as we move to the more
complex areas of our taxonomy: neither our dynamic model of the problem nor
our adaptive mechanism (both inspired by successful algorithms from the lit-
erature) have improved on constrained dynamic heterogeneous behaviour. In
contrast, all non-static strategies are improvements on static ones. Note that
we do not claim that a constrained dynamic strategy is optimal (e.g. in com-
parison to the best possible adaptive strategy), however it strongly indicates
that dynamics per-se are making an important contribution to performance and
that the benefits of introducing more complex strategies may be outweighed by
the loss of dynamics. Even if an adaptive algorithm drives the swarm to some
optimal static heterogeneous composition, we have seen from figure 1 that the
benefits compared to a sub-optimal but reasonable composition are minimal.

Finally, we invesigate the percentage of problems on which adding one level of
dynamics/adaptivity improves performance (table 3, note that a figure of 50%
indicates equivalent performance). This supports our previous analysis, showing
that our dynamic strategy is typically worse than our constrained dynamic, while
our adaptive strategy is similar to our dynamic. However, the initial addition of
dynamics (static to constrained dynamic) results in a significant improvement.
Similarly, heterogeneous variants improve upon their homogeneous counterparts
in 60% of tests (fairly uniformly across strategies); it is clear that most of the
observed improvements over the static homogeneous case are due to dynamics.

Table 3. The percentage of problems in which moving from one level to the next in
our taxonomy of swarm behaviours led to improved performance.

Characteristic → Homogeneous Heterogeneous
Behaviour comparison ↓
Static to Constrained Dynamic 78% 94%
Constrained Dynamic to Dynamic 17% 28%
Dynamic to Adaptive 61% 50%

4 Conclusions

In this paper we have proposed a taxonomy for heterogeneity and dynamics of
swarms in PSO, which acts as a design space. The taxonomy builds upon prior

A Taxonomy of Heterogeneity and Dynamics 179

classifications of heterogeneous PSO variants [2,3], by separating the considera-
tion of homogeneity and heterogeneity from that of adaptive and non-adaptive
dynamics, both at the particle and swarm level. It supports research into the
separate and combined contributions of these characteristics. In prior work, such
questions were difficult to pose, leading to the conflation of the effects of hetero-
geneity, dynamics and adaptation in some research. An analysis of the literature
showed that most recent work focuses on only some regions of the design space;
however, other regions may be worthy of more attention. Specifically, while our
results agreed with prior work that heterogeneity and dynamics are both use-
ful, with the behaviours we tested, the introduction of dynamics typically had
a larger impact on performance than the introduction of heterogeneity. Further-
more, our results show that the recent drive to find optimal forms of heterogene-
ity at run-time using adaptation may sacrifice the very dynamics which provide
the greatest performance increase. It will be important to assess the generality
of these conclusions on a wider range of PSO variants and problems.

Our results suggest that future work should focus on dynamics, which have
the ability to encode a model of the problem. Furthermore, we believe that
there is significant scope for the development of adaptation mechanisms which,
rather than adapt particles’ behaviours directly, search online for better forms
of dynamics which in turn determine behaviour. It also seems appropriate that
adaptive PSO variants should not only be compared against static ones, but
also against uninformed dynamic variants. Only by doing this can any observed
improvement be attributed to the adaptation mechanism and not only dynamics.

References

1. Silva, A., Neves, A., Costa, E.: An empirical comparison of particle swarm and
predator prey optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M.,
Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 103–110. Springer,
Heidelberg (2002)

2. Montes de Oca, M.A., Peña, J., Stützle, T., Pinciroli, C., Dorigo, M.: Heterogeneous
particle swarm optimizers. In: 2009 IEEE Congress on Evolutionary Computation,
pp. 698–705. IEEE Press (2009)

3. Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: Dorigo, M., et
al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010)

4. Li, C., Yang, S., Nguyen, T.T.: A self-learning particle swarm optimizer for global
optimization problems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 42(3), 627–646 (2012)

5. Nepomuceno, F.V., Engelbrecht, A.P.: A self-adaptive heterogeneous PSO inspired
by ants. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engelbrecht,
A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 188–195.
Springer, Heidelberg (2012)

6. Spanevello, P., Montes de Oca, M.A.: Experiments on adaptive heterogeneous PSO
algorithms. Technical Report 2009-024, IRIDIA (2009)

7. Li, C., Yang, S.: An adaptive learning particle swarm optimizer for function op-
timization. In: 2009 IEEE Congress on Evolutionary Computation, pp. 381–388.
IEEE Press (2009)

180 H. Goldingay and P.R. Lewis

8. Nepomuceno, F., Engelbrecht, A.: A self-adaptive heterogeneous PSO for real-
parameter optimization. In: 2013 IEEE Conference on Evolutionary Computation,
pp. 361–368. IEEE Press (2013)

9. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE Congress
on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

10. Chatterjee, A., Siarry, P.: Nonlinear inertia weight variation for dynamic adap-
tation in particle swarm optimization. Computers & Operations Research 33(3),
859–871 (2006)

11. Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Proceedings
of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 101–106 (2001)

12. Zhan, Z.H., Zhang, J., Li, Y., Chung, H.H.: Adaptive particle swarm optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(6),
1362–1381 (2009)

13. Neshat, M.: Faipso: Fuzzy adaptive informed particle swarm optimization. Neural
Computing and Applications 23(1), 95–116 (2013)

14. Riget, J., Vesterstrøm, J.S.: A diversity-guided particle swarm optimizer – the
ARPSO. Technical Report 2002-02, Aarhus University

15. Evers, G., Ben Ghalia, M.: Regrouping particle swarm optimization: A new global
optimization algorithm with improved performance consistency across benchmarks.
In: IEEE International Conference on Systems, Man and Cybernetics 2009, pp.
3901–3908 (October 2009)

16. Clerc, M.: Standard Particle Swarm Optimisation. Technical Report hal-00764996,
HAL (2012)

17. Kennedy, J.: Bare bones particle swarms. In: 2003 IEEE Swarm Intelligence Sym-
posium, pp. 80–87. IEEE Press (2003)

18. Blackwell, T.M., Bentley, P.J.: Dynamic search with charged swarms. In: Genetic
and Evolutionary Computation Conference, GECCO 2002, pp. 19–26. Morgan
Kaufmann, San Fransisco (2002)

19. Baskar, S., Suganthan, P.N.: A novel concurrent particle swarm optimization.
In: 2004 IEEE Congress on Evolutionary Computation, pp. 792–796. IEEE Press
(2004)

20. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments.
In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500.
Springer, Heidelberg (2004)

21. Liu, Y., Qin, Z., Shi, Z., Lu, J.: Center particle swarm optimization. Neurocom-
puting 70(4-6), 672–679 (2007)

22. Pongchairerks, P., Kachitvichyanukul, V.: Non-homogenous particle swarm opti-
mization with multiple social structures. In: Proceedings of the 2005 International
Conference on Simulation and Modeling, pp. 137–144. Asian Institute of Technol-
ogy, Bangkok (2005)

23. Di Chio, C., Di Chio, P., Giacobini, M.: An evolutionary game-theoretical approach
to particle swarm optimisation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008.
LNCS, vol. 4974, pp. 575–584. Springer, Heidelberg (2008)

24. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization
benchmarking 2010: Presentation of the noisy functions. Technical Report RR-
7215, INRIA (2010)

25. Goldingay, H., Lewis, P.R.: Experimental results concerning heterogeneity and dy-
namics in particle swarm optimisation. Technical Report AISA-14-01, Aston Insti-
tute for Systems Analytics, Aston University, UK (2014)

Derivation of a Micro-Macro Link

for Collective Decision-Making Systems

Uncover Network Features Based on Drift Measurements

Heiko Hamann1, Gabriele Valentini2, Yara Khaluf1, and Marco Dorigo2

1 Department of Computer Science, University of Paderborn, Paderborn, Germany
{heiko.hamann,yara.khaluf}@uni-paderborn.de

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{gvalenti,mdorigo}@ulb.ac.be

Abstract. Relating microscopic features (individual level) to macro-
scopic features (swarm level) of self-organizing collective systems is chal-
lenging. In this paper, we report the mathematical derivation of a
macroscopic model starting from a microscopic one for the example of
collective decision-making. The collective system is based on the appli-
cation of a majority rule over groups of variable size which is modeled by
chemical reactions (micro-model). From an approximated master equa-
tion we derive the drift term of a stochastic differential equation (macro-
model) which is applied to predict the expected swarm behavior. We give
a recursive definition of the polynomials defining this drift term. Our re-
sults are validated by Gillespie simulations and simulations of the locust
alignment.

1 Introduction

Distributed and decentralized systems that rely on self-organization to coordi-
nate a large number of agents are characterized by nonlinear dynamics. These
systems rely on positive feedback (amplification), negative feedback (damping),
and a multitude of interactions between their components [1]. As a consequence
of nonlinearity combined with a large quantity of microscopic details (i.e., fea-
tures of individual agents), they are generally difficult to analyze and design.
Designers may deepen the understanding of these systems by defining appropri-
ate models that reflect specific features of these systems but are “not flooded
with microscopic details” [2]. Deriving a macro-model (i.e., a model of swarm
features not representing individual agents) mathematically from a micro-model
or vice versa is commonly believed infeasible for the general case. In sociology
this micro-macro relation is known as the micro-macro link [3,4] that has ap-
plications to biology, physics, and engineering, too [5]. An approximation to an
actual micro-macro-model for swarm robotics [6] has been proposed [5,7,8] that
is capable to represent individual agent trajectories as well as swarm densities.
If the considered self-organizing system relies also on inhomogeneous spatial dis-
tributions of agents, the modeling task is even more difficult [5,8]. A promising

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 181–190, 2014.
c© Springer International Publishing Switzerland 2014

182 H. Hamann et al.

approach is to use network models as an abstraction of the interaction patterns
that emerge from self-organized behaviors (i.e., which agent interacts with which
other agents) as done, for example, by Huepe et al. [9] for the example of locusts.

In this paper, we focus on self-organizing collective decision-making (CDM)
systems because they generally consist of few, simple control rules and therefore
provide a good subject to approach the micro-macro problem under inhomoge-
neous spatial distributions of agents. CDM systems are found both in natural
and artificial swarms. A prominent example in nature is given by CDM in ant
colonies [10,11]. CDM systems with tight requirements concerning scalability
and robustness are also investigated in swarm robotics [12,13].

In this paper, we build on a recent work by Biancalani et al. [14]. They define
a simplistic collective decision-making model of foraging in ants (meetings of two
agents followed by a spontaneous switch of one of them) and investigate noise-
induced bistability. Above a critical swarm size, their system fails to converge on
a valid collective decision (i.e., it converges on states with conflicting opinions);
that is, in contrast to swarm intelligence systems, it does not scale. Nonethe-
less, their derivation of a macro-model based on the microscopic description of
the system behavior, namely chemical reactions, is of particular relevance. We
investigate systems operating on local majority rules, that is, subgroups of the
swarm cooperate temporarily and have a consensus on the local majority deci-
sion. These systems scale [12,13], comply with principles of swarm intelligence,
and correspond well to both artificial and natural swarm systems. Following the
mathematical approach of Biancalani et al. [14], we derive a stochastic differen-
tial equation as a macro-model starting with the microscopic description given
by a reaction schema. We focus on the drift terms of these equations that allow
to predict the long-term system behavior. Hence, we succeed in establishing a
mathematically sound micro-macro link requiring only two minor approxima-
tions (Taylor expansion and empirical approach for coefficients in the master
equation).

2 Model and Derivation of a Micro-Macro Link

We consider a swarm of N agents undergoing a CDM process. Agents are char-
acterized by their current opinion, for example, their direction of motion or a
preference for a particular site in the environment. We restrict our investiga-
tions to the simplest case of a binary decision scenario. Each agent favors one
out of two possible opinions, henceforth referred to as opinion 1 and opinion 2.
Agents change their opinion during the CDM process as they apply a major-
ity rule based on their local neighborhood. That is, when taking a decision,
an agent perceives the opinions of its neighbors in a limited perception range,
it includes in this group its own opinion, and eventually adopts the opinion
favored by the majority of this group. The size G of the neighborhood may
vary between different applications of the majority rule. We consider only odd
neighborhood sizes to simplify the analysis (i.e., no tie-breakers necessary) and
therefore G ∈ G = {3, 5, . . .}. Agents take decisions at a rate r. In addition,

Derivation of a Micro-Macro Link for Collective Decision-Making Systems 183

an agent may spontaneously change its opinion at a rate ε. With these sponta-
neous switches we model noise.

We represent the above described microscopic model using a set of chemical
reactions that model all possible causes affecting the opinion of an agent—the
reaction schema. Generally, chemical reactions are used to model the dynamics of
well-mixed compounds; therefore, our model implicitly assumes a spatially well-
mixed system and is thus an approximation of the actual system dynamics. The
definition of the reaction schema depends on the particular scenario of interest.
We give general equations to define the reaction schema:

RM,m
i,j : mXi +MXj

r→ (m− 1)Xi + (M + 1)Xj, (1)

Ri,j : Xi
ε→ Xj . (2)

Given an agent Xi with opinion i ∈ {1, 2}, eq. 1 models the result of the majority
rule applied (at a rate r) to a group of G = m+M agents of which a minority
mXi of m agents favor opinion i while a majority MXj of M agents favor
opinion j ∈ {1, 2} \ i (thus m < M , G odd, transition of one agent from opinion
i to j). Eq. 2 describes the spontaneous switch (at a rate ε) of an agent Xi from
opinion i ∈ {1, 2} to opinion j ∈ {1, 2} \ i and models noise. For clarity, we
provide an example of a reaction schema for group size G = 3:

R2,1
1,2 : X1 + 2X2

r→ 3X2, R1,2 : X1
ε→ X2, (3)

R2,1
2,1 : 2X1 +X2

r→ 3X1, R2,1 : X2
ε→ X1. (4)

Reaction R2,1
1,2 describes a situation in which an agent with opinion 1 has two

neighbors with opinion 2 and, after applying the majority rule, it switches to
opinion 2 (respectively, reaction R2,1

2,1 for an agent with opinion 2). Besides,
reaction R1,2 models the spontaneous switch in the opinion of an agent with
opinion 1 to opinion 2 (respectively, reaction R2,1 for an agent with opinion 2).

If we would know the probability density function f(x1, x2, t) that describes
the time evolution of the proportions of agents x1 and x2 (respectively, with
opinion 1 and opinion 2), then we would have a complete understanding of the
system dynamics. Following the approach of van Kampen [15], f(x1, x2, t) is
obtained by writing and solving the corresponding master equation

∂tf(x1, x2, t) =
∑

[T (x1, x2|x′
1, x

′
2)f(x

′
1, x

′
2, t)

−T (x′
1, x

′
2|x1, x2)f(x1, x2, t)] , (5)

where x′
1 = x1 ± 1/N , x′

2 = x2 ∓ 1/N , and T (a|b) represents the transition rate
from state b to state a. However, analytical solutions of master equations are
known only for a limited number of cases (cf. van Kampen [15]). Nonetheless,
Biancalani et al. [14] derive an approximation to the master equation 5 by means
of step operators, which represent the change in the opinion of a single agent,
and a Taylor expansion in 1/N , which yields

184 H. Hamann et al.

∂tf(x1, x2, t) ≈ [
1

N
(∂x2 − ∂x1)T1 +

1

N
(∂x1 − ∂x2)T2

+
1

2N2
(∂x1 − ∂x2)

2(T1 + T2)]f(x1, x2, t). (6)

Biancalani et al. [14] reduce eq. 6 to a Fokker-Planck equation by inserting the
expressions of the transitions rates T1 and T2 followed by rescaling time: t/N → t.
The Fokker-Planck equation is characterized by a drift term, that describes the
change in the mean proportions of agents x1 and x2, and a diffusion term, which
accounts for the variability of the same quantities. Finally, Biancalani et al. show
the equivalence of the obtained Fokker-Planck equation to a system of stochastic
differential equations (SDE). We focus on the drift term defined in the system of
SDEs because it determines the dominant features of the investigated systems.

The transition rates T1 and T2 give the rates at which x1 and x2 increase
over time. The transition rates depend on the particular reaction schema used
to describe the original process. As above, we provide general functions for the
corresponding reaction rates of a given reaction schema

T1 ≡ T (x1 +
1

N
, x2 − 1

N
|x1, x2)

≈ εx2 +
∑
G∈G

�G/2�−1∑
n=1

r

(
G

n

)2

xG−n
1 xn

2 , (7)

T2 ≡ T (x1 − 1

N
, x2 +

1

N
|x1, x2)

≈ εx1 +
∑
G∈G

�G/2�−1∑
n=1

r

(
G

n

)2

xn
1x

G−n
2 . (8)

In eqs. 7 and 8, G is the set of all possible group sizes while n represents the
number of agents in the group favoring the opinion associated to the minority.
The binomial coefficients are included based on a heuristic consideration and
account for all possible combinations of agents in the group. For the example
reaction schema presented above, eqs. 7 and 8 yield the transition rates

T1 = εx2 + r

(
3

1

)2

x2
1x2 and T2 = εx1 + r

(
3

1

)2

x1x
2
2. (9)

In both reaction rates, the first term models the effect of noise due to spontaneous
switching, while the second term models applications of the majority rule.

The approximation of the master equation in eq. 6 together with the transition
rates in eqs. 7 and 8 provides a complete macroscopic model derived from the
microscopic process described through the reaction schema. As done by Bian-
calani et al., we reduce the model to a single variable z = x1 − x2. The change
of z over time is given by

ż = ẋ1 − ẋ2 = 2(T1 − T2) +D′(x1, x2) = 2Δz(T1, T2) +D(z). (10)

Derivation of a Micro-Macro Link for Collective Decision-Making Systems 185

In eq. 10, the drift 2Δz(T1, T2) and the diffusion D(z) summarize the contribu-
tions given by all possible combinations of group sizes and according majorities
defined by the reaction schema. Henceforth, we focus on averages 〈ż〉 and hence
omit the treatment of the diffusion term. The drift term defines the system’s
main features, such as fixed points and negative/positive feedback. The manual
derivation of the term 2Δz(T1, T2) as a function of z is a rather complex task
for nontrivial reaction schemas. Nevertheless, 2Δz(T1, T2) has a regular struc-
ture that consists of a fixed term −εz, which results from noise, plus a linear
combination of polynomials pG(z) spanning over all considered group sizes G
resulting from the majority rule. Linear combinations of such polynomials are
easily manageable when applied to the analysis of systems.

The explicit derivation of polynomials pG(z) for all considered group sizes re-
quires an extensive sequence of change, expansion, and collection of variables. It
is a strenuous task whose difficulty increases with the size of the group. We pro-
pose a set of recursive functions that automatically generate the corresponding
polynomial for a given group size G. The first function

pG(z) =

�G/2�−1∑
m=1

ΔtmG

(
r

(
G

m

)2
)

(11)

factorizes the polynomial pG(z) in a sum of simpler terms ΔtmG which provide
the contribution to the overall drift of a particular group size G and minority m.
Function ΔtmG , that is defined as

ΔtmG (ρ) = ρ

[
1

4

(
1− z2

)]m
h(G− 2m), (12)

together with function

h(w) = zw +

�w/2�−1∑
i=1

Δtiw

(
(−1)i+1

(
w

i

))
, (13)

implement a recursive series of mathematical operations based on the binomial
theorem (and related to Pascal’s triangle) that are aimed at finalizing the change
of variable z = x1−x2. The resulting polynomial is characterized by odd powers
of z with exponents within [1, G]. For the above example, where G = 3, the noise
term −εz plus the recursion of eqs. 11, 12 and 13 yields for the average change

〈ż〉 = −εz + p3(z) = −εz +Δt13

(
r

(
3

1

)2
)

= −εz + r

(
3

1

)2 [
1

4

(
1− z2

)]
h(1)

= −εz + r

(
3

1

)2 [
1

4

(
1− z2

)]
z

= −εz +
9

4
rz − 9

4
rz3. (14)

186 H. Hamann et al.

3 Simulation of a Locust Alignment Behavior

The desert locust, Schistocerca gregaria, exhibits a collective motion behavior
(‘marching bands’) [16] in which a majority of locusts align and move in a same
direction. Individual locusts seem to change their direction of motion as a re-
sponse to neighbors. In locust experiments [16], the complexity of the natural
environment is reduced to a pseudo-1-d setting by using a ring-shaped arena.
We use the microscopic model of self-propelled particles proposed by Czirók et
al. [17] as our reference model (henceforth ‘Czirók model’).

We study a system of N = 41 particles in 1-d space. A particle i has coordinate
yi ∈ [0, C) (circumference C = 70) and discrete, dimensionless velocity ui ∈
[−1, 1]. We refer to particles with velocity ui < 0 as ‘left-goers’ (respectively,
‘right-goers’ for ui > 0). The dynamics of a particle is defined by yi(t + 1) =
yi(t) + v0ui(t), where v0 = 0.1 is the nominal particle velocity and ui(t + 1) =
F (〈u(t)〉i) + ξi models the particle interaction with its neighbors (subject to
noise ξi uniformly distributed over [−η/2, η/2], η = 2.5). The local average
velocity 〈u(t)〉i for the ith particle is calculated over all neighbors located in
the interval [yi − Δ, yi + Δ] for perception range Δ = 1.0. F describes both
propulsion and friction forces

F (u) =

{
(u+ 1)/2, for u > 0

(u− 1)/2, for u < 0
. (15)

The initial condition is a random uniform distribution for both the particles’
coordinates yi ∈ [0, C) and their velocities ui ∈ [−1, 1].

4 Validation of the Model

We validate the results presented in Sec. 2 by fitting the drift term defined
by linear combinations of polynomials pG(z) to simulations of two microscopic
scenarios. First, for selected group sizes, we fit single polynomials pG(z) to the
average result of simulations of the Gillespie algorithm [18]. Then, we focus on
the locust system described in Sec. 3 and we validate our full methodology.

4.1 Gillespie Simulations

The Gillespie algorithm, also known as Stochastic Simulation Algorithm (SSA),
is a Markov chain Monte Carlo method that is proven to generate statisti-
cally correct trajectories of a given reaction schema [18]. One of the primary
advantages of the Gillespie algorithm is its capability to provide a numeri-
cal solution equivalent to that of the master equation by averaging over an
ensemble of independent realizations. Given a particular reaction schema, the
Gillespie algorithm consists of 3 steps: (i) update the reaction rates for each
reaction according to the current state; (ii) randomly determine which and
when the next reaction will occur; and (iii) update the system state and jump

Derivation of a Micro-Macro Link for Collective Decision-Making Systems 187

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5 0 0.5 1

z

ż

G = 5

G
=
7

G = 9

(a) Gillespie, squares: Gillespie simulation
(2.5× 10

5 samples), line: fitted polynomial

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

-1 -0.5 0 0.5 1

-0.15-0.15

z

ż

G = 3

G = 17

G = 27

(b) Czirók model, squares: Czirók simula-
tion (106 samples), line: fitted polynomials

 0

 0.15

 0.3

 0 5 10 15 20 25 30 35 40

G=3

G=17

G=27

G

d
e
n
si

ty

(c) Czirók model, group size distribution
measured in simulation

 0

 0.35

 0.7

 0 5 10 15 20 25 30 35 40

G=3

G=17

G=27

G

c
′

G

(d) Czirók model, fitted coefficients inter-
preted as group size distribution

-0.004

 0

 0.004

-1 -0.5 0 0.5 1

z

ż

(e) locusts, squares: data from Fig. 3B of
[19] (local model of swarm alignment in lo-
custs), line: fitted polynomials

 0

 0.3

 0.6

 0 5 10 15 20 25 30 35 40

G

c
′

G

(f) locusts, fitted coefficients interpreted as
group size distribution

Fig. 1. Results for fitting the polynomials (eq. 11) to data from Gillespie simulations,
simulations of the Czirók model, and to data of swarm alignment in locusts [19]

188 H. Hamann et al.

back to step (i). We run Gillespie simulations for reaction schemas that im-
plement the majority rule for one fixed group size G. In the simulation we
measure the probability P (x1 + 1

N |switch, x1) that once an agent’s switch in
opinion is observed it increases x1. To get an approximation to the drift term
we rescale ż ≈ P (x1 +

1
N |switch, x1) − (2x1 − 1) = P (z + 1

N |switch, z) − z. By
fitting polynomials pG(z) to the results of Gillespie simulations we can assess
the validity of the approximations introduced in Sec. 2. Fig. 1a shows the re-
sults for group sizes G ∈ {5, 7, 9} of the fits between polynomials pG(z) and the
average of 2.5×105 Gillespie simulations. We achieve good fits for a range of val-
ues −0.4 < z < 0.4 but observe systematic deviations for z < −0.4 and z > 0.4.

4.2 Locust Simulations

In the simulation of the Czirók model we measure the average change 〈L̇〉 of
the ratio of left-goers (averaged over 106 independent simulation runs) as a
function of the current ratio of left-goers L and the current average neighborhood
size G of agents (i.e., agents within perception range Δ) averaged over all agents.
These measurements are easily converted to variable z as introduced in Sec. 2
(z = L−R = 2L− 1), for the ratio of right-goers R. The measured values of 〈ż〉
are then fitted1 using a sum over the above polynomials pG(z)

〈ż〉 = −εz +
∑
G∈G

cGpG(z), (16)

with the additional constraints of cG ≥ 0 which allow us to interpret the coeffi-
cients cG as weights of each polynomial pG(z). The results for G ∈ {3, 17, 27} are
shown in Fig. 1b. We achieve good fits. In the simulation of the Czirók model
we also measure the distributions of neighborhood sizes for given averages of
neighborhood sizes (106 simulation runs) as shown in Fig. 1c. In Fig. 1d we plot
the coefficients, that were obtained in the fitting process for Fig. 1b, in increas-
ing order of G and normalized to

∑
G c′G = 1. By interpreting the coefficients as

weights for each neighborhood size G we can read this plot as an approximation
of the neighborhood size distribution. Although there is no quantitative agree-
ment, we notice a qualitative agreement. The neighborhood size distribution for
G = 3 is unimodal as reflected by the coefficients. For G ∈ {17, 27} we have
bimodal distributions as in the coefficients. Furthermore, the mean of the fitted
coefficients monotonically increases with increasing neighborhood sizes (data not
shown).

Finally, we show results for a different source of data. A publication of Yates
et al. [19] shows in Figs. 2B and 3B how the drift coefficient depends on the
current alignment of a swarm (average velocity). Because the data obtained
from experiments with locusts, Fig. 2B in [19], is too noisy, we use instead
data from their model, Fig. 3B in [19], to fit our polynomials. The result is a
good fit (see Fig. 1e). Fig. 1f shows the corresponding coefficients which peak for

1 Nonlinear least-squares Marquardt-Levenberg algorithm [20] using gnuplot 4.6
patchlevel 1 (2012-09-26), see http://www.gnuplot.info/

http://www.gnuplot.info/

Derivation of a Micro-Macro Link for Collective Decision-Making Systems 189

neighborhood size G = 7 and have a second high value for G = 5. Unfortunately,
Yates et al. do not report neighborhood sizes. Still, our result seems reasonable
given their parameters: locust density 1/3 and interaction radius 5. Assuming a
uniform distribution, we get neighborhood sizes of about 3.3. However, we know
that locusts align and concurrently tend to cluster. Hence, significantly higher
local densities should be expected which supports our finding of neighborhood
sizes G ∈ [3, 9].

5 Discussion and Conclusion

In this paper we extend the approach of Biancalani et al. [14] to reaction equa-
tions that include more than two reacting molecules. The obtained method al-
lows to model majority-rule decisions and is applied to CDM systems relevant
to swarm intelligence. We report a recursive equation to systematically obtain
a set of polynomials. With these polynomials we form linear combinations that
define functions of candidate drift terms (i.e., the average change 〈ż〉 of swarm
fractions that are in favor of one of the opinions). We have shown that, starting
from a sample of drift measurements of a particular system, it is possible to ob-
tain a qualitative prediction of the underlying group size distribution by fitting
these linear combinations. Our method relies only on measurements of the drift
term. Such measurements can be easily obtained as we have shown for the Czirók
model and as done for locusts by Yates et al. [19]. Our method applies to both
directions of micro-macro transitions: from a given average drift term 〈ż〉 (e.g.,
measured or desired) to an approximation of the underlying group sizes (macro
to micro); or vice versa, from a given group size distribution to the prediction of
the average drift 〈ż〉 (micro to macro). Hence, we establish a micro-macro link.

Motivated by these preliminary results, we plan several extensions. We will
investigate methods to apply the master equation instead of approximations
while keeping the constraint that the model should be concise and manageable.
Alternatively, we will investigate the use of different approximations with the
goal of decreasing, for larger group sizes, the difference between the predicted
drift term and the results obtained with Gillespie simulations (see Fig. 1a).
We will also investigate generalizations of this approach that allow for different
decision-making strategies (beyond pure majority decisions) and we will validate
the model against a wider set of simulations (e.g., varied perception ranges).
We plan to search for polynomials describing CDM systems that are orthogonal
functions which can be used as basis functions. This would allow for deterministic
calculations of coefficients in the form of a discrete transform (similar to a Fourier
transform) instead of the proposed fitting approach.

Acknowledgments. This work was partly supported by the European Re-
search Council through the ERC Advanced Grant “E-SWARM: Engineering
Swarm Intelligence Systems” (contract 246939). MD acknowledges support from
the Belgian F.R.S.–FNRS.

190 H. Hamann et al.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford Univ. Press, New York (1999)

2. Schweitzer, F.: Brownian Agents and Active Particles. On the Emergence of Com-
plex Behavior in the Natural and Social Sciences. Springer, Berlin (2003)

3. Alexander, J.C., Giesen, B., Münch, R., Smelser, N.J. (eds.): The Micro-Macro
Link. University of California Press, Berkeley (1987)

4. Schillo, M., Fischer, K., Klein, C.T.: The micro-macro link in DAI and sociology. In:
Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 133–148.
Springer, Heidelberg (2001)

5. Hamann, H.: Space-Time Continuous Models of Swarm Robotics Systems: Sup-
porting Global-to-Local Programming. Springer, Berlin (2010)

6. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

7. Prorok, A., Correll, N., Martinoli, A.: Multi-level spatial models for swarm-robotic
systems. The International Journal of Robotics Research 30(5), 574–589 (2011)

8. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inho-
mogeneous robot swarms with application to commercial pollination. In: LaValle,
S., et al. (eds.) IEEE Int. Conf. on Robotics and Automation, ICRA 2011, pp.
378–385. IEEE Press (2011)

9. Huepe, C., Zschaler, G., Do, A.L., Gross, T.: Adaptive-network models of swarm
dynamics. New Journal of Physics 13(7), 073022 (2011)

10. Franks, N.R., Mallon, E.B., Bray, H.E., Hamilton, M.J., Mischler, T.C.: Strategies
for choosing between alternatives with different attributes: Exemplified by house-
hunting ants. Animal Behavior 65, 215–223 (2003)

11. Dussutour, A., Beekman, M., Nicolis, S.C., Meyer, B.: Noise improves collective
decision-making by ants in dynamic environments. Proceedings of the Royal Society
London B 276, 4353–4361 (2009)

12. Montes de Oca, M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo,
M.: Majority-rule opinion dynamics with differential latency: A mechanism for
self-organized collective decision-making. Swarm Intelligence 5, 305–327 (2011)

13. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
The weighted voter model. In: Lomuscio, A., et al. (eds.) Proc. of the 13th Int. Conf.
on Autonomous Agents and Multiagent Systems, AAMAS 2014, pp. 45–52 (2014)

14. Biancalani, T., Dyson, L., McKane, A.J.: Noise-induced bistable states and their
mean switching time in foraging colonies. Phys. Rev. Lett. 112, 038101 (2014)

15. van Kampen, N.G.: Stochastic processes in physics and chemistry. North-Holland,
Amsterdam (1981)

16. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R.,
Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–
1406 (2006)

17. Czirók, A., Barabási, A.L., Vicsek, T.: Collective motion of self-propelled particles:
Kinetic phase transition in one dimension. Phys. Rev. Lett. 82(1), 209–212 (1999)

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25), 2340–2361 (1977)

19. Yates, C.A., Erban, R., Escudero, C., Couzin, I.D., Buhl, J., Kevrekidis, I.G.,
Maini, P.K., Sumpter, D.J.T.: Inherent noise can facilitate coherence in collective
swarm motion. Proc. Natl. Acad. Sci. USA 106(14), 5464–5469 (2009)

20. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics 11(2), 431–441 (1963)

Messy Coding in the XCS Classifier System

for Sequence Labeling

Masaya Nakata1, Tim Kovacs2, and Keiki Takadama1

1 The University of Electro-Communications, Japan
m.nakata@cas.hc.uec.ac.jp, keiki@inf.uec.ac.jp

2 University of Bristol, UK
kovacs@cs.bris.ac.uk

Abstract. The XCS classifier system for sequence labeling (XCS-SL)
is an extension of XCS for sequence labeling, a form of time-series clas-
sification where every input has a class label. In XCS-SL a classifier
condition consists of some sub-conditions which refer back to previous
inputs. Each sub-condition is a memory. A condition has n sub-conditions
which represent an interval from the current time t0 to a previous time
t−n. A problem of this representation (called interval coding) is, even if
only one input at t−n is needed, the condition must consist of n sub-
conditions to refer to it. We introduce a messy coding based condition
where each sub-condition messily refers to a single previous time. Unlike
the original coding, the set of sub-conditions does not necessarily rep-
resent an interval, so it can represent compact conditions. The original
XCS-SL evolutionary mechanism cannot be used with messy coding and
our main innovation is a novel evolutionary mechanism. Results on a
benchmark show that, compared to the original interval coding, messy
coding results in a smaller population size and does not require as high
a population size limit. However, messy coding requires more training
with a high population size limit. On a real world sequence labeling task
messy coding evolved a solution that achieved higher accuracy with a
smaller population size than the original interval coding.

1 Introduction

Time-series classification has attracted great interests in machine learning. As a
kind of time-series classification, sequence labeling [3] has been applied in a wide
range of real world applications, such as part of speech tagging [8] and recogni-
tion of human activity [2]. While typical time-series data is a sequence of values
which share a class, sequence labeling data is a sequence of input/class pairs. For
example, in a sequence such as speech tagging data, each word in a sentence is
one input and is classified as a noun, verb etc. In sequence labeling, the class of
the current input may depend on previous inputs, hence a learner may need to
refer back to the previous inputs 1. Our interest is in learning human-readable

1 The class of sequence labeling data may also depend on future inputs. However, in
many tasks, such as online learning, we want to predict the current or future class
strictly from the past, and so we consider only previous inputs.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 191–200, 2014.
c© Springer International Publishing Switzerland 2014

192 M. Nakata, T. Kovacs, and K. Takadama

(simple, understandable and compact) solutions from sequence labeling data.
Learning Classifier Systems (LCSs) evolve general condition-action rules (called
classifiers). Previously, we introduced XCS for sequence labeling (XCS-SL) [6],
an extension of XCS [10]. In XCS-SL a classifier has a variable-length condition
which consists of sub-conditions C0, · · · , C−n as memories that refer back to
previous inputs. The condition can grow and shrink by evolution to find a suit-
able memory size (i.e., the number of sub-conditions which are needed). This
variable-length condition is more useful than a fixed-length condition (a fixed
memory size), since it can handle a larger memory size than the fixed-length
one [6]. Some related LCS works, e.g., XCSM [4] which also uses memory and
CCS [9] which uses a chain of classifiers as a kind of variable length condition,
have been presented but due to lack of space we must leave comparison of them
and XCS-SL for future work. Similarly we must leave comparison with other
sequence labeling algorithms for future work.

The variable-length condition C={C0, C−1, · · · , C−n} represents an interval
of inputs from the current time t0 to a previous time t−n. However such coding
(called interval coding) still has a limitation in representing compact conditions.
That is, even if only one previous input at t−n is needed to classify the current
input at t0, the condition must consist of all n memories from C−1 to C−n. For
example, if we only need the memory at time t−n the minimal condition would
be C={C0, C−n} (or even just {C−n} if C0 is not needed to disambiguate the
current input). But, the condition in the interval coding contains all memories.

We introduce a messy-coding based condition for XCS-SL. In the new condi-
tion, each sub-condition messily refers to a single different previous time, hence
the condition is not necessarily an interval. For instance, a condition can be
C={C0, C−5, C−n}. The messy-coding can remove redundant sub-conditions,
so it can represent the minimal conditions. Accordingly, the most important
thing when evolving classifiers is probably finding where and how many pre-
vious inputs are needed. To do so we present a novel evolutionary mechanism
for messy coding in XCS-SL. We test XCS-SL with messy coding on a bench-
mark problem (the Layered Multiplexer Problem) and a Activity of Daily Living
(ADL) recognition problem [7] as a real world application of sequence labeling.

2 Messy Coding in Sequence Labeling

This section describes sequence labeling in more detail by showing example data.
We also explain a difference between the messy coding and the original interval
coding (i.e., the variable-length condition) in XCS for sequence labeling.

2.1 Sequence Labeling

As shown in Figure 1, the sequence labeling dataset which is a part of a human-
activity recognition can be represented as 〈time, input:class〉. The input “kitchen”
is placed at different time stamps “1pm” and “7pm” but it has different classes
“lunch” or “dinner” respectively. Note we do not use the time stamps except to

Messy Coding in XCS Classifier System for Sequence Labeling 193

〈9am, office:work〉, 〈1pm, kitchen:lunch〉, 〈6pm, living :TV 〉, 〈7pm, kitchen:dinner〉

Fig. 1. Example dataset of sequence labeling

order the inputs, i.e., a classifier cannot be represented as “IF time is 7pm THEN
dinner”. Hence, the input “kitchen” does not unambiguously identify the current
class, i.e., the input is perceptually aliased 2. However, when a learner refers back
to the previous input, it can successfully classify it when it considers current and
previous inputs. For instance, a minimal condition for correctly predicting the
“dinner” class in Figure 1 can be {(living, t−1)}. While a minimal condition
should consist of minimum elements, many accurate but not minimal conditions
can exist such as the condition {(kitchen, t0), (living, t−1), (kitchen, t−2)}.

A difficulty of sequence labeling is that a learner does not know where and
how many previous inputs are needed to classify the current input. The learner
explores many possible conditions to find minimal conditions, hence it may need
many memories to refer back to previous inputs at different time stamps.

2.2 Messy Coding vs. Original Interval Coding

The original interval coding (i.e., the variable-length condition) and the messy
coding both are a memory-based approach for classifier conditions. In the orig-
inal interval coding, the condition consists of sub-conditions as a memory, and
includes a sub-condition C0 for the current input at t0. This is because, for non-
aliasing inputs, classifiers consist of only one sub-condition for the current input.
For instance, in Figure 1, classifiers using the original interval coding can be:

cl1={(#, t0), (living, t−1): dinner} cl2={(#, t0), (living, t−1), (#, t−2): dinner}
Here, don’t care symbol # can be any symbol. While the classifier cl1 has a
minimal condition in the original interval coding, cl2 does not since it includes a
redundant sub-condition (#, t−2). However, cl1 is also not minimal in Figure 1
because it has (#, t0) and we saw in Figure 1 that only {(living, t−1)} is needed.

In the messy coding, the condition also consists of sub-conditions, but each
sub-condition messily refers to a different time stamp. Accordingly, unlike the
interval coding, the condition using messy coding may have no sub-condition for
the current input. For instance, classifiers using the messy coding can be:

cl3={(living, t−1), (kitchen, t−2): dinner} cl4={(living, t−1): dinner}
cl3 does not have the minimal condition in Figure 1 because of (kitchen, t−2); cl4
has the minimal one. So the messy coding can represent more compact condi-
tions than the interval coding. However, the messy coding makes many possible
conditions which do not exist in the interval coding. Hence, an evolution of clas-
sifiers is important in finding the minimal conditions. We note there are many

2 This work does not use a history of previous classes, since our interest is in online-
learning where we do not know if the actions were correct in unlabeled data and so
the class history may be unsure information.

194 M. Nakata, T. Kovacs, and K. Takadama

minimal conditions in the messy coding which may result in many overlapping
classifiers. For example, in Figure 1, a condition {(kitchen, t−2)} is also the min-
imal condition for correctly predicting “dinner”. These overlapping classifiers
should increase the population size but it is unclear whether they will otherwise
affect the performance of XCS-SL. We do not consider this issue further.

3 XCS-SL Classifier System

This section describes the mechanism of XCS-SL [6]. XCS-SL almost works the
same as standard XCS [1] but some mechanisms in the performance and the
discovery components are modified (see [6]). We also explain subsumption [1] for
the interval coding and the shrinker, which can help to find compact conditions.

XCS-SL Classifiers. A classifier in XCS-SL is the same as the standard XCS
classifier [1] but it has a new memory size parameter m to determine the number
of sub-conditions in its condition C0, C−1, · · · , C−m. Each sub-condition C−n

corresponds to the input at the time stamp t−n. The memory size m is deter-
mined and fixed when the classifier is generated but the maximum memory size
M for all classifiers is set to a fixed value.

Performance Component. The population [P] is initially empty. At the cur-
rent time t0, XCS-SL stacks the current input to the input list. When the number
of inputs in the list is larger than M , XCS-SL deletes the input at the oldest
time stamp t−M in the list. Next, XCS-SL builds a match set [M] containing
the classifiers in [P] whose sub-conditions C−n each match the stacked input
at the corresponding time t−n. If [M] does not contain all the possible actions
covering [1] generates classifiers; their memory size m is set uniform randomly
but the maximum value is the number of inputs in the input list (so it does not
have more memory than there are past time steps). Each sub-condition C−n is
copied from the corresponding input at the time stamp t−n but each element of
the sub-condition is replaced by # with a probability P#. From here, XCS-SL
works the same as XCS in the performance component (see [1]). After that, the
reinforcement component [1] is performed the same way as in XCS.

Discovery Component. XCS-SL evolves classifiers using a Genetic Algorithm
(GA). In sequence labeling, each input can have its own suitable memory size
(i.e., each input may need a different number of previous inputs). Hence, XCS-SL
is required to evolve classifiers which have the suitable memory size. Accordingly,
XCS-SL builds subsets [A(t−n)] of the action set which each consists of classifiers
in [A] whose memory size m is equal to n. Then XCS-SL selects one subset from
among the subsets [A(t0)], · · · , [A(t−M)] to perform the GA on. Selection is done
by a roulette wheel on the average fitness of each subset. After selection, the GA
is applied to classifiers in the selected subset and generates two new offspring with
the same memory size as their parents. Evolution finds classifiers with a suitable
memory size because classifiers with enough memory have higher fitness than
classifiers with too little memory. Classifiers with more memory than they need

Messy Coding in XCS Classifier System for Sequence Labeling 195

also have high fitness, but subsumption removes them. Two offspring are gener-
ated as copies of two selected parents and the crossover and mutation operators
are applied to the offspring with probabilities χ and μ respectively. In crossover,
each sub-condition is recombined with the corresponding sub-condition of the
other offspring. The mutation changes elements in each sub-condition, after that
it also changes the memory size m of a classifier to a random value with proba-
bility μ. If the memory size shrinks, the extra sub-conditions C−n (n > m) are
removed. If the memory size grows, new sub-conditions C−n (n > m) are added
which are copies of the corresponding input at the time stamp t−n in the input
list and they are generalized as in covering.

Subsumption and Shrinker. Subsumption is a generalization operator that
helps to decrease the population size by subsuming a classifier to a more general
classifier. In XCS-SL, subsumption applies to classifiers which have different con-
dition lengths from each other. To compare the generality of these classifiers, we
assume the shorter classifier has extra virtual maximally general sub-conditions
(that have only #) to fit the condition length of the longer classifier. For in-
stance, as shown below, to compare the generalities of the classifiers cla and clb,
we consider that cla has two maximally general sub-conditions “###” added.
Accordingly, the sub-conditions C−1 and C−2 of cla are more general than the
corresponding sub-conditions of clb, hence, cla is more general than clb.

cla={(1#0, t0)} → {(1#0, t0), (###, t−1), (###, t−2)}
clb={(1#0, t0), (10#, t−1), (11#, t−2)} → {(1#0, t0), (10#, t−1), (11#, t−2)}
Shrinker is a compaction operator that helps to find compact conditions; it

decreases the memory size of classifiers whose sub-conditions are maximally gen-
eral. Specifically, if the sub-condition C−m for the oldest time stamp is coded by
only #, then C−m is removed and the memory size m is decreased by 1. This
process is repeated recursively. For instance, as shown below, the sub-condition
C−2 of classifier clc is removed, since C−2 is the maximally general condition
“###”, and the memory size of clc is reduced to 1. Note that the shrinker is
not applied to classifiers which consist of only sub-condition C0. The shrinker is
applied to classifiers which are generated by covering and the GA.

clc={(1#0, t0), (#1#, t−1), (###, t−2)} → {(1#0, t0), (#1#, t−1)}

4 Messy Coding in the XCS-SL Classifier System

This section presents a modified XCS-SL with messy coding (XCS-SL-messy).
Normally in LCS, conditions are fixed-length ternary strings from {0, 1, #}.
Lanzi [5] introduced messy coding for LCS, in which the # is not represented, and
the position of 0s and 1s are explicit. For example, the normal ternary condition
{1#0} is equivalent to {(1,0), (0,2)} in messy coding. We use a different kind
of messy coding. Lanzi encoded conditions on the single current input messily;
he did not use memory. In contrast, we encode memories messily: we do not
represent fully general memories (###), but we do represent the time-stamp

196 M. Nakata, T. Kovacs, and K. Takadama

Actionset [A]
{(1#0,t0), (00#,t-2) : 1, F=0.8}
{(#00,t-2), (##0,t-3) : 1, F=0.2}
{(000,t-2) : 1, F=0.1}

Paccept(n) =

Candidate time stamps:
t-2t0

0.73, 0.00,1.00,0.18, ..., 0.00}{

[A(C0)]

[A(C-2)]

{(1#0,t0), (00#, t-2), (##0,t-3) : 1, F=0.8}
{(1#0,t0), (#00, t-2), (##0,t-3)
{(1#0,t0), (000, t-2), (##0,t-3) : 1, F=0.1}

: 1, F=0.2}

{(1#0,t0), (00#, t-2), (##0,t-3) : 1, F=0.8}

Subsets of [A] Offspring
{(1#0,t0), (000, t-2),: 1, F=0.45}

{(1#0,t0), (#00, t-2),: 1, F=0.5}

RW selection for C0

RW selection for C-2

Crossover and Mutation

t-2t-1t0 t-M...t-3cl0
cl1
cl2

t-3t-2t-1t0 t-M...
...
...
...

F=0.8
F=0.2
F=0.1

cl0
cl1
cl2

0.8, 0.0,1.1,0.2, ..., 0.0}{FS(n)=

accepted

C0 C-2

C-3C0 C-2

(1#0,t0)

(000,t-2)

To
p

ha
lf

B
ot

to
m

 h
al

f

Fig. 2. Discovery component of XCS-SL-messy

of memories which are not fully general e.g., {(1#0, t0), (11#, t−2)}. Note that
when a memory is not fully general we use a normal ternary string.

The original XCS-SL evolves a suitable memory size for a classifier but with
messy coding we evolve not only how much memory but where (which time steps
a classifier refers to). Because we have changed the representation we also have
to change the discovery component. This is our most important contribution and
we explain it next. We also explain the covering and the shrinker operators which
are also modified for the messy coding. Note a classifier for the messy coding
is the same as the original XCS-SL except for the condition, which consists of
sub-conditions, which each messily refer to a different time stamp.

Covering. When covering takes place, XCS-SL-messy generates classifiers using
the messy coding. Firstly, their memory size m is set uniform randomly to deter-
mine how many sub-conditions are generated. Next, for each sub-condition C−n,
a time stamp t−n is set to a random value to determine where its sub-condition
refers. The time stamp is set except for values which are already assigned in
other sub-conditions. The maximum value for the memory size and the time
stamp is the number of inputs in the input list.

Discovery Component. We introduce a heuristic to estimate how many and
where previous inputs are needed to classify the current input to the correct
class. Figure 2 shows an overview of the discovery component we introduced. As
shown in the top half of Figure 2, we firstly calculate a fitness summation FS(n)
for each time stamp t−n. Here, we assume a sub-condition of a classifier which
has high fitness is a key memory to disambiguate the current input. FS(n) is
calculated by Equation (1), which is a summation of fitness of classifiers which
have sub-condition C−n. In Equation (1), clk ∈ [A](C−n) denotes classifiers
clk in [A] which their conditions have sub-condition C−n. Next, an acceptance
probability Paccept(n) is calculated by Equation (2), which is the normalized value
of the fitness summation. Next, candidate time stamps are selected from among
all possible time stamps. For each time stamp t−n, we decide either to accept it
as a candidate time stamp with the probability of Paccept(n) or to reject it.

Messy Coding in XCS Classifier System for Sequence Labeling 197

FS(n) =
∑

clk∈[A](C−n)

Fk (1) Paccept(n) =
FS(n)

maxnFS(n)
(2)

After that, XCS-SL-messy generates offspring based on the candidate time
stamps. As shown in the bottom half of Figure 2, like the original XCS-SL it
builds subsets of the action set, but they are built in a different view point from
the original one. Specifically, the subset [A(C−n)] consists of classifiers in [A]
whose conditions include the sub-condition C−n. Next, the offspring are gener-
ated from the classifiers in the subsets. The offspring is given a sub-condition for
each candidate time stamp. Firstly, for each candidate time stamp t−n, one par-
ent is selected from the corresponding subset [A(C−n)]. The sub-condition C−n

of the offspring is generated as a copy of C−n of the selected parent. This pro-
cess repeats two times to generate two offspring. The parameters of offspring are
set to averages of the corresponding parameters of their parents. The crossover
is the same way as the original XCS-SL. The mutation changes the memory
size m of a classifier to a random value with probability μ. If the memory size
shrinks, the sub-conditions C−n are randomly selected and removed. If the mem-
ory size grows, new sub-conditions C−n are added but their time stamp t−n is
randomly selected except for time stamps which are already assigned in other
sub-conditions. The C−n are copies of the corresponding input at t−n in the
input list which are generalized as in covering.

Shrinker. In XCS-SL-messy, if the sub-condition C−n for any time stamp t−n

is coded only by #, then its sub-condition is removed and the memory size m
is decreased. Note in the original XCS-SL, the shrinker takes place only on the
sub-condition C−m at the oldest time stamp t−m.

5 Experiment on Benchmark Problem

In the well-known family of l-bit Boolean multiplexer functions [10], the first
k bits are converted to a decimal index into the remaining bits and the value
of the string is the value of the indexed bit. E.g., with l-6, the class of 110001
is 1 as the first 2 bits index the final bit. We introduced the n-Layered l-bit
Multiplexer Problem (n-l LMP) in [6] as a sequence labeling task. We make a
list of D random l-bit binary strings. To train the learner we iterate through
them, using one string as input on each time step t0, t1, · · · , tD. In the LMP, the
class of the current input may depend on another input. Specifically, the first n
bits of the current input are converted to a decimal number as a reference time
rt. To determine the class of the current input, the LMP refers to the input at
t−rt and computes the normal l-bit multiplexer function on it. If the reference
time would be negative, i.e., t−rt<t0, we wrap around to the end of the dataset
and use tD−rt as the reference input. For instance, on 3-6LMP, for the sequence
of inputs {· · · , 000000, 001000, · · · }, the correct class of the ”000000” is 0 since
the class is determined by own input due to rt=0 (and index=0); the correct
class of the ”001000” is determined by the previous input ”000000” due to rt=1
(which means the class is referred to the last input). We use a reward of 1000

198 M. Nakata, T. Kovacs, and K. Takadama

for a correct action, otherwise 0. We use the 0-6 and 3-6 LMP with D=50,000.
Note a 0-l LMP is the normal l-bit multiplexer. Note also the minimal condition
in interval coding is {C0, · · · , C−rt}, but in the messy coding it is {C0, C−rt}.

5.1 Results

Each experiment consists of a number of problems that the system must solve. In
each problem as one iteration, LCS alternatively solves a learning problem and
an evaluation problem (see [10]). We use the standard parameter settings [1]:
ε0=1, μ=0.04, P#=0.33, χ=0.8, β=0.2, α=0.1, δ=0.1, ν=5, θGA=25, θdel=20,
θsub=20, M=8, and Action set subsumption and GA subsumption are turned
on. We use different population size limits N=60,000 and 6,000. The maximum
iteration is 2,000,000. The performance, which is the rate of correct actions the
LCS executed, and population size, which is the number of (macro) classifiers
[10], are reported as the moving average of 50,000 evaluation problems. All the
plots are averages over 30 experiments.

Figure 3 shows the performances and the population sizes of XCS-SL and
XCS-SL-messy on {0, 3}-6LMP with N=60,000 and 6,000. From Figure 3 a),
with N=60,000, on {0, 3}-6LMP both systems reach 100% performance, but
XCS-SL learns faster than XCS-SL-messy. In contrast, from Figure 3 b), with
a small population size limit (N=6,000), XCS-SL performs worse than XCS-
SL-messy: while XCS-SL fails to reach 100% due to the small population size
limit, XCS-SL-messy successfully reaches it. While one algorithm outperforms
the other depending on the population size limit, for both size limits, XCS-SL
has many more classifiers than XCS-SL-messy. Specifically, on 3-6LMP with
N=60,000, XCS-SL has 9367 classifiers but XCS-SL-messy has 2291.

In summary, results suggest 1) messy coding has a smaller population size
(i.e., a number of classifiers in population) than interval coding, 2) interval cod-
ing requires a larger population size limit to reach full accuracy, but 3) messy
coding is slower to reach full accuracy when the population size limit is large.
It is not clear why messy coding results in a smaller population size, but the
smaller population explains observation 2) – because interval coding has a larger
population size it needs a larger population size limit to function. We hypothesis
that 3) is the case because it takes longer to search the larger space of messy
classifiers than the smaller space of interval classifiers. Also, the larger popula-
tion found with interval coding is searching more of the rule space in parallel
than XCS-SL-messy’s smaller population.

Results on the layered and regular (i.e., 0-l LMP) multiplexers are similar:
the performance of interval coding reaches maximum faster than messy coding,
but messy coding has a smaller population size.

6 Experiment on ADL Recognition

This section tests XCS-SL-messy on a real world Activity of Daily Living (ADL)
recognition problem, which has the challenge of a small number of instances and

Messy Coding in XCS Classifier System for Sequence Labeling 199

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

P
er

fo
rm

an
ce

 a
nd

 P
op

ul
at

io
n

si
ze

/6
00

00

Iterations (1000s)

XCS-SL 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

XCS-SL-messy 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

a) N=60,000

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

P
er

fo
rm

an
ce

 a
nd

 P
op

ul
at

io
n

si
ze

/6
00

0

Iterations (1000s)

XCS-SL 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

XCS-SL-messy 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

b) N=6,000

Fig. 3. Performances and Population sizes on {0, 3}-6LMP

a large number of classes. ADL recognition [7] is a classification task to recognize
human activity from binary sensors. We modify the data (OrdonezA) to be a
sequence labeling task. The format of each data point is a time/input/class; an
input in the form of binary sensor data consists of three elements (sensor, sensor
type and room); a class indicates a human activity. The sensor, sensor type and
room can be one of 12 sensors, 5 sensor types and 5 rooms respectively; the class
can be one of 10 human activities (see [6], [7]). The dataset has 397 data points.

We use the first 70% as training data and the last 30% as test data. Each ex-
periment consists of a learning phase and a test phase. The test phase happens
after the learning phase. During the test phase, the system must solve the test
data, and it does not apply the reinforcement and discovery components. We
compare XCS, XCS-SL and XCS-SL-messy, and we employ the same parameter
settings of the previous test except for N = 5000, the maximum iteration is
200,000 and Action Set subsumption was turned off to avoid overly strong gen-
eralization pressure. We calculate the classification accuracy and the population
size during the test phase, which is the average over 30 experiments.

Table 1. a) Classification accuracies (the top half) and p-values (the bottom half) on
ADL recognition. b) Population sizes (the top half) and p-values (the bottom half).
Bold text indicates a significant difference (p<0.01).

a) Classification accuracies

XCS XCS-SL XCS-SL-messy

0.75 0.86 0.88

XCS - 8,15E-07 1.33E-07
XCS-SL - - 9.69E-03

b) Population sizes

XCS XCS-SL XCS-SL-messy

122.4 844.2 769.2

- 6.19E-36 3.82E-33
- - 1.15E-05

Table 1 shows the classification accuracies and populations sizes of all LCSs
and p-values (for classification accuracies and for population sizes) which are
calculated using the Two-tailed paired Student t-test. The population size of

200 M. Nakata, T. Kovacs, and K. Takadama

XCS is quite smaller than other LCSs but the classification accuracies of XCS-SL
and XCS-SL-messy are better than XCS and the positive significant differences
for the classification accuracy are noted (p<0.01). XCS-SL-messy improves on
the classification accuracy of XCS-SL, and the positive significant difference for
the classification accuracy between both systems is noted (p<0.01). Additionally,
XCS-SL-messy had a smaller population size than XCS-SL and the positive
significant difference for the population size is noted (p<0.01).

7 Conclusion

We introduced XCS-SL with a novel messy coding for memories and a novel
evolutionary mechanism to find how many and where previous inputs are needed
to disambiguate the current input. On the Layered Multiplexer Problem we
found messy coding results in a smaller population size and does not require
as high a population size limit. However, messy coding requires more training
with a high population size limit than the original interval coding. On a real
world sequence labeling task messy coding had higher accuracy and smaller
population size than the original interval coding. These results suggest that
the messy-coding in XCS-SL, combined with our new evolutionary mechanism
can successfully learn accurate and compact conditions. We will evaluate other
memory-using LCS on sequence labeling tasks. Finally, we will compare XCS-SL
with non-evolutionary sequence labeling algorithms on a range of datasets.

References

1. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. Journal of Soft
Computing 6(3-4), 144–153 (2002)

2. Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M., Gams, M.: An Agent-based
Approach to Care in Independent Living. In: de Ruyter, B., Wichert, R., Keyson,
D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A.
(eds.) AmI 2010. LNCS, vol. 6439, pp. 177–186. Springer, Heidelberg (2010)

3. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In: ICML 2001, pp.
282–289 (2001)

4. Lanzi, P.L., Wilson, S.W.: Toward Optimal Classifier System Performance in Non-
Markov Environments. Evolutionary Computation 8(4), 393–418 (2000)

5. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding. In: GECCO 1999, pp. 337–344. Morgan Kaufmann (1999)

6. Nakata, M., Kovacs, T., Takadama, K.: A Modified XCS Classifier System for
Sequence Labeling. In: Proc. of GECCO 2014, pp. 565–572. ACM (2014)

7. Ordóñez, F.J., de Toledo, P., Sanchis, A.: Activity Recognition Using Hybrid Gen-
erative/Discriminative Models on Home Environments Using Binary Sensors. Sen-
sors 13(5), 5460–5477 (2013)

8. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Inter-
national Conf. on New Methods in Language Processing, pp. 44–49 (1994)

9. Tomlinson, A., Bull, L.: An Accuracy Based Corporate Classifier System. Soft
Computing 6(3-4), 200–215 (2002)

10. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

Reevaluating Exponential Crossover

in Differential Evolution

Ryoji Tanabe and Alex Fukunaga

Graduate School of Arts and Sciences, The University of Tokyo, Japan

Abstract. Exponential crossover in Differential Evolution (DE), which
is similar to 1-point crossover in genetic algorithms, continues to be
used today as a default crossover operator for DE. We demonstrate
that exponential crossover exploits an unnatural feature of some widely
used synthetic benchmarks such as the Rosenbrock function – dependen-
cies between adjacent variables. We show that for standard DE as well
as state-of-the-art adaptive DE, exponential crossover performs quite
poorly on benchmarks without this artificial feature. We also show that
shuffled exponential crossover, which removes this kind of search bias,
significantly outperforms exponential crossover.

1 Introduction

Differential Evolution (DE) is an Evolutionary Algorithm (EA) that was primar-
ily designed for real parameter optimization problems [16], and has been applied
to many practical problems [14]. A DE population is represented as a set of real
parameter vectors xi = (x1, ..., xD), i = 1, ..., N , where D is the dimensional-
ity of the target problem, and N is the population size. In each generation t,
a mutant vector vi,t is generated from an existing population member xi,t by
applying some mutation strategy. Then, the mutant vector vi,t, is crossed with
the parent xi,t in order to generate trial vector ui,t. After all of the trial vectors
ui,t, 0 ≤ i ≤ N have been generated, each individual xi,t is compared with its
corresponding trial vector ui,t, keeping the better vector in the population.

Algorithm 1. exponential crossover

1 ui,t = xi,t, j is randomly selected from [1, D], L = 1;
2 repeat
3 uj,i,t = vj,i,t, j = (j + 1) modulo D, L = L+ 1;
4 until rand[0, 1) < CR and L < D;

The two most common type of crossover in DE are binomial crossover, anal-
ogous to uniform crossover in GA’s, and exponential crossover, analogous to
1 or 2 point crossover in GA’s [16]. Binomial crossover is implemented as fol-
lows: For each j (j = 1, ..., D), if rand[0, 1) ≤ CR or j = jrand, uj,i,t = vj,i,t.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 201–210, 2014.
c© Springer International Publishing Switzerland 2014

202 R. Tanabe and A. Fukunaga

Otherwise, uj,i,t = xj,i,t, where rand[0, 1) denotes a uniformly selected random
number from [0, 1), and jrand is a decision variable index which is uniformly
randomly selected from [1, D]. CR ∈ [0, 1] is the crossover rate. Exponential
crossover is implemented as shown in Algorithm 1. The choice of crossover type
determines the distribution of the number of variables that are inherited by
children (trial vectors in DE terminology), as well as the contiguousness of the
inherited variables. Although binomial crossover appears to be more frequently
used in state-of-the-art DEs [2,18,23], a number of recent papers have reported
successful usage of exponential crossover [3, 7, 9, 13, 24, 25].

This paper questions the continued usage of exponential crossover in DE. It
has been long known in the GA community that traditional 1-point/2-point
crossover introduces significant positional biases – interactions between genes
that are positionally far from each other in a genome tend to be disrupted, while
interactions between genes that are close to each other tend not to be disrupted
[4]. This positional bias tends to result in undesirable search behavior in real-
world problems, and classical 1-point/2-point crossover, while still introduced in
textbooks, tends not to be used by experienced GA practitioners. Why then, is
exponential crossover, which is quite similar to 1 or 2 point crossover, still used
by the DE community?

We argue that exponential crossover in DE has been overrated because it suc-
cessfully exploits unnatural dependencies between adjacent variables in widely
used synthetic benchmarks. We show that if the benchmarks are altered to elim-
inate these unnatural dependencies, then exponential crossover performs very
poorly. We also evaluate shuffled exponential crossover (SEC), a method for
implementing exponential crossover without relying on arbitrary dependencies
between adjacent variables, which was briefly suggested in [14] but to our knowl-
edge has never been evaluated. Although exponential crossover has been one of
the recommended crossover methods since the introduction of DE in 1995 [16],
we believe that the use of exponential crossover needs to be carefully reconsidered
in light of our experimental results.

2 Adjacent Functions: A Common But Unnatural Class
of Benchmarks

In black-box optimization, synthetic benchmarks (e.g., the 13 classical functions
[22], CEC benchmarks [17, 20], GECCO BBOB [5], and SOCO benchmarks [8])
are often used by EA researchers as proxies for performance on real-world problem
instances. Although synthetic benchmark suites are designed in order to include
representatives of many class of real-world problems (e.g. unimodal/multimodal/
separable/nonseparable), previous work has pointed out that benchmark suites
can some pitfalls in using synthetic benchmarks to evaluate EA’s [11, 15, 20, 21].
One specific issue is the presences of exploitable problem characteristics that do
not arise in real-world problems [11].

One such “exploitable problem characteristic” found in some widely used,
nonseparable synthetic benchmarks is unnatural dependencies between adjacent

Reevaluating Exponential Crossover in Differential Evolution 203

Table 1. Nonseparable Benchmark Functions

Name Definitions Search Range Properties

Rosenbrock f(z) =
∑D−1

i=1

(
100(zi+1 − z2

i)
2 + (zi − 1)2

)
[−30, 30]D Multimodal

Schwefels 1.2 f(z) =
∑D

i=1(
∑i

j=1 zj)
2 [−100, 100]D Unimodal

Block-rotated
Ellipsoid [1]

f(z) =
∑D−1

i=1

∑2
j=1

(
αj−1

(
Ri · (zi, zi+1)

))2
[−5, 5]D Unimodal

variables – variables interacting (exclusively) with other variables that happen
to have similar variable indices. For example, in the Rosenbrock function, a
canonical, nonseparable function that has been widely used as an EA bench-
mark, each term in the summation depends on adjacent variables zi and zi+1

(Table 1). However, there is no particular reason that adjacent variables should
have such dependencies in real-world, black-box optimization problems, and such
dependencies are an artifact of synthetic benchmarks.1

This unnatural problem structure can be easily eliminated using the ran-
domization procedure described in [20]. First, the permutation vector P (P =
P1, ..., PD) is initialized to a random permutation at the beginning of the DE
run. During the DE run, whenever a trial vector x is evaluated, we permute x
using P , resulting in the permuted trial vector x′ = (xP1 , ..., xPD). Then, x

′ is
evaluated using the evaluation function, and the result is the fitness score for
trial vector x. This permutation effectively eliminates arbitrary dependencies
between variables with consecutive in the trial vector x – the dependencies are
now between variables with indices that are consecutive in x′, but exponential
crossover, which operates on x, can not exploit the consecutiveness in x′.

2.1 Exponential Crossover on Adjacent/Distributed Functions

We evaluate exponential crossover on (1) functions with dependencies between
lexicographically adjacent variables, i.e., standard versions of widely used syn-
thetic benchmarks, and (2) modified versions of functions in (1) where the per-
mutation method described above is used to randomize the variable dependencies
and eliminate the adjacent dependency structure. Following [4], we call functions
of the former class adjacent functions, and functions of the latter class distributed
functions.

We used the 3 nonseparable, adjacent functions in Table 1. The Rosenbrock
and Schwefels 1.2 functions are well-known, classical benchmark functions that
have been widely used to evaluate EA’s [22]. The Block-rotated Ellipsoid [1]
is a partially separable function designed to only have dependencies between

1 Of course, there are real-world problems that can be represented in such a way as
to have dependencies between adjacent variables [1] – we are merely arguing that
these are not representative of black-box optimization problems.

204 R. Tanabe and A. Fukunaga

104

105

106

107

108

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(a) Rosenbrock (DE)

104

105

106

107

108

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(b) Schwefels 1.2 (DE)

104

105

106

107

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(c) B. L. Ellipsoid (DE)

105

106

107

108

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(d) Rosenbrock (jDE)

104

105

106

107

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(e) Schwefels 1.2 (jDE)

104

105

106

107

10 20 30 40 50 60 70 80A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

Dimension sizes

exponential (A)
exponential (D)

binomial (D)
SEC (D)

(f) B. L. Ellipsoid (jDE)

Fig. 1. Evaluation of various crossover operators (standard DE and jDE). (A) and (D)
stand ”Adjacent” and ”Distributed” respectively. The horizontal axis represents the
dimensionality D, and the vertical axis represents the average fitness evaluations (for
successful runs) divided by success rate.

zi and zi+1. Here, z = (yP1 , ..., yPD), y = x − o, and for each function, the
location of the global optimum has been shifted by offset o (o = o1, ..., oD),
where each component of o is a uniformly generated random offset. For adjacent
functions, the permutation vector P = (1, ..., D), and for distributed functions,
P is a randomly generated ordering such as P = (6, 1, 3, ...). The 2× 2 rotation
matrix Ri is uniformly generated according to the method of [15] and α = 1e+6.

We studied problems with 10 − 80 dimensions. Each DE run continues until
either (1) the difference between the best-so-far and the optimal solution ≤
1e-8, in which case we treat the run as a “success”, or (2) the # of objective
function calls exceeds 2.0×106, in which case the run is treated as a “failure”. On
each problem, each algorithm is executed 50 times. Following [6], our evaluation
metric is the average # of fitness evaluations in successful runs divided by the
of successes. Small values of this metric indicate a fast and stable search.

We use standard DE [16], as well as the state-of-the-art adaptive DE variants
jDE [2], JADE [23], and SHADE [18].2 The standard DE used a population
size of 100 and F = 0.5, and the most commonly used, and rand/1 muta-
tion strategy – this is a standard configuration in the DE literature [2, 23]. In
addition to exponential crossover, we also ran the experiments with binomial

2 jDE [2], JADE [23], SHADE [18] were originally designed to use binomial crossover;
in order to evaluate exponential crossover on state-of-the-art DE’s, we modified these
to use exponential crossover.

Reevaluating Exponential Crossover in Differential Evolution 205

crossover for comparison. On the standard DE, for each crossover method, for
each benchmark function, and for each dimensionality (D), we use the value
of CR ∈ {0.90, 0.91, ..., 0.99} that yields the best performance according to the
performance metric defined above. For jDE, JADE, and SHADE, which automat-
ically adjusts CR, we use the control parameters recommended in the original
papers on these adaptive methods [2, 18, 23].

The results for standard DE and jDE are shown in Figure 1. Detailed re-
sults for JADE and SHADE are in the supplemental material [19] due to space
constraints, but the SHADE and JADE results are qualitatively similar to the
jDE results. “Shuffled exponential crossover (SEC)” is explained in Section 3.
For cases where all runs failed (success rate for 50 trials = 0), then the data is
not shown. Since binomial crossover behaves almost identically for adjacent and
distributed functions, only the distributed function results are shown.

Figure 1 shows that exponential crossover performs much better on adja-
cent functions compared to distributed functions. The performance gap increase
as the dimensionality increases. For standard DE, exponential crossover out-
performs binomial crossover on all adjacent functions, for all dimensionalities.
In stark contrast, on the distributed functions, the performance of exponential
crossover drops significantly – for all the distributed functions, for all D, expo-
nential crossover performs worse than binomial crossover. In particular, on the
distributed-Rosenbrock and distributed-Schwefels 1.2 functions, for D ≥ 70 di-
mensions, exponential crossover fails on every single run. The results are similar
for jDE. Aside from the results on the Rosenbrock function (Figure 1(d)), the
performance of exponential crossover on distributed functions is clearly worse
than on the adjacent functions.

These results clearly show that the performance of exponential crossover on
nonseparable function benchmarks such as Rosenbrock and Schwefels 1.2 de-
pends on an arbitrary feature of these synthetic benchmarks – variable depen-
dencies between adjacent variables. Given essentially the same, nonseparable
functions without this arbitrary structure, exponential crossover performs much
worse (significantly worse than binomial crossover). Functions such as Rosen-
brock and Schwefels 1.2 have been part of benchmark suites used by to evalu-
ate DE since the original paper introducing DE [16], and continue to be used
today [3, 7, 9, 13, 24, 25]. As a consequence, exponential crossover has been inac-
curately overrated as a DE crossover operator for black-box optimization.

How fragile is exponential crossover to perturbations in the variable index
order? Instead of completely randomizing the variable index order, we investi-
gate the effect of gradually decreasing the dependency between adjacent variable
indices by applying n = 1, ..., D randomized swaps to the variable indices. As
n increases, the number of dependencies between adjacent variables decreases.
We ran standard DE on 50-dimensional problems (same setup as in the previ-
ous experiment). For each problem, we used the CR value that performed best
for each n. Figure 2 shows that for all of the functions, exponential crossover
performs best when n = 0, and rapidly degrades as n increases, i.e., exponential

206 R. Tanabe and A. Fukunaga

4.0×105

6.0×105

8.0×105

1.0×106

1.2×106

1.4×106

1.6×106

1.8×106

0 10 20 30 40 50

A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

of swapped variables

exponential (D)
SEC (D)

(a) Rosenbrock

2.0×105
3.0×105
4.0×105
5.0×105
6.0×105
7.0×105
8.0×105
9.0×105
1.0×106
1.1×106
1.2×106

0 10 20 30 40 50

A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

of swapped variables

exponential (D)
SEC (D)

(b) Schwefels 1.2

2.0×105

3.0×105

4.0×105

5.0×105

6.0×105

7.0×105

8.0×105

0 10 20 30 40 50

A
vg

. #
 o

f e
va

lu
at

io
ns

 /
su

cc
es

s
ra

te

of swapped variables

exponential (D)
SEC (D)

(c) B. L. Ellipsoid

Fig. 2. Effect of gradually decreasing dependencies between adjacent variables for stan-
dard DE using exponential crossover and SEC on 50-dimensional problems. Horizontal
axis = # of randomized swaps (n = 1, ..., D); Vertical axis = average fitness evaluations
(for successful runs) divided by success rate.

crossover is quite fragile with respect to perturbations in dependencies between
adjacent variables.

3 Shuffled Exponential Crossover

The experiments in Section 2 showed that exponential crossover performs poorly
on distributed functions. To alleviate this problem, we evaluate shuffled exponen-
tial crossover. Caruana et al observed that 1-point crossover in GA’s introduced
a very strong search bias in that variables located close to each other in a lin-
ear genome (i.e., variable indices with similar lexicographic values) tended to
be inherited by the same child, while variables located far apart tend to be in-
herited by different children [4]. To eliminate this bias, they proposed shuffle
crossover [4]: First, the variable indices of the parents are randomly shuffled
(the same shuffle is applied to both parents). Next, standard 1-point crossover
is applied to the shuffled genomes. Finally, the indices are restored to their pre-
shuffled states.3

Price et al note that exponential crossover in DE is subject to the same bias
as 1-point crossover in GA’s, and suggested that the shuffling mechanism from
shuffle crossover can be added to exponential crossover in order to alleviate this
problem [14]. In this paper, we call this shuffled exponential crossover (SEC). The
algorithm is shown in Algorithm 2. Recently, Lin et al evaluated a mechanism
called non-consecutive exponential crossover which is in fact, the same as SEC
[12]. However, they do not analyze the effect of this mechanism in the context
of dependencies among variables as we do. In fact, [12] claims “in non-separable
ridge functions (Rosenbrock and Schwefels 1.2 function), differential evolution
algorithms with consecutive crossover are more reliable than those with non-
consecutive crossover” (this is clearly contradicted by our result above).

3 While shuffle crossover is similar to uniform crossover in that the genes that are ex-
changed are dispersed throughout the genome, the # of genomes that are exchanged
has a very different probability distribution, and there is a different search bias.

Reevaluating Exponential Crossover in Differential Evolution 207

Algorithm 2. Shuffled Exponential Crossover (SEC)

1 ui,t = xi,t, k = 1, S(= s1, ..., sD) is randomly shuffled permutation {1, ..., D};
2 repeat
3 j = sk, uj,i,t = vj,i,t, k = k + 1;
4 until rand[0, 1) < CR and k < D;

Table 2. # of Adjacent Functions in Standard Benchmark Suites

Benchmarks # of adjacent functions Function

13 classical [22] 2 / 13 F3, F5

CEC 2005 [17] 4 / 25 F2, F4, F6, F13

CEC 2010 [20] 2 / 20 F19, F20

GECCO BBOB [5] 1 / 24 F8

SOCO benchmarks [8] 10 / 19 F3, F8, F9, F11, F12, F13, F14, F16, F17, F18

Figure 1 shows the results of SEC for standard DE as well as jDE for the
same problems/settings as in Section 2.1.4 Unlike exponential crossover (but,
similar to binomial crossover), the performance of SEC is unaffected by whether
the test function is adjacent or distributed; thus, only the distributed function
results are shown. Figure 2 also shows the results for SEC with best CR value
when n = 0 for the same problems/settings as in Section 2.1. The performance
of SEC is clearly shown to be independent of n.

Figure 1 shows that overall, SEC slightly outperforms exponential crossover on
the distributed functions. However, on the distributed Rosenbrock function (60
dimensions), SEC significantly outperforms exponential crossover. Also, on the
distributed-Schwefels 1.2 function, SEC is competitive with binomial crossover,
even on 70 ≥ dimensional problems where exponential crossover failed on every
single run. These results show that while exponential crossover depends on the
ordering of variables (i.e., whether the function is adjacent or distributed), SEC,
as expected, does not depend on the index positions of the variables and yields
a much more stable search performance as a result.

4 Is Exponential Crossover Overrated?

Past evaluations of DE crossover operators on standard benchmark test suites
need to be reconsidered in light of our analysis of the interaction between adja-
cent functions and exponential crossover. Functions with dependencies between
adjacent variables (e.g., Rosenbrock, Schaffer F7, Whitley’s composite func-
tions [21]) are included in widely used benchmark suites. Table 2 shows the

4 Results for JADE and SHADE are in the supplemental material [19].

208 R. Tanabe and A. Fukunaga

Table 3. SEC vs. binomial and exponential crossover on the CEC2014 benchmark
functions [10] for D = 50 (Wilcoxon rank-sum test significance threshold p < 0.05)

exponential binomial

DE jDE JADE SHADE DE jDE JADE SHADE

vs. SEC # of better 1 0 0 0 12 18 19 13
Wilcoxon rank-sum # of worse 8 2 3 5 9 5 7 6

(significance: p < 0.05) # of no sig. 21 28 27 25 9 7 4 11

number of adjacent functions out of the total number of functions in the typi-
cal benchmarks. The larger the number of adjacent functions in the benchmark
suite, the more favorable the suite is for methods that exploit the adjacent struc-
ture, such as DE with exponential crossover. In particular, note that 10 out of 19
functions in the recent Soft Computing Journal (SOCO) benchmarks [8] are ad-
jacent functions, making it particularly vulnerable to exploitation by exponential
crossover. In fact, all 7 of the DE algorithms submitted to the SOCO special issue
evaluation used exponential crossover. It would seem that due to the presence of
adjacent functions, exponential crossover has been overrated in previous evalua-
tions (assuming that benchmark suites are supposed to model true “black-box”
scenarios where there is no a priori reason to believe that adjacent variables have
dependencies).

How do DE crossover operators compare on a benchmark set that does not
contain any adjacent functions? The recently proposed CEC2014 benchmark
set [10] consisting of 30 problems, does not include any adjacent functions.
We evaluated SEC vs exponential crossover vs binomial crossover on DE, jDE,
JADE, and SHADE on the CEC2014 benchmarks (in 10, 30, and 50 dimensions),
following the evaluation methodology specified in the CEC2014 benchmark com-
petition [10]. The overall results for D = 50 dimensions are shown in Table 3.5

As shown in Table 3, for a diverse benchmark set, SEC outperforms exponential
crossover for all DE algorithms. Binomial crossover performs best for all DE
algorithms.

5 Conclusion

This paper showed that exponential crossover, one of the standard crossover
methods in DE, implicitly exploits an unnatural structure found in some syn-
thetic benchmark problems, including some widely used, nonseparable functions
(Rosenbrock and Schwefels 1.2), where there are strong dependencies between
variables with consecutive indices. We showed that exponential crossover per-
forms significantly worse if we slightly perturbing these classical benchmarks
to remove these arbitrary, lexicographic dependencies, i.e., after artificial de-
pendencies between adjacent variables are removed, the “true” performance of

5 The results for D = 10, 30 are in the supplemental data [19].

Reevaluating Exponential Crossover in Differential Evolution 209

exponential crossover appears to be significantly worse than previously believed.
We believe that for synthetic benchmarks [5, 8, 17, 20, 22], the performance of
exponential crossover has been overrated [3, 7, 9, 13, 24, 25]. Thus, the suitabil-
ity of exponential crossover should be reevaluated in light of our results. We
showed that SEC, which does not implicitly assume sequential dependencies be-
tween variables and does not have the same search bias as exponential crossover,
significantly outperforms exponential crossover overall, and is competitive with
binomial crossover. While SEC was suggested by [14], and also proposed by [12],
our work is the first to identify the specific weaknesses described above for expo-
nential crossover and show that shuffling results in improved overall performance.
Although there is still no clear criteria to determine whether binomial crossover
or SEC should be used for a particular problem (a direction for future work),
we believe that we have presented sufficient evidence to suggest that plain, ex-
ponential crossover should no longer be considered as an appropriate, default
crossover operator for DE. SEC (or binomial crossover) should be used instead
of exponential crossover, unless there is some prior knowledge that there are
dependencies between consecutive variables.

As we showed for exponential crossover in DE, algorithms that (intentionally
or unintentionally) exploit this dependency can appear to perform much better
than they would actually perform on real-world problems without this artificial
structure. As shown in Section 2, randomizing the lexicographic positions of the
variables for all benchmark functions, as suggested by [20] is a simple method
for avoiding this benchmarking pitfall, and we believe that black-box bench-
mark suites should apply this randomization to avoid unintentionally biasing
the evaluation results.

References

1. Bouzarkouna, Z., Auger, A., Ding, D.Y.: Local-meta-model CMA-ES for partially
separable functions. In: GECCO, pp. 869–876 (2011)

2. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control
Parameters in Differential Evolution: A Comparative Study on Numerical Bench-
mark Problems. IEEE Tran. Evol. Comput. 10(6), 646–657 (2006)

3. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using popu-
lation size reduction and three strategies. Soft Comput. 15(11), 2157–2174 (2011)

4. Caruana, R., Eshelman, L.J., Schaffer, J.D.: Representation and Hidden Bias II:
Eliminating Defining Length Bias in Genetic Search via Shuffle Crossover. In: IJ-
CAI, pp. 750–755 (1989)

5. Hansen, N.: GECCO BBOB (2014), http://coco.gforge.inria.fr/doku.php
6. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test

Functions. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 282–291.
Springer, Heidelberg (2004)

7. Herrera, F., Lozano, M., Molina, D.: Components and parameters of de, real-coded
chc, and g-cmaes. Technical report, Univ. of Granada (2010)

8. Herrera, F., Lozano, M., Molina, D.: Test suite for the spec. iss. of Soft Computing
on scalability of evolutionary algorithms and other metaheuristics for large scale
continuous optimization problems. Technical report, Univ. of Granada (2010)

http://coco.gforge.inria.fr/doku.php

210 R. Tanabe and A. Fukunaga

9. LaTorre, A., Muelas, S., Peña, J.M.: A MOS-based dynamic memetic differen-
tial evolution algorithm for continuous optimization: A scalability test. Soft Com-
put. 15(11), 2187–2199 (2011)

10. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem Definitions and Evaluation Cri-
teria for the CEC 2014 Special Session and Competition on Single Objective
Real-Parameter Numerical Optimization. Technical report, Zhengzhou Univ. and
Nanyang Technological Univ. (2013)

11. Liang, J.J., Suganthan, P.N., Deb, K.: Novel Composition Test Functions for Nu-
merical Global Optimization. In: Swarm Intell. Symp., pp. 68–75 (2005)

12. Lin, C., Qing, A., Feng, Q.: A comparative study of crossover in differential evolu-
tion. J. Heuristics 17(6), 675–703 (2011)

13. Noman, N., Iba, H.: Accelerating Differential Evolution Using an Adaptive Local
Search. IEEE Tran. Evol. Comput. 12(1), 107–125 (2008)

14. Price, K.V., Storn, R.N., Lampinen, J.A.: Differential Evolution: A Practical Ap-
proach to Global Optimization. Natural Computing Series. Springer (2005)

15. Salomon, R.: Re-evaluating genetic algorithm performance under coordinate rota-
tion of benchmark functions. A survey of some theoretical and practical aspects of
genetic algorithms. BioSystems 39(3), 263–278 (1996)

16. Storn, R., Price, K.: Differential Evolution - A simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical report, International
Computer Science Institute, Berkeley, CA (1995)

17. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari,
S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session
on Real-Parameter Optimization. Technical report, Nanyang Technological Univ.
(2005)

18. Tanabe, R., Fukunaga, A.: Success-History Based Parameter Adaptation for Dif-
ferential Evolution. In: IEEE CEC, pp. 71–78 (2013)

19. Tanabe, R., Fukunaga, A.: Supplemental material (2014),
https://sites.google.com/site/tanaberyoji/home/ppsn2014-supplement.pdf

20. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark Functions for
the CEC 2010 Special Session and Competition on Large-Scale Global Optimiza-
tion. Technical report, Univ. of Science and Technology of China (2010)

21. Whitley, D., Mathias, K., Rana, S., Dzubera, J.: Evaluating evolutionary algo-
rithms. Artificial Intelligence 85, 245–276 (1996)

22. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Tran.
Evol. Comput. 3(2), 82–102 (1999)

23. Zhang, J., Sanderson, A.C.: JADE: Adaptive Differential Evolution With Optional
External Archive. IEEE Tran. Evol. Comput. 13(5), 945–958 (2009)

24. Zhao, S., Suganthan, P.N.: Empirical investigations into the exponential crossover
of differential evolutions. Swarm and Evol. Comput. 9, 27–36 (2013)

25. Zhao, S., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-
trajectory search for large-scale optimization. Soft Comput. 15(11), 2175–2185
(2011)

https://sites.google.com/site/tanaberyoji/home/ppsn2014-supplement.pdf

An Extended Michigan-Style Learning Classifier

System for Flexible Supervised Learning,
Classification, and Data Mining

Ryan J. Urbanowicz, Gediminas Bertasius, and Jason H. Moore

Institute for Quantitative Biomedical Sciences, Department of Genetics
Geisel School of Medicine, Lebanon, NH, USA

{ryan.j.urbanowicz,jason.h.moore}@dartmouth.edu

http://www.epistasis.org/

Abstract. Advancements in learning classifier system (LCS) algorithms
have highlighted their unique potential for tackling complex, noisy prob-
lems, as found in bioinformatics. Ongoing research in this domain must
address the challenges of modeling complex patterns of association, sys-
tems biology (i.e. the integration of different data types to achieve a
more holistic perspective), and ‘big data’ (i.e. scalability in large-scale
analysis). With this in mind, we introduce ExSTraCS (Extended Su-
pervised Tracking and Classifying System), as a promising platform to
address these challenges using supervised learning and a Michigan-Style
LCS architecture. ExSTraCS integrates several successful LCS advance-
ments including attribute tracking/feedback, expert knowledge covering
(with four built-in attribute weighting algorithms), a flexible and efficient
rule representation (handling datasets with both discrete and continu-
ous attributes), and rapid non-destructive rule compaction. A few novel
mechanisms, such as adaptive data management, have been included to
enhance ease of use, flexibility, performance, and provide groundwork for
ongoing development.

Keywords: Learning Classifier System, Genetics, Epidemiology, Epis-
tasis, Heterogeneity, Evolutionary Algorithm, Systems Biology.

1 Introduction

Machine learning algorithms driven by evolutionary mechanisms offer a promis-
ing avenue for data mining within complex, noisy problem domains. Michigan-
style learning classifier systems (LCS) constitute a unique class of algorithms
that distribute learned patterns over a collaborative population of individually
interpretable (IF:THEN) rules, allowing them to flexibly and effectively describe
complex and diverse problem spaces found in behavior modeling, function ap-
proximation, classification, and data mining. Michigan LCS algorithms apply
iterative rather than batch-wise learning, meaning that rules are evaluated and
evolved one data instance at a time. This makes them naturally well-suited to
learning different problem niches found in multi-class, latent-class, or hetero-
geneous problem domains. LCS algorithms are fundamentally multi-objective,

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 211–221, 2014.
c© Springer International Publishing Switzerland 2014

http://www.epistasis.org/

212 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

evolving rules toward maximal accuracy and generality(i.e.rule simplicity) to
improve predictive performance [1]. We focus on classification and data mining
problems in genetics and epidemiology where risk factors that explain variation
in disease phenotypes are sought. Certain complicating phenomena are known to
interfere with the traditional mapping of genotype to phenotype [2]. We explicitly
consider two such phenomenon; epistasis (i.e. gene-gene interaction) and genetic
heterogeneity. Also, new systems biology approaches will require the integration
of different data types (e.g. genetic, epigenetic and environmental) embracing a
more holistic perspective when searching for predictive or causal disease risk fac-
tors. Difficulty is further compounded in the context of large-scale bioinformatic
investigations where the computational and methodological limitations hinder
scalability with increasing numbers of attributes and/or training instances.

With these challenges in mind, we introduce the Extended Supervised Track-
ing and Classifying System (ExSTraCS). ExSTraCS has been primarily designed
to address complex, noisy, supervised learning, single-step problem domains
with 2 or more balanced/imbalanced classes, and with continuous or discrete
attributes. ExSTraCS is descended from a lineage of Michigan-style LCS al-
gorithms, founded on the architecture of Wilson’s Extended Classifier System
(XCS) [3], the most successful and best-studied LCS algorithm to date. The
Supervised Classifier System (UCS) [4] replaced XCS’s reinforcement learning
scheme with a supervised learning strategy to deal explicitly with single-step
problems such as classification and data mining. Comparing select Michigan
and Pittsburgh-style LCS algorithms, UCS showed particular promise when ap-
plied to complex biomedical data mining problems with patterns of epistasis and
heterogeneity [5,6]. UCS inspired two algorithmic expansions named Attribute
Tracking and Feedback UCS (AF-UCS) and Expert Knowledge UCS (UCS-EK).
AF-UCS introduced mechanisms that improved learning and uniquely allowed
for the explicit characterization of heterogeneous patterns and the identification
of candidate disease subgroups [7,8]. UCS-EK incorporated of expert knowledge
into UCS learning for smart population initialization, directed rule discovery,
and reduced run time [9]. Recently, novel rapid rule compaction strategies were
developed and evaluated for post-processing rule populations to enhance inter-
pretability and improve predictive performance [10]. ExSTraCS merges success-
ful components of this algorithmic lineage with other valuable LCS research, and
a redesigned UCS-like framework with a few novel features. In addition to inte-
grating attribute tracking/feedback, expert knowledge covering, and rapid rule
compaction, ExSTraCS (1) adopts a flexible and efficient rule representation sim-
ilar to the one described in [11], to accommodate data with both discrete and
continuous attributes, (2) outputs attribute tracking scores and global statistics
(in addition to a rule population) for significance testing, and visualization-
guided knowledge discovery as described in [12], (3) includes an adaptive data
detection scheme to adjust the algorithm to the characteristics of the dataset,
and (4) includes a built-in selection of four attribute weighting algorithms to
discover potentially useful expert knowledge as a pre-processing step.

An Extended Michigan-Style Learning Classifier System 213

2 ExSTraCS

The Extended Supervised Tracking and Classifying System (ExSTraCS) com-
bines a number of existing and completely novel aspects into a single, flexible
LCS framework aimed at overall functionality, ease of use, as a platform for
ongoing algorithmic development. The algorithm itself is coded in Python, well
annotated, and freely available on sourceforge.net. We begin with an overview of
ExsTraCS referencing a schematic of major components given in Figure 1. We
follow with details of components that differentiate ExSTraCS from the UCS or
XCS algorithms.

ExSTraCS begins with (A) data pre-processing, followed by (B) algorithm
learning/training, and ending with (C) rule population post-processing. (A) ExS-
TraCS will accept a finite dataset with some number of independent attributes
and a single class variable as the training dataset. A testing dataset may be
optionally loaded for complete rule population evaluations. Adaptive data man-
agement initially determines and stores key characteristics of this dataset for
use during learning iterations. Lastly, expert knowledge (EK) may be loaded or
discovered from the dataset using one of four implemented attribute weighting
algorithms. These weights are converted describing relative probabilities that
attributes in the data will be valuable for discriminating class/endpoint. (B)
The core ExSTraCS algorithm largely follows a typical iterative Michigan-style

Adaptive
Data

Management

[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters 6

Deletion
10

 Pre-Processing:

 Post-Processing:

Data Set 1

[C] [I]
4

Subsumption
7 Attribute

Feedback

Expert
Knowledge

Attribute Tracking 8

A

B

C

ExSTraCS Iterative
Learning Cycle:

Training Instance

INPUT

OUTPUT

[PC] Prediction

A Expert Knowledge
Discovery

Rule
Compaction

Fig. 1. ExSTraCS Schematic: Ovals are mechanisms, bordered squares are sets of
either data or classifiers, green = classifier discovery mechanism, purple = traditional
LCS mechanism, and blue = mechanisms unique to ExSTraCS

214 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

learning cycle that includes the following 10 steps repeatedly up to a maxi-
mum number of learning iterations: (1) One training instance is taken from the
dataset without replacement. (2) The training instance is passed to a population
[P] of classifiers/rules that is initially empty. A classifier is a simple IF/THEN
rule comprised of a condition (i.e. specified attribute states), and what is tradi-
tionally referred to as an action (i.e. the state of the class or endpoint). (3) A
match set [M] is formed, that includes any classifier in [P] that has a condition
matching the training instance. (4) [M] is divided into a correct set [C] and an
incorrect set [I] based on whether each classifier specified the correct or incorrect
class/phenotype. (5) If, after steps 3 and 4, [C] is empty, covering applies expert
knowledge to intelligently generate a matching and ’correct’ classifier added to
[M] and [C]. (6) For every classifier in [P], a number of parameters are maintained
and updated throughout the learning process such as: numerosity (the number of
copies of a given classifier in [P]), rule accuracy which is the proportion of times
in which a classifier has been in a [C] over all times it has been in a [M]; and clas-
sifier fitness, which is simply equal to classifier accuracy in this implementation
(i.e. ν = 1). We had previously observed that placing too much emphasis on op-
timal accuracy in calculating fitness led to dramatic overfitting in noisy problem
domains [5]. Classifier parameters (e.g. fitness) are updated for classifiers within
[C] and [I]. (7) Subsumption, a generalization mechanism is applied to [C] [3]. A
similar subsumption mechanism is also applied to new classifiers generated by
the genetic algorithm (GA). (8) Classifiers in [C] are used to update attribute
tracking scores for the current training instance. (9) The GA uses tournament
selection to pick two parent classifiers from [C] based on fitness and generates
two offspring classifiers which are added to [P]. The GA includes two discover
operators: crossover and mutation (χ = 0.8 and υ = 0.04, respectively). All
classifiers in [C] and [I] are returned to [P]. (10) Lastly, whenever the size of [P]
is greater than the specified maximum, a deletion mechanism decrements the
numerosity of a classifier (assuming it is > 1) or removes it from [P]. Deletion
probability is a function of classifier numerosity, average [M] size and is inversely
proportional to fitness. Notably, ExSTraCS cycles do not alternate between an
explore/exploit phases as described in XCS [3] due to supervised learning. How-
ever, for performance tracking and prediction evaluation, a prediction array is
generated every iteration from [M] to obtain a class prediction. A class predic-
tion is made by a fitness weighted vote of all classifiers within [M]. The class
with the largest ‘vote’ is the predicted class. (C) After all learning iterations
have completed, rule compaction is applied as a post-processing step to remove
poor and/or redundant rules from [P] to yield [Pc]. Upon request, ExSTraCS
will yield up to four distinct output files after the final iteration, or any iter-
ation at which a full evaluation is requested. These include (1) the population
of classifiers collectively constituting the prediction ‘model’ (Note: ExSTraCS is
uniquely set up to load a given population file and continue learning from where
it left off), (2) population statistics, summarizing major performance statistics
including global training and testing accuracy of the classifier population [12],
(3) co-occurrence scores for the top specified pairs of attributes in the dataset

An Extended Michigan-Style Learning Classifier System 215

Quaternary Knowledge
Representation

Mixed Discrete-Continuous
Attribute-List Knowledge Representation

Rule Condition:

Classification/Action:

[#, 2, #, #, 0, #, 1, 2, #, #]

1

[1, 4, 6, 7]

[2, 0, [0.4 - 0.7], ‘high’]

1

Attribute Reference:

Rule Condition:

Classification/Action:

Fig. 2. Knowledge Representations: Quaternary vs. Mixed Discrete-Continuous
Attribute List. The ‘#’ symbol indicates ‘attribute not specified’, which matches any
attribute state. The mixed representation only stores specified attributes, represents
continuous value states as flexible ‘ranges’, and allows for non-numerical states.

[12], and (4) attribute tracking scores for each instance in the dataset [7]. These
outputs may be evaluated and visualized to facilitate knowledge discovery as
described in [12].

Adaptive Data Management. We introduce a simple adaptive data manage-
ment (ADM) scheme to facilitate ease of use, improve efficiency, and algorithmic
adaptation to different datasets. ADM will load and format training (and op-
tionally testing) data, automatically identifying key characteristics including:
number of attributes, number of instances, the location of the endpoint variable
column, and the location of a column for instance identifiers (optional, but use-
ful in tying attribute tracking scores back to specific individuals in the dataset).
Also, ADM examines state values for all attributes and applies a user defined
run parameter (discreteAttributeLimit) to determine and store whether each
attribute is to be treated as discrete or continuous. If discrete, each possible
state value stored, while if continuous, the maximum and minimum values are
stored, for use in limiting covering and GA mechanisms. We plan to expand
ADM to store state frequency information which we expect can be applied to
further improve performance. ADM reduces redundancy, simplifies data format-
ting requirements, and paves the way for further algorithmic enhancements.

Knowledge Representation. Our prior implementations of UCS [5], AF-UCS
[7], and UCS-EK [9] were coded with a quaternary knowledge representation to
operate on single nucleotide polymorphism (SNP) case/control data. SNPs are
discrete genetic attributes with encoded states (0,1,or 2). ExSTraCS adopts a
mixed discrete-continuous attribute-list knowledge representation (see Figure 2)
allowing learning on datasets with discrete and/or continuous attributes. This
strategy is quite similar to the one proposed by Bacardit in [11] which extended
the attribute-list knowledge representation (ALKR), designed for continuous at-
tributes, with the GABIL discrete attribute representation [13]. ALKR only
stores information about attributes that are specified in a classifier which sig-
nificantly reduces run time in both matching and attribute tracking. This ef-
fect is particularly important in datasets with a large number of non-predictive
attributes. ExSTraCS keeps the ALKR representation but avoids the GABIL

216 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

representation in favor of a simpler but less generalizable strategy for represent-
ing discrete attribute states. Specifically, classifier conditions can only specify
one state for discrete attributes, while GABIL allows for some subset of at-
tribute states to be simultaneously specified. While this may be advantageous
for evolving a maximally compact rule-set, this approach is not in-line with the
global approach to knowledge discovery proposed in [12] which relies on impor-
tant attributes being specified more often across rules in the greater population,
a valuable component to addressing significant noise in LCS data mining. Ad-
ditionally, this stricter representation yields individual rules that are arguably
easier to interpret (less ambiguity within the IF/THEN statement) and that are
likely be more accurate individual predictors (since they independently capture
a more specific set of attribute states). This representation requires modifica-
tions to both covering and the genetic algorithm in order to handle continuous
attributes (implemented as described in [11]).

Attribute Tracking and Feedback. Attribute tracking (AT) is akin to long-
term memory for supervised, iterative learning (see (8) in Figure 1). For a finite
training dataset, a vector of accuracy scores is maintained for each instance in the
data. In other words, for every instance in the data we increase attribute weights
based on which attributes are being specified in rules found in [C] every iteration.
Post-training, these scores can be applied to characterize patterns of association
in the dataset, in particular heterogeneous patterns which might suggest clinical
patient subgroups that may be targeted for research, treatment, or preventative
measures [7]. Note that using attribute tracking alone does not impact learn-
ing performance. Attribute feedback (AF) is applied to the GA mutation and
crossover operators, probabilistically directing rule generalization based on the
AT scores from a randomly selected instance in the dataset. The probability that
AF will be used in the GA is proportional to the algorithm’s progress through the
specified number of learning iterations (i.e. AF is applied infrequently early-on,
but frequently towards the end). Note that in developing ExSTraCS we realized
that AF-UCS was not using the AT scores from the current training instance (as
mistakenly described in [7]), but rather the scores from a neighboring instance.
This ‘error’ turned out to be essential to recapitulate attribute feedback per-
formance. AF speeds up effective learning by gradually guiding the algorithm
to more intelligently explore reliable attribute patterns. These mechanisms and
their application are further detailed in [7] and [8].

Expert Knowledge Covering. Previous work exploring the utilization of ex-
pert knowledge (EK) in UCS indicated that EK, utilized as probibalistic weights
for specifying attributes in rules, significantly sped up learning when applied to
covering, but yielded inconsistent success when applied to GA operators [9].
Therefore, ExSTraCS adopts EK covering. EK is essentially an external bias in-
troduced to better guide learning, such that attributes more likely to be impor-
tant tend to be specified more often when covering. In other words, classifiers
tend to be initialized in parts of the problem space deemed by the EK to be

An Extended Michigan-Style Learning Classifier System 217

mostly likely to predict class status. Notably, the utility of EK is only as good as
the quality of the information behind the weights. EK covering is implemented in
ExSTraCS as described in [9] including the calculation of EK probability weights
from raw EK scores, and the application of these weights within the covering
mechanism. In theory the source of EK is up to the user (i.e. classifier popula-
tion initialization can be biased towards whatever attributes desired). In [9], raw
EK scores were obtained externally using a rapid attribute weighting algorithm
called SURF [14], designed to estimate attribute quality, in terms of predicting
class status. For convenience and flexibility, we have implemented SURF as well
as three other related attribute weighting algorithms into ExSTraCS (ReliefF
[15], SURF* [16], and MultiSURF [17]) from which the user may select and
discover EK scores for their respective datasets. Each algorithm has been re-
implemented to allow for discrete and continuous attributes. ExSTraCS handles
EK discovery is a pre-processing step (see (A) in Figure 1). This study applies
MultiSURF to discover EK, as it is the newest and most powerful.

Rule Compaction. ExSTraCS makes the six rule compaction strategies evalu-
ated in [10] available to post-process the classifier population (see (C) in Figure
1). Rule compaction utilizes the whole training dataset to consolidate the clas-
sifier population with the goal of improving interpretation and knowledge dis-
covery. Comparisons in [10] suggested that simple Quick Rule Filtering (QRF)
was both the fastest, and particularly was well suited to the theme of global
knowledge discovery [12] where it is more important to preserve or improve per-
formance than to minimize rule population size(useful for knowledge discovery
by manual rule inspection) [10]. This study applies QRF.

Miscellaneous. ExSTraCS naturally handle missing data points without re-
quiring imputation bias. Missing data points require a standard unique desig-
nation, and when encountered they match any attribute state specified in the
condition of a classifier. If desired, imputation can still be performed prior to
running ExSTraCS, but this is not currently built-in. ExSTraCS can perform
a complete evaluation of the classifier population as a whole at user specified
iterations, including assessments of training and testing accuracy. Balanced ac-
curacy is used to avoid accuracy calculation bias in multi-class and imbalanced
datasets. ExSTraCS centralizes and organizes all run parameters in a readable
configuration file, required to run the algorithm. Included in these parameters
is the option to deactivate major ExSTraCS mechansims as desired, such as
attribute tracking/feedback, expert knowledge, and rule compaction.

3 Results and Discussion

We evaluate ExSTraCS using two separate simulation studies (with discrete or
continuous attributes respectively) each including a total of 960 diverse datasets
(spanning from easily solvable to currently unsolvable) with underlying predic-
tive models that simulated patterns of epistasis and heterogeneity concurrently.

218 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

Discrete attribute SNP datasets very similar to those used in [7,9,10] were sim-
ulated using GAMETES [18] with; architectures at maximum and minimum de-
tection difficulty, heritabilities (i.e. the proportion of class variance that can be
attributed to modeled attributes) of (0.1, 0.2, or 0.4), a minor allele frequency of
0.2, 20 attributes (only four of which were predictive and 16 were noise), sample
sizes of (200, 400, 800, or 1600) and a heterogeneous mix ratio of either (50:50 or
75:25) (e.g. 75% of instances were generated from one epistatic model, and 25%
were generated from a different one). 20 replicates of each dataset were analyzed
and 10-fold cross validation (CV) was employed to measure average testing accu-
racy and account for over-fitting. 960 corresponding continuous-valued versions
of these datasets were generated by transforming discrete values into random
values within specified continuous intervals (e.g. a discrete attribute with states
0, 1, or 2, was transformed to have a random continuous value within the respec-
tive ranges of 0-50, 50-100, or 100-150. ExSTraCS was run up to 200,000 learning
iterations but performance was also evaluated after only 10,000 iterations. Pair-
wise statistical comparisons were made using the Wilcoxon signed-rank tests.
All statistical evaluations were completed using R.

The focus of this analysis was two-fold; (1) comparing the performance of
our previous UCS-based core algorithm to the core ExSTraCS algorithm, where
‘core’ refers to the learning cycle without EK, AT/AF or rule compaction acti-
vated, and (2) comparing core ExSTraCS to performance when these separate
mechanisms are activated, in order to demonstrate their combined value. These
comparisons are performed using the discrete attribute simulation study summa-
rized in Table 1 over a set of key performance metrics. ‘Both Power’ is the ability
to correctly identify both two-locus heterogeneous models. ‘Single Power’ is the
ability to have found at least one. ‘Co-occur. Power’ indicates the ability to de-
tect the correct heterogeneous pattern. Generality refers to classifier generality,
or the average proportion of unspecified attributes across the classifier popula-
tion. Macro Population refers to the number of unique classifiers in the classifier
population. Previously, we demonstrated that UCS yielded the most promising
performance on these types of simulated datsets when compared to XCS, MCS,
GALE and GAssist (LCS algorithms) [5,6]. Therefore we utilize the ‘core’ ver-
sion of UCS used in [7,9,10] as the standard of comparison for ExSTraCS. Notice
that in Table 1 the ‘core’ ExSTraCS p-values are from a comparison to ‘core’
UCS, while all other p-values correspond to comparisons between ‘core’ ExS-
TraCS and ExSTraCS with respective mechanisms activated. As expected, the
mixed-ALKR knowledge representation added to ExSTraCS significantly and
consistently reduces run time by over 30% on average, when comparing ‘core’
UCS to ‘core’ ExSTraCS. We expect this difference to be even more dramatic in
datasets with > 20 attributes. Interestingly, a significant increase in testing accu-
racy is also observed. Next we compare ExSTraCS performance when activating
major new mechanisms including (1) EK, (2) AF, (3) EK + AF, and (4) EK +
AF + QRF. Performance improvements from EK and AF alone were consistent
with those observed in [7,9]. Further performance improvements were observed
when combining mechanisms. Additionally, comparing UCS to ExSTraCS with

An Extended Michigan-Style Learning Classifier System 219

Table 1. Average performance over all 960 discrete-valued datasets

10,000 Iterations (Early Performance)
Performance UCS ExSTraCS
Statistics Core Core p EK p AF p EK-AF p

Training Accuracy .8569 .8640 ↑ ** .8628 ↓ ** .8635 - .8630 ↓ **
Test Accuracy .5720 .5724 - .5888 ↑ ** .5716 - .5898 ↑ **
Both Power .0990 .0927 - .2729 ↑ ** .0990 - .2708 ↑ **
Single Power .4854 .4917 - .7500 ↑ ** .4354 ↓ * .7542 ↑ **

Co-Occur. Power .1083 .0969 ↓ * .0896 - .1042 - .0865 -
Generality .6234 .6233 - .6227 ↓ ** .6264 ↑ ** .6212 ↓ **

Macro Population 1754.3 1754.6 - 1740.5 ↓ ** 1754.8 ↑ * 1738.7 ↓ **
Run Time (min) 3.70 2.57 ↓ ** 2.53 ↓ * 2.64 ↑ * 2.59 ↓ *

200,000 Iterations (Ending Performance)

Performance UCS ExSTraCS
Statistics Core Core p EK p AF p EK-AF p +QRF p

Training Accuracy .8641 .8800 ↑ ** .8801 - .8637 ↓ ** .8634 ↓ ** .8537 ↓ **
Test Accuracy .5833 .5863 ↑ ** .5866 - .5954 ↑ ** .5946 ↑ ** .5965 ↑ **

Both Power .2583 .2563 - .2625 - .2906 ↑ ** .2948 ↑ ** .3000 ↑ **
Single Power .6146 .6156 - .6250 - .5917 ↓ * .5958 ↓ * .6062 -

Co-Occur. Power .1750 .1656 - .1750 - .1823 ↑ * .1823 ↑ * .1875 ↑ *

Rule Generality .6946 .6945 - .6945 - .7501 ↑ ** .7518 ↑ ** .7601 ↑ **
Macro Population 1627.3 1627.6 - 1627.7 - 1444.8 ↓ ** 1435.4 ↓ ** 1044.3 ↓ **

Run Time (min) 73.42 49.49 ↓ ** 49.14 - 44.02 ↓ ** 44.26 ↓ ** 44.31 ↓ **

− No significant change

* p < 0.05 (Direction of change given by arrows)

** p < 6.94x10−4
(Cutoff assumes Bonferroni multiple test correction based on 72 comparisons)

EK and AF active in both algorithms (not shown), similar significant differences
to those observed for ‘core’ comparisons were observed (i.e. ExSTraCS yielded
faster run times and higher testing accuracy, but no difference in power).

Follow up analysis evaluated ExSTraCS with EK, and AF active on the con-
tinuous attribute simulation study. In short, we found that the adopted knowl-
edge representation extends ExSTraCS to accommodate continuous attributes.
Notably, the average run time for 200,000 learning iterations was significantly
increased by about 30%, and performance (in terms of average testing accuracy
and the three power metrics) was promising but significantly lower than per-
formance in the discrete attribute datasets. This is likely because continuous
attributes require ExSTraCS to learn not only ‘which’ attributes to specify, but
appropriate interval ranges as well. Addressing these performance losses will be
a target for ongoing research.

4 Conclusions

WhileExSTraCShas beendeveloped for biomedical, epidemiological, bioinformat-
ics, and genetics problemdomains in particular,we expect this new algorithmto be
translatable to many related domains, and hopefully inspire new mechanisms and

220 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

improvements based on this core architecture. Through extensive simulation stud-
ies we have demonstrated the value of bringing successful mechanisms together in
ExSTraCS in order to improve the key objectives of a successful data mining al-
gorithm including speed, learning efficiency, flexibility, ease of use, scalability, and
interpretability. In addition to improving continuous attribute performance, fu-
ture work will address (1) expanding ExSTraCS to also accommodate continuous
endpoints (e.g. quantitative traits), (2) further scalability (3) reassessment of fit-
ness and deletion metrics to improve learning efficiency and (4) accessibility and
usability through the development of ExSTraCS GUI software.

Acknowledgments. This work was supported by NIH grants AI59694,
LM009012, LM010098, EY022300, LM011360, CA134286, and GM103534.

References

1. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: A complete introduc-
tion, review, and roadmap. Journal of Artificial Evolution and Applications (2009)

2. Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease:
Analytical retooling for complexity. TRENDS in Genetics 20(12), 640–647 (2004)

3. Wilson, S.: Classifier fitness based on accuracy. Evo. Comp. 3(2), 149–175 (1995)
4. Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based learning classifier sys-

tem: Models, analysis and applications to classification tasks. Evo. Comp. 11(3),
209–238 (2003)

5. Urbanowicz, R., Moore, J.: The application of michigan-style learning classifier
systems to address genetic heterogeneity and epistasis in association studies. In:
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 195–202. ACM (2010)

6. Urbanowicz, R., Moore, J.: The application of pittsburgh-style lcs to address ge-
netic heterogeneity and epistasis in association studies. Parallel Problem Solving
from Nature–PPSN XI, 404–413 (2011)

7. Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: Instance-linked attribute track-
ing and feedback for michigan-style supervised learning classifier systems. In: Pro-
ceedings of the Fourteenth International Conference on Genetic and Evolutionary
Computation Conference, pp. 927–934. ACM (2012)

8. Urbanowicz, R.J., Andrew, A.S., Karagas, M.R., Moore, J.H.: Role of genetic het-
erogeneity and epistasis in bladder cancer susceptibility and outcome: A LCS ap-
proach. Journal of the American Medical Informatics Association (2013)

9. Urbanowicz, R.J., Granizo-Mackenzie, D., Moore, J.H.: Using expert knowledge
to guide covering and mutation in a michigan style LCS to detect epistasis and
heterogeneity. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G.,
Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 266–275. Springer,
Heidelberg (2012)

10. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: Advances in
Artificial Life, ECAL, vol. 12, pp. 110–117 (2013)

11. Bacardit, J., Krasnogor, N.: A mixed discrete-continuous attribute list representa-
tion for large scale classification domains. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1155–1162. ACM (2009)

An Extended Michigan-Style Learning Classifier System 221

12. Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with
statistical and visualization-guided knowledge discovery for michigan-style learning
classifier systems. IEEE Computational Intelligence Magazine 7(4), 35–45 (2012)

13. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic
algorithms. Technical report, DTIC Document (1990)

14. Greene, C., Penrod, N., Kiralis, J., Moore, J.: Spatially uniform relieff (surf) for
computationally-efficient filtering of gene-gene interactions. BioData Mining 2(1),
1–9 (2009)

15. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182.
Springer, Heidelberg (1994)

16. Greene, C.S., Himmelstein, D.S., Kiralis, J., Moore, J.H.: The informative ex-
tremes: Using both nearest and farthest individuals can improve relief algorithms
in the domain of human genetics. In: Pizzuti, C., Ritchie, M.D., Giacobini, M.
(eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 182–193. Springer, Heidelberg (2010)

17. Granizo-Mackenzie, D., Moore, J.H.: Multiple threshold spatially uniform relieff
for the genetic analysis of complex human diseases. In: Vanneschi, L., Bush, W.S.,
Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 1–10. Springer, Heidelberg
(2013)

18. Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M.,
Moore, J.H.: Gametes: A fast, direct algorithm for generating pure, strict, epistatic
models with random architectures. BioData Mining 5(1), 16 (2012)

A Cooperative Evolutionary Approach to Learn
Communities in Multilayer Networks

Alessia Amelio and Clara Pizzuti

National Research Council of Italy (CNR),
Institute for High Performance Computing and Networking (ICAR),

Via P. Bucci 41C, 87036 Rende (CS), Italy
{amelio,pizzuti}@icar.cnr.it

Abstract. In real-world complex systems objects are often involved in different
kinds of connections, each expressing a different aspect of object activity. Mul-
tilayer networks, where each layer represents a type of relationship between a
set of nodes, constitute a valid formalism to model such systems. In this paper
a new approach based on Genetic Algorithms to detect community structure in
multilayer networks is proposed. The method introduces an extension of the mod-
ularity concept and adopts a genetic representation of a multilayer network that
allows cooperation and co-evolution of individuals, in order to find an optimal
division of the network, shared among all the layers. Moreover, the algorithm re-
lies on a label propagation mechanism and a local search strategy to refine the
result quality. Experiments show the capability of the approach to obtain accurate
community structures.

1 Introduction

In the last few years complex systems described as networks of nodes connected by
different kinds of relationships are receiving a lot of attention. In fact, the approach
adopted so far of aggregating the great variety of links connecting objects constituting
a network, revealed its weaknesses because of loss of information caused by such a
simplified view of a system. Real-life networked systems present multiple ties, each
generally playing a different role and exhibiting a different type of strength among
objects. Representing such systems by using a single type of interaction is a rough
approximation of reality. A more apt modeling of such systems can be obtained by mul-
tilayer networks[5]. Kivela et al., [5] introduced the concept of multilayer network as
the most general notion to model complex networks, including multiplex [7], multire-
lational [4], multidimensional [9,10,6]. A multilayer network can be viewed as a set
of slice networks. Each slice, modeled as a graph, represents an aspect of the object
activity, since an object may be involved in distinct activities with variable concern. In
multilayer networks grouping actors by considering only one type of interaction may
lead to inaccurate community structures because information that could come from
all the interactions is discarded. The objective in a multilayer network is to uncover a
shared community structure among objects such that a quality function be optimized
for all the layers at the same time.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 222–232, 2014.
c© Springer International Publishing Switzerland 2014

A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks 223

Proposals to find groups in multilayer networks can be found in [9,10,6,12,3]. In
particular, Tang et al. [9,10] proposed a method, named Principal Modularity Maxi-
mization (PMM) that for each layer, first the structural features, corresponding to the
top eigenvectors with positive eigenvalues, are extracted, then these features are com-
bined to obtain latent communities.

In this paper a new method, named MultiGA (Multilayer Genetic Algorithm), able
to detect a shared community structure in a multilayer network, is proposed. MultiGA
adopts a genetic representation of individuals that allows co-evolution and cooperation
among all the network layers. An individual is composed by a number of elements equal
to the number of layers. Each element represents a division of the corresponding layer
in communities, and it is co-evolved with all the others by learning from them their
community structure through the optimization of a fitness function that combines the
modularity values of each layer. MultiGA relies also on a label propagation mechanism
and a local search strategy. The former mechanism aggregates nodes having no connec-
tion in a layer to the community recurring most often among its neighbors in all the lay-
ers. The local search strategy, similarly to the Blondel et al. [1] method for single-layer
networks, moves a node to one of its neighboring communities if an increase in modu-
larity is obtained. Experiments on synthetic and real-world networks show that MultiGA
is able to detect accurate community structures in multilayer networks. The paper is or-
ganized as follows. The next section introduces multilayer networks and formalizes the
problem of community detection. Section 3 describes the proposed approach. In section
4 the results of the experiments are reported. Finally, Section 5 concludes the paper.

Fig. 1. The Roethlisberger & Dickson Bank Wiring Room of Western Electric multilayer network

2 Multilayer Networks

Let V be a set of n objects. A multilayer network is defined as a set N = {N1, . . . ,Nd}
of slice networks. Each slice Ns can be modeled as a graph Gs = (Vs, Es) where the

224 A. Amelio and C. Pizzuti

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) RDGAM relation, (b) RDCON relation, (c) RDPOS relation, (d) RDNEG relation, (e)
RDHLP relation, (f) RDJOB relation

set of nodes Vs ⊆ V is the subset of objects of V appearing in the slice Ns, and Es

is the set of links that connect the objects of Vs in the s-th layer, i.e. an edge (u, v) ∈
Es if objects u and v interact in the s-th layer. N can thus be represented as a set
G = {G1, . . . , Gd} of graphs, where each Gs = (Vs, Es), for s = 1, . . . , d, is the
graph modeling network Ns in the s-th layer. A layer thus represents one of the d slices
of the network. Given an object u ∈ V , the neighbors of u at layer s are defined as
ns(u) = {v ∈ Vs | (u, v) ∈ Es}, and the neighbors of u in G as n(u) = ∪d

s=1 ns(u).
A clustering, or community structure, CSs = {Cs1 , . . . Csk} of a layer Ns is a par-

titioning of Gs in groups of nodes that maximizes a quality function. Furthermore, for
each couple of communities Csi and Csj ∈ CSs, Vsi ∩ Vsj = ∅.

Our objective is to uncover a shared community structure CS among the objects of the
multidimensional networkN such that a quality function is optimized in all the d dimen-
sions. An example of multilayer network is depicted in Figure 1. The example is taken
from [2] and shows the relationships of 14 employees from a bank wiring room of West-
ern Electric (Hawthorne Plant), downloaded fromhttp://moreno.ss.uci.edu/
data.html. The employees worked in a single room and include two inspectors (I1
and I3), three solderers (S1, S2 and S3), and nine wiremen or assemblers (W1 to W9).
There are six different kinds of interactions among the employees: RDGAM , par-
ticipation in horseplay; RDCON , participation in arguments about open windows;
RDPOS, friendship; RDNEG, antagonistic behavior; RDHLP , helping others with
work; and RDJOB, the number of times workers traded job assignments. The first

http://moreno.ss.uci.edu/data.html
http://moreno.ss.uci.edu/data.html

A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks 225

four types of connections are symmetric, while the last two aren’t. Figures 2(a-f) show
the six networks corresponding to each relation, where an unconnected node in a slice
means that this node does not have any interaction of that type. For example, employee
S2 has no ties with others regarding participation in horseplay (RDGAM) and argu-
ments about open windows (RDCON), nor any friendship relation (RDPOS), i.e.
nRDGAM (S2) = nRDCON (S2) = nRDPOS(S2) = ∅, instead he has an antagonistic
behavior with W5 (RDNEG), he helps W6 with work (RDHLP), and traded twice
job assignment with him, i.e. nRDNEG(S2) = {W5}, nRDHLP (S2) = {W6}, but
nRDJOB(S2) = ∅ because there is an edge from W6 to S2 and not viceversa, thus
n(S2) = {W5,W6}. The figure points out the intrinsic difficulty of grouping nodes
in a proper way due to the incompleteness of information about the relations between
two employees. In the next section an approach that combines the ties coming from all
the layers is presented.

3 Method Description

In this section a detailed description of MultiGA is given, along with the genetic repre-
sentation and operators adopted. Furthermore, the new concept of combined modularity
is introduced and used as fitness function to optimize in order to search for a shared
community structure in a multilayer network.

Genetic Representation and Operators. The genetic representation used by the ap-
proach is an extension of the locus-based adjacency representation. An individual I =
{I1, . . . , Id} of the population is composed by a set of d elements Is, 1 ≤ s ≤ d. Each
element Is consists of n genes g1, . . . , gn assuming integer values, corresponding to
network nodes, in the range {1, . . . , n}. A value v assigned to the u-th gene means that
there is a link between nodes u and v in the s-th graph Gs modeling the s-th network
layer Ns. If node u has no links in the s-th layer, i.e. ns(u) = ∅, then it is assigned a
zero value. Thus each element Is of an individual I of the population gives a division
of s-th layer Ns of N in a number cs of communities.

(a : Parent1) (b : Parent2) (c : beforemutation)

(d : mask) (e : child) (f : aftermutation)

Fig. 3. (a) First parent, (b) second parent, (c) individual before mutation, (d) binary mask,
(e) individual after crossover, (f) individual after mutation

226 A. Amelio and C. Pizzuti

The initialization process, for every individual I = {I1, . . . , Id}, considers all the
elements Is, and assigns to a node u one of its neighbors v at random, where v ∈
ns(u), i.e. it is one of the neighboring nodes of u relative to the graph Gs corresponding
to the s-th layer. If u has no neighbors in Gs, then the corresponding gene gu = 0.
Consider Figure 3(a) representing a generic individual I = {I1, I2, . . . , I6} of the Bank
Wiring Room example consisting of six elements, i.e the number of different relations.
Employees have been numbered from 1 to 14, thus employee I1 is node 1, employee
I3 is node 2, employee W1 is node 3, and so on. Every element Is of I corresponds
to a layer s and represents the graph Gs. For example I2, second row of Figure 3(a),
represents the connections among employees with respect to relation RDCON . Nodes
I1, I3,W1,W2,W3, S2 have no connections of type RDCON , thus the value of their
neighbor node in I2 is set to zero. W4 has neighbors {W5,W6,W7,W9}, as can
be seen from Figure 2(b), thus I2 at position 6 (corresponding to W4) has value 7,
corresponding to W5, which is one of its neighbors.

The crossover operator is executed on each layer by applying uniform crossover.
Given two parents I = {I1, . . . , Id} and J = {J1, . . . , Jd}, and a randomly generated
binary vector, for each couple (Is, Js) uniform crossover selects the genes where the
vector is a 1 from the first parent Is, and the genes where the vector is a 0 from the
second parent Js, and combines the genes to form a child IJs. The crossover operator is
showed in Figure 3. Consider, for example, the RDGAM layer, and the corresponding
parents I1, first row of Figure 3(a), and J1 first row of Figure 3(b). The mask is that
reported in the first row of Figure 3 (d). Thus the child IJ1 generated by I1 and J1, first
row of Figure 3(e), is such that IJ1(1) = J1(1) = 6 and IJ1(2) = J1(2) = 0 because
the mask is zero in the first two positions, while IJ1(3) = I1(3) = 6 because the mask
value is 1 in the third position, and so on.

The mutation operator for every element Is of I = {I1, . . . , Id} assigns to each node
u one of its neighbors v ∈ ns(u) at random. An example of mutation can be seen in
Figure 3(c),(f). For example, consider relation RDNEG (fourth row in Figure 3(c)).
The neighbor of W5 is changed from 2 (I3) to 13 (S2), as can be seen in Figure 3(f).

Fitness Function. The choice of an appropriate fitness function is a key point to ob-
tain a good solution for the problem to solve. As regards single-layer networks, the
well known concept of modularity introduced by Girvan and Newman [8] is gener-
ally considered the one that at the best interprets the intuitive idea of dense group
of nodes. The definition of modularity Q for single-layer networks is the following:
Q = 1

2m

∑
ij(Aij − kikj

2m)δ(Ci, Cj) where A is the adjacency matrix of the associated
graph, m is the number of edges of the graph, ki and kj are the degrees of nodes i
and j respectively. δ is the Kronecker function and yields 1 if i and j are in the same
community (i.e. Ci = Cj), zero otherwise. Values approaching 1 indicate high quality
clustering.

We propose to extend the concept of modularity to multilayer networks by combining
the modularity values computed for each layer in such a way that the value for each
layer is influenced by the values of all the other layers. Let s and r be two slices of a
multilayer network, and CSs, CSr be the clustering obtained on networks Ns and Nr

respectively. Then the combined modularity Qsr between slices s and r is defined as
follows:

A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks 227

Qsr =
1

2ms + 2mr

∑
ij

[
(Aijs − kiskjs

2ms
)δ(Cis, Cjs) + (Aijr − kirkjr

2mr
)δ(Cis, Cjs)

]
(1)

where As and Ar are the adjacency matrices of graphs Gs and Gr, respectively, kis
and kjs are the degrees of nodes i and j in Gs, while kir and kjr are the degrees of
nodes i and j in Gr, respectively. The Kronecker function δ yields 1 if i and j are in
the same community Cs (i.e. Cis = Cjs), zero otherwise. The meaning of Qsr is that,
while computing a community structure CSs on slice Ns, this community structure is
also checked on slice Nr. Thus, if CSs does not determine a good grouping of nodes
also in Nr, it is penalized because the second term of Formula (1) is low.

Analogously, the combined modularity Qrs between slices r and s is defined as

Qrs =
1

2ms + 2mr

∑
ij

[
(Aijr − kirkjr

2mr
)δ(Cir, Cjr) + (Aijs − kiskjs

2ms
)δ(Cir, Cjr)

]
(2)

Finally, the total combined modularity Qml is computed on all the d slices by consider-
ing the sum of combined modularities Qsr, for each couple of slices s and r:

Qml =
∑

s, r s
= r

(
Qsr +Qrs

)
(3)

In the next section a genetic algorithm that discovers shared community structure in
multilayer networks by optimizing Qml is presented.

Algorithm Description. The evolutionary method we propose is based on the idea
that, while detecting a community structure CSs on a layer s, it must be taken into
account how much CSs is similar to the community structures CSr of the other layers,
r = 1, . . . , d, r �= s. The intuitive idea of similarity is that CSs contains groups of nodes
that also appear in CSr, i. e. layers share communities. In order to pursue this objective,
the algorithm MultiGA, thanks to the genetic representation that consists of individuals
I = {I1, . . . , Id} composed by a number d of elements, one for each layer, evolves
individuals I by exchanging information among the layers. In fact, while searching for
the division of a generic layer s in groups of nodes, by evolving the corresponding
element Is ∈ I , it learns from the other elements Ir r = 1, . . . , d, r �= s how much its
clustering is shared with the other layers. This exchange of information is made possible
by computing the total combined modularity value, that guides the search by exploiting
the knowledge coming from all the slices. The MultiGA algorithm is described in Figure
4. It receives in input a multilayer network N and gives a vector L containing a cluster
labeling for each node of N . MultiGA creates a random population of individuals I =
{I1, . . . , Id} (step 1) and evolves it for a fixed number of generations (step 2). For
each individual in the population (step 3) the fitness function is calculated by using
Formula (3) of the total combined modularity Qml. To this end, for each element Is
of I , the combined modularity of Is with all the other layers is computed (steps 4-9).
Then variation operators are applied and a new population created. At the end of the
evolutionary process, a node label vector Ls is generated for each layer by assigning to
each node the label of the community it belongs to, as determined by the clustering CSs

(steps 13-17). If a node u in the layer s has not been assigned to any cluster because it
has no links with nodes of that layer, then the LabelAssignment method (Figure 4(b))
considers its neighbors n(u) = ∪d

s=1 ns(u) in G, and assigns to u the majority cluster

228 A. Amelio and C. Pizzuti

MultiGA Method:
Input: A multilayer network N = {N1, . . . ,Nd} of d dimensions, the set of graphs G = {G1, . . . , Gd} modeling

it
Output: A node cluster labeling L that partitions N in the optimal shared community structure

1 create an initial population of random individuals I = {I1, . . . , Id}
2 while not maxGen
3 for each individual I = {I1, . . . , Id}
4 decode I and obtain partitionings CSs = {Cs1, . . . , Csk} for s = 1, . . . , d
5 Qml = 0
6 for s = 1, . . . , d
7 compute Qs =

∑
Qsr + Qrs, for r = 1, . . . , d, r
= s

8 Qml = Qml + Qs

9 end for
10 end for
11 create a new population by applying the variation operators
12 end while
13 for s=1,. . . ,d
14 initialize the labeling vector Ls to null values
15 for each node vj of G appearing in Csi ⊂ CSs

16 assign cluster label si to vj , i.e. Ls(vj) = si
17 end for
18 Perform LabelAssignment on Ls

19 end for
20 compute the modularity value Q for each partitioning determined by Ls s = 1, . . . , d
22 choose as node label vector L the label vector Ls returning the maximum Q value;
21 let G = ∪d

s=1Gs be the graph obtained by joining all layers, where Aij = 1 if ∃s such that Aijs = 1

22 Perform LocalSearch on G starting from solution L to improve modularity value Q

(a)

LabelAssignment Method:
Input: the sequence of graphs G = {G1, . . . , Gd} modeling N and the node cluster labeling Ls of s-th layer
Output: A node cluster labeling Ls where each node has been assigned a cluster label

1 for each node u ∈ V
2 if (Ls(u) == 0)
3 let n(u) = {vn1 , . . . , vnt} be the neigh. of u in G and Ls(vn1), . . . Ls(vnt) be the clust. label of vni

in CSs

4 Ls(u) = argmax {Ls(vn1), . . . , Ls(vnt)}
5 end if
6 end for

(b)
Fig. 4. The pseudo-code of the MultiGA algorithm

label in CSs of these neighbors, i.e. u is assigned the cluster label that occurs most often
in CSs among its overall neighbors (steps 2-5 of LabelAssignment method). After that,
for each layer s, the modularity value Q of Girvan and Newman [8] with respect to the
partitioning determined by Ls is computed, and the labeling Ls giving the maximum Q
value is chosen as final solution (steps 20-21). Finally, a post-processing local search,
analogous to that proposed by Blondel et al. [1], is performed on the graph G = ∪d

s=1Gs

obtained by the union of all the slices Gs where edges between two nodes are counted
once, in order to improve modularity value. The local search, only once a time, moves
a node to one of its neighboring communities if an increase in modularity, computed on
the total graph G, is obtained. In the next section experiments on multilayer networks
will show the feasibility of the approach in finding shared community structure.

A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks 229

Table 1. Average NMI values together with the standard deviation and best NMI values (in
parenthesis) of MultiGA and a standard genetic algorithm using one slice at a time. Population
size={100, 500}, ν = 0.1, 0.3, 0.5, μ = 0.5. nc is the number of communities found.

Pop. Strategy ν = 0.1 nc ν = 0.3 nc ν = 0.5 nc
A1 0.7629 ± 0.071 (0.8751) 7 (34) 0.4620 ± 0.124 (0.6684) 18 (145) 0.3696 ± 0.116 (0.5560) 5 (22)

100 A2 0.7277 ± 0.110 (0.9116) 9 (20) 0.5345 ± 0.101 (0.6267) 4 (8) 0.3939 ± 0.158 (0.7063) 30 (262)
A3 0.7997 ± 0.067 (0.9303) 3 (5) 0.5461 ± 0.151 (0.7092) 4 (6) 0.4451 ± 0.177 (0.6681) 10 (43)
A4 0.6421 ± 0.167 (0.9097) 17 (53) 0.5179 ± 0.118 (0.7080) 9 (30) 0.4801 ± 0.157 (0.6667) 4 (11)

MultiGA 0.9778 ± 0.024 (1) 3 (3) 0.7793 ± 0.139 (1) 2 (3) 0.7513 ± 0.084 (0.8335) 2 (2)

A1 0.8568 ± 0.088 (0.9498) 6 (35) 0.6663 ± 0.200 (0.9498) 17 (145) 0.6076 ± 0.105 (0.7529) 3 (10)
500 A2 0.8307 ± 0.087 (0.9498) 5 (11) 0.7617 ± 0.087 (0.8846) 3 (3) 0.5883 ± 0.141 (0.8134) 29 (262)

A3 0.9048 ± 0.081 (0.9707) 3 (3) 0.7627 ± 0.072 (0.9383) 3 (5) 0.5833 ± 0.174 (0.7371) 7 (43)
A4 0.7237 ± 0.174 (0.9414) 14 (44) 0.6653 ± 0.088 (0.7795) 7 (36) 0.6562 ± 0.064 (0.7304) 4 (9)

MultiGA 0.9808 ± 0.021 (1) 3 (3) 0.8376 ± 0.139 (1) 2 (3) 0.7530 ± 0.054 (0.7700) 2 (2)

(a)

12 4 8 16 32
0.2

0.7

1.2

1.7

2x 10
5

core number

CP
U

tim
e (

s)

(b)

Fig. 5. (a) Comparison of the NMI values between the evolutionary computation approaches and
spectral approaches of Tang et al. [9]; (b) computation times required by MultiGA for increasing
number of cores.

4 Experimental Results

This section provides a thorough experimentation for assessing the capability of MultiGA
in detecting shared community structure in multilayer networks. The MultiGA algo-
rithm has been written in MATLAB 7.14 R2012a, using the Genetic Algorithms and
Direct Search Toolbox 2. A trial and error procedure has been adopted for fixing the pa-
rameter values. Thus the crossover rate has been fixed to 0.8, mutation rate to 0.2, elite
reproduction 10% of the population size, number of generations is 150. We first present
the results MultiGA obtained on randomly generated synthetic data sets. The networks
have been generated as proposed by Tang et al. [9]. Each network is composed by 350
objects divided into three different clusters: the first one contains 50 objects, the sec-
ond one 100 and the last one 200 objects. The objects are involved in d = 4 relations.
A within-group probability μ connects the objects inside the same cluster. This prob-
ability value changes between groups at different slices. Any two nodes are connected
to each other with probability ν, providing a controlled noise to the network. A clear
network structure is obtained when the μ value is high and the ν value is low. 50 dif-
ferent synthetic networks have been randomly generated for different combinations of
the parameters μ and ν and the average and standard deviation computed from the 50
runs. Since the ground truth partitioning of the nodes in communities is known a pri-
ori, in order to evaluate MultiGA, the Normalized Mutual Information (NMI) has been
computed between the ground truth division in communities and the partitioning found

230 A. Amelio and C. Pizzuti

by MultiGA. Table 1 reports the average NMI values obtained by MultiGA together
with standard deviation, and best NMI, in parenthesis, reached among all the runs. In
order to show the superiority of MultiGA with respect to a naive approach that uses
only one layer, the NMI values are compared with those returned by a standard genetic
algorithm that optimizes Newman’s modularity by using only one layer at a time. For
this experiment the within-group interaction parameter μ has been fixed to 0.5, while
the noise parameter ν has been varied as 0.1, 0.3 and 0.5. Furthermore, we report the
results for increasing values of population size, namely 100 and 500. In the table, nc
denotes the average and the maximum, in parenthesis, number of communities found.
The table clearly shows the very good results obtained by MultiGA that simultaneously
evolves all the layers, with respect to running a naive method that finds a solution by
using only one slice. This confirms the superiority of our technique with respect to sin-
gle dimension based methods to discover community structure. It is worth to note that
increasingly high NMI values are obtained by MultiGA at increasing values of popula-
tion size, and often MultiGA, among the executions, is able to detect the ground truth
division of the network. Moreover, when the noise is high, ν = 0.5, the NMI values
of MultiGA are never less than 0.75. Figure 5 (a) compares MultiGA with the method
proposed by Tang et al. [9,10]. The table reports the results appearing in [9] for the
spectral approach PMM that uses all the layers, and the spectral approach that uses
a single layer at a time. The first observation is that the evolutionary approach always
obtains higher NMI values with respect to the spectral approaches proposed by Tang
et al. In particular, MultiGA reaches 0.97 with population size 100, and an even higher
value of 0.98 when population size is 500, while the NMI value of PMM is 0.93.
Analogously, the evolutionary strategy on single layers obtains better results than the
spectral approach. It is worth pointing out that the spectral approach needs the num-
ber of communities as input parameter, while MultiGA automatically determines the
number by optimizing the objective function. We also experiments MultiGA by fixing
within-group interaction parameter μ = 0.8. For lack of space we cannot report the
overall results. However, for instance, in such a case, with population size 300, the
NMI values are 0.75 for noise ν = 0.5, 0.88 for ν = 0.3 and 0.99 for ν = 0.1. We per-
formed experiments also on two real-life multilayer networks. The former is the Bank
Wiring Room of Western Electric network of Figure 1. The grouping obtained consists
of two communities, {W1,W2,W3,W4,I1,S1} and {W5,W6,W7,W8,W9,I3,S4} which
seems rather plausible by observing Figure 1. The second one, is the famous multi-
layer network consisting of marriage and business ties among 16 Florentine families in
the 15th century [11], depicted in Figure 6. The figure shows the division we obtained
in two groups (cyan and magenta respectively), and the isolated node Pucci in green,
which has no connections in any of the two layers (as can be seen from Figure 6(b)
and (c)). The division in two communities reflects the sharing of business and mar-
riage relations. Moreover, it is worth to note that Strozzi and Ridolfi families have
no marriage relationships, and they have been joined to the communities composed by
{Lamberteschi, Guadagni, Castellani, Peruzzi, Bischeri} and {Acciaiuoli, Albizzi, Bar-
badori, Ginori, Medici, Pazzi, Salviati,Tornabuoni} respectively, because they effec-
tively have more business ties with the corresponding group. Thus MultiGA was able
to properly capture the information coming from both types of relations. It is known

A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks 231

that genetic algorithms are naturally parallelizable. To this end, we used the Parallel
Computing Toolbox of Matlab that allows multicore processing to deal with computa-
tionally intensive problems. We computed the times required by MultiGA on a computer
cluster of 24 nodes, with 4 Gbyte of RAM and a 24-core Intel Xeon CPU at 2.6 GHz
each, for a synthetic network of 5000 nodes with population size fixed to 300, when the
number of cores used varies as 1, 2, 4, 8, 16, and 32. We obtained a linear speedup of
the parallel implementation when 2 or 4 cores are employed (see Figure 5 (b)). In such
a case, in fact, doubling the number of cores doubles the algorithm speed. When the
number of cores increases to 8, 16, and 32 the speedup is almost linear, due to the times
needed for communication. However, the time reduction is notably, going from 55 hours
on one processor, to 5 hours when using 32 cores, showing that parallel implementation
can give a valuable help in dealing with large networks.

(a) (b) (c)

Fig. 6. (a) The Florentine families, (b) business relation (red), (c) marriage relation (blue)

5 Conclusions

The paper proposed a genetic algorithm to find shared community structure in multi-
layer networks, based on the extension of genetic representation from single to multi-
layer networks, and on the definition of total combined modularity concept. It employs
two strategies, one to aggregate isolated nodes, and another to improve quality results
by performing local search. Experiments on synthetic and real-life networks proved the
capability of the approach to detect meaningful shared community structure.

References

1. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefevre, E.: Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment, P10008 (2008)

2. Breiger, R.R., Boorman, S.A., Arabie, P.: An algorithm for clustering relational data with ap-
plications to social network analysis and comparison with multidimensional scaling. Journal
of Mathematical Psychology 12, 328–383 (1975)

3. Comar, P.M., Tan, P.-N., Jain, A.K.: A framework for joint community detection across mul-
tiple related networks. Neurocomputing 76(1), 93–104 (2012)

232 A. Amelio and C. Pizzuti

4. Harrer, A., Schmidt, A.: Blockmodelling and role analysis in multi-relational networks. So-
cial Netw. Analys. Mining 3(3), 701–719 (2013)

5. Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer
networks. arXiv:1309.7233v3 (2014)

6. Li, X., Ng, M.K., Ye, Y.: Multicomm: Finding community structure in multi-dimensional
networks. In: IEEE Trans. on Knowl. and Data Eng. (2013) (in press)

7. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in
time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)

8. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Phys. Review E69, 026113 (2004)

9. Tang, L., Wang, X., Liu, H.: Uncoverning groups via heterogeneous interaction analysis. In:
The Ninth IEEE Int. Conf. on Data Mining, ICDM 2009, pp. 503–512 (2009)

10. Tang, L., Wang, X., Liu, H.: Community detection via heterogeneous interaction analysis.
Data Mining and Knowledge Discovery 25(1), 1–33 (2012)

11. Wasserman, S., Faust, K.: Social Network Analysis Methods and Applications. Cambridge
University Press (2009)

12. Zhang, Z., Li, Q., Zeng, D., Gao, H.: User community discovery from multi-relational net-
works. Decision Support Systems 54(2), 870–879 (2013)

Novelty Search in Competitive Coevolution

Jorge Gomes1,2, Pedro Mariano2, and Anders Lyhne Christensen1,3

1 Instituto de Telecomunicações, Lisbon, Portugal
2 LabMAg – Faculdade de Ciências da Universidade de Lisboa, Portugal

3 Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
jgomes@di.fc.ul.pt, plmariano@fc.ul.pt, anders.christensen@iscte.pt

Abstract. One of the main motivations for the use of competitive co-
evolution systems is their ability to capitalise on arms races between
competing species to evolve increasingly sophisticated solutions. Such
arms races can, however, be hard to sustain, and it has been shown
that the competing species often converge prematurely to certain classes
of behaviours. In this paper, we investigate if and how novelty search,
an evolutionary technique driven by behavioural novelty, can overcome
convergence in coevolution. We propose three methods for applying nov-
elty search to coevolutionary systems with two species: (i) score both
populations according to behavioural novelty; (ii) score one population
according to novelty, and the other according to fitness; and (iii) score
both populations with a combination of novelty and fitness. We evalu-
ate the methods in a predator-prey pursuit task. Our results show that
novelty-based approaches can evolve a significantly more diverse set of
solutions, when compared to traditional fitness-based coevolution.

Keywords: Competitive coevolution, behavioural diversity, novelty
search, convergence, evolutionary robotics.

1 Introduction

In a coevolutionary system, two or more populations simultaneously evolve, and
evaluations are conducted with an individual from each population. In the case of
competitive coevolution systems (CCESs), the populations represent competing
species, where each succeed at the expense of the opposing species. CCESs are
appealing for a number of reasons [18,14]: (i) they are suited to domains where
a notion of absolute fitness might not exist; (ii) each population acts as a pro-
gressively more challenging opponent to the other population, and (iii) a CCES
may be less prone to stagnation than non-coevolutionary methods, because of
the ever-changing fitness landscape.

In practice, however, many of these advantages are frequently not ob-
served [15]. The key to successful coevolutionary learning is a continuous arms
race between the opposing species [7]. However, such an arms race is not easy to
establish [6], and even when an arms race does occur, there is no guarantee that
it will lead to good solutions. A number of techniques to help sustain an arms

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 233–242, 2014.
c© Springer International Publishing Switzerland 2014

234 J. Gomes, P. Mariano, and A.L. Christensen

race have been proposed [17], but most of them are focused on maintaining per-
formance against opponents from earlier generations. While such techniques can
contribute to a continuous and objective improvement of the solutions, they do
not guarantee that a wide range of solutions are discovered, which is one of the
most appealing arguments for the use of competitive coevolution [14]. The goal
of a CCES is not necessarily to find the (near-)optimal solution to a problem [15].
The discovery of diverse solutions might be equally valuable, since there is no
absolute measure of quality. Consider, for instance, the evolution of agents to
play against human players: having a good diversity of playing strategies might
be more valuable than having a single near-optimal player [19]. Moreover, it has
been shown that promoting diversity in a population can potentially lead to
improvements in the population’s generalisation capacity [3].

Evolutionary techniques based on behavioural diversity, such as novelty search
(NS) [11], have shown effective in overcoming behavioural convergence. These
techniques drive evolution towards behavioural innovation, often resulting in a
more effective evolutionary process that produces a greater diversity of solu-
tions compared with traditional fitness-based evolution. Although most studies
focus on non-coevolutionary domains [12,10], we recently showed that NS can
be successfully used to overcome stable states in cooperative coevolution [8].

In this paper, we study the adaptation of behavioural diversity techniques to
competitive coevolution. This combination of techniques is especially challeng-
ing because in a CCES, all populations are required to be fairly competitive at
all times, which may conflict with the diversity objective [1]. We propose three
different ways to apply novelty search to a CCES, and compare them with tra-
ditional fitness-based coevolution in a predator-prey pursuit task. We assess the
proposed techniques along three dimensions: (i) the quality of the best solutions
achieved; (ii) the exploration of the behaviour space; and (iii) the diversity of
high-quality solutions evolved.

2 Related Work

2.1 Premature Convergence in Competitive Coevolution

Many reports of convergence of coevolving populations to undesirable regions
of the solution space can be found in the literature (for examples, see [5,2,16]).
One of the main causes for failure is that the coevolutionary process easily gets
trapped in a mediocre stable state [7]: a cycle where a limited set of solutions
is adopted by the populations over and over again. This cycle can give the
impression of competition, without actually causing the evolutionary process to
explore new solutions or to improve the quality of the individuals.

Another reason for the loss of diversity in the populations can be the lack of
a fitness gradient [18]. It is possible that one population becomes so dominant
that it turns into an unhittable target for its competitors. As such, the selection
pressure disappears, and the populations stop improving. Ashlock et al. [1] tried
to overcome the lack of a fitness gradient by rewarding individuals that generate
a high variability of fitness scores in the opposing population. The approach

Novelty Search in Competitive Coevolution 235

was, however, unsuccessful, since individuals that allow for a high variability of
fitness typically do not pose a significant challenge.

A number of strategies for cultivating fruitful arms races have been proposed.
Rosin & Belew [17] propose three techniques that aim to select a diverse and
challenging set of competitors to test the individuals: (i) competitive fitness shar-
ing, (ii) shared sampling, and (iii) the hall of fame. Other works have focused on
the characteristics of the task setup that are favourable to the emergence and
sustainability of arms races [13]. It has also been shown that shaping the envi-
ronment or the fitness function throughout evolution can help avoid convergence
to uninteresting and non-diverse solutions [5].

2.2 Novelty Search

Novelty search (NS) [11] is an evolutionary technique in which the population
is driven towards behavioural novelty. NS has the potential to avoid premature
convergence, and evolve a wide diversity of solutions in a single evolutionary run,
as opposed to fitness-driven evolution that typically converges to a certain class
of solutions [10]. The approach has been applied in the domain of evolutionary
robotics and evolution of agent controllers with considerable success [12,10,8].

Novelty Search Algorithm. The distinctive aspect of NS is how the individu-
als of the population are scored. Instead of scoring individuals according to how
well they perform a given task, which is typically measured by a fitness function,
individuals are scored based on their behavioural novelty. Behavioural novelty
is measured with a novelty metric that quantifies how different an individual is
from other, previously evaluated individuals. The distance between two individ-
uals is typically given by the distance between their behaviour characterisation
vectors. These vectors are commonly composed of behavioural traits that the
experimenter considers relevant for the task.

To measure how far an individual is from other individuals in behaviour space,
the novelty metric relies on the average behaviour distance of that individual to
the k nearest neighbours. Potential neighbours include the other individuals of
the current generation and a random sample of individuals from previous gen-
erations (stored in an archive). Candidates from sparse regions of the behaviour
space therefore receive higher novelty scores, which results in a constant evolu-
tionary pressure towards behavioural innovation.

Combining Novelty and Fitness. As NS is guided by behavioural innovation
alone, its performance can be greatly affected by the size and shape of the
behaviour space [10]. Since NS is essentially an exploratory technique, most of
the effort may be spent in behaviour regions that are irrelevant for the fulfilment
of the task. Therefore, NS is often combined with fitness-based evolution to
promote exploration of high-fitness behaviour regions.

In our experiments, we use a variant of progressive minimal criteria novelty
search (PMCNS) [9] to combine novelty and fitness. PMCNS restricts explo-
ration to behaviour regions associated with relatively high fitness scores. At each

236 J. Gomes, P. Mariano, and A.L. Christensen

generation g, the individuals’ selection scores are assigned in the following way:
if the fitness score of an individual is above the minimal criterion mcg, its nov-
elty score alone is used for selection, otherwise it receives a score of zero. The
mcg criterion corresponds to the P -th percentile value of the fitness scores of all
individuals of generation g.

3 Approach

The application of behavioural diversity techniques to a CCES poses a num-
ber of challenges. In order to evolve effective solutions, coevolution requires an
arms race between the coevolving species. This implies that all species are si-
multaneously improving to defeat one another: they learn to exploit flaws in the
opponents’ strategy. Behavioural diversity techniques are, however, essentially
exploratory: evolution is driven towards behavioural novelty, not necessarily bet-
ter solutions (i.e, solutions that are able to defeat the opponents). Prioritising
diversity instead of competitiveness can compromise the effectiveness of coevo-
lution, as shown in [1]. On the other hand, it has also been shown that when a
population has converged to a strategy, it can be beneficial to reward alternate
strategies, in order to foster the evolution of new behavioural traits [5].

We study the application of NS to a CCES with two competing species. The
individuals’ fitness score is measured in the traditional way: by competing against
a representative sample of the individuals from the opposing species. In these
competitions, we record the individual’s behaviour as a task-specific behaviour
characterisation vector. The novelty score of an individual is then calculated by
computing the distance between its characterisation vector and the vectors of
current and past individuals from the same species. The following methods are
evaluated in this paper:

Fit. Selection based exclusively on the fitness score, in both populations.
This method is used as a baseline.

NS-Both. Selection based exclusively on the novelty score in both populations.
NS-p. Selection based on the novelty score in population p (in our experi-

ments, either Pred for predator, or Prey), and based on the fitness
score in the other population.

PMCNS. Both populations are scored with PMCNS based on both novelty
and fitness scores. The individuals are rewarded for displaying be-
havioural novelty while still meeting the minimal fitness criterion.

4 Experimental Setup

4.1 Predator-Prey Pursuit

The predator-prey pursuit task is a common testbed for CCESs [13,4]. In this
task, two agent controllers are coevolved: one for a predator and one for a prey.
The predator’s objective is to capture (touch) the prey, and the prey’s objective is
to escape the predator. The agents operate in a closed square arena of 75 x 75 cm2.

Novelty Search in Competitive Coevolution 237

A simulation trial ends if the predator captures the prey or if 100 seconds elapse.
The initial conditions and setup of the task are depicted in Figure 1.

Predator

Prey

Vision
Sensors

Proximity sensors

75cm

Fig. 1. Setup of the predator-
prey task. The agents are ini-
tially placed in fixed positions,
facing opposing directions.

The experimental setup is based on [14]. The
prey and the predator move at a maximum speed
of 5 cm/s. Both the prey and predator have eight
proximity sensors, evenly distributed on their bod-
ies, with a maximum range of 5 cm. The proximity
sensors can detect both the walls and the other
agent. The predator is additionally equipped with
five vision sensors to detect the prey. The vision
sensors have unlimited range and when combined
provide a view angle of 40◦. All sensors are binary:
they return 1 if something is detected, and 0 oth-
erwise. Each agent is controlled by a feed-forward
neural network. Sensor readings are fed to the net-
work, and two outputs control the speed of the two
wheels. The networks of the predator and the prey
have respectively 7 and 5 hidden neurons.

The fitness of the prey is given by the fraction
of simulations it avoided capture. The fitness of

the predator is the opposite: the fraction of simulations it was able to capture
the prey. The behaviour characterisation used in the novelty-based setups is
the same for both the predator and the prey. It comprises behavioural traits
that are intuitively relevant in the context of the task. The characterisation is a
vector of four elements: (i) the simulation length; (ii) the mean distance to the
other agent throughout the simulation; (iii) the mean agent movement speed;
and (iv) the mean distance between the agent and the closest wall. All elements
are normalised to [0, 1].

4.2 Coevolutionary Algorithm

The predator and prey controllers are coevolved in two separate populations.
The weights of the neural controllers are directly encoded in the chromosomes.
Each population is evolved with a simple evolutionary strategy with the following
parameters: no crossover, a gene mutation rate of 5%, population size of 200,
and tournament selection of size 5. At the end of each generation, the individual
with the highest fitness score of each population is added to the respective hall
of fame [17]. The individuals of each population are evaluated against a set of
ten competitors randomly drawn from the opposing species’ hall of fame.

NS is implemented as described in Section 2.2. Each population has its own
novelty archive. Individuals are added to the archive with a probability of 3%.
The archive can hold at most 1000 individuals: after reaching the limit, random
individuals are removed to allow space for new ones. PMCNS was configured with

238 J. Gomes, P. Mariano, and A.L. Christensen

a percentile value P of 0.5, i.e., the median fitness of the population. Values of
0.25 and 0.75 were also tested, but yielded inferior performance.

5 Results

5.1 Quality of the Solutions

In all evolutionary runs, the individuals with the highest fitness score from both
populations in every generation were recorded. To obtain an objective measure of
the quality of these individuals, we performed a two-step master tournament [14],
obtaining a master fitness and a master behaviour characterisation. First, the
best individuals of each evolutionary run were identified by evaluating them
against the individuals of the opposing species from the same run. Second, the
individuals were evaluated against all the individuals identified in the first step,
from all evolutionary treatments. The analysis of the individuals’ master fitness
can be seen in Figure 2 and Table 1 (Best fitness column).

These results show that all evolutionary treatments were able to achieve
high-quality predator controllers. The differences between the treatments are
relatively small. Fit is only significantly different from NS-Both, which is signif-
icantly inferior to all other treatments (Mann-Whitney U test, p-value < 0.01).
The evolution of prey controllers, on the other hand, revealed larger differences
between the evolutionary treatments. The treatment in which novelty had the
biggest influence (NS-Both) was the lowest performing treatment with respect
to the quality of the solutions (p-value < 0.01). Conversely, the treatments with
highest fitness pressure yielded the highest scoring solutions, with none of the
novelty-based treatments outperforming Fit (p-value < 0.01). This result con-
firms that in order to succeed, the populations need to have a strong selection
pressure towards defeating the opposing population. In the predator-prey task,
using NS to promote exploration of the behaviour space did not yield significant
advantages regarding the achieved fitness scores.

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Fit NS−Both NS−Pred NS−Prey PMCNS

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500
Generation Generation

Predator Prey

�

�

�

�

� �
�

�
�

�

� �

0.4

0.6

0.8

1.0

Fit

NS−B
oth

NS−P
re

d

NS−P
re

y

PMCNS

Predator

�

�

�

�
�
�

�
�

�

�

�

�

�

Fit

NS−B
oth

NS−P
re

d

NS−P
re

y

PMCNS

Prey

M
as

te
r

tn
es

s

Fig. 2. Left and middle: best fitness found so far at each generation, for each population
and each method. The fitness values correspond to the master fitness, and are averaged
over 30 evolutionary runs. Right: boxplots of the highest fitness scores found in each
evolutionary run.

Novelty Search in Competitive Coevolution 239

Table 1. Best fitness found in each evolutionary run; Average coverage of the behaviour
space in a whole evolutionary run; Average coverage of the high-fitness behaviour re-
gions. Values are averages of 30 evolutionary runs for each method. Standard deviations
are in parentheses.

Best fitness Global exploration Elite exploration

Predator Prey Predator Prey Predator Prey

Fit 0.88 (0.10) 0.50 (0.09) 0.42 (0.05) 0.37 (0.05) 0.49 (0.11) 0.46 (0.06)

NS-Both 0.87 (0.03) 0.37 (0.06) 0.64 (0.03) 0.60 (0.03) 0.62 (0.04) 0.60 (0.05)

NS-Pred 0.88 (0.04) 0.42 (0.06) 0.64 (0.02) 0.40 (0.04) 0.67 (0.06) 0.43 (0.08)

NS-Prey 0.92 (0.04) 0.46 (0.06) 0.43 (0.03) 0.59 (0.03) 0.50 (0.04) 0.70 (0.04)

PMCNS 0.91 (0.03) 0.48 (0.07) 0.59 (0.03) 0.53 (0.04) 0.70 (0.03) 0.59 (0.06)

5.2 Behaviour Space Exploration

One of the main advantages of novelty-based evolutionary techniques is the di-
versity of evolved solutions. To make a quantitative analysis of the behaviour
space exploration, the space was first divided in regions of equal size: each dimen-
sion of the behaviour characterisation was discretised into 5 levels, resulting in a
total of 625 regions. We then calculated how many times each region was visited
throughout each evolutionary run (based on the master characterisations). This
distribution was compared with the uniform distribution to obtain a measure of
behaviour space coverage. The non-visited regions of the behaviour space (not
reached by any method) were excluded, see Table 1 – Global exploration. To
measure the exploration of the high-fitness behaviour regions, we followed the
same procedure but excluded the regions where no reasonably good solutions
were found (master fitness below 0.8 for the predator population, and 0.3 for the
prey population), see Table 1 – Elite exploration.

Fit has the lowest degree of exploration, which suggests that it typically con-
verges to a single class of solutions. NS-Both, on the other hand, has the highest
degree of global exploration, but the same does not hold for elite exploration.
The lack of elite exploration can explain the inferior performance of NS-Both
regarding the achieved fitness scores: too much effort is spent on the exploration
of low-fitness behaviour regions. The results show that PMCNS is able to avoid
spending too much effort on exploration of low-fitness behaviours. The global
exploration in PMCNS is still significantly higher than Fit, and it has one of the
highest degrees of elite exploration.

Comparing NS-p to Fit, it is possible to observe that the fitness-driven popu-
lation in NS-p has similar exploration and fitness scores (see in Table 1 – Prey:
NS-Pred, Fit, and Predator: NS-Prey, Fit). The fitness-driven population is not
significantly affected by the greater behavioural diversity in the opposing, novelty-
driven population. On the other hand, if we compare the novelty-driven popula-
tion with NS-Both, we can see that it is favourable to have one of the populations
driven by fitness (see in Table 1 – Predator:NS-Pred,NS-Both, and Prey:NS-Prey,
NS-Both). When a novelty-driven population competes against a fitness-driven
population, it is able to achieve significantly higher elite exploration scores, which

240 J. Gomes, P. Mariano, and A.L. Christensen

also translates into higher fitness scores reached. By coevolving with a highly com-
petitive, fitness-driven population, the novelty-driven population tends to move
towards better solutions – even though their individuals are selected based on their
novelty scores alone.

5.3 Diversity of Effective Solutions

The behaviour of the most effective preys is always very similar: they move at
full speed in circular trajectories around the arena, using the proximity sensors
to avoid the walls and to escape the predators when being chased. This be-
haviour typically fails when the predator quickly approaches the prey head on
or from the sides, or when the prey is being chased and gets trapped between
a wall and the predator. The set of successful predator strategies evolved was
more diverse, especially in novelty-based treatments. To visualise the diversity
of predator behaviours, we reduced the four dimensions of the characterisation
using a Kohonen self-organising map. The Kohonen map was trained using a
sample of the predator behaviours (master characterisations) found in all evolu-
tionary runs. The solutions evolved in each run were then mapped individually.
Figure 3 shows one typical evolutionary run of each treatment. NS-Prey is omit-
ted since the exploration in the predator population is similar to Fit.

The results shown in the exploration maps are in accordance with the ex-
ploration scores (Table 1). The evolutionary runs of Fit typically converge to
region B (23 out of 30 runs). In seven of those runs, solutions in region A were
also discovered. Only one run of Fit explored regions C and D, although these
regions are associated with solutions of similar quality to the solutions of regions
A and B. NS-Both explored the behaviour space relatively uniformly, without
any noticeable bias towards specific regions. NS-Pred is similar to NS-Both, but
clearly spends more effort in high-fitness regions. The exploration pattern of the
PMCNS treatment is in between that of NS-Both and Fit : a single evolutionary
run typically converges to multiple classes of high-quality solutions.

Observing the predator solutions in action confirms that the novelty-based
treatments can evolve an interesting and diverse set of behaviours. The following

NS-BothFit PMCNSNS-Pred

A B

C
D

A B

C

D

A B

C

D

A B

C
D

Fig. 3. Exploration of the predator behaviour space in typical evolutionary runs. The
diameter of each circle is proportional to the number of individuals found belonging to
that behaviour region. The highlighted regions A, B, C and D are associated with the
highest fitness scores.

Novelty Search in Competitive Coevolution 241

behaviour descriptions correspond to the highest scoring predator solutions found
in each of the behaviour regions highlighted in Figure 3.

(A) Moves backwards and in a curved trajectory until the prey is detected with
the vision sensors. Afterwards, the predator stops and rotates to face the
prey. When the prey gets close, the predator rushes towards it.

(B) Moves forwards at full speed, avoiding the walls, until the vision sensors
detect the prey. Afterwards, the predator chases the prey at full speed.

(C) Moves slowly and directly towards a wall, and then stays there, facing the
centre of the arena. When a prey passes nearby, the predator quickly rushes
forward to catch the prey.

(D) Does not initially move, only rotates to find the prey. When the prey is
located, the predator keeps rotating to face the prey, and moves backwards
very slowly. When the prey is near, the predator rushes towards it.

6 Conclusions

We proposed three methods to promote behavioural diversity in competitive
coevolution: selection based on novelty score in both populations (NS-Both),
novelty score only in one of the populations (NS-p), and a combination of novelty
and fitness scores in both populations (PMCNS). These methods were compared
with traditional fitness-based coevolution (Fit) in a predator-prey task.

With respect to the highest fitness scores achieved in the evolutionary runs,
there was no significant advantage of novelty-based methods, when compared
to fitness-based evolution. The novelty-based methods did, however, display sig-
nificantly higher degrees of behaviour space exploration. The NS-Both method
had the lowest performance among the novelty-based methods, since most of
the exploration effort was spent in behaviour regions associated with relatively
low fitness scores. However, when a novelty-driven population (NS-p) competed
against a fitness-driven population, results showed that the novelty-driven pop-
ulation had a significantly stronger tendency to explore high-fitness behaviour
regions. PMCNS was effective all-around: it could achieve fitness scores compa-
rable to Fit, and could discover a wide range of high-quality solutions in a single
evolutionary run, for both predator and prey controllers.

The novelty-based methods could consistently explore new behaviour regions
and find classes of solutions that Fit rarely or never reached. In particular, a
diverse set of interesting high-quality predator solutions was identified. Our ex-
periments showed that novelty-based techniques can be used to avoid behavioural
convergence and discover a broad diversity of solutions in competitive coevolu-
tion systems. The effectiveness of the novelty-based techniques depends on the
balance between diversity and competitiveness, since the populations require
challenging opponents in order to achieve solutions of high objective quality.

Acknowledgements. This research is supported by Fundação para a Ciência
e Tecnologia (FCT) grants PEst-OE/EEI/LA0008/2013,PEst-OE/EEI/UI0434/
2014, SFRH/BD/89095/2012 and EXPL/EEI-AUT/0329/2013.

242 J. Gomes, P. Mariano, and A.L. Christensen

References

1. Ashlock, D., Willson, S., Leahy, N.: Coevolution and tartarus. In: Congress on
Evolutionary Computation, CEC, vol. 2, pp. 1618–1624. IEEE Press (2004)

2. Avery, P., Louis, S.: Coevolving team tactics for a real-time strategy game. In:
Congress on Evolutionary Computation, CEC, pp. 1–8. IEEE Press (2010)

3. Chong, S.Y., Tino, P., Yao, X.: Relationship between generalization and diversity
in coevolutionary learning. IEEE Transactions on Computational Intelligence and
AI in Games 1(3), 214–232 (2009)

4. Cliff, D., Miller, G.F.: Tracking the red queen: Measurements of adaptive progress
in co-evolutionary simulations. In: Morán, F., Merelo, J.J., Moreno, A., Chacon,
P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 200–218. Springer, Heidelberg (1995)

5. Dziuk, A., Miikkulainen, R.: Creating intelligent agents through shaping of coevo-
lution. In: Congress on Evolutionary Computation, CEC, pp. 1077–1083. IEEE
Press (2011)

6. Ebner, M., Watson, R.A., Alexander, J.: Coevolutionary dynamics of interacting
species. In: Di Chio, C., et al. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024,
pp. 1–10. Springer, Heidelberg (2010)

7. Ficici, S.G., Pollack, J.B.: Challenges in coevolutionary learning: Arms-race dy-
namics, open-endedness, and mediocre stable states. In: Artificial Life, pp. 238–247.
MIT Press (1998)

8. Gomes, J., Mariano, P., Christensen, A.L.: Avoiding convergence in cooperative co-
evolution with novelty search. In: International Conference on Autonomous Agents
and Multi-agent Systems, AAMAS, pp. 1149–1156. IFAAMAS (2014)

9. Gomes, J., Urbano, P., Christensen, A.L.: Progressive minimal criteria novelty
search. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IB-
ERAMIA 2012. LNCS, vol. 7637, pp. 281–290. Springer, Heidelberg (2012)

10. Gomes, J., Urbano, P., Christensen, A.: Evolution of swarm robotics systems with
novelty search. Swarm Intelligence 7(2-3), 115–144 (2013)

11. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search
for novelty alone. Evolutionary Computation 19(2), 189–223 (2011)

12. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation 20(1), 91–133 (2012)

13. Nolfi, S.: Co-evolving predator and prey robots. Adaptive Behavior 20(1), 10–15
(2012)

14. Nolfi, S., Floreano, D.: Coevolving predator and prey robots: Do arms races arise
in artificial evolution? Artificial Life 4(4), 311–335 (1998)

15. Popovici, E., Bucci, A., Wiegand, R.P., De Jong, E.D.: Coevolutionary principles.
In: Handbook of Natural Computing, pp. 987–1033. Springer (2012)

16. Reisinger, J., Bahçeci, E., Karpov, I., Miikkulainen, R.: Coevolving strategies for
general game playing. In: Computational Intelligence and Games, pp. 320–327.
IEEE Press (2007)

17. Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary
Computation 5(1), 1–29 (1997)

18. Watson, R.A., Pollack, J.B.: Coevolutionary dynamics in a minimal substrate. In:
Genetic and Evolutionary Computation Conference, GECCO, pp. 702–709. Morgan
Kaufmann (2001)

19. Yannakakis, G.N., Hallam, J.: Modeling and augmenting game entertainment
through challenge and curiosity. International Journal on Artificial Intelligence
Tools 16(6), 981–999 (2007)

An Immune-Inspired Algorithm

for the Set Cover Problem

Ayush Joshi, Jonathan E. Rowe, and Christine Zarges

School of Computer Science, University of Birmingham,
Edgbaston, Birmingham, UK

{axj006,j.e.rowe,c.zarges}@cs.bham.ac.uk

Abstract. This paper introduces a novel parallel immune-inspired algo-
rithm based on recent developments in the understanding of the germinal
centre reaction in the immune system. Artificial immune systems are rel-
atively new randomised search heuristics and work on parallelising them
is still in its infancy. We compare our algorithm with a parallel implemen-
tation of a simple multi-objective evolutionary algorithm on benchmark
instances of the set cover problem taken from the OR-library. We show
that our algorithm finds feasible solutions faster than the evolutionary
algorithm using less parameters and communication effort.

Keywords: Artificial immune systems, GSEMO, set cover.

1 Introduction

Artificial immune systems (AIS) are randomised search heuristics inspired from
the immune system of vertebrates [3]. Unlike any other biological system, the
immune system has several desirable properties combined together, which make
it a great inspiration for the design of randomised search heuristics. Due to
properties like diversity, robustness, and memory, algorithms inspired by the
immune system have been applied to a large number of applications such as
machine learning, security, robotics, and optimisation [3].

As more and more problems in the real world are getting increasingly complex
the approaches to solve these are unable to scale and maintain robustness [7,10].
Natural processes on the other hand are robust and perform complicated tasks
well, thus it is hoped that understanding and using more detailed ideas from
these systems will help us design better systems. In this direction some work has
been done by Greensmith [7] on the dendritic cell algorithm but this has been
limited to intrusion detection and classification. Sim et al. [15] have proposed
a hyper-heuristic called NELLI which learns from changing problem landscapes
and has been shown to perform better than single human-designed heuristics.

In recent decades with the advancements in technology parallel architectures
and multi-processor systems are becoming more and more common. As a conse-
quence parallelisation of evolutionary algorithms (EA), in order to better utilise
available resources and save time, is gaining importance and popularity [11]. EAs
are inherently suitable for parallel implementations as operations such as fitness

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 243–251, 2014.
c© Springer International Publishing Switzerland 2014

244 A. Joshi, J.E. Rowe, and C. Zarges

calculations and mutations can be performed on separate processors. Parallel
EAs based on island models, where each island is an independent population
evolving on a separate processor, have features like inherent diversity. Some
communication is required to guide the search process and this is achieved by
exchange of solutions between islands.

We propose a novel artificial immune algorithm, the germinal centre artificial
immune system (GC-AIS) which has been developed based on recent under-
standing of the germinal centre reaction in the immune system [16]. This new
model has interesting properties like a dynamic population of islands and inher-
ent parallelism. We compare it with a parallel version of the global simple evo-
lutionary multi-objective optimiser (GSEMO) [12] on instances of the set cover
problem taken from the OR-library [1]. It is shown that the GC-AIS is able to
reach the feasible solution region faster than the homogeneous island model with
less communication effort as well as less parameters to be set manually.

The outline of the paper is as follows: In Section 2 some preliminary informa-
tion about the parallel GSEMO is provided along with the problem description.
Section 3 gives the description of the GC-AIS model along with its pseudo-
code. In Section 4 the experimental set-up along with the obtained results are
provided. The paper is concluded in Section 5 with a discussion on the observed
results and conclusions thereafter.

2 Preliminaries

The set cover problem (SCP) can be defined as follows: Given a universe set U
consisting of m items and a set S of n subsets of U whose union equals U , the
goal is to find the smallest subset of S that covers the whole universe U . More
formally:

Definition 1. Let the set of m items U := {u1, ..., um} denote the universe and
let S := {s1, ..., sn} such that si ⊆ U for 1 ≤ i ≤ n and

⋃n
i=1 si = U . The unicost

set cover problem can be defined as finding a selection I ⊆ {1, 2, ..., n} such that⋃
k∈I sk = U with minimum |I| .

SCP is a NP-hard combinatorial optimisation problem with many practical
applications, one of the most important being scheduling [2]. A survey of tech-
niques used to solve the set cover problem can be found in [2]. The description
of SCP above is a constrained single objective problem where the objective is
to find the smallest subset of S which covers the universe and the constraint is
that the subset covers the universe.

We convert this to a multi-objective version by using the constraint as a
secondary objective [5]. Let vector A = a1a2 . . . an ∈ {0, 1}n denote a solution
where ai = 1 if set si is in the solution and 0 otherwise. Let N equal the
number of sub sets selected in A, and let C equal the number of elements left
uncovered in U . The fitness function V for the SCP can now be written as a
vector V = 〈C,N〉.

An Immune-Inspired Algorithm for the Set Cover Problem 245

Multi-objective optimisation [4] is the task of finding optimal solutions to
a problem which has several objectives, often competing with each other. A
solution is said to dominate another if it is better in at least one objective and
has at least the same fitness for the other objectives. In this case it is not always
possible to order all individuals in a population since two potential solutions
may each be good in a different objective and worse in the others. Therefore,
there is not necessarily a unique optimal solution but a set of solutions where
each member is not dominated by any other solution in the search space. This
set is called the Pareto set and its image in the objective space is called the
Pareto front.

The global simple evolutionary multi-objective optimiser (GSEMO) [6] is a
generalisation of the (1 + 1) EA for multi-objective optimisation. It maintains
a set of non-dominated solutions in every iteration. The parallel variant of
GSEMO called the homogeneous island model GSEMO based on [12] can be
described as a collection of μ islands which are fully connected to each other
where each island runs an independent instance of the GSEMO algorithm. We
refer to this model as parallel GSEMO (PGSEMO) throughout this paper.
This is described in Algorithm 1.

Algorithm 1. Parallel GSEMO based on homogeneous island model [12]

Let P t
i denote the population in each island i at generation t, μ denote number of

islands, and p denote probability of communication.
Initialise P 0 = {P 0

1 , . . . , P
0
μ} where P 0

i = {0n} for 1 ≤ i ≤ μ. Let t := 0.
loop

for each island i in parallel do
Select an individual x from P t

i uniformly at random.
Create offspring x′ by mutating x with standard bit mutation, i. e., flip each bit
with probability 1/n.
if any individual in P t

i dominates x′ then
Leave P t

i unchanged.
else

Remove all individuals dominated by x′ from P t
i and add x′ to P t

i .
end if
With probability p send copy of population P t

i to all μ− 1 neighbours.
Combine P t

i with copies of populations received from neighbours.
Remove all dominated solutions from P t

i and let P t+1
i = P t

i .
end for
Let t = t+ 1.

end loop

Communication effort can be described as the number of individuals which
have been exchanged between the islands. We define the total communication
effort as the total number of individuals which were transmitted in one run of
the algorithm and the parallel running time as the number of generations it takes
for the algorithm to reach an optimal solution [12].

246 A. Joshi, J.E. Rowe, and C. Zarges

3 The GC-AIS Algorithm

In the immune system [13] germinal centres (GC) are regions where the invading
antigen (Ag) is presented to the B cells (a kind of immune cell) which create
antibodies (Ab) that in turn bind to the pathogen in order to eradicate it. At the
start of the invasion, the number of GCs grows and they try to find the best Ab
for the pathogen by continuously mutating and selecting the B cells which can
bind with the pathogen. Periodically GCs communicate by transmitting their
Abs to other GCs. By proliferation, mutation and selection of immune cells this
GC reaction is able to produce Abs which can eradicate the pathogen. Towards
this stage the number of GCs starts declining.

The exact mechanism of selection in the GC is an active area of research and
a new theory forms the basis of our algorithm [16]. According to this work the
selection of B cells to be kept alive for proliferation, is maintained by the B cells
themselves as they secrete Ab which bind with Ag and in turn directly compete
with other B cells to bind with Ag. This is an inter-GC phenomenon as Ab from
one GC can migrate to others and the competition increases which can lead to
disappearance of GCs which can not cope up with the Ab from other GCs.

The motivation to apply the GC-AIS to the set cover problem comes from
our belief that in an abstract way the immune system tries to solve the set cover
problem. Every time the body is invaded by a pathogen, the immune system
must produce Abs which are able to bind with the antigen (a partial cover) and
must improve this Ab by optimisation so that the binding is strong enough to
eradicate it (full cover). So if we visualise a possible pathogen binding site as an
instance of the universe set, and the binding regions of the B cells as possible
solutions, then the immune system tries to solve the problem of finding the best
match to the pathogen, by randomised variations in the solutions.

The GC-AIS (see Algorithm 2) starts with one GC which contains one B cell,
representing a problem solution. Offspring are created by standard bit mutation
of B cells in GCs. In the current version of our algorithm we restrict ourselves to
GCs that contain only a single B cell. In every generation there is a migration
of Ab between GCs, performed by transmitting only the fitness value of the
offspring from one GC to another. After migration, dominated solutions are
deleted which can lead to the eradication of a GC. The surviving offspring form
new GCs. This leads to a model where the number of GCs is dynamic in nature.

The GC-AIS always maintains a set of non-dominated solutions in every
generation. A parameter for the number of GCs is not required as the number is
dynamic and evolves as the algorithm runs. A preliminary design of the GC-AIS
can be found in [9].

4 Experimental Results

In this section we present the results obtained on running the GC-AIS and
the PGSEMO on some benchmark test instances of the SCP. The instances are

An Immune-Inspired Algorithm for the Set Cover Problem 247

Algorithm 2. The GC-AIS

Let Gt denote the population of GCs at generation t and gti the i-th GC in Gt.
Create GC pool G0 = {g01} and initialise g01 . Let t := 0.
loop

for each GC gti in pool Gt in parallel do
Create offspring yi of individual g

t
i by standard bit mutation.

end for
Add all yi to Gt, remove all dominated solutions from Gt and let Gt+1 = Gt.
Let t = t+ 1.

end loop

selected from the SCP test bed of the OR-library [1] where the instances are
grouped into classes based on the size of the problem. One instance each was
selected randomly from the 12 problem classes named 4, 5, 6, A, B, C, D, E,
RE, RF, RG and RH.

The PGSEMO requires the number of islands and the probability of commu-
nication to be set manually while GC-AIS does not require these parameters.
As in [12], both algorithms initialise individuals in 0n. This was done as most
problem specific algorithms use this method. For the GC-AIS we observed that
starting from a random string gives poor results. The stopping criteria can be
based on a fixed budget of generations or letting the algorithms run until a
certain desired fitness is achieved.

The probability of communication in the PGSEMO was initially based on
the equation p = μ/mn, where μ is the number of islands, p is the probability of
communication and m and n describe the problem size. This value gives the best
performance guarantee for a complete topology [12]. To estimate the number of
islands μ for the PGSEMO, GC-AIS was run for 10,000 generations and it
was observed that sufficiently good solutions were achieved. The average of the
maximum number of islands in 30 runs was used as the number of islands for
PGSEMO. This is done so that a fair comparison can be made in terms of
computation resources available to both algorithms. Due to space restrictions it
is not possible to include plots for every instance in this paper, key representative
plots are provided.

The first set of experiments was performed to analyse the solution quality
both algorithms can achieve using a fixed budget of fitness evaluations. A quota
of 7500 generations was set as a stopping criteria and average fitness achieved
per generation was plotted. This can be seen in Figures 1 and 2. It was observed
experimentally that using p = μ/mn to set p resulted in sub-par performance and
experiments were tried with higher rates of communication, p = 1/n , p = 1/m
and p = 1/μ. These are shown for problem scp41 in Figure 1. We observed
that having the probability of communication p = 1/μ, so that on average every
generation one island communicates gives best results.

Figures 1 and 2 show the fitness achieved per generation in both the GC-AIS

and the PGSEMO. The dotted lines depict the average number of sets used and
the solid lines depict the average number of uncovered elements per generation.

248 A. Joshi, J.E. Rowe, and C. Zarges

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (GC−AIS)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (PGSEMO, p = 1/ μ)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (PGSEMO, p = 1/m)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (PGSEMO, p =1/n)

0 500 1000
0

50

100

0 500 1000
0

50

100

0 500 1000
0

50

100

0 500 1000
0

50

100

Sets Used
Uncovered

Sets Used
Uncovered

Sets Used
Uncovered

Sets Used
Uncovered

Fig. 1. Fitness plots for GC-AIS and PGSEMO for problem scp41 with standard
deviation as shaded error bars, averages performed over 30 independent runs

The standard deviation per generation can be seen as the shaded error-bars. To
better see the difference between the curves in the early phase, the plots have
been zoomed in, which can be seen as the smaller sub-plots inside these figures.

For our next set of experiments we are interested in finding the generations
required to reach a fixed fitness value. From our previous experiment we use the
best fitness value which has been achieved in every run. Average generations to
reach this value were computed and the Wilcoxon rank-sum test was performed.
We additionally compare the results achieved by PGESMO and GC-AIS with
the best known results and the results of a simple Greedy heuristic [8,14]. All
results are shown in Table 1. In 8 out of the 12 rows of the table it can be
seen that there is a significant difference (p-value smaller than 0.05) between
the performance of the two algorithms, visible from the Wilcoxon rank-sum test
results, these entries have been written in bold face. In 7 out of these 8 cases
GC-AIS performed faster than PGSEMO.

To estimate the communication effort of the two algorithms, we count the
number of individuals which are exchanged between islands per generation.
The plots for the accumulated number of communications until generation t
are shown in Figure 3 for the problem instances scp41 and scpbnre4.

An Immune-Inspired Algorithm for the Set Cover Problem 249

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (GC−AIS, scpnre1)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (PGSEMO, scpnre1)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (GC−AIS, scpb4)

0 1000 2000 3000 4000 5000 6000 7000
0

50

100

150

200

Generations (PGSEMO,scpb4)

0 100 200
0

50

100

0 100 200
0

50

100

0 100 200
0

50

100

0 100 200
0

50

100

Sets used
Uncovered

Sets used
Uncovered

Sets used
Uncovered

Sets used
Uncovered

Fig. 2. Fitness plots for GC-AIS and PGSEMO for problem scpb4 and scnpnre1 with
standard deviation as shaded error bars, averages performed over 30 independent runs

Table 1. Generations required to reach a sufficiently good fitness. ‘AIS’ repre-
sents generations required for GC-AIS, ‘PGSEMO’ represents generations required for
PGSEMO, ‘fitness’ is the target fitness value used as stopping criterion. The column
‘WRStest’ shows the p-values of the Wilcoxon rank-sum test, ‘Gr’ contains the fitness
achieved by the Greedy heuristic, ’known’ contains the best known value and ’achieved’
contains best value achieved by GC-AIS in the first set of experiments. Generations
are averaged over 30 runs.

Problem m × n Fitness μ AIS PGSEMO WRStest Gr Known Achieved

scp41 200×1000 (0,45) 65 3654.5 4349.3 0.0013 41 38 41

scp52 200×2000 (0,43) 65 3412.4 4440.4 4.1127e-07 38 34 39

scp63 200×1000 (0,25) 45 2260.8 2037.3 0.3112 21 21 22

scpa5 300×3000 (0,50) 75 3518.8 4702.8 9.2603e-09 43 38 44

scpb4 300×3000 (0,28) 50 2941.2 2682.3 0.0575 24 22 25

scpc3 400×4000 (0,58) 90 3418. 4765.4 3.6897e-11 47 43 51

scpd2 400×4000 (0,31) 50 3507.8 3450.4 0.9646 26 25 28

scpe1 50×500 (0,5) 12 961.4 2051.1 0.0058 5 5 5

scpnre1 500×5000 (0,22) 30 1409 1506 0.1370 18 17 19

scpnrf2 500×5000 (0,12) 20 1867.5 1490.9 0.0302 11 10 11

scpnrg3 1000×10000 (0,87) 120 3168.4 6519.8 3.0199e-11 - 62 77

scpnrh4 1000×10000 (0,44) 65 3179 4069 1.3848e-06 - 34 40

250 A. Joshi, J.E. Rowe, and C. Zarges

0 2000 4000 6000
0

1

2

3

4

5

6

7

8

9
x 10

6

Generation (scpnre1)

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n

0 2000 4000 6000
0

1

2

3

4

5
x 10

7

Generations (scp41)

T
o
ta

l
C

o
m

m
u
n
ic

a
ti
o
n
s

GC−AIS
PGSEMO

GC−AIS
PGSEMO

Fig. 3. Total communication cost until generation t, for problems scp41 and scpnre1
averaged for 30 runs, for GC-AIS and PGSEMO

5 Discussion and Conclusion

The GC-AIS is able to reach the region of feasible solutions, i. e., solutions
where the first objective value is 0, faster than the PGSEMO. This can be
seen in Figures 1 and 2: in the first 500-1000 generations the solid curve, which
depicts the uncovered elements, can be seen to reach 0 faster for GC-AIS than
for PGSEMO. It was observed that during the generations towards the end,
mutations of individuals in the population very rarely replace any parent. We
think that at this stage that all islands in the PGSEMO converged to a similar
Pareto set due to communication over the course of the run, while there is in fact
just one Pareto set for the GC-AIS. Therefore for the PGSEMO, having many
parallel islands each with a similar population increases the chance of finding
an improvement, in comparison to a single GC population in the GC-AIS. This
advantage of having many islands comes at a cost, which is the communication
effort. As communication increases the benefits of parallelism begin to fade, as it
becomes a substantial time constraint for the overall performance. The GC-AIS
requires far less communications over all than PGSEMO which can be seen in
Figure 3. GC-AIS also uses less communication information than the PGSEMO,
as only fitness values are sent to other GCs in GC-AIS while the whole population
is communicated in PGSEMO.

Parameter setting is a big factor when running an algorithm on a new problem.
The GC-AIS has a clear advantage over PGSEMO in terms of parameters to be
set: the PGSEMO needs two parameters p and μ to be set manually while GC-
AIS does not require any of these. As can be seen in Figure 1, setting the right
values for p is crucial to obtain the desired performance. The values we found
optimal are different from the ones, which give the best proven performance
guarantees, as suggested in [12].

We proposed a novel immune-inspired algorithm calledGC-AIS and compared
itwith a simplemulti-objective evolutionary algorithm.Withnew ideas taken from

An Immune-Inspired Algorithm for the Set Cover Problem 251

the immune system and an interesting motivation to use the set cover problem as
a test, we show that the GC-AIS performs faster, uses less communication and
has the advantage of not requiring as much human intervention to set it up. In the
future we will investigate how theGC-AIS performs on other problem classes and
compare it with state-of-the-art techniques for these problems.

References

1. Beasley, J.E.: OR-library: Distributing test problems by electronic mail. The Jour-
nal of the Operational Research Society 41(11), 1069–1072 (1990),
https://files.nyu.edu/jeb21/public/jeb/info.html

2. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem.
Annals of Operations Research 98(1-4), 353–371 (2000)

3. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach. Springer (2002)

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley-
Blackwell (2001)

5. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4), 617–633 (2010)

6. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching prob-
lem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426.
Springer, Heidelberg (2003)

7. Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, University of Notting-
ham (2007), http://www.cs.nott.ac.uk/~jqg/thesis.pdf

8. Grossman, T., Wool, A.: Computational experience with approximation algorithms
for the set covering problem. European Journal of Operational Research 101(1), 81–
92 (1997)

9. Joshi, A.: Design of a parallel immune algorithm based on the germinal center
reaction. In: Proc of GECCO Companion, pp. 1671–1674. ACM (2013)

10. Kim, J., Bentley, P.J.: Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator.
In: Proc. of CEC, vol. 2, pp. 1244–1252. IEEE Press (2002)

11. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Appli-
cations. Springer (2011)

12. Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models
for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20.
Springer, Heidelberg (2012)

13. Murphy, K.: Janeway’s Immunobiology. Garland Science (2011)
14. Musliu, N.: Local search algorithm for unicost set covering problem. In: Ali,

M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 302–311.
Springer, Heidelberg (2006)

15. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evolutionary Computation (to appear, 2014),
http://dx.doi.org/10.1162/EVCO_a_00121

16. Zhang, Y., Meyer-Hermann, M., George, L.A., Figge, M.T., Khan, M., Goodall, M.,
Young, S.P., Reynolds,A., Falciani, F.,Waisman, A.,Notley,C.A., Ehrenstein,M.R.,
Kosco-Vilbois, M., Toellner, K.-M.: Germinal center B cells govern their own fate via
antibody feedback. The Journal of Experimental Medicine 210(3), 457–464 (2013)

https://files.nyu.edu/jeb21/public/jeb/info.html
http://www.cs.nott.ac.uk/~jqg/thesis.pdf
http://dx.doi.org/10.1162/EVCO_a_00121

Natural Gradient Approach for Linearly Constrained
Continuous Optimization

Youhei Akimoto1 and Shinichi Shirakawa2

1 Faculty of Engineering, Shinshu University, Nagano, Nagano, Japan
y akimoto@shinshu-u.ac.jp

2 College of Science and Engineering, Aoyama Gakuin University,
Sagamihara, Kanagawa, Japan
shirakawa@it.aoyama.ac.jp

Abstract. When a feasible set of an optimization problem is a proper subset of
a multidimensional real space and the optimum of the problem is located on or
near the boundary of the feasible set, most evolutionary algorithms require a con-
straint handling machinery to generate better candidate solutions in the feasible
set. However, some standard constraint handling such as a resampling strategy af-
fects the distribution of the candidate solutions; the distribution is truncated into
the feasible set. Then, the statistical meaning of the update of the distribution pa-
rameters will change. To construct the parameter update rule for the covariance
matrix adaptation evolution strategy from the same principle as unconstrained
cases, namely the natural gradient principle, we derive the natural gradient of the
log-likelihood of the Gaussian distribution truncated into a linearly constrained
feasible set. We analyze the novel parameter update on a minimization of a spher-
ical function with a linear constraint.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) is a state-of-the-art ran-
domized search heuristics in continuous domain [8–10, 12]. The CMA-ES maintains
the Gaussian distribution, from which candidate solutions are drawn. It repeats the fol-
lowing: sample λ points from the Gaussian distribution, evaluate the fitness for each
sample, update the parameters including the mean vector and the covariance matrix of
the distribution in order to make the distribution likely to generate better solutions. Re-
cently, it has been shown [2, 7] that the parameter update in the CMA-ES is partially
interpreted as a natural gradient ascent on the parameter space of the Gaussian distribu-
tion, where the natural gradient is computed for the function defined below in (1). This
idea is further generalized to the generic framework for arbitrary optimization, namely
information-geometric optimization (IGO) [16].

Since the CMA-ES has been originally proposed for unconstrained continuous opti-
mization, it often requires a treatment when solving a constrained problem. A number
of constraint handling strategies have been proposed for evolution strategies and for
more generic evolutionary algorithms [15]; e.g., adding an adaptive penalty to the fit-
ness according to the constraint violation [11], repairing an infeasible point into the
feasible region by a projection onto the boundary [4] or by a gradient based repair op-
erator [13]. In this paper we consider the resampling strategy; an infeasible point is

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 252–261, 2014.
c© Springer International Publishing Switzerland 2014

Natural Gradient Approach for Linearly Constrained Continuous Optimization 253

discarded and resampled until it drops into the feasible region. It can be applied even
when the constraint functions are black-box.

It has been shown that under a linear constraint, the success probability, i.e. the prob-
ability of generating a better point, depends on the angle of the gradients of the con-
straint function and the objective function and the dependency of the success probability
on the angle is different for the resampling [5] and a repair operator [4]. This obviously
affects a success probability based parameter update such as step-size adaptation based
on the 1/5 success rule [17]. Moreover, since the distribution of the generated point in
the feasible region is truncated (in the case of resampling) or biased on the boundary
(in the case of repairing), the update rules that are designed from a statistical viewpoint
are affected. For example, when the original Gaussian distribution is parameterised by
the mean vector m and the covariance matrix C, these parameters no more represent the
mean vector and the covariance matrix of the truncated Gaussian distribution. Then the
maximum likelihood estimators for m and C for the truncated distribution differ from
the ones for the original distribution. Therefore, a treatment in parameter update is re-
quired, an example of which is proposed by [6] where the covariance matrix is actively
reduced in the direction of the gradient of the constraint.

In this paper we study the effect of the constraint from a viewpoint of the natural
gradient. When resampling method is employed, the distribution of the generated feasi-
ble points is a truncated probability distribution whose domain is limited to the feasible
set. In this situation the natural gradient differs from the one computed for the non-
truncated (original) probability distribution. Now a question arises as to if we can gain
a better performance by computing the natural gradient on the manifold of the truncated
Gaussian distributions limited to the feasible set.

To address the question we derive the natural gradient under a linearly constrained
feasible domain and compare it with the original natural gradient theoretically and nu-
merically. In Section 2 the IGO framework and the rank-μ update CMA-ES as an in-
stantiation of the IGO are revisited. In Section 3 we derive the natural gradient under
a linearly constrained feasible domain. In Section 4 we analyze the infinite-population
model using the derived natural gradient on a linearly constrained spherical problem
and perform simulations to compare the behavior of the derived algorithm with the
original algorithm on a linearly constrained spherical problem. Finally in Section 5 we
summarize this work and discuss required future works.

Notation. The inner product of x ∈ Rd and y ∈ Rd is denoted by 〈x, y〉 and the norm
of x by ‖x‖ = 〈x, x〉1/2. For any matrix A, [A]i, j represents the (i, j)th element, [A]i,:

(or [A]:, j) the ith row (or the jth column, respectively.) For any symmetric matrix A of
dimension d, let vech(A) denote the lower-left half vectorization of A such that vech(A)
is the d(d + 1)/2 dimensional column vector whose ith element is [A]mi,ni where i =
mi + (d − ni/2)(ni − 1) for 1 � ni � mi � d. We refer to [14] for the detail.

2 IGO Framework and the Rank-μ Update CMA

Formulation. We consider a constrained continuous minimization argminx∈X f (x),
where X ⊂ Rd is the feasible set and f is the objective function defined over X. In the

254 Y. Akimoto and S. Shirakawa

following sections we assume that the feasible set is restricted by a linear function,
namely X = {x ∈ Rd | 〈x, v〉 � α} for some unit vector v ∈ Rd \ {0} and some α ∈ R.

Given a family P of probability distributions Pθ on X parameterized by a real vector
θ ∈ Θ, the IGO framework formulates the joint problem on the parameter space Θ at
each iteration t as follows

θt+1 = argmaxθ∈Θ Jθt (θ), where Jθt (θ) :=
∫

X
W f
θt

(x)Pθ(dx) . (1)

Here θt is the value of the parameter at iteration t, W f
θt

defines the preference that is
monotonic to f . The preference is defined based on the probability of sampling a better
point; namely,

W f
θt

(x) = w (Pθt [y ∈ X | f (y) � f (x)]) , where w : [0, 1]→ R. (2)

Another weight scheme is introduced in [1],

W f
θt

(x) = − (μLeb[y ∈ X : f (y) � f (x)])2/d , (3)

where μLeb denotes the Lebesgue measure on Rd. This is theoretically attractive; on an
unconstrained monotonic convex quadratic composite function g(xTAx) with g strictly
increasing, this weight value is −cxTAx, where c is a constant independent of g, m, and
C, and it enables us to derive the exact Jθt (θ).

Natural Gradient. The natural gradient can be interpreted as the gradient of a function
defined on the space of the probability distribution equipped with the Fisher metric. It
can be also interpreted as the steepest ascent direction of the function with respect to
the KL-divergence. Since the Fisher metric (and KL-divergence) is independent of the
parameterization (coordinate system) of the probability distribution, the natural gradient
is invariant to any re-parameterization of θ. Given a parameterization θ, the natural
gradient is computed by the product of the inverse of the Fisher information matrix of
θ and the vanilla gradient (gradient on the Euclidean space) of the log-likelihood of the
probability distribution. We refer to [16] for further properties of the natural gradient.

Noting that W f
θt

in (2) or (3) is independent of θ, the natural gradient of Jθt is com-
puted by

∇̃Jθt (θ) =
∫

X
W f
θt

(x)∇̃l(θ; x)Pθ(dx) , (4)

where ∇̃ represents the map from a function to its natural gradient, and l(θ; x) = ln pθ(x)
denotes the log-likelihood at θ given x. Eq (4) is viewed as a weighted expectation of
the natural gradient of the log-likelihood at θ.

Implementation of the Natural Gradient Ascent. The IGO algorithm performs the
natural gradient ascent instead of exactly solving joint problem (1). Then iterate {θt} is
defined by

θt+1 = θt + ηt∇̃Jθt (θ)|θ=θt , (5)

where ηt denotes the step-size for the natural gradient ascent, aka the learning rate for
the parameter update, which is sometimes replaced with a diagonal matrix whose diag-
onal entries are the learning rates for each element of the parameter vector. However,
the integration in (4) cannot be performed analytically in advance unless f is known.

Natural Gradient Approach for Linearly Constrained Continuous Optimization 255

Therefore, we estimate (4) with samples x1, . . . , xλ drawn from Pθt . According to [16],
we can approximate W f

θt
in (2) for each xi as W f

θt
(xi) ≈ ŵrk(xi) = w ((rk(xi) − 1/2)/λ),

where rk(xi) denotes the ranking of f (xi) among f (x1), . . . , f (xλ). With this, a Monte-
Carlo estimate provides an approximation of (4) at θ = θt, namely

∇̃Jθt (θ)|θ=θt ≈ 1
λ

∑λ
i=1 ŵrk(xi)∇̃l(θt; xi) . (6)

The IGO implementation performs the natural gradient ascent (5) with replacing the
natural gradient ∇̃Jθt (θ)|θ=θt given in (4) with its approximation (6).

Rank-μ Update CMA. Considering the IGO implementation for unconstrained con-
tinuous optimization, i.e. X = Rd, with the Gaussian distributions on Rd, it is known
from [3] that the natural gradient of the log-likelihood of the Gaussian distribution is
explicitly written in a special form. If the Gaussian distribution is parameterized by
θ = [mT, vech(C)T], where m and C are the mean vector and the covariance matrix, the
parameter update in the IGO implementation reads

mt+1 = mt +
ηm
λ

∑λ
i=1 ŵrk(xi)(xi − m)

Ct+1 = Ct +
ηC
λ

∑λ
i=1 ŵrk(xi)((xi − m)(xi − m)T −C) .

(7)

This is called the rank-μ update [10] and is a component of the standard CMA [9].
In [3], X = Rd is assumed to obtain the explicit form for the natural gradient. In other

words, the natural gradient computed in the reference is the one on the manifold of (non-
truncated) Gaussian distributions defined on Rd. If X is a proper subset of Rd (X ⊂ Rd

and X � Rd) and the truncated Gaussian distribution is considered (sampling from
a Gaussian distribution with resampling scheme as a constraint handling), the natural
gradient on the manifold of the truncated Gaussian distributions on X is different from
the one derived in [3] and the resulting natural gradient ascent differs from (7). This is
the main concern of the paper.

3 Natural Gradient for Truncated Gaussian Distributions

Let pθ(x) and l(θ; x) be the probability density function (p.d.f.) and the log-likelihood
function (l.l.f.) induced by the Gaussian distribution Pθ with mean m = m(θ) and covari-
ance matrix C = C(θ), i.e., l(θ; x) = − d

2 ln(2π)− 1
2 ln det(C(θ))− 1

2 (x−m(θ))TC−1(θ)(x−
m(θ)) and pθ = exp(l(θ; x)). Then, Pθ(A) =

∫
A

pθ(x)dx for any Lebesgue measurable
A ⊂ Rd. As in the rank-μ update CMA-ES, we consider θ = [mT, vech(C)T]T.

If the X is a proper subset of Rd and the resampling strategy is employed, the dis-
tribution of the samples in X is the Gaussian distribution truncated on X. Let p̄θ(x)
and l̄(θ; x) be the p.d.f. and l.l.f. of such a truncated Gaussian distribution P̄θ over
X. Then, p̄θ(x) = pθ(x)/Pθ(X) and l̄(θ; x) = l(θ; x) − ln Pθ(X) for x ∈ X, where
Pθ(X) =

∫
X

pθ(x)dx = Ex∼pθ [I{x ∈ X}] is the probability of x being sampled in X from
pθ. If we implement an algorithm following the IGO framework, the natural gradient
on the manifold of the truncated Gaussian distributions {P̄θ | θ ∈ Θ} is needed.

As the first attempt of the work, we derive the natural gradient of the l.l.f. of the
Gaussian distribution truncated on X = {x ∈ Rd | 〈x, v〉 � α}. The following proposition
and theorem provide the formula to compute the natural gradient explicitly.

256 Y. Akimoto and S. Shirakawa

Proposition 1. Let ϕ andΦ be the p.d.f. and cumulative density function induced by the
standard normal distributionN(0, 1). Define ϕβ be the p.d.f. for the normal distribution
truncated onto {x � β}, that is, ϕβ(x) = ϕ(x)/(1 − Φ(β)). Let Nβ be a random variable
obeying ϕβ. Then, μ1 := E[Nβ] = ϕβ(β), μ2 := E[N2

β] = βϕβ(β) + 1, μ3 := E[N3
β] =

(β2 + 2)ϕβ(β) and μ4 := E[N4
β] = (β3 + 3β)ϕβ(β) + 3.

Theorem 1. Let the natural gradient ∇̃l̄(θ; x) of the l.l.f. of the truncated Gaussian
distribution decomposed as ∇̃l̄(θ; x) = [δm(x)T, vech(δC(x))T]T, where δm(x) ∈ Rd and
δC(x) ∈ Rd×d are the components corresponding to m and C respectively. Let u =
v/‖C1/2v‖ and define y = x − m. Then,

δm(x) =
[μ2 − μ1〈u, y〉

τ1

]
y +
[
−
(τ2

τ1τ3 − τ2
2

− μ1

τ1

)
〈u, y〉2

+

(
τ3

τ1τ3 − τ2
2

− μ2

τ1

)
〈u, y〉 − τ3μ1 − τ2μ2

τ1τ3 − τ2
2

]
Cu and (8)

δC(x) = yyT − C +
[(1 − τ1)〈u, y〉 + μ1

τ1

]
(yuTC + CuyT) +

[(
2
τ2μ1 − τ1μ2

τ1τ3 − τ2
2

+ 1
)

+

(2τ1

τ1τ3 − τ2
2

− 2
τ1
+ 1
)
〈u, y〉2 − 2

(
τ2

τ1τ3 − τ2
2

+
μ1

τ1

)
〈u, y〉

]
CuuTC , (9)

where μ1, μ2, μ3 and μ4 are as defined in Proposition 1 with β = (α − 〈v,m〉)/‖C1/2v‖,
and τ1 = μ2 − μ2

1, τ2 = μ3 − μ1μ2, τ3 = μ4 − μ2
2.

We have omitted its proof due to the space limitation. Comparing to the natural gradient
∇̃l(θ; x) of the l.l.f. for the non-truncated Gaussian distribution Pθ that can be expressed
as δm(x) = y and δC(x) = yyT − C, (8) and (9) have additional components character-
ized by Cu = Cv/‖C1/2v‖. The coefficients are determined by β—a signed distance to
the boundary normalized by the standard deviation ‖C1/2v‖ in the direction of v—and
〈u, y〉—a signed distance from the current mean m to the sample point x in the direction
of C1/2v. In the limit β → −∞, meaning that the constraint boundary is far away from
the current mean and the situation is close to the unconstrained case, we have from
Proposition 1 that μ1 = μ3 = τ2 = 0, μ2 = τ1 = 1, μ4 = 3, τ3 = 2, and (8) and (9)
become identical to the natural gradient for the unconstrained case.

The natural gradient of the l.l.f. only depends on the manifold of the probability
distributions. That is, it only depends on the feasible set X, but not on the objective
function f . The parameter update (5) with (6) on the other hand depends on the selection
scheme. More precisely, the adjustments δm and δC of the parameters is the weighted
sum of δm(xi) and δC(xi) over i = 1, . . . , λ, where the weight value is determined by the
ranking of f (xi). In the next section we demonstrate on a linearly constrained spherical
problem how much the derived natural gradient differs from the rank-μ update (7).

4 Study on a Linearly Constrained Spherical Problem

We consider the following linearly constrained spherical problem argminx∈Xα f (x) :=
g(‖x‖2), where Xα = {x ∈ Rd | 〈x, v〉 � α} and g is strictly increasing. If α � 0, the op-
timum is located on the boundary x∗ = αv, otherwise x∗ = (0, . . . , 0) and the landscape

Natural Gradient Approach for Linearly Constrained Continuous Optimization 257

around the optimum is the same as the unconstrained sphere function. Therefore, we
consider only α � 0 in this work.

For ranking-based weight scheme as in (2), the natural gradient (4) generally needs to
be approximated by (6). To understand and emphasize the benefit of use the natural gra-
dient derived in the previous section, we employ the weight scheme (3). As mentioned
after (3), we can compute the joint objective analytically, Jθt (θ) = −c(‖m‖2 + Tr(C)),
on the unconstrained spherical problem and the natural gradients become δm = −2cCm
and δC = −2cC2 with an appropriate constant factor c. This analytical natural gradi-
ent is the limit of the natural gradient estimate (6) w.r.t. λ → ∞ [1] and it models the
infinite-population behavior of the rank-μ update CMA (7).

If α = 0, the volume of each sub level set μLeb[y ∈ X : f (y) � f (x)] is just halved
compared to the unconstrained case and we still have similar results.

Lemma 1. If α = 0, the weight W f
θt

(x) defined in (3) is −c̃xTx, where c̃ is a constant
independent of m and C. The natural gradient (4) with δm and δC derived in Theorem 1
reads δm = −2c̃Cm for m and δC = −2c̃C2 for C.

Surprisingly, the natural gradient on the linearly constrained spherical problem is only
different in length from the one on unconstrained spherical problem. This implies that
the natural gradient update (5) with δm and δC in Theorem 1 reads the exact same
parameter update as in the unconstrained case with an appropriate ηt. Therefore, all
the results in [1] are carried over here as stated in the next theorem.

Theorem 2. Let λt
1 denote the largest eigenvalue of −C−1/2δCC−1/2. If C0 is symmetric

positive definite and ηtλt
1 < 1 for all t � 0, then Ct is symmetric positive definite. More-

over, if ηt = η̄/λt
1 for η̄ ∈ (0, 1/2], limt→∞ Cond(Ct) = 1 and limt→∞‖Ct+1‖F/‖Ct‖F =

limt→∞‖mt+1‖/‖mt‖ = 1 − η̄, where ‖·‖F denotes the Frobenius norm.

The learning rate ηt = η̄/λt
1 is taken from [1]. This theorem means, the C becomes

proportional to the Hessian of xTx, namely the identity matrix, and m linearly converges
towards the global optimum at the origin. For the detail, see [1].

To visualize the difference from the original parameter update (7) with λ = ∞ where
the adjustment is E[W f

θt
(x)(x − m)] and E[W f

θt
(x)((x − m)(x − m)T − C)], we derive the

explicit form of the expectation. Following proposition reads it when the weight scheme
with baseline subtraction, W f

θt
(x) − E[W f

θt
(x)], is introduced.

Proposition 2. Let y = x − m, u = v/‖C1/2v‖ and μ1, μ2, τ1, τ2 and τ3 be as appeared
in Theorem 1. If α = 0, E[W f

θt
(x)] = −c̃[Tr(C) + ‖m‖2 + 2μ1uTCm + (μ2 − 1)uTC2u],

E[y] = μ1Cu, E[yyT −C] = (μ2 − 1)CuuTC, and

E[(W f
θt

(x) − E[W f
θt

(x)])y]

= − c̃
[
(τ2 − 2μ1)(uTC2u) + 2(τ1 − 1)(uTCm)

]
Cu − 2c̃μ1C2u − 2c̃Cm and (10)

E[(W f
θt

(x) − E[W f
θt

(x)])(yyT −C)]

= − 2c̃C2 − c̃
[
(τ3 − 4μ2 + 2)(uTC2u) + 2(τ2 − 2μ1)(uTCm)

]
CuuTC

− 2c̃(μ2 − 1)(C2uuTC + CuuTC2) − 2c̃μ1(CmuTC + CumTC) . (11)

Note that the E[W f
θt

(x)y] = E[(W f
θt

(x)−E[W f
θt

(x)])y]+E[W f
θt

(x)]E[y] and E[W f
θt

(x)(yyT−
C)] = E[(W f

θt
(x) − E[W f

θt
(x)])(yyT − C)] + E[W f

θt
(x)]E[yyT − C]. We call them NGn

258 Y. Akimoto and S. Shirakawa

0 20 40 60 80
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
101

‖m‖2

NGt
NGb
NGn

0 20 40 60 80
−1.5

−1.0

−0.5

0.0

0.5

1.0
m1

0 20 40 60 80
10−5

10−4

10−3

10−2

10−1

100

101
Eigenvalues of C

0 20 40 60 80
100

101
Cond(C)

0 20 40 60 80
−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
β

Num. of iterations

Fig. 1. Transitions of ‖m‖2, m1, the eigenvalues of C, the condition number Cond(C), and β from
left to right, respectively. For NGn, the run stops after β reaches 7. In the center figure, the eigen-
value corresponds to the first coordinate is the larger one for NGb, and the smaller one for NGn.

(natural gradient computed on the non-truncated Gaussian manifold), in contrast to NGt

(natural gradient computed on the truncated Gaussian manifold) for δm and δC derived
in Lemma 1. Moreover, we call (10) and (11) NGb. The only difference between NGn

and NGb is the offset of the weight, −E[W f
θt

(x)], and the expectation of the weight in
NGb is forced to be zero. Note that this offset does not affect the natural gradient in NGt

derived Lemma 1 since the expectations of δm(x) and δC(x) taken over x are zero.
Fig. 1 illustrates the evolution of the parameters m and C following the natural gra-

dient update (5) with the natural gradient ∇̃Jθt(θ) = [δm
T
, vech(δC)T]T where δm and δC

are computed for NGt, NGn, and NGb. For the constraint we set v = e1 = [1, 0, . . . , 0]T

and α = 0. The step-size is ηt = η̄/λt
1, where η̄ = 0.1 and λt

1 is the largest eigenvalue of
−C−1/2δCC−1/2 with corresponding δC for each variant. This step-size setting guaran-
tees the positivity of the covariance matrix as stated in Theorem 2 for NGt. The problem
dimension is d = 10. To produce simple figures, the evolution starts from m0 = e1 and
C0 = I. Thanks to the symmetry, m stays on the first axis and C stays to be a diagonal
matrix whose second to the last diagonal elements are equal.

As stated in Theorem 2, m and C converge linearly in NGt while the condition num-
ber of C stays 1 forever. In contrast, m goes over the constraint boundary and tends to
stop at some point in the infeasible area while the condition number of C grows up in
NGb and NGn. The normalized and signed distance β from m to the constraint bound-
ary then becomes large, which in the actual algorithms means that the probability of
sampling a point in the feasible region decreases. Since m does not converge towards
the optimum, the best-so-far point would not converge linearly towards the global opti-
mum. The tendency of the plots does not depend on the choice of the learning rate, i.e.
β does not converge to zero with any learning rate in NGn and NGb.

So far the natural gradient is analytically computed. This is considered
the approximated behavior of the algorithm in the limit of λ → ∞. In practice the
population size λ < ∞ and W f

θt
(x) for each xi and then δm and δC must be estimated

using finite samples x1, . . . , xλ ∼ p̄θt (x).1 We can approximate W f
θt

(x) as Ŵ f
θt

(x) :=

1 The resampling can be performed efficiently as follows. Generate z ∼ N(0, Id). If 〈z,C1/2u〉 <
β, generate z̃ ∼ N(0, 1), resample it till z̃ � β, then update z = z + (z̃ − 〈z,C1/2u〉)C1/2u. Then,
m + C1/2z obeys p̄θ. So we only need to resample a standard normal random number z̃.

Natural Gradient Approach for Linearly Constrained Continuous Optimization 259

0 100 200 300
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
‖m‖2 −m2

1

NGt
CMA

0 100 200 300
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
m2

1

0 100 200 300
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Eigenvalues of C

0 100 200 300
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Cond(C)

0 100 200 300
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
β

Num. of iterations

0 1000 2000 3000
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3
‖m‖2 −m2

1

NGt
CMA

0 1000 2000 3000
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
m2

1

0 1000 2000 3000
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Eigenvalues of C

0 1000 2000 3000
1.0

1.1

1.2

1.3

1.4

1.5

1.6
Cond(C)

0 1000 2000 3000
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
β

Num. of iterations

Fig. 2. Transitions of ‖m‖2 − m2
1, m2

1, the eigenvalues of C, the condition number Cond(C), and β
for NGt and the rank-μ update CMA with ηm = ηC = η̄ = 0.1 (above) and ηm = ηC = η̄ = 0.01
(below). The graphs are the average over 30 trials.

[∑
j∈{k∈�1;λ�| f (xk)� f (x)}(1/ p̄θt(x j))

]2/d, where p̄θt (x) = pθt(x)/Pθt(X) and Pθt (X) = 1 −
Φ(β) = [1 − erf(β/

√
2)]/2.2 With this approximation we can estimate the weight with

baseline subtraction3, W f
θt

(x) − E[W f
θt

(x)], for each xi as wi = Ŵ f
θt

(xi) − 1
λ

∑λ
j=1 Ŵ f

θt
(x j).

Then, δm and δC are approximated by the average of wi · δm(xi) and wi · δC(xi), respec-
tively. We denote the estimated natural gradient by δ̂m and δ̂C.

Fig. 2 compares the behaviors of NGt with that of the rank-μ update CMA (7) (de-
noted CMA) with the weight used in the standard CMA, ŵrk(xi) = max(0, ln(λ+1

2) −
ln(rk(xi)))/

∑λ
j=1 max(0, ln(λ+1

2) − ln(j)). The problem dimension d = 10, the popula-
tion size λ = 1000, and the learning rates ηm = ηC = 0.1 and 0.01 for the rank-μ
update CMA. For NGt, ηt = η̄/max[σ(C−1/2δ̂CC−1/2), ‖C−1/2δ̂m‖] with η̄ = 0.1 and
0.01, where σ(·) represents the largest singular value. The graphs show the average of
30 independent runs for each method.

As you can see from the figure, in the rank-μ update CMA, β tends to stay at some
point in negative, meaning that the mean vector is always away from the constraint
boundary in the feasible domain and its distance is proportional to ‖C1/2v‖. The eigen-
value of C corresponding to v = e1 becomes relatively smaller than the other eigenvalues.

2 In practice, a scalar factor in Ŵ f
θt

does not matter at all because the natural gradient is multiplied
by ηt

m and ηt
C that are inversely proportional to the scalar factor as introduced below. Therefore,

we can replace 1/ p̄θt (x) with exp(‖z‖2/2), where z = C−1/2(x − m).
3 As stated above, the baseline subtraction in NGt does not affect the expectation of the natural

gradient, while it can reduce the estimation variance of the natural gradient.

260 Y. Akimoto and S. Shirakawa

On the other hand, NGt results in smaller values of β and Cond(C) and they get even
smaller if we decrease the learning rate or increase the population size.

5 Summary and Discussion

In this paper we derive the natural gradient of the l.l.f. of the truncated Gaussian distribu-
tion for linearly constrained optimization problems. Analysis on a linearly constrained
spherical problem shows the infinite-population model using the derived natural gradi-
ent reads the same update as the exact natural gradient algorithm on a unconstrained
spherical problem [1] and all the results proven in the reference hold. The simulation re-
sults exhibit different behavior of the derived algorithm and the rank-μ update CMA. The
rank-μ update CMA tends to stay in the feasible set and the distance from the constraint
boundary stays proportional to ‖C1/2v‖, where v is the normal vector of the constraint
boundary, whereas the condition number and the normalized distance in the derived al-
gorithm converges to smaller values than in the rank-μ udpate CMA.

We would like to remark that the simulation performed in Section 4 depends heavily
on the weight scheme. As we see in Fig. 1 and Fig. 2, NGn, NGb, and the rank-μ update
CMA result in different behavior, although their only difference is the weight value and
the learning rate. Moreover, from a preliminary experiment we have observed that NGt

does not work as well as it is with the weight scheme (3) if we employ the CMA-type
weight scheme or the fitness proportional weight Ŵ f

θt
(xi) = ‖x‖2. The mean vector enters

the infeasible region as we have observed in NGn. Especially for the fitness proportional
weight, we can derive a theoretical result for the infinite-population model that even if
α > 0, the natural gradient becomes the same as the one on the unconstrained sphere
problem and the mean vector tends to converges to the origin that is in the infeasible
domain. Further study on the weight scheme is highly required.

For other future works, we compare the derived algorithm with the existing treatment
for the constrained problem such as [6]. To enhance the performance, we would need
to incorporate a step-size control mechanism that is in general heavily affected by the
constraint, and a projection of the mean vector to the feasible domain when it reaches
the infeasible domain. Furthermore, we extend the formula for the natural gradient for
a linearly constrained problem stated in Theorem 1 to problems with more general
constraint.

Acknowledgments. This work is supported by JSPS KAKENHI Grant Number
25880012.

References

1. Akimoto, Y.: Analysis of a Natural Gradient Algorithm on Monotonic Convex-Quadratic-
Composite Functions. In: Genetic and Evolutionary Computation Conference, pp. 1293–1300
(2012)

2. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Bidirectional relation between CMA evo-
lution strategies and natural evolution strategies. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 154–163. Springer, Heidelberg (2010)

Natural Gradient Approach for Linearly Constrained Continuous Optimization 261

3. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Theoretical Foundation for CMA-ES from
Information Geometry Perspective. Algorithmica 64, 698–716 (2012)

4. Arnold, D.V.: Analysis of a repair mechanism for the (1, λ)-ES applied to a simple con-
strained problem. In: Genetic and Evolutionary Computation Conference, pp. 853–860
(2011)

5. Arnold, D.V.: On the behaviour of the (1, λ)-ES for a simple constrained problem. In: Foun-
dations of Genetic Algorithms, pp. 15–24 (2011)

6. Arnold, D.V., Hansen, N.: A (1 + 1)-CMA-ES for constrained optimisation. In: Genetic and
Evolutionary Computation Conference Conference, pp. 297–304 (2012)

7. Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., Schmidhuber, J.: Exponential Natural
Evolution Strategies. In: Genetic and Evolutionary Computation Conference, pp. 393–400
(2010)

8. Hansen, N.: Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed. In:
Companion on Genetic and Evolutionary Computation Conference (2009)

9. Hansen, N., Auger, A.: Principled Design of Continuous Stochastic Search: From Theory
to Practice. In: Borenstein, Y., Moraglio, A. (eds.) Theory and Principled Methods for the
Design of Metaheuristics. Springer (2013)

10. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandom-
ized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Compu-
tation 11(1), 1–18 (2003)

11. Hansen, N., Niederberger, A.S.P., Guzzella, L., Koumoutsakos, P.: A Method for Handling
Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Com-
bustion. IEEE Transactions on Evolutionary Computation 13(1), 180–197 (2009)

12. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

13. Harada, K., Sakuma, J., Ono, I., Kobayashi, S.: Constraint-handling method for multi-
objective function optimization: Pareto descent repair operator. In: Obayashi, S., Deb, K.,
Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 156–170.
Springer, Heidelberg (2007)

14. Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer (2008)
15. Kramer, O.: A review of constraint-handling techniques for evolution strategies. Applied

Computational Intelligence and Soft Computing 2010 (2010)
16. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-geometric optimization algo-

rithms: A unifying picture via invariance principles (2011),
http://arxiv.org/abs/1106.3708

17. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Frommann-Holzboog (1973)

http://arxiv.org/abs/1106.3708

Evolutionary Constrained Optimization

for a Jupiter Capture

Jérémie Labroquère�, Aurélie Héritier, Annalisa Riccardi, and Dario Izzo

Advanced Concepts Team, European Space Agency (ESA-ESTEC)
Noordwijk, The Netherlands

Abstract. This investigation considers the optimization of multiple
gravity assist capture trajectories in the Jupiter system combining the
well known Differential Evolution algorithm with different classes of con-
straint handling techniques. The trajectories are designed to reach a de-
sired target orbit around Jupiter with minimum fuel consumption while
satisfying mission design constraints on maximum thrust level, maximum
time of flight and minimum closest distance to the planet. The advanced
constraints handling techniques are compared for different set of con-
straints on the challenging mission design problem. For each method the
trade off between performance, efficiency and the structure of the feasible
space is analyzed in light of the results obtained.

1 Introduction

The exploration of planetary moons has become a scientific interest by space
agencies such as NASA or ESA. The Jupiter system particularly has been the
focus for recent mission concepts such as the JUICE mission [1]. These mission
scenarios consist of a tour of Jupiter’s moons using multiple flybys. One of their
main goal is to assess the habitability of the four Galilean moons. Satellite-aided
capture is a well-known trajectory design technique that is employed to decrease
the fuel usage to capture a spacecraft into orbit around a planet.

Global optimization techniques have been successfully applied to interplan-
etary trajectory design [2,3]. They provide automated and unbiased searches
for various trajectory options. Within the last decade, several researchers have
investigated automated search techniques as a new approach to interplanetary
trajectory design. Abdelklalik and Gad investigate genetic algorithms to deter-
mine both the optimal flyby sequence and the optimal trajectory [4]. Recently,
Englander, Conway, and Williams develop an integer genetic algorithm to de-
termine the optimal flyby sequence and employ differential evolution for the
optimal trajectory [5]. However all these approaches are limited to the inclusion
of constraints as penalty factors in the definition of the fitness function.

This current paper investigates an automated search procedure based on evo-
lutionary techniques to design constrained interplanetary capture trajectories in
� Private work. Formally working at German Aerospace Center (DLR), Institute
of Aerodynamics and Flow Technology, Lilienthalplatz 7, D-38108 Braunschweig,
Germany.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 262–271, 2014.
c© Springer International Publishing Switzerland 2014

Evolutionary Constrained Optimization for a Jupiter Capture 263

the Jupiter system. The optimization problem is formulated as a constrained op-
timization problem. The trajectories are designed to target a final orbit around
Jupiter with path constraints on the maximum acceleration and minimum dis-
tance to the center of the system. The system is evolved towards the minimization
of the cumulative velocity increments. The purpose of this study is to investigate
how different constraints handling schemes perform for different subsets of con-
straints, on the given trajectory optimization problem, and propose alternative
techniques to the already widely used static penalty approach.

First, a modified version of the multiple gravity assist model (MGA-1DSM)
for interplanetary design is presented for the formulation of the optimization
problem [6]. The test case selected for this investigation is a capture trajectory
in the Jupiter system using a predefined sequence of flybys at the Jupiter’s
moons and targeting a final orbit around Jupiter with an eccentricity constraint.
The evolutionary optimization technique and the constraints handling methods
selected for the study are described in the third section. The advantages and
drawbacks of each method are briefly discussed while a quantitative comparative
assessment, on the specific test case, is performed in the following section related
to the experimental results. The summary of the results obtained and the future
research directions are outlined as final conclusions of the paper.

2 Jupiter Capture Trajectory

The capture trajectory model is formulated as an optimization problem using a
modified version of the MGA-1DSM model, where one deep-space maneuver is
allowed between two successive flybys at the moons [7]. The initial conditions
and characteristics of the spacecraft are taken from the problem statement of the
Global Trajectory Optimization Competition (GTOC 6) that was organized by
the Jet Propulsion Laboratory. Given a sequence of N moons, the constrained
optimization problem is defined as

minimize
x

N∑
i=1

ΔVi

subject to lb ≤ x ≤ ub
a = afinal, e = efinal, i = ifinal
ΔVi < Ti amax, i = 1, · · · , N
N∑
i=1

Ti < tofmax

di > dmin i = 2, · · · , N
where the variable vector x is bounded between lower bounds and upper bounds,
the objective function is composed of the sum of the deep space maneuvers and
three types of inequality constraints and three equality constraints are consid-
ered. The first inequality constraint is an acceleration constraint that is applied

264 J. Labroquère et al.

for each ΔVi to meet the thrust requirements. The second one is a limit on the
maximum time of flight and the third one is a minimum constraint on the clos-
est approach to Jupiter to avoid damaging the spacecraft due to the high level
of radiations emitted by the planet. The design of capture trajectories is often
dictated by specific mission requirements related to the shape and orientation of
the final insertion orbit. Therefore three equality constraints are introduced to
define the desired semi-major axis, eccentricity and inclination of the final orbit.
Given the set of moons defined as Γ = {I, E,C,G} where I = Io, E = Europa,
G = Ganymede and C = Callisto, and consider a sequence of N moons, denoted
SeqN in Γ , i.e, SeqN ∈ ΓN . The objective is to find a x vector encoding an
interplanetary trajectory that executes in sequence the N flybys at the moons
and satisfies the constraints. Given a sequence of N moons, the variable vector
has dimension 4N + 2 and encodes the initial position, the flyby parameters,
burn times and duration of each leg:

x = [t0, u, v, T0] +
N−1∑
i=1

[βi, rpi/rPlanet, ηi, Ti] + [βN , rpN /rPlanet]

The two last variables in the x vector denoted βN and rpN /rPlanet describing the
last flyby are added to the traditional formulation of the MGA-1DSM model.
These additional variables are necessary for the computation of the equality
constraints associated with the shape of the final insertion orbit around Jupiter.
The spacecraft is assumed to depart from a position located at Rinit = 1000 JR
from Jupiter center. Details on the problem statement and its mathematical for-
mulation can be found in the problem description of the GTOC 6 competition.1

The initial position of the spacecraft r0 is described in spherical coordinates as
r0 = Rinit(cosθcosφî + sinθcosφĵ + sinφk̂) where the two angles, θ and φ are
defined as θ = 2πu and φ = arccos(2v − 1) − π/2, respectively. The u and v
variables are employed instead of θ and φ to get a uniform distribution over the
starting sphere of radius equal to 1000 JR. The launch date is represented by
t0 using the Modified Julian Date 2000 (MJD2000). The total duration of the
first leg is given by T0. After reaching the first moon, the trajectory is propa-
gated in a Keplerian model during η1T1. A Lambert’s solver is then employed
to match the spacecraft position to the second moon in the sequence during
(1−η1T1). The flyby geometry at each moon is illustrated in Figure 1. The flyby
is modeled as an hyperbolic path about the moons where the magnitude of the
relative incoming hyperbolic velocity is equal to the magnitude of the relative
outgoing hyperbolic velocity, i.e, v∞−out = v∞−in. The flyby angle δ describes
how the spacecraft approaches the respective moon. More details on the flyby
characteristics and the calculations of the b-plane angle β can be found in [8,5].

3 Constrained Evolutionary Optimization

Population based evolutionary techniques are all based on a common structure: a
randomset of solutions encoded into a chromosome is randomly initialized, then the
1 http://sophia.estec.esa.int/gtoc_portal/

http://sophia.estec.esa.int/gtoc_portal/

Evolutionary Constrained Optimization for a Jupiter Capture 265

Fig. 1. Flyby geometry

chromosomes evolve through proper algorithm operators to create a new potential
set of solutions. The process iterates from one solution set to another until a stop-
ping condition is met. For each chromosome x a fitness function F (x) is assigned
as a measure of quality for the solution.

The self adaptive Differential Evolution (DE) algorithm [9] is an evolutionary
technique that has already shown promising results in the design of interplan-
etary trajectory problems [7]. The parameters of the DE algorithm (variant
rand/1/exp) [10,11], which represent the mutation parameter and the crossover
constant, are encoded in the chromosome even though they do not evolve with
the same operators. The possibility of having a dynamic updating rule for the
algorithm parameters is particularly interesting in trajectory design problems,
where the solutions in the early design phase are highly diversified.

3.1 Constraint Handling Techniques

DE and its self-adaptive variant jDE have been designed for single-objective
unconstrained optimization. To solve for constrained single-objective optimiza-
tion problems the evolutionary algorithm needs to be coupled with a constraint
handling technique. Within the past few years several techniques have been de-
veloped to handle constrained optimization problems [12]. In this investigation
a few of them have been selected based on their applicability and their different
ways of dealing with the constraints.

Death Penalty. The rejection of the infeasible individuals is the most straight-
forward approach to handle constraints in evolutionary optimization. The fitness
update rule of each individual has a penalty factor which become activated for
infeasible individuals and assign to their fitness a large constant value. The pro-
cess can easily get stuck if no feasible individual can be found. The Kuri variant
of the method is considered [13], where the fitness function is updated as

F (x) =
{

f(x) if x feasible
K −∑s

i=1 K/m otherwise

where m is the number of constraints, s is the number of non violated constraints
and K is a large constant.

266 J. Labroquère et al.

Adaptive Penalty. More advanced adaptive penalty approaches have been
developed to overcome the limitations of the previously presented techniques. In
particular the co-evolution method proposed in [14] is considered for this study. It
makes use of two populations P1 and P2. The first one, P1, encodes the penalty
coefficients while the second one, P2, encodes the optimization variables. The
fitness of each individual belonging to P2 is updated using the following fitness:

F (x) = f(x)+y1

mI∑
i=1

max[0, gi(x)]+y2NviomI +y3

mE∑
i=1

max[0, hi(x)]+y4NviomE

where (yj1, . . . , y
j
4) is the encoding of the j-th individual in P1, mI and mE are

respectively the number of inequality and equality constraints g(x) and h(x),
NviomI and NviomE are respectively the number of inequality and equality vi-
olated constraints. The fitness of each individual in the population P1 depends
on the entire population P2 that is associated to it and it is a measure of its
infeasibility. The two sets of populations are evolved cooperatively towards fea-
sibility and optimality. The main drawback of such approach is its efficiency.
The adopted formulation diverges from the original formulation of Coello Coello
where equality and inequality constraints were aggregated in a single term.

Immune System. The technique emulates the biological behavior of an im-
mune system making use of two populations and two optimization strategies [15].
In biological immune systems the antigenic molecules are recognized and then
eliminated by the antibodies. Two populations are employed: one representing
the antigenes and one representing the antibodies. The fitness of an individ-
ual is determined by its ability to recognize antigenes. Hence the population
of antibodies, generated after the immune system simulation, is able to recog-
nize antigenes in the population and to evolve towards immunity and, therefore,
feasibility.

Repair Methods. Repair methods are hybrid techniques that combine heuris-
tic strategies with local searches. The infeasible individuals of the population are
repaired to get closer to the feasible region. The repairing method considered in
this investigation is a variation of the algorithm proposed in [16]. The infeasible
individuals are repaired by means of a gradient descent algorithm that aims at
minimizing the sum of the constraint violations. The outer optimization loop
minimizes a penalized formulation of the original problem. This has been added
to the original algorithm to preserve the repaired solutions reinjected into the
population.

4 Experiments

The test case selected in this investigation considers 4 flybys in the Jupiter system.
The predefined sequence of moons selected is Seq4 = {C,G,G,G}. This capture

Evolutionary Constrained Optimization for a Jupiter Capture 267

Table 1. Bounds on the variables vector

Variables lb ub
t0 [MJD 2000] 7305 11323
u [-] 0 1
v [-] 0 1
T0 [days] 180 210
T1 [days] 0.1 10
T2 [days] 3 80
T3 [days] 3 40
βi (i = 1..3) [rad] -2π 2π
rpi/rPlanet (i = 1..3) [-] 50 2000
ηi (i = 1..3) [-] 0 1
β4 [rad -2π 2π
rp4/rPlanet [-] 50 2000

Table 2. Bounds on the constraints for
i=0..3 and j=1..3

Constraints lb ub
ΔVi/Ti [m/s2] −∞ 5 · 1e− 05∑3

i=0 Ti [days] −∞ 328.725
dj [JR] 2 ∞
e [-] 0.7-0.02 0.7+0.02

sequence corresponds to the one employed in previous work [7]. The values for the
lower and upper bounds for the chromosome x, are defined in Table 1. The bounds
of the inequality constraints introduced in Section 2 are reported in Table 2. The
maximum acceleration is set by considering a thrust of 0.1 Newton and a space-
craft of 2000 kg, the maximum time of flight is constrained to 0.9 years and the
minimum distance to the center of the system is constrained to 2 Jupiter radius.
Concerning the equality constraints related to the shape of the final orbit, an ec-
centricity constraint is introduced as a proof of concept for this test case where
efinal = 0.7. A high eccentricity is desirable, for example for the exploration
of Jupiter and its environment. In particular the region between Callisto and
Ganymede is interesting for magnetospheric/plasma physics science [17]. The
implementation of the evolutionary and constraints handling techniques pre-
sented in Section 3 are made available as part of the open source scientific library
PaGMO2, and its python front-end PyGMO3. The framework also provides a
generic interface to multiple well known optimization libraries. In particular, the
local technique used in the experiments for the repair algorithm is the Nelder
and Mead simplex algorithm from the GSL library 4. The parameters involved
in the constraints handling schemes have been tuned benchmarking a variety
of constrained optimization problems taken from the 2006 IEEE Congress on
Evolutionary Computation (CEC) competition, and have been kept the same in
the different scenarios.

4.1 Problems Definition

Within gravity assist maneuvers, the desirable trajectories are the ones that
do not require deep space maneuvers to reach a certain orbit. These specific
trajectories are called ballistic trajectories and are defined such as

∑N
i=0 ΔVi = 0.

2 https://github.com/esa/pagmo/wiki
3 http://esa.github.io/pygmo/
4 http://www.gnu.org/software/gsl/

https://github.com/esa/pagmo/wiki
http://esa.github.io/pygmo/
http://www.gnu.org/software/gsl/

268 J. Labroquère et al.

These solutions, are very challenging to obtain within the feasible region because
of the highly multimodal landscape of the fitness space. In the following, multiple
problems definitions are considered with an increased complexity in terms of
constraints satisfaction, see Table 3:

– Case 1: Ballistic capture trajectory around Jupiter. This case finds
ballistic solutions under inequality constraints on the minimum distance to
Jupiter and the maximum time of flight. The parameters of the final orbit
around Jupiter, such as eccentricity, inclination and semi-major axis are free.

– Case 2: Ballistic capture trajectory around Jupiter targeting a
desired final eccentricity. An extra equality constraint targeting a desired
final eccentricity is added to the problem presented in case 1. The inclination
and semi-major axis of the final orbit around Jupiter are free.

– Case 3: Ballistic capture trajectory around Jupiter targeting a de-
sired final eccentricity with constraints on maximum acceleration.
A maximum acceleration constraint on each trajectory leg is added to the
problem definition of case 2.

Table 3. Details of the 3 test problems. ρ = |F |/|S| is the estimated ratio between the
feasible region and the search space, LI and NI are respectively the number of linear
and nonlinear inequality constraints, LE and NE are respectively the number of linear
and nonlinear equality constraints. a is the number of active constraints at optimality.

Problem Constraints ρ LI NI LE NE a
Case 1 minimum distance to Jupiter, maximum time of

flight
35.2097% 0 4 0 0 0

Case 2 minimum distance to Jupiter, maximum time of
flight, final eccentricity

0.0000% 0 5 0 1 1

Case 3 minimum distance to Jupiter, maximum time of
flight, final eccentricity, maximum acceleration

0.0000% 0 9 0 1 5

4.2 Results

All experiments have been sequentially run on a 1.8GHz i5 dual core proces-
sor. For each experiment, 250 runs are performed with a population size of
50 individuals. At each run, 400 evolutions for each algorithm are considered.
Each algorithm contains 5000 internal generations to reach a maximum num-
ber of 1e8 cost function evaluations. To keep the experiments computationally
tractable within a reasonable time, the CPU time is limited to 2700s (45 min-
utes). The tolerances are set to 1e-8 for both the cost function convergence and
the algorithms internal tolerances. A special treatment is introduced for the case
3 by sequentially activating the acceleration constraints linked to each leg. This
has been added because the constraint on the trajectory leg between Callisto
and Ganymede is hard to be satisfied due to the limited time of flight allowed
in the problem definition. Figure 2 illustrates the convergence of the different

Evolutionary Constrained Optimization for a Jupiter Capture 269

constraints handling techniques towards ballistic solutions, with respect to the
required CPU time. Table 4 reports the probability of finding a ballistic solution.
Some observations on the results obtained can be stated:

– Case 1: The first test case shows comparable trend for the death penalty
and repair techniques in terms of performance (probability of convergence)
and efficiency (CPU time). The immune system has the best convergence
performance but the worst convergence rate. Finally the co-evolution is the
method that requires the highest CPU time to achieve convergence.

– Case 2: The behavior of the techniques is similar to the above case, except
for the immune system that, even though it is able to reach feasibility, is not
able to converge to the global optimum (ballistic solutions).

– Case 3: Only the co-evolution method is able to reach feasibility and global
optimality. The required CPU time is comparable to the one of case 2.

The plot of a representative solution, for each of the test cases, is reported in
Figure 3. For all constraints handling techniques, the solutions converge to an
area of the search space where the orbits have very similar shapes. In order to
achieve a greater variety in the set of final orbits, within ballistic solutions, also
the sequence of moons needs to be enlarged and optimized.

To summarize, all the constraints handling techniques, but the immune sys-
tem, were able to find feasible and ballistic solutions for the cases 1 and 2.
For the case 3, only the co-evolution could find solutions. The repair method

Fig. 2. Convergence performance, in terms of CPU time, towards ballistic solutions,
of each constraints handling techniques

Table 4. Probability of convergence to a ballistic solution over 250 runs

Constraints handling
technique

Convergence
probability case 1

Convergence
probability case 2

Convergence
probability case 3

Co-evolution 0.272 0.1 0.152
CORE + Kuri 0.324 0.132 0
Death penalty 0.320 0.148 0
Immune system 0.192 0 0

270 J. Labroquère et al.

Fig. 3. Selected trajectories for the case 1, case 2 and case 3

CORE+Kuri and death penalty constraints handling technique are very similar
in term of computational performance and probability of convergence for the
first two cases, which highlights, that the repairing process does not have a large
effect. Indeed if the constrained problem has a wide feasible region, easily reach-
able in the early stage of the evolution, the two techniques become comparable.
They both fail in finding feasible solutions in the last test case. The adaptability
of the penalty approach embedded in the co-evolutionary algorithm is the only
strategy, between the selected ones, able to converge to feasibility and global
optimality in each of the test case. As expected its main drawback, as illustrated
in the first two cases, is its efficiency.

5 Conclusion and Prospects

In this paper an automatic procedure, using evolutionary constrained optimiza-
tion techniques, for interplanetary trajectory design has been introduced. The
trajectories are designed to reach a desired target orbit around Jupiter with
minimum fuel consumption while satisfying mission design constraints on maxi-
mum thrust level, maximum time of flight and minimum closest distance to the
planet. To optimize these trajectories, four constraints handling techniques have
been introduced: the Kuri variant of the death penalty, the CORE+Kuri repair-
ing method, the co-evolution and the immune system. All the techniques but
the immune system could find feasible ballistic solutions within a respectable
time. The immune system can’t reach ballistic solutions as soon as the equality
constraint on the final orbit eccentricity is targeted. The co-evolution technique
is the only one able to find such solutions when maximum thrust level con-
straints are added to the problem. As a proof of concept only an eccentricity
constraint is considered in this investigation. However as future work, additional
equality constraints on semi-major axis and inclination can be included in the
problem definition. Moreover another interesting aspect would be to optimize
the sequence and number of moons to achieve a ballistic capture at Jupiter with
insertion into any desired final orbit shape.

Evolutionary Constrained Optimization for a Jupiter Capture 271

References

1. The JUICE Science Study Team: Juice exploring the emergence of habitable worlds
around gas giants. ESA/SRE 18 (December 2011)

2. Izzo, D., Becerra, V.M., Myatt, D.R., Nasuto, S.J., Bishop, J.M.: Search space
pruning and global optimisation of multiple gravity assist spacecraft trajectories.
Journal of Global Optimization 38(2), 283–296 (2007)

3. Deb, K., Padhye, N., Neema, G.: Interplanetary trajectory optimization with
swing-bys using evolutionary multi-objective optimization. In: Kang, L., Liu, Y.,
Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 26–35. Springer, Heidelberg (2007)

4. Abdelkhalik, O., Gad, A.: Dynamic-size multi-population genetic optimization
for multi-gravity-assist trajectories. Journal of Guidance, Control, and Dynam-
ics 35(2), 520–529 (2012)

5. Englander, J.A., Conway, B.A., Williams, T.: Automated mission planning via
evolutionary algorithms. Journal of Guidance, Control, and Dynamics 35(6) (2012),
doi:10.2514/1.54101

6. Izzo, D.: Global optimization and space pruning for spacecraft trajectory design,
spacecraft trajectory optimization, pp. 178–199. Cambridge University Press (2010)

7. Izzo, D., Simões, L.F., Märtens, M., de Croon, G.C., Héritier, A., Yam, C.H.:
Search for a grand tour of the jupiter galilean moons. In: GECCO 2013: Proceeding
of the Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference, pp. 1301–1308 (2013)

8. Vinkó, T., Izzo, D.: Global optimisation heuristics and test problems for prelimi-
nary spacecraft trajectory design. ESA TR GOHTPPSTD (2008)

9. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

10. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997)

11. Storn, R., Price, K.: Differential Evolution- A Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. Technical report (1995)

12. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

13. Morales, A.K., Quezada, C.V.: A universal eclectic genetic algorithm for con-
strained optimization. In: 6th Intelligent Techniques and Soft Computing European
Congress, pp. 518–524 (1998)

14. Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering opti-
mization problems. Computers in Industry 41(2), 113–127 (2000)

15. Hajela, P., Lee, J.: Constrained genetic search via schema adaptation: an immune
network solution. Structural Optimization 12(1), 11–15 (1996)

16. Belur, S.V.: CORE: Constrained optimization by random evolution. In: Koza, J.R.
(ed.) Late Breaking Papers at the 1997 Genetic Programming Conference, July
13-16, pp. 280–286. Stanford Bookstore, Stanford University (1997)

17. Campagnola, S., Kawakatsu, Y.: Jupiter magnetospheric orbiter trajectory design:
Reaching high inclination in the jovian system. 22nd International Symposium on
Space Flight Dynamics (February-March 2011)

Viability Principles for Constrained

Optimization Using a (1+1)-CMA-ES

Andrea Maesani and Dario Floreano

Laboratory of Intelligent Systems,
Institute of Microengineering,

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

{andrea.maesani,dario.floreano}@epfl.ch

http://lis.epfl.ch

Abstract. Viability Evolution is an abstraction of artificial evolution
which operates by eliminating candidate solutions that do not satisfy
viability criteria. Viability criteria are defined as boundaries on the values
of objectives and constraints of the problem being solved. By adapting
these boundaries it is possible to drive the search towards desired regions
of solution space, discovering optimal solutions or those satisfying a set
of constraints. Although in previous work we demonstrated the feasibil-
ity of the approach by implementing it on a simple genetic algorithm,
the method was clearly not competitive with the current evolutionary
computation state-of-the-art. In this work, we test Viability Evolution
principles on a modified (1+1)-CMA-ES for constrained optimization.
The resulting method shows competitive performance when tested on
eight unimodal problems.

Keywords: Stochastic optimisation, constrained optimisation, evolu-
tion strategy, viability evolution, constraint handling.

1 Introduction

Evolutionary computation methods are often used to solve real-valued black-box
optimization problems, a large number of which require satisfying constraints.
Without loss of generality, solving a real-valued constrained optimization prob-
lem in Rn means minimizing the objective function f(x), x ∈ Rn, subject to
inequalities1 defined on m constraints function gi(x) ≤ 0, i = 1, . . . ,m.

Several approaches have been proposed to solve constrained problems us-
ing evolutionary algorithms [1], ranging from rejecting solutions that violate
constraints (infeasible solutions) to more sophisticated strategies that modify
the ranking of individuals by penalizing the fitness using a function of con-
straint violations (penalty functions). Other popular approaches include stochas-
tic ranking of solutions [2], ε-constrained optimization [3], feasibility rules to
1 Equality constraints can always be rewritten as inequalities by using a tolerance
value on the equality.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 272–281, 2014.
c© Springer International Publishing Switzerland 2014

http://lis.epfl.ch

Viability Principles for Constrained Optimization 273

rank solutions [4], and transformation of constraints into objectives. Although
these methods are necessary to handle infeasible solutions and constraints, an
efficient optimizer is essential to progress during the search.

Currently, many state-of-the-art algorithms for unconstrained optimization
are based on Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5].
In CMA-ES, a covariance matrix describing correlations between decision vari-
ables is learned and adapted during the search to maximize the likelihood of
generating successful solutions. Although CMA-ES is a powerful optimizer in
unconstrained settings [6], it may suffer from premature convergence in presence
of constraints, a common problem in strategies with adaptive step-size control
[7]. Furthermore, methods for constrained optimization based on CMA-ES often
require providing a feasible solution as a starting point.

A different modelling of objectives and constraints in CMA-ES may offer novel
possibilities for handling constraints and allow the initialization of the algorithm
from infeasible solutions. Viability Evolution [8,9] is an abstraction of artificial
evolution that models an optimization process using viability boundaries, which
are modified over time to drive the search towards desirable regions of a search
space, as shown in Figure 1. Under this abstraction, mutations can produce vi-
able solutions, which survive, or non-viable solutions, which are eliminated from
the population. Viability boundaries are generally defined as admissible ranges of
problem objectives and constraints. At the beginning of the search the boundaries
are relaxed to encompass all randomly generated initial solutions and then gradu-
ally tightened. Once viability boundaries reach the desired target boundaries they
are not tightened further, and the evolutionary process is considered complete.

generations

Viable Region

Viable Solution

Viability Boundaries

Fig. 1. Viability boundaries initially encompass all randomly generated solutions. We
represent the viable region as a projection on a two-dimensional plane of the viability
boundaries (shaded area). During the search, the boundaries are made more stringent.
Viable solutions are retained in the population (dots in the shaded area), whereas so-
lutions that do not satisfy viability boundaries are eliminated. Mutations can generate
solutions (circled dots) that fall outside or inside the viable region.

274 A. Maesani and D. Floreano

In this work, we borrow concepts from Viability Evolution, and combine them
with active covariance updates for CMA-ES [10], to derive a novel algorithm for
constrained optimization. Here, we restrict ourselves to testing our method only
in the case where it is started from a feasible solution, as done in [10] which
reports current state-of-the-art performance on a set of eight unimodal functions.

The paper is structured as follows. In Section 2 we discuss the state-of-the-art
of constraint handling in evolution strategies and we elucidate the workings of a
(1+1)-CMA-ES with constraint handling proposed in [10]. In Section 3 we dis-
cuss Viability Evolution principles and the proposed approach for constrained
optimization. Experimental setup and results of the proposed approach are pre-
sented in Section 4. Finally, we conclude with a brief discussion of the proposed
approach in Section 5, and we propose future continuations of the work.

2 Related Work

Classical approaches to handle constraints in evolution strategies consist of sim-
ply discarding and resampling infeasible solutions [11] or using penalty functions.
Penalty functions usually depend on the amount of constraints violation or num-
ber of violated constraints [12], and in some cases also on the fitness of selected
feasible solutions [13]. The penalty functions can also be adaptive: for example the
relative weight of each constraint in the penalty can be modified according to the
number of iterations where infeasible solutions are discovered [14], or according
to the ratio between feasible and infeasible individuals [15].

Other methods do not use penalty functions. An approach performs selection
based on three feasibility rules [16]: feasible individuals are compared on objec-
tives, infeasible ones are compared on total constraint violations, and feasible
individuals are always ranked before infeasible ones. Similarly, a recently pro-
posed method modifies the ranking of individuals based on three independent
rankings: by objective function, by constraint violation amount, and by number
of violated constraints depending on if the solution is feasible or infeasible [17].
Other approaches reduce the probability of generating infeasible solutions when
in the proximity of the constraint, by moving the mean of the population [18]
or by explicitly controlling the step size using a lower bound [7].

Another way in which constraints can be handled is learning surrogate models
for linear constraints. One of these methods has been shown to be a promising
approach to reduce the number of constraint function evaluations by predicting if
solutions are feasible or infeasible, adapting directly the covariance matrix using
the learned information, and repairing solutions that turn out to be infeasible
[19]. The work has been recently extended to non-linear constraints, learning
models using support vector machines [20]. Another recently proposed variant
of CMA-ES [21] makes use of repair mechanisms, but the algorithm is very
specific to the problem being solved (financial portfolio optimization).

2.1 (1+1)-CMA-ES with Active Covariance Matrix Adaptation

Among the various methods proposed for handling constraints in CMA-ES,
Arnold and Hansen [10] recently proposed a modification of a (1+1)-CMA-ES

Viability Principles for Constrained Optimization 275

that has displayed great performance improvements with respect to other meth-
ods on unimodal constrained problems when started from a feasible solution.
The method maintains a (low-pass filtered) vector representing the direction of
violations of steps with respect to each constraint. These vectors are used to
update the covariance matrix such that the variance in the direction of viola-
tion is reduced. A (1+1)-CMA-ES combines (1+1) selection [22] with covariance
matrix adaptation [5]. Given a parent solution x ∈ Rn, an offspring solution y
is sampled according to y ← x + σAz where A is the Choleski decomposition
of the covariance matrix C = ATA and z ∼ N (0, I) is sampled from a normal
distribution. The global step size σ ∈ R+ is changed according to a modified
1/5 rule proposed in [23]. The probability Psucc ∈ [0, 1] of generating successful
solutions and σ are updated at each iteration

Psucc ← (1− cp)Psucc + cp1f(y)≤f(x) (1)

σ ← σexp

(
1
d

(
Psucc − Ptarget

1− Ptarget
(1− Psucc)

))
(2)

where 1f(y)≤f(x) is 1 if the condition is true or 0 otherwise, the learning rate
cp ∈ (0, 1] determines the fading of Psucc and the damping factor d controls the
step size variation. Ptarget determines the probability threshold that decreases or
increases σ. The covariance matrix is adapted using the original rank-one update
rule of CMA-ES, C(g+1) = αC(g) + βv(g)v(g)T , which increases the variance in
the direction of the provided vector v from one iteration g to the following one.
Using a vector of fading successful steps s, called the evolution path, in place of
vector v, allows the strategy to increase the likelihood of sampling new solutions
in the direction of already successful steps. In fact, there is no need to maintain
the covariance matrix C, as updates can be performed directly on the Choleski
factor A as proved in [23] according to

A ← √
αA+

√
α

‖w‖2
(√

1 +
β

α
‖w‖2 − 1

)
swT (3)

where w = A−1s and β = c+cov ∈ Rn. In practice the evolution path s and α
are updated depending on Psucc. If the probability of success is small (Psucc <
Pthresh) then the covariance matrix is updated considering the current step Az,
such that s ← (1 − c)s +

√
c(2− c)Az and α = 1 − c+cov. Otherwise (Psucc ≥

Pthresh), the update does not consider the current step in order to avoid the
variance increasing too much in the direction of already successful mutations.
In this case the covariance matrix is always updated using Equation 3 but the
evolution path is set to s ← (1− c)s and α = 1− c+cov + c+covc(2− c).

An alternative “active” covariance matrix update that also considers particu-
larly unsuccessful steps worse than the fifth ancestor of the current solution was
proposed in [24]. In this case, the covariance matrix is updated using the current

276 A. Maesani and D. Floreano

unsuccessful step Az and the following rule that decreases the variance in the
direction of that step2

A ← √
αA+

√
α

‖z‖2
(√

1− β

α
‖z‖2 − 1

)
AzzT (4)

where α =
√
1 + c−cov and β = c−cov.

Interestingly, the same rule can be used to decrease variance in the direction of
constraint violations. Similarly to what is done with the evolution path, Arnold
and Hansen [10] proposed to use fading vectors of steps that violate constraints
in combination with active covariance updates. Specifically, for each constraint
i that is violated by step Az, the vector vi ← (1 − cc)vi + ccAz is updated.
Whenever even a single constraint is violated, the covariance matrix is updated
according to

A ← A− B∑m
i=1 1gi(y)>0

m∑
i=1

1gi(y)>0
viw

T
i

wiwT
i

(5)

wherewi = A−1vi. The parameters used in the algorithm are set to the following
[24]: d = 1 + n

2 , c =
2

n+2 , cc =
1

n+2 , cp = 1
12 , B = 0.1

n+2 , Ptarget = 2
11 , Pthresh =

0.44, c+cov = 2
n2+6 , and c−cov = 0.4

n1.6+1 . We will refer to this method in the following
as (1+1)-acCMA-ES (active constrained CMA-ES).

3 Introducing Viability in CMA-ES

Modelling an evolutionary algorithm using the Viability Evolution abstraction
offers novel possibilities. For example, in the case of constrained optimization
viability boundaries can be defined to relax problem constraints at the begin-
ning of the search, and be made more stringent over time to lead solutions into
the feasible regions. The key idea proposed here is to use changing viability
boundaries that define admissible regions of the search space (viable regions) in
combination with the active covariance matrix updates proposed by Arnold and
Hansen [10]. Active covariance updates are used to decrease the variance in the
direction of boundary violations. As the boundaries defined on constraint func-
tions values can be relaxed, the algorithm is compatible with infeasible starting
solutions. On the other hand, whenever a viable solution is generated, the stan-
dard covariance matrix update rule of (1+1)-CMA-ES is employed to increase
the variance in the direction that generated the viable solution. Because differ-
ent boundaries may affect the global probability of generating viable solutions
Psucc, we maintain a vector of probability of success psucc, that tracks which
boundary is more likely to cause the generation of non viable solutions. As de-
picted in Figure 2A, when the covariance matrix is well adapted to a boundary,
the probability of generating a new viable solution is greater or equal to 50%.
Otherwise, when the probability of success is lower than 50% for at least one

2 Note that the sign in the parenthesis is inverted. Furthermore, if ‖z‖2 ≥ 1+c−cov
2c−cov

then

c−cov = 1
2‖z‖2−1

.

Viability Principles for Constrained Optimization 277

Algorithm 1. (1+1)-VIE-CMA-ES pseudo-code. Problem objectives and con-
straints are modelled using the viability boundaries abstraction. Parameters
d, c, cc, cp, B, Ptarget, c

+
cov and c−cov are defined as in [24].

Require: σ ∈ R+ initial global step size
1: α ← 1− c+cov, β ← c+ccov, s ← 0
2: A ← I
3: for i = 1 . . .m+ 1 do
4: vi ← [0, . . . , 0]n×1 ! The last vi and bi correspond to the objective
5: end for
6: b ← [max(0, g1(x)), . . . , max(0, gm(x)), ∞]
7: psucc ← [12 , . . . ,

1
2]

8: x ← randomly generate solution
9: while ¬ termination condition do

10: z ∼ N (0, I)
11: y ← x+ σAz
12: V ← [1g1(y)>b1 , . . . ,1gm(y)>bm ,1f(y)>bm+1

] ! Boundary violations
13: if ∃ i : Vi = 1 then
14: for all i : Vi = 1 do
15: vi ← (1 − cc)vi + ccAz
16: wi ← A−1vi

17: end for
18: A ← A−B

∑m
i=1 1gi(y)>0

viw
T
i

wiwT
i

! Decrease variance
19: psucc ← (1− cp)psucc + cp[1V1=0, . . . ,1Vm+1=0] ! Update success

probability
20: if ∃ i : psucci < 1

2 then
21: Psucc ← (1− cp)Psucc ! Decrease global Psucc

22: end if
23: else
24: Psucc ← (1− cp)Psucc + cp ! Increase success probabilities
25: psucc ← (1− cp)psucc + cp

26: σ ← σexp
(

1
d

(
Psucc − Ptarget

1−Ptarget
(1 − Psucc)

))
27: s ← (1 − c)s+

√
c(2 − c)Az

28: w ← A−1s

29: A ← √
αA+

√
α

‖w‖2

(√
1 + β

α‖w‖2 − 1
)
swT

30: b1..m ←
[
max
(
0,min

(
b1, g1(y) +

b1−g1(y)
2

))
, . . . ,

31: max
(
0,min

(
bm, gm(y) + bm−gm(y)

2

))]
32: if Vi:1,...,m = 0 then ! Update boundary on objective when feasible
33: bm+1 ← f(y) + f(x)−f(y)

2
34: end if
35: x ← y
36: end if
37: end while

278 A. Maesani and D. Floreano

A B C

Infeasible
Region

Fig. 2. Possible scenarios encountered during a search. A) The covariance matrix (el-
lipsoid in solid line) is well adapted with respect to a boundary (dashed line). The
probability of generating a successful solution in the viability region (shaded area) is
greater than 50%. Isocline of the objective function are shown as thin dotted lines and
the gradient direction is shown by the arrow. The mean of the search distribution is
represented as a dot. B) The covariance matrix should be adapted. Probability of gen-
erating successful solutions is lower than 50%. C) The method encounters difficulties
when the direction to reach the optimum (shown as a cross) is the same that generates
infeasible solutions that violate the constraint (thick dotted line).

boundary, as shown in Figure 2B, the covariance matrix should be modified and
the global step size reduced. To achieve this, we reduce the global Psucc prob-
ability. Conversely, the overall Psucc probability and all elements of the psucc

vector are increased whenever a viable solution is generated. Note that in the
method presented in [10] not adapting Psucc on failure may lead to the use of
outdated information for step-size adaptation.

The pseudo-code of our method, referred to as (1+1)-VIE-CMA-ES, is pre-
sented in Algorithm 1. The user must only provide an initial step size σ. The
algorithm sets the initial viability boundaries b as either the target boundary (0
for the constraints) or a relaxed value if an infeasible solution is provided. The
initial boundary for the objective is set to ∞. At each iteration, boundary viola-
tions V are checked. The active covariance matrix update for feasible solutions
(Equation 4) and the stall of updates of the original method in presence of high
probability of success are not used. A single update rule is applied whenever a
viable solution (that does not violates the boundaries b) is generated. When this
happens, the mean of the population is updated to the new viable solution and
the boundaries are tightened.

4 Results

The proposedmethod was tested on all the eight benchmark functions used in [10].
These benchmark functions include problems from two to ten dimensions with up
to eight non-linear constraints. The experimental setup is identical to the one re-
ported in [10], including the same number of repetitions, equivalent generation of
initial solutions, the same termination condition, and the same parameter settings
for the (1+1)-CMA-ES.For each benchmark functionwe counted the total number
of objective function and constraints function evaluations. We tested the method
starting it 99 times from different initial solutions, uniformly sampled from the

Viability Principles for Constrained Optimization 279

Table 1. Experimental results of the (1+1)-VIE-CMA-ES and comparison against the
(1+1)-acCMA-ES proposed in [10]

g06 g07 g09 g10

VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA
Function Evaluations

10th 282 272 1578 1939 1305 1430 1387 2794
50th 333 308 1794 2211 1452 1674 1697 3976
90th 385 364 2049 2703 1595 2074 2554 5369

Constraint Evaluations
10th 797 827 7184 10435 3474 3626 7360 15621
50th 900 1060 7545 11283 3660 4106 8295 18781
90th 986 1223 8032 12704 3913 5075 11322 23088

TR2 2.40 2.41 HB

VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA
Function Evaluations

10th 465 376 863 1326 820 1483 638 623

50th 520 443 1023 1990 954 2271 734 768
90th 561 510 1209 3326 1100 3581 841 1150

Constraint Evaluations
10th 751 616 3166 4551 3183 5235 2659 2338

50th 812 708 3570 6994 3449 8108 2893 2912
90th 884 839 3899 11114 3801 12056 3185 3970

solution space until a feasible solution is found. Iterations needed to obtain the
starting feasible solution are not counted in the results, as in [10].

Results are reported in Table 1. Themethod is competitive on seven out of eight
problem. Our method has medians lower than what were reported by Arnold and
Hansen [10] for constraint function calls by a factor of 0.15, 0.33, 0.11, 0.56, 0.49,
0.57 on g06, g07, g09, g10, 2.40, 2.41 respectively and almost identical perfor-
mance on HB. In the linear constrained sphere function problem TR2, our method
exceeds values reportedbyArnold andHansen [10] by a factor 0.15. In one problem,
g06, our method, while being better on the overall number of constraint evalua-
tions, performs slightly worse on number of objective function evaluations.

In our view, one of the reasons of decreased performance in the TR2 problem
probably lies in the specific orientation of the constraint. From experimental in-
vestigation, we observed that the mean of the search distribution tends to align
to the normal direction to the optimum (a situation similar to the one depicted
in Figure 2C), which in this case is also the same direction that is most likely to
violate the constraint. Probably, in cases like this one when the direction of con-
straint violation is very close to the direction of viable solutions generation, the
covariance matrix update should be stalled, or the variance should be decreased
along the other axis.

280 A. Maesani and D. Floreano

5 Discussion and Future Work

In this paper, we proposed (1+1)-VIE-CMA-ES, a method that combines viability
boundaries and active covariance matrix updates in a (1+1)-CMA-ES. Our algo-
rithm showed competitive performance with respect to state-of-the-art methods
on all the benchmark problems except on the constrained sphere function problem
TR2. Further investigations are needed to solve the lower performance experienced
on TR2. Here, we tested the method only when starting from feasible initial solu-
tions, but our algorithm is also compatible with infeasible starting solutions. In
the future, we will proceed with a rigorous evaluation of the method when ini-
tialized from infeasible solutions. Also, more research will be needed for tackling
multimodal problems using the approach presented here.

It is important to note that dealing with constraints and objectives using
the same algorithmic framework allows one to readily extend the method to
situations not directly manageable by standard CMA-ES. We anticipate that the
coupling of changing viability boundaries and active covariance updates could
also potentially be used in multi-objective optimization. For example, a “virtual”
boundary may be learned on the Pareto front and made more stringent over
time to push solutions towards the optimal Pareto front. The combined use of
viability boundaries and active covariance updates might pave the way for a
new class of powerful algorithms that can manage unconstrained, constrained
and multi-objective problems under the same algorithmic scheme.

Acknowledgements. The authors would like to thank Joshua E. Auerbach
and Giovanni Iacca for precious advice and useful comments on the manuscript.
This research has been supported by the Swiss National Science Foundation,
grant 200021 127143 and the FET-Open Grant 308943 within the 7th Framework
Programme for Research of the European Commission.

References
1. Mezura-Montes, E., Coello Coello, C.A.: Constraint-handling in nature-inspired

numerical optimization: Past, present and future. Swarm and Evolutionary Com-
putation 1(4), 173–194 (2011)

2. Runarsson, T.P.: Stochastic ranking for constrained evolutionary optimization.
IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

3. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential
evolution with an archive and gradient-based mutation. In: IEEE Congress on
Evolutionary Computation (CEC 2010), pp. 1–9. IEEE Press (2010)

4. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics and Engineering 186(2-4), 311–338 (2000)

5. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1), 1–18 (2003)

6. Hansen, N., Auger, A., Ros, R., Finck, S., Poš́ık, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In: Pro-
ceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
(GECCO 2010), pp. 1689–1696. ACM Press (2010)

7. Kramer, O., Schwefel, H.: On three new approaches to handle constraints within
evolution strategies. Natural Computing 5(4), 1–22 (2006)

Viability Principles for Constrained Optimization 281

8. Mattiussi, C., Floreano, D.: Viability Evolution: Elimination and Extinction in
Evolutionary Computation. Technical Report (April 2003)

9. Maesani, A., Fernando, P.R., Floreano, D.: Artificial evolution by viability rather
than competition. Plos One 9(1), e86831 (2014)

10. Arnold, D.V., Hansen, N.: A (1+1)-CMA-ES for constrained optimisation. In: Pro-
ceedings of the Fourteenth International Conference on Genetic and Evolutionary
Computation Conference (GECCO 2012), pp. 297–304. ACM Press (2012)

11. Schwefel, H.-P.P.: Evolution and optimum seeking: the sixth generation. John
Wiley & Sons, Chichester (1993)

12. Hoffmeister, F., Sprave, J.: Problem-Independent Handling of Constraints by Use
of Metric Penalty Functions. In: Proceedings of the Fifth Annual Conference on
Evolutionary Programming, pp. 289–294. MIT Press (1996)

13. Oyman, A., Deb, K., Beyer, H.G.: An alternative constraint handling method for
evolution strategies. In: Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, pp. 612–619. IEEE Press (1999)

14. Collange, G., Delattre, N., Hansen, N., Quinquis, I., Schoenauer, M.: Multidis-
ciplinary Optimization in the Design of Future Space Launchers. In: Multidis-
ciplinary Design Optimization in Computational Mechanics, pp. 487–496. John
Wiley & Sons, Inc. (2010)

15. Kramer, O., Schlachter, U., Spreckels, V.: An adaptive penalty function with meta-
modeling for constrained problems. In: IEEE Congress on Evolutionary Computa-
tion (CEC 2013), pp. 1350–1354. IEEE Press (June 2013)

16. Mezura-Montes, E., Coello Coello, C.A.: A simple multimembered evolution strat-
egy to solve constrained optimization problems. IEEE Transactions on Evolution-
ary Computation 9(1), 1–17 (2005)

17. Kusakci, A.O., Can, M.: A novel evolution strategy for constrained optimization in
engineering design. In: XXIV International Conference on Information, Communica-
tion and Automation Technologies (ICAT), pp. 1–6. IEEE Press (October 2013)

18. Kramer, O., Ting, C.K., Büning, H.K.: A New Mutation Operator for Evolution
Strategies for Constrained Problems. In: IEEE Congress on Evolutionary Compu-
tation (CEC 2005), vol. 3, pp. 2600–2606. IEEE Press (2005)

19. Kramer, O., Barthelmes, A., Rudolph, G.: Surrogate constraint functions for CMA
evolution strategies. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS,
vol. 5803, pp. 169–176. Springer, Heidelberg (2009)

20. Gieseke, F., Kramer, O.: Towards non-linear constraint estimation for expensive op-
timization. In: Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835,
pp. 459–468. Springer, Heidelberg (2013)

21. Beyer, H.G., Finck, S.: On the Design of Constraint Covariance Matrix Self-
Adaptation Evolution Strategies Including a Cardinality Constraint. IEEE Trans-
actions on Evolutionary Computation 16(4), 578–596 (2012)

22. Beyer, H.G., Schwefel, H.P.: Evolution strategies – a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

23. Igel, C., Suttorp, T., Hansen, N.: A Computational Efficient Covariance Matrix
Update and a (1+1)-CMA for Evolution Strategies. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation (GECCO 2006),
pp. 453–460. ACM Press (2006)

24. Arnold, D.V., Hansen, N.: Active Covariance Matrix Adaptation for the (1+1)-
CMA-ES. In: Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO 2010), pp. 285–392. ACM Press (2010)

On the Life-Long Learning Capabilities
of a NELLI*:

A Hyper-Heuristic Optimisation System

Emma Hart and Kevin Sim

Institute for Informatics and Digital Innovation, Edinburgh Napier University
Merchiston Campus, Edinburgh, EH10 5DT, UK

{e.hart,k.sim}@napier.ac.uk

Abstract. Real-world applications of optimisation techniques place
more importance on finding approaches that result in acceptable quality
solutions in a short time-frame and can provide robust solutions, capable
of being modified in response to changes in the environment than seeking
elusive global optima. We demonstrate that a hyper-heuristic approach
NELLI* that takes inspiration from artifical immune systems is capa-
ble of life-long learning in an environment where problems are presented
in a continuous stream and change over time. Experiments using 1370
bin-packing problems show excellent performance on unseen problems
and that the system maintains memory, enabling it to exploit previously
learnt heuristics to solve new problems with similar characteristics to
ones solved in the past.

Keywords: Hyper-heuristics, artificial immune systems.

1 Introduction

Hyper-heuristics cover a general class of search methods that attempt to auto-
mate the process of selecting, combining, generating or adapting simple heuris-
tics in order to solve large classes of problems. Although some compromise in
solution quality is likely when comparing the quality of any single solution to a
specifically tuned optimisation algorithm, the motivation is that this is compen-
sated for by guaranteeing acceptable performance across very large problem sets,
using cheap heuristics that are often simple to understand and can incorporate
human knowledge.

Online hyper-heuristic methods [4] typically learn a sequence of low-level
heuristics that can be applied to perturb an existing solution and learn during
the solving phase. In contrast, offline methods attempt to find mapping between
problem state and heuristic in order to determine how to solve a problem, re-
quiring an initial offline training period using a representative set of problems
(e.g. [18]). Both approaches potentially suffer from weakenesses. In the former,
the hyper-heuristic learns from scratch each time a new instance of a problem is
solved. In the latter, if the characteristics of the problem set change overtime,
the hyper-heuristic needs to be periodically retuned. This potentially leads to in-
efficient algorithms that both fail to exploit previously learned knowledge in the
search for a solution and cannot adapt to changing characteristics of problems.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 282–291, 2014.
c© Springer International Publishing Switzerland 2014

On the Life-Long Learning Capabilities of a NELLI 283

Recently, Sim et al [13] proposed that the hyper-heuristic field could learn
from new research in the machine-learning field in moving beyond learning al-
gorithms to more seriously consider the nature of systems that are capable of
learning over a life-time, stating that such systems must be capable of retaining
knowledge (i.e. incorporate a memory) and of selectively applying that knowl-
edge to new tasks. They described an approach inspired by Artificial Immune
Systems (AIS) dubbed NELLI in which novel heuristics were continuously gener-
ated and a self-organising process determined whether they should be integrated
into a self-sustaining network of problems and heuristics that could be used to
solve a stream of problems continuously presented to the network. Results in [13]
demonstrated that the system maintained memory, and was adaptable and effi-
cient at solving problems when a dynamic stream of instances was presented. A
modification to one of the key elements of the system — generating novel heuris-
tics — was described in [15] (NELLI*) but was only demonstrated on static sets
of problems in which the nature of the instances did not vary over time. Here, we
demonstrate that using the new representation, not only is the system capable
of life-long-learning but also that significant improvement is found over previous
results when tested on a large corpus of bin-packing problems that vary in their
characteristics and are presented in a continuous stream over time.

2 Background

In the hyper-heuristic domain, there are many examples of systems that either
generate novel heuristics or select from a set of pre-defined heuristics to solve a
problem and are shown to be capable of good performance across large problem
sets, see [1] for a recent and comprehensive overview. However there is relatively
little work that combines both generation and selection (recent examples include
[7,9,17]). Additionally, although there is a wealth of work within the optimisation
field addressing dynamic optimisation in which the fitness function applied to a
single problem instance changes over time (e.g. [19]), we are not aware of other
work that tackles problems in which the fitness function remains static but the
characteristics of the instances presented varies over time.

In contrast, in the AIS literature, there are examples of systems that exhibit
lifelong learning in response to changing environments, in particular in robotics.
Typically, ‘antibodies’ specifying possible actions are connected in a plastic net-
work that varies both in its topology and its constitution over time and de-
termines an appropriate action to execute. This is typified by Whitbrook [20]
who describes scenarios exhibiting both memory and adaptation in a robotics
application — work which provided inspiration for NELLI*.

3 NELLI* Algorithm

Described in detail in [13] and visualised in Figure 1, the first version of NELLI
comprised of three main parts: a stream of problem instances, a continuously
generated stream of novel heuristics and a network that sustains co-stimulating
components (heuristics and problem instances). NELLI is designed to run con-
tinuously; problem instances and heuristics can be added in any quantity at

284 E. Hart and K. Sim

any point. An AIS is responsible for governing the dynamic processes that en-
able heuristics and problem instances to be incorporated (stimulated) or rejected
(suppressed) by the network. The orignal version ([13]) exploited a representa-
tion borrowed from Single Node Genetic Programming (SNGP) [6] in which a
heuristic was represented by a tree randomly constructed from a set of termi-
nal nodes that encapsulated information about the problem state (e.g. in the
bin-packing domain, the free space in the bin and item size) and simple func-
tion nodes. All heuristics were randomly generated in this manner. In [15] two
improvements were made. Firstly, the tree representation was replaced by a lin-
ear sequence of heuristic-components, each of which explicitly results in some
items to be placed into the solution; secondly, rather than randomly generate
all heuristics, a proportion pm were generated by applying one of five mutation
operators to an existing heuristic randomly chosen from the sustained network.
By varying the value of pm, it is possible to alter the balance between exploration
(random generation of heuristics) and exploitation (focus the search around ex-
isting heuristics). The exploitation process is achieved through five operators:

Fig. 1. A conceptual view of the system: Problems and heuristics are continuously
injected into the AIS. The dynamics and meta-dynamics of the system result in a self-
sustaining network of heuristics and problems. Heuristics and problems that receive no
stimulation are removed.

– Select a random heuristic and swap the position of two random nodes.
– Select a random heuristic and replace a random node with a randomly se-

lected node.
– Select a random heuristic from the network and remove a random node.
– Select a random heuristic and add a random node at a random position.
– Select two random heuristics from the network and concatenate their nodes.

Figure 2 shows a generic example of a heuristic represented by a string of
five heuristic components with a “pointer” used by an encompassing wrapper
to indicate the current component position. Each component is chosen from the
list of nodes shown. If a node is successful in packing one or more items into
a bin, then the pointer is advanced to the next node and the process continues
with the current bin – when a node fails, a new bin is opened, and the pointer
advances. The pointer is returned to the start after evaluation of the last node
in the sequence. Each heuristic contains a sequence of nodes that are instanti-
ated randomly up to a maximum initial length, specified by a parameter of the
algorithm (lmax). The sequence may alter in length during the course of a run —
the only constraint imposed is that the sequence must retain at least one node.

The network sustains a network of heuristics and problems through a process
that varies the concentration of each element based on its stimulation. Problems

On the Life-Long Learning Capabilities of a NELLI 285

are directly stimulated by heuristics, and vice versa. Heuristics are indirectly
stimulated by other heuristics. The total stimulation of a heuristic is the sum
of its affinity with each problem in the set P currently in the network N . A
heuristic h has a non-zero affinity with a problem p ∈ P if and only if it provides
a solution that uses fewer bins than any other heuristic currently in H. If this
is the case, then the value of the affinity p ↔ h is equal to the improvement in
the number of bins used by h compared to the next-best heuristic. If a heuristic
provides the best solution for a problem p but one or more other heuristics give
an equal result, then the affinity between problem p and the heuristic h is zero.
If a heuristic h uses more bins than another heuristic on the problem, then
the affinity between problem p and the heuristic h is also zero. This is shown
mathematically in Equations 1 and 2 described in detail in [13]. Essentially,
the equations favour heuristics that are able to find a niche in solving at least
one problem better than any other heuristic in the system, and problems that
represent niche regions of the instance space, i.e. two or more heuristics do not
perform equally on them.

hstim =
∑
p∈P

δbins

{
δbins = min (binsH′

p
)− binshp : if min (binsH′

p
)− binshp > 0

δbins = 0 : otherwise
(1)

pstim =
∑
h∈H

δbins

{
δbins = min (binsH′

p)
)− binshp : if min (binsH′

p
)− binshp > 0

δbins = 0 : otherwise
(2)

Algorithm 1. NELLI* Pseudo Code
Require: H = ∅ :The set of heuristics
Require: P = ∅ :The set of current problems
Require: E = Et=0 :The set of problems to be solved at time t
1. repeat
2. optionally replace E : E∗ ← E∗ ∪ E
3. repeat
4. With probability pm generate a new heuristic via mutation
5. With probabilty 1 − pm generate a new heuristic via random initialisation
6. until nh new heuristics generated
7. Add nh new heuristics to H with concentration cinit

8. Add np randomly selected problem instances from E to P with concentration cinit

9. calculate hstim∀h ∈ H using Equation 1
10. calculate pstim∀p ∈ P using Equation 2
11. increment all concentrations (both H and P) that have concentration < cmax and stimulation

> 0 by Δc

12. decrement all concentrations (both H and P) with stimulation ≤ 0 by Δc

13. Remove heuristics and problems with concentration ≤ 0
14. until stopping criteria met

4 NELLI* as a Life-Long-Learning System

In [15] we demonstrated that the linear representation described above improved
the performance of NELLI in terms of finding optimal solutions when applied
to a large but static set of problems. However, the capabilities of NELLI* as
a life-long learning system were not demonstrated. The goal of the paper is to
address this, showing that NELLI* is able to

286 E. Hart and K. Sim

Node Type Description
1 Packs the single largest item into the

current bin
2 Packs the largest combination of exactly

2 items into the current bin
3 Works as for 1 but packs exactly 3 items
4 Works as for 2 but packs exactly 4 items
5 Works as for 2 but packs exactly 5 items
6 Packs the largest combination of up to 2

items into the current bin giving preference
to sets of lower cardinality.

7 As for 5 but considers sets of up to 3 items
8 As for 5 but considers sets of up to 4 items
9 As for 5 but considers sets of up to 5 items

Fig. 2. Heuristics are represented as linear sequences of nodes. A pointer keeps track
of which node to apply next. The sequence restarts from the beginning after the last
node is processed.

1. Demonstrate memory by quickly (re)finding solutions to problems that were
seen by the system in the past

2. Continue to learn by continuing to improve its performance on problems in
the datasets

3. Generalise, by quickly finding good solutions to problems that are similar to
instances seen previously

We demonstrate this using a set of 1370 bin-packing problems taken from a
variety of sources in the literature. Data sets ds1, ds2 & ds3 were introduced
by [11] and comprise 720, 480 and 10 of the instances respectively. Problems
in ds1, ds3 have optimal solutions with on average 3 items per bin and are
similar in nature; solutions for problems in ds2 which have widely variable item
weights have between 3 and 9 items per bin. Literature indicates that for a given
algorithm, performance varies greatly on ds2 when compared to (ds1, ds3) [5].
The remaining instances are taken from FalU , FalT , and were introduced by
[3]. All 1370 problems have known optimal solutions. In the following discussion
we distinguish the following :

– U - the set of 1370 problems from the class of 1D-BPP of interest.
– E - the current environment, i.e. the set of problems we are currently inter-

ested in solving, E ⊂ U
– E∗ - the set of problems presented to the network so far
– P - the set of problems currently sustained in the immune network P ⊂ E∗

(this is an internal property of the network)

5 Results

Four experiments were conducted using parameters described in Table 1 (taken
from [15] where the tuning process is described). Performance was evaluated in
terms of the number of problems solved optimally and in terms of the number
of bins required over the known optimal solutions.

On the Life-Long Learning Capabilities of a NELLI 287

Clearly the problems considered have been solved by a plethora of optimisa-
tion methods in the past (including hyper-heuristics). For instance, Burke et al [2]
obtain excellent results on the 90 problem instances in FalU and ds3 by evolv-
ing an individual heuristic per problem instance using 50000 evaluations for each
instance. Others seek optimality using exact methods (e.g. [11]) to solve each in-
stance separately. In contrast, NELLI aims to find high quality solutions to very
large sets of problems by only evaluating a very small subset of the instance space,
therefore, direct comparisons with ‘per-instance’ methods cannot be made. Some
earlier hyper-heuristic methods do attempt a similar kind of generalisation (e.g.
[10]), however as we have already shown in [13] that the original version of NELLI
outperforms these methods we omit these comparisons.

In addition to comparing to NELLI [13], we compare our results to those
obtained by a set of four well known heuristics from the literature (FFD, DJD,
ADJD and DJT, see [16]) in which the best heuristic for each problem is selected
using a greedy approach. Additionally, where appropriate we also compare to
our own earlier work using an AIS model introduced in [17] and an island-model
evolutionary algorithm described in [14].

Table 1. Default parameter settings for experiments
Parameter Description Value

np number of problems added each iteration 30
nh number of heuristics added each iteration 1
cinit initial concentration of heuristics/problems 200
Δc variation in concentration based on stimulation 50

cmax maximum concentration level 1000
pm Probability of mutation 0.75
lmax maximum initial heuristic sequence length 10

5.1 Generalisation Capabilities

In order to test the generalisation capabilities of NELLI*, in the first instance
the full set of 1370 instances was randomly split into two equally sized sets,
labelled train and test — each set contained an equal distribution of examples
from each of the 5 constituent problem sets. NELLI* was run for 200 iterations
using the train set before being presented with the unseen problems in the
test set. Performance was evaluated in terms of the number of problems solved
optimally and in terms of the number of bins required over the known optimal
solution and is shown in table 2 where all results are averaged over 20 runs.

NELLI* clearly generalises, finding the optimal solution to 82.6% of the unseen
problems, and reducing the number of bins over optimal in comparison to the
other algorithms. Comparing the results obtained using NELLI and NELLI*
using a t-test proves the result is highly significant (P < 0.0001). Although not
shown, NELLI* continues to learn and improve results (albeit at a slower rate)
if executed over a much larger number of generations.

An additional experiment was performed in which every 200 iterations, a
random set of n instances were selected from U to form the environment E
and presented to the system. At each iteration, the performance of the system
against U (the complete universe of 1370 problems) is measured. Recall that

288 E. Hart and K. Sim

Table 2. Results on the unseen 685 problems in the test set after 200 iterations training
on the 685 problems in the training set

Problems Solved Extra Bins

min max mean sd min max mean sd

Greedy Heuristic selection 548 548 548 0 188 188 188 0

AIS model [17] 554 559 556 1.4 159 165 162 1.4

Island Model [14] 552 559 557 1.4 159 164 162 1.4

NELLI [13] 559 559 559 0 159 159 159 0

NELLI* 549 576 566 5.8 131 164 146 8.2

at each iteration, the environment contains at most n = 685 problems, and only
np = 30 of these are presented to the network at each instance, hence many of the
instances in U have never been seen. Figure 3 plots performance over U over 1000
iterations (averaged over 20 runs) for n ∈ 100, 200, 685 and compares the results
to the best result obtained by the old version of NELLI. A number of important
points are apparent: NELLI* clearly outpeforms NELLI; it generalises over U
— recall that in the early iterations most of the problems in U are unseen; it
continues to learn over time; the ability to generalise is maximised by increasing
the size of E .

Fig. 3. The average number of bins greater than the optimal; the environment E is
replaced with n randomly selected problem instances every 200 iterations

5.2 Memory and Learning

In order to investigate the memory capabilties of NELLI* we conduct an experi-
ment in which the environment E is toggled between two different datasets every
200 iterations. The first dataset contains the 720 problems in ds1 and the second
the 480 problem instances in ds2. As previously mentioned, these datasets have
different characteristics such that heuristics that perform well on one dataset
are not expected to perform well on the second. Typically, ds1 problems are also
easier to solve. Each dataset is presented twice in the sequence ds2, ds1, ds2, ds1
following a ‘start-up’ epoch in which the system is initialised from scratch with
ds1 and run for 200 iterations. For each dataset, we record the number of bins

On the Life-Long Learning Capabilities of a NELLI 289

more than optimal at the start of each epoch it is introduced (bs), and at the
end of each epoch (be). We formulate the following hypotheses:

– Hypothesis 1 if the system has retained some memory of heuristics that
previously solved these problems, we expect the value of be at epoch t to be
similar to bs at the next epoch the dataset is introduced (epoch t+ 2)

– Hypothesis 2 If the system continues to learn over an epoch, there should be
a significant difference between bs and be over an epoch during which the
dataset is present

– Hypothesis 3 If the system continues to learn over its lifetime, there should
be a significant difference between be at the first epoch the dataset appears,
and be at the last epoch it occurs

The results are shown in Table 3 and graphically in figure 4a, averaged over
20 runs in each case and compared to the results previously published in [17].
With respect to hypothesis 1, t-tests conducted on the values obtained at the
end of epoch 1 and the start of epoch 3 for ds2, and epochs 2 and 4 for ds1 show
no significant difference between results (P=0.581,0.581), thus we infer that the
system has retained memory1. With respect to hypothesis 2, t-tests between the
values of bs and be at the two epochs where ds2 appears both given p-values
< 0.0001, confirming that the observed difference is performance is significant.
The same result is found for ds1 at epochs 2 and 4. Thus, we confirm that
learning occurs over an epoch. Finally, we compare the value of be at epoch 1
with be at epoch 3 (P < 0.0001) and similarly with epochs 2 and 4 (P = 0.0138)
proving the ability of NELLI* to learn over time.

Figure 3 confirms these trends by further analysing the final experiment de-
scribed in section 5.1 in which E is changed to a randomly selected set of 685
instances from the 1370 problems in U every 200 instances. The same general
trends are observed as in Figure 4a in that learning continues across the 1000
iterations. The difference between be and bs is less defined at each epoch in this
instance, as problems in E at epoch t are likely to overlap with those in E at
epoch t+1. The magnitude of |be−bs| (where be is measured at the end of epoch
t and bs at the start of epoch t+ 1 decreases over time, as a direct result of the
memory of the system.

Table 3. Bins greater than the known optimal at epochs. Averaged over 20 runs

Epoch 1 Epoch 2 Epoch 3 Epoch 4
DS2 DS1 DS2 DS1

Set Start End Start End Start End Start End

NELLI* E 123.28 80.61 52.94 45.78 79.39 70.72 44.83 41.28

NELLI E 123.95 104.8 67.3 59 116.95 104.65 65.6 59

Greedy E 129 129 75 75 129 129 75 75

NELLI* U 312.89 259.17 257.67 247.22 246.89 233.94 234.44 229.17

NELLI U 333.1 315.75 317.05 321.5 320.95 315.15 315.25 320.85

Greedy U 364 364 364 364 364 364 364 364

1 Strictly speaking, this only suggests that there is no evidence to suggest otherwise
rather than providing proof.

290 E. Hart and K. Sim

(a) The average total number of
bins greater than the optimal al-
ternating every 200 iterations be-
tween ds1 (summed over 720 prob-
lems) and ds2 (summed over 480
problems).

(b) E is changed every 200 iter-
ations to a random 685 problems
taken from U . The graph shows the
average total number of bins greater
than the optimal summed over the
685 problems

Fig. 4. Performance on alternating datasets, averaged over 20 runs

6 Conclusions and Future Work

In an extension to previous work, we have shown that the NELLI* system is ca-
pable of operating as a life-long learning (LML) system. As identified by [12] in
their recent proposal, the system exhibits the three defining characteristics of an
LML system: it incorporates a long-term memory; it selectively transfers prior
knowledge when learning new tasks; it adopts a systems approach that ensures
the effective and efficient interaction of the elements of the system. In compari-
son to previous hyper-heuristic approaches, it obtains better performance when
evaluated according to two metrics, number of problems solved, and number of
bins over optimal. Although any hyper-heuristic method that focuses on solving
large sets of problems will inevitably trade some loss in performance against both
generality and speed when compared to approaches that optimise solutions for
each problem individually, we believe that in practice, such solutions are more
than acceptable. In a recent article considering why evolutionary algorithms are
not widely adopted in the real-world [8], the author notes that in industry, organ-
isations do not have time to generate globally optimum solutions and therefore
place higher importance on finding robust, quality solutions that can be gener-
ated quickly due to changes in the environment. NELLI directly addresses this
issue, in providing cheap, high quality solutions in a system that does not need
either tuning or modifying even as the environment it operates in changes.

References

1. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. J. Oper. Res. Soc. (July 2013)

2. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automating the packing
heuristic design process with genetic programming. Evol. Comput. 20(1), 63–89
(2012)

3. Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics 2, 5–30 (1996)

On the Life-Long Learning Capabilities of a NELLI 291

4. Garrido, P., Riff, M.C.: Collaboration between hyperheuristics to solve strip-
packing problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz,
W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 698–707. Springer, Heidelberg
(2007)

5. Gent, I.P.: Heuristic solution of open bin packing problems. Journal of Heuris-
tics 3(4), 299–304 (1998)

6. Jackson, D.: Single node genetic programming on problems with side effects. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012, Part I. LNCS, vol. 7491, pp. 327–336. Springer, Heidelberg (2012)

7. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for
evolutionary algorithms. Journal of Heuristics 16, 881–909 (2010)

8. Michalewicz, Z.: Ubiquity symposium: Evolutionary computation and the processes
of life: The emperor is naked: Evolutionary algorithms for real-world applications.
Ubiquity 2012(November), 3:1–3:13 (2012)

9. Remde, S., Cowling, P., Dahal, K., Colledge, N., Selensky, E.: An empirical study
of hyperheuristics for managing very large sets of low level heuristics. J. Oper. Res.
Soc. 63(3), 392–405 (2012)

10. Ross, P., Schulenburg, S., Marin-Blazquez, J.G., Hart, E.: Hyper-heuristics: Learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 942–948
(2002)

11. Scholl, A., Klein, R., Jürgens, C.: Bison: a fast hybrid procedure for exactly solv-
ing the one-dimensional bin packing problem. Comput. Oper. Res. 24(7), 627–645
(1997)

12. Silver, D., Yang, Q., Li, L.: Lifelong machine learning systems: Beyond learning
algorithms. AAAI Spring Symposium Series (2013)

13. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evolutionary Computation Journal (in press, January 2014)

14. Sim, K., Hart, E.: Generating single and multiple cooperative heuristics for the
one dimensional bin packing problem using a single node genetic programming
island model. In: Blum, C. (ed.) GECCO 2013: Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference, ACM, New
York (2013)

15. Sim, K., Hart, E.: An improved immune inspired hyper-heuristic for combinato-
rial optimisation problems. In: GECCO 2014: Proceeding of the Sixteenth Annual
Conference on Genetic and Evolutionary Computation Conference (in press, 2014)

16. Sim, K., Hart, E., Paechter, B.: A hyper-heuristic classifier for one dimensional
bin packing problems: Improving classification accuracy by attribute evolution. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.)
PPSN 2012, Part II. LNCS, vol. 7492, pp. 348–357. Springer, Heidelberg (2012)

17. Sim, K., Hart, E., Paechter, B.: Learning to solve bin packing problems with an
immune inspired hyper-heuristic. In: Advances in Artificial Life, ECAL 2013: Pro-
ceedings of the Twelfth European Conference on the Synthesis and Simulation of
Living Systems, pp. 856–863. MIT Press (2013)

18. Thabtah, F., Cowling, P.: Mining the data from a hyperheuristic approach us-
ing associative classification. Expert Systems with Applications 34(2), 1093–1101
(2008)

19. Trojanowski, K., Wierzchon, S.T.: Immune-based algorithms for dynamic opti-
mization. Information Sciences 179(10), 1495–1515 (2009)

20. Whitbrook, A.M., Aickelin, U., Garibaldi, J.M.: Two-timescale learning using idio-
typic behaviour mediation for a navigating mobile robot. Appl. Soft Comput. 10(3),
876–887 (2010)

Adaptation in Nonlinear Learning Models

for Nonstationary Tasks

Wolfgang Konen and Patrick Koch

Department of Computer Science, Cologne University of Applied Sciences,
51643 Gummersbach, Germany
wolfgang.konen@fh-koeln.de

Abstract. The adaptation of individual learning rates is important for
many learning tasks, particularly in the case of nonstationary learning en-
vironments. Sutton has presented with the Incremental Delta Bar Delta
algorithm a versatile method for many tasks. However, this algorithm
was formulated only for linear models. A straightforward generalization
to nonlinear models is possible, but we show in this work that it poses
some obstacles, namely the stability of the learning algorithm. We pro-
pose a new self-regulation of the model’s activation which ensures stabil-
ity. Our algorithm shows better performance than other approaches on a
nonstationary benchmark task. Furthermore we show how to derive this
algorithm from basic loss functions.

Keywords: Machine learning, IDBD, learning rates, adaptation.

1 Introduction

For many state-of-the-art learning algorithms the adaptation of learning rates
(or other algorithm parameters) is important. This is particularly true if these
algorithms shall behave well in nonstationary learning environments.

In 1992 Sutton [10] suggested the Incremental Delta Bar Delta (IDBD) al-
gorithm. IDBD deals with the learning rates for trainable parameters of any
underlying learning algorithm. The key idea of IDBD is that these learning rates
are not predefined by the algorithm designer but they are themselves adapted
as hyperparameters of the learning process. Sutton [10] expects such adaptable
learning rates to be especially useful for nonstationary tasks or sequences of re-
lated tasks and demonstrates good results on a small synthetic nonstationary
learning problem with 20 weights.

Sutton’s algorithm is proposed to work with a linear model. But as many learn-
ing tasks exhibit nonlinear characteristics, e. g., well-known benchmark tasks for
the control of physical objects like MountainCar or pole balancing, or real-world
applications like the control of complex processes in plants. It is our goal to ex-
tend Sutton’s IDBD to the nonlinear case. However, the nonlinear case poses some
obstacles because the varying steepness in input-output relations can cause insta-
bilities when IDBD is extended in a straightforward manner (by simply replacing

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 292–301, 2014.
c© Springer International Publishing Switzerland 2014

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 293

the linear input-output relation with the nonlinear one). We demonstrate these
obstacles and describe a way to overcome them by using a weight decay method.

The paper is organized as follows: after briefly reviewing some related work in
the next paragraph, we present the IDBD method and our nonlinear generaliza-
tion n-IDBD in Sec. 2. In Sec. 3 we apply n-IDBD to a nonlinear, nonstationary
benchmark task. We show in Appendix A how the equations of n-IDBD can be
derived from basic loss functions.

1.1 Related Work

Several online learning rate adaptation schemes have been proposed over the
years: IDBD [10] from Sutton is an extension of Jacobs’ [4] earlier DBD (Delta
Bar Delta) algorithm: it allows direct instead of batch updates. In [11] Sutton
proposes the algorithms K1 and K2, two (linear) extensions to IDBD, and com-
pares them with LMS and Kalman filtering. Koop [5] uses the IDBD algorithm
for online adaptation and investigates general aspects of temporal coherence.
Almeida [1] discusses another method of step-size adaptation and applies it to
the minimization of nonlinear functions. Schraudolph [8] extends on the K1 al-
gorithm and showed that it is superior to the approach described by Almeida [1].

Recently, Mahmood and Sutton [7] proposed with Autostep an extension to
IDBD which has much less dependence on the meta-step-size parameter than
IDBD. In the same year, Dabney and Barto [3] developed another adaptive step-
size method for temporal difference learning, which is based on the estimation
of upper and lower bounds. Again, both methods are proposed only for linear
function approximation.

Schraudolph [9] and, more recently, Li [6] extended IDBD to the nonlinear
case: Schraudolph’s ELK1 performs an update with the instantaneous Hes-
sian matrix of a suitable chosen loss function. The algorithm’s complexity is
O(n2) where n is the number of parameters to learn. This algorithm is supe-
rior to several others on the “four region” classification benchmark. However,
this benchmark consists of a piecewise constant target function. Thus it does
not exhibit steep and nonlinear slopes in the input-output-relationships which
can be a major difficulty for adaptive learning, as we will show in this paper. –
Li’s KIMEL algorithm transforms the nonlinear input data with a kernel into a
high-dimensional but linear feature space where linear IDBD is applied.

2 Methods

2.1 The Benchmark: A Nonlinear Nonstationary Task

In this work we consider a nonstationary task as a testbed as in [10], but with
an additional nonlinearity: n = 20 real-valued inputs x1, . . . , xn are indepen-
dently drawn from the standard normal distribution. The concept to learn is the
weighted sum of the first 5 inputs, which is sent through a nonlinear function
with slope σnst

294 W.Konen and P. Koch

y∗ = tanh

(
σnst

5∑
i=1

sixi

)
(1)

where all the si are either +1 or −1. To make this task nonstationary, one of the
five si is selected randomly and switched in sign every 20 examples. Thus, the
model has to learn that only the first five inputs are relevant and all other 15
inputs are irrelevant. At the same time the weights of the relevant inputs have
to be able to change quickly in order to follow the drifting target.

2.2 Nonlinear Least Mean Squares (NLMS)

As a baseline learning algorithm we use a Nonlinear Least-Mean-Square (NLMS)
model with constant learning rate α and error signal δ(t) = y∗ − y(t):

y(t) = tanh (N(t)) with N(t) =
n∑

i=1

wi(t)xi (2)

wi(t+ 1) = wi(t) + αδ(t)
∂y

∂wi

= wi(t) + αδ(t)(1 − y2(t))xi (3)

2.3 Incremental Delta Bar Delta (IDBD)

Sutton’s IDBD algorithm [10] introduces for a linear unit y(t) = Σiwixi indi-
vidual learning rates αi = eβi for every weight wi.

Algorithm 1. IDBD in pseudo code
1: Initialize: hi = 0, βi = βinit∀i and set θ, the meta-learning rate.
2: for (each new example (x1, . . . , xn, y

∗)) do
3: y = Σn

i=1wixi

4: δ = y∗ − y
5: for (every weight index i) do
6: Set βi ← βi + θxiδ hi

7: Set αi ← eβi

8: Set wi ← wi + αixiδ
9: Set hi ← hi[1− αix

2
i]+ + αixiδ with [d]+ = d for d > 0, =0 else

10: end for
11: end for

The main idea behind this algorithm is simple: The memory term hi is a de-
caying trace of past weight changes. The increment in βi is proportional to the
product of the current weight change xiδ and past weight changes hi. Accumu-
lated increments correspond to the correlation between current and recent weight
changes [10]. In case of positive correlation the learning rate can be larger, while
negative correlation indicates overshooting weight increments where the learning
rate should be reduced.

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 295

2.4 Generalizing IDBD to Nonlinear Output Units

A simple approach to generalize IDBD to the nonlinear case would be to sub-
stitute the linear equation in Step 3 of the IDBD algorithm with the nonlinear
Eq. (2). Then the difference is mainly the ’outer’ derivation of the nonlinearity
with respect to the net input N(t) in Eq. (2). If we choose tanh() as nonlinearity,
this derivative yields the term (1− y2) in several places. The explicit derivation
will be shown later in Appendix A.

However, there is a severe problem with this simple approach: If the task
exhibits a steep slope σnst in the nonlinear activation function, the adaptation
of learning rates can quickly lead to a fully saturated system which does not learn
the required concept. This is because large values of σnst lead to big error signals
δ, and consequently to large learning rate changes and large weight changes.
The output is driven into saturation sooner or later (near +1 or −1). With
1 − y2 ≈ 0 the gradient information becomes unreliable. As a consequence,
the mean squared error (MSE) will be big or even the whole system becomes
unstable.

2.5 Controlling the Activation

To keep the average activation sufficiently small, we add an accumulator with

kacc(t+ 1) = (1− γ)kacc(t) + γ [y(t)]2 and kacc(0) = 0, (4)

where γ = 0.001 is a sufficiently small constant. It is easy to show that the
corresponding initial value problem has the solution

kacc(t) =
∫ t

0
y2(τ) γeγ(τ−t)dτ (5)

For t " 1/γ the function f(τ) = γeγ(τ−t) plays the role of a density function,
since

∫ t
0 f(τ)dτ ≈ 1. Thus the accumulator kacc(t) is a memory trace of the

square of recent activations. If for example the output is constant, y(t) = y0, then
kacc(t) will show an exponential decay towards y20 . The smaller the parameter γ,
the more long-term averaging the memory trace kacc(t) will be. The idea is now
to add to the normal nonlinear weight update in Eq. (3) a new weight decay
term proportional to kacc(t) with strength parameter ωk

wi(t+ 1) = wi(t) + αi(t)δ(t)(1 − y2(t))xi(t)− ωkkacc(t)wi(t)x2
i (t) (6)

The purpose of the weight decay term is as follows: If the average recent activa-
tion is high in absolute value (i.e. the activations are close to saturation), then
all weights will be decaying to move the output out of the saturated zone. If
on the other hand the activation is close to zero, then nearly no weight decay
will take place. The special setting ωk = 0 allows to recover the ’old’ situation
without weight decay.

We summarize our new n-IDBD method in Algorithm 2. The main difference
to (linear) IDBD is the term Y = 1− y2 in several places and the weight decay

296 W.Konen and P. Koch

Algorithm 2. n-IDBD: nonlinear IDBD in pseudo code
1: Initialize: hi = 0, βi = βinit ∀i, γ = 0.001, set the meta-learning rate θ, and set

the weight decay parameter ωk.
2: for (each new example (x1, . . . , xn, y

∗)) do
3: Calculate y according to Eq. (2)
4: Set δ = y∗ − y, Y = 1− y2 and Z = Y + 2yδ
5: Update accumulator kacc ← (1− γ)kacc + γy2 according to Eq. (4)
6: for (every weight index i) do
7: Set βi ← βi + θY xihiδ
8: Set αi ← eβi

9: Set wi ← wi + αiY xiδ − ωkkaccwix
2
i

10: Set hi ← hi[1− (αiY Z + ωkkacc)x2
i]

+ + αiY xiδ
11: end for
12: end for

term with ωkkacc in Steps 9 and 10 of the algorithm. It is a necessary prerequisite
to achieve stable and fast learning. The precise form of the equations in Steps
7, 9, and 10 is derived in Appendix A.

Fig. 1. Dependence on the
weight decay parameter
ωK : n-IDBD has a broad
minimum near ωK = 0.1.
Shown is the asymptotic
MSE at t = 400 000. For
NLMS the x-axis shows
instead of ωK the ten-fold
learning rate 10α (i.e.
we vary α ∈ [0, 0.05]).
For ELK1 there is no
parameter ωK .

θ : 0.001 θ : 0.01

●

●

●

● ● ● ●
●

●

●

●

● ● ● ●
●

●

●

●

● ● ● ●
●

●

●

●

● ● ● ●
●

●

●

●

● ● ● ●
●

●

●

●

● ● ● ●
●

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

ωk(10α)

M
S

E

method

●

ELK1
NLMS
n−IDBD

σnst
4
2
1

3 Results

3.1 Does Weight Decay Help?

The first experiment answers the question whether n-IDBD performs better than
ordinary NLMS (or LMS) on the benchmark task and what influence the weight
decay has. In Fig. 1 we vary the weight decay parameter ωk between 0 (no weight
decay) and 0.5 (strong weight decay) and find a broad minimum near ωk = 0.1.
The mean squared error (MSE) is taken at t = 400 000 to get past any transient

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 297

0 10000 20000 30000 40000

0
.1

0
.2

0
.3

0
.4

time

kacc

αR

αI

Fig. 2.
Development
of relevant / ir-
relevant learning
rates (αR, αI) and
accumulator kacc.
After 40 000 time
steps n-IDBD
adapts to the
ratio αR/αI ≈ 9.

phases. It is measured as the average of the squared error δ2 between time steps
300 000 and 400000.

Without weight decay the MSE rises sharply to values above 1.5. A closer
inspection of the model shows that it is in this case fully saturated (kacc = 1)with
arbitrary large weights and large learning rates. It does not learn anything, it
only jumps erratically between +1 and −1. The learning rates surpass sensible
bounds (e.g., αi > 100). A similar behavior is observed for ELK1 [8] which does
not have any weight decay and exhibits in most cases large MSEs.

With weight decay the situation changes completely for a broad range of ωk:
n-IDBD has a low error everywhere, both weights and learning rates stabilize at
roughly constant and sensible values. The overall activation of the unit stabilizes
at a plateau kacc < 1.1 The MSE of n-IDBD is consistently lower than that of
NLMS. This holds for all possible learning rates α of NLMS.

Fig. 2 shows the development of learning rates in one example of n-IDBD.
Already after 10 000 time steps the algorithm differentiates well between relevant
learning rates (αR = 1

5Σ
5
i=1αi) and irrelevant learning rates (αI = 1

15Σ
20
i=6αi).

After approximately 22 000 time steps both the learning rates and the activation
kacc stabilize at constant plateaus.

Fig. 3 compares the situation with and without weight decay again, but with a
focus on the longer time scale. The model with weight decay is consistently better
(has a lower MSE) than the one without. Whenever MSE becomes larger than
1.2, a closer inspection of the model shows that it is fully saturated (kacc = 1.0)
and the weights are unrealistically large. Even for very gentle slopes σnst, where
the model without weight decay does not saturate (not shown in the figure), we
find that weight decay is helpful to reduce the overall MSE.

1 The precise value of kacc ∈ [0.2, 0.7] depends on the other algorithm parameters.

298 W.Konen and P. Koch

Fig. 3. Comparison of
MSE without weight de-
cay (circles, ωK = 0) to
MSE with weight decay
(triangles, ωK = 0.1).
Shown is the MSE aver-
aged over the last 100 000
time steps. The results
with weight decay are al-
ways better.

THETA: 0.001 THETA: 0.01

● ●

●

●

●

●

● ●

●

●

●
●

●

● ● ●
●

● ● ●
●

● ● ●

0.5

1.0

1.5

1 2 3 4 1 2 3 4

time/1e+05

M
S

E

σnst
●

●

●

2
1
0.5

ωk
● 0

0.1

Fig. 4. Average
error as a function
of αR, the learn-
ing rate for the
relevant inputs.
Irrelevant inputs
had their weights
clamped to zero in
NLMS. The singu-
lar red point is the
corresponding re-
sult from n-IDBD
with θ = 0.01. ●●●●●●●●●●●●●●●●●●●

●

●

●

● ● ● ● ● ● ● ●
● ●

● ●
●

●
● ●

0.4

0.6

0.8

0.0 0.2 0.4 0.6
αR

M
S

E

method
●

●

n−IDBD
NLMS

σnst

●

4
2
1

3.2 Does Nonlinear IDBD Find the Optimal αi?

We have seen in the first experiment that n-IDBD automatically found large
learning rates for the relevant weights and small learning rates for the irrelevant
weights. Similar to [10] we want to test in a second experiment whether the
learning rates found by n-IDBD are optimal. Therefore we build an ’ideal’ NLMS
for the task, where the irrelevant weights are already clamped to zero and the
relevant weights get a predefined learning rate αR. The ’ideal’ NLMS has the
same sigmoid and the same weight decay as n-IDBD. We get MSE-curves as
shown in Fig. 4. The MSE is shown after 400 000 time steps, averaged between
time steps 300 000 to 400 000. The red point for n-IDBD shows the average αR

(relevant weights) and the correspondingMSE. It is right at the minimum of each

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 299

Algorithm
σnst LMS NLMS IDBD n-IDBD

(linear) (nonlinear)
1.0 0.54 0.61 0.34 0.25
2.0 0.70 0.78 0.47 0.38
4.0 0.79 0.87 0.56 0.47

Table 1. Comparison of the best MSE for
all algorithms tested on the nonstationary
task with varying slopes σnst. ’Best’ means
that each algorithm has its free parame-
ters tuned to the best possible value. Pa-
rameters are θ = 0.01, ωk = 0.1 for IDBD,
α = 0.2 for LMS, and α = 0.1 for NLMS.

ideal curve. This shows that there is no other setting of learning rate parameters
which will perform better. (The MSE is slightly higher for n-IDBD than for
NLMS, because n-IDBD has the irrelevant weights not clamped precisely to
zero, they fluctuate at a small level.)

We finally compare in Tab. 1 the best MSE for all algorithms. It is remarkable
that linear IDBD is better on the task than nonlinear NLMS. But n-IDBD is
clearly better than all other tested algorithms for all sigmoidal slopes σnst.

4 Conclusion

We have extended the adaptive, linear IDBD to the nonlinear case. It was shown
that a simple extension would lead to an instable nonlinear system due to satu-
ration effects. Similarly, the well-known ELK1 method showed diverging weights
for most parameter settings as well. We proposed an additional self-regulative
mechanism to control the average activation. This makes the adaptive system
stable again. As in the linear case [10], the adaptive system finds the best pos-
sible learning rate on the benchmark task. The n-IDBD algorithm exhibits a
smaller MSE on the benchmark task than either LMS, NLMS or linear IDBD.
In an upcoming paper [2] we will show that n-IDBD can be applied to a game-
learning task (Connect-Four) with more than half a million of weights as well.

A Appendix: Derivation of n-IDBD

Similar to [10], the equations of n-IDBD can be derived from a few simple prin-
ciples. We start with two loss functions

L1(t) =
1
2
δ2(t) and L2(t) =

1
2

∑
i

w2
i (t)x

2
i (t). (7)

Both L1(t) and L2(t) should be minimized by the learning algorithm. The first
term rewards small errors and the second term regularizes the complexity of the
network: Weights with active inputs (x2

i > 0) should be as small as possible in
their square sum.2 In each learning step a weight change will be made in the
steepest-descent direction for L1 and for L2:
2 It is also possible to use a simpler L2 = 1

2
Σiw

2
i (t) without the term x2

i (t). Then
every weight decays in each time step. This leads to the same qualitative results in
the benchmark task of Sec. 2.1, but might lead to different results in larger systems
with sparse input activations.

300 W.Konen and P. Koch

wi(t+ 1) = wi(t)− α
∂L1(t)
∂wi(t)

−Ω
∂L2(t)
∂wi(t)

= wi(t)− αδ(t)
∂δ(t)
∂wi(t)

−Ωwi(t)x2
i (t)

= wi(t) + αδ(t)
∂y(t)
∂N(t)

∂N(t)
∂wi(t)

−Ωwi(t)x2
i (t)

= wi(t) + αδ(t)(1 − y2(t))xi(t)−Ωwi(t)x2
i (t) (8)

with constants α and Ω. If we identify the constant α with the slowly varying
learning rate αi and the constant Ω with ωkkacc(t) (which is justified, because
kacc(t) approaches – after a transient phase – a roughly constant value), then
Eq. (8) reproduces the weight update rule Eq. (6) for n-IDBD.

The β-update rule is governed by the minimization of L1

βi(t+ 1) = βi(t)− θ
∂L1(t)
∂βi(t)

= βi(t)− θδ(t)
∂δ(t)
∂βi(t)

= βi(t) + θδ(t)
∂y(t)
∂N(t)

∂N(t)
∂wi(t)

∂wi(t)
∂βi(t)

= βi(t) + θδ(t)(1 − y2(t))xi(t)hi(t) (9)

where we have defined hi(t) ≡ ∂wi(t)
∂βi(t)

as in [10]. We abbreviate Y (t) ≡ (1−y2(t))
and derive the h-update rule:

hi (t+ 1) =
∂

∂βi
wi(t+ 1)

=
∂

∂βi

(
wi(t) + eβiδ(t)Y (t)xi(t)−Ωwi(t)x2

i (t)
)

= hi(t) +
[
eβiδ(t)Y (t) + eβi

∂δ(t)
∂βi

Y (t) + eβiδ(t)
∂Y (t)
∂βi

]
xi(t)−Ωhi(t)x2

i (t)

= hi(t) + αi

[
δ(t)Y (t) +

∂δ(t)
∂βi

Y (t) + δ(t)
∂Y (t)
∂βi

]
xi(t)−Ωhi(t)x2

i (t) (10)

The terms in square brackets come from the threefold product rule when taking
the partial derivative of eβiδ(t)Y (t) with respect to βi. We know from Eq. (9)
that

∂δ(t)
∂βi

= −Y (t)xi(t)hi(t)

Similarly we obtain

∂Y (t)
∂βi

=
∂(1− y2(t))

∂βi
= −2y(t)

∂y(t)
∂βi

= −2y(t)Y (t)xi(t)hi(t)

Adaptation in Nonlinear Learning Models for Nonstationary Tasks 301

If we put everything together and collect terms in Eq. (10), it is straightforward
to derive

hi(t+ 1) = hi(t)
[
1− (αiY (t)Z(t) +Ω) x2

i (t)
]
+ αiδ(t)Y (t)xi(t) (11)

with Z(t) = Y (t) + 2y(t)δ(t)

which is, after adding a positive-bounding operation for the term in square brack-
ets, the h-update rule of n-IDBD. Here the Ω-term ensures stability as well: Even
close to saturation (when y2(t) ≈ 1, hence Y (t) ≈ 0) the Ω-term guarantees the
decay of hi.

References

1. Almeida, L., Langlois, T., Amaral, J.D.: On-line step size adaptation. Technical
Report RT07/97, INESC. 9 Rua Alves Redol, Lisboa, Portugal (1997)

2. Bagheri, S., Thill, M., Koch, P., Konen, W.: Online adaptable learning rates for
the game Connect-4. Submitted to IEEE Trans. on Computational Intelligence and
AI in Games (2014)

3. Dabney, W., Barto, A.G.: Adaptive step-size for online temporal difference learn-
ing. In: 26th AAAI Conference on Artificial Intelligence (2012)

4. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation.
Neural Networks 1(4), 295–307 (1988)

5. Koop, A.: Investigating experience: Temporal coherence and empirical knowledge
representation. Master’s thesis, University of Alberta, Canada (2008)

6. Li, C., Ye, Y., Miao, Q., Shen, H.-L.: Kimel: A kernel incremental metalearning
algorithm. Signal Processing 93(6), 1586–1596 (2013); Special issue on Machine
Learning in Intelligent Image Processing

7. Mahmood, A.R., Sutton, R.S., Degris, T., Pilarski, P.M.: Tuning-free step-size
adaptation. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2121–2124. IEEE (2012)

8. Schraudolph, N.N.: Online local gain adaptation for multi-layer perceptrons. Tech-
nical Report IDSIA-09-98, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale
(IDSIA), Switzerland (1998)

9. Schraudolph, N.N.: Online learning with adaptive local step sizes. In: Neural Nets
WIRN Vietri 1999, pp. 151–156. Springer (1999)

10. Sutton, R.S.: Adapting bias by gradient descent: An incremental version of delta-
bar-delta. In: Swartout, W.R. (ed.) 10th AAAI Conference on Artificial Intelli-
gence, pp. 171–176 (1992)

11. Sutton, R.S.: Gain adaptation beats least squares. In: 7th Yale Workshop on Adap-
tive and Learning Systems, pp. 161–166 (1992)

On the Effectiveness of Sampling
for Evolutionary Optimization in Noisy Environments�

Chao Qian1, Yang Yu1, Yaochu Jin2, and Zhi-Hua Zhou1

1 National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

2 Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
{qianc,yuy,zhouzh}@lamda.nju.edu.cn, yaochu.jin@surrey.ac.uk

Abstract Sampling has been often employed by evolutionary algorithms to cope
with noise when solving noisy real-world optimization problems. It can improve
the estimation accuracy by averaging over a number of samples, while also in-
creasing the computation cost. Many studies focused on designing efficient sam-
pling methods, and conflicting empirical results have been reported. In this paper,
we investigate the effectiveness of sampling in terms of rigorous running time,
and find that sampling can be ineffective. We provide a general sufficient condi-
tion under which sampling is useless (i.e., sampling increases the running time
for finding an optimal solution), and apply it to analyzing the running time perfor-
mance of (1+1)-EA for optimizing OneMax and Trap problems in the presence
of additive Gaussian noise. Our theoretical analysis indicates that sampling in the
above examples is not helpful, which is further confirmed by empirical simulation
results.

1 Introduction

Evolutionary algorithms (EAs) [4] inspired from natural phenomena are often applied
to solve real-world optimization problems, where the fitness (i.e., objective) evaluation
of a solution is usually noisy. For example, in airplane design, the fitness of every pro-
totype is evaluated by a stochastic computer simulation, and thus is a random variable
whose value can be different from the exact fitness. Handling noise in fitness evalua-
tions is important in that a poor solution can appear to be good due to the noise, which
can mislead the search direction, resulting in an inefficient optimization. Many studies
thus have focused on dealing with noise in evolutionary optimization [2,6,18].

One simple and direct way to reduce the effect of noise is sampling, which samples
the fitness of one solution several times and then uses the average to estimate the true
fitness. An n-time random sampling can reduce the standard deviation by a factor of√
n, and thus makes the fitness estimation closer to the true value, while also increasing

the computation cost n times. Much effort has been devoted to designing smarter sam-
pling approaches, which dynamically decide the sample size for each solution so that
the sampling cost is reduced as much as possible.

� This research was supported by the National Science Foundation of China (61375061,
61333014) and the Jiangsu Science Foundation (BK2012303).

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 302–311, 2014.
c© Springer International Publishing Switzerland 2014

On the Effectiveness of Sampling for Evolutionary Optimization 303

Aizawa and Wah [1] suggested two adaptive sampling methods: increasing the sam-
ple size with the generation number and allocating larger sample size for solutions with
larger estimated variance. Stagge [24] used a larger sample size for better solutions.
Several sequential sampling approaches [7,8,10] were later proposed for tournament
selection, which first estimate the fitness of two solutions by a small number of sam-
ples, and then sequentially increase samples until the difference can be significantly
discriminated. Adaptive sampling was then incorporated into diverse metaheuristic al-
gorithms (e.g., immune algorithm [27], particle swarm optimization [5] and compact
differential evolution [17]) to efficiently cope with noise. It has also been employed
by evolutionary algorithms for noisy multi-objective optimization [20,23,25]. Based on
the assumption that the fitness landscape is locally smooth, an alternative approach to
approximately increase the estimation accuracy without increasing the sampling cost
was proposed [9,22], which estimates the fitness of a solution by averaging the fitness
of previously evaluated neighbors.

Sampling has been shown to be able to improve the local performance of EAs (e.g.,
increase the probability of selecting the true better solution in tournament selection [7]).
A practical performance measure of an algorithm is how much time it needs to find a
desired solution. On this measure, conflicting conclusions about sampling have been
empirically reported. For example, in [1], it was shown that sampling can speed up a
standard genetic algorithm on two test functions; while in [10], sampling led to a larger
computation time for a simple generational genetic algorithm on the OneMax function.

In this paper, we investigate the effectiveness of sampling via rigorous running time
analysis, which measures how soon an algorithm can solve a problem (i.e., the number
of fitness evaluations until finding an optimal solution) and has been a leading theoret-
ical aspect for randomized search heuristics [3,19]. We provide a sufficient condition
under which sampling is useless (i.e., sampling increases the running time). Applying it
to analyze (1+1)-EA solving the Noisy OneMax and the Noisy Trap problems with the
additive Gaussian noise, we disclose that the sampling is ineffective in the two cases
for different reasons. The derived theoretical results are also empirically verified. The
results may help understand the effect of noise and design better strategies for handling
noisy fitness functions.

The rest of this paper is organized as follows. Section 2 introduces some preliminar-
ies. Section 3 presents the main theorem, which is then used in case studies in Section
4. Section 5 concludes the paper and discusses future work.

2 Preliminaries

2.1 Sampling and Optimization in the Presence of Noise

An optimization problem can be generally represented as argmaxx∈X f(x), where X
is the feasible solution space and the objective f is also called fitness in the context
of evolutionary computation. In real-world optimization tasks, the fitness evaluation
for a solution is usually disturbed by noise due to a wide range of uncertainties (e.g.,
randomized simulations), and consequently we can not obtain the exact fitness value
but only a noisy one. A commonly studied noise model is additive noise as presented in
Definition 1, which will also be adopted in this paper.

304 C. Qian et al.

Definition 1 (Additive Noise). Given a distribution N , let fN (x) and f(x) denote the
noisy and true fitness of a solution x respectively, then

fN (x) = f(x) + δ,

where δ is randomly drawn from N , denoted by δ ∼ N .

In evolutionary optimization, sampling as described in Definition 2 has often been
used to reduce the effect of noise. It approximates the true fitness f(x) by the average
of a number of random samples.

Definition 2 (Sampling). Sampling of size k outputs the fitness of a solution as

fN
k (x) =

1
k

∑k

i=1
(f(x) + δi), where δi ∼ N .

For additive Gaussian noise (i.e., N = N(θ, σ2)), fN
k (x) actually can be represented

by f(x) + δ with δ ∼ N(θ, σ2/k), that is, sampling of size k reduces the variance
of noise by a factor of k and thus estimates the fitness more accurately. However, the
computation time is also increased by k times. Many studies thus focused on designing
efficient sampling methods [1,8,24], while the effectiveness of sampling, in particular a
theoretical understanding of sampling, remains unclear.

2.2 Evolutionary Algorithms by Markov Chain Analysis

Evolutionary algorithms [4] are a kind of randomized metaheuristic optimization algo-
rithms. Starting from an initial set of solutions (called a population), EAs try to itera-
tively improve the population by a cycle of three stages: reproducing new solutions from
the current population, evaluating the newly generated solutions, and updating the pop-
ulation by removing bad solutions. The (1+1)-EA, as shown in Algorithm 1, is a simple
EA for maximizing pseudo-Boolean problems over {0, 1}n, which reflects the common
structure of EAs. It maintains only one solution, and repeatedly tries to improve the cur-
rent solution by using bit-wise mutation (i.e., step 3) and selection (i.e., steps 4-5). It has
been widely used for the running time analysis of EAs, e.g., in [16,26]. For (1+1)-EA
with sampling in noisy environments, step 4 changes to be “if fN

k (x′) ≥ fN
k (x)”.

Algorithm 1 ((1+1)-EA). Given pseudo-Boolean function f with solution length n, it
consists of the following steps:
1. x := randomly selected from {0, 1}n.
2. Repeat until the termination condition is met
3. x′ := flip each bit of x independently with probability p.
4. if f(x′) ≥ f(x)
5. x := x′.
where p ∈ (0, 0.5) is the mutation probability.

The evolution process goes forward only based on the current population, thus, an
EA can be modeled and analyzed as a Markov chain {ξt}+∞

t=0 (e.g., in [16,26]) by taking
the EA’s population space X as the chain’s state space, i.e. ξt ∈ X . Let X ∗ ⊂ X denote

On the Effectiveness of Sampling for Evolutionary Optimization 305

the set of all optimal populations, which contains at least one optimal solution. The goal
of the EA is to reach X ∗ from an initial population. Thus, X ∗ is the optimal state space
of the corresponding Markov chain. In this paper, we assume that the Markov chain is
homogeneous, since EAs often employ time-invariant operators.

Given a Markov chain {ξt}+∞
t=0 and ξt̂ = x, we define its first hitting time (FHT) as

a random variable τ such that τ = min{t|ξt̂+t ∈ X ∗, t ≥ 0}. That is, τ is the num-
ber of steps needed to reach the optimal space for the first time starting from ξt̂ = x.
The mathematical expectation of τ , E[[τ |ξt̂ = x]] =

∑∞
i=0 iP (τ = i), is called the ex-

pected first hitting time (EFHT). For the corresponding EA, the running time is usually
defined as the number of fitness evaluations until an optimal solution is found for the
first time, since the fitness evaluation is often the computational process with the high-
est cost [16,26]. Thus, the expected running time of the EA starting from ξ0 is equal to
N1+N2 ·E[[τ |ξ0]], where N1 and N2 are the number of fitness evaluations for the initial
population and each iteration, respectively. For example, for (1+1)-EA without noise,
N1 = 1 and N2 = 1. Note that, for EAs under noise, we assume that the reevaluation
strategy [13,14,18] is used, i.e., when accessing the fitness of a solution, it is always
reevaluated. For example, for (1+1)-EA with sampling, both fN

k (x′) and fN
k (x) will

be calculated and recalculated in each iteration; thus, N1 = k and N2 = 2k.
Lemma 1 characterizing the EFHT of a Markov chain by one-step transition and

Lemma 2 showing the drift analysis tool will be used to analyze the EFHT of Markov
chains in the paper. Drift analysis was first introduced to the running time analysis of
EAs by He and Yao [16] and later many variants have been proposed (e.g., in [11,12]).
To use it, a function V (x) has to be constructed to measure the distance of a state x to
the optimal state space X ∗. The distance function V (x) satisfies that V (x ∈ X ∗) = 0
and V (x /∈ X ∗) > 0. Then, by investigating the progress on the distance to X ∗ in each
step, i.e., E[[V (ξt)− V (ξt+1)|ξt]], an upper (lower) bound of the EFHT can be derived
through dividing the initial distance by a lower (upper) bound of the progress.

Lemma 1. Given a Markov chain {ξt}+∞
t=0 , we have

∀x ∈ X ∗ : E[[τ |ξt = x]] = 0;

∀x /∈ X ∗ : E[[τ |ξt = x]] = 1 +
∑

y∈X P (ξt+1 = y|ξt = x)E[[τ |ξt+1 = y]].

Lemma 2 (Drift Analysis [16]). Given a Markov chain {ξt}+∞
t=0 and a distance func-

tion V (x), if it satisfies that for any t ≥ 0 and any ξt with V (ξt) > 0,

0 < cl ≤ E[[V (ξt)− V (ξt+1)|ξt]] ≤ cu,

then the EFHT satisfies that V (ξ0)/cu ≤ E[[τ |ξ0]] ≤ V (ξ0)/cl.

3 Theorem on Sampling Effectiveness

In this section, for EAs solving noisy problems, we provide two situations where the
running time increases with the sample size, i.e., sampling is useless. Let {ξ′t}+∞

t=0 model
the evolutionary process without noise, and let {ξt}+∞

t=0 model that using the sample

306 C. Qian et al.

size k for fitness evaluation under noise. We always denote X and X ∗ as the state space
and the optimal state space, respectively. For any x, x′ ∈ X , let p(x, x′) and qk(x, x′)
denote the probability of jumping from state x to x′ in one step for {ξ′t}+∞

t=0 and {ξt}+∞
t=0

respectively, i.e., p(x, x′) = P (ξ′t+1 = x′|ξ′t = x) and qk(x, x′) = P (ξt+1 = x′|ξt = x).
For clarity, we also represent the EFHT of {ξ′t}+∞

t=0 and {ξt}+∞
t=0 by E[x] and Ek[x]

respectively, i.e., E[x] = E[[τ ′|ξ′0 = x]] and Ek[x] = E[[τ |ξ0 = x]]. Let dg(k)
dk denote the

derivative of a function g(k) with respect to k.

Theorem 1. For an EA A optimizing a problem f under some kind of noise, if there
exists a function g(k) (k ≥ 1) such that either one of the following two situations holds,

(1) max
x/∈X ∗

{
∑

x′:E[x′]
=E[x]
(qk(x, x′)− p(x, x′))(E[x] − E[x′])} ≤ g(k) < 0,

and 1 + g(k)− k
dg(k)
dk

≥ 0;

(2) min
x/∈X ∗

{
∑

x′:E[x′]
=E[x]

(qk(x, x′)−p(x, x′))(E[x]−E[x′])}≥g(k)>0, and
dg(k)
dk

≤0,

then for any x ∈ X , k · Ek[x] ≤ (k + 1) · Ek+1[x], i.e., sampling is useless.

Before the proof, we first intuitively explain these two situations where sampling is
useless. In situation (1), noise is harmful and using a larger sample size may reduce its
negative effect (i.e., Ek(x) decreases with k), but the decrease rate of Ek(x) is smaller
than the increase rate of the sample size k; thus sampling is overall useless. In situation
(2), noise is actually helpful and using a larger sample size reduces its positive effect,
thus Ek(x) increases with k and sampling is of course useless.
Proof. We use Lemma 2 to prove a bound on Ek[x]. We first construct a distance
function ∀x ∈ X , V (x) = E[x], which satisfies that V (x ∈ X ∗) = 0 and V (x /∈ X ∗) >
0 by Lemma 1. Then, we investigate E[[V (ξt)− V (ξt+1)|ξt = x]] for any x /∈ X ∗.

E[[V (ξt)− V (ξt+1)|ξt = x]] = V (x)− E[[V (ξt+1)|ξt = x]]

= 1 +
∑

x′∈X p(x, x′)E[x′]−
∑

x′∈X qk(x, x′)E[x′] (by Lemma 1)

= 1 +
∑

x′:E[x′]
=E[x]
(qk(x, x′)− p(x, x′))(E[x] − E[x′]) =: 1 + g(x, k).

If situation (1) holds, E[[V (ξt)− V (ξt+1)|ξt = x]] ≤ 1 + g(k). By Lemma 2, we
have Ek[x] ≥ E[x]/(1 + g(k)), which shows that noise is harmful since g(k) < 0.
The expected running time starting from x can be represented by Mk + Nk · Ek[x],
where M and N denote the number of solutions that need to be evaluated for the initial
population and each iteration, respectively. The EFHT Ek[x] may decrease with k; thus
we need to compare its decrease rate with the increase rate of the sample size k. The
condition 1 + g(k)− k dg(k)

dk ≥ 0 implies that d(k/(1+g(k)))
dk ≥ 0, i.e., the decrease rate

of Ek[x] is smaller than the increase rate of k. Thus, the expected running time starting
from x increases with k, i.e., sampling is useless.

If situation (2) holds, E[[V (ξt)− V (ξt+1)|ξt = x]] ≥ 1 + g(k). By Lemma 2, we
have Ek[x] ≤ E[x]/(1 + g(k)), which shows that noise is helpful since g(k) > 0. Due
to that dg(k)

dk ≤ 0 (i.e., g(k) decreases with k),Ek[x] increases with k. Thus, the expected
running time Mk+Nk ·Ek[x] obviously increases with k, i.e., sampling is useless. �

On the Effectiveness of Sampling for Evolutionary Optimization 307

4 Case Studies

In this section, we will apply the above theorem to analyze the effectiveness of sampling
for EAs solving different pseudo-Boolean problems under additive Gaussian noise.

4.1 (1+1)-EA on Noisy OneMax

OneMax problem is to maximize the number of 1 bits of a solution x ∈ {0, 1}n. It has
become a benchmark for the running time analysis of EAs; particularly, the expected
running time of (1+1)-EA with mutation probability 1

n is Θ(n log n) [15]. For its noisy
variant as in Definition 3, the fitness of a solution accessed in the optimization is a noisy
one fN (x) instead of the true fitness f(x).

Definition 3 (Noisy OneMax Problem). Given a distributionN and n ∈ N+, defining

fN (x) = f(x) + δ =
∑n

i=1
xi + δ

where x ∈ {0, 1}n and δ is randomly drawn from N , Noisy OneMax Problem of size n
is to solve the problem: argmaxx∈{0,1}n Eδ∼N [fN (x)].

Theorem 2. For any σ > 0, sampling is useless for (1+1)-EA optimizing Noisy One-
Max problem with Gaussian noise N = N(θ, σ2).

Proof. We are to show that the situation (1) of Theorem 1 holds here. From Lemma 1
in [21], we know that the EFHT E[x] of (1+1)-EA on OneMax without noise depends
on the number of 0 bits |x|0 and increases with it. Let mut(x, x′) denote the probability
of mutating from x to x′ by step 3 of Algorithm 1. Note that, by sampling of size k, the
Gaussian noise reduces to be N(θ, σ2/k), i.e., fN

k (x) = f(x)+δ with δ ∼ N(θ, σ2/k).
For any x with |x|0 = i ≥ 1 and x′ with |x′|0 = j, if j < i, p(x, x′) = mut(x, x′)

since x′ has less 0 bits and is better than x; if j > i, p(x, x′) = 0 since x′ has more
0 bits and is worse than x. We also have qk(x, x′) = mut(x, x′) · Prob(f(x′) + δ1 ≥
f(x) + δ2), where δ1, δ2 ∼ N(θ, σ2/k). Note that δ1 − δ2 ∼ N(0, 2σ2/k). Thus,
qk(x, x′) = mut(x, x′) · Prob(δ ≥ j − i), where δ ∼ N(0, 2σ2/k). Then, we have

g(x, k) =
∑

x′:E[x′]
=E[x]
(qk(x, x′)− p(x, x′))(E[x] − E[x′])

= −
∑

|x′|0=j<i
mut(x, x′) · Prob(δ > i− j) · (E[x]− E[x′])

+
∑

|x′|0=j>i
mut(x, x′) · Prob(δ ≥ j − i) · (E[x] − E[x′])

≤ −Prob(δ > 1) · (∑|x′|0=i−1
mut(x, x′)(E[x] − E[x′])

)
.

Let c = minx/∈X ∗
∑

|x′|0=i−1 mut(x, x′)(E[x] − E[x′]). Let δ′ ∼ N(0, 1). Then,

Prob(δ > 1) = Prob(δ′ >
√
k√
2σ
). By Prob(δ′ > m) ≥ m

2
√
2π

e−m2/2 for 0 < m ≤ 1,

we can get Prob(δ > 1) ≥
√
k

4σ
√
π
· e−k/4σ2

when k ≤ 2σ2. Thus, let g(k) = − c
√
k

4σ
√
π
·

e−k/4σ2

which satisfies that maxx/∈X ∗ g(x, k) ≤ g(k) < 0. Then,

308 C. Qian et al.

1 + g(k)− k
dg(k)
dk

= 1− c
√
k

8σ
√
π
· e−k/4σ2 − ck

√
k

16σ3
√
π
· e−k/4σ2 ≥ 1− c

2
√
2π

.

When k ≥ 2σ2, Prob(δ > 1) ≈ σ√
kπ
·e−k/4σ2

, since Prob(δ′ > m) ≈ 1
m · 1√

2π
e−m2/2

for m ≥ 1. Thus, let g(k) = − cσ√
kπ

· e−k/4σ2

. Then,

1 + g(k)− k
dg(k)
dk

= 1− 3cσ
2
√
kπ

· e−k/4σ2 − c
√
k

4σ
√
π
· e−k/4σ2 ≥ 1−

√
2c√
π

e−1/2,

where the inequality is since xe−x2

reaches the maximum when x =
√
2
2 .

Then, we are to show that c ≤ 1. By Lemma 1, for any x with |x|0 = i ≥ 1, we have

E[x] = 1 +
i−1∑
j=0

∑
|x′|0=j

mut(x, x′)E[x′] + (1−
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x]

≤1+(
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x′ | |x′|0 = i− 1]+(1−
i−1∑
j=0

∑
|x′|0=j

mut(x, x′))E[x].

Thus, E[x] − E[x′ | |x′|0 = i− 1] ≤ 1/
∑i−1

j=0
∑

|x′|0=j mut(x, x′). Then,

∑
|x′|0=i−1

mut(x, x′)(E[x] − E[x′]) ≤
∑

|x′|0=i−1

mut(x, x′)/
i−1∑
j=0

∑
|x′|0=j

mut(x, x′) ≤ 1,

which implies that c ≤ 1. Thus, 1 + g(k)− k dg(k)
dk ≥ 0. �

4.2 (1+1)-EA on Noisy Trap

Trap problem is another commonly used problem in the theoretical analysis of EAs. It
is to maximize the number of 0 bits of a solution except the global optimum 11 . . .1;
the expected running time of (1+1)-EA with mutation probability 1

n is Θ(nn) [15].

Definition 4 (Noisy Trap Problem). Given a distribution N and n ∈ N+, defining

fN (x) = f(x) + δ = C
∏n

i=1
xi −

∑n

i=1
xi + δ

where x ∈ {0, 1}n, C > n and δ is randomly drawn from N , Noisy Trap Problem of
size n is to solve the problem: argmaxx∈{0,1}n Eδ∼N [fN (x)].

Theorem 3. For any σ > 0, sampling is useless for (1+1)-EA optimizing Noisy Trap
problem with Gaussian noise N = N(θ, σ2) and C = +∞.

Proof. We are to show that the situation (2) of Theorem 1 holds here. From Lemma
2 in [21], we know that the EFHT E[x] of (1+1)-EA on Trap without noise depends on
|x|0 and increases with it.

On the Effectiveness of Sampling for Evolutionary Optimization 309

For any x with |x|0 = i ≥ 1 and x′ with |x′|0 = j, p(x, x′) = 0 if 0 < j < i, and
p(x, x′) = mut(x, x′) if j = 0 or j > i; qk(x, x′) = mut(x, x′) · Prob(δ ≥ i − j) if
j > 0 and qk(x, x′) = mut(x, x′) ·Prob(δ ≥ i−C) if j = 0, where δ ∼ N(0, 2σ2/k).
Note that C = +∞, thus qk(x, x′) = mut(x, x′) if j = 0. Then, we have

g(x, k) =
∑

x′:E[x′]
=E[x]
(qk(x, x′)− p(x, x′))(E[x] − E[x′])

=
∑

0<|x′|0=j<i
mut(x, x′) · Prob(δ ≥ i− j) · (E[x] − E[x′])

+
∑

|x′|0=j>i
mut(x, x′) · Prob(δ > j − i) · (E[x′]− E[x]).

Let g(k) = minx/∈X ∗ g(x, k), then g(k) > 0. When m > 0, we have that Prob(δ ≥ m)
decreases with k by the property of Gaussian distribution, which implies that for any x,
g(x, k) decreases with k. Thus, g(k) decreases with k, i.e., dg(k)

dk ≤ 0. �

4.3 Empirical Verification

We run (1+1)-EA on the problems to verify the theoretical results. For the (1+1)-EA,
the mutation probability p is set to be 1

n ; for the OneMax and the Trap problems, the
problem size n = 10 and C = n + 1; for the Gaussian noise, θ = 0 and σ = 10.
We investigate the sample size k from 1 to 100; for each k, we run the EA 1, 000
times independently, where each run stops until an optimal solution is found. We use
the average number of iterations and the average number of fitness evaluations as the
estimation of the EFHT and the expected running time (ERT), respectively.

The results are plotted in Figures 1 and 2. For (1+1)-EA optimizing Noisy OneMax
problem, Figure 1 shows that the EFHT can decrease by increasing the sample size k,
however the ERT increases with k, which implies that the decrease rate of the EFHT
cannot catch up with the increase rate of k. On Noisy Trap problem, we can observe
from Figure 2 that both the EFHT and ERT increase with the sample size, which implies
that noise is helpful and using a larger sample size reduces its positive effect. Thus, these
empirical results verify our theoretical analysis.

20 40 60 80 100
0

500

1000

1500

2000

Sample size k

E
st

im
at

ed
 E

F
H

T

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Sample size k

E
st

im
at

ed
 E

R
T

Fig. 1. Estimated EFHT and ERT for (1+1)-EA on Noisy OneMax with different sample sizes

310 C. Qian et al.

20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
x 10

5

Sample size k

E
st

im
at

ed
 E

F
H

T

20 40 60 80 100
0

1

2

3

4

5

6
x 10

7

Sample size k

E
st

im
at

ed
 E

R
T

Fig. 2. Estimated EFHT and ERT for (1+1)-EA on Noisy Trap with different sample sizes

5 Conclusion

Sampling has often been employed to smooth noise in evolutionary optimization. Pre-
vious empirical studies showed conflicting results, and sampling thus has not been well
understood. In this paper, we investigate its effectiveness by rigorous running time anal-
ysis. We provide a sufficient condition under which sampling is useless. Using this con-
dition, we prove that sampling is useless for (1+1)-EA optimizing OneMax and Trap
problems under additive Gaussian noise, which is also empirically verified. An intu-
itive interpretation of the theorems is that, noise should be removed for the OneMax
problem, but the extra cost of using sampling is overwhelming; and noise should not
be removed for the Trap problem, thus sampling is useless. Note that, OneMax and
Trap have been recognized as the easiest and the hardest instances, respectively, in the
pseudo-Boolean problem class with a unique global optimum for (1+1)-EA [21]. Thus,
we conjecture that sampling might be useless for a large problem class, which will be a
subject of future research. Our results on the effectiveness of sampling may guide us to
design effective noise handling strategies in real optimization tasks.

References

1. Aizawa, A.N., Wah, B.W.: Scheduling of genetic algorithms in a noisy environment. Evolu-
tionary Computation 2(2), 97–122 (1994)

2. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer, Norwell (2002)
3. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent

Developments. World Scientific, Singapore (2011)
4. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-

ary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
5. Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sam-

pling in noisy environments. In: Metaheuristics. Operations Research/Computer Science In-
terfaces Series, vol. 39, pp. 261–273. Springer, Heidelberg (2007)

6. Beyer, H.G.: Evolutionary algorithms in noisy environments: theoretical issues and guide-
lines for practice. Computer Methods in Applied Mechanics and Engineering 186(2),
239–267 (2000)

7. Branke, J., Schmidt, C.: Selection in the presence of noise. In: Proceedings of the 5th ACM
Conference on Genetic and Evolutionary Computation, Chicago, IL, pp. 766–777 (2003)

On the Effectiveness of Sampling for Evolutionary Optimization 311

8. Branke, J., Schmidt, C.: Sequential sampling in noisy environments. In: Proceedings of the
8th International Conference on Parallel Problem Solving from Nature, Birmingham, UK,
pp. 202–211 (2004)

9. Branke, J., Schmidt, C., Schmec, H.: Efficient fitness estimation in noisy environments. In:
Proceedings of the 3rd ACM Conference on Genetic and Evolutionary Computation, San
Francisco, CA, pp. 243–250 (2001)

10. Cantú-Paz, E.: Adaptive sampling for noisy problems. In: Proceedings of the 6th ACM Con-
ference on Genetic and Evolutionary Computation, Seattle, WA, pp. 947–958 (2004)

11. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
12. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64,

673–697 (2012)
13. Doerr, B., Hota, A., Kötzing, T.: Ants easily solve stochastic shortest path problems. In: Pro-

ceedings of the 14th ACM Conference on Genetic and Evolutionary Computation, Philadel-
phia, PA, pp. 17–24 (2012)

14. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Proceedings of the 6th ACM
Conference on Genetic and Evolutionary Computation, Seattle, WA, pp. 1088–1099 (2004)

15. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. The-
oretical Computer Science 276(1-2), 51–81 (2002)

16. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Arti-
ficial Intelligence 127(1), 57–85 (2001)

17. Iacca, G., Neri, F., Mininno, E.: Noise analysis compact differential evolution. International
Journal of Systems Science 43(7), 1248–1267 (2012)

18. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey. IEEE
Transactions on Evolutionary Computation 9(3), 303–317 (2005)

19. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms
and Their Computational Complexity. Springer, Berlin (2010)

20. Park, T., Ryu, K.R.: Accumulative sampling for noisy evolutionary multi-objective optimiza-
tion. In: Proceedings of the 13th ACM Conference on Genetic and Evolutionary Computa-
tion, Dublin, Ireland, pp. 793–800 (2011)

21. Qian, C., Yu, Y., Zhou, Z.-H.: On algorithm-dependent boundary case identification for prob-
lem classes. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 62–71. Springer, Heidelberg (2012)

22. Sano, Y., Kita, H.: Optimization of noisy fitness functions by means of genetic algorithms
using history of search with test of estimation. In: Proceedings of the 2002 IEEE Congress
on Evolutionary Computation, Honolulu, HI, pp. 360–365 (2002)

23. Siegmund, F., Ng, A.H., Deb, K.: A comparative study of dynamic resampling strategies
for guided evolutionary multi-objective optimization. In: Proceedings of the 2013 IEEE
Congress on Evolutionary Computation, Cancun, Mexico, pp. 1826–1835 (2013)

24. Stagge, P.: Averaging efficiently in the presence of noise. In: Proceedings of the 5th Interna-
tional Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands,
pp. 188–197 (1998)

25. Syberfeldt, A., Ng, A., John, R.I., Moore, P.: Evolutionary optimisation of noisy multi-
objective problems using confidence-based dynamic resampling. European Journal of Op-
erational Research 204(3), 533–544 (2010)

26. Yu, Y., Zhou, Z.-H.: A new approach to estimating the expected first hitting time of evolu-
tionary algorithms. Artificial Intelligence 172(15), 1809–1832 (2008)

27. Zhang, Z., Xin, T.: Immune algorithm with adaptive sampling in noisy environments
and its application to stochastic optimization problems. IEEE Computational Intelligence
Magazine 2(4), 29–40 (2007)

Evolving Mixtures of n-gram Models

for Sequencing and Schedule Optimization

Chung-Yao Chuang and Stephen F. Smith

The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

cychuang@cmu.edu, sfs@cs.cmu.edu

Abstract. In this paper, we describe our work on Estimation of Dis-
tribution Algorithms (EDAs) that address sequencing problems, i.e., the
task of finding the best ordering of a set of items or an optimal sched-
ule to perform a given set of operations. Specifically, we focus on the
use of probabilistic models that are based on n-gram statistics. These
models have been used extensively in modeling statistical properties of
sequences. We start with an EDA that uses a bigram model, then ex-
tend this scheme to higher-order models. However, directly replacing the
bigram model with a higher-order model often results in premature con-
vergence. We give an explanation on why this is the case along with some
empirical support for our intuition. Following that, we propose a tech-
nique that combines multiple models of different orders, which allows
for smooth transition from lower-order models to higher-order ones. Fur-
thermore, this technique can also be used to incorporate other heuristics
and prior knowledge about the problem into the search mechanism.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a class of population-based
stochastic search techniques that search the solution space by learning and sam-
pling probabilistic models [1,2]. Using probabilistic models in the search mech-
anism enables EDAs to adopt techniques from machine learning and statistics
to automatically discover patterns exhibited in a set of promising solutions. In
past studies, EDAs have been applied to a variety of academic and real-world
optimization problems [2,1], achieving competitive results in many scenarios:
chemical applications [3], power systems [4], and environmental resources [5], to
name a few. Most of these studies were focused on domains in which a solution
can be naturally represented as a fixed-length string with no ordering dependen-
cies. However, many interesting and important optimization problems require
the determination of a best ordering of a set of items or an optimal sequence to
perform a given set of operations. In this work, we are interested in solving such
kind of sequencing problems through the paradigm of EDAs.

One classical example of this kind of problem is the Traveling Salesman Prob-
lem (TSP). The objective of the TSP is to find the shortest route for a traveling
salesman who is on the mission to visit every city on a given list precisely once
and then return to the initial city. This task is equivalent to finding the Hamilto-
nian cycle that has the smallest cost in a complete weighted graph. The TSP is

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 312–321, 2014.
c© Springer International Publishing Switzerland 2014

Evolving Mixtures of n-gram Models 313

celebrated because many scientific and engineering problems can be formulated
as TSPs and it has long been used to study sequencing and scheduling problems.
In this paper, we will use the TSP as our model problem for evaluation purposes.

Some previous works can be found in the literature that deal with sequencing
and scheduling problems by means of EDAs. However, most of these approaches
are direct adaptations of EDAs designed for discrete or continuous problems
that have no ordering properties. Earliest attempts [6] applied discrete EDAs
as if a solution has no sequential dependencies. The obvious drawback is that
the information of relative ordering among items is not explicitly considered in
the constructed models. This deficiency may be the cause of low success rate
in finding the global optimum as reported in [6,7,8]. Adaptation of continuous
EDAs [6,9] has also been explored. Most of the research in this direction uses the
random keys representation [10]. Using this representation, some of the informa-
tion about the relative ordering of the items can be encoded in the probabilistic
model. However, with this type of construct, an algorithm has to search for so-
lutions in a largely redundant real-valued space. This inefficiency is reflected in
their relatively inferior performance in the review by Ceberio et al. [11].

The limitation of these direct adaptation of EDAs designed for problems
without ordering properties encourage the EDA community to invent other ap-
proaches that specifically target the sequencing problems. More relevant to this
research is the work done by Tsutsui et al. [7,8]. They proposed an approach
called Edge Histogram Based Sampling Algorithm (EHBSA), which constructs
an edge histogram matrix by counting the number of occurrences that item i and
item j appear consecutively in the sequences. For TSP, this is how many times
the link between the i-th and j-th city is observed in promising solutions. Based
on this statistics, a distribution is estimated that gives conditional probability
of the next item given the previous one. This approach is equivalent to estimat-
ing a bigram model from the current population. In this research, we work on
generalizing this idea to n-gram models.

Although this generalization seems straightforward, as we will show empiri-
cally, the naive approach of increasing the order of the model (e.g., using trigram
instead of bigram) does not work. Instead, we developed a method that uses lin-
ear interpolation to combine multiple models of different orders, and utilize a
holdout set to estimate the weight associated with each model. In this way, we
can gradually shift the emphasis from a low-order model to higher order ones
as longer patterns emerge in the population. Furthermore, as we will show in
Sect. 5, this technique can also be used to incorporate other heuristics and prior
knowledge about the problem into the search mechanism.

In the next section, we will describe the formulation of the n-gram models.
After that, Sect. 3 introduces our approach of using n-gram models for guiding
the search process. It also discusses the difficulty encountered when moving from
bigram model to higher-order models. In Sect. 4, we present a method that is
able to combine multiple models of different orders, and thus provides a smooth
transition from lower-order model to higher-order ones. Sect. 5 further describes
how we can use this same method to incorporate other heuristics and prior
knowledge about the problem into the search mechanism. We briefly discuss
some characteristics of our proposal in Sect. 6. Finally, Sect. 7 summarizes this
paper and points out the future direction of our work.

314 C.-Y. Chuang and S.F. Smith

2 Modeling Sequence Properties with n-gram Statistics

An n-gram is a pattern of n consecutive items, which is usually a segment from a
longer sequence. Such a construct is often used in the tasks of modeling statisti-
cal properties of sequences, especially in the field of natural language processing
(NLP). For example, a classic task in NLP is to predict the next word given the
previous words. Such task can be stated as attempting to estimate the condi-
tional probability of observing some item wi as the next item given the history
of items seen so far. The n-gram approach to this estimate is to make a Markov
assumption that only prior local context—the last few items—affects the next
item. More formally, we are interested in estimating

P (Wi = wi|Wi−n+1 = wi−n+1, . . . ,Wi−1 = wi−1)

where the sequence w1, w2, · · · is some instantiation of a sequence of random
variables W1,W2 · · · . In the following, we will use P (wi|wi−n+1 · · ·wi−1) as a
shorthand for this probability function.

The obvious first answer to the above formulation is to suggest using a max-
imum likelihood estimate (MLE):

PMLE(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi)∑
v∈V C(wi−n+1 · · ·wi−1v)

where C(wi−n+1 · · ·wi−1wi) is the frequency of a certain n-gram in the train-
ing samples, and V is the set of possible items. However, a drawback is that
MLE assigns a zero probability to unseen events, which effectively zeros out the
probability of sequences with component n-grams that just happened not ap-
pearing in the training samples. For our scenario, this creates a risk of arbitrarily
discarding some portion of the unexplored search space. Thus, we need a more
suitable estimator that takes previously unseen patterns into consideration.

A simple solution to this problem is to smooth the distribution with some
pseudocount κ:

Pκ(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi) + κ∑

v∈V (C(wi−n+1 · · ·wi−1v) + κ)

where κ is usually set to a value smaller than 1. In this work, we use this
simple method to allocate probability mass for unobserved events, though more
sophisticated estimators are possible for this task.

3 An EDA Framework with n-gram Models

This section describes the basic approach that uses n-gram models in the EDA
framework for sequencing and scheduling problems. To briefly recap the opera-
tions performed by an EDA: At each iteration, we start with a set of promis-
ing solutions, then the algorithm constructs a probabilistic model based on the
statistics gathered from those solutions. Once a model is learned, a number of
new solutions will be generated by sampling the model to replace solutions in
the current population according to some replacement strategy.

Evolving Mixtures of n-gram Models 315

Table 1. Observations on solving gr48

Method Success
Rate

of Evaluations
mean std

2G 30/30 277024 34535.4
3G 9/30 224640 118490.2

2G 800 iter.−−−−→3G 30/30 240032 20753.3

In this work, instead of generating an entire solution anew, we first take an ex-
isting solution from the current population and randomly extract a subsequence
from that solution. This segment will then be taken as the first part of the new
solution and serve as the “history” on which the further sampling is based. This
kind of partial sampling technique has been used by previous researchers such
as Chuang and Chen [12] and Tsutsui et al. [8], achieving better usage of diver-
sity and resulting in significant improvement in performance. For our purpose,
this has an additional benefit of providing a convenient basis to initialize the
sampling from the n-gram models.

Once we have the first part of the new solution, we will further generate the
rest of the solution by repeatedly sampling the n-gram model, with previous
n− 1 items as the history. In order to have a valid solution, the set of possible
items V may be varied as the sampling goes on. For example, when dealing with
the TSPs, the set of possible next cities V has to be altered to exclude cities
that have already been included in the constructed partial solution.

To summarize the overall flow of the algorithm: At each iteration, we slide a
window of size n through each solution in the current population to obtain the
frequency counts of n-gram patterns. This statistics is then used for estimating
an n-gram model in the form of a conditional distribution. To generate a new
solution, we use partial sampling on an existing solution in the current popula-
tion. Each solution in the current population is visited once for such sampling.
Following each partial sampling, a replacement competition is hold between the
new solution and the solution from which that new solution’s starting segment
was extracted. Note that we use replacement as the sole means for selecting
promising solutions, i.e., better solutions are preserved under the replacement
process. This is similar to the evolution strategies [13], in which every solution in
the current population is seen as a potentially good solution because they have
survived previous replacement competitions.

As a first step, we examine the performance of using a bigram model

P2G(wi|wi−1) =
C(wi−1wi) + κ∑

v∈V (C(wi−1v) + κ)

for solving a 48-city TSP instance, gr48, taken from TSPLIB1 [14]. Let 	 denote
the problem size. In this experiment, the population size N is set to 5	, the
pseudocount is set to κ = 0.01, and the termination criterion is when either
the optimal tour is found or when the algorithm reaches 50	 iterations. We ran
the algorithm 30 times to observe the average performance. The result of the
experiment is presented in Table 1. It shows the success rate in finding the
optimal tour and the average number of objective function evaluations used by

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

316 C.-Y. Chuang and S.F. Smith

the algorithm among the successful runs. It can be seen that the bigram approach
gives a pretty decent performance. It shows a high success rate in finding the
global optimum, and a reasonable usage of function evaluations.

A tempting thought to proceed is to increase the order of the model. For
example, instead of using bigram, we could use a trigram model

P3G(wi|wi−2wi−1) =
C(wi−2wi−1wi) + κ∑

v∈V (C(wi−2wi−1v) + κ)

for learning the patterns. However, as shown in Table 1, this results in a signifi-
cant drop in success rate. Our explanation is that at early stage of a run, there
are not so many long patterns that are of good quality. If we attempt to use a
higher-order model to learn longer patterns when there are none, we will end up
encoding mediocre patterns into the model. Thus, a better way to proceed may
be to use a low-order model like bigram model at the beginning of a run and
switch to higher-order ones after longer patterns have emerged in the population.

To provide some empirical support for this conjecture, we modified the process
to begin with a bigrammodel, and then switch to the trigram after 800 iterations.
As shown in the third row of Table 1, the success rate returns to the same level as
using the bigram model and it shows some improvement on function evaluations
over the bigram approach. It seems that we can use this technique to gradually
move to higher-order models. However, choosing an appropriate schedule to make
such switches is a nontrivial task. To address this issue and avoid having to
choose a fixed switching point to elevate to a higher-order model, we propose an
approach that estimates multiple n-grammodels of different orders and combines
those models into one composite model. The method automatically calibrates the
degree of emphasis placed on each n-gram model. The detail of our formulation
is presented in the next section.

4 Combining Multiple Models with Linear Interpolation

Specifically, we formulate the synthesis of multiple models as a linear combina-
tion of distributions

P (wi|hi) =
∑
j

λjPj(wi|hi) (1)

where hi represents the history of items we have seen so far, j is the index to a
particular model, and λj is the weight associated with the j-th model such that
λj > 0 and

∑
j λj = 1. A combination of bigram and trigram model will be

P2G+3G(wi|hi) = λ2GP2G(wi|wi−1) + λ3GP3G(wi|wi−2wi−1)

Assuming that we want to combine K models together, for this formulation,
we have to determine K weights, λ1, λ2, . . . , λK , associated with those models.
To do this, we reserve a portion of the population for the task of estimating
appropriate values for those λj ’s. Suppose that there are M items in such a
holdout set for which we can give conditional probabilities. For each model Pj , we
create a probability stream pj = (pj1, pj2, . . . , pjM) where pji is the probability
of item wi predicted by the model Pj , i.e., pji = Pj(wi|hi). These K probability

Evolving Mixtures of n-gram Models 317

Algorithm 1. Estimating the Weights λj ’s
Input: A set of probability streams {p1,p2, . . . ,pK},
such that each pj = (pj1, pj2, . . . , pjM) is of length M .

Initialize Λ(0) = {λ(0)
1 , λ

(0)
2 , . . . , λ

(0)
K } s.t. each λ

(0)
j > 0 and

∑K
j=1 λ

(0)
j = 1

repeat from t = 0

For j = 1 . . .K, update λj using λ
(t+1)
j = 1

M

∑M
i=1

λ
(t)
j pji∑

K
k=1 λ

(t)
k pki

t = t+ 1
until the difference between Λ(t) and Λ(t−1) is small
return Λ(t)

streams (each of length M) are then used as the input to Algorithm 1 [15]. The
resulting λj ’s optimize the average likelihood with respect to this holdout set2.

Fig. 1. Typical variation of weights as-
sociated with P2G and P3G. This illustra-
tion is from a run on gr48 with N = 450
and 30% of the population as holdout set.

To illustrate the search behavior,
Fig. 1 shows the variation of weights
in a typical run that uses a combina-
tion of the bigram and trigram mod-
els. The weight for the bigram model
starts out with a high value and grad-
ually decreases. On the other hand, the
weight of the trigram model will begin
to dominate in later part of the search,
meaning that we do more and more sam-
pling with the trigram model. Based on
this self-adaptive behavior, which ad-
justs the weights automatically, we call
our proposal the “evolving mixture.”

To evaluate our proposal, we per-
formed a set of experiments on ten TSP instances from TSPLIB. The parameters
to the algorithms are listed in Table 2. As before we ran each algorithm 30 times
to give the average performance. The outcomes are presented in Table 3. In
each table, we listed the success rate of each algorithm and its average usage of
function evaluations among the successful runs. Note that the trailing number
in each instance’s name represents the number of cities in that instance.

The result of using evolving mixture to combine bigram and trigram is listed
in the third row of each table. Comparing to the trigram approach (second row of
the table), it gives a significantly better success rate, which is at the same level of
the bigram approach. On the other hand, when compared with bigram approach,
the evolving mixture approach uses less function evaluations on average.

5 Incorporating Other Heuristics

In its formulation of Eq. (1), we did not put a restriction on the type of the
models that can be included. It does not have to be an n-gram model for the

2 For simplicity, we use maxj |λ(t)
j −λ

(t−1)
j | < 0.001 as condition to terminate Algo. 1.

318 C.-Y. Chuang and S.F. Smith

Table 2. Parameter Settings

(a) For problem size � < 70

Parameters Value
population size N = 5	
pseudocount κ = 0.01
size of holdout set R = �N

10�
max iterations 50	

(b) For problem size � >= 70

Parameters Value
population size N = 5	
pseudocount κ = 0.001
size of holdout set R = �N

10�
max iterations 80	

evolving mixture to work. The only constraint is that the model takes the form of
a (conditional) probability distribution. We can even push the envelop to include
something that just looks like a probability distribution.

For example, if we want to incorporate a distance-based heuristic for TSP into
the search mechanism, we could do so by crafting an “artificial distribution”

PDH(wi|wi−1) =
d(wi−1, wi)−10∑
v∈V d(wi−1, v)−10

where d(u, v) is the distance between city u and city v. In short, this formula
assigns a larger probability mass to a city that has shorter link to the last city
in the partial tour constructed so far.

To see the effect of incorporating such a heuristic, we performed experiments
on the same set of TSP instances as previous section. The results are presented
in the fourth rows of Table 3. It can be observed that the performance improves
significantly. Comparing to using only n-gram models, it uses far less function
evaluations, especially for larger instances, while retaining a high success rate.
For completeness, we also include the results of using solely the distance-based
heuristic for updating the population.

6 Discussion

Fig. 2. Typical variation of weights as-
sociated with P2G, P3G and PDH. This
illustration is from a run on st70 with
N = 500 and 30% of the population as
holdout set.

The previous section showcased how we
can use evolving mixture to incorporate
other heuristics and prior knowledge
about the problem into the search mech-
anism. The results also provide some
support for our intuition that different
methods or heuristics may be more suit-
able than others at different stages of
the optimization process. For example,
Fig. 2 shows the shifts of weights among
three distributions in a run for solv-
ing st70. It illustrates how the evolv-
ing mixture adjusts the emphasis on
different models and heuristics at differ-
ent stages of the process. This adjust-
ment is dynamically determined based
on the promising solutions in the holdout set. We believe that this dynamic be-
havior may lead to a more efficient search strategy for finding the global optima.

Evolving Mixtures of n-gram Models 319

Table 3. Experiment Results

(a) ulysses16

Method
Success
Rate

of Evaluations
mean std

2G 30/30 5461.3 902.4
3G 23/30 7207.0 10552.4

2G+3G 30/30 5040.0 1250.3
2G+3G+DH 30/30 4597.3 973.0

DH 30/30 17725.3 12070.3

(b) gr24

Method
Success
Rate

of Evaluations
mean std

2G 30/30 18436.0 2356.7
3G 25/30 16574.4 11117.6

2G+3G 30/30 16492.0 2325.1
2G+3G+DH 30/30 11432.0 1717.7

DH 30/30 13340.0 6265.2

(c) bay29

Method
Success
Rate

of Evaluations
mean std

2G 30/30 36332.0 3914.3
3G 22/30 40336.4 43365.6

2G+3G 30/30 31218.5 3409.1
2G+3G+DH 29/30 22785.0 3251.0

DH 19/30 107063.4 44051.6

(d) att48

Method
Success
Rate

of Evaluations
mean std

2G 27/30 298053.3 54469.6
3G 10/30 196176.0 127370.7

2G+3G 26/30 215021.5 18175.5
2G+3G+DH 30/30 111544.0 10272.6

DH 28/30 265637.1 90849.8

(e) gr48

Method Success
Rate

of Evaluations
mean std

2G 30/30 277024.0 34535.4
3G 9/30 224640.0 118490.2

2G+3G 30/30 230048.0 23985.8
2G+3G+DH 30/30 154984.0 20243.5

DH 0/30 N/A N/A

(f) eil51

Method
Success
Rate

of Evaluations
mean std

2G 19/30 493572.6 73781.0
3G 2/30 199665.0 39308.1

2G+3G 21/30 391182.1 90013.1
2G+3G+DH 29/30 217031.4 52819.1

DH 8/30 448513.1 157609.4

(g) berlin52

Method
Success
Rate

of Evaluations
mean std

2G 29/30 264276.6 74339.8
3G 9/30 320348.9 237082.3

2G+3G 29/30 217171.7 26798.3
2G+3G+DH 30/30 113906.0 9854.6

DH 30/30 180882.0 77478.7

(h) st70

Method
Success
Rate

of Evaluations
mean std

2G 30/30 1426938.3 201534.3
3G 12/30 554983.3 69040.0

2G+3G 29/30 930444.8 76827.8
2G+3G+DH 30/30 298841.7 16886.3

DH 0/30 N/A N/A

(i) kroA100

Method Success
Rate

of Evaluations
mean std

2G 30/30 3484900.0 208750.7
3G 7/30 2068357.1 233884.2

2G+3G 30/30 2773483.3 107248.1
2G+3G+DH 30/30 650783.3 46476.1

DH 0/30 N/A N/A

(j) lin105

Method Success
Rate

of Evaluations
mean std

2G 30/30 3772142.5 230364.5
3G 3/30 1984325.0 154667.8

2G+3G 28/30 2844131.3 119353.2
2G+3G+DH 30/30 572197.5 19629.8

DH 0/30 N/A N/A

320 C.-Y. Chuang and S.F. Smith

Table 4. Performance Comparison

(a) Solving gr48

Method N
Success
Rate

of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 2/10 287852 6706
eER 120 0/10 N/A N/A
eER 960 5/10 166286 4932
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 10/10 144032 29115
2G+3G 120 10/10 131724 16748

2G+3G+DH 120 10/10 83508 17105

(b) Solving pr76

Method N
Success
Rate

of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 0/10 N/A N/A
eER 120 0/10 N/A N/A
eER 960 3/10 394887 22321
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 9/10 457147 65821
2G+3G 120 10/10 405660 54893

2G+3G+DH 120 10/10 195960 28123

Readers who are familiar with the Ant Colony Optimization (ACO) [16] might
relate ACO to our approach in the aspect that they both use some distance-based
heuristics to provide partial guidance for the search process. However, the cru-
cial difference between the two is that ACO holds the heuristic term constant
throughout a run with a user-specified parameter. On the other hand, our pro-
posal dynamically adjusts the weights associated with the incorporated models
and heuristics as the search proceeds. As mentioned previously, we think this
dynamic adjustment may be more efficient than the static combination. Further-
more, it also simplifies some of the manual tuning associated with incorporating
multiple models and heuristics.

7 Summary and Future Works

In this work, we have experimented with a set of EDAs that use probabilistic
models estimated from n-gram statistics. To provide a smooth transition from
lower-order model to higher-order ones, we proposed using a method that com-
bines multiple models in the form of a linear combination. The weights associated
with those models are estimated automatically from a reserved portion of the
population. An additional advantage of this approach is that it also provides a
convenient way to incorporate other heuristics and prior knowledge about the
problem into the search mechanism.

As future work, we would like to compare our proposal to other approaches
that also deal with sequencing problems. To provide some initial comparison,
we adopt some experiment results from Tsutsui et al.’s work [8] which lists the
performance of their method, EHBSA-WT3, along with three other classical EA
approaches, OX [17], eER [18] and PMX [19], on two TSP instances taken from
TSPLIB. Note that EHBSA-WT gave the bset empirical performance on TSPs
in the review by Ceberio et al. [11]. To compare our proposals with those ap-
proaches, we adopted their settings for running our algorithms. Table 4 shows
the results of our methods along with the data taken from [8]. Note that in these
experiments, we followed their setting which only performs ten runs per algo-
rithm. For statistical significance, this might not be enough. So, the comparison
should be taken merely as suggestive. However, the margin between our proposal
and other methods seems to be quite prominent. Thus, we believe our proposal
offers a promising direction for further investigation and development.
3 A variant of EHBSA. More specifically, we adopt the results of configuration EHBSA-
WT2, which is more similar to our proposal in the way of doing partial sampling.

Evolving Mixtures of n-gram Models 321

References
1. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation. Kluwer Academic Publishers (2001)
2. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable optimization via probabilistic mod-

eling: From algorithms to applications. Springer (2006)
3. Mendiburu, A., Miguel-Alonso, J., Lozano, J.A., Ostra, M., Ubide, C.: Parallel

EDAs to create multivariate calibration models for quantitative chemical applica-
tions. Journal of Parallel and Distributed Computing 66(8), 1002–1013 (2006)

4. Chen, C.H., Chen, Y.P.: Real-coded ECGA for economic dispatch. In: Proceedings
of the 9th GECCO, pp. 1920–1927. ACM (2007)

5. Ducheyne, E.I., De Baets, B., De Wulf, R.: Probabilistic models for linkage learning
in forest management. In: Knowledge Incorporation in Evolutionary Computation,
pp. 177–194. Springer (2005)

6. Robles, V., deMiguel, P., Larranaga, P.: Solving the traveling salesman problemwith
EDAs. In: Estimation of Distribution Algorithms, pp. 211–229. Springer (2002)

7. Tsutsui, S.: Probabilistic model-building genetic algorithms in permutation rep-
resentation domain using edge histogram. In: Guervós, J.J.M., Adamidis, P.A.,
Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 224–760. Springer, Heidelberg (2002)

8. Tsutsui, S., Pelikan, M., Goldberg, D.E.: Using edge histogram models to solve per-
mutation problems with probabilistic model-building genetic algorithms. Technical
Report 2003022 (2003)

9. Lozano, J.A., Mendiburu, A.: Solving job scheduling with estimation of distribution
algorithms. In: Estimation of Distribution Algorithms: A New Tool for Evolution-
ary Computation, pp. 231–242. Kluwer Academic Publishers (2002)

10. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
INFORMS Journal on Computing 6(2), 154–160 (1994)

11. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation
of distribution algorithms in permutation-based combinatorial optimization prob-
lems. Progress in Artificial Intelligence 1(1), 103–117 (2012)

12. Chuang, C.Y., Chen, Y.P.: On the effectiveness of distributions estimated by prob-
abilistic model building. In: Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pp. 391–398. ACM (2008)

13. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

14. Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA Journal on Com-
puting 3(4), 376–384 (1991)

15. Jelinek, F., Mercer, R.L.: Interpolated estimation of markov source parameters from
sparse data. In: Proceedings of the Workshop on Pattern Recognition in Practice
(1980)

16. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

17. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-
tors on the traveling salesman problem. In: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Application,
pp. 224–230. Erlbaum Associates Inc., Hillsdale (1987)

18. Starkweather, T., Mcdaniel, S., Whitley, D., Mathias, K., Whitley, C.: A compar-
ison of genetic sequencing operators. In: Proceedings of the Fourth International
Conference on Genetic Algorithms (1991)

19. Goldberg, D.E., Lingle, R.: Alleles, loci and the traveling salesman problem. In:
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pp. 154–159 (1985)

A Study on Multimemetic Estimation

of Distribution Algorithms

Rafael Nogueras and Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

ccottap@lcc.uma.es

Abstract. Multimemetic algorithms (MMAs) are memetic algorithms
in which memes (interpreted as non-genetic expressions of problem-
solving strategies) are explicitly represented and evolved alongside
genotypes. This process is commonly approached using the standard ge-
netic procedures of recombination and mutation to manipulate directly
information at the memetic level. We consider an alternative approach
based on the use of estimation of distribution algorithms to carry on this
self-adaptive memetic optimization process. We study the application of
different EDAs to this end, and provide an extensive experimental evalu-
ation. It is shown that elitism is essential to achieve top performance, and
that elitist versions of multimemetic EDAs using bivariate probabilistic
models are capable of outperforming genetic MMAs.

1 Introduction

Memetic algorithms [8, 14] can be regarded as a pragmatic integration of ideas
from population-based global search techniques and trajectory-based local search
techniques [12]. One of the central tenets in the paradigm is the notion of meme,
famously defined by Richard Dawkins as units of imitation [5]. Within this opti-
mization context, memes translate to computational problem-solving procedures.
While this definition is broad enough to encompass a wide variety of techniques,
it is typically the case that memes are assimilated to local-search procedures.
Even more so, these procedures are often fixed or pre-defined and therefore the
MA can be regarded as operating with static implicit memes. This said, the ex-
plicit management of memes is a topic that has been around for some time now,
and can be found in, e.g., multimemetic algorithms (MMAs) [9], in which each
solution carries memes indicating how self-improvement is going to be conducted.
Such memes are subject to evolution using the standard genetic procedures of
recombination and mutation, thus conforming a self-adaptive search approach.

In this work we are going to consider the use of estimation of distribution algo-
rithms (EDAs) [10,11,17] as the underlying search engine for multimemetic opti-
mization. While the use of local search procedures in combination with EDAs is a
widely-known approach to inject problem-dependent knowledge and improve the
efficiency of the optimization process –see, e.g., [16, 18, 19, 22]– the use of EDAs
for self-adaptive memetic optimization has been less explored. The contribution

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 322–331, 2014.
c© Springer International Publishing Switzerland 2014

A Study on Multimemetic EDAs 323

of this work is taking some steps in this direction, studying different approaches
for the application of EDAs to multimemetic optimization, and providing an
extensive empirical evaluation of their performance.

2 Multimemetic EDAs

As mentioned above, the core idea of MMAs is the explicit treatment of memes
within the evolutionary process. Hence, we shall firstly describe the representa-
tion of memes, before getting into the deployment of EDAs in this context.

2.1 Meme Representation and Application

Memes, conceived as non-genetic expressions of problem-solving strategies, can
be represented in many ways depending on the level of abstraction and problem
dependance considered. In this work we follow some ideas posed by Smith [20]
in the context of pseudoboolean function optimization. Therein, memes are
expressed as pattern-based rewriting rules [condition→action] as follows: let
[C → A] be a meme, where C,A ∈ Σr with Σ = {0, 1,#} and r ∈ N being some
constant. In this ternary alphabet ‘#’ represents a wildcard symbol; let g1 · · · gn
be a genotype; a meme [c1 · · · cr → a1 · · · ar] could be applied on any substring of
the genotype into which the condition fits, i.e., for which gi · · · gi+r−1 = c1 · · · cr
(for this purpose, wildcard symbols in the condition are assumed to match any
symbol in the genotype). If the meme were to be applied on position i, its ac-
tion would be to implant the action a1 · · · ar in that part of the genotype, i.e.,
letting gi · · · gi+r−1 ← a1 · · · ar (in this case, wildcard symbols in the action are
taken as don’t-change symbols, that is, keeping unchanged the corresponding
symbol in the genotype – we depart here from [20] in which wildcards in the
action represented the binary complement of the original gene). The genotype
is scanned in a randomized order to check for potential application sites of the
meme so as to avoid positional bias. If a match is found the meme is applied and
the resulting neighboring genotype is evaluated. A parameter w determining the
maximal number of meme applications per individual is used to keep the total
cost of the process under control. The best neighbor generated throughout the
precess is kept if it is better than the current genotype.

2.2 EDA Approaches

The underlying idea in the MMA model considered is to have genetic and
memetic information linked within a single individual, i.e., each individual car-
ries a genotype and a meme. Once an individual is generated, its genotype is
evaluated and the meme is subsequently applied in order to improve it. Whereas
these individuals are generated by means of evolutionary operators –such as
recombination and mutation– in standard genetic MMAs, multimemetic EDAs
approach this by probabilistic sampling of a certain distribution which is evolved
during the run. Let us focus on how this is done.

324 R. Nogueras and C. Cotta

EDAs try to learn the joint probability distribution p(x) representing the most
promising individuals at each generation. Such generations comprise a cycle of
(1) sampling p(x) to obtain a population pop, selecting the most promising
individuals pop′ from pop, and updating p(x) using pop′. Different EDAs can be
considered depending on the way they model the joint probability distribution
p(x). In this work, we have considered the following ones:

– Univariate models : variables are assumed to be independent and hence the
joint probability distribution p(x) is factorized as

p(x) =
n∏

i=1

p(xi).

The simplest such EDA is UMDA [13], in which p(xi) is estimated as

p(xi = v) =
1
k

k∑
j=1

δ(pop′ji, v),

where k = |pop′|, pop′ji is the value of the i-th variable of the j-th individual
in pop′, and δ(·, ·) is Kronecker delta (δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise). A generalization of UMDA is PBIL [2], an algorithm in which
the probabilistic model is updated using a linear combination of its current
value and the new value learnt from the sample, i.e.,

p′(xi = v) = (1 − η)p(xi = v) + η
1
k

k∑
j=1

δ(pop′ji, v)

for some learning rate parameter η (0 < η � 1). Note that PBIL reduces to
UMDA for η = 1.

– Bivariate models : these models can capture low order dependencies by as-
suming relations between pairs of variables. More precisely, in the models
considered here p(x) is factorized as

p(x) = p(xi1)
n∏

j=2

p(xij |xia(j)
),

where i1 · · · in is a permutation of the indices 1 · · ·n, and a(j) < j is the
permutation index of the variable which xij depends on. The particular
EDAs considered within this class are based on MIMIC [3] and COMIT [1].
In the first case, we assume a(j) = j − 1 (i.e., each variable depends on the
previous one in the permutation) and the permutation is built by picking i1
as the variable with the lowest entropy H(Xk) in the selected sample pop′,
and then picking ij (j > 1) as the variable (among those not yet selected)
that minimizes the conditional entropy H(Xk|Xij−1). Along this line, we
build a COMIT-based approach by not restricting a(j) = j− 1, thus picking

A Study on Multimemetic EDAs 325

ij as the variable that minimizes H(Xk|Xis , s < j). Thus, while in the first
case we have a linear dependence structure, in this second case we have a
tree dependence structure. Note finally that in these bivariate multimemetic
EDAs we compute separate models for both genotypes and memes.

In all cases, the probability estimation for model updating includes Laplace cor-
rection [4] in order to prevent premature convergence, always allowing a non-zero
rate of exploration. Furthermore, we also consider for each of the EDAs presented
an elitist counterpart1, in which the new population is created by truncation se-
lection from the union of of the selected sample in the previous step and the
sample extracted from the current model. As shown by [7], Laplace-corrected
elitist EDAs can converge to a population containing the global optimum.

3 Experimental Analysis

In order to analyze the performance of the multimemetic EDAs described in
previous section we have considered a collection of pseudoboolean optimization
problems. These are described in Sect. 3.1; subsequently we shall analyze the
results in Sect. 3.2.

3.1 Benchmark and Settings

The test suite comprises four different problems defined on binary strings, namely
Deb’s trap function [6], Watson et al.’s hierarchically consistent test problems
(HIFF and HXOR) [21] and Boolean satisfiability. These are described below.

Deb’s 4-bit fully deceptive function (TRAP henceforth) is defined as

ftrap(b1 · · · b4) =
{
0.6− 0.2 · u(b1 · · · b4) if u(b1 · · · b4) < 4
1 if u(b1 · · · b4) = 4

(1)

where u(s1 · · · si) =
∑

j sj is the unitation (number of 1s in a binary string)
function. This function is used as the basic block to build a higher-order problem
by concatenating k such blocks, and defining the fitness of a 4k-bit string as
the sum of the fitness contribution of each block. In our experiments we have
considered k = 32 subproblems (i.e., 128-bit strings, opt = 32).

As to the hierarchically consistent test problems, they are recursive epistatic
functions defined for binary strings of 2k bits by means of two auxiliary functions
f : {0, 1,×} → {0, 1} (used to score the contribution of building blocks), and
t : {0, 1,×} → {0, 1, •} (used to capture the interaction of building blocks),
where ‘•’ is used as a null value. In the case of the Hierarchical if-and-only-if
(HIFF) function f and t are defined as:

1 Note that the original definition of COMIT was already intrinsically elitist. Here we
consider both an elitist and a non-elitist version of this approach.

326 R. Nogueras and C. Cotta

f(a, b) =

{
1 a = b �= •
0 otherwise

t(a, b) =

{
a a = b

• otherwise
We use these two functions as follows:

HIFFk(b1 · · · bn) =
n/2∑
i=1

f(b2i−1, b2i) + 2 · HIFFk−1(b′1, · · · , b′n/2) (2)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1. The Hierarchical XOR (HXOR) works
similarly but changing f so as to provide a fitness contribution of 1 when a = 1
and b = 0 or vice versa, and having in that case t(a, b) = a (and t(a, b) = ×
otherwise). We have considered k = 7 (i.e., 128-bit strings, opt = 576)

Finally, the Boolean satisfiability problem is a classical NP-complete problem
which amounts to finding a truth assignment to n variables such that a certain
Boolean formula Φ is satisfied. We consider this formula is expressed in conjunc-
tive normal form with n = 128 variables and k = 3 variables per clause; this
problem is known to have an easy-hard-easy phase transition when varying the
ratio m/n. The difficulty peak is located around m = 4.3n. We use a problem
generator approach in this case, generating a different satisfiable instance with
this critical clauses/variable ratio (opt = m = 550) in each run of the MMA.

We consider multimemetic EDAs as described in Sect. 2, with a population
size of μ = 128 individuals. Selection is done by truncation, keeping the best
50% individuals to update the probabilistic model, and a learning rate η = 0.1 is
used in PBIL. The memes are expressed as rules of length r = 3 and we consider
w = 1 (one rewriting is done and kept if the solution is improved). In all cases
the cost of applying a meme is accounted as a fractional evaluation (i.e., as the
fraction of the fitness function that needs being recomputed due to genotypic
changes) and added to the total number of evaluations. A run is terminated upon
reaching 50,000 evaluations, and 20 runs are performed for each problem and
algorithm. To gauge the results, we also include in the experimentation an equiv-
alent evolutionary MMA –termed sMMA henceforth– using the same population
size (μ = 128) and a generational reproductive plan with binary tournament for
parent selection, one-point crossover (pX = 1.0), bit-flip mutation (pM = 1/	,
where 	 = 128 is the number of bits), local-search (conducted using the meme
linked to the individual) and replacement of the worst parent (an inherently eli-
tist strategy, following the model presented in [15] – previous experiments with a
non-elitist sMMA yielded globally inferior results, and so did a MA using a fixed
bit-flip meme). In this sMMA, offspring inherit the meme of the best parent,
which is then subject to mutation with probability pM .

3.2 Experimental Results

Full numerical results are provided in Table 1. Firstly, notice that elitist versions
of multimemetic EDAs (denoted by a subscript e) perform in general much better
than their non-elitist counterparts. Furthermore, while the latter are in most
cases inferior to the sMMA, elitist multimemetic EDAs provide top performance

A Study on Multimemetic EDAs 327

Table 1. Results (20 runs) of the different MMAs on TRAP, HIFF, HXOR and SAT.
The median (x̃), mean (x̄) and standard error of the mean (σx̄) are shown.

TRAP HIFF HXOR SAT
x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

sMMA 31.4 30.0 ± 0.5 408.0 427.6 ± 13.9 360.0 360.2 ± 4.4 547.0 546.6 ± 0.4
UMDA 20.0 20.5 ± 0.2 363.0 385.9 ± 19.5 320.5 324.6 ± 5.2 548.0 548.0 ± 0.3
UMDAe 23.9 25.2 ± 0.8 576.0 517.5 ± 16.9 348.0 341.6 ± 6.9 548.0 548.3 ± 0.2
PBIL 19.2 19.2 ± 0.0 276.5 275.1 ± 3.4 270.5 271.0 ± 2.4 543.0 543.8 ± 0.5
PBILe 24.6 25.7 ± 0.7 441.5 441.7 ± 12.1 259.0 258.6 ± 2.2 548.5 548.3 ± 0.3
MIMIC 20.3 20.2 ± 0.1 328.5 330.3 ± 5.0 310.0 312.9 ± 2.5 546.0 545.7 ± 0.4
MIMICe 31.6 31.3 ± 0.2 472.0 493.6 ± 16.3 393.5 397.6 ± 4.7 548.0 548.2 ± 0.2
COMIT 21.0 21.0 ± 0.2 337.5 342.9 ± 5.9 330.0 328.1 ± 3.7 548.0 548.0 ± 0.2
COMITe 32.0 32.0 ± 0.0 424.0 443.8 ± 12.2 408.0 419.4 ± 7.8 548.0 548.0 ± 0.3

Table 2. Statistical comparison among the different multimemetic EDAs using
Wilcoxon ranksum (α = 0.05). For each problem/EDA three symbols are provided,
respectively indicating how the algorithm compares with its (non-)elitist counterpart,
with sMMA, and with the algorithm with the highest median for the corresponding
problem (which is marked with a star � in this third position). A white/black circle
(◦/•) indicates the algorithm labeled in the column has a worse/better median with
statistical significance. A ‘=’ sign indicates no statistically-significant difference.

UMDA UMDAe PBIL PBILe MIMIC MIMICe COMIT COMITe

TRAP ◦◦◦ •◦◦ ◦◦◦ •◦◦ ◦◦◦ •=◦ ◦◦◦ ••�
HIFF ◦◦◦ ••� ◦◦◦ •=◦ ◦◦◦ ••= ◦◦◦ •=◦
HXOR ◦◦◦ •◦◦ •◦◦ ◦◦◦ ◦◦◦ ••◦ ◦◦◦ ••�
SAT =•= =•= ◦◦◦ ••� ◦=◦ ••= =•= =•=

in all problems, and are also globally superior to non-memetic EDAs (results not
shown). This is further investigated in Table 2. As it can be seen, the superiority
of elitist algorithms over non-elitist ones is statistically significant in all cases,
except in PBIL for HXOR and UMDA and COMIT for SAT. Moreover, the
superiority of elitist algorithms over sMMA (mid-symbol in each entry of Table
2) is also statistically significant in most cases. Among the different elitist EDAs,
COMITe seems to provide the best overall results, being the top algorithm in
TRAP (see Fig. 1 for an illustration of fitness evolution on this problem) and
HXOR, and being indistinguishable from PBILe in SAT. It is interesting to
notice the good performance of UMDAe on this problem. This can be due to
the fact that the optimal solution in this case is a homogeneous string (all 0s or
all 1s), a structure which is easily captured by memes; as soon as the simpler
nature of UMDA’s probabilistic model directs the search towards a state with
predominance of either symbol, the memes can facilitate reaching the optimum.
This hypothesis is supported by the comparatively worse results of univariate
algorithms on the HXOR problem, in which the optimal solution contains a 50%-
50% mixture of 1s and 0s, placed in precise locations (so as to make any half of
the solution be maximally dissimilar from the other half).

328 R. Nogueras and C. Cotta

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

12

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

UMDA
PBIL
MIMIC
COMIT
sMMA

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

12

14

16

18

20

22

24

26

28

30

32

evaluations

be
st

 fi
tn

es
s

UMDA
e

PBIL
e

MIMIC
e

COMIT
e

sMMA

Fig. 1. Evolution of best fitness in TRAP for non-elitist multimemetic EDAs (left) and
elitist ones (right). The results of sMMA are included in both figures.

Table 3. Results (20 runs) of the different MMAs on TRAP, HIFF, HXOR and SAT,
without Laplace correction in meme probability estimation. The median (x̃), mean (x̄)
and standard error of the mean (σx̄) are shown.

TRAP HIFF HXOR SAT
x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

UMDA∗
e 23.8 25.2 ± 0.8 576.0 516.9 ± 17.3 342.0 342.8 ± 7.6 549.0 548.4 ± 0.3

PBIL∗
e 24.7 25.7 ± 0.7 443.0 451.5 ± 15.9 262.5 259.9 ± 2.2 549.0 548.6 ± 0.3

MIMIC∗
e 32.0 31.7 ± 0.2 464.0 473.6 ± 12.6 412.0 417.0 ± 5.3 548.5 548.5 ± 0.2

COMIT∗
e 32.0 32.0 ± 0.0 464.0 480.0 ± 13.9 416.0 427.6 ± 10.0 548.0 548.4 ± 0.3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

evaluations

en
tr

op
y

UMDA
e

PBIL
e

MIMIC
e

COMIT
e

sMMA

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

evaluations

en
tr

op
y

UMDA
e
*

PBIL
e
*

MIMIC
e
*

COMIT
e
*

sMMA

Fig. 2. Evolution of meme diversity in TRAP for multimemetic EDAs using Laplace
correction in the probabilistic modeling of memes (left) and without using such correc-
tion (right)

A Study on Multimemetic EDAs 329

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

im
pr

ov
em

en
t r

at
e

UMDA

e

PBIL
e

MIMIC
e

COMIT
e

sMMA

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

im
pr

ov
em

en
t r

at
e

UMDA
e
*

PBIL
e
*

MIMIC
e
*

COMIT
e
*

sMMA

Fig. 3. Evolution of meme success (percentage of meme applications that result in
an improvement) in TRAP for multimemetic EDAs using Laplace correction in the
probabilistic modeling of memes (left) and without using such correction (right)

Let us now turn our attention to the effect that the utilization of Laplace
correction has on the algorithms. While its use is fundamental within the geno-
typic model (experiments without this correction indicate quick convergence of
the probabilistic model to suboptimal states within a few dozens generations),
its use at the memetic level seems more questionable. As it can be seen in Fig. 2
(left), the entropy of memes generated remains very high in all EDAs, unlike the
sMMA which stabilizes at a low entropy level. This indicates that the EDAs are
facing difficulties to focus the search of adequate memes, either by the limita-
tions of the underlying probabilistic model or by the exploratory disturbance of
the Laplace correction. We have therefore performed experiments with the elitist
EDAs deactivating this correction in meme modeling. Not surprisingly, this has a
larger influence in the bivariate models, which are now capable to converging to
particular states, than in univariate models, which remain incapable of grasping
the structure of memes in many cases – see Fig. 2 (right). This also has in general
a positive influence in performance as shown in Table 3. While the univariate
models perform slightly better, the difference is not statistically significant. In
the case of the bivariate models, there is a statistically significant difference in
favor of MIMIC∗

e (the superscript * denoting deactivation of Laplace correction)
for TRAP and HXOR, and in favor of COMIT∗

e for HIFF. It is interesting to
notice how meme success (the percentage of meme applications that result in an
improvement) is higher in these variants – see Fig. 3 – supporting the hypothesis
that the search is more focused in this case.

4 Conclusions

We have studied the use of EDAs in a multimemetic context. They appear to be a
promising approach to this kind of self-adaptivememetic optimization due to their

330 R. Nogueras and C. Cotta

well-known advantages, namely their requiring less parameterization effort than
their genetic counterparts and their amenability to model combinatorial struc-
tures such as memes. Indeed, the experimentation with multimemetic EDAs has
provided encouraging results: when endowed with elitism, multimemetic EDAs
are markedly superior to a MMA manipulating genes and memes using genetic
operators. We have also observed that the memetic search is more focused when
no Laplace correction is used in meme modeling. Of course, this may need fur-
ther investigation in other contexts in which memes are represented in a different
way (and indeed in the general context of EDA optimization, since the use of this
technique is not widespread). This is not the only line for future research: on one
hand, the use of more complex probabilistic graphical models such as Bayesian
networks is an appealing option. As a matter of fact, it may be conceivable that
the structure used to model the probability distribution over the memetic space be
different than its genotypic counterpart. This could pave the way to a fully decou-
pled evolutionary model in which genotypes and memes evolve in different popu-
lations, subject to separate selection processes, and interacting via some strategy
for genotype-meme pairing and application, in the line of coevolutionarymemetic
algorithms [20].

Acknowledgements. This work is partially supported by MICINN project
ANYSELF (TIN2011-28627-C04-01), by Junta de Andalućıa project DNEME-
SIS (P10-TIC-6083) and by Universidad de Málaga, Campus de Excelencia In-
ternacional Andalućıa Tech.

References

1. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimiza-
tion: Learning the structure of the search space. In: 14th International Conference
on Machine Learning, pp. 30–38. Morgan Kaufmann (1997)

2. Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Tech. Rep. CMU-CS-
95-19, Carnegie Mellon University, Pittsburgh, PA, USA (1994)

3. Bonet, J.S.D., Isbell, C.L., Jr., Viola, P.: Mimic: Finding optima by estimating
probability densities. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in
Neural Information Processing Systems. vol. 9, pp. 424–430. The MIT Press (1996)

4. Cestnik, B.: Estimating probabilities: A crucial task in machine learning. In: Aiello,
L. (ed.) 9th European Conference on Artificial Intelligence, Pitman, Stockholm,
Sweden, pp. 147–149 (1990)

5. Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)
6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.

(ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan
Kaufmann, Vail (1993)

7. González, C., Lozano, J., Larrañaga, P.: Mathematical modeling of discrete estima-
tion of distribution algorithms. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation
of Distribution Algorithms, Genetic Algorithms and Evolutionary Computation,
vol. 2, pp. 147–163. Springer, US (2002)

A Study on Multimemetic EDAs 331

8. Hart, W., Krasnogor, N., Smith, J.: Memetic Evolutionary Algorithms. In: Hart,
W.E., Smith, J.E., Krasnogor, N. (eds.) Recent Advances in Memetic Algorithms.
STUDFUZZ, vol. 166, pp. 3–27. Springer, Berlin (2005)

9. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G.,
Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439,
pp. 769–778. Springer, Heidelberg (2002)

10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. Genetic Al-
gorithms and Evolutionary Computation, vol. 2. Springer, US (2002)

11. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary
Computation. STUDFUZZ, vol. 192. Springer, Heidelberg (2006)

12. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts: Towards Memetic Algorithms. Tech. Rep. Caltech Concurrent Computation
Program, Report. 826, California Institute of Technology, Pasadena, California,
USA (1989)

13. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distribu-
tions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel,
H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

14. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. SCI, vol. 379.
Springer, Heidelberg (2012)

15. Nogueras, R., Cotta, C.: Analyzing meme propagation in multimemetic algorithms:
Initial investigations. In: 2013 Federated Conference on Computer Science and
Information Systems, pp. 1013–1019. IEEE Press, Cracow (2013)

16. Pelikan, M., Goldberg, D.: Hierarchical BOA solves ising spin glasses and
MAXSAT. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2724, pp.
1271–1282. Springer, Heidelberg (2003)

17. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable Optimization via Probabilistic
Modeling. SCI, vol. 33. Springer, Heidelberg (2006)

18. Radetic, E., Pelikan, M., Goldberg, D.E.: Effects of a deterministic hill climber on
hBOA. In: 2009 Genetic and Evolutionary Computation Conference, pp. 437–444.
ACM, New York (2009)

19. Robles, V., Miguel, P., Larrañaga, P.: Solving the traveling salesman problem with
EDAs. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algo-
rithms, Genetic Algorithms and Evolutionary Computation, vol. 2, pp. 211–229.
Springer, US (2002)

20. Smith, J.E.: Self-adaptative and coevolving memetic algorithms. In: Neri, F., Cotta,
C., Moscato, P. (eds.) Handbook of Memetic Algorithms. SCI, vol. 379, pp. 167–188.
Springer, Heidelberg (2012)

21. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic
algorithms: Summary and additional results. In: 1999 IEEE Congress on Evolu-
tionary Computation, pp. 292–297. IEEE Press, Washington D.C. (1999)

22. Zhang, Q., Sun, J., Tsang, E., Ford, J.: Estimation of distribution algorithm with 2-
opt local search for the quadratic assignment problem. In: Lozano, J.A., Larrañaga,
P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation.
STUDFUZZ, vol. 192, pp. 281–292. Springer, Heidelberg (2006)

Factoradic Representation

for Permutation Optimisation

Olivier Regnier-Coudert and John McCall

IDEAS Research Institute, Robert Gordon University, Aberdeen, UK
{o.regnier-coudert,j.mccall}@rgu.ac.uk

Abstract. It is known that different classes of permutation problems
are more easily solved by selecting a suitable representation. In particu-
lar, permutation representations suitable for Estimation of Distribution
algorithms (EDAs) are known to present several challenges. Therefore,
it is of interest to investigate novel representations and their proper-
ties. In this paper, we present a study of the factoradic representation
which offers new modelling insights through the use of three algorithmic
frameworks, a Genetic Algorithm (GA) and two EDAs. Four classic per-
mutation benchmark problems are used to evaluate the factoradic-based
algorithms in comparison with published work with other representa-
tions. Our experiments demonstrate that the factoradic representation
is a competitive approach to apply to permutation problems. EDAs and
more specifically, univariate EDAs show the most robust performance on
the benchmarks studied. The factoradic representation also leads to bet-
ter performance than adaptations of EDAs for continuous spaces, overall
similar performance to integer-based EDAs and occasionally matches re-
sults of specialised EDAs, justifying further study.

Keywords: Estimation of Distribution Algorithms, Factoradics, Per-
mutation.

1 Introduction

The permutation representation is widely used to model solutions to optimisation
problems. Although it is often seen as a natural way to represent solutions,
it also appears to be a challenging domain to model because of alleles being
interconnected. Recent work has highlighted this challenge for Estimation of
Distribution Algorithms (EDAs) and proposed solutions that model the space
of permutations by means of specialised distribution models [1].

A different approach to overcome challenges encountered when handling per-
mutations is to introduce alternative genotypes. In Evolutionary Algorithms
(EAs), the term genotype is often used to describe the domain searched by the
algorithms, that is the search space on which operators are applied. In order to
assess solutions, a phenotype is required. The phenotype represents the domain
in which a solution can be evaluated, or in other words, a domain that can be
read by the fitness function. Not only does using alternative genotypes allow

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 332–341, 2014.
c© Springer International Publishing Switzerland 2014

Factoradic Representation for Permutation Optimisation 333

some problems to be modelled efficiently by EAs, but it may also map a prob-
lem to a domain which is more adapted to these algorithms. Consequently, it has
been shown that using many representations within the same search procedure
may yield improved results by balancing out between the biases introduced by
each representation [2].

With respect to permutations, the random key (RK) genotype has widely been
used [3]. Yet, it is known to display some features that may inhibit the search in
some contexts [4]. There also exist in the literature mentions of an alternative
genotype for permutations based on the factorial numbering system, also re-
ferred to as factoradics [5]. Despite interesting features, the factoradic genotype
has been little studied by the EA community. The present paper proposes di-
rections to using the factoradic representation for optimisation. The paper aims
to understand whether the factoradic representation can support search in EAs
and identify the contexts in which it is more likely to do so, through the inves-
tigation of different specialised operators and algorithmic frameworks including
a Genetic Algorithm (GA), and two distinct EDAs.

2 Factoradic Representation

The factoradic system is a numbering system of dimension n, which uniquely
represents each number between 0 and n! − 1 as a string of factoradic digits.
Each position i, i ∈ [0, n− 1] can be assigned a digit taking a value between 0
and i. The base of each position increases with i and so does its place value, i.e.
the size of the factorial. Thus, the place value at position i is i!. The factoradic
a(!) can be transformed into its decimal form a(10) as follows:

a(10) =
n−1∑
i=0

a(!)i × i!, (1)

where a(!)i represents the i-th element of a(!). The potential of factoradics
goes beyond the simple numbering system as it represents a way to easily repre-
sent permutations. For example, the factoradic 422100 denotes the permutation
where the 4th, 2nd, 2nd, 1st, 0th and 0th items are drawn successively with-
out replacement from the set of items. Figure 1 illustrates how this factoradic
number represents the permutation 423105.

The factoradic representation allows representation of a permutation by a
string of integers of similar size, in which each digit is a number in [0, i]. In
addition, it introduces different weights between positions. These characteristics
of factoradics allow a straightforward application of EA and more precisely EDA
techniques in the permutation domain without losing problem properties. To
our knowledge, most of the applications of factoradics in EAs have focused on
Particle Swarm Optimisation (PSO) to turn permutations into a usable form for
the algorithms [6]. Factoradics have also proved useful in allowing restriction of
the search to sub spaces [5]. We refer the reader to the latter study for a more
detailed description of factoradics.

334 O. Regnier-Coudert and J. McCall

Fig. 1. Mapping from factoradic to permutation

We consider simple operators for the factoradic representation. We note first
that standard single-point, multi-point and uniform crossover can be applied to
factoradics without alteration. Mutation operators require more care because of
the variable limit on the ith digit. We present three mutation operators suitable
for the factoradic representation. First, the point mutation (PM) only affects
one allele of the mutated solution. However, because of the characteristics of
the factoradic representation, the position of the allele influences the amount of
disruption to the solution. Hence, PM needs to be defined in conjunction with
a mutation distance as defined in [7] for permutations. The mutation distance
d denotes the position of the gene to mutate. Note that the gene at position
zero can only take the zero value and is thus never considered during operations.
An allele is mutated by sampling randomly its value from the range [0, d]. The
second mutation defined for the factoradic domain is the multi-point mutation
(MPM), which performs a PM on all alleles at a position of similar or lower
value than the specified mutation distance. Consequently, MPM is expected to
be more disruptive than the simple PM. Finally and in order to offer an even more
disruptive operator, the random multi-point mutation (RMPM) is introduced.
RMPM selects at random d alleles to mutate, regardless of their order.

3 Factoradic Algorithms

Factoradic Genetic Algorithm. The basic concept of the GA developed for
the experiments is presented in Algorithm 1. ε denotes the size of the elitism,
while crossover and mutation rates are referred to as α and β. Starting from
an initial randomly generated population pop, the GA copies the best solutions
according to ε, select solutions par1 and par2 for recombination and performs
successively crossover and mutation with respect to α and β. Generated solutions
are added to the new population popnew until it reaches the population size, in
which case it replaces the old population before being re-evaluated.

Factoradic Univariate Estimation of Distribution Algorithm. An EDA
is based on the concept of evaluating a population of solutions and building a
model from a selected subset of this population. This model can then be used
to sample new solutions. In a univariate EDA, we construct a fully factorised

Factoradic Representation for Permutation Optimisation 335

Algorithm 1. GA

Generate and evaluate pop
for each generation g do

popnew = ∅
Add ε best solutions to popnew

repeat
Select parents par1 and par2
Generate offspring off by applying crossover to par1 and par2, with probability
α or by copying par1 with probability (1− α)
Apply mutation to off with probability β
Add off to popnew

until (|popnew| = |pop|)
pop = popnew

Evaluate pop
end for
Return pop

probabilistic model which is sampled as a set of independent marginals. Algo-
rithm 2 describes the univariate EDA used in the present study, based on the
Population-Based Incremental Learning algorithm (PBIL) [8], but applied to
the factoradic representation. First, the model M(i, j) is initialised with uni-
form probabilities. M(i, j) essentially gathers the marginal probability for each
item j to be in position i. A population pop is generated at random and evalu-
ated. At each generation g, a subset of pop, popsel is selected and the model is
updated. This is done using the relative frequency of each item j at each position
i in popsel. Note that the notation popsel(k) is used to denote the kth solution
of popsel. A model Mtemp(i, j) is first created, considering only the frequencies
obtained from the current population. This model is then used to update the
previous model M(i, j). The learning rate γ defines how conservative the update
is. A high γ results in the model being mostly based on the current population,
while a low γ implies that the model keeps a lot of features from the previous
generation. Note that setting γ to 1 results in the algorithm to be the Univariate
Marginal Distribution Algorithm (UMDA) [9], where the model used at each
generation is only built from the information obtained from the current popula-
tion. Once updated, the model is sampled to generate the new population and
the process repeated over several generations.

Factoradic COMpetitive Mutating Agents. The COMMA framework [7]
evolves a population of agents. Each agent is assigned a solution whose fitness is
used to rank agents within the population. COMMA generates a distribution of
solutions spaced within a disruption distance of each agent’ solutions. This dis-
tribution is geometrically sampled by means of mutation operators to produce a
new solution for each agent. As illustrated in Algorithm 3 for minimisation opti-
misation, the principle of COMMA is to apply different operators to the agents
according to their rank in order to perform both exploration and exploitation of

336 O. Regnier-Coudert and J. McCall

Algorithm 2. PBIL

Initialize model M(i, j) with uniform probabilities
Generate and evaluate pop
for each generation g do

Select popsel from pop
for each index i, i < n do

for each item j, j < i do

Mtemp(i, j) =
∑|popsel|

k=0
xi

|popsel| , with
{
xi = 1, if popsel(k) = j

xi = 0, otherwise
M(i, j) = γMtemp(i, j) + (1− γ)M(i, j)

end for
end for
popnew = ∅
repeat

Sample solution from M(i, j) and add to popnew

until (|popnew| = |pop|)
pop = popnew

Evaluate pop
end for

the search space. Applying such operators allows to sample new solutions more
or less distant in the search space from the agents’ solutions. The combinations
of solutions and operators represent the model in COMMA. In the case of the
factoradic implementation, the operators defined in Section 2 are adapted be-
cause they present a notion of mutation distance. COMMA operates as follows.
For each position posj in the population pop sorted in ascending order, a muta-
tion distance dj is set such that for two agents at positions e and f , de ≤ df if
e < f . Each agent ai is initially assigned a random solution si. The population
is then sorted by fitness. At each generation, each agent mutates si using the
distance disti ∈ [1, dr] defined according to its position r in the population. Note
that if the boolean parameter fixedDistance is true, disti = dr If the mutated
solution snew has a better fitness than si , ai replaces si with snew.

4 Experiments

4.1 Test Problems

Travelling Salesman Problem. Based on a given set of k cities and a matrix
of distances dij between all pairs of cities {i, j}, the TSP aims to determine a
shortest possible route r that visits each city exactly once. The route may start
at any city, but should end where it started. Hence r is a vector of length k.
Formally and using ra to denote the a-th city in r, the TSP is expressed as:

min{(
k−1∑
a=0

dra,ra+1) + drk,r0} (2)

Factoradic Representation for Permutation Optimisation 337

Algorithm 3. COMMA (for minimisation)
Initialize pop of σ agents with random solutions, distance vector d of size σ
repeat

Sort pop by fitness in descending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in pop
if fixedDistance then

disti = dr
else

Select disti with uniform probability from [1, dr]
end if
Sample new solution snew with fitness fitnew by mutating si with distance disti

if fitnew < fiti then
Assign si = snew

end if
end for

until Stopping condition met

Permutation Flowshop Scheduling Problem. In the PFSP [10], a set of
jobs is given that need to be run on a set of machines. Each of the jobs has to
be processed on every machine exactly once and only one job can be handled
by a given machine at a given time. It is assumed that each job is processed on
the machines in a set order and that the time required to process jobs varies
between jobs and between machines. The objective of the PFSP is to minimize
the time of completion of the last submitted job on the last machine. The general
expression to calculate the time of completion cπi of a given job πi on a machine
j, given its corresponding processing time tπi,j is given in (3). The fitness of
a sequence of jobs represented as the permutation π can be derived as in (4),
where n and m respectively stand for the total number of jobs and machines.

cπi,j = max{cπi−1,j , cπi,j−1}+ tπi,j (3)

cπ = cπn,m (4)

Quadratic Assignment Problem. In QAP [11], n facilities are to be assigned
to n locations in such way that the total amount of resources being transfered
between locations is minimized. Flows fa,b between all pairs of facilities (a, b)
and distances dl(a),l(b) between all pairs of locations l(a), l(b) are known. Math-
ematically the problem can be formulated as (5).

min{
∑
a,b

fa,bdl(a),l(b)} (5)

338 O. Regnier-Coudert and J. McCall

Linear Ordering Problem. The aim of the LOP is to find a simultaneous
permutation ω of the rows and columns of a matrix D = (dij) that maximizes
the sum of the superdiagonal entries. Formally, its objective is defined as follows.

max{
n−1∑
i=1

n∑
j=i+1

dωi,ωj} (6)

4.2 Experimental Settings

Because of the wide range of EDAs for permutation problems considered, [12]
was chosen as the basis for comparison. A similar limit on fitness evaluations was
set, that is 1000n2 for each problem of size n and 10 runs were needed to compute
each result set. In order to reduce the importance given to parameter setting,
default parameter values were initially chosen and the algorithms run with every
possible combination. Default values are given in Table 1. Note that crossover
and mutation rates were respectively set to 0.9 and 0.1. Algorithm performance
was measured by best fitness found at the end of the run and by computing
the relative percentage deviation (RPD) to the known optimum, as described
in [1]. For all comparisons, statistical significance (95% confidence interval) was
measured by means of unpaired t-test, applying Bonferroni correction.

Table 1. Default parameter values

Parameter Default values Parameter Default values

pop size 50, 100, 500, 1000 tournament size 0.1, 0.25, 0.5
elitism 0, 1 selection ratio 0.1, 0.25, 0.5, 0.75

mutation PM, MPM, RMPM learning rate 0.5, 0.7, 0.9, 1
crossover 1-point, 2-point fixed distance true, false

5 Results and Discussion

Suitability of Frameworks for Factoradics. Figure 2 shows the RPD of
all methods on each problem. Over all instances, COMMA and PBIL show the
best performance, with the exception of TSP. On PFSP and QAP, COMMA and
PBIL are the most robust methods, although COMMA presents smaller standard
deviations than PBIL. LOP is the problem on which the biggest difference in
performance is observed. While COMMA shows relatively poor results, PBIL is
significantly better than the other methods. Overall, PBIL appears as a good
compromise to handle the factoradic representation across problems. It was also
observed that setting high learning rates brought enhanced results. Consequently
and as can be seen in Table 2, UMDA often outperforms PBIL.

Factoradic Representation for Permutation Optimisation 339

bays29 berlin52 fri26 dantzig42
0

0.2

0.4

0.6

0.8

1

1.2
R

P
D

Problem instance

GA
PBIL
COMMA

(a) TSP

tai20−5−0tai20−10−0tai20−5−1tai20−10−1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
P

D

Problem instance

GA
PBIL
COMMA

(b) PFSP

tai15a tai40a tai15b tai40b
0

0.05

0.1

0.15

0.2

0.25

R
P

D

Problem instance

GA
PBIL
COMMA

(c) QAP

t65b11 t75u11 be75np be75oi
0

0.05

0.1

0.15

0.2

R
P

D

Problem instance

GA
PBIL
COMMA

(d) LOP

Fig. 2. RPD of the factoradic frameworks on the four problems

Suitability of Factoradics for the Selected Problems. To evaluate the
suitability of the factoradic representation for permutation optimisation, the re-
sults of the best algorithm with the most efficient settings is compared with the
suite of methods investigated in [12] for each problem. Results are presented
in Table 2, showing the best factoradic framework and the fitness of the best
obtained solution. Table 2 also shows for each problem the EDAs that outper-
form the factoradic methods and the EDAs that match their results. Overall, the
performance obtained using factoradics is close to the one of the best integer-
based EDAs used for permutation optimisation, that is UMDA, MIMIC and
EBNABIC , described as providing good solutions. Continuous EDAs, such as
UMDAc and EGNAee, generally show poor performance on permutation prob-
lems. As one might expect of a more natural representation, the factoradic im-
plementations exhibit solutions of greater quality. Experiments from [12] showed
that specialised EDAs are the most efficient and more precisely the EDAs using
edge and node histogram models, EHBSA and NHBSA. Although the compar-
ison with these algorithms shows that factoradic methods do not always match
their results, there exist problems where performances are of the same mag-
nitude. Also note that the IDEA-ICE permutation-based EDA never exhibits
better outcome than the factoradic frameworks.

340 O. Regnier-Coudert and J. McCall

Finally, the recursive EDA (REDA) and OmeGA, a GA based on the RK
representation, are generally behind the proposed methods. Direct comparison
between the factoradic GA and OmeGA shows that the two algorithms perform
at the same level on four instances, mostly on PFSP. However, the factoradic
GA outperforms OmeGA to a significant extent on all LOP and TSP instances
and most of the QAP ones. This comparison highlights the advantage of using
factoradics over RK in a GA.

Table 2. Results from unpaired t-tests. A �symbol denotes the algorithms whose
performance is not significantly different from the best factoradic implementation on
the problem. � shows algorithms whose results outperform those of the factoradic
algorithms. Empty cells show methods that are outperformed by implementations using
the factoradic representation.

Problem Best Algo. Best Solution U
M

D
A

M
I
M

I
C

E
B
N
A

B
I
C

T
R
E
E

U
M

D
A

c

E
G
N
A

e
e

I
D
E
A
−

I
C
E

E
H
B
S
A

W
T

E
H
B
S
A

W
O

N
H
B
S
A

W
T

N
H
B
S
A

W
O

R
E
D
A

U
M

D
A

R
E
D
A

M
I
M

I
C

O
m
eG

A

TSP-bays29 PBIL 2387.4 (179.5) � � � � � � �
TSP-berlin52 PBIL 11440.7 (481.6) � � � � � � �
TSP-fri26 COMMA 982.3 (38.8) � � � � � � � � �

TSP-dantzig42 PBIL 805.3 (72.9) � � � � � � � � �
PFSP-tai20-5-0 PBIL 1291.7 (8.2) � � � � � � � � � � �
PFSP-tai20-10-0 COMMA 1630.4 (12.8) � � � � � � �
PFSP-tai20-5-1 COMMA 1364.4 (2.9) � � � � � � � � � �
PFSP-tai20-10-1 COMMA 1723.9 (9.8) � � � � � � �

QAP-tai15a COMMA 399889 (2610) � � � � � � �
QAP-tai40a PBIL 3327464 (14966) � � � � �
QAP-tai15b COMMA 52002721 (54819) � � � � � � �
QAP-tai40b UMDA 699677162 (14205322) � � � � � � � �
LOP-t65b11 UMDA 350134 (2379) � � � � � �
LOP-be75np UMDA 709328 (4182) � � � � � �
LOP-be75oi PBIL 110323 (287) � � � � � �

6 Conclusions

In this paper, we have presented the factoradic representation as a genotype for
permutations, along with frameworks that can be employed to make use of it. Ex-
periments on benchmark problems have shown that the factoradic representation
is suitable for permutation optimisation, especially when used within algorithms
such as univariate EDAs. Comparison with other studies has demonstrated that
algorithms using factoradics present matching performance with integer-based
EDAs and can compete with some specialised EDAs. Future work should fo-
cus on building a deeper understanding of the relation between factoradics and

Factoradic Representation for Permutation Optimisation 341

problem characteristics. Alternative ways to model factoradics such as tree-based
approaches could also be explored. Finally, given the promising results of PBIL,
the development of multivariate factoradic-based EDAs represents an interesting
avenue for further research.

References

1. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
IEEE Transactions on Evolutionary Computation (2013)

2. Schnier, T., Yao, X.: Using multiple representations in evolutionary algorithms.
In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp.
479–486. IEEE (2000)

3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing 6(2), 154–160 (1994)

4. Ashlock, D.: Evolutionary computation for modeling and optimization. Springer
(2006)

5. Mehdi, M.: Parallel hybrid optimization methods for permutation based problems.
PhD thesis, Université des Sciences et Technologie de Lille (2011)

6. Samarghandi, H., ElMekkawy, T.Y.: A meta-heuristic approach for solving the
no-wait flow-shop problem. International Journal of Production Research 50(24),
7313–7326 (2012)

7. Regnier-Coudert, O., McCall, J., Ayodele, M.: Geometric-based sampling for per-
mutation optimization. In: Proceeding of the 2013 Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 399–406. ACM (2013)

8. Baluja, S.: Population-based incremental learning. a method for integrating genetic
search based function optimization and competitive learning. Technical report,
Carnegie Mellon University (1994)

9. Mühlenbein, H.: The equation for response to selection and its use for prediction.
Evolutionary Computation 5(3), 303–346 (1997)

10. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flow-
shop heuristics. European Journal of Operational Research 165(2), 479–494 (2005)

11. Lawler, E.L.: The quadratic assignment problem.Management science 9(4), 586–599
(1963)

12. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation
of distribution algorithms in permutation-based combinatorial optimization prob-
lems. Progress in Artificial Intelligence 1, 103–117 (2012)

Combining Model-Based EAs
for Mixed-Integer Problems

Krzysztof L. Sadowski1, Dirk Thierens1, and Peter A.N. Bosman2

1 Utrecht University, The Netherlands
2 CWI Amsterdam, The Netherlands

Abstract. A key characteristic of Mixed-Integer (MI) problems is the presence
of both continuous and discrete problem variables. These variables can interact
in various ways, resulting in challenging optimization problems. In this paper,
we study the design of an algorithm that combines the strengths of LTGA and
iAMaLGaM: state-of-the-art model-building EAs designed for discrete and con-
tinuous search spaces, respectively. We examine and discuss issues which emerge
when trying to integrate those two algorithms into the MI setting. Our consider-
ations lead to a design of a new algorithm for solving MI problems, which we
motivate and compare with alternative approaches.

1 Introduction

Mixed-Integer (MI) optimization problems arise in many real-world application do-
mains. A key characteristic of MI problems is the presence of both continuous and
discrete problem variables. Many studies exist on dealing with either continuous or
discrete search spaces only. We are interested in studying if and how approaches origi-
nally designed for real or discrete domains only can be integrated for the mixed-integer
landscapes.

More specifically, we consider two state-of-the-art model building EAs: LTGA [7]
and iAMaLGaM [1]. Both were previously shown to exhibit excellent polynomial scale-
up behavior on various well-known black-box benchmark problems. We wish to study
if making use of the model building and learning abilities of both these algorithms can
be applied to MI problems while retaining some of the excellent scale-up behavior.
The model-building nature of these algorithms allows us to consider black-box prob-
lems where no prior information about a problem structure is known. Some research on
solving MI problems with EDAs has been discussed in [4], but was limited in terms of
possible variable dependencies.

We introduce an integrated implementation which relies on interleaving the model-
building capabilities of both EAs. Integrative dependency processing is the holy grail
of an approach using model-building algorithms to solve MI problems. It is important
to first understand the capacity and limitations of an approach that interleaves existing
individual models, as it allows us to better understand the requirements for integrative
dependency processing. A crucial aspect of designing such algorithm is determining a
way of maintaining a proper balance between structure learning and offspring creation
done by the two independent models. Obtaining such balance is a difficult task, as many

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 342–351, 2014.
c© Springer International Publishing Switzerland 2014

Combining Model-Based EAs for Mixed-Integer Problems 343

challenges arise when dealing with MI landscapes, which do not exist in only discrete
or continuous spaces. Because of the nature of MI landscapes, performing independent
learning with different models for the continuous and discrete variables can easily lead
to premature convergence when some variables are not sufficiently explored, or to over-
exploration when too much focus is given to some variables. How difficult is it to achieve
a proper evaluation balance and adequate scalability as the problem size increases? Is it
even possible to solve dependent problems where continuous variables interact with the
discrete ones, while using integrated but independently learning models?

In order to answer these and other questions, we design and study mixed-integer
landscapes with different levels of variable interactions: no interactions, binary and/or
continuous interactions only, and interactions between both types of variables. We iden-
tify various problematic issues, and design methodologies to counteract those issues.
We also examine the performance of the existing Mixed-Integer Evolution Strategy
(MIES) [3] [5] on our benchmark set.

2 Background

Our approach to solving Mixed-Integer problems focuses on bringing together two
model-building algorithms, LTGA and iAMaLGaM, and carefully integrating them.

2.1 LTGA

The Linkage Tree Genetic Algorithm (LTGA) is a state-of-the-art model building GA
designed for solving discrete problems [7] [8]. It makes use of a hierarchical clus-
tering algorithm in each generation in order to learn variable dependencies, which are
represented via a linkage tree. In this model, each node of the linkage tree is a subset
between one and ld − 1 problem variables which form an important building block for
the solution.

During each generation, LTGA iterates over all solutions in the population in an
attempt to improve them: For each solution the linkage tree is traversed and each subset
of the tree is used as a crossover mask between a donor and the parent solution. A
donor is selected randomly from the population for each subset mask. In other words,
the values of variables clustered together at a given node of the linkage tree are copied
from a donor onto the parent solution. A result of each such crossover is immediately
evaluated. If the resulting offspring solution is better or equal than its parent, it instantly
replaces the parent. Otherwise, the offspring is discarded. This process is repeated until
all the linkage tree nodes are processed. This algorithm has been shown to work very
efficiently for various discrete problems [8].

2.2 iAMaLGaM

Incremental Adapted Maximum-Likelihood Gaussian Model Iterated Density Estima-
tion Evolutionary Algorithm (iAMaLGaM) is a state-of-the-art EDA for real-valued
black-box optimization (BBO) [1]. Following the general EDA paradigm, iAMaLGaM
estimates a probability distribution every generation from the selected solutions and

344 K.L. Sadowski, D. Thierens, and P.A.N. Bosman

generates new solutions by sampling the estimated distribution. The probability distri-
bution used in iAMaLGaM is the Gaussian distribution. The mean vector and covari-
ance matrix are estimated incrementally using memory decay on maximum-likelihood
estimates. Risk of premature convergence is counteracted by a mechanism which scales
up the co-variance matrix when needed. Finally, Anticipated Mean Shift procedure is
implemented to improve the algorithm behavior in slope-like regions of the search
space. All these factors contribute to iAMaLGaM achieving very good scale-up and
rotation-invariant behavior on many well known BBO benchmarks [2].

3 Integrated Algorithm

A solution to a mixed problem with a total problem length l = ld + lc, where ld and lc
are the number of discrete and continuous variables respectively, is of the form:

X = XdXc = d0...dld−1 c0...clc−1

where di ∈ {0, 1}, ci ∈ R and Xd, Xc are the sets of all discrete and continuous
variables, respectively.

Our integrated algorithm builds models over the two subspaces independently. Mod-
els can be build and exploited in various ways. A balance between the rates at which
this happens is likely to play an important role in the convergence properties of the al-
gorithm. The models in question have some common properties, which we can use as a
backbone for integration. Both models attempt to improve and generate new offspring
for each solution in the population during one generation, and learn a new model at the
beginning of a next generation. However, after a new model is generated, iAMaLGaM
creates the new continuous solutions by sampling from the new model. Once all the
offspring solutions are created, the generation ends. This means that for a population of
size n, iAMaLGaM performs n function evaluations within one generation.This differs
from the generational procedure of LTGA. The linkage tree contains 2ld−1 nodes. Fol-
lowing the variation procedure of LTGA, a solution may need to be evaluated 2ld − 1
times, giving the upper bound of n ∗ (2ld − 1) evaluations overall during one entire
generation. A straightforward approach of directly merging these models by keeping
their generations synchronized might not work well, as depending on the ratio of dis-
crete to continuous variables in a MI setting, one model could dominate the other by
exploring some areas of the problem too heavily, while leaving other regions potentially
not explored enough. This could lead to premature convergence or unnecessary over-
exploration of the search space. To address this potential imbalance, we introduce the
integrated EA in Figure 1. In this algorithm, the generational progress of the different
models is not the same, and takes into account the proportions between the number of
discrete and continuous problem variables. The continuous model is re-learned after
every solution in the population has been sampled. The discrete model however is only
re-learned after all of the 2ld − 1 nodes of the linkage tree have been processed for all
solutions. This balances the discrete and continuous evaluations much better regardless
of the ratio between those types of variables.

The algorithm generates the initial population randomly. Each solutionPi in the pop-
ulation consists of a continuous componentPic as well as a discrete componentPid . Xi

Combining Model-Based EAs for Mixed-Integer Problems 345

is the offspring solution. The core of the algorithm has two nested loops, which iterate
over each linkage tree subset, and additionally iterate over every solution for each of
the subsets. The continuous model is learned after a given subset was applied to each
solution. The discrete model, however, is learned only after all the subsets have been
tried on all solutions. This process continues until a termination condition is reached.
New solution acceptance criteria also differ. The continuous model is learned from the
top τ = 0.35 fraction of the population, following iAMaLGaM. When continuous vari-
ables are sampled, they are always accepted without any other restrictions. The discrete
model is built from the entire population. To generate selection pressure, when a mask
is applied, the resulting solution is only accepted if it improves, or is equal to the solu-
tion following LTGA.

Mixed-Integer Hybrid EA

for i ∈ {0, 1, . . . , n− 1} do

Pi ← CREATERANDOMSOLUTION()
EVALUATEFITNESS(Pi)

while ¬TERMINATIONCRITERIONSATISFIED do

LEARNDISCRETEMODEL(P)
for i ∈ {0, 1, . . . , 2ld − 1} do

S ← TRUNCATIONSELECTION(P , τ)
LEARNCONTINUOUSMODEL(S)
for j ∈ {0, 1, . . . , n− 1} do

Xi ← GENERATECONTINUOUSPART(Pi)
Xi ← GENERATEDISCRETEPART(j,Xi,P)

P ← X

GENERATECONTINUOUSPART(Pi)
Xc ← SAMPLECONTINUOUSMODEL()
X ← Xc ∪ Pid

EVALUATEFITNESS(X)
return X

GENERATEDISCRETEPART(j,Xi,P)
Xprev ← Xi

donor ← GETRANDOMSOL(P)
Xd ← COPYSUBSET (j, donor,Xi)
X ← Xic ∪ Xd

EVALUATEFITNESS(X)
if fitness(X) ≥ fitness(Xprev) then

return X
else

return Xprev

Fig. 1. Pseudo-code for generating solutions for mixed integer problems with the integrated ver-
sion of the LTGA and iAMaLGaM Learning Models

4 Experimental Results

4.1 Benchmark Problems

To design the MI benchmarks we use some well-established benchmark problems and
adapt them into the MI setting. In all problems, minimization is assumed. Definitions
of the well-established benchmark functions can be found in Table 1. Note that due to
minimization, zero is the optimal value for all our functions.

The Sphere function is a very simple continuous function, where all variables are
completely independent. Rotated Ellipsoid is a stretched version of the Sphere func-
tion. The R matrix rotates all variables by 45 degrees, creating dependencies between
all continuous variables. In the discrete domain, Onemax is arguably the simplest dis-
crete function, with no parameter dependencies. A Deceptive Trap function is a depen-
dent discrete function. The DT5 function we use here is a non-overlapping, additively
decomposable composition of the well-known deceptive trap function, with order k=5.

346 K.L. Sadowski, D. Thierens, and P.A.N. Bosman

Table 1. Continuous and Discrete functions which are used to define our MI benchmarks

Function Name Domain Definition

Sphere Continuous FSphere(Xc) =
∑lc−1

i=0 c2i

Rotated Ellipsoid Continuous FR.Ellip.(Xc) = FEllip.(R ∗Xc) , where

FEllip.(Xc) =
∑lc−1

i=0 106∗i/(lc−1) ∗ c2i
Onemax Discrete FOnemax(Xd) =

∑ld−1
i=0 di

Deceptive Trap Discrete FDT5(Xd) =
∑ld/k−1

i=0 fsub
Trap−k(

∑ki+k−1
j=ki dj) ,

where

fsub
Trap−k =

{
0 : if u = k

1− (k − 1− u)/k : otherwise

Independently Mixed Benchmarks. We consider all combinations of discrete and
continuous problems where the contributions of the discrete and continuous parts are
kept independent through addition, see Table 2. Variables in F1 are fully independent.
Only continuous variables are dependent in F2. Only discrete variables are dependent
in F3. In F4 both sub-spaces are dependent.

Table 2. F1 − F4: Domain Independent MI Benchmarks

ID Function name Definition

F1 OnemaxSphere F1(Xd, Xc) = FOnemax(Xd) + FSphere(Xc)
F2 Rotated Ellipsoid F2(Xd, Xc) = FOnemax(Xd) + FR.Ellip.(Xc)
F3 DT5Sphere F3(Xd, Xc) = FDT5(Xd) + FSphere(Xc)
F4 DT5Ellipsoid F4(Xd, Xc) = FDT5(Xd) + FR.Ellip.(Xc)

Cross-Domain Dependence Benchmark. The first four of our proposed benchmark
problems keep the dependencies within either continuous, discrete or both parameter
sub-spaces. The F5 benchmark includes cross-domain dependencies between the con-
tinuous and discrete variables. It is a specific combination of the previously defined
FDT5 function with the rotated ellipsoid. It is additively decomposable and consists of
sub-functions pertaining to blocks of k discrete and k continuous variables.

More specifically, for a trap function with k = 5, there are 2k = 32 different binary
combinations per block. A differently translated rotated ellipsoid function corresponds
with each of those combinations (the origin of each function was randomly generated
in [-5,5]). This way, the continuous function which is being optimized depends on the
binary counterpart, introducing dependencies between the discrete and continuous vari-
ables that pertain to the same subset. In this benchmark the number of discrete variables
is the same as continuous variables: ld = lc = l/2.

F5(Xd, Xc) =
∑0.5l/k−1

i=0 (1+10af trap
sub (

∑ki+k−1
j=ki dj))∗(1+f sub

Ellipse(D
block
i , Cblock

i)),

where Dblock
i is a block of five discrete variables, and Cblock

i are the corresponding five
real variables. The D block variables determine which of the 2k different ellipsoid func-
tions need to optimized, while the C block provides the values of the ellipsoid function

Combining Model-Based EAs for Mixed-Integer Problems 347

variables. The a value acts as a scaling factor, changing the scale of contribution from
the trap function to the overall fitness. In order to solve this benchmark, the algorithm
needs to not only solve the trap function, but also optimize the correct rotated ellipsoid
function.

4.2 Results on Domain Independent Problems

Heat Maps. We compute the population size that corresponds to the minimal total
evaluations needed to solve a problem. The results shown are based on the population
sizes for which each problem was solved with the precision of 10−10 at least 29/30
times with least evaluations. The results were obtained via bisection.

For the heat maps and scalability analysis of F1−F4 , we consider different problem
lengths: 40, 80, 120 and 160 total variables. For each of these problem sizes, we con-
sider different proportions of variables used with 5, .25l, .5l, .75l and l − 5 continuous
variables (and l− lc corresponding discrete variables).

The heat maps in Figure 2 show how the proportions of variable types (discrete or
continuous) affects algorithmic efficiency in terms of population sizes and evaluations
required to solve the problem.

Fig. 2. Heat Maps representing the population sizes (top row) and evaluations (bottom row)
needed for different variable compositions. Horizontal axis represents the problem length, the
vertical axis is the fraction of continuous variables (lc/(lc + ld)) in the problem.

IntuitivelyF1 should be the simplest problem for the algorithm to handle, as it contains
no parameter dependencies. As the problem composition shifts towards more continuous
landscape, the algorithm requires more evaluations. The required population sizing is less
affected by the problem composition forF1 then for the remaining benchmarks. This can
be explained by the simplicity and independence of all problem variables.

The effects of changing the problem composition strengthen when partial dependen-
cies are introduced into the problem landscape. As with F1, for the remaining bench-
marks more evaluations are also required for the same problem sizes as the composition
of the problem shifts towards larger numbers of continuous variables. Moreover, as ex-
pected, benchmarks which contain dependencies within the continuous sub-space, F2
and F4, require larger number of evaluations than F1 or F3.

348 K.L. Sadowski, D. Thierens, and P.A.N. Bosman

Population sizes are also affected by the problem composition. In F3 and F4 we
observe much larger population size requirements, as the landscape of these functions
includes discrete variable dependencies.

This shows that in addition to problem length, the composition of the problem and
variable dependencies are a big factor for efficiency in terms of evaluations and popu-
lation sizes.

Scalability. Figure 3 demonstrates changes in scalability of population size and evalua-
tions over benchmarks F1−F4 when the proportions of discrete to continuous variables
is changed. Results are shown on a log-log scale. This means that polynomial scalabil-
ity is indicated by straight lines. From the scalability graphs it is clear that factors such
as variable ratios and dependencies can strongly affect the behavior of our algorithm.
As expected, the results exhibit polynomial scalability on the tested MI problems.

Fig. 3. Scalability of population size and evaluations required for benchmarks F1 − F4. Fraction
f represents the fraction of continuous variables in the problem with length l.

Table 3 shows linear least squares regressions on log-log-scaled data for minimal
average number of evaluations e and corresponding population sizes n depending on
the problem length l and error term ε as follows:

log(n) = log(lα) + ε and log(e) = log(lβ) + ε.

Table 3 shows that population sizes scale sub-linearly. It also shows that performance in
terms of evaluations scales more favorably as the problem shifts towards more discrete
variable composition.

The use of incremental estimates of iAMaLGaM is crucial in keeping small population
sizes. Maintaining evaluation balance and asynchronous model learning, as described in
the earlier section, leads to preventing over-exploration or premature convergence much
more efficiently than learning the continuous and discrete models synchronously.Graphs
(a) and (b) in Figure 4 verify these observations by showing the improved scalability on
F4 over an approach using the original AMaLGaM and with the generations of both
models advancing simultaneously.

Combining Model-Based EAs for Mixed-Integer Problems 349

Table 3. Regression coefficients for scalability

lc / ld F1 α F2 α F3 α F4 α F1 β F2 β F3 β F4 β

5 / l-5 0.3089 0.1621 0.4458 0.3840 1.1420 1.0663 1.4376 1.4132

0.25 l / 0.75 l 0.1286 0.5216 0.2815 0.3146 1.6284 1.8432 1.4017 1.4876

0.5 l / 0.5 l 0.1952 0.9152 0.3089 0.1370 1.6972 1.8940 1.5187 1.6252

0.75 l / 0.25 l 0.4218 0.4557 0.3021 0.0727 1.7456 1.9291 1.7572 1.8815

l-5 / 5 0.3307 0.3307 0.2620 0.0539 1.8381 2.0427 1.8566 1.9880

Some overhead still exists, however. By simply combining a continuous problem
with a discrete one into one population and treating it as one MI problem, evaluation
overhead is introduced into the algorithm. In graph (b) of Fig. 4, the ”Separate” label
demonstrates what happens if the discrete and continuous sub-domains are solved sep-
arately. This separate approach is more efficient because the optimal population sizes
can be chosen individually. Additionally, the fitness function is not affected by the other
sub-domain. Of course this separate approach is not possible if cross-domain dependen-
cies are present in the problem.

We also consider an alternative approach based on Evolution Strategies (ES). MIES
[5] is an ES which extends (μ + λ)-ES for continuous problems to the mixed-integer
search spaces. This approach applies a recombination operator, followed by a muta-
tion operator for every solution. Those operators are defined differently for continuous,
nominal discrete and integer problem variables. This procedure repeats until λ offspring
solutions are created. Best μ solutions from the union of the μ parent solutions and the λ
offspring are selected and carried over into the population P (t+1) [6].The MIES algo-
rithm has already been shown to work efficiently on some specific industrial problems
as well as a set of general MI benchmarks [5]. In graph (c) of Figure 4 we show the per-
formance of MIES on the F1 benchmark. While it shows good scalability on this simple
benchmark, MIES was not able to solve the remaining F2 − F4 benchmarks within our
experimental limits. We conclude that due to existing variable dependencies in F2−F4
MIES is not able to solve them efficiently, and requires additional mechanisms in order
to handle such MI problems.

Fig. 4. Importance of (a) incremental estimates and (b) evaluation balancing on F4. (c) MIES
performance on F1.

350 K.L. Sadowski, D. Thierens, and P.A.N. Bosman

4.3 Results on the Dependent Problem

Experimental results on F5 show that the hybrid algorithm we propose, which integrates
two independent models is in fact capable of solving this fully dependent benchmark,
however not without encountering another important obstacle which is unique to MI
problems, and which did not manifest itself as strongly in the other benchmarks. In this
problem, blocks of discrete variables control which continuous function needs to be
optimized with counterpart continuous variables. The discrete variables, as well as con-
tinuous variables, contribute to the overall fitness. This means that in order to find the
global optimum, the best discrete variable assignment has to be found, and the contin-
uous function mapped to this assignment must be optimized. The problem arises in the
actual numerical values of fitness contributions from either the discrete or continuous
sides. The cumulative fitness value of F5 can be very deceiving depending on the ac-
tual differences in scale of fitness contributions. In a regular, strictly discrete Deceptive
Trap function the actual fitness values are irrelevant - as long as the function remains
deceptive. This is no longer the case in a mixed-integer setting, where the total fitness
relies on the contribution from the continuous domain as well. If the trap values are
very small in comparison with the continuous variables fitness contributions it becomes
more difficult to optimize the discrete variables as they only appear as irrelevant noise
to the evaluation function. On the other hand, if the trap values are significantly larger
than ones from the continuous subspace, the problem becomes simpler. This behavior
is illustrated in Figure 5.

As shown in the definition of F5, a controls the scaling of the actual values of the trap
function. The larger a, the larger the fitness contribution of the deceptive trap values.
In essence, the larger a, the more important it is for the algorithm to solve the trap
function of F5. Figure 5 demonstrates how much impact this factor has on the success
of the algorithm. We were not able to consistently solve F5 for a values <1.1. For
these values, the trap function fitness contributions are initially very small, resulting
in the algorithm prematurely converging on sub-optimal solutions. As a increases, the
problem becomes simpler and requires smaller population sizes and less evaluations.

Fig. 5. Scalability on F5 for different values of a

5 Discussion and Conclusions

Mixed-Integer problems introduce many optimization challenges which do not arise
in purely real or discrete optimization problems. With the use of carefully designed

Combining Model-Based EAs for Mixed-Integer Problems 351

benchmarks, we were able to identify some of such challenges. Obtaining a proper
balance in exploration of model information for different types of variables, varying
variable ratios and additional overhead or fitness contribution scaling are some of the
important issues which should be taken into account when solving MI problems. We
made use of two algorithms: LTGA and iAMaLGaM, which are state-of-the-art model-
based EAs for problems in discrete and continuous spaces respectively. By extracting
key features from these algorithms and carefully integrating the two different models,
we were able to study and solve mixed integer benchmarks with varying degrees of
variable dependencies. The resulting algorithm achieved polynomial scale-up behavior
on the tested benchmarks. We showed that a well-balanced algorithm can solve even
very dependent mixed-integer problems, despite having independent model learning
methods for the discrete and continuous sub-spaces. The results provide a good founda-
tion and motivation for further work in mixed-integer landscapes with model building
EAs. The existing MI EA known as MIES was not able to solve most of our benchmark
problems.

While it is very interesting to see that an independent learning approach is capable
of solving strongly dependent MI problems, we also learned that this approach has
its limitations. Problems with dependencies between the continuous and discrete sub-
spaces can be troublesome to an approach using independent learning models. This
was shown on the F5 where for some values of a the algorithm did not succeed. This
motivates further work into fully integrating the discrete and continuous models in order
to allow learning of cross-domain dependencies, making it possible to solve a greater
range of dependent problems.

References

1. Bosman, P.A.N., Grahl, J., Thierens, D.: Enhancing the Performance of Maximum-Likelihood
Gaussian EDAs Using Anticipated Mean Shift. In: PPSN, pp. 133–143 (2008)

2. Bosman, P.A.N., Grahl, J., Thierens, D.: AMaLGaM IDEAs in noiseless black-box optimiza-
tion benchmarking. In: GECCO (Companion), pp. 2247–2254 (2009)

3. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-Integer Evolution Strategy for
Chemical Plant Optimization with Simulators. In: Parmee, I.C. (ed.) Evolutionary Design and
Manufacture, pp. 55–67. Springer, London (2000)

4. Emmerich, M.T.M., Li, R., Zhang, A., Flesch, I., Lucas, P.: Mixed-Integer Bayesian Optimiza-
tion Utilizing A-Priori Knowledge on Parameter Dependences. In: BNAIC 2008, pp. 65–72
(2008)

5. Li, R., Emmerich, M.T.M., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J., Reiber, J.H.C.:
Mixed Integer Evolution Strategies for Parameter Optimization. Evolutionary Computa-
tion 21(1), 29–64 (2013)

6. Runarsson, T., Yao, X.: Constrained evolutionary optimization. In: Evolutionary Optimization.
International Series in Operations Research and Management Science, vol. 48, pp. 87–113.
Springer, US (2002)

7. Thierens, D.: The linkage tree genetic algorithm. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 264–273. Springer, Heidelberg (2010)

8. Thierens, D., Bosman, P.A.N.: Optimal mixing evolutionary algorithms. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 617–624. ACM,
New York (2011)

A New EDA by a Gradient-Driven Density

Ignacio Segovia Domı́nguez, Arturo Hernández Aguirre, and S. Ivvan Valdez

Center for Research in Mathematics, Guanajuato, México
{ijsegoviad,artha,ivvan}@cimat.mx

Abstract. This paper introduces the Gradient-driven Density Function
(∇dD) approach, and its application to Estimation of Distribution Al-
gorithms (EDAs). In order to compute the ∇dD, we also introduce the
Expected Gradient Estimate (EGE), which is an estimation of the gra-
dient, based on information from other individuals. Whilst EGE delivers
an estimation of the gradient vector at the position of any individual,
the ∇dD delivers a statistical model (e.g. the normal distribution) that
allows the sampling of new individuals around the direction of the esti-
mated gradient. Hence, in the proposed EDA, the gradient information
is inherited to the new population. The computation of the EGE vec-
tor does not need additional function evaluations. It is worth noting
that this paper focuses in black-box optimization. The proposed EDA
is tested with a benchmark of 10 problems. The statistical tests show a
competitive performance of the proposal.

Keywords: Gradient estimation, Estimation of Distribution Algorithm.

1 Introduction

Several Evolutionary Algorithms search the global optimum by simulations from
statistical models; e.g. EDAs, ES, etc. The evolutionary computation community
has been making a large effort to add new information into statistical models in
order to improve the search process. There are several approaches to add search
directions into statistical models [3] [2]. In this context, some popular algorithms
have demonstrated the feasibility of this idea (e.g. CMA-ES, NES, etc.). This
paper introduces contributions in this trend by building density functions based
on gradient estimates: Gradient-driven densities. The proposal developed here
only use the function evaluations gathered from the population to build gradi-
ent estimates on fixed individuals. Hence, the algorithm does not require any
extra evaluation of function. The first-order information is an important source
of promising directions to improve any individual. For that reason, a Gradient-
driven Density Function (∇dD) is introduced. Any simulation from ∇dD might
produce samples around the gradient estimation. Hence, the search process fo-
cuses in promising orientations. These novel ideas are merged to create a new
EDA. As a consequence of the gradient estimation, the proposed EDA generates
new individuals towards promising regions. The organization of the paper is as
follows. Section 2 introduces the Expected Gradient Estimation method. Sec-
tion 3 develops the Gradient-driven Density framework. Section 4 presents the

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 352–361, 2014.
c© Springer International Publishing Switzerland 2014

A New EDA by a Gradient-Driven Density 353

EDA based on Gradient-driven Density Functions. Section 5 is devoted to test
the proposed EDA against others algorithms from the state of the art. Finally,
Section 6 provides some concluding remarks.

2 The Gradient Estimation

The gradient vector ∇F (x) models the local greatest rate of increase by speci-
fying a direction and magnitude at x. Since the information about the problem
comes from scattered samples on the search space, a neighborhood for an indi-
vidual might be choosen. For that reason, this paper considers that any gradient
estimate for individual x(i) requires itself and its neighborhood, i.e. a set of in-
dividuals Nx(i) = {x(i1),x(i2), ...,x(ik), ..., x(ir−1),x(ir)} from the population or
gathered from previous generations, where i �= i1 �= ... �= ik �= ... �= ir and r is
the neighborhood size. Furthermore, any criterion to select the neighborhood can
be used. Also, notice that this method permits to compute a gradient estimate
for each individual only by using known information about the problem. The
fitness values of {x(i), ...,x(i1), ...,x(ir)} provide knowledge about the problem.
Hence, that information can be used to estimate the gradient vector of x(i). The
common approach approximates the gradient by fitting a hyperplane in d + 1
dimensions, where d is the dimension size of x(i). Therefore, the estimation of
gradient might be tackled by the ordinary least square method [4]. Despite the
fact that the previous technique creates an intuitive gradient approximation, in
many contexts it might be inadequate (e.g. there are not enough samples to
create the overdetermined system, etc). This section presents a new gradient
estimation based on two mathematical concepts: the directional derivative and
the statistical expectation.

Definition 1. Let Nx(i) = {x(i1),x(i2), ...,x(ik), ...,x(ir−1), x(ir)} be the neigh-
bors of individual x(i), from the population. Then the Expected Gradient Estimate
for x(i) is defined by

∇̂F(x(i)) =
1
r

r∑
k=1

F(x(ik))− F(x(i))
‖x(ik) − x(i)‖2 (x(ik) − x(i)) (1)

where i �= i1 �= ... �= ik �= ... �= ir, r is the neighborhood size and F(·) computes
the fitness value.

In order to justify equation (1), let us assume that x(ik) exists on the line
defined by the true gradient ∇F(x(i)). This means

x(ik) − x(i)

‖x(ik) − x(i)‖ = ± ∇F(x(i))
‖∇F(x(i))‖ . (2)

Since the orientation depends on the sign, each case will be examined sepa-
rately. Let u+ and u− be two normalized vectors as follows

u+ =
∇F(x(i))

h
, u− = −∇F(x(i))

h
(3)

354 I.S. Domı́nguez, A.H. Aguirre, and S.I. Valdez

where h = ‖∇F(x(i))‖; please note u+ has the same direction as the true
gradient, opposite to u−. From the well-known directional derivative definition
and its properties observe that(

lim
h→0

F(x(i) + hu+)−F(x(i))
h

)
u+ = ‖∇F(x(i))‖ ∇F(x(i))

‖∇F (x(i)
) ‖ = ∇F(x(i))

(
lim
h→0

F(x(i) + hu−)−F(x(i))
h

)
u− = −‖∇F(x(i))‖ −∇F(x(i))

‖∇F (x(i)
) ‖ = ∇F(x(i))

This is important because similar connections can be found just by considering
two individuals, mainly due to the assumption in equation (2); for instance(

lim
l→0

F(x(i) + l · u)−F(x(i))
l

)
u = ∇F(x(i)) (4)

u =
x(ik) − x(i)

‖x(ik) − x(i)‖ , l = ‖x(ik) − x(i)‖ (5)

Equation (4) presents a different manner to remake the gradient function.
Notice that although the derivative is unavailable, an approximation by finite
differences can be considered. It leads us to introduce a gradient estimate for
x(i), just given one neighbor, as follows

g(ik) =
(F(x(i) + lu)−F(x(i))

l

)
u =

F(x(ik))−F(x(i))
‖x(ik) − x(i)‖2 (x(ik) − x(i)) (6)

However, there is no chance to ensure that x(ik) is on the line defined by
the true gradient, because the neighbors come from an unknown hidden random
process. Hence, the difference between fitness values is also a random variable.
Therefore, each estimate g(ik) arises from a random process. Please assume that
P is the hidden uncertainty model which describes the behavior of outcomes
g(ik). So, any instance of random variable g(i) ∼ P is an outcome g(ik). A
representative vector for the hidden model can be computed by the statistical
expectation. Moreover, the E(g(i)) can be approximated as follows

E(g(i)) =
∫
Rd

g(i)Pdg(i) ≈ 1
r

r∑
k=1

g(ik) (7)

which is the Expected Gradient Estimate, equation (1).
To the best of our knowledge, the EGE developed above has not been ad-

dressed in literature. However, further theoretical study is necessary to verify its
relationship with other approaches [1]. In order to empirically contrast the ap-
proximated orientations of EGE versus the usual approximation by hyperplane,
a fixed population and a gradient estimation on each individual will be con-
sidered. An ideal population, at first generation, must cover the search domain

A New EDA by a Gradient-Driven Density 355

evenly; thus in this experiment the population is built by the Halton quasi-
random sequence, from Matlab R© with default options. Also, please consider the
Sphere problem, the neighborhood size r = d + 1 and the r closer individuals
to x(i) (neighborhood, according to the Euclidean distance). Below there is an
angle-comparison between ∇̂F(x(i)) and ∇F(x(i)). So, the measurement vector
of angles α = {α(1), ..., α(i), ..., α(N)} includes an angle value for each individual,
where N is the population size. Figure 1 shows the histograms of orientation by

0 0.79 1.57 2.36 3.14
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a)
0 0.79 1.57 2.36 3.14

0

0.02

0.04

0.06

0.08

0.1

(b)

Fig. 1. Histograms of orientation in Sphere problem, Expected Gradient Estimation
(EGE, solid line) versus hyperplane approach by ordinary least square (HLS, dashed
line). (a) 10 dimensions: HLS has a median value of 1.30488 and EGE has a median
value of 0.627966. (b) 30 dimensions: HLS has a median value of 1.48743 and EGE has
a median value of 0.617965. EGE shows better performance.

setting r = d+ 1, N = 10d and xk ∈ [−600, 300]; where d is the dimension size.
Notice that the EGE has more chances to compute better oriented vectors than
the hyperplane approach for higher dimensions. In addition, the median values
support the graphic observation. Here, the neighborhood size r = d + 1 was
chosen from literature [4]. In summary, the results suggest that the EGE might
outperform previous gradient approximations used in evolutionary computation.

3 The Gradient-Driven Density

Each generation has three different data sets: the individuals {x(i)}, the function
evaluations {F(x(i))} and the estimations of the gradient estimates {∇̂F(x(i))}.
These provide distinct information about the function and the algorithms’ be-
havior. Several stochastic optimization approaches (e.g. ES, EDA) aim to build
a multivariate density function on optimum locations; or at least in better re-
gions than the current ones. This section will begin with the same goal for a
fixed individual from the population. Therefore, there might exist a multivariate
density function p(x, θ) for x(i) based on its gradient estimate ∇̂F(x(i)), which
is able to simulate better individuals than the present x(i). Due to the fact that
only two vectors will be used here, there is no chance to ensure that all simula-
tions improve the current fitness value F(x(i)). However, the density modeling

356 I.S. Domı́nguez, A.H. Aguirre, and S.I. Valdez

can be modified to take advantage of the gradient estimate by developing a new
estimation of parameters, updating the original parameters, improving the sim-
ulation, etc. For this reason, definition 2 introduces the ∇dD from the individual
perspective.

Definition 2. Let z be an individual in the domain space and G(z) a func-
tion which computes its gradient estimate. The density function p(x, θ) is a
Gradient-driven Density (∇dD) for individual z if the following two conditions
are satisfied:

1) The multivariate density p(x, θ) is a unimodal function,

2) G(z)
‖G(z)‖ = ∇p(z,θ)

‖∇p(z,θ)‖ .

The conditions set up above allow a wide range of future proposals. The first
condition permits a single mass of probability towards promising regions. The
random search must be led by G(z) because it is orienting towards promising
regions. In fact, the second condition just allows density functions which∇p(z, θ)
has the same direction as the gradient estimate G(z). There are many ways to
build a ∇d Density. Below, a suitable technique based on multivariate calculus
and the angular discrepancy are introduced .

Definition 3. Let p(x, θ) be a multivariate unimodal density. In order to ensure
that p(x, θ) is a ∇d Density, a parameter estimation on θ must be performed.
The minimum angle estimation solves this by,

θ̂ = max
θ

G(z)t∇p(z, θ)
‖G(z)‖ ‖∇p(z, θ)‖ (8)

Notice that the minimum angle estimation solves the parameter estimation of
θ by maximizing the dot product of two normalized vectors. It is a natural
way because the angle between two vectors is related to the dot product. In
addition, even if finding the solution of (8) is not possible, a good approximation
can be discovered. The rest of this section uses the previous definition to build
∇d densities. Please assume that p(x, θ) is a multivariate normal density and
∇p(z, θ) its gradient function. Also, let

zG =
G(z)
‖G(z)‖ (9)

be the normalized gradient estimate of individual z. The estimation method
must calculate the mean vector μ and the covariance matrix Σ which satisfy
definition 2. Then, the statistical parameters can be found by solving

< μnew ,Σnew >= max
<μ,Σ>

zt
G

[N (z;μ,Σ)Σ−1(μ− z)
]

‖N (z;μ,Σ)Σ−1(μ− z)‖ . (10)

A New EDA by a Gradient-Driven Density 357

Let us address this problem separately for each parameter. By taking the
derivative with respect to μ and setting it equal to zero, we found the equation

‖Σ−1(μ− z)‖2Σ−tzG − zt
GΣ

−1(μ− z)Σ−tΣ−1(μ− z) = 0. (11)

In a similar way, by taking the derivative with respect to Σ−1 and setting it
equal to zero, we found the equation

‖Σ−1(μ− z)‖2zG(μ− z)t − zt
GΣ

−1(μ− z)Σ−1(μ− z)(μ− z)t = 0. (12)

Notice that both are nonlinear matrix equations! In addition, the problem (12)
is a constraint equation, since Σ needs to be a symmetric positive semidefinite
matrix. So, it leads us to solve two more complex optimization problems than
the original one. However, a few interesting facts arise by inspecting equations
(10)-(12), when Σ−1(μ − z) = zG: Equation (10) reaches its maximum value,
i.e. 1; and Equations (11) and (12) are fulfilled. Furthermore, notice that μ
and Σ are closely related. In fact, there are an infinite number of symmetric
semipositive definite matrices Σ able to fulfill Σ−1(μ− z) = zG. This certainly
means that the nonlinear system has an infinity number of solutions. However,
straightforward solutions can be found by these observations. By assuming the
matrix Σ is fixed and solving for the mean vector in Σ−1(μ − z) = zG a new
formula is found:

Σ−1(μnew − z) = zG ∴ μnew = z +ΣzG. (13)

Given a fixed covariance matrix, its related mean vector can be computed by
(13). Furthermore, there is a unique mean vector for a given Σ. On the con-
trary, given a fixed mean vector, there is a number of infinite possible covariance
matrices. Definition 4 introduces a ∇d Density based on the previous analysis.

Definition 4. Let Σ0 be a fixed covariance matrix. Then the ∇d Normal (∇dN)
has parameters

μg = z +Σ0zG and Σg = Σ0 (14)

Notice that, simulations from the proposed densities will produce samples in a
similar direction as the gradient vector (or gradient estimate). The next section
applies the developed Gradient-driven densities in evolutionary computation.

4 The Gradient-Driven Density in EDAs

The Estimation of Distribution Algorithm (EDA) aims to simulate new individ-
uals on regions near optimum locations, preferably close to the global optimum.
Interesting optimization methods might be developed by considering the ∇dD
technique into EDAs. The EDA fits a target statistical model. A common one is
the multivariate normal function [5]. This section introduces an EDA, based on

358 I.S. Domı́nguez, A.H. Aguirre, and S.I. Valdez

this density function, by computing the expectation and variance of a multi-
variate Gaussian mixture model. Please consider a mixture of two models: the
empirical normal density and a Gradient-driven Density. The first one promotes
the exploitation whilst the second one allows predictive samples on possible
promising regions (exploration). In order to build a simpler model, the mixture
of densities is approximated by a unique Multivariate Gaussian model [6]. The
target density for the proposed EDA is built by N (μnew,Σnew), where:

μnew = E(E(X|ϑ)) = (1− β)μ̂+ βμg,

Σnew = V ar(E(X |ϑ)) + E(V ar(X |ϑ)) = (1− β)Σ̂ + βΣg

+ (1 − β)(μ̂− μnew)(μ̂− μnew)t + β(μg − μnew)(μg − μnew)t
(15)

and β ∈ [0, 1] is the associated weight to the ∇dD. Also, β controls the amount
of credibility on each model. Please note that β = 0 produces the empirical
density and β = 1 yields the other one. In addition, since the simulation method
might build samples outside the search domain, a re-insertion technique is added,
line 10 of algorithm 2. Let γk = lupperk − llower

k be the domain length in dimen-
sion k, where lupperk and llower

k are the upper bound and lower bound in dimen-
sion k. For each dimension, the new sample y(i) = (y(i)1 , · · · , y(i)k , · · · , y(i)D) is
tested/replaced by

– if y(i)k > lupperk then a = (y(i)k − lupperk)/γk and y
(i)
k = lupperk − γk(a− �a�)

– if y(i)k < llower
k then a = (llower

k − y
(i)
k)/γk and y

(i)
k = llower

k + γk(a− �a�)
which ensure any new individual is inside the domain. The algorithm 2 describes
the proposed EDA led by a Gradient-driven Density (EDA-LGD). Because of the
importance of the gradient estimate for the∇dD, this proposal just computes the
gradient of the best individual using the historical best individuals from previous
generations. So, if at generation (t) a new best individual xbest is found, then
xbest replaces the worst individual in Pbest and the next gradient estimate is over
xbest with the neighborhood {Pbest \xbest}. Then two populations are saved: the
usual population Pobt at each generation (t) and the historically best individuals
Pbest; in algorithm 2 the first one has N individuals meanwhile the second one
has d+ 2 individuals.

5 Experiment

This section contrasts the proposed EDA against two known Evolutionary Al-
gorithms based on multivariate densities: CMA-ES [3] and xNES [2]. Each algo-
rithm runs in 10 benchmark problems, see Table 1. In order to make a fair
comparison, the code was downloaded from authors homepage and 50 runs
were performed. Also, the initial center of densities was chosen randomly in
the search domain with an initial variance according to the domain (1/3 of this).
The three algorithms only have two stopping conditions: maximum number of
evaluations of function is reached (104 × d), or target error smaller than 10−8,

A New EDA by a Gradient-Driven Density 359

1: t← 0, β ← 0.5, N ← �4 ∗ (1 + d0.7)�, M ← 2 ∗ �log(d)�+ 1, r ← d+ 1
2: Pobt ← U (Domain), compute F(x(i)), find the xbest � First population
3: Pbest ← Best r + 2 individuals from Pobt � Historical best population
4: while (Stop condition is not reached) do
5: ◦ Gradient estimate G(xbest) = ∇̂F(xbest)) with neighborhood {Pbest \ xbest}
6: ◦ Normalized vector xbest

G by (9) or negative for minimization
7: ◦ Empirical estimation of μ̂ and Σ̂. Initial covariance Σ0 = diag(diag(Σ̂))
8: ◦ Parameters μg and Σg by definition 4. Parameters μnew and Σnew by (15)
9: ◦ S ← Simulate M individuals from N (x;μnew ,Σnew)
10: ◦ S ← Reinsertion(S) � if-outside-domain
11: ◦ Fitness values F(S)
12: ◦ Pobt+1 ← Best individuals among {Pobt,S}
13: ◦ Find the xbest

t+1 of Pobt+1

14: if xbest
t+1 has better fitness value than xbest then

15: xbest ← xbest
t+1 and xbest

t+1 replaces the worst individual in Pbest

16: end if
17: ◦ Msur ← Number of survivors from S into Pobt+1

18: if Msur
M

> 1/2 then
19: β ← β + 0.05; if β > 1 then β = 1 � Exploration
20: else
21: β ← β − 0.05; if β < 0 then β = 0 � Exploitation
22: end if
23: t← t+ 1
24: end while

Fig. 2. Pseudocode of the EDA led by a Gradient-driven Density (EDA-LGD)

Table 1. Benchmark problems [2] [5]. The minimum fitness value of all problems is 0,
except for F4, F6 and F10 where F∗

4 = 2, F∗
6 = −10 and F∗

10 = −0.1d.

Name Alias Domain Name Alias Domain
Sphere F1 xi ∈ [−600, 300] Different Powers F2 xi ∈ [−20, 10]
Brown F3 xi ∈ [−1, 4] Mishra 2 F4 xi ∈ [0, 1]
Ellipsoid F5 xi ∈ [−20, 10] Parabolic Ridge F6 xi ∈ [−20, 10]
Rosenbrock F7 xi ∈ [−20, 10] Ackley F8 xi ∈ [−20, 10]
Griewangk F9 xi ∈ [−600, 300] Negative Cosine Mixture F10 xi ∈ [−1, 0.5]

i.e. (F − F∗) < 10−8. Figure 3 contrasts the error F − F∗ reached for each
algorithm. Also, this Figure shows a comparison between two algorithms in the
second and third columns. For each problem there are three measures: 1) the first
row is the percentage of success rate, 2) the second row is the mean and standard
deviation of reached fitness values, 3) the third row is the mean and standard
deviation of needed evaluations of function. The mean values highlighted with
boldface, i.e. the winner algorithm, are supported by a statistical test. The last
column presents the results of two nonparametric bootstrap tests. Here, the hy-
potheses are based on the mean value μ. The hypotheses (H0 : μ1 ≥ μ2, H1 :
μ1 < μ2) yields the p-value ρ1 and (H0 : μ2 ≥ μ1, H1 : μ2 < μ1) produces

360 I.S. Domı́nguez, A.H. Aguirre, and S.I. Valdez

F EDA-LGD CMA-ES ρ1 vs ρ2

F1 100.00 100.00
8.7e-9±1.2e-9 5.5e-9±1.2e-9 1.0,1e-4
4.9e+4±1.7e+4 3.8e+3±1.4e+2 1.0,1e-4

F2 100.00 100.00
8.0e-9±1.6e-9 9.4e-9±5.9e-10 1e-4,1.0

5.5e+3±5.6e+2 9.0e+3±7.2e+2 1e-4,1.0
F3 100.00 100.00

8.6e-9±1.1e-9 5.1e-9±1.3e-9 1.0,1e-4
5.1e+3±2.1e+2 3.0e+3±1.4e+2 1.0,1e-4

F4 100.00 4.00
9.4e-9±5.0e-10 8.9e-2±8.9e-2 1e-4,1.0
2.9e+3±1.2e+2 1.9e+5±1.6e+4 1e-4,1.0

F5 100.00 100.00
8.6e-9±1.2e-9 5.4e-9±1.2e-9 1.0,1e-4

9.8e+3±7.9e+2 1.8e+4±3.0e+2 1e-4,1.0
F6 100.00 100.00

9.0e-9±9.0e-10 7.8e-9±1.0e-9 1.0,1e-4
7.6e+3±3.9e+2 9.3e+3±1.5e+3 1e-4,1.0

F7 28.00 88.00
5.5e-1±1.4e+0 4.7e-1±1.3e+0 0.6,0.3
1.9e+5±8.7e+3 4.2e+4±5.8e+4 1.0,1e-4

F8 82.00 56.00
2.4e-1±5.6e-1 1.5e+0±2.2e+0 3e-4,1.0

4.4e+4±7.3e+4 9.1e+4±9.7e+4 4e-3,0.9
F9 2.00 76.00

1.6e+0±2.5e+0 2.5e-3±4.9e-3 1.0,1e-4
1.9e+5±2.3e+4 5.1e+4±8.4e+4 1.0,1e-4

F10 12.00 6.00
2.7e-1±1.9e-1 3.0e-1±1.5e-1 0.1,0.8
1.7e+5±6.4e+4 1.8e+5±4.7e+4 0.2,0.8

(a)

EDA-LGD xNES ρ1 vs ρ2

100.00 100.00
8.7e-9±1.2e-9 8.9e-9±8.7e-10 0.2,0.7
4.9e+4±1.7e+4 2.8e+4±2.9e+2 1.0,1e-4

100.00 100.00
8.0e-9±1.6e-9 7.4e-9±2.0e-9 0.9,6e-2

5.5e+3±5.6e+2 1.6e+4±8.4e+2 1e-4,1.0
100.00 100.00

8.6e-9±1.1e-9 8.6e-9±1.1e-9 0.5,0.4
5.1e+3±2.1e+2 2.4e+4±3.3e+2 1e-4,1.0

100.00 94.00
9.4e-9±5.0e-10 2.4e+2±1.7e+3 7e-2,0.9

2.9e+3±1.2e+2 8.3e+4±3.1e+4 1e-4,1.0
100.00 38.00

8.6e-9±1.2e-9 1.7e-3±7.9e-3 5e-2,0.9
9.8e+3±7.9e+2 1.5e+5±5.8e+4 1e-4,1.0

100.00 96.00
9.0e-9±9.0e-10 9.3e-9±6.7e-10 2e-2,0.9
7.6e+3±3.9e+2 5.2e+4±3.3e+4 1e-4,1.0

28.00 100.00
5.5e-1±1.4e+0 8.6e-9±1.2e-9 0.9,2e-3
1.9e+5±8.7e+3 4.4e+4±2.3e+3 1.0,1e-4

82.00 100.00
2.4e-1±5.6e-1 9.3e-9±5.5e-10 0.9,1e-3
4.4e+4±7.3e+4 4.3e+4±4.3e+2 0.5,0.4

2.00 96.00
1.6e+0±2.5e+0 3.9e-4±2.0e-3 1.0,2e-4
1.9e+5±2.3e+4 3.2e+4±3.4e+4 1.0,1e-4

12.00 68.00
2.7e-1±1.9e-1 1.5e-1±5.0e-1 0.9,6e-2
1.7e+5±6.4e+4 8.7e+4±7.8e+4 1.0,1e-4

(b)

Fig. 3. Percentage of success rate, reached fitness values and needed number of eval-
uations (mean and standard deviation) for each algorithm in dimension 20. The last
column shows two nonparametric bootstrap tests. If ρ1 is boldface the winner is EDA-
LGD, if ρ2 is boldface the winner is either CMA-ES or xNES, otherwise there is no
winner.

the p-value ρ2. So, if ρ1 is boldface the winner is EDA-LGD, if ρ2 is boldface
the winner is either CMA-ES or xNES, otherwise there is no winner. The null
hypothesis is rejected with significance level α = 0.05 Comments (CMAES):
The problems F1,F2,F3,F5 and F6 do not seem difficult for EDA-LGD nor
CMA-ES, since both algorithms reach the perfect success rate. On the contrary,
the rest of the problems have a more difficult landscape. According to the boot-
strap test, there is statistical evidence to conclude that in 5 out of 10 problems
the proposed EDA requires fewer function evaluations than the CMA-ES. Com-
ments (xNES): According to the bootstrap test, there is statistical evidence to
conclude that in 5 out of 10 problems the proposed EDA requieres fewer function
evaluations than the xNES. Also, there appears to be a pattern related to the
landscape. For instance, note xNES has better results for problems F7 − F10,
but EDA-LGD has better results for problems F2 − F6. This kind of pattern
must be further studied in future work.

A New EDA by a Gradient-Driven Density 361

6 Conclusion

This paper presents a new EDA based on the Gradient-driven densities (∇dD).
In order to build the proposed EDA (EDA-LGD) two main contributions were
developed: the Expected Gradient Estimate (EGE) and the ∇dD. Also, a tech-
nique has been proposed to compute a gradient estimate for any individual only
by using the actual knowledge about the problem. Hence, the estimation of the
gradient does not need extra evaluations of function. The ∇dD are statistical
models built by taking into account a gradient estimate. This new framework
can create a density function for any individual. Consequently, any simulation
from those densities has a random gradient component. Here, Gradient-driven
densities based on the Multivariate Normal have been constructed. However,
the developed framework allows for the assumption of other statistical mod-
els. The ideas discussed above motivated a new EDA: EDA-LGD. It is based
on the Gradient-driven Independent Normal, the EGE and the hierarchical la-
tent variable model. Moreover, it was tested in 10 benchmark problems; where
the EDA-LGD shows competitive performance against CMA-ES and xNES. In
summary, the EDA-LGD is an interesting approach because of the performance
of the algorithm and its mathematical foundation. Since the ∇dD will produce
samples in a similar direction as the gradient estimation, this density can be
regarded as a predictive model. Thus, the Gradient-Driven density allows for
exploration of the search domain whilst the empirical density intends fast con-
vergence (exploitation). Finally, notice that the main contributions developed
here can be extended to other evolutionary algorithms.

References

1. Flaxman, A.D., Kalai, A.T., McMahan, H.B.: Online convex optimization in the
bandit setting: Gradient descent without a gradient. In: Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 385–394.
Society for Industrial and Applied Mathematics, Philadelphia (2005)

2. Glasmachers, T., Schaul, T., Sun, Y., Wierstra, D., Schmidhuber, J.: Exponential
natural evolution strategies. In: Genetic and Evolutionary Computation Conference
(2010)

3. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a new evolutionary com-
putation. STUDFUZZ, vol. 192, pp. 75–102. Springer, Heidelberg (2006)

4. Hazen, M., Gupta, M.R.: Gradient estimation in global optimization algorithms. In:
IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1841–1848 (2009)

5. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer, Boston (2002)

6. Schnatter, F.S.: Finite mixture and Markov switching models. Springer, Heidelberg
(2006)

From Expected Improvement to Investment

Portfolio Improvement: Spreading the Risk
in Kriging-Based Optimization

Rasmus K. Ursem

Research and Technology, Grundfos Management A/S,
Poul Due Jensens Vej 7, 8850 Bjerringbro, Denmark

ursem@cs.au.dk

Abstract. The increasing use of time-consuming simulations in the in-
dustry has spawned a growing interest in coupling optimization algo-
rithms with fast-to-compute surrogate models. A major challenge in this
approach is to select the approximated solutions to evaluate on the real
problem. To address this, the Kriging meta-model offers both an esti-
mate of the mean value and the standard error in an unknown point.
This feature has been exploited in a number of so-called prescreening
utility functions that seek to maximize the outcome of an expensive
evaluation. The most widely used are the Probability of Improvement
(PoI) and Expected Improvement (ExI) functions.

This paper studies this challenge from an investment portfolio point-
of-view. In short, the PoI favors low risk investments whereas the ExI
promotes high risk investments. The paper introduces the investment
portfolio improvement (IPI) approach as a strategy mixing the two ex-
tremes. The novel approach is applied to seven benchmark problems and
two real world examples from the pump industry.

Keywords: Expected improvement, prescreening methods, Kriging.

1 Introduction

During the last couple of decades, the increasing use of time-consuming simula-
tions in engineering-related industries poses a serious challenge to optimization
algorithms. To address this challenge, researchers have studied a number of sur-
rogate models that allow fast evaluation of an approximation of the real problem.
This approximation is typically build from a low number of sample points of the
real problem. Approximation models can be evaluated in a few hundred mil-
liseconds, which is significantly faster than, e.g., a 5 hour flow simulation of a
centrifugal pump. However, the result is only an approximation and there are
usually differences between the real problem and the approximation of it. Thus,
the optimization specialist trades evaluation accuracy for evaluation speed.

The Kriging meta-model has become increasingly popular as it provides both
a mean value and standard error of the approximation of an unknown point.
By viewing the standard error as a confidence interval for the approximation,

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 362–372, 2014.
c© Springer International Publishing Switzerland 2014

From Expected Improvement to Investment Portfolio Improvement 363

authors have proposed to maximize a prescreening function expressing the po-
tential improvement gained by performing the expensive/time-consuming eval-
uation of the real function. Three widely used prescreening functions are the
Lower Bound (LB) approach by Dennis and Torczon [1], the Probability of Im-
provement (PoI) introduced by Ulmer et al. [2], and the Expected Improvement
(ExI) popularized as the Efficient Global Optimization (EGO) algorithm by
Jones et al. [3]. The ExI is the most popular and it has been extensively used
for solving numerous real-world problems, e.g., [4,5,6]. The focus in this paper
is on single-objective problems, but the ExI function has also been adapted to
multi-objective problems, e.g., [5,7].

The aim of this paper is twofold. First, to study and discuss LB, PoI, and
ExI in relation to their theoretical ability to provide a return-of-investment,
i.e., an improved solution to the problem. Second, to suggest an algorithm for
optimizing a portfolio of solutions that spread the risk of investment by using
the novel prescreening approach called Investment Portfolio Improvement. The
algorithm is based on the Differential Evolution (DE) algorithm [10,11].

The paper is structured as follows. Section 2 introduces the optimization
methodology, in particular the Differential Evolution algorithm and the Krig-
ing meta-model. Subsection 2.3 elaborates on LB, PoI, and ExI in relation to
the investment strategy these prescreening functions implement. Subsection 2.4
describes the novel algorithm. Following this, section 3 introduces the experi-
mental setup and the optimization problems. Section 4 contains the results and
a discussion of these. Finally, section 5 concludes the paper.

2 Kriging-Based Prescreening Optimization

Successful application of a Kriging-based prescreening optimization algorithm
to a time-consuming or costly real-world problem involves three main decisions.
First, the choice of the optimization algorithm. Second, the choice of the Kriging
variant. Third, the choice of the prescreening function.

Regarding optimization algorithms, a good choice is the differential evolution
(DE) algorithm suggested by Storn and Price in 1995 [10,11]. Since then, it has
become widely accepted as one of the best algorithms for numerical optimization
as it has proven its worth on numerous problems, e.g., [4,8,9].

Concerning Kriging, numerous variants have been described and tested in the
literature and choosing the best variant can be a challenge on its own [12,13].
From an optimization perspective, the main choice is a trade-off between accu-
racy and ability to find a new solution that is better than the best known point.
The use of prescreening methods may reduce the disadvantages of choosing a
sub-optimal Kriging variant substantially as the methods allow the algorithm to
employ an explorative search behavior. Thus, the prescreening method allows a
choice of Kriging variant that does not return large overshoots of the best known
point. For this reason, this paper uses simple Kriging with a “conservative” ker-
nel function.

364 R.K. Ursem

2.1 Differential Evolution

The algorithm presented in this paper is based on the rand/1/bin standard DE
scheme. However, it is out of the scope to provide a detailed description of DE.
Instead, see the original work of Storn and Price [10,11] or refer to Ursem [9] for
a shorter version.

2.2 Kriging

As mentioned, a large number of Kriging variants exists. Kriging has been de-
scribed many times in the literature and a full mathematical description is be-
yond the scope of this paper. Instead, see e.g. [14]. In short, Kriging predicts
a normal distribution Y (x) ∼ N(ŷ, ŝ) as an interpolation based on a so-called
kernel function of the distances to a number of known points.

The used Kriging model is based on the DACE Matlab toolbox by Lophaven
et al. [15] with the Exp kernel function. This kernel function was tested in
preliminary runs and showed the desired absence of extreme prediction values.

2.3 Prescreening Procedures

The main idea behind prescreening functions is to utilize the standard error of
Kriging to assess the potential improvement achieved by evaluating an unknown
point x. The most widely used prescreening functions are the Lower Bound (LB),
the Probability of Improvement (PoI), and the Expected Improvement (ExI).

LB(x) = ŷ(x)− w · ŝ(x) (1)

PoI(x) = P (Y (x) ≤ fmin) =
∫ fmin

−∞
φ(Y (x))dY = Φ

(
fmin − ŷ(x)

ŝ(x)

)
(2)

ExI(x) =
∫ fmin

−∞
(fmin − y)φ

(
y − ŷ(x)

ŝ(x)

)
dy (3)

= (fmin − ŷ(x))Φ
(
fmin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(4)

In this, assume we are using a Kriging model to minimize a function f(x) with
the best known function value fmin. Here, ŷ(x) is the approximated value with
the corresponding standard error ŝ(x), and for LB is w a user-defined weight.
Furthermore, φ(·) is the probability density function of the normal distribution,
and Φ(·) is the cumulative distribution function.

Over the years, several papers have been published that extend these pre-
screening functions. To control the balance between global and local search,
Schonlau et al. [16] introduced the g parameter and the Generalized Expected
Improvement (GEI). Following this, Sasena et al. [17] suggested to use an an-
nealing scheme to control the g parameter of the GEI prescreening function.
Authors have also suggested to parallelize the use of ExI. For example, Janu-
sevskis et al. [18] suggested the q-EI as a way to generate multiple points to

From Expected Improvement to Investment Portfolio Improvement 365

evaluate in each optimization run thereby lowering the number of runs. In a
similar direction, Ponweiser et al. [19] introduced the MGEI and the CMGEI
criteria and compared these with the annealing of Sasena et al. [17]. In this com-
parison, GEI turned out to be the best approach. Although the parallelization of
ExI is interesting, saving optimization run-time is less relevant as 90-95% of the
computation time is typically spent on the actual evaluation of new solutions.

At this point, it may be worthwhile to take a step back and study the func-
tions from a more mathematical perspective. In the following, assume (WLOG)
that fmin = 0.0 and that both function values and standard errors have been
normalized. Thus, a negative ŷ corresponds to a value that is better than the
best known solution. Figure 1 displays the surface plot of PoI and ExI for differ-
ent values of ŷ and ŝ. The plot for LB is omitted as it resembles the plot for ExI.
The contour lines illustrate solutions that are considered equal by the plotted
prescreening function.

^
ŷ

s 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.1
-0.05

 0
 0.05

 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

^
ŷ

s 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.1
-0.05

 0
 0.05

 0.1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

D
irection

of
im

provem
ent

ŝ

ŷ

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.1

-0.05

 0

 0.05

 0.1

Direction of improvement

s

ŷ

^

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.1

-0.05

 0

 0.05

 0.1

Fig. 1. Surface and contour plots of PoI (left) and ExI (right). Yellow circle is max (in
the given range).

As seen in the figure, PoI has maximum when (or rather if) the optimization
algorithm achieves a solution that outcompetes the current best known, i.e.,
ŷ < 0, and the standard deviation ŝ is small. In case the evaluated solution
is worse than the best known, i.e., ŷ > 0, then PoI favors solutions with large
standard deviation ŝ. Furthermore, the PoI function is 0.5 for all values of ŝ
when ŷ = 0. In contrast to PoI, the ExI function clearly favors solutions with
the largest possible ŝ regardless of the approximated mean ŷ.

In an investment perspective, PoI implements a low risk strategy as it pro-
motes a low standard deviation when a solution with a potential improvement

366 R.K. Ursem

(ŷ < 0) is found. For example, given two solutions x1 and x2 both with ŷ = −0.05
then PoI will favor the solution with lowest ŝ. In contrast, ExI represents a high
risk strategy as ExI (and also LB) prefer unknown points that maximize the
standard deviation. Considering financial investment as another field involving
risk strategies, one general recommendation is to employ a risk spreading strat-
egy. Thus, the strategies implemented by LB, PoI, and ExI are in conflict with
this general recommendation.

2.4 Investment Portfolio Improvement Prescreening

The main idea in investment portfolio improvement (IPI) prescreening is to
optimize toward a target standard deviation t. This idea can be represented
by numerous IPI functions. In this study, a number of functions were tested in
preliminary runs. The IPI function defined in equation 5 turned out to have the
best performance on the standard benchmark functions introduced in section 3.

IPI(x) = 0.5 · Φ
(
fmin − ŷ

1.05− t

)
+ Φ

(−(ŝ− t)2

0.05

)
(5)

Figure 2 shows the function for t = 0.4 and t = 0.8. For a low t, the function
promotes a search toward local improvements of the best known point. For a high
t, the function primarily induces a search for a solution with the desired standard
deviation and secondly an improvement over best known solution. The functions
studied in preliminary runs did not impose a sufficiently strong selection pressure
for improvement, i.e., the found solutions had the desired standard deviation,
but with suboptimal performance.

To perform actual portfolio optimization, the algorithm needs to search with
multiple values for t simultaneously. Naturally, this can be done in numerous
ways. For instance, one may use an island model [20], a cellular EA [20], a
multinational model [21], or other variants of diversity maintaining techniques.
In this study, the target values t are set from the individual’s population index
i in the differential evolution algorithm. Thus, the IPI function for individual i
at iteration j is defined as in equation 6.

IPI(xi, j) = 0.5 · Φ
(
fmin − ŷ(xi)
1.05− ti

)
+ Φ

(−(ŝ(xi)/nf − ti)2

0.05

)
(6)

ti =
i

popsize− 1
(target for individual i) (7)

nf = max
i

(ŝ(pi,j−1)) (normalization factor) (8)

In this, the calculation of the normalization factor is based on measurements from
the previous generation j − 1 where pi,j−1 denotes parent i. Optimizing under
this scheme results in a population where the low-index individuals seek a low
standard deviation and high-index individuals have a high standard deviation.

In a real-world application, the resources for evaluating found solutions
are often limited by the time and costs required to perform the full evaluation.

From Expected Improvement to Investment Portfolio Improvement 367

ŝ
ŷ

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4
-0.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

ŝ
ŷ

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.4
-0.2

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

D
irection of im

provem
ent

D
ire

ct
io

n
of

 im
pr

ov
em

en
t

ŷ

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

s

 0.9 1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

^
 0.8

of

Direction

im
provem

ent

^

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

s

 1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

y

^
 0.9

Fig. 2. Surface and contour plots for IPI with t = 0.4 and t = 0.8. Yellow circle is max.

The optimization specialist is therefore often only interested in 3-5 distinct candi-
date solutions per round [22]. The IPI algorithm therefore returns a user-defined
number of candidates KNC as follows. After the stopping criterion is met, the
algorithm divides the population into KNC segments and return the highest IPI
scoring individual from each segment. For example, setting KNC = 3 will result
in a low-risk, a mid-risk, and a high-risk solution taken from the first third, the
middle third, and the last third of the population.

3 Experimental Setup

The experiments focus on comparing the performance of the novel IPI algorithm
with the established PoI and ExI prescreening functions, and a DE version of
the annealing GEI algorithm [17]. To complete the picture, the DE algorithm is
also optimizing only the mean value (OMV), thereby allowing comparison with
the traditional approach. The GEI prescreening function is defined according to
equation 9 and g values are set from table 1 as in [17].

E(I0) = P (y < fmin) = Φ

(
fmin − ŷ(x)

ŝ(x)

)
= Φ(u) g = 0 (9)

E(Ig) = ŝ(x)g
g∑

k=0

(−1)k
(
g

k

)
ug−kTk g = 1, 2, ...

T0 = Φ(u), T1 = −Φ(u), Tk = −uk−1φ(u) + (k − 1)Tk−2 k = 2, 3, ...

368 R.K. Ursem

Table 1. Annealing values for g depending on number of iterations

Iteration 1-4 5-9 10-19 20-24 25-34 ≥35
g 20 10 5 2 1 0

The DE algorithm was run with 100 individuals, CR = 0.2, F = 0.35, and
1000 iterations to ensure convergence. In the IPI algorithm, the number of can-
didates was set to KNC = 3 as this represent a typical number of simulations
that can be performed per day for an industrial problem. Thus, the algorithm
returned a low-risk, a medium-risk, and a high-risk solution.

The test suite includes seven benchmark problems and two model-calculated
pump design problems. The tested benchmark problems are the well-known1

Branin function, the six hump camel back function, the Hartmann 3D function,
the Hartmann 6D function, the Colville function, the Rastrigin 2D function, and
the less known Sasena “mystery” function [23], which is defined in equation 10.

min f(x1, x2) = 2 + 0.01(x2 − x2
1)

2 + (1− x1)2 + 2(2− x2)2 + (10)
7 sin(0.5x1) · sin(0.7x1x2)
xi ∈ [0 : 5], i = 1, 2

The benchmark problems are chosen to represent engineering-like problems
that typically have a few local optima and a single global optimum. However,
the Rastrigin function does not fulfill this selection criterion as it has 11 optima
per dimension (Rastrigin 2D has 120 local optima and one global). Nevertheless,
it is included to investigate the performance on a simple problem often used in
traditional tests of optimization algorithms.

The two model-calculated pump design problems are based on classic pump
textbook theory [24] coupled with in-house loss models for modeling the Grund-
fos pumps. The details of the two pump design problems cannot be revealed as
it would violate the need for business confidentiality. However, the first problem
has 6 design parameters and the objective is to maximize the hydraulic effi-
ciency in the design point. The second problem has 12 design parameters and
the objective is also to maximize the hydraulic efficiency in the design point.

All nine problems are fast to calculate and allow a statistical comparison of
the methods based on 20 repetitions each executed as follows:

1. Generate 20 random solutions and evaluate them.
2. While (Total number of new solutions≤50)

(a) Train Kriging approximator on database.
(b) Run the DE algorithm with the prescreening function.
(c) Add 1-3 new solution(s) to database (IPI adds 3, others add 1).

3. Report the best found solution.

1 Details are omitted due to space limitations.

From Expected Improvement to Investment Portfolio Improvement 369

The initial database of 20 random solutions and the following 50 samples
represents a typical setup in the industry. For example, a computational fluid
dynamics (CFD) simulation of a full pump curve can take up to 2-3 hours in a
steady-state setup and up to 4-5 days for a full transient simulation. The number
of initial solutions was deliberately kept at 20 individuals to stress the algorithms
as the problem dimensionality increased.

4 Results and Discussion

The results of the experiments are listed in table 2. In the table, a number
marked in bold denote the algorithm with the best mean. Furthermore, a dagger
(†) indicates that the algorithm is best wrt. Mann-Whitney rank sum test, i.e.,
the null-hypothesis2 H0 is rejected at 5% confidence level and a double dagger
(‡) at 1% confidence level.

Table 2. Mean and standard deviation for the seven benchmark problems and the two
pump problems

Function OMV PoI ExI GEI IPI

Branin 2D 2.57±1.795 2.95±2.371 0.41±0.017 0.42±0.019 0.40±0.003‡
Sasena 2D 1.29±1.780 1.51±2.297 -1.23±0.965 -1.41±0.117 -1.45±0.022†
Six hump 2D 0.73±3.387 0.00±0.907 -0.90±0.110 -0.75±0.209 -0.92±0.116†
Rastrigin2D 10.36±5.256 11.23±4.413 2.69±2.440 7.14±5.173 3.15±2.470†
Hartmann 3D -2.96±0.486 -3.26±0.482 -3.77±0.106 -3.71±0.170 -3.82±0.056†
Colville 4D 8519±17993 4480±6256 749±1153 472±620 829±1108†
Hartmann 6D -1.39±0.500 -1.23±0.576 -1.72±0.660 -1.99±0.707 -2.77±0.472†
Pump 6D 45.97±3.137 46.54±2.407 49.39±1.484 48.85±1.167 49.53±1.205

Pump 12D 59.57±1.806 59.57±1.477 61.28±1.133 60.52±1.243 61.34±1.690

As seen, OMV and PoI clearly have the worst performance on all problems.
Comparing ExI, GEI, and IPI, the IPI achieves a better mean on seven of the
nine tested problems and three of these seven are further supported by the Mann-
Whitney rank sum tests. Interestingly, the GEI does not seem to be significantly
better than traditional ExI. One possible explanation is that a g value higher
than 1 actually induces an even stronger focus on finding solutions with high
standard deviation. Stepping from traditional ExI (g = 1) to PoI (g = 0) occurs
rather late in the annealing process and this step represents a rather large change
in search strategy, i.e., from high-risk to low-risk as discussed earlier. Thus, the
annealing approach could probably have benefited from smaller steps in the g
value from, e.g., 1.0 to 0.9, and gradually toward 0.0. However, this is not possible
with the current formulation of GEI.

Scrutinizing the IPI data, a typical run benefits from the portfolio optimiza-
tion as follows (recall that KNC = 3 and the algorithm adds 50 new solutions).

2 The null-hypothesis states that the samples are drawn from the same distribution.

370 R.K. Ursem

In the beginning of the run, the medium or high-risk solutions often locate a
new best point, which are further improved by the low risk solution in following
rounds. Towards the end, the high-risk solutions often explore regions with sub-
optimal performance as these parts have not yet been explored. In a few runs,
the high-risk solution discovers a new best point towards the end of the run.
Thus, the algorithm clearly benefits from implementing the portfolio strategy.

5 Conclusions

This paper presents the investment portfolio improvement prescreening approach
and demonstrates its performance on seven benchmark problems and two real-
world pump design problems. The experiments show that the suggested tech-
nique yields a better mean value in seven of the nine tested functions. Thus,
the experiments support the initial analysis of the search strategies employed
by established prescreening functions like Probability of Improvement (low risk)
and Expected Improvement (high risk). Hence, it is an advantage to use a risk-
spreading strategy as this simultaneously allows search in the vicinity of the best
known solution and explorative search in new regions of the search space.

Regarding future work, this initial paper only presents the main idea and
demonstrates its potential. The scheme is easy to extend and some next steps
could be to investigate an annealing scheme where the target standard deviation
t is gradually lowered or alternatively a self-adaptive version. Another idea is to
implement an island version of the method.

References

1. Dennis, J., Torczon, V.: Managing approximate models in optimization. In: Alexan-
drov, N., Hussani, M. (eds.) Multidisciplinary design optimization: State-of-the-art,
pp. 330–347. SIAM (1997)

2. Ulmer, H., Streichert, F., Zell, A.: Evolution strategies assisted by gaussian pro-
cesses with improved pre-selection criterion. In: Sarker, R., Reynolds, R., Abbass,
H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003
Congress on Evolutionary Computation CEC 2003, December 8-12, pp. 692–699.
IEEE Press, Canberra (2003)

3. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

4. Sheng, N., Liao, C., Lin, W., Chang, L., Zhang, Q., Zhou, H.: A hybrid optimized
algorithm based on ego and taguchi’s method for solving expensive evaluation
problems of antenna design. Progress In Electromagnetics Research C 17, 181–192
(2010)

5. Jeong, S., Minemura, Y., Obayashi, S.: Optimization of combustion chamber for
diesel engine using kriging model. Journal of Fluid Science and Technology 1(2),
138–146 (2006)

6. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L.: Surrogate-based
infill optimization applied to electromagnetic problems. International Journal of
RF and Microwave Computer-Aided Engineering 20(5), 492–501 (2010)

From Expected Improvement to Investment Portfolio Improvement 371

7. Emmerich, M.T., Giannakoglou, K.C., Naujoks, B.: Single- and Multiobjective
Evolutionary Optimization Assisted by Gaussian Random Field Metamodels. IEEE
Transactions on Evolutionary Computation 10(4), 421–439 (2006)

8. Das, S., Mukherjee, R., Kundu, R., Vasilakos, T.: Multi-user detection in multi-
carrier cdma wireless broadband system using a binary adaptive differential evolu-
tion algorithm. In: Blum, C., Alba, E., Auger, A., Bacardit, J., Bongard, J., Branke,
J., Bredeche, N., Brockhoff, D., Chicano, F., Dorin, A., Doursat, R., Ekart, A.,
Friedrich, T., Giacobini, M., Harman, M., Iba, H., Igel, C., Jansen, T., Kovacs, T.,
Kowaliw, T., Lopez-Ibanez, M., Lozano, J.A., Luque, G., McCall, J., Moraglio, A.,
Motsinger-Reif, A., Neumann, F., Ochoa, G., Olague, G., Ong, Y.S., Palmer, M.E.,
Pappa, G.L., Parsopoulos, K.E., Schmickl, T., Smith, S.L., Solnon, C., Stuetzle, T.,
Talbi, E.G., Tauritz, D., Vanneschi, L. (eds.) GECCO 2013: Proceeding of the Fif-
teenth Annual Conference on Genetic and Evolutionary Computation Conference,
Amsterdam, The Netherlands, July 6-10, pp. 1245–1252. ACM (2013)

9. Ursem, R.K., Vadstrup, P.: Parameter identification of induction motors using
differential evolution. In: Proceedings of the Fifth Congress on Evolutionary Com-
putation (CEC-2003), pp. 790–796 (2003)

10. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012, In-
ternational Computer Science Institute, Berkley (1995)

11. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global
optimisation over continuous spaces. Journal of Global Optimization 11, 341–359
(1997)

12. Martin, J.D., Simpson, T.W.: Use of kriging models to approximate deterministic
computer models. AIAA Journal 43(4), 853–863 (2005)

13. Laurenceau, J., Sagaut, P.: Building efficient response surfaces of aerodynamic
functions with kriging and cokriging. AIAA Journal 46(2), 498–507 (2008)

14. Matheron, G.: Principles of geostatistics. Economic Geology 4(4), 409–435 (1963)
15. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: Dace – a matlab kriging toolbox.

Technical report, Informatics and Mathematical Modelling, Technical University
of Denmark (2002)

16. Schonlau, M., Welch, W.J., Jones, D.R.: Global versus local search in constrained
optimization of computermodels. In: NewDevelopments and Applications in Exper-
imental Design. IMS Lecture Notes - Monograph Series, vol. 34, pp. 11–25 (1998)

17. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sam-
pling criteria for constrained global optimization. Engineering Optimization 34,
263–278 (2002)

18. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improve-
ments for the asynchronous parallel global optimization of expensive functions: Po-
tentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS,
vol. 7219, pp. 413–418. Springer, Heidelberg (2012)

19. Ponweiser, W., Wagner, T., Vincze, M.: Clustered multiple generalized expected
improvement: A novel infill sampling criterion for surrogate models. In: Wang, J.
(ed.) 2008 IEEE World Congress on Computational Intelligence, Hong Kong, June
1-6. IEEE Computational Intelligence Society, IEEE Press (2008)

20. Bäck, T., Fogel, D.B., Michalewicz, Z., et al. (eds.): Handbook on Evolutionary
Computation. IOP Publishing Ltd and Oxford University Press (1997)

21. Ursem, R.K.: Multinational evolutionary algorithms. In: Angeline, P.J.,
Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the
Congress of Evolutionary Computation (CEC 1999), Mayflower Hotel, Washing-
ton D.C., USA, July 6-9, vol. 3. IEEE Press (1999)

372 R.K. Ursem

22. Ursem, R.K., Justesen, P.D.: Multi-objective distinct candidates optimization: Lo-
cating a few highly different solutions in a circuit component sizing problem. Ap-
plied Soft Computing 12(1), 255–265 (2012)

23. Sasena, M.J.: Flexibility and Efficiency Enhancements for Constrained Global De-
sign Optimization with Kriging Approximations. PhD thesis, University of Michi-
gan (2002)

24. Gülich, J.: Centrifugal Pumps. Springer (2010)

Distance Measures for Permutations

in Combinatorial Efficient Global Optimization

Martin Zaefferer, Jörg Stork, and Thomas Bartz-Beielstein

Cologne University of Applied Sciences
Faculty for Computer and Engineering Sciences, 51643 Gummersbach, Germany

firstname.lastname@fh-koeln.de

Abstract. For expensive black-box optimization problems, surrogate-
model based approaches like Efficient Global Optimization are frequently
used in continuous optimization. Their main advantage is the reduction
of function evaluations by exploiting cheaper, data-driven models of the
actual target function. The utilization of such methods in combinatorial
or mixed search spaces is less common. Efficient Global Optimization
and related methods were recently extended to such spaces, by replacing
continuous distance (or similarity) measures with measures suited for the
respective problem representations.

This article investigates a large set of distance measures for their ap-
plicability to various permutation problems. The main purpose is to iden-
tify, how a distance measure can be chosen, either a-priori or online. In
detail, we show that the choice of distance measure can be integrated into
the Maximum Likelihood Estimation process of the underlying Kriging
model. This approach has robust, good performance, thus providing a
very nice tool towards selection of a distance measure.

1 Introduction

One frequent issue in real-world optimization problems are costly objective
function evaluations. These may be caused by time-consuming simulations or
complex trials and measurements. In continuous optimization, surrogate-model
based approaches use cheaper, data-driven models to reduce the number of ob-
jective function evaluations, e.g. in the Efficient Global Optimization (EGO)
algorithm [16]. In combinatorial optimization, surrogate models received less at-
tention. Recently, approaches from continuous modeling and optimization have
been extended to mixed or purely combinatorial problem spaces: Radial Ba-
sis Function Networks (RBFN), Kriging, and EGO [22,34]. A short overview of
these previous studies will be given in Sec. 2.

The employed modeling tools base their prediction on measures of similarity or
distance between candidate solutions. The core idea of the extension is therefore
to replace the distance measures used in continuous spaces (e.g., Euclidean)
with distance measures more suited for the given problem representation. Two
questions arise in this context: First, which distance measure is most suited?
And second, how can this measure be chosen a priori as well as during the
optimization procedure for a given problem?

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 373–383, 2014.
c© Springer International Publishing Switzerland 2014

374 M. Zaefferer, J. Stork, and T. Bartz-Beielstein

This article tries to provide answers to both questions for an important so-
lution representation type: permutations. The permutation representation is re-
quired in a large array of problems [2]. The reader may consider production
processes, which have to be divided into several jobs to be scheduled for one or
more machines in order to achieve a timely completion. Here, several distance
measures will be used to handle various problem classes and instances. The em-
ployed distance measures, Kriging and EGO will be introduced in Sec. 3. Their
performance will be examined in an experimental study, as outlined in Sec. 4.
Observations will be described and discussed in Sec. 5. Finally, a summary and
an outlook on future research are given in Sec. 6.

2 Previous Research

Compared to their frequent use for continuous problem domains, surrogate model
driven approaches are relatively unknown in combinatorial or mixed optimiza-
tion [15]. Voutchkov et al. [31] introduce an expensive optimization problem for
signed permutations, concerning weld sequence optimization. Regarding data-
driven approaches for black-box problems (which are in the focus of this paper),
Li et al. [21] proposed Radial Basis Function Network (RBFN) models based
on a weighted distance measure, replacing the usual distance measure employed
in RBFN. Their RBFN models were able to model to mixed-integer problems.
Mixed problems also occur in algorithm tuning, where continuous, discrete, and
categorical parameters may occur. In this context, Random Forest models have
been used due to their ability to capture discrete and categorical parameters [4].
Hutter [14] also describes a Kriging model with a Hamming distance based kernel
function to handle categorical variables.

Moraglio and Kattan [22] adapted an RBFN to arbitrary distance measures
to model arbitrary combinatorial optimization problems. Their approach has
also been applied to Quadratic Assignment Problems (QAP) [23]. The same
conceptual extension for Kriging was recently investigated by Zaefferer et al. [34].
This allowed to apply the Kriging based Efficient Global Optimization (EGO)
algorithm to combinatorial problems. Kriging-based EGO performed very well,
in comparison to other model-driven or model-free approaches. Furthermore,
the choice of distance measure was shown to have a very strong influence on
optimization performance.

In this article, we will focus on Kriging-based EGO only. We will look at a
much larger array of permutation problems and distance measures. Our goal is to
derive recommendations for the selection of problem-specific distance measures.

3 Methods

3.1 Distance Measures

Previously, distance measures for permutations were investigated, e.g., for the
purpose of landscape analysis [27] or diversity preservation [29]. These previous
studies illustrate that a large array of distance measures is available. For the

Distance Measures for Permutations in Combinatorial EGO 375

Table 1. Investigated distance measures. Second column lists runtime complexity.
Third column lists median runtime of 1000 evaluations for permutations of length 30.

Name complexity runtime [μs] Abbrev.
Levenshtein O(n2) 7 Lev
Swap O(n2) 6 Swa.
Interchange O(n2) 14 Int.
Longest Common Subsequence O(n2) 8 LCSeq
Longest Common Substring O(n2) 8 LCStr
R O(n2) 5 R
Adjacency O(n2) 6 Adj.
Position O(n2) 6 Pos.
Position2 O(n2) 6 Posq.
Hamming O(n) 2 Ham.
Euclidean O(n) 6 Euc.
Manhattan O(n) 4 Man.
Chebyshev O(n) 3 Che.
Lee O(n) 6 Lee

purpose of distance-based modeling, only Hamming, Swap and Interchange dis-
tance [23,34] were used. In this study, we will analyze 14 different distance mea-
sures, as summarized in Table 1. The given runtime complexity refers to the
employed implementations. More efficient variants may be available. To avoid
scaling bias, all distance measures are scaled to yield values from [0; 1].

In the following, we describe basic features of these distance measures. Since
naming of measures in literature varies, this clarification is useful to avoid con-
fusion.
– Levenshtein and Edit distance are sometimes used as synonyms. In fact, Lev-

enshtein is only one example of an edit distance. It counts the minimum num-
ber of deletions, insertions, or substitutions required to transform one string
(or here: permutation) into another. For an implementation we refer to [32].

– A swap operation is the transposition of two adjacent elements in a permuta-
tion. The Swap distance is defined as the minimum number of swaps required
to transform one permutation into another. It has also been called Precedence
distance [27], or Kendall’s Tau [19,29]. For permutations of length n it is [29]:

δSwa.(π, π′) =
∑n

i=1
∑n

j=1 zij where zij =
{
1 if πi < πj and π′

i > π′
j ,

0 otherwise.

– An interchange operation is the transposition of two arbitrary elements. Re-
spectively, the Interchange (also: Cayley) distance is the minimum number of
interchanges required to transform one permutation to another [27].

– The longest common subsequence distance counts the largest number of el-
ements that follow each other in both permutations, with interruptions. We
use the algorithm described in [13].

– The longest common-substring distance counts the largest number of elements
that follow each other in both permutations, without interruption, i.e., all
elements are adjacent. We use the implementation in [33].

376 M. Zaefferer, J. Stork, and T. Bartz-Beielstein

– The R-distance [9,29] counts the number of times that one element follows
another in one permutation, but not in the other. It is identical with the uni-
directional adjacency distance [25]. It is computed by

δR(π, π′) =
∑n−1

i=1 yi where yi =
{
1 if ∃j : πi = π′

j and πi+1 = π′
j+1,

0 otherwise.
– The (bi-directional) adjacency distance [25,27] counts the number of times

two elements are neighbors in one, but not in the other permutation. Unlike
R-distance (uni-directional), the order of the two elements does not matter.

– The Position distance [27] is identical with the Deviation distance or Spear-
man’s footrule [29],

δPos(π, π′) =
∑n

k=1 |i− j| where πi = π′
j = k .

– The Squared Position distance is Spearman’s rank correlation coefficient [29].
In contrast to the Position distance, the term |i− j| is replaced by (i− j)2

– The Hamming distance or Exact Match distance simply counts the number
of unequal elements in two permutations, i.e.,

δHam.(π, π′) =
∑n

i=1 ai where ai =
{
0 if πi = π′

i,
1 otherwise.

– The Euclidean distance is
δEuc.(π, π′) =

√∑n
i=1(πi − π′

i)2 .
– The Manhattan distance (A-Distance [29,9]) is

δMan.(π, π′) =
∑n

i=1 |πi − π′
i| .

– The Chebyshev distance is
δChe.(π, π′) = max

1≤i≤n
(|πi − π′

i|) .
– The Lee distance [20] can be adapted to permutations with

δLee(π, π′) =
∑n

i=1 min(|πi − π′
i|, n− |πi − π′

i|) .
The reversal distance (number of reversals required to transform one per-

mutation to another) was not used, even though it is especially promising for
the Traveling Salesperson Problem (TSP). Calculating the reversal distance for
unsigned permutations is NP-hard [10].

3.2 Kriging for Combinatorial Optimization

Kriging is a very flexible predictor, that models the correlation between samples,
assuming that they are derived from a Gaussian process. Kriging also provides
an estimate of uncertainty of its own prediction. For a detailed description of
Kriging, we refer to Forrester et al. [11]. The adaptation to combinatorial or
mixed problems was described by Zaefferer et al. [34].

Training a Kriging model requires the set of m solutions X = {x(i)}i=1...m
with observations y = {y(i)}i=1...m. The predicted mean of a new candidate
solution x is referred to as ŷ(x), the estimated error of that prediction is ŝ(x).
The Kriging model has the parameters θ, p, σ̂ ,and μ̂. Maximum Likelihood
Estimation (MLE) is used to determine these parameters and requires a matrix
inversion. In [34], standard inversion was used. We observed a problem with

Distance Measures for Permutations in Combinatorial EGO 377

standard inversion for 4 out of the 14 distance measures (Int., Lev., LCSeq,
Che.). While all others worked well, these four measures may produce numerical
instability. Hence, the more stable inversion via Cholesky decomposition is used,
which requires a positive semi-definite correlation matrix.

3.3 Choosing a Distance Measure in Kriging

In standard Kriging, the distance measure is not fixed. Rather, it can partially be
understood as a parametrized distance measure. E.g., it may resemble Euclidean
(p = 2) or Manhattan (p = 1) distance.

The choice of distance measure can also be understood as a (categorical)
parameter of the model. Hence, we suggest to perform MLE for each distance
measure separately. Afterwards, the distance measure with maximum likelihood
is chosen for the model. This procedure repeats every time the model is build,
i.e., in each iteration of a single EGO run. In the experimental study this will
be referred to as “All”.

A wrong decision may occur, especially while data is still very sparse. There-
fore, we expect the performance of choosing a distance measure with MLE to
be equal to or worse than the best single measure. An exception would be the
case where the underlying optimization problem has a dynamic behavior. Then,
different measures may be preferable in different phases of the optimization run.

3.4 Efficient Global Optimization

EGO was introduced by Jones et al. [16]. In this algorithm, a Kriging model is
first build based on an initial set of solutions. If the uncertainty ŝ(x) > 0, one
can compute the Expected Improvement (EI) of a candidate solution, otherwise
EI(x) = 0. EI determines how much improvement can be expected from the
candidate solution, and thus balances exploitation vs. exploration. The solution
that maximizes EI is evaluated with the target function. The result is used to
update the Kriging model. This is repeated until a termination criterion (e.g.,
function evaluation budget) is fulfilled.

4 Experimental Setup

4.1 Correlation between Distances

As a first step, correlation between the 14 different distance measures is inves-
tigated. Distances between all permutations of length n = 7 are computed (i.e.,
5040 distance values for each measure), and the correlation is calculated.

4.2 Matrix Condition

To quickly assess whether all measures yield positive semi-definite correlation
matrices (as required for MLE), we performed an experimental test. Ten so-
lutions were created randomly, while another 90 were created by consecutive
interchange mutations. This yields 100 solutions of varying distances. This was
done for various permutation lengths (n = {5, 6, 7, 8, 9, 10, 20, 50, 100}). In case
of the smallest instance, the 100 solutions represent a very large section of the
search space (which has a size of n! = 120). Larger instances are less crowded.

378 M. Zaefferer, J. Stork, and T. Bartz-Beielstein

Since θ will also influence the correlation matrix condition, it was varied from
10−10 to 1010. For each distance measure, each dimension n, and each θ the
correlation matrix is computed and its condition checked.

4.3 Benchmark Problems

For all further experiments, five permutation problem classes are used.
– As in [34], four instances of the Quadratic Assignment Problem (QAP) [6] from

the QAPLIB [7] are chosen (nug30, nug12, tho30 and kra32). In the QAP
n facilities have to be assigned to n locations. Assignment cost is minimized,
based on flow between facilities and distance between locations.

– Four instances of the Flow-shop Scheduling Problem (FSP) [30] are chosen
(reC05, reC13, reC19, reC31 [24]) from the OR-Library [5]. Here, the finishing
time of the last of n jobs sequenced on m machines is minimized.

– Three TSP instances are chosen from the TSPLIB [26] (bayg29, fri26, gr24). In
the TSP, the cost or length of a route through several locations is minimized.
Each location has to be visited once.

– Three instances of the Asymmetric TSP (ATSP) are generated (atsp10, atsp20,
atsp30). For each instance, a distance matrix is created randomly with a uni-
form distribution. The three instances are of size 10, 20, and 30. In contrast
to TSP, the cost of traveling between two locations depends on direction.

– Finally, four instances of the single-machine total Weighted Tardiness problem
(WT) [1] are chosen, also from the OR-Library [5] (the first four of length 40,
i.e., wt40a, wt40b, wt40c, wt40d). Here, n jobs are sequenced on one machine
that can handle one job at a time. The tardiness of a schedule for all jobs,
weighted by a set of n given weights is minimized. It depends on the given
processing times and due dates of each job.

For QAP, TSP, ATSP and WT the length of the permutation n is given by the
number in the instance name. For FSP, n is 20, 20, 30 and 50 for reC05, reC13,
reC19 and reC31 respectively.

We use this benchmark set under the artificial assumption of costly target
function evaluation. While some of these problems have actual real world rele-
vance (e.g., based on real world data), none may be considered expensive. This
allows for a more in-depth study, providing first results, which of course should
be validated with actually expensive problems in future studies.

4.4 Local Fitness Distance Correlation

Fitness Distance Correlation [17] is a measure for the analysis of fitness land-
scapes. It measures correlation between fitness value and distance to the known
global optimum. When the optimum is unknown, it can be replaced by the best
solution in the set, thus yielding the Local FDC (LFDC) [18]. Here, LFDC will
be calculated based on 20,000 unique, randomly created individuals for each
instance. When minimizing an easy problem, positive correlation is expected
to occur. Thus, the LFDC values may represent an indicator of problem diffi-
culty. We are interested in LFDC from a different perspective. It is investigated,
whether LFDC can be used to identify a suitable distance measure for a given

Distance Measures for Permutations in Combinatorial EGO 379

problem. LFDC may be unsuited towards this end, as previous studies already
showed that FDC may be misleading for certain problems [3].

4.5 Optimization Performance

Finally, we compare optimization performance. To that end, EGO, a model-free
Genetic Algorithm (GA), Random Search (RS) and a simple 2-opt local search
are employed with a strictly limited budget of 200 function evaluations. GA, RS
and 2-opt are baselines in this comparison. Their main purpose is to identify
whether the various EGO variants work at all.

The GA used in the comparison will use cycle crossover and the mutation
operator is an interchange of arbitrary elements. Furthermore the algorithm will
use a population size of ten, crossover rate 0.5, mutation rate 1/n, tournament
selection with tournament size two and tournament probability 0.9. The EGO
algorithm will start with an initial set of ten solutions. Kriging parameter p is set
to one, while the others are determined with MLE. Internally, EGO will perform
optimization of the (assumed to be cheap) surrogate model. Hence, the same
GA is used with 10,000 model evaluations, and a population size of 20.

For a fair comparison of actual competitors, most of the mentioned parameters
would require tuning. Since the basic GA is just a baseline, this is not necessary.
The EGO variants use identical settings thus yielding a fair comparison among
themselves.

5 Observations and Discussion

5.1 Correlation and LFDC

Correlation between distance measures and LFDC values are depicted in Fig. 1.
Measures that correlate also have comparable LFDC (e.g., Pos. and Posq.). The
LFDC for QAP, TSP & ATSP as well as FSP & WT have similar structure.

Fig. 1. Heatmaps of distance measure correlation (left), and LFDC values (right)

380 M. Zaefferer, J. Stork, and T. Bartz-Beielstein

5.2 Matrix Condition

For most distance measures, a positive semi-definite matrix could be determined
for each n. Only Adjacency distance with n = 5 and n = 6 did not yield any pos-
itive semi-definite matrices. Hence, one should avoid using Adjacency distance
when the training samples represent a large portion of the search space.

5.3 Optimization Performance

Figure 2 shows the results of the optimization experiments. Each EGO variant
is referred to by the name of the employed distance measure. Results of 2-opt
are not shown, for the sake of brevity. 2-opt usually ranks worse than GA and
only outperforms GA for the three TSP instances. Still, it can not compete with
the model-based approaches. Chebyshev distance (Che.) and RS are consistently
outperformed by the GA and hence not included in the plot.

Fig. 2. Optimization performance: Dots are median, black bars are interquartile range,
thick grey bars are range from minimum to maximum. Smaller values are better.

Distance Measures for Permutations in Combinatorial EGO 381

Three main groups with similar structure can be identified: first, the QAP
instances, second, the TSP and ATSP instances, and third, the WT and FSP
instances. Members of each group have a similar pattern, although the best per-
forming method may not be identical for all members. These three blocks do
coincide with the structure that is visible in the LFDC results. LFDC may iden-
tify the best measure (see e.g., R-Distance and atsp10) or may fail completely
(e.g., Posq. and reC19). LFDC is apparently unsuited to identify a proper dis-
tance measure.

Overall, the model-free GA is always outperformed by at least 5 EGO variants.
Choosing the wrong distance measure may however lead to performance worse
than the model-free GA. Choosing a distance measure with MLE (All) never
ranks worse than 3rd best, making it the most robust method in this test bed.
All ranks first place in 7 of 18 instances. It seems that the underlying problem
does profit from a dynamic choice of distance measure. This behavior may be re-
lated to dynamic behavior observed for the choice of mutation operators through
self-adaption [28]. Many distance measures can be related to specific mutation
operators. The single best distance measure is Hamming distance, yielding best
results in 6 of the 18 test problems, but receiving lower ranks for other instances.
For each problem class, the single best distance measures are: Ham. for QAP,
Lev. for FSP, Adj. for TSP, R for ATSP, Pos. for WT. While the scheduling
problems rather reflect the importance of a relative order, TSP or ATSP are
more concerned with adjacency of neighboring cities. Hence, it makes sense that
a bi-directional adjacency measure is used for TSP, while uni-directional adja-
cency (R-Distance) is used for the ATSP instances. In ATSP, direction matters,
whereas in TSP it does not.

The nice and robust performance of choosing a distance measure with MLE
makes for a promising result. Here, the only issue is to carefully avoid numerical
problems, i.e., to use matrix inversion via Cholesky decomposition. Should the
increased computational effort necessitate a smaller set of distance measures,
Hamming distance should always be included, due to good performance and
lowest cost.

6 Summary and Outlook

This work investigated the suitability of various distance measures in surrogate
modeling for the optimization of several permutation problems. It was shown,
that each problem class or instance may require a different distance measure.
Correlation between distance and fitness values (LFDC) proved to be a poor
way of selecting a distance measure for a given problem class or instance. On
the other hand, integrating the selection of a measure into the MLE process of
a Kriging model proved to be a very well performing and robust approach.

Further research may focus on learning distance measures for Kriging-based
models in combinatorial spaces. Learning of correlation functions with Genetic
Programming is not new [12]. Also, distance measures have been evolved with
GA [8] in the context of string matching. Combining both ideas to evolve better
measures for distance-based models may thus be an interesting path to follow.

382 M. Zaefferer, J. Stork, and T. Bartz-Beielstein

If interpretable distance measures evolve, this may also give interesting insight
into the underlying problems.

Acknowledgments This work has been kindly supported by the Federal Min-
istry of Education andResearch (BMBF) under the grantCIMO (FKZ17002X11).

References

1. Abdul-Razaq, T., Potts, C., Wassenhove, L.V.: A survey of algorithms for the single
machine total weighted tardiness scheduling problem. Discrete Applied Mathemat-
ics 26(23), 235–253 (1990)

2. Allahverdi, A., Ng, C., Cheng, T.E., Kovalyov, M.Y.: A survey of scheduling prob-
lems with setup times or costs. European Journal of Operational Research 187(3),
985–1032 (2008)

3. Altenberg, L.: Fitness distance correlation analysis: An instructive counterexample.
In: Bäck, T. (ed.) ICGA, pp. 57–64. Morgan Kaufmann (1997)

4. Bartz-Beielstein, T., de Vegt, M., Parsopoulos, K.E., Vrahatis, M.N.: Designing
particle swarm optimization with regression trees. Technical Report CI–173/04,
Universität Dortmund, (Mai 2004)

5. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal
of the Operational Research Society 41(11), 1069–1072 (1990)

6. Burkard, R.E.: Quadratic assignment problems. European Journal of Operational
Research 15(3), 283–289 (1984)

7. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB – a quadratic assignment problem
library. Journal of Global Optimization 10(4), 391–403 (1997)

8. Camacho, D., Huerta, R., Elkan, C.: An evolutionary hybrid distance for duplicate
string matching. Technical report, Universidad Autonoma de Madrid (2008)

9. Campos, V., Laguna, M., Mart́ı, R.: Context-independent scatter and tabu search
for permutation problems. INFORMS Journal on Computing 17(1), 111–122 (2005)

10. Caprara, A.: Sorting by reversals is difficult. In: Proceedings of the First Annual
International Conference on Computational Molecular Biology, RECOMB 1997,
pp. 75–83. ACM, New York (1997)

11. Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modelling.
Wiley (2008)

12. Gagné, C., Schoenauer, M., Sebag, M., Tomassini, M.: Genetic programming
for kernel-based learning with co-evolving subsets selection. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.)
PPSN 2006. LNCS, vol. 4193, pp. 1008–1017. Springer, Heidelberg (2006)

13. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM 18(6), 341–343 (1975)

14. Hutter, F.: Automated configuration of algorithms for solving hard computational
problems. PhD thesis, University of British Columbia (2009)

15. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

16. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4), 455–492 (1998)

17. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: International Conference on Genetic Algorithms, pp.
184–192. Morgan Kaufmann Publishers Inc. (1995)

Distance Measures for Permutations in Combinatorial EGO 383

18. Kallel, L., Schoenauer, M.: Fitness distance correlation for variable length repre-
sentations. Technical report, Ecole Polytechnique (1996)

19. Kendall, M., Gibbons, J.: Rank correlation methods. A Charles Griffin Book. E.
Arnold (1990)

20. Lee, C.: Some properties of nonbinary error-correcting codes. IRE Transactions on
Information Theory 4(2), 77–82 (1958)

21. Li, R., Emmerich, M.T.M., Eggermont, J., Bovenkamp, E.G.P., Back, T., Dijkstra,
J., Reiber, J.: Metamodel-assisted mixed integer evolution strategies and their ap-
plication to intravascular ultrasound image analysis. In: Congress on Evolutionary
Computation, pp. 2764–2771. IEEE (2008)

22. Moraglio, A., Kattan, A.: Geometric generalisation of surrogate model based op-
timisation to combinatorial spaces. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011.
LNCS, vol. 6622, pp. 142–154. Springer, Heidelberg (2011)

23. Moraglio, A., Kim, Y.-H., Yoon, Y.: Geometric surrogate-based optimisation for
permutation-based problems. In: Krasnogor, N., et al. (eds.) Genetic and Evolu-
tionary Computation Conference, pp. 133–134. ACM (2011)

24. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Computers & Opera-
tions Research 22(1), 5–13 (1995)

25. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations
Research 86, 473–490 (1999)

26. Reinelt, G.: TSPLIB – A traveling salesman problem library. ORSA Journal on
Computing 3(4), 376–384 (1991)

27. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search land-
scape analysis. Computers & Operations Research 34(10), 3143–3153 (2007)

28. Serpell, M., Smith, J.E.: Self-adaptation of mutation operator and probability
for permutation representations in genetic algorithms. Evolutionary Computa-
tion 18(3), 491–514 (2010)

29. Sevaux, M., Sörensen, K.: Permutation distance measures for memetic algorithms
with population management. In: Metaheuristics International Conference, pp.
832–838 (2005)

30. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47(1), 65–74 (1990)

31. Voutchkov, I., Keane, A., Bhaskar, A., Olsen, T.M.: Weld sequence optimiza-
tion: The use of surrogate models for solving sequential combinatorial problems.
Computer Methods in Applied Mechanics and Engineering 194(30-33), 3535–3551
(2005)

32. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM (JACM) 21(1), 168–173 (1974)

33. Wikipedia. Longest common substring problem — wikipedia, the free encyclopedia
(2014) (Online; accessed March 26, 2014)

34. Zaefferer, M., Stork, J., Friese, M., Fischbach, A., Naujoks, B., Bartz-Beielstein,
T.: Efficient global optimization for combinatorial problems. In: Genetic and Evo-
lutionary Computation Conference (accepted 2014) (preprint)

Boosting Search for Recursive Functions

Using Partial Call-Trees

Brad Alexander and Brad Zacher

School of Computer Science, University of Adelaide, 5005, Australia
bradley.alexander@adelaide.edu.au

brad.zacher@alumni.adelaide.edu.au

http://www.cs.adelaide.edu.au/~brad

Abstract. Recursive functions are a compact and expressive way to
solve challenging problems in terms of local processing. These properties
have made recursive functions a popular target for genetic programming.
Unfortunately, the evolution of substantial recursive programs has proven
difficult. One cause of this problem is the difficulty in evolving both cor-
rect base and recursive cases using just information derived from running
test cases. In this work we describe a framework that exploits additional
information in the form of partial call-trees. Such trees - a by-product
of deriving input-output cases by hand - guides the search process by
allowing the separate evolution of the recursive case. We show that the
speed of evolution of recursive functions is significantly enhanced by the
use of partial call-trees and demonstrate application of the technique in
the derivation of functions for a suite of numerical functions.

Keywords: Recursion, Genetic Programming, Call-Tree, Adaptive
Grammar.

1 Introduction

Recursion is a compact and expressive way to define solutions to challenging
problems in terms of local processing. The brevity and power of recursion have
made the evolution of such functions a popular target for genetic programming
(GP) [5], [9], [6]. Unfortunately, the evolution of non-trivial recursive functions
through GP has proven difficult in practice [1]. One cause of this difficulty is the
need to simultaneously evolve correct code for base and recursive cases [1], [7]
before a good fitness score is achieved.

Several approaches to improve search been tried. These have included: the use
of niches to preserve diversity during search [7]; the automated discovery and
separate evolution of base cases [6]. Other work has narrowed the search-space
using templates expressing common patterns of recurrence [10,11].

However, while these approaches are beneficial, a central problem remains
that the test cases used to evaluate fitness in GP provide poor guidance in the
search for the recursive clause in recursive functions. In this work we improve
search using additional information in form of partial call-trees. We show how this

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 384–393, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.adelaide.edu.au/~brad

Boosting Search for Recursive Functions Using Partial Call-Trees 385

Fig. 1. An example call tree for a Fibonacci function (a) and an equivalent graph (b)
with different ordering of children and shared child nodes

extra information can substantially improve GP search for recursive functions
by allowing code for recursive calls to be separately evolved.

1.1 Call Trees

A call tree, an example of which is shown in Fig 1(a), is a diagram often used
when informally reasoning about recursive problems. Part (b) of Fig 1 shows a
graph which is equivalent to part (a) from the point of view of our framework but
faster for the user to draw1. Each node in the call tree contains the parameter(s)
of the call and each child represents the the sub-calls made by that node. The
return value from a call can also be included in a call tree node. In Fig 1 these
return values are shown in brackets. In this work we only require the user to
provide call-trees with return values for some nodes. Moreover, not every child
call of each node is required and the tree can even be disjoint if the user desires.
Our framework is designed to require no more information from the user than
they might already create in the first, informal, stages of reasoning about a
recursive function. This extra information can then be harnessed to boost GP
search by allowing for the separate evolution of the code for the recursive case.

1.2 Contributions

We describe a framework that extracts information from a call-tree to boost GP
search. We demonstrate that our framework, which we name: Call-Tree-Guided
Genetic Programming (CTGGP), significantly improves the speed of search over
conventional GP search on a range of benchmarks. Moreover, we show that
the structure of partial call trees can be used to guide the choice of grammars
which further restricts the search space. This restricted search space permits the
evolution of functions with quite complex behaviour including functions that
make their calls in loops.

1 For the sake of brevity we will refer to both as trees in this article since our framework
treats both equivalently.

386 B. Alexander and B. Zacher

The rest of this article is structured as follows. In the next section we outline
related work. In section 3 we describe CTGGP and how it processes its inputs
to produce recursive functions. In section 4 we describe our experimental setup
including the benchmarks and grammars we use. In section 5 we present our our
results and, finally, in section 6 we summarise our findings and canvas future
work.

2 Related Work

The difficulty in evolving the base and recursive case of recursive functions has
been recognised by several authors [1], [7], [6]. Nishiguchi and Fujimoto [7] im-
proved search by allowing less fit individuals to be preserved in a niche to main-
tain diversity. Moraglio et al. [6] showed that separate evolution of code for the
base-case significantly improved search. This work is the most similar to ours
in using the idea of separating the search of the cases. However, our work is
differs by separately evolving the recursive-case rather than base-case and, thus,
is complementary to Moraglio’s work.

Other authors have improved performance by reducing the search space by:
restricting grammars to common patterns of computation [11]; or by adapting
grammars to the application [10].

Finally, the use of direct inference about the relationship between recursive
calls is a feature of inductive programming [3,4]. This work has been very effective
in performing direct search. However, such work is typically restricted to list
functions where operators can be more readily inferred from I/O cases.

3 CTGGP

The search algorithms in CTGGP take a partial-call-tree as input and produce
a recursive function in C as output. In our current experiments, CTGGP is
restricted to discovering functions of one or two integer parameters producing
an integer result2. The input tree is quickly authored by the user using a Java
GUI forming part of the system.

The search process in CTGGP is built on Grammatical Evolution [8] using the
C++ GELib (0.26) distribution. Grammatical Evolution (GE) is a GP frame-
work that allows the user to specify an arbitrary grammar for a target language.
GE is then able to use this grammar to guide a genotype-to-phenotype mapping
that maps a bit-string genome into a syntactically correct individual program.
Because this mapping is guided by the grammar, all individuals produced are
syntactically correct in the target language.

CTGGP’s search process has two phases. These are shown in Fig 2. Phase
one evolves code determining the recursive calls of the target function and also
selects grammars to be used in phase two. Phase two evolves the remainder of the
target function. The second phase is a conventional application of GE using the
2 Though we forsee no barriers to generalisation to other types.

Boosting Search for Recursive Functions Using Partial Call-Trees 387

Step1: Extract
Tree Fragments

Step2: Create
Grammars

Step3: Evolve
Recursive Parameters

Phase 1:

Evolve full recursive function

Full grammar + test cases

 Partial call tree

Recursive function

Phase 2:

Fig. 2. Evolutionary process of CTGGP

input and output values (the ones in brackets in Fig 1) as tests in the evaluative
function. As such we won’t describe phase two in further detail. The primary
contribution of this article is in phase one and we describe this next.

3.1 Phase One Search

Phase one has three steps. Step one, extracts tree fragments from the partial
call-tree provided by the user. Step two, adapts and chooses grammars for phase
one and phase two search. Step three uses GE to evolve the code that determines
the parameters to the recursive calls in the recursive case. The code from step
three will be embedded in the candidate programs generated in phase two. We
outline each step in phase one next.

Step One: Producing Tree Fragments. Step one traverses the user-supplied
call tree and, for each non-leaf node, i produces a target tree fragment of the form
(tpi, tci) where tpi is the input parameter to the parent node and target child
list: tci is an unordered list of the child node input parameters. To illustrate: the
list of target fragments for both parts of Fig 1 is

[(3, [1, 2]), (2, [0, 1])] (1)

These target fragments are compared to those produced by candidate individuals
in step three of phase one.

Step Two: Grammar Production. Step two inspects the call tree provided
by the user and, with confirmation from the user, builds the grammars to guide
phase one and phase two search. CTGGP guesses the grammars to be used based
on the number of children per node in the tree. If there are two children per-
node as there are in Fig 1 then it will guess that there are two recursive calls.
In contrast, if there are a variable number of children per node it will guess that
the recursive calls take place in a loop. CTGGP will also guess the number of

388 B. Alexander and B. Zacher

<expr_root> ::= <var> <op> <digit> |
 <digit> <op> <var>
<op> ::= - | * | + | /
<digit> ::= 0 | 1 | 2 | <big_digit>
<big_digit> ::= 3 | 4 | 5 | <bigger_digit>
<bigger_digit> ::= 6 | 7 | <huge_digit>
<huge_digit> ::= 8 | 9
<var> ::= x

<expr_root>::= <guard> -- <param>
<guard> ::= (<var> < i) |
 (<var> % i) == 0 |
 (TRUE)
<param> ::= i <op> <var> | <var> <op> i |
 <var> - i
<op> ::= * | + | /
<var>::= x

(a) (b)

Fig. 3. Phase one grammars (a) for fixed numbers of calls and (b) for calls in a loop

base cases based on the number of calls. Since the tree provided by the user is
not required to be complete, these initial guesses could be wrong and so the user
is asked to confirm and correct the number of call and base cases.

Two sets of grammars are produced. The basic grammar choices for phase
one are shown in Fig 3. Part (a) shows the grammar for the parameters when
the number of calls is fixed. Note there is only one variable allowed: the input
variable x to the recursive function itself. Part (b) shows the grammar used
when the calls take place in a loop. This grammar has two parts: a guard, which
contains a condition determining when a recursive call can be made, and param
forming the call’s parameter.

Figure 4 shows three examples of recursive grammars used in phase two search.
The bolded param and guard keywords indicate where the code from phase
one search is inserted. The examples given are the body: of a Fibonacci function
(part (a)); of a simple linear-recursive function (part (b)) and of a function
making calls in a loop (part (c)). Note, the grammar in part (c) assumes that
the loop is bounded by a control variable, c, whose initial value is passed in as
a parameter to a helper function: aux. The presence of a control variable and
guard allows interesting enumerations to be expressed – beyond those found so
far in the GP literature. Also note that no explicit production for op is given in
part (c). In this case the syntax for op is a pairing of an operator (e.g. +) and
its left-identity (e.g. 0). The variable result is initialised with this left-identity
in the section of code abbreviated as preamble in part (c).

Step Three: Evolving the Recursive Parameters. Step three performs GE
search to evolve parameter expressions of the recursive calls using the phase one
grammar. During this search individuals are evaluated by executing them against
inputs tpi to produce a list of one or more child parameter expressions: cci these
can then be compared to their corresponding target child list tci extracted in
step one. A penalty is assessed in proportion to the mismatch between each tci
and cci all of these penalties are summed to derive the total penalty for the
individual. Thus, in our Fibonacci example, a candidate individual consisting

Boosting Search for Recursive Functions Using Partial Call-Trees 389

<expr_root> ::=
 if(<var> < <digit>){
 return <lit>;
 }else{
 return <expr1> <op> <expr2>;
 }
<expr1> ::= <rec1> |
 (<rec1> <op> <lit>) |
 (<lit> <op> <rec1>)
<expr2> ::= <rec2> |
 (<rec2> <op> <lit>) |
 (<lit> <op> <rec2>)
<rec1> ::= recurse(param1)
<rec2> ::= recurse(param2)
<op> ::= - | * | +
<lit> ::= <digit> | <var>
... as per phase 1 grammar…

<expr_root> ::=
 if (<var> < <digit>) {
 return <lit>;
} else {
 return <expr1>;
}
<expr1> ::= <rec1> |
 <rec1> <op> <lit> |
 <lit> <op> <rec1>
<rec1> ::= recurse(param)
<op> ::= - | * | +
<lit> ::= <digit> | <var>
... as per phase 1 grammar..

<expr_root> ::=
 aux(x,<small_digit>) --
 int aux(int x, int c){
 .. preamble ..
 if(<var> <rel> <small_digit>){
 return <lit>
 }else{
 .. preamble ...
 for(i=<rl>; i< <ru>; i++){
 if(guard)
 result =
 result <op> aux(param,i);
 }
 return result
<rl> ::= c | <lit>
<ru> ::= (<var> + <digit>) |
 (<var> - <digit>) |
 (<digit> - <var>) | <var>
<rel> ::= < | >

(a) (b) (c)

Fig. 4. Phase two grammar for the parameter to the recursive call for Fibonacci. The
param function where the phase one grammar will be substituted is marked in bold.
Note the digit and var productions are the same as for the phase one grammar.

of just one parameter expression x-1 generates for the tpi in (1) above the
candidate child lists: [[2], [1]]. with [2] being generated from the input 3 and [1]
being generated from 2. After candidates cci are generated our phase 1 evaluative
function gauges the match between the cci and their corresponding targets tci.
In our example this means we try to match [1, 2] with [2] and [0, 1] with [1]. Every
match attempt generates a penalty by the assess match procedure shown in
Fig 5. This procedure works by repeatedly: finding the numerically closest pair
of values between targlist and candlist (a process labeled bestMatch in Fig 5);
calculating a distance penalty; and removing matched items from both lists as
it goes. The main loop terminates when one of the lists is depleted. After the
loop, the presence of surplus target expressions means that the candidate list
didn’t cover the target list (i.e. there weren’t enough calls) and a large penalty
is applied. Conversely, surplus candidate expressions could, benignly, indicate
that user didn’t supply all of the child nodes when drawing the partial tree.
A small penalty is applied in proportion to the number of extra candidates. In
our example, when matching candidate [2] with target [1, 2] assess match will
match the 2’s (penalty: 0) and then have [1] remaining in the target list with
a total penalty of BIG PENALTY. The same penalty is assessed for the match
between [1] and [0, 1] and penalties are summed resulting in a total penalty of
2×BIG PENALTY. The values of BIG PENALTY and SMALL PENALTY are
set so that BIG PENALTY is larger than any expected difference in result values
and SMALL PENALTY is much smaller than 1.0. The penalties are summed to
form an evaluative score for an individual. Evolution proceeds until either an

390 B. Alexander and B. Zacher

assess match(targlist,candlist)
penalty = 0;
while (|targlist| > 0 ∧ |candlist| > 0)

(targlisti, candlistj) = bestMatch(targlist, candlist)
penalty = penalty + |targlisti − candlistj |
targlist = targlist \ targlisti
candlist = candlist \ candlistj

end while
penalty = penalty + |targlist| ∗ BIG PENALTY
penalty = penalty + |candlist| ∗ SMALL PENALTY
return penalty

end

Fig. 5. Procedure to assess match between target and candidate lists

individual with zero penalty is found or a set number of generations has elapsed.
Note, that for grammars with more than one recursive call, we run step-three
search once for each recursive call, excluding previously found solutions as we
go. Also note that for grammars with loops we apply the guard to restrict the
calls made but we have to assume large loop bounds. Loop-bounds will not be
evolved precisely until phase two. This can lead to surplus candidate calls and
the small fitness penalty that this entails.

4 Experimental Setup

In our experiments, we compare the search performance of CTGGP to standard
GE. The benchmarks for our experiments are, for an integer parameter (n):
factorial returns the factorial of n; odd-evens returns 0 if nmod 2 = 0 and 1
otherwise; log2 finds �log2 n�; fib and fib3 calculates the Fibonacci and Fibonnaci-
3 number for n; lucas calculates the nth Lucas number; factorings returns the
number of unique factorings of n. sums returns the number of unique sum-
decompositons of n. These latter two benchmarks are not trivially coded by
humans and are not found elsewhere in the literature on recursive GP.

The input is a small tree drawn by CTGGP’s GUI. Trees for three benchmarks
are shown in Fig 6. Note how in part (a) and part (b) we have shared some child
nodes between sub-trees and in (a) we have included some disjoint single node
trees. Trees for our other benchmarks are of very similar size to these.

In both phases of evolution we used GE running on an underlying steady-
state GA with tournament selection. The replacement probability used was 0.25
and probabilities for crossover and mutation were, respectively, 0.9 and 0.01. In
both phases individuals were evaluated by using scripts to insert evolved code
into test harnesses and running Tiny-C-Compiler [2] (TCC) to quickly generate
binaries.

For phase one evolution we used small population of 100 individuals run-
ning for ten generations. For phase two we ran with populations of 200 for the

Boosting Search for Recursive Functions Using Partial Call-Trees 391

Fig. 6. A selection of input trees: log2a, part (a), lucas part (b), factorings part (c)

smaller factorial, log2 and oddeven benchmarks, and with 1000 for the remaining
benchmarks. All phase two experiments were run for 100 generations.

As a control, we ran all benchmarks in a single conventional GE phase with
with a grammar including the recursive case clauses used in phase one. Note, to
better expose the impact of CTGGP these larger grammars were specialised to
each benchmark so that the only difference between the conventional GE and
the CTGGP runs is the former is required to evolve the recursive parameter
code along with the rest of the code3. When evaluating CTGGP we sum the
total number of evaluations required for both phases. All benchmarks were run
on a 2.4GHz Intel core i7 with 4GB of RAM.

5 Results and Discussion

We ran both phases of CTGGP on all benchmarks 100 times. We did likewise
for our single phase comparison benchmarks for conventional GE. Phase one of
CTGGP succeeded in finding the correct code for parameters in all benchmarks
in all runs.

The results comparing the combined cost of phase 1 and phase 2 of CTGGP
with conventional GE are shown in Table 1 The columns show, respectively, the
mean number of evaluations, the sample standard deviation of the evaluation
count, and the percentage of runs yielding a correct result for conventional GE
and CTGGC. Note, that because we limit experiments to 100 generations the
value of x is a lower bound when not all runs are correct. Statistical significance
was assessed using a log-rank test to take account of this truncation.

3 This is perhaps generous to conventional GE which would not be able to select the
correct grammar in the absence of tree information.

392 B. Alexander and B. Zacher

Table 1. Mean number of evaluations and number of correct answers for raw GE and
CTGGP. Significantly better (p << 0.01) means are marked in bold.

problem
Conventional GE CTGGP
x σ correct x σ correct

factorial 1984 1461 99 436 79 100
oddevens 507 343 100 484 160 100
log2 7756 2138 24 3618 3520 81
fib2 32933 10700 53 2156 256 100
fib3 31375 3437 3 7863 4852 100
lucas 32012 10577 40 11713 7736 99
factorings 28266 15695 60 1937 1071 100
summands 38912 7611 26 24926 11642 91

The data from our runs show that, in most benchmarks, CTGGC, significantly
out-performs conventional GE both in terms of the reduced number of evalu-
ations required and the number of times a benchmark was correctly evolved.
The only benchmark that did not show a significant improvement was odde-
ven which presented an easier target than other benchmarks, partly because
it admits a reasonable diversity of solutions. In contrast, the log2 benchmark
exhibited a tendency to prematurely converge toward locally strong solutions.
Likewise, summands exhibited similar tendencies as well being sensitive to the
upper bound of its loop.

Another observation to be made was the high variance in the number of
evaluations required. In CTGGP this is caused by the significant number of
runs which found solutions in the first one or two generations.

In terms of experimental run times we observed TCC to be fast and we set
the timeouts for phase two runs to be small so the average evaluation time for
an individual in both phases is 2 millseconds. Runtimes for phase one evolution
varied from less than five seconds to just over a minute. Runtimes of phase
two evolution varied from less than 20 seconds (for factorial) to several minutes
(for lucas). A final observation to make is that all of the trees used in these
experiments were very easy to draw. This ease of use and the short runtimes are
positive indicators for GTGGP’s future implementation as a practical tool.

6 Conclusions and Future Work

In this article we have shown that incorporating call-tree information into the
GP search process can significantly improve performance at only a small cost in
terms of human effort. The work here is most applicable where code is required
to implement a completely unknown recurrence and the drawing of a partial
call-tree is a natural part of the exploratory process. The usefulness of CTGGP
is in automating the non-trivial step of deriving code from this partial call-tree.

This work can be enhanced in several ways. We could exploit the relationships
implicit in return values to separately derive code combining results of recursive

Boosting Search for Recursive Functions Using Partial Call-Trees 393

calls. We could exploit existing libraries of sequences to express more complex
recurrences in loops. We could combine Moraglio’s technique for discovering
base-cases with ours. Finally, we could integrate hand-drawn-graph-recognition
software into CTGGP to allow direct derivation of recursive code from paper
sketches, completing the chain from pictures to programs.

References

1. Agapitos, A., Lucas, S.: Learning recursive functions with object oriented genetic
programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.
(eds.) EuroGP 2006. LNCS, vol. 3905, pp. 166–177. Springer, Heidelberg (2006)

2. Bellard, F.: Tcc: Tiny c compiler (2003), http://fabrice.bellard.free.fr/tcc
3. Hofmann, M., Kitzelmann, E., Schmid, U.: A unifying framework for analysis and

evaluation of inductive programming systems. In: Proceedings of the Second Con-
ference on Artificial General Intelligence, pp. 55–60 (2009)

4. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: An ex-
planation based generalization approach. The Journal of Machine Learning Re-
search 7, 429–454 (2006)

5. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman (April 1999)

6. Moraglio, A., Otero, F.E.B., Johnson, C.G., Thompson, S., Freitas, A.A.: Evolving
recursive programs using non-recursive scaffolding. In: IEEE Congress on Evolu-
tionary Computation, pp. 1–8 (2012)

7. Nishiguchi, M., Fujimoto, Y.: Evolution of recursive programs with multi-niche ge-
netic programming (mngp). In: Proceedings of the 1998 IEEE International Con-
ference on Evolutionary Computation, pp. 247–252 (1998)

8. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evolutionary Compu-
tation 5(4), 349–358 (2001)

9. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. In: Genetic Programming and Evolvable
Machines, pp. 7–40 (2002)

10. Wong, M.L., Leung, K.S.: Evolving recursive functions for the even-parity problem
using genetic programming. In: Advances in Genetic Programming, pp. 221–240.
MIT Press (1996)

11. Yu, T., Clark, C.: Recursion, lambda-abstractions and genetic programming. Cog-
nitive Science Research Papers-University of Birmingham CSRP, 26–30 (1998)

http://fabrice.bellard.free.fr/tcc

Compressing Regular Expression Sets

for Deep Packet Inspection

Alberto Bartoli, Simone Cumar, Andrea De Lorenzo, and Eric Medvet

Department of Engineering and Architecture, University of Trieste, Italy

Abstract. The ability to generate security-related alerts while analyz-
ing network traffic in real time has become a key mechanism in many
networking devices. This functionality relies on the application of large
sets of regular expressions describing attack signatures to each individ-
ual packet. Implementing an engine of this form capable of operating
at line speed is considerably difficult and the corresponding performance
problems have been attacked from several points of view. In this work we
propose a novel approach complementing earlier proposals: we suggest
transforming the starting set of regular expressions to another set of ex-
pressions which is much smaller yet classifies network traffic in the same
categories as the starting set. Key component of the transformation is
an evolutionary search based on Genetic Programming: a large popula-
tion of expressions represented as abstract syntax trees evolves by means
of mutation and crossover, evolution being driven by fitness indexes tai-
lored to the desired classification needs and which minimize the length
of each expression. We assessed our proposals on real datasets composed
of up to 474 expressions and the outcome has been very good, resulting
in compressions in the order of 74%. Our results are highly encouraging
and demonstrate the power of evolutionary techniques in an important
application domain.

Keywords: Genetic programming, evolutionary optimization, intrusion
detection, traffic classification.

1 Introduction

The ability to generate security-related alerts while analyzing network traffic in
real time has become a key mechanism in many networking devices, ranging
from intrusion detection systems to firewalls and switches. While early systems
classified traffic based only on header-level packet information, modern systems
are capable of detecting malicious patterns within the actual packet payload.
This deep packet inspection capability is usually based on pattern descriptions
expressed in the form of regular expressions, because fixed strings have become
inadequate to describe attack signatures.

Implementing a regular expression evaluation engine capable of analyzing net-
work traffic at line speed is considerably difficult, also because there are usually
hundreds or thousands of regular expressions to be analyzed and this set needs to

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 394–403, 2014.
c© Springer International Publishing Switzerland 2014

Compressing Regular Expression Sets for Deep Packet Inspection 395

be periodically updated to address novel attacks. For this reason, there has been
a considerable amount of recent proposals aimed at handling the corresponding
performance problems. Such proposals have addressed different dimensions of
the design space: optimization of the evaluation algorithm in representations of
regular expressions based on Deterministic Finite Automata (DFA) [1–3]; DFA
representations leading to faster hardware implementations and which require
less memory [4–6]; optimization of the hardware implementation of DFA [7];
development of engines suitable for parallel hardware implementation [8, 9].

In this work, we address a different dimension of the design space and propose
an approach which complements the existing proposals. Rather than optimizing
the steps from the set of regular expressions to their run-time evaluation, we
explore the possibility of greatly reducing the size of the set itself. To this end,
we use an heuristic approach: rather than attempting to construct a new set of
expressions formally equivalent to the original one (but simpler to evaluate at
run-time) [10], we aim at constructing a set with the same detection behavior on
the traffic of interest. As it turns out, this relaxed problem formulation allows
a broad range of compressions and simplifications which would not be possible
when insisting on having exactly the very same detection behavior on all possible
strings.

Key component of our proposal is an evolutionary search phase based on
Genetic Programming (GP). We create a population of regular expressions com-
posed of the set of expressions to be simplified and further randomly-generated
expressions. We then evolve this population by randomly combining expressions
with genetic operators (crossover and mutation) for a predefined number of steps.
The evolution is driven by a multi-objective optimization strategy aimed at min-
imizing two fitness indexes of each expression taken in isolation: classification
errors on the traffic of interest and length of the expression. Finally, we con-
struct a set of regular expressions meant to replace the original one by selecting
a subset of the final population. We select this subset with a greedy procedure
ensuring that the resulting subset tends to have the same detection behavior on
the traffic of interest as the original set.

We assess our proposal on several real sets of regular expressions used in the
Snort1 intrusion detection system—one of the standard testbeds in this specific
research field, e.g., [7, 10, 3]. We considered sets with a number of regular expres-
sions ranging from 10 to 474 and an aggregate length ranging from 260 to about
59 742 The results are highly promising: we obtain a decrease in the number of
regular expressions and a decrease in aggregate length in the order of 74%, on
the average.

2 Our Approach

2.1 Problem Statement

We associate each set of regular expressions R with a numerical cost c(R), which
models the effort required for applying all expressions in R to a given string.
1 http://www.snort.org

http://www.snort.org

396 A. Bartoli et al.

This index should quantify the run-time cost of using R and its actual value
depends on the specific technology used [7]. In this work we use the sum of the
lengths of all expressions in R as a proxy for c(R), i.e., we set c(R) =

∑
r∈R 	(r),

where 	(r) is the length of the regular expression r represented as a string. It will
be clear from the following sections that our approachmay be applied with widely
differing cost definitions: for example, one could consider the number of states of
the Nondeterministic Finite Automata (NFA) implementing each expression [10]
as well as the presence of specific hard-to-evaluate constructs [11].

We say that a regular expression r matches a string s, denoted r ←↩ s, if
r extracts at least one non-empty substring of s. We say that a set of regular
expressions R matches a string s, denoted R ←↩ s, if at least one of the regular
expressions r ∈ R matches s. We say that a set of regular expressions R1 is
equivalent to another set R2 if the set of all the strings matched by R1 is equal
to the set of all the strings matched by R2. Given a finite set S of sample strings,
we say that R1 is S-equivalent to R2 if the set of all the strings in S matched by
R1 and R2 is the same, i.e., {s ∈ S : R1 ←↩ s} = {s ∈ S : R2 ←↩ s}.

Given a starting set of regular expressions Rs, we generate synthetically from
this set a positive set S+ of matched strings and a negative set S− of strings which
are not matched. We aim at identifying a different set of regular expressions Rf

such that:(i) Rs and Rf are (S+ ∪ S−)-equivalent; and, (ii) c(Rf) < c(Rs).
To solve this problem, we proceed as follows.

1. We generate S+ and S− from Rs with the same cardinality. We then ran-
domly partition each set in three subsets to be used in the two next phases of
the algorithm and for testing: i.e., we partition S+ in S+

evolution, S
+
selection and

S+
testing, and the same for S−. In this work we chose to use three equally-sized

subsets, but different choices are possible.
2. In the evolution phase, we evolve the starting set of regular expressions Rs

with a stochastic procedure based on GP. The evolution is driven by a multi-
objective optimization strategy aimed at minimizing two performance in-
dexes of each expression r taken in isolation: errors of r on S+

evolution, S
−
evolution

and length of the expression 	(r). We execute n independent evolutions, each
evolution producing a set of regular expressions Ri

e, with i = 1, . . . , n.
3. In the selection phase, we construct a candidate target set Ri

f based on the
set Ri

e generated in the previous phase, with i = 1, . . . , n. The construction
of each set Ri

f is made with a set coverage algorithm aimed at selecting a
subset of Ri

e matching all examples in S+
selection and no example in S−

selection.
The coverage is driven by a greedy strategy aimed at minimizing the cost of
Ri

f . We select as target set Rf the set Ri
f with smallest cost.

We emphasize that the evolution phase optimizes performance indexes of each
regular expression taken in isolation, while the selection phase optimizes an index
resulting from the coordinated effort of all the regular expressions.

We assessed our procedure on several sets of regular expressions used in Snort.
For each set Rs, we assessed the generated target set Rf by comparing its cost
c(Rf) to the cost of the original set c(Rs). Furthermore, we verified that Rf

matches all strings in S+
testing and does not match any string in S−

testing.

Compressing Regular Expression Sets for Deep Packet Inspection 397

The starting set of expressions Rs is obtained from detection rules generated
by administrators, each expression in Rs being associated with exactly one de-
tection rule. Transforming Rs to a different set Rf , much cheaper to evaluate at
run-time, implies that when Rf matches a given string there is usually no imme-
diate correspondence with detection rules. This issue is intrinsic to any approach
aimed at optimizing Rs as a whole, e.g., [10], as opposed to optimizations where
the original regular expressions are left unchanged. We remark, though, that
identifying the detection rule in order to generate a meaningful alert description
may be done rather simply: once Rf has classified a certain packet as a positive,
it suffices to apply Rs on that packet. The key observation is that packet process-
ing has to be performed at line speed, while alert description may proceed at a
much slower pace. Indeed, this strategy also allows correcting any false positive
misclassifications due to the tranformation from Rs to Rf—a packet classified
as positive by Rf which is actually not matched by any expression in Rs would
not generate any alert.

2.2 Representation

We represent each regular expression as an abstract syntax tree. A regular ex-
pression r is produced from a tree by concatenating node labels encountered
in a depth-first post order visit of the tree. The label of each leaf node is an
element from a predefined terminal set whereas the label of each branch node is
an element from a predefined function set.

The terminal set is composed of constants (a, . . . , z, A, . . . , Z, 0, . . . , 9, \x00,
. . . , \x07, -, ?, (,), {, }, ., @, #, , , . . .) and character classes (\w, \W, \d, \D,
\s, \S, a-z and A-Z). The function set is composed of the following operators:
the concatenator ··, which concatenates its two children (the dot character ·
represents a placeholder for the children nodes of the corresponding node); the
character class operators [·] and [^·], the non-capturing group (?:·) operator,
the capturing group (·) operator, the disjunction ·|· operator and the greedy
quantifiers (·*, ·+, ·?, ·{·,·}).

2.3 Set Equivalence by Sample Strings

An essential component of our heuristic approach is the choice of the sets S+,
S− of sample strings to be used for checking the (relaxed) equivalence of the
starting set and final set of regular expressions. These samples may be chosen in
several ways, for example by using a synthetic traffic generator specialized for
evaluating deep packet inspection architectures [12]. Another possibility consists
in using samples of real traffic explicitly collected for assessing intrusion detection
systems [13, 14]. In this paper, we chose to use a simpler approach in which
we generate traffic synthetically based solely on the structure of the regular
expressions in the starting set Rs, as described below. Further experimentation
with traffic generation strategies like those of the cited works is certainly required
in order to better validate our results.

398 A. Bartoli et al.

For each regular expression r ∈ Rs, we generate k positive strings s such
r(s) = s—where r(s) denotes the leftmost non-empty substring of s extracted
by r. Then, we generate k|Rs| random strings such that R does not match any
of these negative strings. The outcome of the procedure consists of the sets S+,
S−, such that(i) ∀s ∈ S+, Rs ←↩ s, (ii) ∀s ∈ S−, Rs �←↩ s, and (iii) |S+| = |S−| =
k|Rs|.

We generate each positive string s from a r ∈ Rs as follows. We traverse the
tree representation of r (see previous section) in depth-first: each function node
generates a string which depends on the node and its children; each terminal
node generates a string which depends on the node only. For example, the termi-
nal node \d generates a digit with uniform probability; the disjuction node ·|·
generates the first child or the second child string, with equal probability.

We generate each negative string s ∈ S− at random. If Rs ←↩ s, we drop s
and randomly generate a new one. Negative strings have a maximum length of
120 characters.

2.4 Evolution Phase

In this phase, we evolve the starting set of regular expressions Rs with a pro-
cedure based on GP and produce a set of regular expressions Ri

e which will be
used in the next phase: the whole procedure described in this section is repeated
for i = 1, . . . , n and different random seeds. We use an approach which follows
closely a proposal for generating automatically regular expressions for text ex-
traction based on labelled examples [15]. We summarize the approach in order to
provide sufficient background for this work and outline at the end of this section
the changes which we applied to the original approach.

The evolutionary search, described below, is based on the NSGA-II [16] multi-
objective optimization algorithm. Each candidate solution r has two fitness in-
dexes to be minimized: the length 	(r) of the regular expression and an index
e(r) quantifying the classification errors of r on S+

evolution, S−
evolution. In detail,

the index e(r) is defined as:

e(r) =
∑

s∈S+
evolution

d (s, r (s)) +
∑

s∈S−
evolution

d (∅, r (s)) (1)

where d(s1, s2) is the Levenshtein distance (edit distance) [17] between strings
s1 and s2—note that d(∅, s) = 	(s). In other words, e(r) is the sum of two
components: sum of distances between positive strings and what was actually
extracted from the positive string; and, sum of distances between the empty
string and what was actually extracted from the negative strings. The rationale is
that a perfect r should extract exactly s from each s ∈ S+

evolution—since positives
s have been generated such that r(s) = s, with r ∈ Rs—and should not extract
any string from each s ∈ S−

evolution. We remark that e(r) quantifies extraction
errors rather classification errors, that is, the desired behavior is described in
terms of (possibly empty) substrings to be extracted from sample strings, rather
than in terms of two categories of strings. We chose to not deviate from such

Compressing Regular Expression Sets for Deep Packet Inspection 399

formulation because the cited paper argues that fitness definitions based on mere
classification could not be adequate to drive the evolutionary search toward the
generation of regular expressions with the desired behavior—different fitness
indexes could be explored in future work, though.

Each evolutionary search is made on a population of 500 candidate solutions.
The initial population consists of all the regular expressions in the starting set
Rs and 500 − |Rs| regular expressions generated at random. The population
evolves for 500 generations, as follows (recall that we execute n independent
searches, each producing a set of 500 candidate solutions). Let P be the cur-
rent population. We generate an evolved population P ′ as follows: 20% of the
regular expressions are generated at random, 20% of the regular expressions are
generated by applying the genetic operator “mutation” to regular expressions
of P , and 60% of the regular expressions are generated by applying the genetic
operator “crossover” to a pair of individuals of P . We select regular expressions
for mutation and crossover with a tournament of size 7, i.e., we pick 7 regular
expressions at random from P and then select the best regular expressions in this
set, according to NSGA-II. Finally, we generate the next population by choosing
the regular expressions with highest fitness among those in P and P ′. The size
of the population is kept constant during the evolution. Upon generation of a
new regular expression, we check its syntactic correctness: if the check fails, we
discard the regular expression and generate a new one. The outcome set Ri

e is
set to the final population.

The approach described in this paper differs from the original proposal in [15]
in the following points.

1. The initial population is not generated completely at random: it includes all
the expressions in the starting set.

2. The terminal set includes more constants: enlarging the cardinality of the
terminal set, as well as of the function set, greatly enlarges the size of the
solution space.

3. The function set includes the disjunction operator: it is disadvantageous
to use in text extraction because it tends to promote overfitting of the la-
belled examples. Furthermore, the function set includes the greedy quanti-
fiers (·*, ·+, ·?, ·{·,·}) and does not include possessive quantifiers (·*+, ·++,
·?+, ·{·,·}+). The former are included because largely used in the starting
set Rs, the latter are not included because they are often not supported in
deep packet inspection tools.

Inclusion of greedy quantifiers with the standard Java engine for processing
regular expressions often results in unacceptably long execution times for this
form of evolutionary search [15]. For this reason, we used a different engine,
internally built with NFA2, where the processing cost depends only on the length
of the inputs rather than also on the structure of the expression.

2 RE2: https://code.google.com/p/re2

https://code.google.com/p/re2

400 A. Bartoli et al.

2.5 Selection Phase

In this phase we construct a candidate target set Ri
f based on the set Ri

e of
regular expressions resulting from the ith evolution (i = 1, . . . , n) and then
select as target set Rf the set Ri

f with smallest cost.
To construct each Ri

f , we consider S+
selection as a set to be covered by regular

expressions in Ri
f (an element of S+

selection being covered if it is matched by a
regular expression in Ri

f). We then execute a set coverage procedure aimed at
selecting a subset of Ri

e matching all examples in S+
selection and no example in

S−
selection, as follows.
We define the score S(r, S′, S′′) of a regular expression r on the sets S′, S′′

as the number of examples in S′, S′′ which r handles correctly:

S(r, S′, S′′) = |{s ∈ S′ : r ←↩ s}|+ |{s ∈ S′′ : r �←↩ s}| (2)

Similarly, we define the score S(R,S′, S′′) of a set R on the sets S′, S′′ of reg-
ular expressions the number of examples in S′, S′′ which R as a whole handles
correctly:

S(R,S′, S′′) = |{s ∈ S′ : R ←↩ s}|+ |{s ∈ S′′ : R �←↩ s}| (3)

The greedy set coverage algorithm starts with Ri
f := ∅, S′ := S+

selection and
consists of the following steps:

1. select r ∈ Ri
e \Ri

f with highest score S(r, S′, S−
selection);

2. if S(Ri
f ∪ {r}, S+

selection, S
−
selection) ≤ S(Ri

f , S
+
selection, S

−
selection) then termi-

nate;
3. Ri

f := Ri
f ∪ {r};

4. S′ := S′ \ {s ∈ S+
selection : Ri

f ←↩ s}
5. if S′ = ∅ or Ri

f = Ri
e then terminate, otherwise go to step 1.

In other words, candidates for inclusion in Ri
f are taken from Ri

e and the choice
is driven by the score of candidates on S′, S−

selection. The strategy is greedy in
the sense that once a candidate is chosen it cannot be removed by a later choice.

These steps are followed by further completion steps, to be executed in case of
termination with S′ �= ∅. The completion steps consist in a further execution of
the above algorithm, this time starting from the Ri

f obtained at the end of the
former algorithm (rather than from Ri

f := ∅) and by selecting candidates from
the original expressions Rs—i.e., in step 1, r is chosen in Rs \Ri

f rather than in
Ri

e \ Ri
f . The rationale is that if elements from Ri

e fail to detect some positives,
then the missing positives can be detected by some of the original expressions
in Rs.

3 Experimental Evaluation

3.1 Datasets

We used several real sets of regular expressions used in the Snort intrusion de-
tection system, which have been collected by the Netbench project [18]. Table 1

Compressing Regular Expression Sets for Deep Packet Inspection 401

Table 1. Datasets

Rs |Rs| c(Rs) k |S+ ∪ S−|
chat.rules.pcre 14 307 105 2940
pop3.rules.pcre 16 265 105 3360
policy.rules.pcre 10 260 105 2100
web-php.rules.pcre 16 400 105 3360
ftp.rules.pcre 35 645 60 4200
spyware-put.rules.pcre 460 16 277 60 55 200
web-activex.rules.pcre 474 59 742 60 56 880

lists these sets, along with their cardinality and their cost (i.e., aggregate length
of all the regular expressions in the set). The table also shows the value k we
used in the procedure for generating S+, S− for each set Rs and the resulting
number |S+ ∪ S−| = 2k|Rs| of sample strings.

3.2 Results and Discussion

We applied our approach to each dataset Rs and assessed, in each case, the
quality of the resulting set Rf with the following indexes. We quantified the cost
reduction by computing the compression ratio defined as 1− c(Rf)

c(Rs)
. Concerning

the detection behavior, we computed False Positive Rate (FPR, i.e., percentage
of strings in S−

testing which are matched by Rf) and False Negative Rate (FNR,
i.e., percentage of strings in S+

testing which are not matched by Rf). We also
computed accuracy as 1− 1

2 (FPR+FNR). Of course, Rs exhibits FPR = FNR =
0 by construction of sets S+, S−. Thus, Rf should also exhibit FPR = FNR = 0
but coupled with a compression rate close to 100%.

Table 2 shows the results of our experimental evaluation. The table also shows
the performance indexes without the completion steps in the selection phase, in
order to highlight to which extent these steps improve results.

Table 2. Results

Without completion steps With completion steps
Rs FPR FNR Acc. 1− c(Rf)

c(Rs)
FPR FNR Acc. 1− c(Rf)

c(Rs)

chat.rules.pcre 0.0 50.0 75.0 96.10 0.0 0.0 100.0 70.66
pop3.rules.pcre 2.7 0.0 98.7 91.33 2.7 0.0 98.7 91.33
policy.rules.pcre 88.5 0.0 55.9 8.62 88.5 0.0 55.9 8.62
web-php.rules.pcre 24.5 6.3 84.6 67.00 24.5 0.0 87.8 66.50
ftp.rules.pcre 15.9 7.4 88.4 53.96 15.9 0.0 92.2 48.99
spyware-put.rules.pcre 3.3 9.5 93.6 99.01 1.6 0.0 98.3 91.26
web-activex.rules.pcre 0.0 0.0 100.0 99.97 0.0 0.0 100.0 99.97

It can be seen that the average compression ratio amongst the datasets is
74%, but the key result is that the two largest datasets (spyware-put.rules.pcre
and web-activex.rules.pcre) can be compressed to less than 1% of the original
size—without affecting accuracy significantly.

402 A. Bartoli et al.

We also remark that FNR is zero for all the datasets (thanks to the completion
steps) and that FPR is very low for 4 on 7 datasets, but can be reduced to zero
on all the datasets as discussed in Section 2.1 (it suffices to apply the original Rs

only on those strings which are matched by Rf , which still allows exploiting the
advantages of compressions because only Rf has to be applied at line speed).

We performed our experiments on an Intel i5-3470 3.20GHz machine with
8GB RAM: the time required to process a single dataset was of 4 h on the
average.

4 Concluding Remarks

Applying large sets of regular expressions to network traffic while operating
at line speed is a challenging problem which has been attacked from several
perspectives. In this work, we propose a novel approach complementing earlier
proposals and assessed its feasibility. We considered the possibility of transform-
ing the starting set of regular expressions to another set of expressions which
is much smaller yet classifies network traffic in the same categories as the start-
ing set. Key component of the transformation is an evolutionary search based
on GP: a large population of regular expressions represented as abstract syntax
trees evolves by means of mutation and crossover, evolution being driven by
fitness indexes tailored to the desired classification needs and which minimize
the length of each expression. The desired set of expressions is then built with
a greedy algorithm which selects from the available expressions a small set set
matching all positive samples and not matching any negative. We remark that
the evolutionary search optimizes each expression taken in isolation, while the
selection phase optimizes the performance of the target population.

We experimented with real datasets and the outcome has been very good,
resulting in compressions in the order of 74% across all datasets but well above
90% on the bigger datasets composed of hundreds of expressions. Such compres-
sions could be even improved further by applying other proposals to the final
result, e.g., by minimizing the number of states of the NFA representing the final
set of expressions [10]. While our proposal certainly needs further investigation,
in particular, concerning its performance on real network traffic (see Section 2.3),
we do believe that our results are highly encouraging and demonstrate the power
of evolutionary techniques in an important application domain.

References

1. Yu, F., Chen, Z., Diao, Y., Lakshman, T., Katz, R.H.: Fast and memory-efficient
regular expression matching for deep packet inspection. In: Proceedings of the
2006 ACM/IEEE Symposium on Architecture for Networking and Communications
Systems, pp. 93–102. ACM (2006)

2. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Computer Communication Review 36(4), 339–350 (2006)

Compressing Regular Expression Sets for Deep Packet Inspection 403

3. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression
evaluation. In: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems, pp. 145–154. ACM (2007)

4. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. In: ACM SIGARCH Computer
Architecture News, vol. 34, pp. 191–202. IEEE Computer Society (2006)

5. Kong, S., Smith, R., Estan, C.: Efficient signature matching with multiple alphabet
compression tables. In: Proceedings of the 4th International Conference on Security
and Privacy in Communication Netowrks, vol. 1. ACM (2008)

6. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state
merging. In: INFOCOM 2007, 26th IEEE International Conference on Computer
Communications, pp. 1064–1072. IEEE (2007)

7. Meiners, C., Patel, J., Norige, E., Liu, A., Torng, E.: Fast regular expression match-
ing using small TCAM. IEEE/ACM Transactions on Networking 22(1), 94–109
(2014)

8. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspec-
tion. In: Proceedings of the 2007 ACM CoNEXT Conference, p. 1. ACM (2007)

9. Becchi, M., Crowley, P.: Efficient regular expression evaluation: theory to practice.
In: Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pp. 50–59. ACM (2008)

10. Kosar, V., Korenek, J.: Reduction of fpga resources for regular expression matching
by relation similarity. In: 2011 IEEE 14th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), pp. 401–402. IEEE (2011)

11. Bispo, J., Sourdis, I., Cardoso, J.M.P., Vassiliadis, S.: Synthesis of regular expres-
sions targeting fPGAs: Current status and open issues. In: Diniz, P.C., Marques, E.,
Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419,
pp. 179–190. Springer, Heidelberg (2007)

12. Becchi, M., Franklin, M., Crowley, P.: A workload for evaluating deep packet in-
spection architectures. In: IEEE International Symposium on Workload Charac-
terization, IISWC 2008, pp. 79–89. IEEE (2008)

13. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput-
ers & Security 31(3), 357–374 (2012)

14. Black hat USA 2010: SprayPAL: how capturing and replaying attack traffic can
save your IDS 1/2 (September 2010)

15. Bartoli, A., Davanzo, G., De Lorenzo, A., Medvet, E., Sorio, E.: Automatic syn-
thesis of regular expressions from examples. IEEE Computer (2013) (Early Access
Online)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

17. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707 (1966)

18. Pus, V., Tobola, J., Kosar, V., Kastil, J., Korenek, J.: Netbench: Framework for
evaluation of packet processing algorithms. In: Proceedings of the 2011 ACM/IEEE
Seventh Symposium on Architectures for Networking and Communications Sys-
tems, pp. 95–96. IEEE Computer Society (2011)

Inferring and Exploiting Problem Structure

with Schema Grammar

Chris R. Cox and Richard A. Watson

Department of Electronics and Computer Science
University of Southampton, UK
{c.cox,r.a.watson}@soton.ac.uk

Abstract. In this work we introduce a model-building algorithm that is
able to infer problem structure using generative grammar induction. We
define a class of grammar that can represent the structure of a problem
space as a hierarchy of multivariate patterns (schemata), and a compres-
sion algorithm that can infer an instance of the grammar from a collec-
tion of sample individuals. Unlike conventional sequential grammars the
rules of the grammar define unordered set-membership productions and
are therefore insensitive to gene ordering or physical linkage. We show
that when grammars are inferred from populations of fit individuals on
shuffled nearest-neighbour NK-landscape problems, there is a correlation
between the compressibility of a population and the degree of inherent
problem structure. We also demonstrate how the information captured
by the grammatical model from a population can aid evolutionary search.
By using the lexicon of schemata inferred into a grammar to facilitate
variation, we show that a population is able to incrementally learn and
then exploit its own structure to find fitter regions of the search space,
and ultimately locate the global optimum.

Keywords: Generative grammar, compression, evolutionary algorithm,
estimation of distribution algorithm, NK fitness landscape.

1 Introduction

The field of natural computing has proposed a variety of both implicit and ex-
plicit model-building algorithms that attempt to infer the structure of a problem
from populations of above-average-fitness individuals. The intuition is that by
using these models evolutionary search can be directed to promising areas of a
high-dimensional fitness landscape by recombining multivariate features that are
commonly found in fit individuals. The best known implicit model is variation by
crossover in sexual genetic algorithms. The seminal work of Holland on “Schema
Theorem” [1] and subsequently Goldberg on the “Building Block Hypothesis”
[2] showed that, at least in theory, crossover offers a scheme under which fit mul-
tivariate patterns known as schemata can grow in frequency in an evolutionary
population. Moreover, these schemata can act as genetic building blocks that
can themselves be recombined, allowing evolutionary search to be performed

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 404–413, 2014.
c© Springer International Publishing Switzerland 2014

Inferring Problem Structure with Schema Grammar 405

at higher levels of organisation. More recently Estimation of Distribution Algo-
rithms (EDAs) have been proposed that attempt to build explicit, probabilistic
models of fit individuals that can be sampled in order to evolve a population
through either constructive or perturbative variation (see [3] for a review). These
methods have been shown to be competent at solving many different types of
problem, including problems that have proven difficult for crossover-based GA’s.

In this paper we present an alternative method of explicitly modelling prob-
lem structure. Unlike other explicit modelling techniques that build probabilis-
tic models of a sample population using statistical inference, we build a lossless
model using grammatical inference. By a lossless model we mean a model from
which the original samples can be recreated without any loss of information.
Indeed, we will show that the grammar induction algorithm used here is a type
of lossless compression algorithm that identifies a hierarchy of genetic schemata
with which the sample population can be more compactly described. A key fea-
ture of the “schema grammar” we introduce is that it generates combinatorial as
opposed to sequential languages, with the rules it encodes producing unordered
sets of symbols rather than ordered sequences or strings. This sets it apart from
traditional sequential grammars and enables grammatical inference in combina-
torial problem space for the first time.

We have recently demonstrated the value of this modelling technique in solving
synthetic building block problems, showing that the simple modular structure
in these problems can be correctly inferred and then reused to facilitate superior
time complexity in global search [4]. In the present paper we investigate NK-
landscape problems [5], which are irregular and unpredictable but contain an
inherent statistical structure. We show that by information about this structure
can be learned from a sample population of fit individuals using schema gram-
mar, and that by using the the lexicon of schemata inferred into a grammar
to facilitate variation, a population is able to locate fitter regions of the search
space and ultimately locate the global optimum.

2 Compression Evolutionary Algorithms

Our objectives when building a model of fit individuals in a population are to
identify any inherent structure within the fitness landscape, visible as variable
dependencies, and exploit it within the evolutionary search process. Toussaint
suggested that one way of achieving this is using Compression Evolutionary
Algorithms [6]. By compressing a sample population of phenotypes any depen-
dencies that are present in the population are factored into the structure of the
compression model, and what is left is a compressed, decorrelated representation.
The idea is that if we consider this compressed representation to be a genotype,
and the compression model a genotype-phenotype map, then random perturba-
tion of the genotype will produce phenotypes that obey the dependencies of the
problem space. The concept is somewhat similar to the Grammatical Evolution
(GE) techniques used in genetic programming [7] in which genetic programs are
evolved using a grammar as a genotype-phenotype map, although in the GE

406 C.R. Cox and R.A. Watson

case the grammars are predefined using knowledge of the problem rather than
inferred.

Toussaint was able to demonstrate the concept of Compression EA’s on vari-
able length problems using sequential grammar inference as the compression
model, however the constraints of sequential grammars limit the practical use-
fulness of the technique. Specifically, only sequentially-contiguous variable de-
pendencies can be modelled, and it is not possible to infer the length constraints
or positional structure of a problem.1 The approach we outline here is an type of
Compression Evolutionary Algorithm, also using grammar inference as a com-
pression model, however we overcome the limitations described above by using a
set grammar that can produce combinatorial rather than sequential languages,
and a genetic encoding with no intrinsic sequential order. This allows us to
apply Compression Evolutionary Algorithms to a wider range of evolutionary
problems.

3 Schema Grammar

Schema grammar is able to represent and compress any combinatorial expressions
that can be encoded as an unordered set of terminal symbols which represent the
“alphabet” of the problem space. In this paper we will consider n-dimensional bi-
nary spaces only. In order to encode genotypes and schemata in the required way
we adopt the Messy GA encoding of Goldberg et al [9]. The encoding offers an al-
ternative scheme to bit strings for addressing n-dimensional binary spaces using
order-independent sets of 〈locus|allele〉 tuples, for example the bit string 0110 can
be represented by the set {〈0|0〉, 〈1|1〉, 〈2|1〉, 〈3|0〉}. In an n-dimensional problem
the complete alphabet of terminal symbols,Σ, is just the set of all possible alleles:

Σ = {〈λ|α〉 : λ ∈ {0, .., n}, α ∈ {0, 1}} (1)

The grammar is a type of context-free grammar (CFG) similar to the context-
free grammar codes that are typically used for sequential compression (see [10]
for a review). It has straight-line properties such that each non-terminal sym-
bol (variable) in the grammar is only associated with one production rule and
there are no loops in production. These properties ensure that productions are
deterministic: in our context this ensures a surjective mapping from genotype to
phenotype. Production rules in the grammar are expressed in terms of set mem-
bership relations, so using the previous example we can define a non-terminal
symbol that represents an individual genotype g using the production rule:

g → {〈0|0〉, 〈1|1〉, 〈2|1〉, 〈3|0〉}
The encoding also provides a very natural way of representing variable inter-

actions as genetic schemata, including those that may overlap in locus or allele
1 The meta-Grammar Genetic Algorithm described in [8] manages to apply sequential
grammars to solving concatenated trap problems by using “wrapping operators” and
pre-defined GE grammars to overcome these limitations.

Inferring Problem Structure with Schema Grammar 407

Table 1. An example grammar extract showing two genotypes that are specified using
schemata. The phenotype expansion of each rule is shown in the second column using
standard schema notation. Note that the example shown does not constitute a compact
representation of the two genotypes - it is used to illustrate the nature of the G-P
mapping.

g0 → {s0, 〈2|0〉, 〈3|0〉} g0
∗=⇒ 110011

g1 → {s3, 〈0|0〉, 〈2|1〉, 〈3|1〉, 〈4|0〉} g1
∗=⇒ 011100

s0 → {s1, s2} s0
∗=⇒ 11**11

s1 → {〈0|1〉, 〈5|1〉} s1
∗=⇒ 1****1

s2 → {〈1|1〉, 〈4|1〉} s2
∗=⇒ *1**1*

s3 → {〈1|1〉, 〈5|0〉} s3
∗=⇒ *1***0

space. Moreover, the recursive properties of production rules allow schemata
to be modelled using multiple levels of sub-schemata, which can be a far more
compact representation if those sub-schemata are used in multiple places. These
qualities are illustrated in Table 1 below.

We use each instance of schema grammar to represent a genetic population
with the symbol table of the grammar providing a surjective mapping of geno-
types G to phenotypes P . We specify the mapping as the recursive expansion of
the production rules associated with each genotype (denoted using ∗=⇒):

P = {p : g ∗=⇒ p, g ∈ G} (2)

Similarly, we say that the phenotype mapping of each schema symbol in S is
simply the recursive expansion of the production rules associated with each sym-
bol. It is through this mapping mechanism that we later create genetic variation
operators for evolutionary search. The phenotype mappings for both complete
genotypes and individual schemata is shown in the second column of Table 1.

We can now formally define schema grammar as the 5-tuple:

GSchema = (V,G, S,Σ,R), where: (3)

V is a set of non-terminal symbols (variables), each of which defines a
sub-language of GSchema, where V % {G,S} and G ∩ S ∈ ∅

G is a non-empty set of non-terminal symbols representing the geno-
types in the sample population

S is a set of non-terminal symbols representing genetic schemata, which
may be empty

Σ is the set of terminal symbols specified in equation (1)
R is a finite set of production rules that relate each non-terminal symbol

to the expansion of an unordered set of symbols, such that R : V →
{V ∪Σ}∗

408 C.R. Cox and R.A. Watson

4 Grammar Inference

In this section we describe an offline lossless compression algorithm that is able
to infer an instance of schema grammar from a population of sample genotypes.
The algorithm we use is based on an adaptation of two existing sequential com-
pression algorithms that use grammar codes: RE-PAIR (recursive pairing), an
offline algorithm from Larsson and Moffat [11] and SEQUITUR, an online algo-
rithm from Nevill-Manning and Witten [12]. The central principle of both our
algorithm and the sequential algorithms from which it derives is to infer depen-
dency from frequency of co-occurrence. In sequential compression we define co-
occurrence as two symbols appearing next to each other (in order) in a string. In
schema grammar we define co-occurrence as two symbols being members of the
same set, which is order independent. For example, in the sequential production
rule x → abc the two co-occurrences present are ab and bc. In schema grammar
the co-occurrences in the production rule x → {a, b, c} are the 2-combinations
{a, b}, {a, c}, {b, c}.

Compression starts by creating a grammar with no schemata (S = ∅) and a
direct mapping of genotypes to phenotypes using the Messy-GA encoding. The
process proceeds iteratively in a way analogous to RE−PAIR: on each iteration
the two most frequently co-occurring symbols in the genotype encodings G are
identified, choosing randomly if two co-occurrences have the same frequency. A
new non-terminal symbol is created that expands to the symbol pair and is added
to S. All co-occurrences of the two symbols in the samples are then substituted
with a single occurrence of the new non-terminal symbol. This process continues
recursively until no two symbols co-occur anywhere in the grammar more than
once. Larger schemata are formed by the recursive substitution of non-terminal
symbols.

We also adopt the rule utility constraints of SEQUITUR which allow un-
necessary nested hierarchies of symbol pairs to be collapsed into larger symbols.
The procedure is simply implemented by taking any non-terminal symbols that

Fig. 1. Illustration of the offline compression algorithm

Inferring Problem Structure with Schema Grammar 409

are referenced only once in the production rules and reversing the symbol substi-
tution. This situation can occur when a particular combinatorial pattern of size
|s| > 2 only ever appears whole in the samples, with subsets of the pattern not
appearing more frequently. Rather than creating a nested hierarchy of |s| − 1
non-terminal symbols only one is required. The end result of the process is a
compressed, decorrelated genotype representation and a G-P map implemented
using a hierarchy of schemata. The operation of the algorithm is illustrated in
Fig 1.

5 Inferring and Exploiting Problem Structure

In this section we investigate the ability of the grammar to infer problem struc-
ture from fit individuals on NK-landscapes [5], and then exploit the structure
to improve evolutionary search. NK-landscape problems use a simple bit-string
representation for candidate solutions and are parameterised by n, which speci-
fies the problem size (in bits), and k, which specifies the number of “neighbours”
of each bit. We use the nearest neighbour variant of the problem such that the
neighbours of each bit overlap in an ordered way (see [5] for details), but shuffle
the bits to remove any explicit sequential linkage. By varying neighbourhood size
k we are able to tune the degree of correlation structure present in the problem
from a completely correlated, unimodal landscape (where k = 0) to a completed
uncorrelated, random landscape (k = n− 1).

Fitness is calculated as the sum of individual bit fitnesses, each of which is
a function of its own state and that of the neighbours to which it is connected.
A lookup table fi is created for each bit that maps each of the 2k+1 possible
input states associated with bit i and its neighbours to a random fitness value
in the range 0 to 1. We define the fitness F of a n-bit bitstring X with state
(x0, x1, ..., xn−1) as:

F (X) =
1
n

n−1∑
i=0

fi(xi, Ω(i)) (4)

Where Ω(i) is the state of the k neighbours of bit i. Within the framework of
schema grammar a phenotype bitstring X is generated from a schema grammar
genotype g by the phenotypic expansion of the production rules associated with
g (see Section 3), and rendering the resulting set of terminal symbols as a bit
string.

In order to identify individuals of above-average fitness we used the schema
search process described in Algorithm 1 below. Schema search is a stochastic lo-
cal search process that is able to use the symbols of schema grammar as variation
operators. The search operates in phenotype space and implements phenotypic
variation using the recursive expansions of each variation symbol (overwriting
any symbols occupying the same loci). The set of symbols used for schema search
specify the search neighbourhood, and when it is used with terminal symbols (i.e.
individual allele values) it is equivalent to a stochastic bit-flip hill climber.

410 C.R. Cox and R.A. Watson

Algorithm 1. Schema Search Pseudocode
input : initial phenotype bitstring pi
input : variation symbol set Λ
output: phenotype bitstring po
po ← pi
for λ ∈ RandomPermutation(Λ) do

candidate p ← po
ExpandInto(candidate p, λ)
if F (candidate p) > F (po) then

po ← candidate p
end

end

We generated populations of fit individuals on NK-landscapes with varying
epistasis k. For each population we randomised phenotypes and use schema
search with terminal symbol (bit-flip) variation operators, and we also ensured
that each individual was unique in the population. The resulting phenotypes
were compressed into an instance of schema grammar using the method detailed
in Section 4. We then measured the compressibility of each population using the
entropy of the resulting grammar code (as specified in [10]). This is illustrated in
Figure 2, together with a control which is the entropy of a grammar induced from
random bit strings of the same size. The figure shows that when there is minimal
epistasis (k = 1), with a significant degree of correlation structure present in the
landscape, the sample population is highly compressible with low entropy. As
epistasis is increased then the compressibility of the population is reduced until,
in the limit, it is no more compressible than a population of random bit strings.

These results suggest that grammar induction is detecting structure where it is
present and using it to compress a population. However by themselves the results
do not confirm whether it is detecting the “right” structure, or structure that can
be exploited to improve evolutionary search. Some further insight can be gained
by looking at the schemata inferred from the population. Figure 3 shows the
inferred schema hierarchy for a single above-average fitness individual on an NK-
landscape (shown unshuffled for presentation). Although the structure is broadly
irregular, as may be expected given the randomised nature of the landscape,
patterns reflecting the intrinsic neighbourhood structure of the problem can
clearly be seen in the grammar, particularly at higher levels. This decomposition
suggests that the schema structure in the grammar may be encoding useful
neighbourhood structure from the problem landscape. The figure also illustrates
the hierarchical nature of the grammar, with larger building blocks forming from
multiple building blocks at lower levels.

We then used a multi-scale search algorithm to investigate whether the in-
formation contained in the compression model of a fit population could be ex-
ploited to aid evolutionary search. We created a population of fit individuals,
each initialised using schema search (Algorithm 1) with bit flip variation oper-
ators, which were then modelled using schema grammar induction as described

Inferring Problem Structure with Schema Grammar 411

Fig. 2. The average entropy of compressed grammars for populations of local optima
with increasing k (n = 50, population size = 200). As k increases the compressibility
of a population reduces, indicating a reduction in detectable structure.

Fig. 3. An example schema grammar hierarchy for a single fit individual on an NK
landscape (n = 50, k = 5, shown unshuffled). The top row shows the complete indi-
vidual (black = 0, white = 1 at each locus), with the schemata it is compressed with
shown in the rows below (in dependency order). The annotations illustrate part of the
dependency hierarchy.

in previous sections. We examined the mutant spectra of the population using
the schema symbols in the compressed representation of the population as vari-
ation operators (all symbols present in the production rules of each genotype).
Although each mutation is a point mutation in compressed genotype space, the
hierarchical grammatical expansions of the symbols in phenotype space include
mutations with many interacting variables. We compared against two controls:
random macro-mutation variation using an instance of the grammar but with
shuffled terminal symbols, and uniform crossover and mutation (mutation rate
= 1/n). The results in Figure 4 from a representative problem instance show

412 C.R. Cox and R.A. Watson

Fig. 4. Mutant spectra of a fit population using schema grammar to facilitate variation,
as well as two controls (n = 50, k = 4, population size = 200). The area under the
positive tail of each distribution represents fitness-improving mutations, which were
7.64% of schema grammar mutations, compared to 0.11% of random macro-variations
and 0.04% of crossover/mutation variations. The average hamming distance of fitness-
improving grammar mutations was 5.66 bits.

that inferred schema structure provides a variation neighbourhood that includes
many more fitness-improving mutations than either of the two controls.

We conducted a second experiment to investigate the extent to which the
fitness of a population could be improved, solely using the specific schema struc-
ture inferred by the grammar to facilitate macro-variation. On each iteration of
the algorithm the population was modelled using schema grammar, then schema
search was run on the population using the grammar’s schema symbols as vari-
ation operators. If any beneficial moves were found then this process was re-
peated, continuing until more moves could be made or the global optimum was
located. To help maintain diversity any duplicate phenotypes in the population
were re-initialised prior to compression. We ran the algorithm on multiple, ran-
dom NK-landscapes, with the global optima identified in advance using Pelikan’s
branch and bound solver [13]. We investigated problems between lengths n = 20
and n = 50 with k varying in the range 1 − 5, and tested 400 random problem
instances for each configuration. In every run of the algorithm the global opti-
mum was successfully located. In less than 2% of problem instances it was found
using single-bit hill-climbers (particularly when k = 1), however in all other
cases the schema structure inferred from the population contained information
that allowed search to continue and find fitter regions of the search space, until
ultimately the global optimum was found. Further work is planned to test the
scalability of these techniques, including comparisons with other model-building
solvers such as BOA and LTGA, which are able to efficiently solve nearest-
neighbour NK landscapes [14,15].

Inferring Problem Structure with Schema Grammar 413

6 Conclusions

In this paper we have introduced a new class of generative grammar that is
capable of modelling combinatorial structure. We have demonstrated that on
NK-landscape problems, schema grammar is able to compress a population of
individuals using a hierarchy of schema symbols that reflect the intrinsic struc-
ture of the landscape. We have also shown that the schemata inferred into the
grammar can be exploited by facilitating multi-scale variation during evolution-
ary search. Our results suggest that the schema grammar is an effective type of
compression EA that can demonstrably discover and exploit complex structural
regularity in evolutionary problem solving.

References

1. Holland, J.H.: Adaptation in natural and artificial systems: An introductory anal-
ysis with applications to biology, control, and artificial intelligence. U. Michigan
Press (1975)

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Professional (1989)

3. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribu-
tion algorithms. Swarm and Evolutionary Computation 1(3), 111–128 (2011)

4. Cox, C.R., Watson, R.A.: Solving Building Block Problems using Generative
Grammar. In: Proceeding of the 2014 Conference on Genetic and Evolutionary
Computation, pp. 341–348. ACM (2014)

5. Kauffman, S.A.: The Origins of Order. Self-organization and Selection in Evolution.
Oxford University Press (1993)

6. Toussaint, M.: Compact representations as a search strategy: Compression EDAs.
Theoretical Computer Science 361(1), 57–71 (2006)

7. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for
an arbitrary language. Genetic Programming, 83–96 (1998)

8. O’Neill, M., Brabazon, A.: mGGA: The meta-grammar genetic algorithm. Genetic
Programming, 311–320 (2005)

9. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

10. Kieffer, J.C., Yang, E.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)

11. Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proceedings of
the IEEE 88(11), 1722–1732 (2000)

12. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence Research 7, 67–82 (1997)

13. Pelikan, M.: Analysis of estimation of distribution algorithms and genetic algo-
rithms on NK landscapes. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, pp. 1033–1040. ACM (March 2008)

14. Pelikan, M., Sastry, K., Goldberg, D.E., Butz, M.V., Hauschild, M.: Performance
of evolutionary algorithms on NK landscapes with nearest neighbor interactions
and tunable overlap. In: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 851–858 (2009)

15. Thierens, D.: The linkage tree genetic algorithm. In: Schaefer, R., Cotta, C.,
Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 264–273. Springer,
Heidelberg (2010)

Bent Function Synthesis

by Means of Cartesian Genetic Programming

Radek Hrbacek and Vaclav Dvorak

Brno University of Technology,
Faculty of Information Technology

Bozetechova 2, 61266 Brno, Czech republic
{ihrbacek,dvorak}@fit.vutbr.cz

http://www.fit.vutbr.cz/~ihrbacek/

Abstract. In this paper, a new approach to synthesize bent Boolean
functions by means of Cartesian Genetic Programming (CGP) is pro-
posed. Bent functions have important applications in cryptography due
to their high nonlinearity. However, they are very rare and their discov-
ery using conventional brute force methods is not efficient enough. We
show that by using CGP we can routinely design bent functions of up to
16 variables. The evolutionary approach exploits parallelism in both the
fitness calculation and the search algorithm.

1 Introduction

Evolutionary Algorithms (EAs) have been recently used in many engineering
areas as design and optimization methods. Thanks to the innovation introduced
into the design process, they are able to outperform conventional approaches
in particular problems. Several types of EAs have been successfully employed
in the task of evolutionary circuit design. Besides Genetic Programming (GP)
heavily used by John Koza [1] to automatically design analog circuits, regula-
tors, optical systems or antennas, excellent results have been achieved with the
use of Cartesian Genetic Programming (CGP) [2]. The applications of CGP in-
clude combinational circuits design [3] and optimization [4], digital image filter
design [5,6], artificial neural networks design [7] and many others.

The evolutionary design is often very computationally demanding approach.
In order to reduce the design time, various application specific accelerators as
well as evolutionary algorithm modifications have been proposed. While the for-
mer case typically involves parallel fitness function implementation based on
FPGA accelerators [6,8] or running on multicore CPUs, GPUs [9] or even com-
puter clusters [3] and exploiting parallelism at various levels (instruction, data,
thread or process), the latter one includes genotype representation or search al-
gorithm modifications. In the past, spatially structured evolutionary algorithms
have been intensively studied and variety of approaches differing in the used
evolutionary algorithm or communication topology has emerged [10,11,12].

While the use of computers and communication networks is becoming more
and more popular, one has to seriously deal with the security of the data being

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 414–423, 2014.
c© Springer International Publishing Switzerland 2014

http://www.fit.vutbr.cz/~ihrbacek/

Bent Function Synthesis by Means of CGP 415

stored or transferred. In cryptography, the two most fundamental techniques to
achieve security in systems are confusion and diffusion [13]. Confusion refers
to making a complex relationship between the ciphertext and the key. Thanks
to diffusion, the statistical structure of the plain text is dissipated over significant
part of the ciphertext, which prevents from reconstructing the original statistical
information. In real cryptographic systems, the cipher key is much shorter than
the message being encrypted and thus the key has to be reused in some way, often
by applying a Boolean function to the key all over again. To avoid decryption by
an attacker, the key sequence has to be random. If the Boolean function used to
generate the key stream is close to linear, the message can be possibly deciphered.
By using functions that are as far from linear as possible, one can build more
secure cryptographic systems [14]. These functions, called bent functions, are
very rare.

The state of the art methods for finding them operate usually on the brute
force principle although exploiting some properties of the functions in order to
reduce the size of the search space [15]. The number of Boolean functions grows
exponentially with the number of variables, while the relative frequency of bent
functions decreases. Therefore, for higher number of variables (the literature re-
ports only functions of no more than 8 variables), these methods are not efficient
enough. Another approach based on genetic algorithm (GA) is very limited as
well. Even though the GA seems to be suitable for this purpose, the proposed
approach is not scalable enough [16].

Inspired by the evolutionary design of combinational circuits by means of
CGP, we propose a CGP based synthesis of bent Boolean functions. The par-
allelism at the data, thread and process level has been applied in order to take
advantage of modern processor architectures and computer clusters. The scala-
bility of this approach has been earlier verified in the task of evolutionary design
of combinational adders and multipliers [3].

The paper is organized as follows. Section 2 introduces bent Boolean func-
tions from the mathematical perspective. CGP is discussed in Section 3 and
the proposed evolutionary approach to synthesize bent functions is described in
Section 4. Section 5 is dedicated to experiments and the achieved results, final
conclusions can be found in Section 6.

2 Bent Boolean Functions

Boolean functions are of great importance for various cryptographic algorithms.
Special attention is paid to the design of nonlinear Boolean functions due to their
resistance to linear cryptanalysis [17]. This section presents necessary mathemat-
ical definitions for the purpose of introduction of bent functions [14,15].

Definition 1. A Boolean function is a function of the form f : Dn → D,
where D = {0, 1} is a Boolean domain and n ≥ 0 is the arity of the func-
tion. For a function f , let f0 = f(0, 0, . . . , 0), f1 = f(0, 0, . . . , 1), ..., f2n−1 =
f(1, 1, . . . , 1). TTf = (f2n−1 · · · f1f0) is the truth table representation of the
function f .

416 R. Hrbacek and V. Dvorak

Definition 2. A linear (Boolean) function is either the constant 0 function or
the exclusive OR (XOR) of one or more variables. An affine (Boolean) function
is a linear function or the complement of a linear function.

Definition 3. The Hamming distance d(f, g) between two functions f and g
is the number of truth table entries with different values.

Definition 4. The nonlinearity NLf of a function f is the minimum Hamming
distance between the function f and an affine function.

Definition 5. Let f be a Boolean function of even arity n, f is a bent function
iff its nonlinearity NLf is maximum among n-variable functions.

Affine functions are not suitable for the use in cryptography, since they are
susceptible to a linear attack. Therefore, one seeks functions that are as far
away (in the Hamming distance) as possible from all the affine functions – these
are the bent functions. The nonlinearity of a bent function f of n variables is
NLf = 2n−1 − 2

n
2 −1 [18]. This constraint is not applicable for functions of odd

Table 1. Examples of 4-variable Boolean functions and their nonlinearities

function f truth table TTf nonlinearity NLf

lin
ea
r

0 0000000000000000 0
x0 1010101010101010 0
x1 1100110011001100 0

x1 ⊕ x0 0110011001100110 0
x2 1111000011110000 0

x2 ⊕ x0 0101101001011010 0
x2 ⊕ x1 0011110000111100 0

x2 ⊕ x1 ⊕ x0 1001011010010110 0
x3 1111111100000000 0

x3 ⊕ x0 0101010110101010 0
x3 ⊕ x1 0011001111001100 0

x3 ⊕ x1 ⊕ x0 1001100101100110 0
x3 ⊕ x2 0000111111110000 0

x3 ⊕ x2 ⊕ x0 1010010101011010 0
x3 ⊕ x2 ⊕ x1 1100001100111100 0

x3 ⊕ x2 ⊕ x1 ⊕ x0 0110100110010110 0

no
nl
in
ea
r x3x0 1010101000000000 4

x2x1x1 ⊕ x3 ⊕ x0 1101010100101010 2
x3x0 ⊕ x1 0110011011001100 4

x3x2 ⊕ x1 ⊕ x0 0110011011001100 4

be
nt x3x2 ⊕ x1x0 0001000100011110 6
x3x0 ⊕ (x2 ⊕ x0)x1 ⊕ x2 ⊕ x0 1011100000010010 6

Bent Function Synthesis by Means of CGP 417

arity that can, in general, have greater nonlinearity. This paper deals only with
functions of even number of variables.

Examples of Boolean functions of 4 variables can be seen in Table 1. In the
first 16 rows, all linear functions are listed, followed by several nonlinear and bent
functions, the maximum nonlinearity of 4-variable functions is NLf = 24−1 −
2

4
2−1 = 6.
The number of different Boolean functions grows exponentially with the num-

ber of variables: Nf (n) = 22
n

. However, the relative frequency of bent functions
decreases very fast (see Table 2) and thus, for n ≥ 6, identifying them is like
looking for a needle in a haystack.

Table 2. Relative frequency of n-variable bent functions [14]

variables n 2 4 6 8

Boolean functions 24 216 264 2256

bent functions 23 ≈ 29.8 ≈ 232.3 ≈ 2106.3

relative frequency 2−1 ≈ 2−6.2 ≈ 2−31.7 ≈ 2−149.7

Recently, various approaches based on the properties of bent functions have
been proposed, effectively reducing the number of the Boolean functions needed
to be verified in order to identify bent functions by means of a brute force search
[16,15]. In some special cases, bent functions can be constructed directly [17].

3 Cartesian Genetic Programming

Cartesian genetic programming - a branch of genetic programming - has been
introduced by Miller [2] and since then it has been successfully applied to a
number of challenging real-world problems [19]. In contrast with GP which uses
tree representation, an individual in CGP is represented by a directed acyclic
graph. This dissimilarity enables the candidate solution to automatically reuse
intermediate results and have multiple outputs, which makes CGP very suitable
for design of various kinds of digital circuits, digital filters, etc.

A candidate program in CGP consist of the cartesian grid of nr × nc pro-
grammable nodes interconnected by a feed-forward network, as it can be seen
in Figure 1. Node inputs can be connected either to one of ni primary inputs
or to a node in preceding l columns, each node has usually a fixed number of
inputs nni = 2. Each node can perform one of nni-input functions from the set
Γ . Each of no primary circuit outputs is connected either to a primary input
or a node output, the output connectivity can be additionally restricted by the
o-back parameter. By changing the grid size and the l-back parameter, one can
control the area and delay of the circuit.

Thanks to the fixed topology of CGP programs, each chromosome can be
encoded using an fixed-sized array of nr · nc · (nni + 1) + no integers (nni inputs

418 R. Hrbacek and V. Dvorak

F

nc columns

n
r r

ow
s

n
o p

rim
ar

y
ou

tp
ut

s

n
i p

rim
ar

y
in

pu
ts

F F F F

F F F F F

F F F F F

Fig. 1. Cartesian genetic programming scheme

and one function per each node). Each primary input is assigned a number from
{0, ..., ni − 1} and the nodes are assigned numbers from {ni, ..., ni + nr · nc − 1}.
Unlike the genotype, the phenotype is of variable length depending on the num-
ber of inactive nodes (i.e. nodes whose output is not used by any other node
or primary output), which implies the existence of individuals with different
genotypes but the same phenotypes. The existence of individuals with different
genotypes but with the same fitness value is usually referred to as neutrality.
For certain problems, the neutrality significantly reduces the computational ef-
fort and helps to find more innovative solutions [20].

CGP uses a simple mutation based (1 + λ) evolutionary strategy as a search
mechanism, the population size 1+λ is mostly very small, typically, λ is between
1 and 15. The initial population is constructed randomly in most cases, however,
it can be seeded with a known solution as well (evolutionary optimization) [4].
In each generation, the best individual or a sibling with the same fitness value is
passed to the next generation unmodified along with its λ offspring individuals
created by means of point mutation operator. The mutation rate m is usually set
to modify up to 5% randomly selected genes. Usually, no crossover operator is
used in CGP, however, for particular problems (e.g. symbolic regression), special
crossover operators have been investigated [21]. None of them has been confirmed
as useful for other problem classes so far.

In the case of combinational circuit design, the fitness function is given by
the number of correct output bits compared to a specified truth table. All com-
binations of input values (2ni test vectors for a circuit with ni inputs and no
outputs) have to be fetched to the primary inputs in order to obtain a fully
working circuit. no · 2ni output bits have to be verified so as to compute the
fitness value.

Bent Function Synthesis by Means of CGP 419

4 Bent Function Synthesis by Means of CGP

The principle of bent function synthesis by means of CGP is very similar to the
case of combinational circuit design, since every Boolean function can be imple-
mented by a combinational circuit. The difference lies in the fitness function.
Unlike combinational circuits having fitness value equal to the total number of
wrong output bits, the fitness value of a bent function candidate is its nonlin-
earity, i.e. the lowest Hamming distance from a linear function. Despite the fact,
that bent Boolean functions have single output comparing to combinational cir-
cuits having arbitrary many outputs, the fitness calculation is computationally
more intensive, since the number of linear functions being compared with the
candidate individual grows exponentially with the number of variables.

i0

i1

i2

i3

i4

i5

o0

Fig. 2. Example of an CGP individual representing the Boolean function f(i5, . . . , i0) =

o0 = ((i1 ⊕ (i1 + i3))⊕ i2i5)⊕ i0 + (i0 + i4) with the truth table TTf =
0011110001101001001100110110011011110000101001011111111110101010. This func-
tion has nonlinearity NLf = 28 and thus it is bent.

Figure 2 depicts an example of an CGP individual representing a Boolean
function. Note that the representation is not optimal in terms of area or delay,
since the only significant property is the truth table.

While evaluating an individual’s fitness value, all active genes of the chromo-
some need to be traversed and their output values need to be calculated. The
single output is then compared against all linear functions simply by XORing the
values and counting the number of ones. There is no need to compare the values
to the remaining affine functions (the complements of linear functions), since the
following always holds true:

d(f, g) + d(f, gc) = 2n, (1)

where f, g are arbitrary n-variable Boolean functions and gc is complementary
to g.

The entire evolutionary design process can be accelerated in the same way
as it has been done in the case of combinational circuits [3]. The test vectors

420 R. Hrbacek and V. Dvorak

can be fed to the CGP individual in parallel, from 64 test vectors within a
standard x86-64 register up to 256 test vectors using AVX extension. Moreover,
the population can be split over a number of threads, each thread handling a
portion of the population. Nevertheless, the number of threads is substantially
limited by the population size, which is usually very small in CGP. In order
to take advantage of multicore processors or even computer clusters, additional
level of parallelism has to be exploited. By introducing spatially structured EA
principle, one can scale the evolutionary process onto arbitrary sized computer
cluster. Unfortunately, the absence of crossover operator in CGP is a very limit-
ing factor, since most parallel algorithms are based on combining genotypes from
different spatially isolated populations. Thus, simple isolated islands model with
periodical exchange of the best individual is used [3].

5 Experimental Results

In this section, experiments regarding the ability of the proposed approach to
synthesize bent functions are presented. All the experiments were performed on
a computer cluster of 112 nodes with the following hardware configuration: 2× 8-
core Intel E5-2670, 128GB RAM, 2× 600GB 15 k scratch hard disks, connected
by gigabit Ethernet and Infiniband links.

The performance of the CGP based approach has been examined in terms
of the evolution time. The CGP parameters were set as follows on the basis
of previous experiments with combinational circuits [3]: the functions set Γ =
{BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR}, population of 5 individuals, mutation

Table 3. Bent Boolean functions CGP based synthesis times

n
nodes hosts/ time [s]
nr × nc threads mean median std

6 1× 50 1/1 0.000819 0.000685 0.000668
8 1× 100 1/1 0.00470 0.00343 0.00410
10 1× 150 1/1 0.0602 0.0442 0.0483

12 1× 200

1/1 2.0443 1.4057 1.9579
1/4 1.1291 0.8392 1.0610
4/1 0.8240 0.6267 0.5405
40/1 0.3859 0.3618 0.1080

14 1× 250

1/1 133.202 91.765 146.839
1/4 76.040 54.954 72.808
4/1 44.680 35.700 34.165
40/1 15.806 15.255 4.853

16 1× 300

1/1 6223.66 4666.82 4734.02
1/4 3880.06 3744.23 2571.49
4/1 1855.79 1543.12 1329.10
40/1 636.13 565.68 229.06

Bent Function Synthesis by Means of CGP 421

rate 5%. The number of rows was set to nr = 1 and the l-back parameter was
maximal, enabling the greatest connectibility (there were no requirements on the
propagation delay). The size of the grid was empirically chosen for each variable
count n as a optimal choice with respect to the evolution time (about 10× larger
than the average individual found). No limitations on the number of generations
were imposed, each run was successful. The spatially structured implementations
exchanged the best individual over all populations every 100 generations.

The achieved results can be seen in Table 3, four different configurations
of the algorithm were compared – basic single threaded variant, accelerated 4-
thread parallel version, 4-island and 40-island spatially structured variants. For
each configuration, 100 independent runs were performed and common statisti-
cal metrics were calculated – the mean time, the median value and the standard
deviation. The evolution times for functions of less than 12 variables are negli-
gible and cannot be improved by means of thread or process level parallelism,
because there is not enough work to distribute. For higher numbers of variables,
the computational effort grows rapidly and the parallel implementations help
significantly to reduce the evolution time. For example, the design of 16-variable
bent functions can be sped up 10× on the computer cluster in comparison with
the basic single threaded implementation. It shows that even a small number of
isolated populations can more efficiently utilize the power of a multicore proces-
sor than the multithreaded single population approach. Not only the mean and
median times, but also the standard deviations of the evolution times are lower,
increasing the probability of finding a bent function in a limited time.

An example of a bent Boolean function of 16 variables synthesized by means
of CGP can be seen in Figure 3. Its nonlinearity is 32,640 and the CGP repre-
sentation has 24 active nodes with the maximum delay of 7.

i0
i1
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12
i13
i14
i15

o0

Fig. 3. CGP representation of a 16-variable bent Boolean function

6 Conclusions

In this paper, a new approach to synthesize bent Boolean functions based on
CGP has been proposed. Bent functions have applications in cryptography due

422 R. Hrbacek and V. Dvorak

to their significant properties – when used in a cipher, their nonlinearity makes
cryptanalysis harder. The relative frequency of bent functions among all Boolean
functions of the same arity is rapidly decreasing with the number of variables
and designing such functions is harder and harder.

It was shown, that by using CGP, we are able to routinely design bent Boolean
functions of up to 16 variables. The evolutionary process was sped up by em-
ploying various levels of parallelism in both fitness calculation and the search
algorithm, which gives a great scalability to the proposed approach. Several al-
gorithm configurations were experimentally compared and it was shown, that by
using a simple isolated island model, one can significantly reduce the evolution
time. Additional effort has to be made in order to investigate potential common
features shared by bent functions found using independent CGP runs.

Even though bent Boolean functions themselves have great properties, in or-
der to achieve maximum confusion in real cryptographic systems, there should be
a balance between bits that are changed and that are not. This can be achieved
by using balanced functions; however, no bent function is balanced and thus
a trade-off between nonlinearity and balance has to be sought [17,14]. In our
future research, we want to focus on designing such functions by means of evo-
lutionary algorithms. Further work will be also devoted to the optimization of
the synthesized functions in terms of area and delay inspired by fast SAT-based
optimization methods for complex combinational circuits [4].

Acknowledgements. This work was supported by the Czech Science Foun-
dation project 14-04197S. The access to the CERIT-SC computing and storage
facilities provided under the programme Center CERIT Scientific Cloud, part of
the Operational Program Research and Development for Innovations, reg. no.
CZ. 1.05/3.2.00/08.0144 is appreciated.

References

1. Koza, J.R.: Genetic Programming IV: Routine Human-Competitive Machine In-
telligence. Kluwer Academic Publishers, Norwell (2003)

2. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

3. Hrbacek, R., Sekanina, L.: Towards highly optimized cartesian genetic program-
ming: From sequential via simd and thread to massive parallel implementation. In:
Proceeding of Genetic and Evolutionary Computation Conference, GECCO 2014,
Association for Computing Machinery (to appear, 2014)

4. Vasicek, Z., Sekanina, L.: On area minimization of complex combinational circuits
using cartesian genetic programming. In: 2012 IEEE World Congress on Computa-
tional Intelligence, Institute of Electrical and Electronics Engineers, pp. 2379–2386
(2012)

5. Vasicek, Z., Bidlo, M.: Evolutionary design of robust noise-specific image filters. In:
2011 IEEE Congress on Evolutionary Computation, pp. 269–276. IEEE Computer
Society (2011)

Bent Function Synthesis by Means of CGP 423

6. Hrbacek, R., Sikulova, M.: Coevolutionary cartesian genetic programming in fpga.
In: Advances in Artificial Life, ECAL 2013, Proceedings of the Twelfth European
Conference on the Synthesis and Simulation of Living Systems, pp. 431–438. MIT
Press (2013)

7. Khan, G., Miller, J.: The cgp developmental network. In: Miller, J.F. (ed.) Carte-
sian Genetic Programming. Natural Computing Series, pp. 255–291. Springer,
Heidelberg (2011)

8. Vasicek, Z., Sekanina, L.: Hardware accelerator of cartesian genetic programming
with multiple fitness units. Computing and Informatics 29(6), 1359–1371 (2010)

9. Harding, S., Banzhaf, W.: Hardware acceleration for cgp: Graphics processing
units. In: Miller, J.F. (ed.) Cartesian Genetic Programming. Natural Computing
Series, pp. 231–253. Springer, Heidelberg (2011)

10. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers, Norwell (2000)

11. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time (Natural Computing Series). Springer-Verlag New York, Inc.,
Secaucus (2005)

12. Jaros, J.: Multi-gpu island-based genetic algorithm solving the knapsack problem.
In: 2012 IEEE World Congress on Computational Intelligence, pp. 217–224. Insti-
tute of Electrical and Electronics Engineers (2012)

13. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1949)

14. Butler, J.T., Sasao, T.: Logic functions for cryptography - a tutorial. In: Proceed-
ings of the Reed-Muller Workshop (2009)

15. Shafer, J.L., Schneider, S.W., Butler, J.T., Stanica, P.: Enumeration of bent
boolean functions by reconfigurable computer. In: Sass, R., Tessier, R. (eds.)
FCCM, pp. 265–272. IEEE Computer Society (2010)

16. Schneider, S.W.: Finding bent functions using genetic algorithms. Master’s thesis,
Naval Postgraduate School, Monterey (2009)

17. Dobbertin, H.: Construction of bent functions and balanced boolean functions
with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74.
Springer, Heidelberg (1995)

18. Rothaus, O.: On “bent” functions. Journal of Combinatorial Theory, Series A 20(3),
300 (1976)

19. Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series.
Springer (2011)

20. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian
genetic programming. IEEE Transactions on Evolutionary Computation, 10(2),
167–174 (2006)

21. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic
programming. In: GECCO 2007: Proceedings of the 9th Annual Conference on
Genetic and Evolutionary Computation, July 7-11, vol. 2, pp. 1580–1587. ACM
Press, London (2007)

Population Exploration on Genotype Networks

in Genetic Programming

Ting Hu1, Wolfgang Banzhaf2, and Jason H. Moore1

1 Computational Genetics Laboratory, Geisel School of Medicine, Dartmouth College,
Lebanon, NH 03756, USA

{ting.hu,jason.h.moore}@dartmouth.edu
2 Department of Computer Science, Memorial University,

St. John’s, NL, A1B 3X5, Canada
banzhaf@mun.ca

Abstract. Redundant genotype-to-phenotype mappings are pervasive
in evolutionary computation. Such redundancy allows populations to ex-
pand in neutral genotypic regions where mutations to a genotype do not
alter the phenotypic outcome. Genotype networks have been proposed as
a useful framework to characterize the distribution of neutrality among
genotypes and phenotypes. In this study, we examine a simple Genetic
Programming model that has a finite and compact genotype space by
characterizing its genotype networks. We study the topology of indi-
vidual genotype networks underlying unique phenotypes, investigate the
genotypic properties as vertices in genotype networks, and discuss the
correlation of these network properties with robustness and evolvability.
Using GP simulations of a population, we demonstrate how an evolu-
tionary population diffuses on genotype networks.

1 Introduction

A remarkable feature of natural evolutionary systems is how they maintain re-
silience to constant intrinsic and environmental perturbations while remaining
adaptive in the face of survival challenges. Robustness [1, 2] and evolvability
[3–5] have been discussed as closely related but somewhat contradictory proper-
ties in this context. Essentially, both properties reflect how evolutionary systems
respond to changes. Robustness enables them to remain intact in the face of
deleterious changes, whereas evolvability allows them to innovate to better fit
the survival pressures of the environment. Redundancy is a crucial mechanism
contributing to both robustness and evolvability. A redundant mapping from
multiple genotypes to a phenotype allows genetic variants to expand in neutral
mutational spaces. These neutral spaces are genotypic regions in which mutations
do not change the phenotype or fitness. Neutral genetic variations by mutations
possess the potential for creating novel phenotypes [6]. They serve as a quan-
titive staging ground for long-term adaptation and innovation. Such neutrality
provides a buffer against deleterious mutational perturbations, and augments
evolvability by accumulating genetic variations that might be non-neutral under
changes of the environmental context [7–10].

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 424–433, 2014.
c© Springer International Publishing Switzerland 2014

Population Exploration on Genotype Networks in Genetic Programming 425

Genotype networks, a.k.a. neutral networks, have been proposed as a use-
ful framework for studying neutrality [11–13]. In such networks, genotypes are
represented as vertices, and reversible mutational connections, as in common
evolutionary systems, are represented as undirected edges between pairs of geno-
types. One genotype network is comprised of all genotypes that encode for the
same phenotype. Therefore, within a genotype network, edges denote only neu-
tral point mutations. Different genotype networks, i.e. phenotypes, can also be
connected through non-neutral point mutations between genotypes that are phe-
notypically distinguished. Genotype networks provide a global view of how neu-
trality is distributed among various phenotypes, and hence become a very useful
framework to investigate how redundancy contributes to robustness and evolv-
ability. On one hand, studies have shown that evolutionary search really benefits
from expanding neutral regions [14, 15]. On the other hand, some evolutionary
systems are found to be constrained by the abundance of neutral mutational
variants [16].

A redundant mapping from genotype to phenotype is also pervasive in many
Evolutionary Computation (EC) systems, especially in Genetic Programming
(GP), where multiple genotypes encode identical phenotypes [17–19]. A sin-
gle point mutation to a genotype is defined as neutral if it does not alter the
phenotype or fitness. Such neutrality is largely contributed by the considerable
amount of non-coding regions in GP. Departing from early recognition of these
non-coding regions as disadvantageous, later extensive investigations and dis-
cussions have been conducted on how to characterize and utilize neutrality in
GP [20–22]. The notion of genotype networks has also been adopted in many GP
neutrality studies [23, 24]. However, most studies characterizing genotype net-
works are constrained by the infeasibility of enumerating genotypes due to the
infinite genotypic space of common GP systems. In a recent study, a quantitive
characterization of mutational robustness and evolvability was performed using
a simple Linear GP model, where the entire genotype and phenotype spaces are
finite and enumerable [25]. It is reported that robustness and evolvability are
correlated in a different way at the genotypic, phenotypic, and fitness levels.

In this study, we adopt the same Linear GP model as in a quantitative study
on evolvability and robustness [25] to take advantage of its genotype space be-
ing amenable to exhaustive enumeration. We characterize topological properties
of individual genotype networks and take a close look at vertex importance of
genotypes in the networks and how it correlates with robustness and evolvability.
Furthermore, using GP simulations, we investigate how an evolutionary popula-
tion diffuses on genotype networks and how those movements on the genotype
networks are reflected in fitness improvements.

2 Methods

2.1 Problem Instance

We consider a simple Linear GP system on a Boolean search problem as in a pre-
vious study [25]. In the LGP representation, an individual (or computer program)

426 T. Hu, W. Banzhaf, and J.H. Moore

Fig. 1. Schematic diagram of a subset of genotype networks. Each vertex represents a
genotype and genotypes encoded to the same phenotype form one genotype network.
An edge links two vertices if the two genotypes can be transformed from one to another
through a single point mutation. Single point mutations can also connect genotypes
from different phenotypes, shown in dashed lines.

consists of a set of L instructions, which are structurally similar to those found in
register machine languages. Each instruction has an operator, a set of operands,
and a return value. In our study, each instruction consists of an operator drawn
from the Boolean function set {AND, OR, NAND, NOR}, two Boolean operands, and
one Boolean return value. The inputs, operands, and return values are stored in
registers with varying read/write permissions. Specifically, R0 and R1 are calcula-
tion registers that can be read and written, whereas R2 and R3 are input registers
that are read-only. Thus, a calculation register can serve in an instruction as an
operand or a return, but an input register can only be used as an operand. An
example program with L = 3 is given below.

R1 = R2 AND R3

R0 = R2 OR R1

R0 = R3 NAND R0

These instructions are executed sequentially from top to bottom. Prior to pro-
gram execution, the values of R0 and R1 are initialized to FALSE. Registers R2
and R3 read two Boolean input values. After program execution, the final value
in R0 is returned as output.

2.2 Genotype, Phenotype, and Genotype Networks

We consider each unique LGP program as a genotype and the binary Boolean
function f : B2 → B, where B = {TRUE, FALSE}, represented by the program
as its phenotype. We set two calculation registers, two input registers and four
operators, which means there are 2 × 4 × 4 × 4 = 27 possible instructions and
thus 221 possible programs of length L = 3. These 221 programs define the finite
genotype space mapping to the 16 possible binary Boolean functions f : B2 → B
as phenotypes.

Genotypes transform from one to another through point mutations. These
mutational connections can be well modeled by networks. The framework of

Population Exploration on Genotype Networks in Genetic Programming 427

genotype networks has been proposed to study how mutational connections are
distributed among genotypes underlying various phenotypes [11–13]. A genotype
network is comprised of all the genotypes, as vertices, that represent the same
phenotype. An edge connects a pair of genotypes if they can be transferred from
each other through a single point mutation (see Fig. 1).

Different phenotypes can have varying genotype network properties, and in-
vestigating these network properties provides insights into how an evolutionary
population explores the genotype space by expanding in genotype networks. We
take advantage of the simple yet representative LGP system to fully character-
ize the entire genotype space by enumerating all genotypes and constructing all
16 genotype networks. Then, for each genotype network, we look at their net-
work properties including network size, i.e. the total number of vertices, network
degree distribution and vertex closeness centrality.

The degree of a vertex in a network is the number of its connected neigh-
bors. In the framework of genotype networks, vertex degree reflects how robust
a genotype is when subject to point mutations. High degree vertices are geno-
types that are more likely to maintain their phenotypes under point mutations.
Vertex degree distribution describes the global connectivity of a network. At the
vertex level, centrality measures the importance of a vertex in the network. There
are a number of centrality measures that capture the individual contribution of
vertices to a network. In the current study, we look at the closeness centrality,
denoted as 1∑

j �=i dij
of a vertex i, where dij is the distance, i.e. the shortest path,

between vertices i and j [26, 27]. Closeness centrality describes how easily a
given vertex can reach all other vertices. A higher closeness centrality indicates
a more central position of a vertex in the network. Beyond mutational connec-
tions within genotype network, genotypes can mutate into different phenotypes
through non-neutral single point mutations. The evolvability of a genotype is de-
fined as the number of unique phenotypes that it can reach through single point
mutations [13]. This definition is intuitive in that if a genotype is adjacent to
genotypes from many other different phenotypes, it is considered more evolvable.

2.3 Population Evolution

Population evolution is simulated to investigate how a population diffuses on
genotype networks. The initial population includes |P | randomly chosen geno-
types from one given phenotype. Then for each generational iteration, a number
of individuals are subject to single point mutations, according to a mutation rate
r, and both |P | parents and r × |P | offspring are competing in a tournament
selection to form the next generation of |P | individuals. We set one particular
phenotype as the target and let the population evolve towards it. The evolution
process is terminated once the entire population converges to the target.

A single point mutation can apply to any locus of a genome, including the
return register, one of the two operand registers, or the operation function.
The fitness value of a genotype is calculated based on the mutational potential
from its phenotype to the target phenotype. Specifically, let vij denote the total

428 T. Hu, W. Banzhaf, and J.H. Moore

vertex degree

pr
ob

ab
ili

ty

0 5 10 15 20 25

0.00

0.05

0.10

0.15

0.20

0.25

0.30
(a)

vertex closeness centrality

pr
ob

ab
ili

ty

0.07 0.09 0.11 0.13

(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fig. 2. Genotype network properties of phenotype NAND. (a) Distribution of vertex
degree. (b) Distribution of vertex closeness centrality.

number of possible single point mutations that can transform genotypes from
phenotype i to phenotype j. The fitness of genotypes from phenotype k with
regard to the target phenotype t is defined as ft(k) = vkt∑

j �=k vkj
. This fitness

calculation is defined following the intuition that a phenotype with a higher
mutational potential towards the target is rewarded with a higher fitness value.

3 Results and Discussion

3.1 Properties of Genotype Networks

For our particular LGP system, the distribution of genotypes among different
phenotypes is highly heterogeneous. The size of genotype networks ranges from
a minimum of 64 genotypes (for phenotypes EQUAL and XOR) to a maximum of
617,024 genotypes (for FALSE), occupying between & 0.1% and 29.4% of the
entire genotype space, respectively. The mutational connections among pheno-
types are also unevenly distributed. Out of the total 16 genotype networks, 10
are mutationally accessible from all other genotype networks, 4 are adjacent to
14 other phenotypes, and the two smallest genotype networks (EQUAL and XOR)
have 13 phenotype neighbors. Moreover, these two smallest genotype networks
are comprised of 64 individual islands, i.e. all 64 genotypes mutate away from
their phenotype with any single point mutations, whereas the other 14 genotype
networks contain single connected components.

Due to the symmetry of Boolean functions, some genotype networks share the
same topological properties, e.g. phenotypes x >= y and x <= y. Interestingly,
all genotype networks, excluding EQUAL and XOR that have all genotypes as iso-
lated vertices, share the bi-modal vertex degree distribution. Fig. 2(a) shows the
degree distribution of the representative genotype network NAND. This degree
distribution suggests that the genotype networks are comprised of a dense core
of highly connected genotypes, as well as a cluster of genotypes towards the pe-
riphery. The vertex closeness centrality has a uni-modal distribution (Fig. 2(b)),

Population Exploration on Genotype Networks in Genetic Programming 429

(a) (b)

5 10 15 20 25

2

4

6

8

10

12

ev
ol
va
bi
lit
y

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

2

4

6

8

10

12

ev
ol
va
bi
lit
y

Fig. 3. The correlations of genotypic evolvability and (a) vertex degree and (b) vertex
closeness centrality of the NAND genotype network. Grayscale of hexagons indicates the
density of value intervals.

suggesting that most vertices are about equally accessible from other vertices
in the network. The vertex degree and closeness centrality are also positively
correlated (Spearman’s rank correlation ρ = 0.5417, p < 2× 10−16).

Recall that the evolvability of a given genotype is measured as the number of
accessible unique phenotypes through single point mutations. We then look into
how genotypic evolvability correlates with the degree and closeness centrality of
a genotype in the network. Fig. 3 shows evolvability as a function of (a) vertex
degree and (b) vertex closeness centrality. It can be observed that both the
vertex degree and closeness centrality are negatively correlated with evolvability
(Spearman’s rank correlations ρ = −0.3379, p < 2 × 10−16 and ρ = −0.3865,
p < 2×10−16, respectively). This suggests that the dense center cores of genotype
networks have less access to other unique phenotypes, i.e. are less evolvable, than
the genotypes at the periphery.

3.2 Population Diffusion on Genotype Networks

After quantifying the static properties of genotype networks, we now use popu-
lation evolution to investigate how a population diffuses on genotype networks.
We set one of the least representative phenotypes, x == y, as the evolution tar-
get to allow evolution to proceed for a longer time. |P | = 500 individuals of a
given starting phenotype are randomly sampled as the initial population. We
set mutation rate r = 0.1 and use a tournament selection of size two. For each
starting phenotype configuration we collect 1,000 independent runs, and for each
run the required number of generations that a population converges to the target
phenotype is recorded.

430 T. Hu, W. Banzhaf, and J.H. Moore

genotype network size

nu
m

be
r

of
 g

en
er

at
io

ns
(a)

104 105 106

500

1000

1500

2000

genotype network average degree

nu
m

be
r

of
 g

en
er

at
io

ns

(b)

10 12 14 16 18 20 22 24

500

1000

1500

2000

Fig. 4. The required evolution time as a function of the starting phenotype’s genotype
network properties. (a) The number of required generations increases as the geno-
type network becomes larger. (b) Evolution also requires a longer time if the starting
phenotype’s average vertex degree is larger. The lines provide a visual guide of their
correlations.

Fig. 4 shows the correlations of the required evolution time and the starting
phenotype’s properties. A population needs a longer time to reach and converge
to the target if it starts from a larger genotype network (Fig. 4(a), Spearman’s
rank correlation ρ = 0.6640, p = 0.0096). This positive correlation also exists
between the evolution time and the starting phenotype’s average vertex degree
(Fig. 4(b), Spearman’s rank correlation ρ = 0.6326, p = 0.0152). This suggests
that it takes a population longer to evolve if it starts from a larger and more
connected genotype network. This finding contradicts Wagner’s RNA results
where larger phenotypes, i.e. more robust phenotypes, are more evolvable [13],
but agrees with Cowperthwaite’s argument that the abundance of genotype net-
works constrains evolution [16]. We would like to point out that their correlation
crucially depends on the properties of an evolutionary system, specifically how
the genotype networks are adjacent to each other globally and where the target
phenotype is located. For our LGP system, the target phenotype can be accessed
from 13 other phenotypes, such that there are many possible paths to find the
target. Therefore, evolution is expected to take a longer time moving out of large
genotype networks and exploring novel phenotypes.

Last we take a close look at how a population diffuses on genotype networks
as evolution proceeds. Fig. 5 shows the average vertex degree of a population
changes as a function of generation in a typical run. The population starts with
the average vertex degree of the starting genotype network NAND. Individuals
then quickly move towards the periphery of the networks (generation 1 to 10).
During the subsequent search, the population visits many other phenotypes,
but leaves without going into their center cores (generation 11 to 160). The
population reaches the first genotype of the target phenotype at generation 161,
and quickly converges to the target in the next 33 generations. Also note that,

Population Exploration on Genotype Networks in Genetic Programming 431

generation

ve
rt

ex
 d

eg
re

e

0 50 100 150 200

0

5

10

15

20

25

Fig. 5. The change of average vertex degree of an evolving population as evolution
proceeds in a typical run of starting phenotype NAND. Points are population mean and
error bars are standard deviations.

data not shown here, the change of vertex closeness centrality follows the same
trend as the vertex degree since they are positively correlated.

4 Concluding Remarks

Here we have used a simple yet representative LGP system to fully characterize
all individual mutational genotype networks by exhaustively enumerating the
entire genotype and phenotype spaces. The 16 unique phenotypes are represented
by 16 genotype networks that possess both shared and distinguishing properties.
The two smallest genotype networks are comprised of isolated individual vertices,
whereas all other networks contain single connected components. The connected
genotype networks share similar bi-modal degree distributions, which indicate
that the networks are comprised of a dense core and a well-connected periphery.
In such genotype networks, vertices with high degrees are more likely located
in the center of connecting all other vertices. However, these high-degree and
high-centrality genotypes are less evolvable towards novel phenotypes.

By simulating population evolution, we find that a population requires more
time to find a target if it starts from a larger genotype network. This observation
conforms well to the static characterization of genotype properties in networks.
We would like to point out that how the abundance of mutational variants con-
tribute to evolvability crucially depends on the distribution of neutrality among
various phenotypes and where the target phenotype is located. Our simulation
also shows how an evolutionary population diffuses on genotype networks. It
moves from the center of a network towards the periphery as the evolutionary
search proceeds, accompanied by fitness improvements, and stays on the periph-
ery of genotype networks visited until the target phenotype is reached.

The findings of this study provide insights on how neutrality is distributed in
a typical LGP system. We conjecture that genotype networks could be shaped

432 T. Hu, W. Banzhaf, and J.H. Moore

very differently in other GP systems, however our current observations cap-
ture many general properties of GP, and might even be applicable to other EC
systems. Specifically, the distribution of neutrality is very heterogenous among
various phenotypes. Some genotype networks, i.e. phenotypes, could be orders
of magnitude larger than others. Moreover, the mutational connections among
phenotypes are biased, where a phenotype has more potential to mutate to par-
ticular phenotypes and is less likely to mutate to or is even disconnected from
some phenotypes. The success of an innovative evolutionary search crucially de-
pends on locating the target phenotype, i.e. whether it is accessible from many
other phenotypes, and on finding an efficient mutational path towards it.

In future studies, we expect to use our methodology in other GP- or EC-
systems and test if our observations and conjectures hold for a wider range of
applications. It would be helpful to look into how a particular EC representation
correlates with genotype network properties, such that we can gain a better
understanding of how a representation influences evolutionary search and how
we could improve the performance of an evolutionary algorithm by designing
more appropriate representations.

Acknowledgments. This work was supported by National Institute of Health
(USA) grants R01-LM009012, R01-LM010098, R01-AI59694, P20-GM103506,
and P20-GM103534.W.B. acknowledges support from NSERCDiscovery Grants,
under RGPIN 283304-2012.

References

1. Lenski, R.E., Barrick, J.E., Ofria, C.: Balancing robustness and evolvability. PLoS
Biology 4(12), e428 (2006)

2. van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of mu-
tational robustness. Proceedings of the National Academy of Sciences 96(17),
9716–9720 (1999)

3. Kirschner, M., Gerhart, J.: Evolvability. Proceedings of the National Academy of
Sciences 95, 8420–8427 (1998)

4. Pigliucci, M.: Is evolvability evolvable? Nature Review Genetics 9, 75–82 (2008)
5. Wagner, A.: Robustness, evolvability, and neutrality. Federation of European Bio-

chemical Societies Letters 579(8), 1772–1778 (2005)
6. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends in Genetics 26,

406–414 (2010)
7. Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness

can facilitate adaptation. Nature 463, 353–355 (2010)
8. Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic prop-

erties influcing the evolvability of gene expression. Science 317, 118–121 (2007)
9. McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability

of thermotolerance in an RNA virus. BMC Evolutionary Biology 8, 231 (2008)
10. de Visser, J.A.G.M., Hermission, J., Wagner, G.P., Meyers, L.A., Bagheri-

Chaichian, H., et al.: Evolution and detection of genetic robustness. Evolu-
tion 57(9), 1959–1972 (2003)

Population Exploration on Genotype Networks in Genetic Programming 433

11. Reidys, C., Stadler, P.F., Schuster, P.: Generic properties of combinatory maps:
neutral networks of RNA secondary structures. Bulletin of Mathematical Biol-
ogy 59(2), 339–397 (1997)

12. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes
and back: A case study in RNA secondary structures. Proceedings of The Royal
Society B 255, 279–284 (1994)

13. Wagner, A.: Robustness and evolvability: A paradox resolved. Proceedings of The
Royal Society B 275(1630), 91–100 (2008)

14. Ciliberti, S., Martin, O.C., Wagner, A.: Innovation and robustness in complex reg-
ulatory gene networks. Proceedings of the National Academy of Sciences 104(34),
13591–13596 (2007)

15. Wilke, C.O.: Adaptive evolution on neutral networks. Bulletin of Mathematical
Biology 63, 715–730 (2001)

16. Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.:
The ascent of the abundant: How mutational networks constrain evolution. PLoS
Computational Biology 4(7), e1000110 (2008)

17. Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study
in genetic programming. In: Davidor, Y., Schwefel, H.P., Manner, R. (eds.) PPSN
1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)

18. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evolutionary Computation 11(4), 381–415 (2003)

19. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light
of recent developments in biology. Journal of Artificial Evolution and Applica-
tions 568375 (2010)

20. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality
affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1149–1156 (2006)

21. Hu, T., Banzhaf, W.: Neutrality and variability: Two sides of evolvability in lin-
ear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 963–970 (2009)

22. Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12,
17–34 (2006)

23. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming.
In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice
III, pp. 207–221. Springer (2006)

24. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolv-
ability. Complexity 7(2), 19–33 (2002)

25. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multi-
ple scales: A quantitative analysis of the interplay between genotype, phenotype,
and fitness in linear genetic programming. Genetic Programming and Evolvable
Machines 13, 305–337 (2012)

26. Bavelas, A.: Communication patterns in task-oriented groups. Journal of the
Acoustical Society of America 22, 725–730 (1950)

27. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

Improving Genetic Programming
with Behavioral Consistency Measure

Krzysztof Krawiec1 and Armando Solar-Lezama2

1 Institute of Computing Science, Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl

2 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA

asolar@csail.mit.edu

Abstract. Program synthesis tasks usually specify only the desired out-
put of a program and do not state any expectations about its internal
behavior. The intermediate execution states reached by a running pro-
gram can be nonetheless deemed as more or less preferred according
to their information content with respect to the desired output. In this
paper, a consistency measure is proposed that implements this observa-
tion. When used as an additional search objective in a typical genetic
programming setting, this measure improves the success rate on a suite
of 35 benchmarks in a statistically significant way.

Keywords: Program synthesis, genetic programming, entropy, multi-
objective search.

1 Introduction

One of the main challenges for genetic programming (GP)—or for that matter,
for any approach to program synthesis based on explicit search over a space of
programs—is to decide on a fitness function that captures the relative quality of
different proposed solutions. A common approach is to consider the quality of the
output of a given program on a set of candidate inputs, possibly augmented with
some structural constraints to prevent the search algorithm from overfitting to
the training inputs (examples). The problem with this approach is that there is a
fundamental mismatch between the search approach, which operates on the struc-
ture of the program, and the fitness function which is based on its input/output
behavior. An ideal fitness function would instead be one that rewards programs
that are structurally close to a correct solution: a program that is only a few small
modifications away from being correct is better than one that has to be completely
transformed in order to work, even if the former produces incorrect output on ev-
ery input. The problem, of course, is that we do not know how the correct pro-
gram looks like—if we did, we would not be searching for it—so we are left with
behavior-based measures of correctness.

In this paper, we propose a new fitness measure that tries to better capture
how close a proposed solution is from being correct by assessing the quality
of intermediate values of the program in addition to the quality of the output.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 434–443, 2014.
c© Springer International Publishing Switzerland 2014

Improving Genetic Programming with Behavioral Consistency Measure 435

At first glance, it may seem that such a measure would run into the same problem
as any other structural quality measure: since we do not know what the correct
solution looks like, we also do not know what the intermediate values produced
in the process of that computation should be. However, we do know that these
intermediate values must preserve certain information about the input that is
necessary to produce the desired output. Our main contribution is to show that
information theoretic measures of the quality of intermediate values can improve
upon traditional output-based measures in a statistically significant way.

The intuition for the approach is as follows: if two inputs are supposed to
produce different outputs, then any program prefix that loses the information
necessary to distinguish between these two inputs is doomed to failure since
once lost, the information cannot be recovered. By contrast, if two inputs are
supposed to produce the same output, then a program prefix that produces
the same value for these two inputs will eliminate the risk that the rest of the
program incorrectly assigns different values to these two inputs. The rest of the
paper formalizes this intuition and exploits it in a new fitness measure based on
information consistency. We implement the approach in a single-objective and
a multi-objective variant, and evaluate it on 35 benchmarks representing three
different domains. The experimental results clearly suggest that the involvement
of information consistency almost always increases the likelihood of synthesizing
the correct program.

2 Information Consistency

Conceptual Background. The proposed approach works by analyzing the
internal behavior of programs, by which we mean the effects of computation
conducted at intermediate stages of program execution. Conceptually, we exam-
ine such effects by placing traps (breakpoints) at selected locations in program
code and inspecting the program state when execution reaches these traps. We
assume that traps are not embraced by loops or conditional statements, thus
ensuring that a deterministic program always visits all traps in the same order
independently of program input.

When stopped at a trap, an executing program produces a certain state of
the execution environment, which we assume to depend only on the part of the
program that is syntactically associated with the trap (or, informally speaking,
‘scoped’ by the trap). Depending on the adopted programming paradigm, the
particular interpretation of these notions will vary. For register-based sequential
programs, a state would be the contents of all registers, and it would depend
on the entire code executed so far (i.e., program prefix ending at the trap). For
purely functional programming, by state we would mean the value calculated
in the corresponding function call, caught in the process of being passed to the
caller. In this study we consider functional tree-based GP and will place traps at
tree nodes, so a state will be the value returned by the corresponding subtree.

Let ski denote the state of the program at the kth trap when executed on the
ith training example (input data). The sequence of the states s1i , s

2
i , . . . traversed

436 K. Krawiec and A. Solar-Lezama

by a program for a given ith example will be called the trace for that example.
Our method is intended to promote programs that reach states that exhibit

a certain form of consistency with the desired output. Given two examples for
which the desired program outputs are yi and yj, two situations are possible:

Case #1: yi �= yj . In this case, the program should maintain distinct behaviors
for examples i and j. If that is not the case, i.e., the program leads to ski = skj at
some kth trap, this should be considered undesired and penalized. It is so because
once program traces for two examples merge, they cannot diverge anymore (while
they should if distinct yi and yj are to be produced at the end of program
execution).

Case #2: yi = yj. In this case, the program should reach the same state for
the ith and jth example at some stage of its execution, i.e., it is desirable to
observe ski = skj . Conversely, a program for which no trap with this property
exists is unlikely to end up with correct output, and thus should be penalized.

In other words, the observed execution states should form equivalence classes
that are consistent with the equivalence classes induced by the desired program
output. Ideally, a program would feature a trap for which this consistency is
full, i.e., ski = skj ⇐⇒ yi = yj . Once such a state emerges in an evolving pro-
gram, producing the correct output is only a matter of one-to-one mapping from
intermediate execution states to the final execution states. Although realizing
such a mapping can be still difficult in some programming languages, we hy-
pothesize that promoting programs that feature locations with such properties
is desirable1.
Consistency Measure. To promote and demote programs in an evolving pop-
ulation according to how their internal behaviors meet the characteristics dis-
cussed above, we design a measure based on information theory to quantitatively
assess the consistency of program behavior with the desired output. Let us start
from an observation that the process of program execution is usually accompa-
nied by gradual loss of information in the execution environment. More precisely,
a deterministic program can at most maintain the amount of information present
in the data it has been applied to, but is unable to increase it. In an extreme case,
a program that ignores its input and always returns the same output, reduces
the amount of information to zero.

In terms of the notions introduced above, information is lost every time the
traces associated with particular examples merge, i.e., every time the program,
when applied to distinct training examples, reaches the same execution state
(more specifically, if ski �= skj for a certain kth trap, but sli = slj for some sub-
sequent lth (l > k) trap). Depending on the particular pair of examples (i, j),
that loss may be detrimental (when it increases the likelihood of producing the
same output; case #1 in Section 2), or desirable (case #2).
1 Whether the errors presented in Case #1 and #2 are critical depends on the adopted

programming paradigm. For sequential programs, a state captures the entirety of
computation conducted so far, so the erroneous merging or non-merging of traces
cannot be fixed by subsequent execution of program suffix. For functional program-
ming, however, other parts of the program can substitute for such a deficiency.

Improving Genetic Programming with Behavioral Consistency Measure 437

To assess the amount of lost information, we associate a random variable
Sk with the kth trap, where the values of Sk are the states associated with
particular examples. Analogously, we define a random variable Y representing
the desired output. Based on the concept of conditional entropy (H(X |Y) =
−∑Pr(X |Y) log2 Pr(X |Y)), we consider:
– H(Y |Sk), i.e., the amount of information that Y adds to Sk. In particular,

if H(Y |Sk) > 0, then Sk alone is not sufficient to predict the value of Y .
– H(Sk|Y), the amount of information that Sk adds to Y . Large values of

H(Sk|Y) indicate that Sk partitions the set of examples into many equiva-
lence classes.

In connection to our previous considerations, every time the traces for two or
more examples merge between the kth and (k + 1)th trap, either the former
term increases (H(Y |Sk) > H(Y |Sk+1)) or the latter term drops (H(Sk|Y) >
H(Sk+1|Y)). Both H(Y |Sk) and H(Sk|Y) attain zero if and only if Sk perfectly
‘correlates’ (is consistent) with Y , i.e., ski = skj ⇐⇒ yi = yj .

Following this observation, we base our measure on the sum of the above
terms. We define the (minimized) information consistency I of a program p
according to the trap at which the total two-way conditional entropy attains its
minimum, i.e.,

I(p) = min
k

H(Y |Sk(p)) +H(Sk(p)|Y) (1)

where Sk(p) is the random variable associated with the kth trap set on program
p. The lower values of I are more desired as they indicate program behavior that
is more consistent with Y . By using the minimum operator for aggregation over
program traps, I(p) rewards p for the part of its behavior that is most consistent
with the desired output Y , even if otherwise (i.e., at other locations/traps) it
behaves in a way that is unrelated to Y . This is intended to promote programs
that are partially correct and thus feature code pieces that can prove useful in
new programs2.
Example. For simplicity, we illustrate these concepts on a linear program, by
which we mean a program that reads in the input data only once, at the begin-
ning of its execution and involves no loops or branches.

Consider a programming task defined by five examples, and a linear program
with three traps. Table 1 presents the states traversed by the program for partic-
ular examples, where for brevity we encode program states in lowercase letters.
We use different symbols for particular traps to emphasize that the random vari-
ables may assume values from different domains (though in practice, e.g., a, f ,
and j could represent the same value). The last column of the table presents the
desired output of the program.

The table presents also the conditional entropy for consecutive traps. H(Y |Sk)
remains at zero for at the first and second trap (S1 and S2), and then increases
2 Note that the term minimized in (1) can be alternatively expressed as H(Y, Sk(p))−
I(Y ;Sk(p)), where H(Y,Sk(p)) stands for joint entropy and I is the mutual infor-
mation. However, minimization of (1) is not equivalent to maximization of mutual
information only, as H(Y,Sk(p)) may also vary from trap to trap.

438 K. Krawiec and A. Solar-Lezama

Table 1. Exemplary calculation of consistency measure for a program with three traps,
executed on five examples. The minimum of H(Y |Sk)+H(Sk|Y) over the traps, marked
in bold, is the information consistency I of this program.

Example S1 S2 S3 Y
1 a f j 1
2 b g k 2
3 c g k 2
4 d h j 2
5 e i j 3
H(Y |Sk) 0 0 0.95
H(Sk|Y) 0.95 0.55 0.55
H(Y |Sk) +H(Sk|Y) 0.95 0.55 1.50

for S3. As the states in consecutive traps merge (e.g., b and c in S1 merge into
g in S2), the corresponding random variables Sk carry less and less information,
and the entropy of Y conditioned on Sk grows.

Conversely, H(Sk|Y) cannot grow with consecutive traps, because the col-
lapsing states reduce the amount of information. In an ideal case, H(Y |Sk) =
H(Sk|Y) = 0, i.e., neither the state adds any information to the desired output,
nor the reverse. This would happen if g and h collapsed into a single state in S2,
which would then be perfectly correlated with Y . �

The motivations for our initial assumption that no trap is inside a loop or
conditional statement should become clear now. Otherwise, a program could,
depending on the input data, visit some traps more than once, not visit some
traps, or visit them in a different order. In other words, the execution traces could
not be ‘aligned’ in a reasonable way. This in turn would make it impossible to
compare the corresponding execution states in a meaningful manner.
Related Work. In inspecting the internal behavior of programs, consistency
measure relates to our former work on behavioral search drivers for GP [5].
However, the methods presented there were after a more general class of behav-
iors, and used machine learning inducers to identify them. Compared to them,
here we focus exclusively on information contents, which allows us to assess the
impact of this specific aspect of program behavior on search efficiency.

In a broader context, studying the internal behavior of programs can be seen as
an extension of semantic GP, a new branch in GP research initiated by McPhee
et al. [8]. However, most of work conducted in this area, including recent work
(see, e.g., [9]), takes into account only the final output of programs.

The requirement that a program prefix should not loose information necessary
to distinguish inputs that must lead to distinct outputs has been used in both
constraint-based software synthesis [10] and interpolant-based hardware synthe-
sis [3]. In different contexts, both of those works use the constraint to ensure
that a given prefix can be completed to be equivalent to a given program.

Finally, the consistency measure proposed above will be integrated into evo-
lutionary workflow, which can be done, among others, by treating it as an addi-
tional search objective. This can be considered as a form of multiobjectivization
by Knowles et al. [4], meant as extending the original problem formulation by
helper objectives intended to make problem solving more efficient.

Improving Genetic Programming with Behavioral Consistency Measure 439

3 Experiment

In the following, we examine the usefulness of our consistency measure in the
framework of tree-based GP, with the programs being expression trees that fea-
ture no loops nor conditional statements, and have no side effects. A trap placed
at a tree node will allow us to examine the value calculated by the program
subtree (subprogram) rooted at that node. The state will be simply the value
calculated by that subtree.

An important consequence of associating execution states with program sub-
trees is that a state does not capture the entirety of the computation conducted
so far by a program, but only a local execution state (depending on the corre-
sponding subtree; cf. Footnote 1). This however does not undermine the rationale
presented in Section 2: a subtree that behaves consistently with the desired pro-
gram outcome is a potentially useful piece of code, and a program that hosts
it should be promoted. However, contrary to strictly linear programs, even if
a subtree merges two or more states that should not be merged (and leads to
H(Y |Sk) > 0), a program is not necessarily destined to perform bad, as other,
independent program subtrees can still be able to distinguish those states.
Configurations. The goal of the experiment is to assess the impact on the in-
formation elicited by the consistency measure from the evolving programs. We
consider two ways of integrating I(p) (Formula (1)) into the conventional GP
workflow: by redefining the scalar fitness in the conventional single-objective
evolutionary workflow, and by using I(p) as an additional objective in a multi-
objective setting. In the former setup, called FxI in the following, the (mini-
mized) program fitness is defined as

(1 + F (p))(1 + I(p)) (2)

where F (p) is the conventional program error (Hamming or city-block distance,
depending on the domain). For the sake of simplicity, we deliberately abstain
from exploiting the trade-off between F and I via weighing.

For the multiobjective setup (FI in the following) we assign a two-dimensional
fitness (F (p), I(p)) to a program and employ the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II, [1]) at the selection stage, the arguably most popular
method of multiobjective evolutionary optimization.

The baseline for the above methods is the conventional Koza-style GP (F in
the following), which uses F (p) as the only search objective.

To avoid making the (potentially biased) decisions where to set traps in pro-
grams, we stop program execution and calculate the two-way entropy (Eq. 1)
after every single instruction. This imposes substantial computational burden
on the evaluation process, which we take into account in one of the experiments.

A run is terminated when an ideal solution is found (F = 0) or the maximum
number of 250 generations has elapsed. The percentage of runs that ended with
the former result (out of the total of 30 independent evolutionary runs) forms
the success rate, the performance metric we use in the following. A total of 30
× 35 benchmarks × 6 configurations = 6300 runs has been conducted.

440 K. Krawiec and A. Solar-Lezama

Table 2. The benchmarks. v – number of input variables, m – number of tests, k –
number of semantically unique programs.

Domain Instruction set Problem v m k

Boolean and, nand, or,
nor

Cmp6, Maj6, Mux6, Par6 6 64 264

Cmp8, Maj8, Par8 8 256 2256

Mux11 11 2048 22048

Categorical al(x, y) D-a1, D-a2, D-a3, D-a4, D-a5 3 27 327

al(x, y) M-a1, M-a2, M-a3, M-a4, M-a5 3 15 315

Regression +, −, ∗, %, sin,
cos, log, exp, −x

Keij1, Keij4, Nguy3..7, Sext 1
20 –Keij5, Keij11..14, Nguy9..10, Nguy12 2

Keij15 3

For single-objective configurations, tournament of size 5 is used for selection.
Except for the elements of the setup that have to differ across domains because
of their different natures, all benchmarks in all considered domains use the same
parameter settings. The remaining parameters use ECJ’s defaults [6].
Program Synthesis Problems. Table 2 presents the 35 benchmark problems
used in our experiment, which come from three domains: Boolean (8 bench-
marks), categorical (10 benchmarks), and regression (17 benchmarks). Table 2
summarizes the problems, listing the instruction set, the number of variables,
tests, and the cardinality of the search space (where countable). Note that none
of the instruction sets contains constants.

The particular Boolean problems are defined as follows. For an v-bit com-
parator Cmp v, a program is required to return true if the v

2 least significant
input bits encode a number that is smaller than the number represented by the
v
2 most significant bits. In case of the majority Maj v problems, true should be
returned if more that half of the input variables are true. For the multiplexer
Mul v, the state of the addressed input should be returned (6-bit multiplexer uses
two inputs to address the remaining four inputs, 11-bit multiplexer uses three
inputs to address the remaining eight inputs). In the parity Par v problems, true
should be returned if an only if an odd number of trues appears on the inputs.

The categorical problems come from Spector et al.’s work on evolving
algebraic terms [11] and dwell in the ternary domain: the admissible values
of program inputs and outputs are {0, 1, 2}. The peculiarity of these problems
consists in using only one binary instruction in the programming language; for
the a1 algebra, the semantics of that instruction is defined in Table 3c. We refer
the reader to [11] for the definitions of the remaining algebra problems.

For each of the five algebras considered here, we consider two tasks. In dis-
criminator term tasks (D-* in Table 2), the goal is to synthesize an expression
(using only the one given instruction) that accepts three inputs x, y, z and real-
izes the function given in Table 3a. Given three inputs and ternary domain, this
gives rise to 33 = 27 fitness cases for these benchmarks.

The second task defined for each of the algebras (M-* in Table 2), consists in
evolving a so-called Mal’cev term, i.e., a ternary term that is equivalent to the
one given in Table 3b. This condition specifies the desired program behavior only

Improving Genetic Programming with Behavioral Consistency Measure 441

Table 3. The algebra problems: (a) discriminator problem, (b) Mal’cev problem, (c)
exemplary algebra (named a1 in [11])

(a) t(x, y, z) =

{
x if x
= y

z if x = y
(b) m(x, x, y) = m(y, x, x) = y (c)

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

for the indicated combinations of inputs, and the desired value for all distinct
inputs is not determined. As a result, there are only 15 fitness cases in our
Mal’cev tasks, the lowest number of all considered benchmarks.

The regression problems considered here come from [7] and include both
univariate and multivariate target functions. The univariate ones (Keij1, Keij4,
Nguy3..7 and Sext) use 20 tests uniformly distributed in the [−1, 1] interval,
except for the Keij4 benchmark which uses the [0, 10] interval. The remaining
problems are predominantly bivariate, and involve 5× 5 = 25 fitness cases uni-
formly distributed on the two-dimensional grid. The only exception is Keij5,
which hosts three input variables, with 4 × 4 × 4 = 64 fitness cases distributed
equidistantly in the cube. For other details on these benchmarks, see [7].
Results for Limited Number of Evaluations. In this experiment, the com-
putational budget allocated to every run is 250, 000 evaluations, i.e., a population
of 1, 000 programs evolves for 250 generations. Because of the large number of
benchmarks and limited space, we discuss only the aggregated outcomes. To this
aim, we rank the three considered configurations according to the success rate on
every benchmark independently. Next, we average the ranks across benchmarks.

When averaged over all benchmarks, the resulting ranks are FI: 1.6, F: 2.19,
and FxI: 2.21 (the lower rank, the better). To assess the statistical significance
of this outcome, we used the Friedman’s test for multiple achievements of mul-
tiple subjects which, compared to ANOVA, does not require the distributions
of variables in question to be normal. The p-value of 0.00124 strongly indicated
that at least one method performed significantly different from the remaining
ones. A post-hoc analysis using symmetry test [2] determined that the difference
between F and FxI is statistically insignificant, but FI significantly outranks
them both (p = 0.03).

We can conclude thus that augmenting the conventional training signal (pro-
gram error) with our information-based behavioral measure that depends on in-
ternals of program execution (information consistency) brings substantial benefits
to a GP search algorithm. However, this seems to hold only when the behavioral
information is provided as a separate search objective (FI setup). Aggregation of
conventional fitness with information consistency (FxI setup), at least in the spe-
cific multiplicative manner used here (Eq. 2) does not make the search more effi-
cient. Possible explanation is that F , defined as city-block distance for regression,
and normalized Hamming distance for the remaining two domains, may assume
radically different ranges on different problems. As a result, the trade-off between
F and I varies across domains and can be difficult to control.

442 K. Krawiec and A. Solar-Lezama

FI fared the best on the categorical problems, where it came on top on
nine out of ten benchmarks, so that its average rank was 1.2 there. Remarkably,
this is also the only domain in which FxI ranked on average better than F
(2.05 vs. 2.75). This may suggest that the trade-off between F and I was just
right for these problems. For regression problems, the differences between all
three methods were the least prominent (FI: 1.82, F: 2.0, FxI: 2.18), which was
expected, as discrete entropy cannot capture similarities between values for these
continuous problems.

On the Boolean domain, the behavioral methods performed relatively bad
(FI: 1.62, F: 1.88, FxI: 2.5), which seems surprising given the discrete nature
of these problems. We come up with three mutually nonexclusive hypotheses to
account for this. Firstly, note that the Boolean instruction set does not feature
negation (Table 2). Let us consider a program p that evolves a subexpression p′

which produces exactly the negated value of desired output Y . In terms of I,
p′ is perfectly consistent with Y , so I(p) = 0. However, without negation in the
instruction set, it may be difficult to extend p′ with a suffix that would turn it
into Y . A way to achieve this is p′ nor false or p′ nand true, but those Boolean
constants require a separate subprogram to synthesize them.

The other hypothesis starts with the observation that Boolean problems fea-
ture the largest number of input variables in our benchmark suite (v ≥ 6, while
v ≤ 3 for the other domains, Table 2). As no input variable is redundant in
these problems, evolution has to produce a subprogram comprising at least v
tree leaves (terminals), and thus 2v − 1 nodes, to possibly bring I to zero. In
general, to obtain competitive values of I, relatively large subtrees featuring
most input variables have to be synthesized.

Last but not least, the random variables that I is based on, by being binary
for the Boolean problems, are least discriminating in terms of entropy. As an
example, a binary random variable observed for five training examples can have
only one of three possible values of entropy, while an analogous number for a
ternary variable (like those used in our categorical problems) is five. As a result,
I can be more fine-grained for domains that feature multi-valued variables, even
if the actual number of examples is low (like in our categorical problems).
Results for Limited Time Budget. To take into account the overhead of
calculating consistency measure, in this experiment the computational budget
allocated to every run was 600 seconds. For this setup, the average ranks w.r.t.
success rate are: FI: 1.77, F: 2.06, FxI: 2.17. Though FI leads again, this time
Friedman test is inconclusive at 0.05 level. However, its relatively low p-value
(0.08) suggests that significance could be attained given a larger suite of bench-
marks.

4 Summary

We proposed a measure for characterizing the internal program behavior in terms
of its consistency with the desired output, which can conveniently be used to
promote certain program behaviors without specifying them explicitly. The algo-
rithms that involve this measure can be thus said to implicitly perform problem

Improving Genetic Programming with Behavioral Consistency Measure 443

decomposition, which normally requires an expert who explicitly splits a task into
subtasks. Together with methods reported elsewhere [5], we consider information
consistency as promising way towards scalable program synthesis.

Acknowledgment. K. Krawiec acknowledges support from the NCN grant
no. DEC-2011/01/B/ST6/07318, and A. Solar-Lezama from grant no. NSF-
CCF-1161775.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

2. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods. A Wiley-Interscience
Publication. Wiley (1999)

3. Jiang, J.-H.R., Lee, C.-C., Mishchenko, A., Huang, C.-Y.R.: To sat or not to sat:
Scalable exploration of functional dependency. IEEE Transactions on Comput-
ers 59(4), 457–467 (2010)

4. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001)

5. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Blum, C., et al.
(eds.) GECCO 2013: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, Amsterdam, The Netherlands, July
6-10, pp. 949–956. ACM (2013)

6. Luke, S.: ECJ evolutionary computation system (2002),
http://cs.gmu.edu/eclab/projects/ecj/

7. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.-M.: Genetic
programming needs better benchmarks. In: Soule, T., et al. (eds.) GECCO 2012:
Proceedings of the Fourteenth International Conference on Genetic and Evolution-
ary Computation Conference, Pennsylvania, USA, July 7-11, pp. 791–798. ACM
(2012)

8. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

9. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

10. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular synthesis of
sketches using models. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 395–414. Springer, Heidelberg (2014)

11. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming
for finite algebras. In: Keijzer, M., et al. (eds.) GECCO 2008: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA,
USA, July 12-16, pp. 1291–1298. ACM (2008)

http://cs.gmu.edu/eclab/projects/ecj/

On Effective and Inexpensive Local Search
Techniques in Genetic Programming Regression

Fergal Lane, R. Muhammad Atif Azad, and Conor Ryan

CSIS Department, University of Limerick, Ireland
{Fergal.Lane,Atif.Azad,Conor.Ryan}@ul.ie

Abstract. Local search methods can harmoniously work with global
search methods such as Evolutionary Algorithms (EAs); however, par-
ticularly in Genetic Programming (GP), concerns remain about the addi-
tional cost of local search (LS). One successful such system is Chameleon,
which tunes internal GP nodes and addresses cost concerns by employ-
ing a number of strategies to make its LS both effective and inexpensive.
Expense is reduced by an innovative approach to parsimony pressure
whereby smaller trees are rewarded with local search opportunities more
often than bigger trees.

This paper investigates three new extensions to Chameleon’s original
simple setup, seeking ways for an even more effective local search. These
are: trying alternative, more cost-reflective parsimony measures such as
visitation length instead of tree size; varying the reward function to more
gently incentivize parsimony than that in the original setup; and hav-
ing more tuning earlier in runs when smaller trees can be tuned more
cheaply and effectively. These strategies were tested on a varied suite
of 16 difficult artificial and real-world regression problems. All of these
techniques improved performance.

We show that these strategies successfully combined to cumulatively
improve average test RMSE by 31% over the original and already effective
Chameleon tuning scheme. A minimum of 64 simulations were run on
every problem/tuning setup combination.

1 Introduction

GP regression/classification is potentially a very attractive candidate for com-
bining with local search (LS) strategies. This is because most of the expense of
fitness evaluations for points in the locality of already evaluated points can be
avoided. Caching strategies, where intermediate node evaluations are stored in a
local cache, make this possible. That LS approaches are seldom used with GP is,
therefore, somewhat surprising, but is perhaps explained by concerns regarding
excessive computational overheads or worries about complex implementational
details. While several researchers have previously carried out work in this area,
the Chameleon lifetime learning system [2,3] is, nonetheless, a relatively rare
example of a GP augmented with LS. Chameleon further distinguishes itself
with a low-cost and intuitive LS approach. Its local search mechanism tunes

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 444–453, 2014.
c© Springer International Publishing Switzerland 2014

On Effective and Inexpensive Local Search Techniques 445

internal GP tree nodes. Moreover, rather than explicitly penalizing bigger trees
in a stick-like manner, Chameleon allocates node tuning effort in a carrot-like
fashion by rewarding smaller trees with greater tuning opportunities using a
simple linear reward function. This successfully encourages and maintains more
parsimonious trees. The Chameleon system has significantly outperformed state-
of-the-art GPs [2,3]. This was all achieved using a very simple, cheap, and easy
to implement LS node tuning mechanism.

This paper sets out a number of new ways in which Chameleon’s approach
to node tuning can be even further improved. In our investigations, we were
always very much concerned with controlling computational costs. Our goal was
to better learn how this tuning effort might be even more effectively directed.
We investigated alternative parsimony measures instead of tree size that better
reflect tree tuning costs. We varied the gentleness/severity of how tuning effort
was allocated according to parsimony. When tuning is performed can have a big
impact on cost. We, therefore, investigated reallocating more tuning to earlier
in runs where smaller trees can be more cheaply and effectively tuned.

The paper is laid out as follows. Section 2 gives a brief survey of the previous
uses of LS in GP and, in particular, gives a basic grounding in the Chameleon
lifetime learning system. Section 3 details the experimental setup used to test our
new tuning strategies. In section 4 we describe these tuning schemes in greater
detail and give experimental results and analysis for the individual strategies.
Section 5 describes how these individual methods harmoniously combine to give
even greater cumulative performance gains. We end with a final section laying
out our conclusions and describing some potential future research directions.

2 Related Work

2.1 Local Search in Genetic Programming

While the use of LS with GP has been relatively rare, the idea of augmenting the
global search capabilities of stochastic population optimizers with LS, as typified
by the Memetic Algorithm (MA) approach, has been a far more frequent theme
in the EA field (see [14] for an overview of MAs and how LS has been used
in conjunction with EAs). Radcliffe [17] has previously argued that the MA
approach is most attractive when fitness functions are “decomposable”, i.e. when
points in the locality of an already visited individual can be evaluated relatively
more cheaply than for arbitrary locations (the TSP is a good example where
this “decomposability” holds and has been exploited by a state-of-the-art solver
[1]). This same pattern can be made to hold for GP regression and classification
merely by caching intermediate calculations when evaluating trees. When a part
of a tree is changed, the cached calculations for the unaltered regions of the tree
do not need to be recomputed, and can simply be reused.

The rather infrequent use of LS in GP is, therefore, a little puzzling. Nonethe-
less, there has been some work in this area. Space considerations preclude giving
an extensive list (see [3] for a comprehensive review). Even when LS is used, it is
unusual to see caching being used to reduce costs ([11] [18] are rare exceptions).

446 F. Lane, R.M.A. Azad, and C. Ryan

[10] was also concerned with controlling costs, limiting application of LS to the
best population member for just one hillclimbing (HC) step. Most work, though,
has not considered cost. Some research [7] has used GP to directly (co-)evolve
the actual LS heuristics used. Other work has focused on tuning external GP
nodes; [9] gives a detailed survey of past work on tuning GP numeric constants.

Other research, which more closely relates to Chameleon, has focused on tun-
ing internal GP nodes. Often these studies have used mutation or crossover in a
HC fashion. Majeed [11] studied a form of HC “context aware” crossover, where
the incoming subtree was always inserted at the best possible site in the re-
cipient. [15] formulated a minimal-change mutation operator and tested it with
SA/HC approaches (later successfully using this HC approach with GP crossover
[16]). [4] combined crossover with a form of elitist brood selection. Zhang [21]
again used crossover in a broadly similar elitist HC fashion, but also incorporated
an interesting “looseness” mechanism, which helped discover and protect good
GP building blocks from the disruptive effects of crossover. Whereas these ap-
proaches employ mutation or crossover in a LS fashion, Chameleon uses a wholly
separate node-tuning phase, which the upcoming subsection will now describe.

2.2 Chameleon

The Chameleon lifetime learning system tunes internal GP nodes in a Lamar-
ckian fashion. When Chameleon tunes an internal node, n, it simply tries out
one-by-one all valid function set possibilities for that position and then keeps the
best one. When a GP node is altered, there is no need to completely recalculate
the entire fitness evaluation. Chameleon uses caching techniques to store all in-
termediate node evaluations, so it merely suffices to update the depth(n) cache
locations for the nodes in the direct line from there to the top of the tree. There-
fore, for a node, its tune cost is proportional to its depth. This caching principle
is one of the two foundations underpinning the effectiveness of the Chameleon
system. Indeed, earlier papers [2,3] found that even node tuning by itself leads
to big performance gains. An exhaustive tuning scheme where every node in the
population is tuned exactly once significantly outperformed standard GP.

The second major foundation underlying Chameleon is an innovative incentive-
based approach to controlling bloat. The related questions of overfitting, general-
ization and bloat are important issues for any regression/classification paradigm
to address. Rather than having a stick-like penalty function, Chameleon instead
uses its node tuning mechanism in a carrot-like fashion to promote parsimony.
Under this indirect approach, no large individual is explicitly punished; instead
smaller individuals are rewarded with greater node tuning opportunities (results
have shown that this also improves generalization and reduces overfitting).

2.3 Chameleon’s Parsimony Reward Scheme

Chameleon uses a very straightforward tuning reward scheme, called probabilistic
tuning, to encourage more parsimonious trees. Individual GP trees are allocated
with node tunes according to a simple linear reward function (truncated to keep

On Effective and Inexpensive Local Search Techniques 447

Table 1. Reward Function Formulae

Original Probabilistic Tuning

Trunc[0,1]
[
1.5− size(t)/ size

]
Probabilistic Tuning (Variant with

Slope = -0.5)

Trunc[0,1]
[
1− 0.5 size(t)/ size

]
0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

size� size

Tu
ni
ng
W
ei
gh
t

Fig. 1. Original Probabilistic Tuning Re-
ward Function

its output within the probabilistic [0, 1] range) given in the first row of table
1. An average-sized tree receives a weight of 0.5 (so each of its internal nodes
has a 50% chance of being tuned). This probability will be higher for smaller
trees and lower for larger trees. Smaller individuals can receive up to double the
tuning effort of average-sized population members. Larger individuals get less
tuning, eventually dwindling to zero when they exceed 150% of average size (see
Fig. 1). The probability of any node being tuned depends on the weight given
to the individual tree by the tuning reward function. This function assigns a
probability to each individual in the population.

In contrast, the exhaustive tuning scheme simply tunes nodes in a blanket
fashion (tuning every node in the population exactly once). The marriage in
probabilistic tuning between efficient node tuning and an incentivized parsimony-
reward mechanism, which more carefully distributes tuning effort, generally leads
to even better performances than just indiscriminate exhaustive tuning alone
[2,3] (a pattern which is again confirmed by our experimental results).

3 Experimental Setup

This section gives a detailed description of the experimental setups used to test
our new tuning strategies and comparison base cases. Table 2 supplies details of
the suite of 16 problems (11 artificial and 5 real-world) used in our experiments.

GP Parameter Settings. The GP parameter settings used in our experiments
are given in table 3. Almost identical settings were used to compare the various
tuning setups and baseline standard GP. We endeavoured to ensure a scrupu-
lously fair like-for-like comparison in terms of computational resources. This
motivated our use of a nodes processed statistic as the termination criterion.
This was a running count roughly equivalent to the computational resources
used so far in the simulation. size(t) was added to the statistic after every evalu-
ation (where each node is visited once) of a tree t. Each time the tuning process
investigated a new function set possibility for a node n, the count was increased
by depth(n) (corresponding to the number of node recalculations needed).

In our tuning scheme experiments, when the nodes processed count reaches
1.6 million the run is terminated. The nodes processed termination mechanism

448 F. Lane, R.M.A. Azad, and C. Ryan

Table 2. Problem Set

Problem(s) #
Vars

Sampling
Range(s)

Total
Dataset
Size

Training
Subset
Size

Further Details

Pagie1 2 U[-5,5] 3000 1000 See McDermott [12],
which surveys
commonly used GP
problems, for the
various original
proposers, sources
and references for
these

Korns1 5 U[-50,50] 3000 1000
Keijzer 11, 12, 13, 14, 15 2 U[-3,3] 3000 1000
Vladislavleva4 5 U[-0.25, 6.35] 3000 1000
Vladislavleva5 3 x,z: U[-0.05,2.1] y:

U[0.95,2.05]
3000 1000

Vladislavleva7 2 U[-0.25, 6.35] 3000 1000
Vladislavleva8 2 U[0.05, 6.05] 3000 1000

Dow Chemical 57 Supplied Dataset 1066 747

Originally presented
by A. Kordon at
EvoStar 2010 (see [3]
for more details)

Concrete Compressive Strength 8 Supplied Dataset
(UCI)

1030 350 UCI Machine
Learning Repository
[6]

Housing 13 506 200
Parkinsons Telemonitoring(Total and Motor) 20 5875 1500

Table 3. Parameter Settings

Population Size 500 (tuning), 1500 (no tuning) Tree Initialization Ramped-Half-and-Half (max. init. depth = 4)
Replacement Steady State, Inverse Tournament Termination When 1.6 million nodes processedMutation Rate Per Node 0.05
Crossover Rate 0.9 Ephemeral Random

Constants (ERCs)

Special terminal nodes in GP used to hold
numeric constants. |ERC| = 50, generated
uniformly randomly in [-5,5]

Crossover Subtree Crossover
Tournament Size 2
Selection Tournament Selection Number of

Simulations

Always at least 64 individual runs per
problem for every tuning setup (≥128 for
baseline and important tuning setups)

Functions Used {+,−,×,÷,pow, exp, log, cos, sin}
Terminal Set {Input Variables} ∪ ERCs

largely ensured similar runtimes on individual problems. However, it’s still an
approximate rather than perfect gauge of computational cost. Due to general
overheads, tuning runs were still taking on average 25% longer than for standard
GP, so we boosted the resources for standard GP runs. We allowed standard GP
25% more runs; for every 4 tuning runs we ran 5 standard GP runs and then
simply discarded the standard GP run with the worst performance.

GP runs using tuning actually perform fewer absolute number of evaluations
than standard non-tuning GP without caching. Therefore, it seemed appropriate
to have different population size settings for the tuning and the non-tuning cases.
Standard GP worked best with a population size of 1500. A population of 500
was found to be a good general setting for the tuning cases. Otherwise, all other
settings were identical.

Geometric Mean as a Summary Statistic. Lack of space prevented us from
including detailed RMSE breakdowns for all problems. This motivated us to use
the geometric mean to summarize test RMSE performance over the entire test
suite. The geometric mean of a set {a1, . . . , an} is given by (

∏n
i=1 ai)

1/n, which
is also equivalent to exp(

∑n
i=1 ln(ai + b))− b when b = 0.1 The geometric mean

was chosen as it is resistant to outliers, is particularly meaningful when one is

1 We actually used a very slightly modified form with b = 0.0001 to successfully cope
with zero RMSE values (this is a long-established strategy, e.g. see [20]).

On Effective and Inexpensive Local Search Techniques 449

working with ratios, and still gives meaningful averages even when combining
groups with widely varying scales and ranges [5].

4 Node Tuning Strategies

We investigated three natural extensions to Chameleon’s original probabilistic
tuning scheme. Cost considerations were an important motivation (influenced
by Radcliffe’s [17] argument that MA approaches are most fruitful when local
moves can be made relatively cheaply).

4.1 Cost-Oriented Parsimony Measures

Because balanced trees are cheaper to tune [3], we wanted to test measures more
reflective of the actual costs of processing GP trees and that factored in tree
skewness. A prior example from GP would be visitation length [8][19]. Visitation
length equals size plus path length of a GP tree. Path length is the sum of the
depths of all nodes in a tree. Both path length and visitation length increase
with increasing tree size, but also capture tree skewness. Highly imbalanced
trees with identical sizes will have higher values for these measures. Table 4 lists
the parsimony measures studied and also gives their overall mean test RMSE
performances over the test suite (here N(t) and I(t) are the sets of all nodes
and all internal nodes, respectively, of a tree t). Since as of yet, Chameleon only
tunes internal nodes, we tested some internal node versions of these measures,
e.g. internal path length (IPL) is the sum of depths of all internal nodes in a
tree.

Table 4. Parsimony Measures and Performances

Parsimony Measure Formula Mean Test RMSE
Original Modified Slope

Standard GP - 0.955±0.022
None (Exhaustive Tuning) - 0.574±0.012
Size (Standard Prob. Tuning) |t| 0.456 ± 0.024 0.441±0.036
Number of Internal Nodes |I(t)| 0.460±0.021 0.429±0.029
Path Length

∑
n∈N(t) depth(n) 0.423±0.019 0.403±0.024

Internal Path Length
∑

n∈I(t) depth(n) 0.409±0.017 0.374±0.016
Visitation Length |t|+∑n∈N(t) depth(n) 0.409±0.017 0.400±0.025
Internal Visitation Length |t|+∑n∈I(t) depth(n) 0.427±0.018 0.380±0.024

It is clear from these results that performance gains are possible by using
parsimony measures more directly related to tuning costs. IPL, highlighted in
the table, gave the best test RMSE performance (and would most closely mirror
tree tuning costs). IPL gave a 10.3% performance gain over standard probabilistic
tuning.

450 F. Lane, R.M.A. Azad, and C. Ryan

Varying the Slope of the Reward Function. The original linear probabilistic
tuning reward function with its slope of a = −1 gave good performances. How-
ever, we were interested in seeing how performance might vary if we changed the
slope of this line and the gentleness/severity of the parsimony pressure. Although
the available space prohibits us from reporting detailed results here, we did find
that somewhat more gently incentivizing parsimony gave superior performances
to the original form or no incentivization at all. An intermediate slope value of
a = −0.5 consistently gave best performances for several different parsimony
measures out of a wide range of a values tested (with corresponding formula for
a = −0.5 given in the final row of table 1).

The final column of table 4 gives performances for the various parsimony
measures under this tuning scheme. IPL was still the best performer (its gain
over probabilistic tuning significant at a 99% level using the two-tailed Stu-
dent’s t-test). However, under both reward schemes, there was not a statistically
significant margin separating some of the better performers. Hence, more inves-
tigation will be needed to see if we can clearly separate out one of these measures
as having a consistent advantage over the others.

4.2 More Tuning Earlier in Runs

Generally, tree sizes increase as GP runs progress. For both probabilistic and
exhaustive tuning, population tune costs rise correspondingly. Therefore, most
of the available tuning effort tends to be expended tuning larger deeper trees
in later generations (until our fixed nodes processed budget runs out). Some
preliminary investigations hinted that tuning effort might be more effective when
biased towards the start of a run ([13] also indicated that most useful work at
the top of trees is done early in runs). This provided some motivation to look
at strategies that shift more tuning resources to earlier generations. We include
here one simple and very effective tuning strategy that redistributes tuning effort
at the generational level. This constant nodes strategy imposes the requirement
that the average number of nodes tuned in every generation remains constant. In
earlier generations with smaller trees, the average tuning per tree is then likely
to be far higher.

Our technique normalizes the sum of all population tree tuning weights so that
a constant average number of nodes is always tuned per generation. A single
parameter n determines the fixed generational tuning budget. n corresponds
to the average number of nodes tuned per tree per generation. Hence, in a
population with p trees, an average of n×p nodes will always be tuned (particular
individuals may not get an exact budget of n tunes due to unequal prior weights,
this is only an overall average for individuals in the population). An added
complication is that tree weights may now exceed 1.0 (we deal with this by
allowing multiple cycles in a tree tuning until its weight reaches zero).

As can be seen from Fig. 2, an n value of around 25 for the tuning budget
works best, leading to a substantial 19.3% performance boost over the equiva-
lent probabilistic tuning setup (significant at a 95% level using the two-tailed
Student’s t-test).

On Effective and Inexpensive Local Search Techniques 451

0 20 40 60 80 100

0.40

0.45

0.50

0.55

0.60

0.65

n: Mean Nodes Tuned Per Individual Per Generation

M
ea
n
R
M
SE

Fig. 2. Performances for the Constant
Nodes Strategy with Different n Values

Table 5. Baseline and Combined
Strategy Performances

Tuning Setup Overall
RMSE

Standard GP 0.955±0.022
Exhaustive Tuning 0.574±0.012

Probabilistic Tuning 0.456±0.024
SLOPE IPL CN Overall

RMSE
y n n 0.441±0.036
n y n 0.409±0.017
n n y 0.368±0.023
y y n 0.374±0.016
y y y 0.315±0.017

5 Combining Tuning Strategies

These individual tuning strategy categories all gave moderate performance gains
when used in isolation. However, they combined harmoniously and relatively
seamlessly to produce a far bigger cumulative performance boost. The best
parameter settings for these strategy types seemed to remain broadly similar
whether used in isolation or in concert with others.

A combination of all of the successful strategy types eventually gave a 31%
test RMSE improvement over probabilistic tuning and a 67% improvement over
the standard GP base case (both significant at a 99.9% level). Table 5 gives base-
line performance comparisons and then shows the performance gains for various
combinations of the new strategy types. The combination of all three strategies
(final row) was easily the best performer. Changing the parsimony measure from
size to IPL resulted in a 10.3% performance gain. Varying the reward function
slope to a = −0.5 (SLOPE) pushed the combined performance improvement to
18%. Finally, adding in the constant nodes (CN) strategy with n = 25 resulted
in a cumulative 31% improvement over the original probabilistic tuning scheme
(significant at a 99.9% level). Somewhat surprisingly, the performance gains were
almost additive. The performance boost for the final combination was 94% of
the sum of individual gains for the three basic strategies.

Some individual problem RMSE breakdowns are given in table 6. Probabilis-
tic tuning was superior to standard GP on all 16 problems (this ordering was
99% significant for 12 problems, 95% significant for 2, and not significant for
2). However, the final combined strategy was, in turn, superior to probabilistic
tuning on every problem in the test suite (this ordering was 99% significant for
12 problems, 95% significant for 1, and not significant for 3). The superiority of
the final combined strategy to standard GP was 99% significant for all problems.

452 F. Lane, R.M.A. Azad, and C. Ryan

Table 6. Mean Test RMSE Breakdowns on Individual Problems

Tuning Scheme Pagie Korns Keijzer Vladislavleva DowChem Concrete Housing Parkinsons
1 1 11 12 13 14 15 4 5 7 8 Total Motor

Standard GP 0.237 0.316 0.552 2.268 0.095 0.144 0.772 0.551 0.384 2.295 0.712 0.327 11.711 5.286 9.629 7.260
Prob. Tuning 0.167 0.009 0.280 0.954 0.001 0.119 0.764 0.541 0.218 1.662 0.621 0.313 10.516 5.013 8.423 6.444
All Combined 0.116 0.003 0.163 0.423 0.000 0.073 0.699 0.512 0.132 1.244 0.455 0.292 9.650 4.875 7.846 6.059

6 Conclusions

This paper has tread some new ground in terms of node tuning strategies. Results
garnered on this problem suite indicate that significant performance gains are
possible by more judiciously expending tuning effort.

Using internal path length as a parsimony measure boosted test RMSE perfor-
mance by 10.3%. Moderating parsimony pressure (changing the reward function
slope to -0.5) increased performance by another 7.7%.

However, the greatest leap in performance was produced from the constant
nodes strategy. Adding this strategy boosted performance by a further 13% to
give a cumulative improvement for all strategies of 31%.

We have again confirmed on a new problem test set the benefits of Chameleon’s
node tuning approach. Even after carefully equalizing computational costs, the
exhaustive and particularly probabilistic tuning schemes continue to show sub-
stantial performance advantages over standard GP. Our new strategies combine
to produce significant improvements over even these more established schemes.
Of course, it will be necessary to see whether such strategies continue to be
useful in other regression (and also classification) environments.

6.1 Future Research Directions

The constant nodes scheme (concerned with when to tune) gave individually
the greatest performance gain. Tuning strategies of this nature certainly merit
further investigation. We are also currently getting some promising preliminary
results from strategies that internally redistribute tuning effort within trees (bi-
asing tuning towards shallower cheaper-to-tune nodes).

Chameleon tuning of external nodes (ERCs or input variables) has not yet
been properly investigated. Some means of narrowing down the range of vari-
able substitution choices for a potentially large input variable set, perhaps by
exploiting problem structure or variable dependencies, would likely be necessary.

We also plan to investigate whether relatively coarse-grained internal node
tuning and finer-grained gradient-based constant tuning can work together in a
complementary fashion.

References

1. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

2. Azad, R.M.A., Ryan, C.: Abstract functions and lifetime learning in genetic pro-
gramming for symbolic regression. In: Genetic and Evolutionary Computation Con-
ference (GECCO-2010), pp. 893–900. ACM (2010)

On Effective and Inexpensive Local Search Techniques 453

3. Atif, R.M., Azad, C.R.: A simple approach to lifetime learning in genetic program-
ming based symbolic regression. Evolutionary Computation 22(2), 287–317 (2014)

4. Bhardwaj, A., Tiwari, A.: A Novel Genetic Programming Based Classifier Design
Using a New Constructive Crossover Operator with a Local Search Technique. In:
Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013.
LNCS, vol. 7995, pp. 86–95. Springer, Heidelberg (2013)

5. Clark-Carter, D.: Geometric mean. In: Encyclopedia of Statistics in Behavioral
Science. Wiley (2005)

6. Frank, A., Asuncion, A., et al.: UCI machine learning repository (2010)
7. Fukunaga, A.S.: Evolving local search heuristics for SAT using genetic program-

ming. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 483–494.
Springer, Heidelberg (2004)

8. Keijzer, M., Foster, J.: Crossover bias in genetic programming. In: Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 33–44. Springer, Heidelberg (2007)

9. Kommenda, M., Kronberger, G., et al.: Effects of constant optimization by nonlin-
ear least squares minimization in symbolic regression. In: Genetic and Evolutionary
Computation Conference (GECCO 2013), pp. 1121–1128. ACM (2013)

10. Krawiec, K.: Genetic programming with local improvement for visual learning
from examples. In: Skarbek, W. (ed.) CAIP 2001. LNCS, vol. 2124, pp. 209–216.
Springer, Heidelberg (2001)

11. Majeed, H., Ryan, C.: On the constructiveness of context-aware crossover. In: Ge-
netic and Evolutionary Computation Conference (GECCO-2007), pp. 1659–1666.
ACM (2007)

12. McDermott, J., White, D.R., et al.: Genetic programming needs better bench-
marks. In: Genetic and Evolutionary Computation Conference (GECCO 2012),
pp. 791–798. ACM (2012)

13. McPhee, N.F., Hopper, N.J.: Analysis of genetic diversity through population his-
tory. In: Genetic and Evolutionary Computation Conference (GECCO 1999), vol. 2,
pp. 1112–1120 (1999)

14. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Handbook
of metaheuristics, pp. 105–144. Springer (2003)

15. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length
representation: Genetic programming, simulated annealing and hill climbing. In:
Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp.
397–406. Springer, Heidelberg (1994)

16. O’Reilly, U.-M., Oppacher, F.: A comparative analysis of genetic programming. In:
Advances in Genetic Programming 2, ch. 2, pp. 23–44. MIT Press (1996)

17. Radcliffe, N.J., Surry, P.D.: Formal memetic algorithms. In: Fogarty, T.C. (ed.)
AISB-WS 1994. LNCS, vol. 865, pp. 1–16. Springer, Heidelberg (1994)

18. Scoble, A., Johnston, M., Zhang, M.: Local search in parallel linear genetic pro-
gramming for multiclass classification. In: Thielscher, M., Zhang, D. (eds.) AI 2012.
LNCS, vol. 7691, pp. 373–384. Springer, Heidelberg (2012)

19. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In:
Genetic Programming Theory and Practice II, pp. 283–299. Springer (2005)

20. Williams, C.B.: The use of logarithms in the interpretation of certain entomological
problems. Annals of Applied Biology 24(2), 404–414 (1937)

21. Zhang, M., Gao, X., Lou, W.: A new crossover operator in genetic programming
for object classification. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 37(5), 1332–1343 (2007)

Combining Semantically-Effective and Geometric
Crossover Operators for Genetic Programming

Tomasz P. Pawlak

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
tpawlak@cs.put.poznan.pl

Abstract. We propose a way to combine two distinct general patterns
for designing semantic crossover operators for genetic programming: ge-
ometric semantic approach and semantically-effective approach. In the
experimental part we show the synergistic effects of combining these
two approaches, which we explain by a major fraction of crossover acts
performed by geometric semantic crossover operators being semantically
ineffective. The results of the combined approach show significant im-
provement of performance and high resistance to a premature conver-
gence.

Keywords: Semantics, taxonomy, neutrality, brood selection, experi-
ment.

1 Introduction

Genetic Programming (GP), as a method of automatic induction of discrete
structures from an arbitrary given set of building blocks, guided by a fitness
function has been known for over 25 years [13,29]. Among other applications,
like synthesis of electronic circuits [14,15] or design of 3D structures [21,1], GP
is mostly used for induction of programs from a set of instructions. To accurately
assess the program’s fitness, it must be run multiple times on a set of program
inputs to compare the produced outputs with the desired target outputs. Typi-
cally the divergence between the target output and the actual program output
is measured by a minimized fitness function and the pair of program input and
the target program output is refered to as fitness case [30,19,25,16,8].

The tuple that consists of a program output for each fitness case is known
as semantics1. Consequently, the target program output extracted from a set of
fitness cases is also a semantics, however to distinguish this one, we refer to it
as target semantics. The main role of program semantics is to describe program
behavior in a concise way.

In recent years we observe a growing interest in semantics in genetic program-
ming. Most applications of semantics are related to designing novel genetic op-
erators, such as crossover [30,19,25,16,27,2] and mutation [25,27,26,4], however
1 The common definition involves a vector instead of tuple [30,19,25,16,8], however

vector is by definition a tuple of numbers and we consider programs that operate on
an arbitrary data, thus we keep the tuple in the definition as more general.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 454–464, 2014.
c© Springer International Publishing Switzerland 2014

Combining Semantically-Effective and Geometric Crossover Operators 455

some researchers also analyze the impact of semantic initialization of the initial
population [3,10] and selection [8].

In this paper we focus on semantic crossover operators. We distinguish two gen-
eral patterns of designing semantic crossover operators, which are semantically-
effective and geometric patterns. In the first one semantics is used to reject the
offspring having the same or similar semantics to any of its parents, while in the
second one the crossover is guided on producing offspring having semantics that
is a certain combination of semantics of parents. We present the way to combine
these two approaches and experimentally confirm advantages of this combina-
tion.

2 Taxonomy of Semantic Crossover Operators

We divide the collection of semantic crossover operators for tree-based GP, de-
pending on they use program semantics for either providing effective changes,
or exploiting geometric properties of search space. This taxonomy shall not be
confused with the one proposed in [32], since the latter one divides semantic op-
erators into operators making syntactic changes with indirect impact on the se-
mantics, and manipulating syntax to directly influence semantics.

Naturally we do not include in this taxonomy non-semantic crossover opera-
tors, such as tree-swapping crossover [13], context-preserving crossover [6], one-
point crossover [28], size-fair crossover [20] and depth-based crossover [9].

Semantically-Effective Crossover Operators

The first class of crossover operators consists of operators that use semantics
mainly for the purpose of rejecting offspring that are semantically equal to any
of their parents. In this sense these operators produce semantically-effective off-
spring w.r.t. its parents by rejecting the ineffective ones. They are commonly
referred in the literature to as ‘semantically-driven’ [2] or ‘semantic-aware’ [30],
since to the best of our knowledge they were historically the first semantics-based
crossover operators. However the historical names are too general, thus we de-
cided to refer to these operators to as semantically-effective.

The term ‘semantically-effective’ shall not be considered as an opposition to
neutrality in GP, which refers to two notions: (i) neutral genes, e.g., introns
[12,7], and (ii) mutation performing genotypic changes that are not reflected in
phenotype [12] or fitness change [7]. In contrast semantically effective crossover
(i) does not negate that an offspring may contain introns, and (ii) does not
perform a (mutational) change in the genotype, instead it combines genotypes of
two parents. Moreover the ‘effectiveness’ of crossover is defined on the semantic
level, which is fundamentally different from what is meant by ‘phenotype’ in
these early studies [12,7], i.e., a syntax tree.

One of the first of semantically-effective crossovers is semantically driven
crossover (SDC) by Beadle et al. [2], which involves reduced ordered binary deci-
sion diagrams (ROBDD) as a representation for semantics of Boolean programs.

456 T.P. Pawlak

Thanks to the uniqueness property of ROBDD, their operator is able to prevent
of crossing over parents having semantically equal subtrees rooted at crossover
points. Later Quang et al. [30] extended this idea to the domain of real func-
tion synthesis by proposing semantics aware crossover (SAC). Their operator
discards all crossover acts of parents, whose subtrees rooted at crossover points
are semantically less distant than a given threshold, called semantic sensitivity.
Thus SDC and SAC are conceptually equivalent, however adapted for different
domains.

To some extent another operator by Quang et al. [30], namely semantic sim-
ilarity based crossover (SSC) can be also included in this class of operators.
SSC operates similarly to SAC, however it adds second threshold to the se-
mantic distance between parents’ subtrees to prevent breeding offspring unre-
lated to its parents. In this sense SSC reduces the chaotic characteristics of
crossover. The same authors [31], arguing that not only the effectiveness but
also the magnitude of change is important, proposed the most semantic similar-
ity based crossover (MSSC), which operate similarly to SSC, however instead of
using the second threshold, it promotes the exchange of subtrees that are the
most similar but different.

Semantic Geometric Crossover Operators

We distinguish a separate class of crossover operators that guide the crossover act
to produce offspring having semantics that is a kind of geometric combination of
semantics of its parents. Such a combination is usually a point on the segment
spanned over semantics of parents. If crossover operator guarantees that the
semantics of offspring lies on this segment, we refer to it as geometric crossover.
This definition is consistent with [24,18,27]. Although most of the operators
presented in this section only approximate geometric crossover, we would not
distinguish another class for them.

Note that the geometric crossover requires a way to appoint a segment between
parent semantics. This imposes important restrictions to the representation of
semantics, as it must be an object in a normed vector space. However if this
condition is met, an (exact) geometric crossover is guaranteed to breed offspring
that is not worse, than the worst of its parents [18].

In this group, special attention should be paid to semantic geometric crossover
(SGX) by Moraglio et al. [25], which guarantees that the semantics of an offspring
lies on the segment spanned over semantics of its parents, i.e., SGX is exact ge-
ometric crossover. Unfortunately SGX causes exponential in time bloat, which
puts its practical applications into question, even when using implementation
techniques that allow to handle exponentially increasing in time program struc-
tures in linearly-increasing data structures [5].

The next operator that is worth to mention is approximately geometric se-
mantic crossover by Krawiec and Lichocki (KLX) [16]. KLX is indeed a meta-
operator that runs in a loop some other (secondary) crossover operator, and
from all the offspring produced by the secondary operator, chooses the most ge-
ometric according to an arbitrary geometry measure.

Combining Semantically-Effective and Geometric Crossover Operators 457

Algorithm 1. Krawiec Lichocki Crossover (KLX). p1, p2 are parents, k is a num-
ber of crossover attempts, SX is a secondary crossover, MostGeometric is Eq. 1.
1: function KLX(p1, p2, k)
2: O ← ∅ � Offspring candidates
3: for all i ∈ 1..k do
4: O ← O ∪ SX(s(p1), s(p2))
5: o1 ← MostGeometric(O, p1, p2)
6: o2 ← MostGeometric(O\{o1}, p1, p2)
7: return {o1, o2}
8: end function

Other operators in this group are: locally geometric semantic crossover [19,17],
that approximates geometric recombination of parents at the level of the homol-
ogous crossover point, and approximately geometric semantic crossover [27,18],
that propagates the desired geometric semantics of offspring back trough the
tree of parent program, in order to place an adequate subtree at the level of
crossover point.

3 Semantically-Effective Geometric Crossover Operator

One may ask, whether is it possible to combine features of semantically-effective
and geometric crossover operators to benefit from advantages of both of them?

To achieve that we can equip almost any geometric crossover operator, with
a procedure that prevents the operator from producing semantically ineffective
offspring w.r.t. its parents.

To be more specific, we propose such a procedure for SX+ variant of KLX
operator described in [16]. The original KLX algorithm is shown in Algorithm 1.
It operates by running k times a secondary crossover operator, e.g., tree-swapping
crossover [13], and finally choosing the most geometric offspring that it produced,
according to the formula:

MostGeometric(O, p1, p2) =
arg min

o∈O
d(s(p1), s(o)) + d(s(o), s(p2))
︸ ︷︷ ︸

+ |d(s(p1), s(o)) − d(s(o), s(p2))|
︸ ︷︷ ︸

distance sum penalty

(1)

where O is a set of candidate offspring, p1, p2 are parent programs, s(p) is se-
mantics of program p, d(·, ·) is a distance metric. The formula consists of two
major parts: the first one is sum of distances between the semantics of candidate
offspring o and both parents; the second one is a penalty for choosing offspring
that is not equidistant from parents.

To combine KLX with principles of semantically effective crossover, we pro-
pose to replace MostGeometric calls in Algorithm 1 with the formula:

MostGeometric+(O, p1, p2) =

{

MostGeometric(O′, p1, p2) O′ �= ∅
MostGeometric(O, p1, p2) O′ = ∅

where O′ = {o : o ∈ O, s(o) �= s(p1), s(o) �= s(p2)}
(2)

458 T.P. Pawlak

Table 1. Parameters of evolution

Parameter Value
Population size 1024
Fitness function Symbolic regression: Mean absolute error

Boolean domain: Hamming distance
Termination condition At most 100 generations or find of individual having fitness 0
Initialization method Ramped Half-and-Half, height range 2 − 6, up to 100 retries
Selection method Tournament selection, size 7
Max program height 17
Crossover probability 1.0
Number of attempts KLX+, KLX, SAC, GPX+: 10, GPX: n/a
Semantic sensitivity 10−6

Instructions Symbolic regression: x, +, −, ×, /, sin, cos, exp, log, ERCa

Boolean domain: D1...D11b, and, or, nand, nor, ERC
Number of runs 30

a log and / are protected. log is defined as log |x|; / returns 0 if divisor is 0.
b Number of inputs depends on a problem instance.

Table 2. Benchmarks; in symbolic regression there are 20 equidistant fitness cases in
the given range

Symbolic regression Boolean domain

Problem Definition (formula) Range Problem Instance
(bits)

Fitness
cases

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x [−1, 1]
Even parity

PAR5 32
Nonic

∑9
i=1 xi [−1, 1] PAR6 64

R1 (x + 1)3/(x2 − x + 1) [−1, 1] PAR7 128
R2 (x5 − 3x3 + 1)/(x2 + 1) [−1, 1] Multiplexer MUX6 64
R3 (x6 + x5)/(x4 + x3 + x2 + x + 1) [−1, 1] MUX11 2048
Nguyen6 sin(x) + sin(x + x2) [−1, 1] Majority MAJ6 64
Nguyen7 log(x + 1) + log(x2 + 1) [0, 2] MAJ7 128
Keijzer1 0.3x sin(2πx) [−1, 1] Comparator CMP6 64
Keijzer4 x3e−x cos(x) sin(x)(sin2(x) cos(x) − 1) [0, 10] CMP8 256

This change restricts the set of candidate offspring by removing offspring that
is semantically equal to any of the parents. Only if all candidates are semantically
equal, the algorithm uses the whole candidate set. For semantics represented
by floating point numbers, it is natural to compare semantics in Eq. 2 with
a threshold. To be consistent with [30], we call it semantic sensitivity. We denote
the augmented variant of KLX as KLX+.

4 The Experiment

We attempt to experimentally verify whether combining features of geometric
and semantically-effective crossover operators pays off. In order to do that we pre-
pare a run of GP employed with KLX+ and we compare it to GP running ‘bare’

Combining Semantically-Effective and Geometric Crossover Operators 459

Table 3. Average fitness and 95% confidence interval achieved by best-of-run individual
as of 100 generation. Best values are marked in bold.

Problem KLX+ KLX SAC GPX+ GPX
Keijzer1 0.005 ±0.002 0.015 ±0.003 0.008 ±0.003 0.009 ±0.003 0.013 ±0.004

Keijzer4 0.030 ±0.011 0.139 ±0.014 0.049 ±0.013 0.045 ±0.014 0.041 ±0.010

Nguyen6 0.001 ±0.000 0.005 ±0.002 0.002 ±0.001 0.002 ±0.001 0.004 ±0.002

Nguyen7 0.001 ±0.000 0.005 ±0.002 0.002 ±0.001 0.003 ±0.001 0.005 ±0.002

Nonic 0.006 ±0.002 0.024 ±0.003 0.012 ±0.003 0.014 ±0.004 0.018 ±0.004

Septic 0.013 ±0.005 0.063 ±0.026 0.020 ±0.004 0.027 ±0.009 0.032 ±0.008

R1 0.006 ±0.002 0.028 ±0.006 0.012 ±0.003 0.022 ±0.006 0.022 ±0.005

R2 0.015 ±0.004 0.028 ±0.005 0.017 ±0.004 0.021 ±0.005 0.028 ±0.007

R3 0.001 ±0.000 0.006 ±0.001 0.002 ±0.000 0.003 ±0.001 0.003 ±0.001

CMP6 0.000 ±0.000 0.533 ±0.221 0.267 ±0.158 0.100 ±0.107 0.867 ±0.303

CMP8 0.067 ±0.128 7.300 ±0.956 7.000 ±1.070 6.167 ±0.570 9.433 ±1.182

MAJ6 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

MAJ7 0.000 ±0.000 0.133 ±0.153 0.100 ±0.142 0.367 ±0.269 0.567 ±0.272

MUX6 1.700 ±0.717 5.667 ±0.642 3.133 ±0.732 3.200 ±0.770 3.567 ±0.683

MUX11 102.567 ±12.470 160.067 ±14.555 114.000 ±8.641 118.467 ±7.202 118.467 ±7.048

PAR5 0.000 ±0.000 2.033 ±0.510 3.500 ±0.604 2.433 ±0.440 3.400 ±0.567

PAR6 5.000 ±0.947 13.367 ±0.792 11.567 ±1.204 13.167 ±0.795 14.200 ±0.893

PAR7 23.467 ±1.044 40.967 ±1.047 35.967 ±1.752 40.533 ±0.799 41.033 ±1.899

KLX. In addition we add two control setups: tree-swapping crossover (GPX) [13],
which acts as a reference point, and GPX+ – GPX that rejects semantically in-
effective offspring and retries crossover act until it is effective or a given number
of attempts is exceeded. We added GPX+ to check whether the achievements of
KLX+ are due to the combination of properties of geometric and semantically-
effective crossovers, or solely due to restrictions for ineffective offspring. Note
that GPX+ is not equivalent to SAC [30], as the latter one performs equivalence
check in the crossover points instead of whole program trees, i.e., SAC allows
an exchange of semantically different subtrees, however it does not take into ac-
count, how this exchange influences the semantics of entire trees, which could not
change at all. However, as an previously published operator, SAC is good refer-
ence point, therefore we add it as the last setup. Details of evolutionary param-
eters can be found in Table 1, parameters not included there, are set to ECJ’s
defaults [22]. Note that the experiment does not include any mutation operator,
since it is focused on the examination of properties of crossover operators.

We run evolution of 18 commonly used benchmark problems shown in Table 2:
9 symbolic regression [13,23] and 9 Boolean function synthesis [13,33] bench-
marks.

Performance

Figure 1 presents the plots of average and 95% confidence interval of the best-
of-generation fitness achieved by each operator and Table 3 shows average and
95% confidence interval of the best-of-run fitness.

460 T.P. Pawlak

0 20 40 60 80 100
0

0.05

0.1

0.15
F
it
n
e
s
s

Septic

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08
Nonic

0 20 40 60 80 100
0

0.01

0.02
Nguyen 6

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

F
it
n
e
s
s

Keijzer 1

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2
Keijzer 4

0 20 40 60 80 100
0

0.01

0.02
Nguyen 7

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

F
it
n
e
s
s

R1

0 20 40 60 80 100
0

0.02

0.04

0.06
R2

0 20 40 60 80 100
0

0.01

0.02
R3

0 20 40 60 80 100
0

1

2

3

F
it
n
e
s
s

MAJ6

0 20 40 60 80 100
0

2

4

6

8

10

MAJ7

0 20 40 60 80 100
0

1

2

3

4

CMP6

0 20 40 60 80 100
0

2

4

6

8

F
it
n
e
s
s

MUX6

0 20 40 60 80 100
0

50

100

150

200

MUX11

0 20 40 60 80 100
0

10

20

CMP8

0 20 40 60 80 100
0

2

4

6

8

Generations

F
it
n
e
s
s

PAR5

0 20 40 60 80 100
0

10

20

30

Generations

PAR6

0 20 40 60 80 100
0

20

40

60

Generations

PAR7

KLX
+ KLX SAC GPX

+ GPX

Fig. 1. Fitness achieved by best-of-generation individual averaged over 30 runs. Shad-
ings are 95% confidence intervals.

Combining Semantically-Effective and Geometric Crossover Operators 461

Table 4. Post-hoc analysis of Friedman’s test using symmetry test: p-values of incor-
rectly judging operator in row as outranking operator in column. Significant p-values
are marked in bold (α = 0.05) and visualized as arcs in outranking graph.

GPX GPX+ KLX KLX+ SAC
GPX 0.976
GPX+ 0.151 0.033
KLX
KLX+ 0.000 0.004 0.000 0.052
SAC 0.017 0.926 0.002

KLX+

�����
���

�

����
��
��
��
��
��
�

���
��

��
��

��
��

� SAC

�����
���

���
���

���
���

�

��

GP X+

��
KLX GP X

Table 5. Fraction and 95% conf. interval of ineffective crossover acts (the lowest in
bold)

Domain KLX+ KLX SAC GPX+ GPX
Symbolic regression 0.001 ±0.0000 0.883 ±0.0001 0.067 ±0.0001 0.002 ±0.0000 0.113 ±0.0001

Boolean domain 0.000 ±0.0000 0.902 ±0.0001 0.649 ±0.0002 0.001 ±0.0000 0.525 ±0.0002

It is clear that KLX+ converges the quickest and in all benchmark problems
achieves the best fitness at the end of evolution. Moreover, thanks to quick con-
vergence, KLX+’s fitness achieved after 30 generations, in 15 out of 18 bench-
marks remains unbeatable by any other operator at the end of evolution.

To verify statistical significance of obtained results, we performed Friedman’s
test for multiple achievements of multiple subjects [11] on data shown in Table 3.
The calculated p-value is 6.52 × 10−9, thus assuming critical value α = 0.05, the
test is conclusive, that there is at least one statistical difference in the results.
Therefore we present in Table 4 a post-hoc analysis of Friedman’s test, using the
symmetry test, and an outranking graph for the operators.

The analysis shows that KLX+ outranks all other operators except SAC, how-
ever the p-value for outranking SAC, i.e., 0.052, is very close to the critical value
of α = 0.05. From the graph we can see that semantically-effective SAC out-
ranks GPX and KLX, and semantically-effective GPX+ outranks KLX only. Per-
haps the low efficiency of KLX can be surprising, however we believe that KLX
is likely to stick in local optima due to lack of routine that prevents from pro-
ducing ineffective offspring, that exists in superior KLX+. This leads us to con-
clusion that rejection of semantically-ineffective offspring is an important factor
that influences GP performance.

Semantic Effectiveness

An observant reader may ask why semantic-effectiveness has such a significant
influence on operator’s performance. To answer this question, we presented in
Table 5 fraction of ineffective crossover acts done by each operator separately
during all evolutionary runs of previous experiment.

Values obtained by KLX are clearly the highest and show that nearly 90%
of crossover acts done by KLX are actually ineffective. We believe that this is

462 T.P. Pawlak

mainly caused by bias of Eq. 1, which prefers offspring having the same semantics
as a parent over the offspring that is nearly-distant from one of the parents, but
non-geometric2. The high fraction of ineffective offspring clearly explains the
observed premature convergence of KLX.

On the other hand SAC maintains low percentage of ineffective offspring,
however only for symbolic regression. We hypothesize that high value for Boolean
domain is due to our previous observation, that SAC performs equivalence check
only at the level of crossover point, and since Boolean instructions are likely to
return unchanged output if only one input changes, it likely makes the crossover
operation ineffective at higher parts of program tree. This seems to be consistent
with results of GPX+, which are very low for both domains, and significantly
lower than its unbiased counterpart – GPX.

5 Conclusions

We divided semantic crossover operators for tree-based GP into two classes de-
pending on the purpose of using program semantics: to reject semantically in-
effective offspring, or to geometrically combine parent programs. Moreover we
proposed a way to combine features of these two classes in a single operator and
experimentally demonstrated that this combination performs better and is less
likely to suffer from premature convergence than each approach solely. We be-
lieve that the proposed method can be successfully applied to other geometric
semantic crossover operators as well.

Acknowledgment. We would like to thank Wojciech Jaśkowski and Krzysztof
Krawiec for their time and the valuable comments on this study. Work supported
by Polish National Science Centre grant no. DEC-2012/07/N/ST6/03066.

References

1. Al-Sakran, S.H., Koza, J.R., Jones, L.W.: Automated re-invention of a previously
patented optical lens system using genetic programming. In: Keijzer, M., Tetta-
manzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005.
LNCS, vol. 3447, pp. 25–37. Springer, Heidelberg (2005)

2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In:
IEEE CEC 2008, pp. 111–116. IEEE Press (2008)

3. Beadle, L., Johnson, C.G.: Semantic analysis of program initialisation in ge-
netic programming. Genetic Programming and Evolvable Machines 10(3), 307–337
(2009)

4. Beadle, L., Johnson, C.G.: Semantically driven mutation in genetic programming.
In: IEEE CEC 2009, pp. 1336–1342. IEEE Press (2009)

2 Eq. 1 evaluates to 2d(s(p1), s(p2)) for offspring semantically equal to any of
its parents.

Combining Semantically-Effective and Geometric Crossover Operators 463

5. Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F.,
Maccagnola, D.: An efficient implementation of geometric semantic genetic pro-
gramming for anticoagulation level prediction in pharmacogenetics. In: Correia, L.,
Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer,
Heidelberg (2013)

6. D’haeseleer, P.: Context preserving crossover in genetic programming. In: IEEE
CEC 1994, vol. 1, pp. 256–261. IEEE Press (1994)

7. Ferreira, C.: Genetic representation and genetic neutrality in gene expression pro-
gramming. Advances in Complex Systems 5(4), 389–408 (2002)

8. Galvan-Lopez, E., et al.: Using semantics in the selection mechanism in genetic
programming: A simple method for promoting semantic diversity. In: IEEE CEC
2013, vol. 1, pp. 2972–2979 (2013)

9. Harries, K., Smith, P.: Exploring alternative operators and search strategies in
genetic programming. In: GP 1997, pp. 147–155. Morgan Kaufmann (1997)

10. Jackson, D.: Phenotypic diversity in initial genetic programming populations. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)

11. Kanji, G.: 100 Statistical Tests. SAGE Publications (1999)
12. Keller, R.E., Banzhaf, W.: Genetic programming using genotype-phenotype map-

ping from linear genomes into linear phenotypes. In: GP 1996, pp. 116–122. MIT
Press (1996)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

14. Koza, J.R., et al.: Genetic Programming 3: Darwinian Invention and Problem Solv-
ing. Morgan Kaufman (April 1999)

15. Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers (2003)

16. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space.
In: GECCO 2009, pp. 987–994. ACM (2009)

17. Krawiec, K., Pawlak, T.: Quantitative analysis of locally geometric semantic
crossover. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 397–406. Springer, Heidelberg
(2012)

18. Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic back-
propagation. In: GECCO 2013, pp. 941–948. ACM (2013)

19. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: A study on the roles
of semantics and homology in recombination operators. Genetic Programming and
Evolvable Machines 14(1), 31–63 (2013)

20. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers.
Genetic Programming and Evolvable Machines 1(1/2), 95–119 (2000)

21. Lohn, J., Hornby, G., Linden, D.: An evolved antenna for deployment on Nasa’s
Space Technology 5 Mission. In: Genetic Programming Theory and Practice II,
ch. 18, pp. 301–315. Springer (2004)

22. Luke, S.: The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary
Computation Library, zeroth edition, online version 0.2 edition (October 2010)

23. McDermott, J., et al.: Genetic programming needs better benchmarks. In: GECCO
2012, pp. 791–798. ACM (2012)

24. Moraglio, A.: Abstract convex evolutionary search. In: FOGA XI, pp. 151–162.
ACM (2011)

464 T.P. Pawlak

25. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

26. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantics based mutation in genetic
programming: The case for real-valued symbolic regression. In: Mendel 2009, pp.
73–91 (2009)

27. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing
search operators in genetic programming. IEEE Transactions on Evolutionary Com-
putation (2014)

28. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point
crossover and point mutation. Evolutionary Computation 6(3), 231–252 (1998)

29. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
Lulu Enterprises, UK Ltd. (2008)

30. Uy, N.Q., et al.: Semantically-based crossover in genetic programming: Applica-
tion to real-valued symbolic regression. Genetic Programming and Evolvable Ma-
chines 12(2), 91–119 (2011)

31. Uy, N.Q., et al.: On the roles of semantic locality of crossover in genetic program-
ming. Information Sciences 235, 195–213 (2013)

32. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genetic Programming and Evolvable Machines (online first)

33. Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition in
cartesian genetic programming. In: GECCO 2005, vol. 2, pp. 1649–1656. ACM
Press (2005)

On the Locality of Standard Search Operators

in Grammatical Evolution

Ann Thorhauer and Franz Rothlauf

University of Mainz, Germany
{thorhauer,rothlauf}@uni-mainz.de

http://www.uni-mainz.de

Abstract. Offspring should be similar to their parents and inherit their
relevant properties. This general design principle of search operators in
evolutionary algorithms is either known as locality or geometry of search
operators, respectively. It takes a geometric perspective on search opera-
tors and suggests that the distance between an offspring and its parents
should be less than or equal to the distance between both parents. This
paper examines the locality of standard search operators used in gram-
matical evolution (GE) and genetic programming (GP) for binary tree
problems. Both standard GE and GP search operators suffer from low
locality since a substantial number of search steps result in an offspring
whose distance to one of its parents is greater than the distance between
both of its parents. Furthermore, the locality of standard GE search op-
erators is higher than that of standard GP search operators, which allows
more focused search in GE.

Keywords: Grammatical evolution, genetic programming, locality, ge-
ometric crossover, random walk.

1 Introduction

Recombination operators in evolutionary algorithms (EA) aim to construct off-
spring solutions in such a way that the offspring inherit the properties of their
parents. Thus, offspring are constructed using genetic material of their parents,
in order to ensure that they are “similar” to them. Analogously, the mutation op-
erators in EA modify the offspring solutions so that the new “mutated” solution
is only slightly different from the original solution. Recombination and mutation
operators thus both follow the principle of creating solutions that are similar
to the original solution. Violating this principle would result in random search
since, in this case, the offspring would be highly dissimilar to their parents, and
the evolutionary search process would not be able to focus on promising areas
of the search space [4].

This basic principle of genetic search operators was first formulated by Liepins
and Vose [13] and Radcliffe [17,22], who recognized that search operators cannot
be designed independently of the search space. On the contrary, their design
must be based on the metric defined in the search space. Indeed, mutation should

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 465–475, 2014.
c© Springer International Publishing Switzerland 2014

http://www.uni-mainz.de

466 A. Thorhauer and F. Rothlauf

create an offspring xo from a parent xp in such a way that the distance d(xp, xo)
between parent and offspring is low. Analogously, given two parental solutions
xp
1 and xp

2 and one offspring solution xo, recombination operators should be
designed in such a way that max(d(xp

1 , x
o), d(xp

2, x
o)) ≤ d(xp

1, x
p
2) [17][18, p. 62],

which means that the distances between offspring and parents should be less
than or equal to the distance between the parents. By viewing the distance
between two solutions as a measurement of dissimilarity, this design principle
ensures that the offspring solutions are similar to the original (parent) solution.

This general design principle of search operators introduced by Liepins and
Radcliffe [13,17] was later denoted by Rothlauf as the “locality of search
operators”[18,19] and by Moraglio as the “geometry of search operators” [15,14].
Mutation operators have high locality, i.e., are geometric if offspring solutions
are similar to their parents; analogously, recombination operators have high lo-
cality, i.e., are geometric if the distances between offspring and parents are less
than or equal to the distance between the parents. Crossover and mutation are
defined representation-independent using the notion of distance associated with
the search space. The geometric terms use the notions of line segment and ball,
which are well defined once a notion of distance in the search space is defined
[15].

This paper studies the locality of standard search operators used in GE
(crossover, mutation, and duplication) and GP (crossover and reproduction).
We examined whether the GE and GP search operators have high locality, i.e.,
are geometric. In the experiments, we focused on binary trees and performed
random walks through the binary tree search space by measuring distances be-
tween both parents xp

1 and xp
2 as well as between an offspring xo and its parents.

The locality of search operators is high if max(d(xp
1 , x

o), d(xp
2 , x

o)) ≤ d(xp
1, x

p
2).

In Sect. 2, we define the locality of search operators and provide a brief
overview of the literature on locality. In Sect. 3, we present the experiments
and results. The paper ends with some concluding remarks.

2 Locality of Search Operators

Each search space can be defined as a topological space, which describes similar-
ities between solutions by defining the relationships between sets of solutions.
Formally, a topological space is an ordered pair (X,T), where X is a set of solu-
tions and T is a collection of subsets ofX called open sets. We can define different
topologies (search spaces) by combining X with different T . For example, met-
ric search spaces are a specialized form of topological spaces where similarities
between solutions are measured by a distance. In metric search spaces, we have
a set X of solutions and a real-valued distance function (also called a metric)
d : X × X → R that assigns a real-valued distance to any combination of two
elements x, y ∈ X .

The locality of search operators [18] is equivalent to the concept of geometry
of search operators [15]. Both define search operators based on the metric of the
search space. Given a metric, we are able to define distances between solutions.

Locality of Standard Search Operators in GE 467

In particular, a mutation operator has high locality if the distance between the
resulting offspring and its parent is small. From a geometric perspective, the
offspring are in the space-specific ball of a small radius centered in the par-
ent. Analogously, a crossover operator has high locality if the distance between
offspring xo and its parents is less than or equal to the distance between both
parents xp

1 and xp
2 (max(d(xp

1, x
o), d(xp

2, x
o)) ≤ d(xp

1, x
p
2)); using the notion of ge-

ometry, a crossover is geometric if all offspring are in the space-specific segment
between their parents [15].

We want to emphasize that the locality of search operators is different from the
locality of representations [18]. Representations are genotype-phenotype map-
pings that assign genotypes to phenotypes. In both search spaces (genotype and
phenotype space), a metric defines distances between solutions. However, the
metric used in the genotype space and the phenotype space can be different. The
locality of a representation describes how well the distances between genotypes
fit the distances between the corresponding phenotypes. Thus, a representation
has high locality if distances between genotypes are similar to the corresponding
phenotype distances, for example if neighboring genotypes correspond to neigh-
boring phenotypes. Analogously, a representation has low locality if genotype
and phenotype distances do not fit together, for example if neighboring geno-
types are not neighbors in the phenotype search space. Although both concepts,
the locality of search operators and the locality of a representation, are based
on the notion of distance between solutions, they are quite different and should
not be confused with one another. The locality of a representation is relevant
for the design of representations, whereas the locality of search operators for the
design of meaningful search operators.

2.1 Locality in Genetic Programming

There are a number of studies on the locality of GP [5,6,7], however they do
not examine the locality of search operators nor the locality of representations;
rather, they focus on the locality of the genotype-fitness mapping. They are
mainly interested in how the choice of mutation operators affects the changes
in the corresponding fitness values. For example, Galván-López et al. [7] study
genotype-fitness mappings and find “that the mutation operators examined are
inconsistent with respect to the quality of locality as measured by fitness and
structural changes”. In a similar paper, Galván-López et al. [5] find that “when
the original fitness is low, large genotype jumps can lead to fitness improvements”
[5]. In contrast, “when the original fitness is high, large [genotype mutations]
tend to be quite detrimental” [5]. Galván-López et al. [6] study whether small
genotype changes correspond to small fitness changes. The authors introduce
different neighborhood functions on the fitness space and observe that their
ability to serve as good predictor of GP performance is limited.

Another study by Uy and his co-workers distinguishes between syntactic and
semantic locality of crossover in GP [23,24,25]. They notice that “most GP ge-
netic operators have been designed based on syntax alone; but small changes in
syntax can lead to large changes in semantics.” [24]. The authors introduce a

468 A. Thorhauer and F. Rothlauf

new semantic similarity based crossover (SSC), which ensures that exchanged
subtrees between individuals are semantically similar concerning fitness values.
SSC leads to higher GP performance since the resulting genotype step size is
smaller than in standard GP operators. Uy et al. [23] compare the syntactic
crossover in GP with the semantic crossover in GP. With locality measuring the
differences between two subtrees, they find that syntactic locality (measured us-
ing Levenshtein tree distance) is less important than semantic locality (measured
using fitness differences).

In summary, it is still unclear whether standard GP search operators have
high locality, i.e., are geometric. There is evidence that small genotype changes
can also lead to large fitness changes, which is detrimental for guided search in
GP.

2.2 Locality in Grammatical Evolution

GE [16] is a variant of GP that can evolve complete programs in an arbitrary
language using a variable-length binary string. In GE, phenotype expressions are
created from binary genotypes by using a complex genotype-phenotype mapping.
A genotype consists of groups of eight bits (denoted as codons) which encode an
integer value that selects production rules from a grammar in BNF. These rules
are used in the mapping process to create a phenotype. The mapping process is
deterministic since the same genotype always results in the same phenotype.

The standard GE recombination operator [16] is similar to the cut and splice
operator introduced in [8]. After selecting two parents, a crossover point is ran-
domly selected for each parent. Then, the genetic material beyond these points
is exchanged between the parents. As a result, rather than remain constant, the
length of the genotype changes during the search. The standard GE mutation
operator [16] randomly changes the integer value of a codon. The third standard
GE operator, duplication, increases the number of available genetic material. It
copies a random number of codons starting at a randomly selected start codon
and inserts them between the second last and last codon in the genotype.

There are no studies on the locality of GE search operators. Instead, exist-
ing work focuses on the locality of the genotype-phenotype mapping or on how
search performance depends on the type of search operator. Rothlauf and Oet-
zel [20] study the locality of the genotype-phenotype mapping and find that
“the representation used in GE has problems with locality as many neighbor-
ing genotypes do not correspond to neighboring phenotypes.” Byrne et al. [2,1]
distinguish between two types of mutation operators in GE: the structural mu-
tation (that changes the shape of the derivation tree) and the high-locality nodal
mutation (that changes the value of a node). They examine the impact of these
operators on search performance and find out that both have different goals in
a GE search process: exploration and exploitation. Castle and Johnson [3] study
the mutation and crossover points in GE and find “that events occurring at the
first positions of a genotype are indeed more destructive, but also indicate that
they may be the most constructive crossover and mutation points”[3]. Finally,
Hugosson et al. [9] examine different binary-integer representations (Gray versus

Locality of Standard Search Operators in GE 469

binary code) in GE. They find that the choice of the binary-integer mapping has
no influence on GE search performance.

3 Experiments and Results

We studied the locality of standard search operators used in GE and GP. Stan-
dard GE search operators are (one-point) crossover, (integer) mutation, and
duplication [21]. Standard GP search operators are crossover and reproduction
[11]. The locality of recombination operators is high if the distances between
offspring and parents are less than or equal to the distance between both par-
ents. For mutation and duplication, high locality implies a low distance between
offspring and parent.

3.1 Experimental Design

To study the locality of search operators, we performed random walks using dif-
ferent types of GE and GP search operators. We did not use a selection operator.
The search operators created two offspring xo

1 and xo
2 from two parents xp

1 and
xp
2, which replaced their parents. If the variation operators included recombina-

tion, we measured the distance d(xp
1, x

p
2) between both parents as well as the

distances d(xo
i , x

p
j) (i, j ∈ {1, 2}) between each of the two offspring and their

two parents. If we applied only mutation or duplication (and no crossover), we
created one offspring xo from each of the two parents. Each offspring replaced
the corresponding parent. To evaluate the locality of mutation and duplication,
we measured the distance d(xo, xp) between each offspring and its corresponding
parent.

For both GE and GP, the definition of the terminal and function set is relevant
for the distances between solutions. In the current study, we focused on problems
where solutions are binary trees. Thus, the number of terminals |T | = 1 equals
the number of functions |F | = 1. For GE, we used two production rules: the first
one chose between a binary function and a terminal (e.g. < expr >::=< expr >
+ < expr > | < var >) and the second one defined a terminal (e.g. < var >::=
X). The fitness of binary trees using associative binary functions (like +,-,*,/)
is determined only by its size l (number of terminals plus number of functions)
since the order of traversing such a tree is irrelevant (due to the associativity
of the function). For example, for T = {x} and F = {+}, all feasible trees of
size l encode the expression (l+1) ∗ x

2 . Consequently, we measured the distance
between two solutions by using the Levenshtein distance as metric, that is, the
minimal number of operations that are needed to transform one expression into
another [12] between the two encoded expressions. For the example (T = {x}
and F = {+}), the Levenshtein distance between two valid binary trees xi and
xj of length li and lj is equal to |li − lj |. We should be aware that the size l of
a valid tree is always odd. Furthermore, for two valid binary trees, all possible
distances are even. In contrast to GP, GE search operators can also create invalid
solutions, where the genotype-phenotype mapping process cannot be finished.

470 A. Thorhauer and F. Rothlauf

In this case, the Levenshtein distance between the two corresponding expressions
can be odd since the size of invalid expressions can be even.

In the GP experiments, we applied no constraint on the maximum allowable
tree depth. For GE, we did not use a wrapping operator since for all the solutions
(binary trees) where wrapping would be necessary the mapping process would
never terminate and thus the corresponding individuals would be invalid anyway.
Each random walk started with two random, yet identical, solutions. For GP,
the initial solutions were created using the grow method with a maximum depth
dmax = 6. For GE, the initial solutions were randomly created with a maximum
length of 10 codons (80 binary alleles).

Throughout the random walk, the variation operators were applied with stan-
dard probabilities. For GP, the crossover probability was pc = 0.9 (biased to-
wards selecting internal nodes with a probability of 0.9) and the reproduction
probability was pr = 0.1 [10]. For GE, the crossover probability was pc = 0.9,
the mutation probability was pm = 0.01, and the duplication probability was
pd = 0.01 [21]. In each search step, two new offspring that replaced their parents
were generated. Each random walk terminated after 50 search steps, generat-
ing overall 100 offspring. For each experimental setting, we performed 100,000
random walks resulting in a total of 10 million offspring.

3.2 Results

For GE and GP, we studied the locality of the combined standard search oper-
ators as well as the locality of recombination alone. Furthermore, we examined
the locality of the mutation and duplication operator used in GE only.

Locality of Standard Search Operators. We studied whether the stan-
dard search operators used in GE (crossover, mutation, duplication) and GP
(crossover, reproduction) have high locality. In each step of the random walk,
the GE operators were applied with probabilities pc = 0.9, pm = 0.01, and
pd = 0.01 and the GP operators were applied with pc = 0.9 and pr = 0.1.

For GE, in 75.4% of all cases, the minimal distance min(d(xp
1, x

o), d(xp
2 , x

o))
between an offspring and its parents is equal to 0. For GP, 54.5% of all offspring
are identical to at least one of its parents (min(d(xp

1, x
o), d(xp

2, x
o)) = 0). In the

following plots, we will ignore all such applications of search operators.
Figure 1 plots the distribution of d(xo, xp

j) (j ∈ {1, 2}) over d(xp
1, x

p
2). For

increased clarity, we only show the results for d(xp
1, x

p
2), d(x

o, xp) ≤ 20. For
a given distance d(xp

1 , x
p
2), the gray-coded squares indicate the percentage of

offspring whose distance to one of their parents is equal to d(xo, xp) (darker
squares indicate a higher percentage of offspring). For example, for GE and
parental distance d(xp

1, x
p
2) = 4, about 22.8% of all offspring have d(xo, xp

j) = 1,
31.8% have d(xo, xp

j) = 2, 25% have d(xo, xp
j) = 3, 0% have d(xo, xp

j) = 4
(they are duplicates of one parent and thus excluded from analysis), 9.8% have
d(xo, xp

j) = 5, and so on. Search operators have high locality if they produce
only offspring with d(xo, xp

i) ≤ d(xp1, xp2) (i ∈ {1, 2}), which are located in
the lower right triangle of the plot below the line through origin. All offspring

Locality of Standard Search Operators in GE 471

located in the upper left triangle are the result of a low-locality operator. The
plots indicate that standard search operators of GE as well as GP suffer from low
locality since a substantial number of random walk steps resulted in offspring
whose distance to one of their parents is greater than the distance between
both parents. We should be aware that there are only even-numbered distances
between GP solutions (leading to “holes” in the GP plot), whereas for GE odd-
numbered distances also exist (either the parent or the offspring is invalid).

(a) GE (b) GP

Fig. 1. Distribution of d(xo, xp
j) (j ∈ {1, 2}) over d(xp

1, x
p
2)

To get deeper insights into the locality of standard search operators, we will
now focus on all offspring that are generated from parents with a given dis-
tance d(xp1, xp2). Figure 2 plots the number of offspring xo (cumulative rel-
ative frequency) over d(xo, xp

j) (j ∈ {1, 2}) for fixed distances d(xp1, xp2) ∈
{0, 4, 8, 12, 16, 20}. Each line represents a vertical cut through Fig. 1, summing
up all offspring whose distance to its parents is less than or equal to d(xo, xp).
For example, for GE and parental distance d(xp

1, x
p
2) = 4, 79.6% of all offspring

have a distance to their parents that is less than or equal to 4 (d(xo, xp
j) ≤ 4).

Thus, in 79.6% cases the standard GE search operators have high locality.
Search operators would have perfect locality if the cumulative frequency was
1 for d(xo, xp) ≤ d(xp

1, x
p
2). Table 1 summarizes the percentage of applica-

tions of standard GE and GP search operators resulting in an offspring where
d(xo, xp) > d(xp

1 , x
p
2).

Table 1. Percentage of offspring,
where d(xo, xp) > d(xp

1, x
p
2)

d(xp
1, x

p
2) 4 8 12 16 20

GE 20.4 11.2 7.1 7.1 6.5
GP 28.2 25.3 23.2 21.6 20.3

We see that standard GE and GP opera-
tors suffer from low locality since a substan-
tial number of offspring display a distance to
one of their parents that is greater than the
distance between their parents. In general,
the locality of standard GE search operators
is higher than that of standard GP operators.
For example, for d(xp

1, x
p
2)=8, about 90% of

all GE offspring but only about 75% of all
GP offspring have less or equal distances to
their parents than their parents do to each other.

472 A. Thorhauer and F. Rothlauf

(a) GE (b) GP

Fig. 2. Number of offspring xo (cumulative frequency) over d(xo, xp) for fixed distances
d(xp

1, x
p
2) ∈ {0, 4, 8, 12, 16, 20}

Fig. 3. GE with only crossover:
number of offspring xo (cumulative
frequency) over d(xo, xp) for fixed
distances d(xp

1, x
p
2)

Locality of GE Crossover. We stud-
ied the locality of the GE and GP
crossover operator. When using the same
experimental design as above, we were
faced with the problem that performing
a GE random walk with only crossover
would lead to a non-representative sam-
ple of offspring. Since crossover alone
cannot increase the genetic material of
the genotypes (this is the aim of dupli-
cation), it would only reshuffle genetic
material between the two random walk
solutions and not create representative
GE solutions obtained in a standard GE
run. Thus, to ensure representative GE
solutions and to also be able to gener-
ate also longer GE genotypes, we slightly
modified our experimental setting. We
considered all 10 million offspring created in the random walks using the com-
bined standard search operators as described above, but only applied crossover
with pc = 1 to each pair of offspring. By only applying crossover to the solu-
tions generated by standard search operators, we were able study the locality of
crossover in detail.

We will only present results for GE, since the results for GP are identical to
Figs. 1(b) and 2(b). Since the GP reproduction operator just copies a parent to its
offspring, the locality of crossover plus reproduction is equal to crossover alone.
Figure 3 shows the results for GE using only crossover (pc = 1, no mutation
or duplication). The comparison of these results to the previous results of the
combined standard search operators (Fig. 2(a)) reveals no larger differences.

Locality of Standard Search Operators in GE 473

Thus, the locality of GE standard search operators is mainly determined by the
locality of the crossover operator.

Locality of GE Mutation and Duplication. We will now focus on the GE
mutation and duplication operator. Both operators have high locality if d(xo, xp)
is low. We chose the same experimental setting as in our GE crossover study and
applied either mutation (pm=0.01) or duplication (pd = 1) to all offspring that
were generated during the random walks using all GE search operators. Just
as crossover alone cannot increase the length of GE individuals, mutation alone
cannot either; only duplication can increase the amount of genetic material (but
not the diversity of the material).

Fig. 4. GE with only mutation or dupli-
cation: number of offspring xo (cumula-
tive frequency) over d(xo, xp)

Figure 4 plots the number of offspring
xo (cumulative relative frequency) over
the distance d(xo, xp) between offspring
and corresponding parent. We omitted
all cases where d(xo, xp) = 0 and plot-
ted the results for d(xo, xp) ≤ 10. Since
pm is low and many mutations and du-
plications have no effect on the encoded
expression, many offspring are identical
to their parents. For mutation, 98.8% of
the 10 million offspring expressions are
identical to their parents (d(xo, xp)=0).
Only about 30% of the remaining off-
spring have a distance of 1 to their par-
ents (d(xo, xp) = 1). For duplication,
53.3% of all offspring are identical to their
parents. About 50% of the remaining off-
spring have d(x0, xp) = 1. Both local
search operators suffer from low locality
since they create offspring whose distances to their parents are large.

4 Conclusions

This work studies the locality of standard search operators for GE (crossover,
mutation, and duplication) and GP (crossover and reproduction) by performing
random walks through the search space of binary trees and measuring the dis-
tances between offspring and parents. The locality of standard search operators
is high if the distances between the offspring and their parents is less than or
equal to the distance between both parents. This concept is also known as the
geometry of search operators. For binary trees we found out, that both GE and
GP standard search operators have problems with low locality since a substan-
tial number of offspring are not similar to their parents. Comparing GE and GP
reveals that standard GE operators have higher locality than standard GP oper-
ators. The locality of the standard search operators in GE is mainly determined

474 A. Thorhauer and F. Rothlauf

by the crossover operator; mutation and duplication are less important. They
are necessary to obtain a high diversity within the genetic material, but have
low impact on the overall locality of the GE variation operators.

In the future we will extend this analysis to non-binary trees with more com-
plex terminal and function sets. Although the results of the current study only
hold for binary trees, we expect to see similar results for other tree structures.
Moreover, we are going to use other distance metrics to measure similarities
between individuals.

References

1. Byrne, J., O’Neill, M., McDermott, J., Brabazon, A.: An analysis of the behaviour
of mutation in grammatical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva,
S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 14–25.
Springer, Heidelberg (2010)

2. Byrne, J., O’Neill, M., Brabazon, A.: Structural and nodal mutation in grammatical
evolution. In: GECCO 2009: Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 1881–1882. ACM (2009)

3. Castle, T., Johnson, C.G.: Positional effect of crossover and mutation in grammat-
ical evolution. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar,
A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 26–37. Springer, Heidelberg (2010)

4. Doran, J., Michie, D.: Experiments with the graph traverser program. Proceedings
of the Royal Society of London (A) 294, 235–259 (1966)

5. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Towards an under-
standing of locality in genetic programming. In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 901–908.
ACM, New York (2010)

6. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as
a problem difficulty measure in genetic programming. Genetic Programming and
Evolvable Machines 12(4), 365–401 (2011)

7. Galvan-Lopez, E., O’Neill, M., Brabazon, A.: Towards understanding the effects
of locality in gp. In: Eighth Mexican International Conference on Artificial Intelli-
gence, MICAI 2009, pp. 9–14 (2009)

8. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems 3(5), 493–530 (1989)

9. Hugosson, J., Hemberg, E., Brabazon, A., O’Neill, M.: An investigation of the
mutation operator using different representations in grammatical evolution. In: 2nd
International Symposium “Advances in Artificial Intelligence and Applications”,
Wisla, Poland, October 15-17, vol. 2, pp. 409–419 (2007)

10. Koza, J.R.: Genetic programming: On the programming of computers by natural
selection. MIT Press, Cambridge (1992)

11. Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic
Programming IV: Routine human-competitive machine intelligence. Springer, New
York (2005)

12. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966); Doklady Akademii Nauk
SSSR 163(4), 845–848 (1965)

13. Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal
of Experimental and Theoretical Artificial Intelligence 2, 101–115 (1990)

Locality of Standard Search Operators in GE 475

14. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. PhD
thesis, Department of Computer Science, University of Essex (November 2007)

15. Moraglio, A., Poli, R.: Topological interpretation of crossover. In: Deb, K., Tari, Z.
(eds.) GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

16. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4), 349–358 (2001)

17. Radcliffe, N.J.: Equivalence class analysis of genetic algorithms. Complex Sys-
tems 5(2), 183–205 (1991)

18. Rothlauf, F.: Distributed Autonomous Robotics Systems, 1st edn. STUDFUZZ,
vol. 104. Springer, Heidelberg (2002)

19. Rothlauf, F.: Design of Modern Heuristics. Springer, Heidelberg (2011)
20. Rothlauf, F., Oetzel, M.: On the locality of grammatical evolution. In: Collet, P.,

Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS,
vol. 3905, pp. 320–330. Springer, Heidelberg (2006)

21. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for
an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C.
(eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)

22. Surry, P.D., Radcliffe, N.: Formal algorithms + formal representations = search
strategies. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.)
PPSN 1996. LNCS, vol. 1141, pp. 366–375. Springer, Heidelberg (1996)

23. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The role of syntactic and semantic
locality of crossover in genetic programming. In: Schaefer, R., Cotta, C., Ko�lodziej,
J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidel-
berg (2010)

24. Uy, N.Q., O’Neill, M., Hoai, N.X., Mckay, B., Galván-López, E.: Semantic similarity
based crossover in gp: The case for real-valued function regression. In: Collet, P.,
Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS,
vol. 5975, pp. 170–181. Springer, Heidelberg (2010)

25. Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Phong, D.N.: On the roles of
semantic locality of crossover in genetic programming. Information Sciences 235,
195–213 (2013)

Recurrent Cartesian Genetic Programming

Andrew James Turner1 and Julian Francis Miller2

1 The University of York, UK
andrew.turner@york.ac.uk

2 The University of York, UK
julian.miller@york.ac.uk

Abstract. This paper formally introduces Recurrent Cartesian Genetic
Programming (RCGP), an extension to Cartesian Genetic Programming
(CGP) which allows recurrent connections. The presence of recurrent
connections enables RCGP to be successfully applied to partially ob-
servable tasks. It is found that RCGP significantly outperforms CGP on
two partially observable tasks: artificial ant and sunspot prediction. The
paper also introduces a new parameter, recurrent connection probability,
which biases the number of recurrent connections created via mutation.
Suitable choices of this parameter significantly improve the effectiveness
of RCGP.

1 Introduction

Cartesian Genetic Programming (CGP) [1] is a form of Genetic Programming
(GP) [2] which encodes graph-based computational structures. CGP typically
evolves acyclic programs which are only suited to fully observable tasks; when
the desired outputs are purely a function of the current inputs. However, many
tasks are partially observable and require that previous, as well as current, inputs
be considered when calculating outputs. To be applicable to partially observable
tasks CGP requires the ability to create programs which hold internal state in-
formation; that is to say, some form of memory/feedback. Previously traditional
GP has been implemented with memory and feedback using explicit indexed
memory [3] and Jordan type architectures [4] respectively.

This paper formally introduces Recurrent Cartesian Genetic Programming
(RCGP), an extension to CGP which allows the creation of recurrent / cyclic
graphs. RCGP has the ability, through feedback, to store internal state infor-
mation making it suited to partially observable tasks. Recurrent connections are
controlled by a new parameter, recurrent connection probability, which defines
the likelihood of mutations creating a recurrent connection.

The aim of the paper is to apply and compare CGP and RCGP on partially
observable tasks. The study has been undertaken to highlight that there are
types of problems for which CGP is currently unsuitable, but to which RCGP
can be successfully applied. The aim is not to compare RCGP’s performance
with other methods suited to partial observable tasks. This is left for further
research.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 476–486, 2014.
c© Springer International Publishing Switzerland 2014

Recurrent Cartesian Genetic Programming 477

The remainder of the paper is organized as follows: Section 2 describes CGP,
Section 3 introduces RCGP, Section 4 describes the experiments used to compare
CGP and RCGP, Section 5 describes the benchmarks used in the experiments,
Section 6 presents the results, Section 7 gives a discussion of the findings and
finally Section 8 gives closing conclusions.

2 Cartesian Genetic Programming

CGP [1] [5] is a form of GP [2] which typically evolves acyclic computational
structures of nodes (graphs) indexed by their Cartesian coordinates. CGP does
not suffer from bloat [6] [7]; a drawback of many GP methods [8]. CGP chromo-
somes contain non-functioning genes enabling neutral genetic drift during evo-
lution [9] [10]. CGP typically uses point or probabilistic mutation, no crossover
and a (1 + λ)-ES. Although CGP chromosomes are of static size, the number of
active nodes varies during evolution enabling variable length phenotypes. The
user therefore specifies a maximum number nodes, of which only a proportion
will be active. Overestimating the number of nodes has shown to greatly aid
evolution [11]; which is thought to heighten neutral genetic drift but could also
be compensating for length bias [12].

Each CGP chromosome comprises of function genes (Fi), connection genes
(Ci) and output genes (Oi). The function genes represent indexes in a function
look-up-table and describe the functionality of each node. The connection genes
describe from where each node gathers its inputs. For regular acyclic CGP, con-
nection genes may connect a given node to any previous node in the program,
or any of the program inputs. The output genes address any program input or
internal node and define which are used as program outputs.

Originally CGP programs were organized with nodes arranged in rows (nodes
per layer) and columns (layers); with each node indexed by its row and a col-
umn. However, this is an unnecessary constraint, as any configuration possible
using a given number of rows and columns is also possible using one row with
many columns; provided the total number of nodes remains constant. This is due
to CGP being capable of evolving where each node connects its inputs. Conse-
quently, here the chromosomes are defined with one row and n columns; with
each node only indexed by its column. A generic (one row) CGP chromosome is
given in Equation 1; where α is the arity of each node, n is the number of nodes
and m is the number of program outputs.

F0C0,0...C0,αF1C1,0...C1,α FnCn,0...Cn,αO0...Om (1)

An example CGP program is given in Figure 1 along with its corresponding
chromosome. As can be seen, all nodes are connected to previous nodes or pro-
gram inputs. Not all program inputs have to be used, enabling evolution to decide
which inputs are significant. An advantage of CGP over tree-based GP, again seen
in Figure 1, is that node outputs can be reused multiple times, rather than requir-
ing the same value to be recalculated if it is needed again. Finally, not all nodes
contribute to the final program output, these represent the inactive nodes which
enable neutral genetic drift and make variable length phenotypes possible.

478 A.J. Turner and J.F. Miller

Fig. 1. Example CGP program corresponding to the chromosome: 012 233 124 4

3 Recurrent Cartesian Genetic Programming

Although RCGP has never been formally presented, it has been previously dis-
cussed as a possible extension to CGP [1]. RCGP has also been used as a method
for removing length bias1 [12] when investigating why CGP does not suffer from
bloat [7]. Additionally a form of CGP has been used which implemented a Jordan
type architecture [13] for allowing feedback [14]. Here the application was Carte-
sian Genetic Programming of Artificial Neural Networks (CGPANN) [15,16]; a
NeuroEvolutionary technique based on CGP. Although using Jordan type archi-
tectures represents a simple method for allowing recurrent connections, it does
so in a very restricted form. For instance, the user must decide in advance how
many and what type of recurrent connections will be used.

3.1 Recurrent Cartesian Genetic Programming Implementation

In CGP, connection gene values are restricted so as to only allow acyclic con-
nections. In RCGP this restriction is lifted so as to allow connections between
a given node and any other node in the program (including itself) or program
inputs. An example program which could be generated using RCGP is given in
Figure 2 along with the corresponding chromosome.

RCGP phenotypes are executed similar to CGP phenotypes. Starting at the
active node closest to the inputs, each node calculates its output value based on
its inputs. Once all active nodes have been updated, the program outputs are
recorded. However, with the presence of recurrent connections, a nodes output
can be required before it has been calculated. To deal with this, all the nodes are
initialised to output zero until they calculate their own value. Therefore when
executing a RCGP phenotype the the following process is used:

1. set all active nodes to output zero
2. apply the next set of program inputs
3. update all active nodes once from program inputs to program outputs
4. read the program outputs
5. repeat from 2 until all program input sets have been applied

It should be noted that the program outputs are read once for each set of ap-
plied program inputs. It would also be possible to execute the program multiple
1 Although through email correspondence with Brian Goldman it may be the case
that RCGP only serves to alter the length bias rather than remove it.

Recurrent Cartesian Genetic Programming 479

Fig. 2. Example RCGP program cosponsoring to the chromosome: 212 005 134 5

times for each set of program inputs. In such a case, the average of the program
outputs or the settled program outputs2 could be taken. The method described
here was chosen for its simplicity and because there is no guarantee that the
program outputs would ever settle.

A drawback of placing no constraints on connection gene values is that, on
average, mutations to connection genes will result in as many feed-forward con-
nections as recurrent. As it is highly unlikely that many tasks will require fifty
percent of connections to be recurrent, this places a bias towards possibly un-
suitable areas in the solution space. For this reason, a new parameter is intro-
duced which controls the likelihood of mutations creating recurrent connections.
This parameter is called recurrent connection probability. A recurrent connection
probability of zero percent results in only feed-forward connections (i.e. regular
CGP). A recurrent connection probability of fifty percent results in mutations
causing as many feed-forward connections as recurrent (i.e. RCGP without the
new parameter). A recurrent connection probability of one hundred percent re-
sults in only recurrent connections. It should be noted that this parameter does
not directly control the number of recurrent connections, only the probability of
mutations creating recurrent connections.

An important property of CGP is that the active nodes can be determined
before executing the program. This is significant as a high proportion of nodes
are often inactive [11] and calculating their outputs wastes computation time.
To determine which nodes are active the following algorithm is used [1]: 1) add
each program output node to a list of active nodes 2) for each node added to the
active node list, add the nodes to which they also connect 3) continue until the
program inputs are reached. Determining the active nodes for RCGP follows a
similar algorithm except only nodes which are not currently in the active node
list are added. This extra criteria breaks cycles enabling active nodes to be
determined for RCGP.

3.2 Implications of Recurrent Connections

An implication of RCGP is that it is now possible for chromosomes to describe
phenotypes where none of the active nodes connect to the program inputs. These
programs are therefore unsuited to any realistic task. However such programs
will likely score a low fitness and be quickly dropped from the population.

2 Where settled output refers to the converged program output value(s) after many
updates of the active nodes whilst applying the same program inputs.

480 A.J. Turner and J.F. Miller

Another implication of allowing recurrent connections occurs when applying
RCGP to tasks where each set of inputs are independent from each other. For
example, suppose we are trying to evolve a program that can implement a six
bit parity circuit. Normally, we think of each line of the truth table as being
independent of one another (i.e. the order in which each set of inputs occurs
is unimportant). If the fitness function always tests each line of the truth table
in the same order, RCGP could in principle use previous inputs to “predict”
the correct output. This was shown to be the case in [7]. In an extreme case,
RCGP could “predict” the correct outputs without ever considering the program
inputs3. It is therefore important that RCGP should only be applied to tasks
where the series of inputs are related, such as in time series prediction; otherwise
additional precautions would be required to prevent this behaviour.

4 Experiments

The experiments presented are designed to test if RCGP is a suitable extension
to CGP when solving partially observable tasks. As RCGP is implemented using
the recurrent connection probability, this parameter is varied over [0, 10, 20, 50]
percent. Where zero percent is equivalent to CGP, fifty percent is equivalent to
RCGP without the additional parameter and ten and twenty percent represents
RCGP with lower biases for recurrent connections.

If RCGP achieves statistically significantly better fitness than CGP on the
given tasks, then RCGP will be considered a suitable extension to CGP when
solving partially observable problems. If biasing the level of recurrence is shown
to statistically significantly influence fitness, then the recurrent connection prob-
ability will be considered a suitable parameter for RCGP.

As this is the first time RCGP has been investigated it is unknown how the
number of available nodes will influence results. For this reason each experiment
is repeated over a range of available nodes [10, 20, ..., 90, 100] to ensure a fair
comparison between CGP and RCGP. Other than the parameters previously
given, the following are used throughout the experiments: (1+4)-ES, 3% proba-
bilistic mutation and a node arity of two. The results presented are the average
fitness of fifty independent runs. Each run is given ten thousand generations
before terminating the search.

5 Benchmarks

Two partially observable benchmarks are used in the described experiments,
Artificial Ant and Sunspots. The Artificial Ant benchmark is a reinforcement
learning control task and the Sunspots benchmark is a supervised learning series
forecasting task.

3 This was shown to be the case in unpresented results where RCGP “solved” the six
bit parity task without any inputs!

Recurrent Cartesian Genetic Programming 481

5.1 Artificial Ant

The Artificial Ant problem [17] is a classic challenging [18] benchmark commonly
used by GP [2]. The task is to design a controller which navigates an ant around
a toroidal map maximising food intake. The ant can only perceive whether the
location ahead of is current position contains food. Each time step the ant un-
dertakes one of four actions: move forward, turn left 90◦, turn right 90◦ or do
nothing. The map used here is the “Santa Fe Ant Trail”[2] given in Figure 3.

(a) The “Santa Fe Ant Trail”.

1700 1750 1800 1850 1900 1950
0

50

100

150

200

Year

N
um

 S
un

 S
po

ts

(b) Yearly recorded sunspots.

Fig. 3. (a) Depiction of the “Santa Fe Ant Trail”. Black and white represent food and
no food respectively. (b) Yearly number of recorded sunspots.

In this paper the form of the controller differs from that commonly used
by GP [2]. Here the evolved program’s inputs describe if the location ahead
contains food and the program’s outputs are decoded into one of the possible
four actions; this is not dissimilar to the original implementation [17]. Other GP
implementations [2] create programs where the program inputs are the possible
actions and the program outputs are unused. The function set used by the nodes
causes the inputs (actions) to either be implemented outright or to be conditional
on whether food is ahead. Once the program outputs are reached the program
starts over. CGP has previously been applied to the benchmark in its more
commonly used form [5].

In this paper, the evolved controllers have two mutually exclusive inputs,
whereby the first input is set as ‘1’ if the location ahead of the ant contains
food, else it is set as ‘0’. The controller has two outputs, where: [1 1] represents
move forward, [0 1] turn right, [1 0] turn left and [0 0] do nothing. The ant starts
in the top left (0, 0) of the toroidal map facing east and is allowed 400 time steps
to consume as much food as possible. The amount of food eaten is then used as
the fitness measure; out of a maximum 89. The function set used comprises of
the four Boolean logic gates: AND, OR, NOT, and XOR.

482 A.J. Turner and J.F. Miller

5.2 Sunspots

The Sunspots benchmark [19] is a commonly used [20] time series prediction
benchmark which describes the number of observed sunspots dating back to
1700. The data was recorded by the SIDC-team, at the World Data Center for
the Sunspot Index, Royal Observatory of Belgium [19]. The dataset contains the
yearly number of recorded sunspots between 1700 and 1987; given in Figure 3.
The first 221 years (1700-1920) are used as the training set with the remaining
67 years (1921-1987) used as the testing set.

Most series forecasters which are applied to the Sunspots benchmark use
multiple inputs consisting of the current and previous years number of sunspots.
However, in this paper only one input is used which gives the current number of
sunspots. This restriction to one input was imposed to force the task to become
partially observable. This restriction also makes the task much more challenging
since any trends in the data must be calculated internally as the data is passed
in year by year. The single output is the predicted number of sunspots 35 years
ahead of the current input. The single input to the series forecaster is normalised
into a [0, 1] range by dividing by two hundred (a value greater than the highest
number of sunspots in any observed year). The single output is also multiplied
by two hundred before being used as the predicted number of sunspots.

The fitness measure is the mean average error (MAE) given by: 1
N

∑N
i=1 |ei|

where N is the number of samples and e is the difference between the actual
and predicted number of sunspots. The function set used for this task comprises
of ten symbolic expressions: x1 + x2, x1 − x2, x1 × x2, xi ÷ xj , |x1|, x2

1, x
3
1, e

x1 ,
sin(x1) and cos(x1). Where x1 and x2 are the two inputs to each node and the
division operator is protected so as to return one when dividing by zero.

6 Results

The the average fitnesses (from 50 runs) achieved using RCGP are given for the
Artificial Ant and Sunspots benchmarks in Figure 4. It should be recalled that
a recurrent connection probability of zero percent is equivalent to regular CGP.
The average generalisation performance on the Sunspot testing set is also given
in Figure 5 along with an example forecaster created using one hundred nodes
and a recurrent connection probability of ten percent.

To identify if the differences due to the recurrent connection probability seen
in Figure 4 are statistically significant the results are analysed using the non-
parametric two sided Mann-Whitney U-test. When using the U-test p<0.05 in-
dicates statistical significance between two sets of data. Tables 1 and 2 give the
p values when comparing pairs of recurrent connection probabilities using ten,
twenty and one hundred nodes for the Artificial Ant and Sunspot (training set)
benchmarks.

As can be seen in Figure 4 and Tables 1 and 2, a recurrent connection prob-
ability of zero percent consistently performs worst on both benchmarks with
statistical significance. This demonstrates that there are types of tasks which
regular CGP is not suited to but to which RCGP can be successfully applied.

Recurrent Cartesian Genetic Programming 483

20 40 60 80 100
0

20

40

60

80

Nodes

F
oo

d
E

at
en 0% recurrence (CGP)

10% recurrence
20% recurrence
50% recurrence

(a) Artificial Ants

20 40 60 80 100
22

23

24

25

26

27

28

Nodes

M
A

E

 0% recurrence (CGP)
10% recurrence
20% recurrence
50% recurrence

(b) Sunspots (training)

Fig. 4. Results of applying RCGP on the two benchmark

20 40 60 80 100
37

38

39

40

41

42

43

Nodes

M
A

E

0% recurrence (CGP)
10% recurrence
20% recurrence
50% recurrence

(a) MAE on Testing Data

1930 1940 1950 1960 1970 1980
0

50

100

150

200

Year

N
um

 S
un

 S
po

ts

actual
predicted

(b) Example Series Forecast

Fig. 5. Generalisation of RCGP on the Sunspot test set

When comparing recurrent connection probabilities, it can be seen that lower
percentages (ten and twenty) give statistically significantly better results on
the Artificial Ant benchmark than higher percentages (fifty). On the Sunspots
benchmark the opposite is true, with higher levels producing the best results
on the training set. However, this greater performance on the training set is
accompanied by weaker generalisation on the testing set; seen in Figure 5.

7 Discussion

The results given in Section 6 clearly demonstrate that CGP is unsuitable for
partially observable tasks. This is not a surprising result as CGP has no capacity
to recall previous inputs or infer internal state information. For instance the best
strategy CGP could find for the Artificial Ant task was to rotate until food is
ahead, and then move forward.

484 A.J. Turner and J.F. Miller

Table 1. Artificial Ant: p values comparing pairs of recurrent connection probabilities

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.274 0.118
20% - - 1 0.576
50% - - - 1

(a) 10 Nodes

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.391 0.025
20% - - 1 0.002
50% - - - 1

(b) 50 Nodes

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.260 2E-5
20% - - 1 2E-4
50% - - - 1

(c) 100 Nodes

Table 2. Sunspots: p values comparing pairs of recurrent connection probabilities

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.022 0.021
20% - - 1 0.759
50% - - - 1

(a) 10 Nodes

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.234 0.011
20% - - 1 0.167
50% - - - 1

(b) 50 Nodes

0% 10% 20% 50%
0% 1 ∼0 ∼0 ∼0
10% - 1 0.671 0.312
20% - - 1 0.458
50% - - - 1

(c) 100 Nodes

The results in Section 6 show that RCGP is highly suited for partially observ-
able tasks. For both benchmarks it dramatically and statistically significantly
outperforms CGP.

Section 6 also showed that simply allowing mutation to create feed-forward or
recurrent connections with equal probability does not always produce the best
results. This is because it is unlikely that a given task will require fifty percent of
connections to be recurrent. The introduction of the recurrent connection prob-
ability parameter allows the user to bias mutations so as to produce greater or
fewer recurrent connections. It has been shown that using a recurrent connec-
tion probability of fifty percent (i.e. effectively not using the recurrent connection
probability parameter) produces poor results on the Artificial Ant benchmark
and causes over training on the Sunspot benchmark4. Using a recurrent connec-
tion probability of ten percent produced the best results on the Artificial Ant
benchmark and produce the best MAE on the testing set for the Sunspot bench-
mark. The recurrent connection probability is therefore an important additional
parameter when using RCGP.

8 Conclusion

RCGP is an extension to CGP which enables application to partially observ-
able tasks. On two partially observable benchmark problems, Artificial Ant and
Sunspot prediction, RCGP gives statistically significant improvements compared
with acyclic CGP. RCGP has been implemented using a recurrent connection
probability parameter which biases the number of recurrent connections created
4 Over training could be controlled via the use of a validation set but this was not
considered here.

Recurrent Cartesian Genetic Programming 485

via mutations. This is introduced as simply allowing mutations to connect any
two nodes creates an unhelpful bias for as many feed-forward connections as re-
current. Further research is needed to compare the performance of RCGP with
other methods suited to partially observable problems and to apply RCGP to
additional domains; such as creating recurrent artificial neural networks.

References

1. Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
2. Koza, J.R.: Genetic Programming: On the programming of computers by means

of natural selection, vol. 1. MIT Press (1992)
3. Teller, A.: Turing completeness in the language of genetic programming with in-

dexed memory. In: IEEE Evolutionary Computation, pp. 136–141 (1994)
4. Teredesai, A., Govindaraju, V., Ratzlaff, E., Subrahmonia, J.: Recurrent genetic

programming. In: 2002 IEEE International Conference on Systems, Man and Cy-
bernetics, vol. 4, pp. 5–9. IEEE (2002)

5. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf,
W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000.
LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

6. Miller, J.F.: What bloat? Cartesian genetic programming on Boolean problems.
In: Genetic and Evolutionary Computation Conference, pp. 295–302 (2001)

7. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming: Why No Bloat? In:
Genetic Programming: 17th European Conference (to appear, 2014)

8. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. Genetic Programming and Evolvable
Machines 10(2), 141–179 (2009)

9. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital
Circuit Evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C.
(eds.) ICES 2000. LNCS, vol. 1801, pp. 252–263. Springer, Heidelberg (2000)

10. Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape.
In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon,
W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg
(2001)

11. Miller, J.F., Smith, S.: Redundancy and computational efficiency in Cartesian ge-
netic programming. Evolutionary Computation 10(2), 167–174 (2006)

12. Goldman, B.W., Punch, W.F.: Length bias and search limitations in Cartesian ge-
netic programming. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, pp. 933–940. ACM (2013)

13. Jordan, M.I.: Serial order: A parallel distributed processing approach. Technical
report, Institute for Cognitive Science (1986)

14. Khan, M., Khan, G., Miller, J.: Efficient representation of recurrent neural networks
for markovian/non-markovian non-linear control problems. In: IEEE Intelligent
Systems Design and Applications, pp. 615–620 (2010)

15. Khan, M.M., Ahmad, M.A., Khan, M.G., Miller, J.F.: Fast learning neural net-
works using Cartesian Genetic Programming. Neurocomputing 121, 274–289 (2013)

16. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming encoded Artificial Neu-
ral Networks: A Comparison using Three Benchmarks. In: Genetic and Evolution-
ary Computation, pp. 1005–1012 (2013)

486 A.J. Turner and J.F. Miller

17. Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C.,
Wang, A.: The genesys system: Evolution as a theme in artificial life. In: Artificial
Life. Addison-Wesley, Redwood City (1990)

18. Langdon, W.B., Poli, R.: Why ants are hard. Technical report, School of Computer
Science, The University of Birmingham, Birmingham, UK (1998)

19. SIDC-team: The International Sunspot Number. Monthly Report on the Interna-
tional Sunspot Number, online catalogue (1700-1987)

20. Khashei, M., Bijari, M.: An artificial neural network (p,d,q) model for timeseries
forecasting. Expert Systems with Applications 37(1), 479–489 (2010)

An Analysis on Selection

for High-Resolution Approximations
in Many-Objective Optimization

Hernán Aguirre1, Arnaud Liefooghe2, Sébastien Verel3, and Kiyoshi Tanaka1

1 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 Japan

2 Université Lille 1 LIFL, UMR CNRS 8022,
Inria Lille-Nord Europe, France

3 Université du Littoral Côte d’Opale, LISIC, 62228 Calais, France
{ahernan,ktanaka}@shinshu-u.ac.jp, arnaud.liefooghe@lifl.fr,

verel@univ-littoral.fr

Abstract. This work studies the behavior of three elitist multi- and
many-objective evolutionary algorithms generating a high-resolution ap-
proximation of the Pareto optimal set. Several search-assessment indica-
tors are defined to trace the dynamics of survival selection and measure
the ability to simultaneously keep optimal solutions and discover new
ones under different population sizes, set as a fraction of the size of the
Pareto optimal set.

1 Introduction

In multi-objective optimization the aim of the optimizer is to find a good approx-
imation of the Pareto optimal set (POS) in terms of convergence and diversity
of solutions. Convergence dictates that solutions in the approximation must be
either members of the POS or close to it in objective space. Diversity usually
implies that solutions in the approximation should be evenly spaced in objective
space, following the distribution of the POS.

In many-objective optimization, in addition to convergence and diversity, a
third criterion also becomes a relevant aim of the optimizer. We call it the reso-
lution of the approximation. The resolution is related to the number of points in
the generated approximation of the POS. In many-objective problems the num-
ber of solutions in the POS increases exponentially [1] with the dimensionality
of the objective space. In general, many more points are required to cover uni-
formly with the same density a higher dimensional space. However, the required
resolution of the approximation could vary depending on the application domain
and the task of the optimization within the problem solving approach. A low
resolution of the approximation may suffice in some domain applications. For
example, domains where the formulation of the problem is already well under-
stood and a solution has to be found and implemented regularly, such as the
daily operational schedule of machines and the jobs assigned to them in a man-
ufacturing plant. In these domains, the optimizer is often required to provide

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 487–497, 2014.
c© Springer International Publishing Switzerland 2014

488 H. Aguirre et al.

alternative exact solutions and too many of them could overwhelm a decision
maker (operations manager) that must suggest a prompt course of action. In
other application domains a high resolution of the approximation is required.
For example in design optimization, where the problem-solving cycle often starts
with multiple, sometimes ill defined, problem formulations and uses optimiza-
tion as a tool to validate the understanding of the problem and to discover new
features about it. In these application domains it is not unusual to require that
the optimizer provides approximations of the POS with tens of thousands or
even hundreds of thousands of solutions. These approximations are subjected to
data mining and analysis to verify and improve the problem formulation itself,
understand the tradeoffs between variables and objectives, and extract valuable
design knowledge [2]. Thus, a many-objective optimizer should also aim to find
an approximation with a resolution that properly captures the POS, with enough
points to provide a useful description of it, depending on the dimensionality of
the objective space and the optimization task at hand.

Many-objective optimization was initially attempted using evolutionary al-
gorithms that proved effective for two and three objectives only to discover
their lack of scalability. A significant part of the research effort has been under-
standing the reasons for their failure and improving them, particularly in terms
of convergence. Recently, some many-objective optimizers are being proposed
[3,4]. However, the performance of the improved and newly proposed algorithms
is commonly assessed using a relatively very small number of points focusing
mostly on convergence and/or diversity. The resolution of the approximation
in many-objective optimization has not been deeply studied and it is not clear
the capabilities and behavior of the algorithms under this additional important
criterion.

In this work we analyze the behavior of three elitist multi- and many-objective
evolutionary algorithms generating a high-resolution approximation of the POS.
We define a basic indicator for resolution, the accumulated gain of the popula-
tion, and several generational search-assessment indices respect to the POS. We
trace the dynamics of survival selection and study the ability to simultaneously
keep Pareto optimal (PO) solutions in the population and find new ones to im-
prove the resolution of the approximation, setting population size as a fraction
of the size of the POS. We use MNK-landscapes with 3 − 6 objectives and 20
bits, for which it is possible to know by enumeration all PO solutions.

2 Methodology

An important objective of this work is to analyze the ability of the algorithms
to generate a high-resolution approximation of the POS. A simple and basic
indicator for resolution is to count the number of PO solutions found by the
algorithms. In many-objective problems is likely that the population size is con-
siderable smaller than the size of the POS. Thus, to achieve a good resolution
the algorithms should first be able to hit the POS with some members of the
population and then continue discovering other PO solutions. The ability to

An Analysis on Selection for High-Resolution Approximations 489

Table 1. Number of Pareto optimal solutions |POS| and number of non-dominated
Fronts in the landscapes with M = 3, 4, 5, and 6 objectives. Also, fraction of |P | /
|POS| (in %) for various population sizes |P | investigated in this study.

|P | / |POS| (%)
M |POS| Fronts 50 100 200 500 1,000 2,000 4,000 5,600 11,200
3 152 258 32.9 65.8 132.6
4 1,554 76 3.2 6.4 12.9 32.2 64.4
5 6,265 29 0.8 1.6 3.2 31.9 63.8
6 16,845 22 0.3 0.6 1.2 33.2 66.5

converge towards the POS is a very important feature of the algorithm. In this
study, we focus our attention mostly on the ability of the algorithm to continue
discovering new PO solutions assuming that the algorithms can converge to the
POS.

To evaluate this ability we use four MNK-landscapes [1] randomly generated
with M = 3, 4, 5, 6 objectives, N = 20 bits, and K = 1 epistatic bit. In small
landscapes with low non-linearity it is relatively simple for the algorithm to hit
the optimal set. It is also possible to enumerate them and know the POS in order
to analyze the dynamic of the algorithms respect to the optimum set. The exact
number of PO solutions found by enumeration and the number of non-dominated
fronts are shown in Table 1 under columns |POS| and Fronts, respectively. The
same table also shows the corresponding fraction (%) of the population sizes |P |
to the |POS| for various population sizes investigated here.

We run the algorithms for a fixed number of T generations, collecting in
separate files the sets of non-dominated solutions F1(t) found at each generation.
The approximation of the POS for a run of the algorithm, denoted A(T), is
built by computing the non-dominated set from all generational non-dominated
sets F1(t), t = 0, 1, · · · , T , making sure no duplicate solutions are included. In
general, the approximation at generation t is given by

A(t) = {x : x ∈ X (t) = A(t−1)∪F1(t)\A(t−1)∩F1(t)∧ � ∃y ∈ X (t) y (x} (1)

A(0) = F1(0), (2)

where y (x denotes solution y Pareto dominates solution x. The basic resolu-
tion index α of the approximation at generation t is,

α(t) =
|{x : x ∈ A(t) ∧ x ∈ POS}|

|POS| , (3)

which gives the fraction of the accumulated number of PO solutions found until
generation t to the size of the POS. The highest resolution of the generated ap-
proximation of the POS is achieved when all Pareto optimal solutions are found.

490 H. Aguirre et al.

Table 2. Generational search-assessment indices It. Measures are taken on non-
dominated population F1(t) with respect to F1(t − 1) and/or the POS, normalized
by population size |P |.

It Formula Comment
τt |{x : x ∈ F1(t) ∧ x ∈ POS}| / |P | PO solutions
τ−
t |{x : x ∈ F1(t) ∧ x ∈ F1(t− 1) ∧ x ∈ POS}| / |P | Old PO solutions
τ+
t |{x : x ∈ F1(t) ∧ x
∈ F1(t− 1) ∧ x ∈ POS}| / |P | Possibly new PO solutions
τ∗
t |{x : x ∈ F1(t) ∧ x
∈ ∪t−1

k=1F1(k) ∧ x ∈ POS}| / |P | Absolutely new PO solutions
δt |{x : x ∈ F1(t− 1) ∧ x
∈ F1(t) ∧ x ∈ POS}| / |P | Dropped PO solutions
γt |{x : x ∈ F1(t) ∧ x
∈ POS}| / |P | Non-dominated, not PO sol.

Similarly, the accumulated population gain at generation t can be expressed as

β(t) =
|{x : x ∈ A(t) ∧ x ∈ POS}|

|P | . (4)

For our analysis on the dynamics of the algorithm, we compare the sets F1(t)
with the POS to determine which solutions in F1(t) are Pareto optimal and
compute several generational search-assessment indices It (τt, τ∗t , τ+t , τ−t , δt,
γt), as shown in Table 2. Note that these generational indexes are expressed as
a fraction of the population size |P |. In this work we analyze them and their
average value Ī (τ̄ , τ̄∗, τ̄+, τ̄−, δ̄, γ̄) taken over all generations computed as
Ī = 1

T+1

∑T
t=0 It.

In this work we analyze NSGA-II [5], IBEA [6], and the Adaptive ε-Sampling
and ε-Hood algorithm [4]. In the following we briefly describe these algorithms,
particularly fitness assignment, survival selection, and parent selection.

3 Algorithms

3.1 NSGA-II

NSGA-II is an elitist algorithm that uses Pareto dominance and crowding es-
timation of solutions for survival and parent selections. To compute fitness of
the individuals, the algorithm joins the current population Pt with its offspring
Qt and divide it in non-dominated fronts F = {Fi}, i = 1, 2, · · · , NF using the
non-dominated sorting procedure. It also calculate the crowding distance dj of
solutions within the fronts Fi. The fitness of j-th solution in the i-th front is
Fitness(xj) = (i, dj), where the front number is the primary rank and crowding
distance the secondary rank. Survival selection is performed by copying itera-
tively the sets of solutions Fi to the new population Pt+1 until it is filled. If
the set Fi, i > 1, overfills the new population Pt+1, the required number of
solutions are chosen based on their secondary rank dj . Parent selection for re-
production consists of binary tournaments between randomly chosen individuals
from Pt+1 using their primary rank i to decide the winners, breaking ties with
their secondary rank dj .

An Analysis on Selection for High-Resolution Approximations 491

3.2 IBEA (Indicator-Based Evolutionary Algorithm)

The main idea of IBEA [6] is to introduce a total order between solutions by
means of an arbitrary binary quality indicator I. The fitness assignment scheme
of IBEA is based on a pairwise comparison of solutions in a population with
respect to indicator I. Each individual x is assigned a fitness value measuring
the “loss in quality” if x was removed from the population P , i.e., Fitness(x) =∑

x′∈P\{x}(−e−I(x′,x)/κ), where κ > 0 is a user-defined scaling factor. Survival
selection is based on an elitist strategy that combines the current population
Pt with its offspring Qt, iteratively deletes worst solutions until the required
population size is reached, and assigns the resulting population to P(t+1). Here,
each time a solution is deleted the fitness values of the remaining individuals
are updated. Parent selection for reproduction consists of binary tournaments
between randomly chosen individuals using their fitness to decide the winners.

Different indicators can be used within IBEA. We here choose to use the
binary additive ε-indicator (Iε+), as defined by the original authors [6].

Iε+(x,x′) = max
i∈{1,...,n}

{fi(x)− fi(x′)} (5)

Iε+(x,x′) gives the minimum value by which a solution x ∈ P has to, or can
be translated in the objective space in order to weakly dominate another solu-
tion x′ ∈ P . More information about IBEA can be found in [6].

3.3 The AεSεH

Adaptive ε-Sampling and ε-Hood (AεSεH) [4] is an elitist evolutionary many-
objective algorithm that applies ε-dominance principles for survival selection
and parent selection. There is not an explicit fitness assignment method in this
algorithm.

Survival selection joins the current population Pt and its offspring Qt and
divide it in non-dominated fronts F = {Fi}, i = 1, 2, · · · , NF using the non-
dominated sorting procedure. In the rare case where the number of non-dominated
solutions is smaller than the population size |F1| < |P |, the sets of solutions Fi

are copied iteratively to Pt+1 until it is filled; if set Fi, i > 1, overfills Pt+1, the
required number of solutions are chosen randomly from it. On the other hand, in
the common case where |F1| > |P |, it calls ε-sampling with parameter εs. This
procedure iteratively samples randomly a solution from the set F1, inserting the
sample in Pt+1 and eliminating from F1 solutions ε-dominated by the sample.
After sampling, if Pt+1 is overfilled solutions are randomly eliminated from it.
Otherwise, if there is still room in Pt+1, the required number of solutions are
randomly chosen from the initially ε-dominated solutions and added to Pt+1.

After survival selection there is not an explicit ranking that could be used
to bias mating. Rather, for parent selection the algorithm first uses a procedure
called ε-hood creation to cluster solutions in objective space. This procedure
randomly selects an individual from the surviving population and applies ε-
dominance with parameter εh. A neighborhood is formed by the selected solution

492 H. Aguirre et al.

and its εh-dominated solutions. Neighborhood creation is repeated until all solu-
tions in the surviving population have been assigned to a neighborhood. Parent
selection is implemented by the procedure ε-hood mating, which sees neighbor-
hoods as elements of a list than can be visited one at the time in a round-robin
schedule. The first two parents are selected randomly from the first neighbor-
hood in the list. The next two parents will be selected randomly from the second
neighborhood in the list, and so on. When the end of the list is reached, parent
selection continues with the first neighborhood in the list. Thus, all individuals
have the same probability of being selected within a specified neighborhood, but
due to the round-robin schedule individuals belonging to neighborhoods with
fewer members have more reproduction opportunities that those belonging to
neighborhoods with more members.

Both epsilon parameters εs and εh used in survival selection and parent se-
lection, respectively, are dynamically adapted during the run of the algorithm.
Further details about AεSεH can be found in [4].

4 Experimental Results and Discussion

4.1 Operators of Variation and Parameters

In all algorithms we use two point crossover with rate pc = 1.0, and bit flip
mutation with rate pm = 1/n. In AεSεH we set the reference neighborhood
size HRef

size to 20 individuals. The mapping function f(x) �→ε f
′
(x) used for

ε-dominance in ε-sampling truncation and ε-hood creation is additive, f
′
i =

fi + ε, i = 1, 2, · · · ,m. For IBEA, the scaling factor is set to κ = 0.001. The
algorithms run for T = 100 generations. Results analyzed here were obtained
from 30 independent runs of the algorithms.

4.2 Accumulated Number of Pareto Optimal Solutions Found

Fig.1 shows the the basic resolution index α(T) of the approximation at the end
of the run, i.e. the ratio of accumulated number of PO solutions found to the
size of the POS. Results are shown for 3, 4, 5, and 6 objectives using population
sizes of {50, 100, 200}. Similarly, Fig.2 shows results for 5, and 6 objectives using
larger populations sizes, between 500 and 11, 2000 individuals.

Note that AεSεH finds many more Pareto optimal solutions than NSGA-II
and IBEA for all population sizes and number of objectives tried here, whereas
NSGA-II finds more solutions than IBEA when population sizes are relatively
a large fraction of the size of the POS. See Fig.1 (a) and Fig.2 (a)-(b) where
population sizes correspond roughly to 33%, 66%, and 133% of the POS for 3
objectives and 33% and 66% for 5 and 6 objectives, as shown in Table 1. On the
contrary, IBEA finds more solutions than NSGA-II when population sizes are
relatively a small fraction of the POS. See Fig.1 (c)-(d) where population sizes
{50, 100, 200} are used in 5 and 6 objectives, which correspond to fractions in the
range 0.3%−3.2% of the POS. In 4 objectives, Fig.1 (b), an interesting transition

An Analysis on Selection for High-Resolution Approximations 493

0.5

0.6

0.7

0.8

0.9

1.0

A N I A N I A N I

50 100 20050 100 20050 100 200

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(a) M=3 objectives

0.1

0.2

0.3

0.4

0.5

A N I A N I A N I

50 100 20050 100 20050 100 200

0.1

0.2

0.3

0.4

0.5

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(b) M=4 objectives

0.05

0.10

0.15

0.20

0.25

A N I A N I A N I

50 100 20050 100 20050 100 200

0.05

0.10

0.15

0.20

0.25

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(c) M=5 objectives

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A N I A N I A N I

50 100 20050 100 20050 100 200

0.02

0.04

0.06

0.08

0.10

0.12

0.14

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(d) M=6 objectives

Fig. 1. Resolution of the approximation at the end of the run α(T), i.e. ratio of accu-
mulated number of Pareto optimal solutions found to the size of the POS. Population
sizes 50, 100, and 200 for 3, 4, 5, and 6 objectives. Algorithms AεSεH (A), NSGA-II
(N) and IBEA (I).

can be observed. When the smallest population is used, i.e. 50 individuals ∼ 3.2%
of POS, IBEA finds more solutions than NSGA-II. For a population size of 100
∼ 6.4% of POS NSGA-II finds a slightly larger number of solutions than IBEA.
For a population size of 200 ∼ 12.9% of POS, NSGA-II finds a significant larger
number of solutions than IBEA.

The gap between AεSεH and the other two algorithms augments when the
population size increases within a range in which it still is a small fraction of
the POS, as shown in Fig.1 (b)-(d) where the ranges in which population size
increase are 3.2%− 12.9%, 0.8%− 3.2%, and 0.3%− 1.2% of POS for 4, 5, and
6 objectives, respectively. On the other hand, the gap reduces when population
size increases within a range in which it is a large fraction of the POS, as shown
in Fig.1 (a) and Fig.2 (a)-(b) where the ranges in which population size increase
are roughly 33% − 133% of POS for 3 objectives and 33% − 66% for 5 and 6
objectives.

494 H. Aguirre et al.

0.6

0.7

0.8

0.9

A N I A N I

2000 40002000 40002000 4000

0.6

0.7

0.8

0.9

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(a) M=5 objectives

0.6

0.7

0.8

0.9

A N I A N I

5600 112005600 112005600 11200

0.6

0.7

0.8

0.9

A
cc

T
P

os
 /

|T
P

os
|

Algorithm and Population Size

(b) M=6 objectives

Fig. 2. Ratio of accumulated number of Pareto optimal solutions found to the size of
the POS. Population sizes {500, 1000}, {2000, 4000}, and {5600, 11200} for 4, 5, and 6
objectives, respectively. Algorithms AεSεH (A), NSGA-II (N) and IBEA (I).

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A N I A N I A N I

50 100 20050 100 20050 100 200

0.3

0.4

0.5

0.6

0.7

0.8

0.9

In
T

P
os

 /
|P

|

Algorithm and Population Size

(a) τ̄ : Pareto optimal

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A N I A N I A N I

50 100 20050 100 20050 100 200

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
P

re
G

en
 /

|P
|

Algorithm and Population Size

(b) τ̄−: Old Pareto optimal

0.04

0.06

0.08

0.10

0.12

0.14

A N I A N I A N I

50 100 20050 100 20050 100 200

0.04

0.06

0.08

0.10

0.12

0.14

In
T

P
os

N
ew

 /
|P

|

Algorithm and Population Size

(c) τ̄∗: Absolutely new Pareto optimal

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A N I A N I A N I

50 100 20050 100 20050 100 200

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
ro

pp
ed

 /
|P

|

Algorithm and Population Size

(d) δ̄: Dropped Pareto optimal

Fig. 3. Boxplots of average generational search-assessment indices in 30 runs. Popu-
lation sizes {50, 100, 200}, 6 objectives, T = 100 generations. Algorithms AεSεH (A),
NSGA-II (N) and IBEA (I).

An Analysis on Selection for High-Resolution Approximations 495

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

Generation

A
cc

T
P

os
 /

|P
|

(a) AeSeH

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

0

2

4

6

8

10

12

Generation

A
cc

T
P

os
 /

|P
|

(b) IBEA

Fig. 4. Accumulated population gains β(t) over the generations. Population size 200,
6 objectives. Algorithms AεSεH and IBEA.

4.3 Generational Search Assessment Indices

Fig.3 (a)-(d) show boxplots of some Ī indexes computed from data obtained in
30 independent runs of the algorithms iterating T = 100 generations. Results
are shown for 6 objectives landscapes using population sizes {50, 100, 200},
which are relatively small compared to the POS. From these figures important
observations are as follow.

In average, at each generation, IBEA contains in its population a very large
number of PO solutions compared to AεSεH and NSGA-II as shown in Fig.3 (a).
Note that the median of index τ̄ for IBEA is in the range 0.88-0.95, whereas the
ranges for AεSεH and NSGA-II are between 0.6-0.85 and 03-0.4, respectively.

However, the number of old PO solutions (PO solutions present in the current
population and also in the population of the previous generation) for IBEA is
much larger than for AεSεH and NSGA-II, as shown in Fig.3 (b). Note that the
median of τ̄− is in the range 0.75-0.85 for IBEA, whereas τ̄− is in the range
0.48-0.68 for AεSεH and 0.25-0.35 for NSGA-II.

In fact, the generational average number of absolutely new PO solutions (PO
solutions in the current population that have not been discovered in previous
generations) is larger for AεSεH than for IBEA and NSGA-II, as shown in Fig.3
(c). Note that the median of index τ̄∗ for AεSεH is around 0.12, whereas for
IBEA it reduces with population size from 0.10 to 0.06 and slightly increases for
NSGA-II from 0.039 to 0.04. The similar τ̄∗ values by AeSEH are a good sign
of robustness to population size variations, i.e. a similar discovery rate could be
expected with various population sizes. On the contrary, IBEA’s discovery rate
could reduce significantly with population size. If the evaluation of the algorithms
is done based only on the points included in the population at a given generation,
as it is often the case, IBEA is likely to contain more PO solutions than AεSεH,
as shown in Fig.3 (a), and therefore be considered a better algorithm. However,

496 H. Aguirre et al.

AεSεH finds twice as many PO solutions than IBEA, as shown in Fig.1 (d).
These results show that IBEA could be a good algorithm for finding a low
resolution approximation of the POS, but for high resolutions is not efficient. In
general, these results show the importance of properly evaluating the algorithms
according to the aim of the optimization task at hand.

The index of dropped PO solutions δ̄ (PO solutions present in the population
of the previous generation that are not included in the current population after
truncation selection) shows a trend vey similar to the one observed for the in-
dex τ̄∗, as shown in Fig.3 (d). Dropping superior solutions in favor of solutions
that appear non-dominated in the population but are inferior in the landscape
could be seen as a selection weakness. However, this could also be a source of
exploration. This deserves further research.

The accumulated population gains β(t) for AεSεH and IBEA are illustrated
in Fig.4 for population size 200 and 6 objectives. Note that just after 20 gen-
eration the gain by AεSεH is already larger than by IBEA. At the end of the
run, AεSεH is able to generate an approximation twelve times the size of its
population, whereas IBEA is able to generate an approximation 6 times the size
of its population.

5 Conclusions

This work has studies the behavior of NSGA-II, IBEA and AεSεH generating
a high-resolution approximation of the POS. The study has clarified the ability
and efficiency of the algorithms assuming scenarios where it is relatively easy
to hit the POS, showing the importance to properly assess algorithm’s perfor-
mance according to the task of the optimizer in many objective optimization. In
the future, we would like to extend our study to larger landscapes in order to
understand the behavior of selection in scenarios where the convergence ability
towards the POS is determinant to achieve a good resolution. Also, we would
like to study other indicators for IBEA and other many-objective algorithms.

References

1. Aguirre, H., Tanaka, K.: Insights on Properties of Multi-objective MNK-
Landscapes. In: Proc. 2004 IEEE Congress on Evolutionary Computation, pp.
196–203. IEEE Service Center (2004)

2. Nishio, Y., Oyama, A., Akimoto, Y., Aguirre, H., Tanaka, K.: Many-Objective Op-
timization of Trajectory Design for DESTINY Mission. In: Learning and Intelligent
Optimization Conference. LNCS. Springer (2014)

3. Hadka, D., Reed, P.: Borg: An Auto-adaptive Many-objective Evolutionary Com-
puting Framework. Evol. Computation 2(2), 231–259 (2013)

4. Aguirre, H., Oyama, A., Tanaka, K.: Adaptive ε-Sampling and ε-Hood for Evo-
lutionary Many-Objective Optimization. In: Purshouse, R.C., Fleming, P.J., Fon-
seca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 322–336.
Springer, Heidelberg (2013)

An Analysis on Selection for High-Resolution Approximations 497

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II., KanGAL
report 200001 (2000)

6. Zitzler, E., Künzli, S.: Indicator-based Selection in Multiobjective Search. In: Yao,
X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

A Multiobjective Evolutionary Optimization
Framework for Protein Purification Process Design

Richard Allmendinger and Suzanne S. Farid

Department of Biochemical Engineering, University College London,
Torrington Place, London WC1E 7JE, UK

{r.allmendinger,s.farid}@ucl.ac.uk

Abstract. Increasing demand in therapeutic drugs has resulted in the need to
design cost-effective, flexible and robust manufacturing processes capable of
meeting regulatory product purity requirements. To facilitate this design pro-
cedure, a framework linking an evolutionary multiobjective algorithm (EMOA)
with a biomanufacturing process economics model is presented. The EMOA is
tuned to discover sequences of chromatographic purification steps, and equip-
ment sizing strategies adopted at each step, that provide the best trade-off with
respect to multiple objectives including cost of goods per gram (COG/g), robust-
ness in COG/g, and impurity removal capabilities. The framework also simulates
and optimizes subject to various process uncertainties and design constraints. Ex-
periments on an industrially-relevant case study showed that the EMOA is able
to discover purification processes that outperform the industrial standard, and re-
vealed several interesting trade-offs between the objectives.

1 Introduction

The biotech sector is facing increasing pressures to design more cost-efficient, robust
and flexible manufacturing processes [1]. Among biotech therapies, monoclonal anti-
bodies (mAbs) represent one of the fastest growing category due to their unique binding
specificity to targets. A typical antibody purification process is depicted in Figure 1: in
upstream processing (USP) mammalian cells expressing the mAb of interest are cul-
tured in bioreactors, whilst in downstream processing (DSP) the mAb is recovered,
purified and cleared from viruses using a variety of operations. Of these steps, chro-
matography operations are identified as critical steps and can represent a significant
proportion of the purification material costs. The design of cost-effective purification
processes can help addressing this challenge.

The design stage is further complicated by the fact that regulatory bodies expect
biopharmaceutical companies to fully understand their manufacturing process, thus
account for uncertainty in the manufacturing process, and be able to establish a pu-
rification process that conforms to strict purity requirements. To assist the process of
tackling these challenges, presented here is an optimization-based framework linking
an evolutionary multiobjective optimization algorithm (EMOA) with a biomanufac-
turing process economics model. The goal of the EMOA is to discover sequences of
chromatographic purification steps, and sizing strategies adopted at each step, that pro-
vide the best trade-off with respect to multiple objectives including cost of goods per

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 498–507, 2014.
c© Springer International Publishing Switzerland 2014

A Multiobjective Evolutionary Optimization Framework 499

 Ultrafiltration/
Cell culture

Bulk fill

Primary
recovery

 Virus
filtration

 Virus
inactivation

Downstream processUpstream process

i
Chromatography
 step = 3

i
Chromatography
 step = 2i

Chromatography
 step = 1

 Diafiltration

Fig. 1. Typical flowsheet for an antibody manufacturing process

gram (COG/g), robustness in COG/g, and impurity removal capabilities. The objectives
are then computed by the process economics model serving as the fitness evaluation
tool. Additional complexities accounted for by the framework include simulating and
optimizing subject to uncertainty and constraints.

This paper extends our previous work on chromatography design/optimization [2,3],
which assumed a fixed sequence of chromatography steps, and focused on tuning (using
a single-objective EA) the chromatography column sizing adopted at each step such
that the COG/g are minimized only. This extension posed two challenges including
(i) the development of a customized EMOA accounting for constraints and variables of
different type, and (ii) the extension of the process economics model so as to account
for additional design choices and their impact on manufacturing performance.

Chromatography design/optimization can be tackled from several other angles. For
example, the exploration of non-Protein A based purification processes was considered
by Chen et al. [4]. Tuning of chromatographic operating conditions is another promi-
nent research field [5], and so is resin screening [6]. Unlike our simulation-based work,
these studies are based on real physical experiments. A simulation-based approach was
also adopted by Liu et al. [7], where mathematical programming is proposed to address
chromatography column sizing and sequencing in the context of biopharmaceutical fa-
cility design. Stonier et al. [8] proposed a discrete-event simulation for the selection of
optimal chromatography column diameters over a range of titres.

The application of multiobjective optimization to chromatography design/ optimiza-
tion has become popular only recently. For example, Nfor et al. [9] used EMO to tune
operating parameters (e.g. column loading, flowrate and gradient length) of a single
chromatography step so as to improve recovery yield, purity, and productivity. The fo-
cus in this paper is on optimizing “high-level” criteria relating to all chromatography
steps (e.g. impurity removal capabilities) or the complete manufacturing process (e.g.
COG/g and its robustness). Moreover, uncertainty is associated with global operating
parameters (e.g. product titre and initial impurity levels) as well as with chromatogra-
phy specific parameters (e.g. step yields and step specific removal capabilities).

2 Constrained Multiobjective Purification Process Design

The framework proposed is based on the following closed-loop: an EMOA creates
solutions x (i.e. a sequence of chromatography steps and column sizing strategies),
which are then decoded, embedded into a feasible manufacturing process (see Figure 1),

500 R. Allmendinger and S.S. Farid

Column sizing and operating parameterssequence parameters

nCOL,3d2 d3 nCYC,3h3nCOL,2nCYC,2nCYC,1 h2nCOL,1

i = 3i = 2

r1 r2 r3 d1h1

i = 1

Chromatography step

Fig. 2. Representation of a candidate solution for k = 3 chromatography steps. Each step i =
1, ..., k is defined by a resin ri and a column sizing strategy, which is composed of the bed height
hi and diameter di of columns, number of cycles nCYC,i each column is used, and the number of
columns nCOL,i operating in parallel.

and evaluated by a biomanufacturing process economics model; manufacturing uncer-
tainties are accounted for using Monte Carlo (MC) trials. Objective values pertaining to
x are recorded and fed back to the EMOA to be considered in the generation of future
solutions. The decision variables, constraints, objective functions, and uncertain factors
the problem is subject to are explained in more detail in the following.

Decision Variables: Figure 2 shows the string encoding developed to represent a pu-
rification process or solution x. Assuming a fixed number of chromatographic steps k,
the task is to define, for each step i = 1, ..., k, the resin ri ∈ {resin1, ..., resinq} and
column sizing strategy, which is composed of the bed height hi and diameter di of a
column, number of cycles each column is used for nCYC,i, and the number of columns
operating in parallel nCOL,i. Therefore, the problem is subject to l = k + 4 · k variables
in total. The choice of the resin ri used dictates several chromatographic operation and
cost parameters considered by the biomanufacturing process economics model, such as
the step yield, resin price, and impurity removal capabilities. On the other hand, the
sizing strategy adopted at each chromatographic step i defines the total volume of resin
Vi available, and the processing time Ti that the chromatography step take; Ti and Vi
are calculated as follows [10]:

Vi = π · d2
i /4 · hi · nCYC,i · nCOL,i (1)

Ti = nCYC,i · hi · (CVBUFF,i + CVLOAD,i/nCOL,i) · ui, (2)

where CVBUFF,i and CVLOAD,i are the number of column volumes of buffer and product
load per cycle, and ui is the linear velocity of resin ri.

Constraints: The problem is subject to three types of constraints:

1. Chromatography sequence constraints are defined on the variables ri, i = 1, ..., k
and ensure that a purification process consists of non-identical, feasible and orthog-
onal (i.e. different typed) chromatography steps, or more formally

g1 : ri �= rj, i, j = 1, ..., k, i �= j, (3)

g2 : ri
i = 1, i = 1, ..., k, (4)

g3 : rT
i �= rT

j , i, j = 1, ..., k, (5)

where rT
i denotes the resin type of ri, and ri

i is a boolean variable indicating whether
resin ri is permitted to be used at position i.

A Multiobjective Evolutionary Optimization Framework 501

2. The demand constraint ensures that the annual amount of product manufactured P
is sufficient to satisfy the annual demand D, or g4 : P ≥ D.

3. Resin requirement constraints act on the column sizing variables and ensure that,
at each step i = 1, ..., k, there is sufficient resin volume Vi available to process
the mass of product Mi coming in from the previous unit operation. Formally, this
constraint can be defined as

g5 : Vi ≥ Mi

ri,DBC · κ
i = 1, ..., k, (6)

where Vi is computed according to Equation (2), ri,DBC is the DBC of the resin
used at step i, and 0 < κ ≤ 1 the maximum capacity utilization factor.

Manufacturing Uncertainties: Several uncertain factors arising in the manufacturing
process are captured by the framework: (i) product titre, (ii) chromatography step yields,
(iii) DBC, (iv) eluate volumes, (v) HCP log reduction, and (vi) initial HCP level. While
uncertainties in (i) and (vi) are due to fluctuations arising in USP, the other factors are
associated with the resins ri available for selection and sensitivity of operating condi-
tions. Uncertainties are modeled by associating each factor with a probability distribu-
tion (reflecting real-world variability) from which values are drawn at random during
Monte Carlo (MC) trials; the way the data resulting from the MC trials is processed by
the EMOA will be detailed in the next section.

Performance Metrics: Three objectives are considered to drive the search for cost-
efficient and reliable purification process yielding highly pure products:

1. The cost of goods per gram COG/g = C/P, where C is the sum of annual di-
rect costs (e.g. consumables and labor) and indirect costs (e.g. capital charge and
facility-related costs) and P the annual product output, represent the costs for man-
ufacturing a single gram of product and are to be minimized.

2. The robustness in COG/g, η, is defined here as the ratio

η =
σCOG/g

μCOG/g
=

√
1
N ∑N

j=1(COG/gj − μCOG/g)2

μCOG/g
, (7)

where N is the number of MC trials performed for a specific process so far, COG/gj

the COG/g value at MC trial j, and μCOG/g = 1
N ∑N

j=1 COG/gj. The smaller the
value of η, the less variation there is in COG/g in the presence of uncertainty.
Hence, the objective is to minimize η.

3. The probability of meeting purity requirements p(meeting required purity) is the
probability that a purification process reduces the HCP impurity level in a product
below a certain limit HCP∗. This probability is to be maximized and computed here
by

p(meeting required purity) =
1
N

N

∑
i=1

δi, where δi =

{
1 if HCPFinali < HCP∗

0 otherwise,
(8)

502 R. Allmendinger and S.S. Farid

where N is the number of MC trials performed, and HCPFinali the final HCP level
at MC trial i. The final HCP level is calculated here by HCPFinali = HCPinitial/
10∑k

i=1 ri,HCP , where ri,HCP is the HCP log reduction of resin ri.

All objectives are obtained by running the process economics model, which is based on
mass balance and cost equations as defined in [10]. Note, whilst COG/g is a standard
metric, the metrics, p(meeting required purity) and η, have not been considered in the
literature so far.

3 Experimental Setup

This section describes the case study, EMOA and its parameter settings as used in the
subsequent experimental analysis.
Case Study Setup: The case study was adopted from [3] and focuses on a single-
product mAb manufacturing facility that employs a process flowsheet as shown in Fig-
ure 1 with k = 3 chromatography steps. Assumed is an annual demand of D = 400kg,
a product titre of 3g/L, and a desired final HCP level of HCP∗ = 100ng/mg (which is
typical of final product specification limits for recombinant proteins). Two initial HCP
levels are investigated, HCPinitial = {105, 106}ng/mg.

A total of q = 10 resins, comprising around 125 different sequences, are available for
tuning the sequence of chromatography steps. For the characteristics of these resins, and
technical details of the manufacturing process and resource cost assumptions please re-
fer to [2]. Table 1 lists the uncertain parameters and their common levels of uncertainty
in the context of triangular probability distributions; i.e. a variation of x% corresponds
to the distribution Tr(x · (100 − x)/100, x, x · (100 + x)/100). The value range of
column sizing parameters is 15cm ≤ hi ≤ 25cm (11 values), 50cm ≤ di ≤ 200cm (10
values), nCYC,i ∈ {1, ..., 10}cm, nCOL,i ∈ {1, ..., 4}, i = 1, 2, 3; i.e. in total the search
space comprises (11 · 10 · 10 · 4)3 · 125 ≈ 10.5 · 1012 different purification processes.
The industrial platform employs a fixed and commonly used chroamtography step se-
quence, PrA L→CEX L→AEX, in combination with the sizing strategy (which is set
based on empirical rules) nCOL,i = 1, hi = 20cm, nCYC,i = 5, i = 1, 2, 3, with di being
adjusted such that the resulting total resin volume Vi (Equation (2)) satisfies the resin
requirement constraint (Equation (6)).
Evolutionary Multiobjective Optimization: The focus in this work is to understand
how EMO can be tuned to tackle the purification process design problem rather than
comparing different EMOAs. Hence, to guide the search, the popular NSGA-II [11]
is extended with methods for coping with the model uncertainties and constraints,
which are explained below. The algorithm uses binary tournament selection, uniform
crossover, and a mutation operator that selects a random value from the range of possi-
ble values.
Constraint-Handling Strategies: The chromatography sequence constraints (Equa-
tions (3) to (5)) are addressed by programming the sequence-related variables ri, i =
1, ..., k as a single variable S representing all feasible sequences. For population ini-
tialization, a sequence is selected at random from S. Crossover and mutation are ap-
plied directly on the variables ri but resulting infeasible offspring are repaired by se-
lecting a sequence from S that differs in as few steps i = 1, ..., k as possible from the

A Multiobjective Evolutionary Optimization Framework 503

Table 1. Probability distributions associated
with uncertain factors

Uncertain factor Variation (%)

Product titre 13.3
Chrom. step yields 5

DBC 10
Eluate volume 10

HCP logs 20
Initial HCP level 20

Table 2. Default parameter settings of the
EMOA

Parameter Setting

Population size μ 50
Per-variable mutation probability 1/l

Crossover probability 0.6
Number of generations G 50

Monte Carlo trials N 100

original sequence. Ties between equally close sequences are broken at random. The
demand constraint is circumvented by setting up USP such that there is a slight prod-
uct surplus. To cope with the resin requirement constraint (Equation (6)), a ‘repairing’
strategy is employed that iteratively increases the values of the column-sizing related
variables (associated with a particular chromatography step i), one variable at the time,
until sufficient resin is available (i.e. until Equation (6) is satisfied) or until the maxi-
mum value of a variable is reached, in which case the value of another variable is in-
creased. The sequence in which variables are modified affects the performance of the
optimizer as indicated in [3] for the single-objective case. The default sequence adopted
is di → nCYC,i → hi → nCOL,i, which performed best in [3], but alternative sequences
will be considered in the experimental study.
Uncertainty-Handling Strategy: Model uncertainties are accounted for by exposing
a manufacturing process to N MC trials with values of uncertain factors being drawn
at each trial from the probability distribution associated with the factors. The objective
values of a solution were then the averages of the different performance metrics across
the N trials, and these averages were updated if the same solution is evaluated multiple
times during the search.

The experimental study presents a sensitivity analysis of the performance metrics, and
investigates the robustness of the EMOA using the proposed framework. The default
settings of the EMOA are given in Table 2. To allow for fair comparison of processes
discovered by the EMOA, all processes present in the final population are evaluated
using 1000 MC trials. Any results shown are average results across 30 independent
algorithm runs.

4 Experimental Study

Sensitivity Analysis to Identify Global Drivers of Cost and Purity: Figure 3 uses
the idea of tornado plots to show the impact of several uncertain factors on COG/g
and the final HCP level HCPFinal. The boxplots have been created based on 10000
randomly generated, feasible and unique purification processes. For each process, plot-
ted is the overall maximal effect on the two metrics of the best and worst case setting
of the uncertain factors. It can be observed from the plots that generally the impact of
model parameters depends on the objective being optimized, and increasing the number
of parameters affects performance more significantly. There seems to be a symmetric

504 R. Allmendinger and S.S. Farid

DBC

Eluate
volume

Titre

Yield

Yield+titre+
El. vol.+DBC

−
20

−
10 0 10 20 30 40 50

Relative change in COG/g [%]

U
nc

er
ta

in
 p

ar
am

et
er

s

Max. positive
impact Max. negative

impact

+5% ri,Y −5% ri,Y

3.4g/L Titre 2.6g/L Titre

−10% ri,E +10% ri,E

+10% ri,DBC −10% ri,DBC

(a)

HCP level pre
purification

HCP logs

HCP level pre
purification +

HCP logs

0

20
00

40
00

60
00

U
nc

er
ta

in
 p

ar
am

et
er

s

Relative change in HCPFinal [%]

Max. positive impact Max. negative impact

+20% HCPLogs −20% HCPLogs

−20% HCP initial

(b)

Fig. 3. Tornado diagrams illustrating the overall maximal effects of best (left of zero) and worst
(right of zero) case settings of uncertain factors — DBC, elution volume, titre, and yield (bottom
four boxplots in (a)) and HCP log reductions and initial HCP level (bottom two boxplots in (b)),
and all four, respectively, two parameters at once (top boxplot) — on (a) COG/g and (b) final
HCP levels HCPFinal

positive and negative impact of the uncertain factors on the objective COG/g (Fig-
ure 3(a)). The step yield and titre are most sensitive to uncertainty as they have a di-
rect impact on the mass of product manufactured (and thus the denominator of the
metric COG/g). Uncertainties in initial HCP levels and HCP log reductions are the
only factors that affect the final HCP level HCPFinal (Figure 3(b)). The negative ef-
fect on HCPFinal is significantly greater than the positive effect because many of the
(randomly generated) purification processes are able to reduce the HCP level down to
HCPFinal ≈ 0 (though this might be associated with high COG/g), leaving limited
scope for further improvements. Note, a reduction in HCPFinal translates into an in-
crease in p(meeting required purity).
Tuning an EMOA to Cope with Uncertainty and Constraints: This section gives
a taste of how the discovery process of optimal purification processes can be affected
by the choice of algorithm parameter settings. Figure 4 uses the concept of (median)
attainment surfaces [12] to visualize the typical convergence behavior of the EMOA
(top left plot) and the performance impact on the EMOA by two algorithm settings,

A Multiobjective Evolutionary Optimization Framework 505

 1

 1.5

 2

 2.5

 3

 4 4.5 5 5.5

R
el

at
iv

e
C

O
G

/g

Sum of HCP log reductions ΣHCP LRV

g=1
g=5

g=25
g=50

(a)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 4 4.5 5 5.5

R
el

at
iv

e
C

O
G

/g

Sum of HCP log reductions ΣHCP LRV

g=5, deterministic env.
g=50, deterministic env.

g=5, stochastic env.
g=50, stochastic env.

(b)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 4 4.5 5 5.5

R
el

at
iv

e
C

O
G

/g

Sum of HCP log reductions ΣHCP LRV

g=5, di->nCYC,i->hi->nCOL,i
g=50, di->nCYC,i->hi->nCOL,i
g=5, nCOL,i->hi->nCYC,i->di

g=50, nCOL,i->hi->nCYC,i->di

(c)

Fig. 4. Median attainment surfaces (MASs) obtained by an EMOA optimizing COG/g and the
sum of HCP log reductions ∑HCP LRV = ∑k

i=1 ri,HCP. The plots show (a) the MASs at different
generations g with uncertainty, (b) MASs for different g obtained in a deterministic and stochastic
environment, and (c) the MASs for different g and repairing strategies with uncertainty. The
performance of the industrial platform is indicated by the dashed horizontal and vertical lines.

the number of MC trials N (top right plot) and the constraint-handling strategy (bottom
plot). In all three plots, the EMOA minimized the COG/g and the sum of HCP log
reductions ∑k

i=1 ri,HCP.
From Figure 4(a) it can be seen that the EMOA needs to be run for around g ≈ 25

generations to match and outperform the industrial platform. Comparing the conver-
gence speed and final solution quality obtained by the EMOA with and without un-
certainty (Figure 4(b)), it is apparent that uncertainty harms both aspects significantly.
Figure 4(c) shows that the constraint-handling strategy adopted is crucial too. In fact,
repairing according to the scheme di → nCYC,i → hi → nCOL,i yields best results as
increasing the column diameter di first is often sufficient to satisfy the resin requirement
constraint without sacrificing processing time significantly.
EMO Applied to all Three Objectives Subject to Uncertainty: Figure 5 uses
heatmaps to visualize the trade-off between all three objectives for two HCP levels
HCPinitial = 105ng/mg (Figure 5(a)) and 106ng/mg (Figure 5(b)). Several trade-offs
can be observed from the plots: (i) the range of the metric p(meeting required purity) in-
creases with the initial HCP level, (ii) the COG/gincreases as p(meetingrequired purity)
increases and/or η decreases, and (iii) an improvement in the robustness η is achieved by
adopting smaller column dimensions (supporting figure not shown here). The heatmaps
can also be exploited to make design decisions. For example, assume that the goal of a

506 R. Allmendinger and S.S. Farid

Low initial HCP level (HCPintial=105ng/mg)

 4.5 5 5.5 6 6.5

Robustness in COG/g, η

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

p(
m

ee
tin

g
re

qu
ir

ed
 p

ur
ity

)

0.95

0.97

0.9

1.01

1.03

1.05

1.07

1.09

1.11

R
el

at
iv

e
C

O
G

/g

CEX H-MM-AEX
CEX H-AEX-MM

PrA g H-AEX-CEX L

PrA g H-CEX L-AEX
CEX H-MM-HIC

CEX H-PrA g H-AEX

(a)

High initial HCP level (HCPintial=106ng/mg)

 4.5 5 5.5 6 6.5

Robustness in COG/g, η

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

p(
m

ee
tin

g
re

qu
ir

ed
 p

ur
ity

)

0.96

0.97

0.98

0.9

1

1.01

1.02

1.03

R
el

at
iv

e
C

O
G

/g

A

CEX H-MM-AEX
PrA g H-AEX-CEX L
PrA g H-CEX L-AEX

PrA L-MM-AEX

PrA g H-MM-AEX
PrA g H-MM-CEX L
PrA g H-CEX L-MM

(b)

Fig. 5. (Pareto) optimal purification processes discovered by an EMOA optimizing three objec-
tives, COG/g, p(meeting required purity), and η, for two different HCP levels HCPinitial =
105ng/mg (a) and 106ng/mg (b). The performance of the industrial platform is indicated by the
big white square in each plot. The response surface was generated by interpolating the processes’
objective values using the Kriging function, Krig(), from the fields package of the statistical soft-
ware R.

manufacturer is to establish a process with p(meeting required purity) > 0.9%. Whilst
in this case there is no incentive to deviate from the industrial platfrom from the per-
spective of COG/g and p(meeting required purity) for a low initial HCP level, a dif-
ferent sequence is needed for a high initial HCP level. For instance, the sequence PrAg
H→MM→AEX, as indicated by the letter A in Figure 5(b), meets the purity requirements
without increasing the COG/g significantly.

5 Summary and Conclusion

Presented was a framework for designing cost-efficient and robust chromatographic
purification process that yield pure biopharmaceuticals. The framework comprised a
process economics model and an EMOA, which optimized the sequence of chromatog-
raphy steps and column sizing strategies with respect to multiple objectives and subject
to uncertainty. Validating the framework on an industrially-relevant case study revealed
that the performance impact of an uncertain factor depends on the objective being op-
timized. This knowledge can be used e.g. to diagnose which process parameters need a
tighter control. Furthermore, the framework was able to discover purification processes
that outperform the industrial platform, and revealed interesting trade-offs between ob-
jectives that can facilitate the design of purification process. Future research will look
at extending the framework to cover additional design choices and investigate more
efficient uncertainty-handling strategies.

References

1. Kelley, B.: Industrialization of mab production technology: The bioprocessing industry at a
crossroads. mAbs 1, 443–452 (2009)

2. Simaria, A.S., Turner, R., Farid, S.S.: A multi-level meta-heuristic algorithm for the opti-
misation of antibody purification processes. Biochemical Engineering Journal 69, 144–154
(2012)

A Multiobjective Evolutionary Optimization Framework 507

3. Allmendinger, R., Simaria, A.S., Turner, R., Farid, S.S.: Closed-loop optimization of chro-
matography column sizing strategies in biopharmaceutical manufacture. Journal of Chemical
Technology and Biotechnology (2013), doi:10.1002/jctb.4267

4. Chen, J., Tetrault, J., Zhang, Y., Wasserman, A., Conley, G., DiLeo, M., Haimes, E., Nixon,
A.E., Ley, A.: The distinctive separation attributes of mixed-mode resins and their applica-
tion in monoclonal antibody downstream purification process. Journal of Chromatography
A 1217(2), 216–224 (2010)

5. Treier, K., Berg, A., Diederich, P., Lang, K., Osberghaus, A., Dismer, F., Hubbuch, J.: Ex-
amination of a genetic algorithm for the application in high-throughput downstream process
development. Biotechnology Journal 7, 1203–1215 (2012)

6. Rathore, A.S.: Resin screening to optimize chromatographic separations. LC–GC 19(6),
616–622 (2001)

7. Liu, S., Simaria, A.S., Farid, S.S., Papageorgiou, L.G.: Designing cost-effective bio-
pharmaceutical facilities using mixed-integer optimization. Biotechnology Progress 29(6),
1472–1483 (2013)

8. Stonier, A., Smith, M., Hutchinson, N., Farid, S.S.: Dynamic simulation framework for de-
sign of lean biopharmaceutical manufacturing operations. Computer Aided Chemical Engi-
neering 26, 1069–1073 (2009)

9. Nfor, B.K., Zuluaga, D.S., Verheijen, P.J.T., Verhaert, P.D.E.M., van der Wielen, L.A.M., Ot-
tens, M.: Model-based rational strategy for chromatographic resin selection. Biotechnology
Progress 27(6), 1629–1643 (2001)

10. Farid, S.S., Washbrook, J., Titchener-Hooker, N.J.: Modelling biopharmaceutical manufac-
ture: Design and implementation of SimBiopharma. Computers & Chemical Engineering 31,
1141–1158 (2007)

11. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

12. Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic
multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P.
(eds.) PPSN IV. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)

Automatic Design of Evolutionary Algorithms

for Multi-Objective Combinatorial Optimization

Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
{lteonaci,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Multi-objective evolutionary algorithms (MOEAs) have been
the subject of a large research effort over the past two decades. Tradition-
ally, theseMOEAs have been seen as monolithic units, and their study was
focused on comparing them as blackboxes. More recently, a component-
wise view of MOEAs has emerged, with flexible frameworks combining
algorithmic components from different MOEAs. The number of available
algorithmic components is large, though, and an algorithm designer work-
ing on a specific application cannot analyze all possible combinations. In
this paper, we investigate the automatic design of MOEAs, extending pre-
vious work on other multi-objective metaheuristics. We conduct our tests
on four variants of the permutation flowshop problem that differ on the
number and nature of the objectives they consider.Moreover, given the dif-
ferent characteristics of the variants, we also investigate the performance
of an automatic MOEA designed for the multi-objective PFSP in general.
Our results show that the automatically designed MOEAs are able to out-
perform six traditional MOEAs, confirming the importance and efficiency
of this design methodology.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are the most studied meta-
heuristics for solving multi-objective optimization problems and a large number
of MOEAs have been proposed in the past two decades [1,2,8,10,21,22]. A few
surveys of the field have been conducted [19,24] and competitions have been held
to identify the best MOEA for particular benchmarks [20]. These works study
MOEAs as monolithic units and provide insights on which particular MOEAs are
state of the art for specific problems, giving a baseline for future developments.
More recently, a component-wise view of MOEAs has drawn the attention of the
MOEA community [5,13]. “Deconstructed” MOEAs actually differ by a few main
algorithmic components, which can be individually analyzed to assess their ac-
tual contribution to the overall efficiency of the algorithm. This component-wise
view has been recently strengthened by the development of flexible algorithmic
frameworks [11, 13], where novel MOEAs can be devised combining existing al-
gorithmic components. However, the potential of such approach remains unclear
as the number of possible combinations is extremely large to be fully explored.

In a parallel research trend, the automatic design of multi-objective optimiz-
ers has produced several state-of-the-art algorithms [3,9,16]. This methodology

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 508–517, 2014.
c© Springer International Publishing Switzerland 2014

Automatic Design of Evolutionary Algorithms 509

consists of applying automatic offline parameter configuration tools (tuners, for
short) to flexible algorithmic frameworks, such as the ones recently proposed for
MOEAs. By doing so, the parameter space searched by the tuner is actually a
space of different algorithms, which allows the analysis and comparison of several
novel algorithms at a time. The final configuration selected by the tuner is not
necessarily the best possible algorithm as the configuration space is not searched
exhaustively, but it is usually a high-performing one. In this work, we investi-
gate the efficiency of the automatic algorithm design methodology for creating
MOEAs for combinatorial optimization problems. We use four different variants
of the permutation flowshop problem (PSFP) as test benchmarks. These variants
combine, in different ways, the most relevant optimization criteria for the PFSP,
namely makespan (Cmax), total flow time (TFT), and total tardiness (TT).

In a first step, we present the framework we use for this work, which com-
bines components from ParadisEO-MOEO [13], PISA [7], and PaGMO [6]. Par-
ticularly, some of the MOEAs from the literature cannot be easily represented
just by the combination of a fitness and a diversity component as proposed in
ParadisEO-MOEO. Instead, following [23], we use a more general preference
relation, defined as a combination of a set-partitioning criterion, a quality in-
dicator and a diversity measure. Second, although some MOEAs claim to use
an external archive, this archive is used during the evolutionary search process,
either for mating or selection. In our implementation, we allow MOEAs to use
two archives at a time: an internal one, which can replace the population of the
algorithm; and an external one, which is only used for building the final ap-
proximation front. Finally, our implementation incorporates elements from new
MOEAs, such as sequential versus one-shot removal of solutions [1], quality in
terms of hypervolume contribution [1, 2], and adaptive-grid diversity [12].

In a second step, we generate five automatically designed MOEAs
(AutoMOEAs): one for each of thePFSPvariants consideredhere, and an extra one
for solving all variants (AutoMOEAPFSP). Since related works have shown these
variants present different search space characteristics [5, 9], it is important to un-
derstand whether (i) the automatic design methodology can produce a single opti-
mizer that performs better than the others for all variants, or; (ii) the best strategy
is to have anAutoMOEAtailored for each variant.We then conduct an experimen-
tal analysis on a PFSP variant basis. For each PFSP variant, we (i) compare the
structure of the variant-specificAutoMOEAtoAutoMOEAPFSP; and (ii) compare
their performance to six traditional MOEAs. Results show that the AutoMOEAs
are often able to outperform the traditional MOEAs. Although the more general
AutoMOEAPFSP reaches better results than the traditional MOEAs, the variant-
specific AutoMOEAs performbetter inmost scenarios, reinforcing the need for the
automatic algorithm design methodology.

2 A Framework for Instantiating MOEAs

A summary of the components that differentiate most current MOEA algorithms
is given in Table 1. The most important components are (i) the mating selec-
tion (Mating), and (ii) the environmental selection or truncation (Replacement).

510 L.C.T. Bezerra, M. López-Ibáñez ,and T. Stützle

Table 1. Algorithmic components of the MOEA framework used

Component Domain Description

μ N+ Population size

μ0 [0.1, 1] ⊂ R Num. of initial solutions is μ · μ0

λ N+ Number of offspring

pop { fixed-size, bounded } Population type

popext { none, bounded, unbounded } External archive type

Next N+ popext size, if popext type = bounded

Selection

⎧⎪⎨⎪⎩
random
deterministic tournament
stochastic tournament

Mating selection operator

Removal

{
sequential
one shot

Population replacement policy

Set-partitioning

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

none
dominance rank
dominance strength
dominance depth
dominance depth-rank

Quality indicator

⎧⎪⎪⎪⎨⎪⎪⎪⎩
none
binary indicator (ε or hypervolume) (IBEA)
hypervolume contribution (SMS-EMOA)
h-hypervolume contribution (HypE)

Diversity

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

none
niche sharing
k-th nearest neighbor
crowding distance
adaptive grid (PAES)

Traditionally, mating and replacement have been defined as compositions of a
fitness component, designed to favor convergence, and a diversity component,
meant to keep the population spread across the objective space. Following Zitzler
et al. [23], we consider general preference relations comprising three lower-level
components: (i) a set-partitioning relation, which partitions a set of solutions in
a manner consistent with Pareto dominance but cannot discriminate between
nondominated solutions; (ii) a quality indicator, which assigns a quality value to
solutions in a manner that does not contradict Pareto dominance (often used as
a refinement of the partitions); and (iii) a diversity metric, which does not need
to be consistent with Pareto dominance. All the options implemented for these
low-level components are shown in Table 1.

We define the Mating component as being composed of a preference relation
and a selection method. The selection method may be any of the traditional
methods in EAs: random, tournament, etc. Conversely, component Replacement
is composed of a preference relation and a removal policy. The latter may be
either sequential [15] (also called iterative [1]), i.e., one individual/solution is
removed at a time and preference relations are re-computed before the next is
discarded; or one-shot, i.e., preference relations are computed once and the worst
solutions are removed altogether [1].

Automatic Design of Evolutionary Algorithms 511

Table 2. Instantiation of MOEAs using our framework. Other components are param-
eters except pop = fixed-size and popext = none. SMS-EMOA uses λ = 1 by design.

Mating Replacement

Algorithm SetPart Quality Diversity Selection SetPart Quality Diversity Removal

MOGA [10] rank — sharing det. tour. rank — sharing one-shot

NSGA-II [8] depth — crowding det. tour. depth — crowding one-shot

SPEA2 [22] strength — k-NN det. tour. strength — k-NN sequential

IBEA [21] — bin. ind. — det. tour. — bin. ind. — sequential

SMS-EMOA [2] — — — random depth hyperv. — —rank contrib.

HypE [1] — h-hyperv. — det. tour. depth h-hyperv. — sequentialcontrib. contrib

Table 3. Parameter space for tuning the numerical parameters of all MOEAs

Parameter μ λ pC pmut pX

Domain {10, 20, . . . , 100} 1 or λr · μ [0, 1] [0, 1] [0, 1]
λr ∈ [0.1, 2]

Algorithm IBEA MOGA SPEA2

Parameter indicator σshare k
Domain {Iε, I−H} [0.1, 1] {1, . . . , 9}

Besides the components explained above, populations and archives also need
to be highlighted. Traditionally, a population is a set of individuals (dominated
and nondominated alike) that are subject to the evolutionary process. As dis-
cussed elsewhere [19], an archive can be seen as a generalized population that
may (i) keep only nondominated solutions and/or (ii) have unlimited capacity.
In this work, we implement an internal archive pop (in place of the popula-
tion), as well as an external archive popext, which does not interfere with the
evolutionary process. Concretely, if pop is set to fixed-size, it behaves like a
regular population. If it is set to bounded, it behaves like an internal archive,
accepting only nondominated solutions until its maximum capacity is reached.
At this point, a replacement is carried out. By using this flexible implementa-
tion, we are able to instantiate algorithms such as SPEA2, which were origi-
nally described with an external archive that interferes in the evolutionary pro-
cess. Concerning the external archive as implemented in this work, a MOEA
may choose (i) not to use it (popext = none), (ii) to use it without capacity
constraints (popext = unbounded), or (iii) to use it with a maximum capacity
Next (popext = bounded). In the latter case, an additional replacement compo-
nent ReplacementExt needs to be defined, similar to the replacement component
used by the internal archive. Moreover, in the case of pop = bounded , we add a
numerical parameter μ0 that determines the number of initial solutions as μ ·μ0.

As shown in Table 2, by selecting the corresponding components for each al-
gorithm, we can instantiate at least six well-known MOEAs from the literature.
Particularly, SMS-EMOA and HypE use slightly different definitions of hyper-
volume contribution, and the definition used by HypE is further parametrized
by a parameter h (k in the original paper [1]). SPEA2 uses a pre-defined formula
for computing its k parameter value. Here, we implement both the formula and
an option for manual input of k, i.e., k becomes a numerical parameter.

512 L.C.T. Bezerra, M. López-Ibáñez ,and T. Stützle

Table 4. The MOEAs are sorted according to their sum of ranks (in parenthesis)

Cmax AutoMOEA AutoMOEA IBEA NSGA-II SPEA2 HypE MOGA SMS
TFT PFSP (249) Cmax-TFT (302) (398) (472) (479) (585) (687) (788)

Cmax AutoMOEA AutoMOEA NSGA-II SPEA2 IBEA HypE SMS MOGA
TT Cmax-TT (209) PFSP (253) (357) (464) (547) (574) (770) (786)

TFT MOGA IBEA AutoMOEA HypE NSGA-II AutoMOEA SPEA2 SMS
TT (304) (371) TFT-TT (475) (499) (499) PFSP (553) (615) (644)

Cmax AutoMOEA AutoMOEA IBEA SPEA2 HypE NSGA-II SMS MOGA
TFT-TT (161) PFSP (251) (417) (525) (528) (541) (735) (802)

3 Experimental Setup

We consider the six standard MOEAs in Table 2 and we compare them with
the novel, automatically designed MOEAs instantiated using this framework for
the multi-objective PFSP variants. Our goal is to identify good combinations
of such components, specially if they differ from (and are better than) existing
combinations used by standard MOEAs.

We use irace [14] as tuner, adapting it to multi-objective optimization by us-
ing the hypervolume quality measure [16]. For computing the hypervolume, we
normalize the objective values to the range [1, 2] using the maximum and mini-
mum ever found per problem, and use (2.1, 2.1) and (2.1, 2.1, 2.1), respectively,
as reference points for the bi- and tri-objective variants. We set a budget of 5 000
runs for each tuning in order to design each variant-specific AutoMOEA. Since
AutoMOEAPFSP needs to see four times more instances than the variant-specific
AutoMOEAs, we give it a tuning budget of 20 000 runs. Moreover, since the tra-
ditional MOEAs do not present default values for an application to the PFSP,
we tune their numerical parameters using the same budget given to the variant-
specific AutoMOEAs (5 000 runs per MOEA per variant per tuning). The pa-
rameter space used for the numerical parameters is the same for all MOEAs (Ta-
ble 3). Following [5], all MOEAs use random initial solutions, unbounded exter-
nal archives, two-point crossover and two problem-specific mutation operators,
namely insert and exchange. In Table 3, pmut stands for the probability of ap-
plying mutation to a given individual, while pX is the probability of using the
exchange operator if the first test is successful (1−pX for the insertion operator).

To ensure that our results are not affected by overtuning, we use two indepen-
dent benchmark sets for testing and tuning. The tuning benchmark set contains
the instances with 20 machines from the tuning benchmark set proposed by [9].
The testing benchmark set is an adaptation of the benchmark set proposed by
Taillard [18], following what is traditionally done in the multi-objective PFSP
literature [9, 17]. Once the algorithms are tuned, we run them 10 times on each
test instance, compute the average hypervolume, and compare the results using
rank sum analysis and parallel coordinate plots. Experiments are run on a single
core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB of cache size un-
der Cluster Rocks Linux version 6.0/CentOS 6.3. For brevity, few representative
results are given here. The complete list of results is provided as supplementary
material [4], as well as the parameter settings used by irace.

Automatic Design of Evolutionary Algorithms 513

T
a
b
le

5
.
P
ar
am

et
er
s
se
le
ct
ed

by
ir
ac
e

fo
r
A
ut
oM

O
E
A

C
m
ax
-T

F
T
,
A
ut
oM

O
E
A

C
m
ax
-T

T
,
A
ut
oM

O
E
A

T
F
T
-T

T
,
A
ut
oM

O
E
A

C
m
ax
-T

F
T
-T

T
,
an

d
A
ut
oM

O
E
A

P
F
S
P
,
re
sp

ec
ti
ve
ly
.
A
ll
A
ut
oM

O
E
A
s
us
e
p
o
p
=

bo
u
n
d
ed
.

C
m
ax
-T

F
T

M
at
in
g

R
ep

la
ce
m
en

t
N
um

er
ic
al

P
a
ra

m
e
te

r
S
el
ec
ti
o
n

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

R
em

o
va
l

μ
μ
0

λ
r

p
c

p
m

u
t

p
X

V
a
lu
e

de
t.

to
ur
.
(2
)

ra
nk

hy
p.

co
nt
r.

cr
ow

di
ng

de
pt
h

bi
n.

in
d.

(I
ε
)

cr
ow

di
ng

on
e-
sh
ot

80
0.
3

1.
5

0.
38

0.
82

0.
71

C
m
ax
-T

T
M
at
in
g

R
ep

la
ce
m
en

t
N
um

er
ic
al

P
a
ra

m
e
te

r
S
el
ec
ti
o
n

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

R
em

o
va
l

μ
μ
0

λ
r

p
c

p
m

u
t

p
X

V
a
lu
e

ra
nd

om
—

—
—

—
h
-h
yp

.
co
nt
r.

cr
ow

di
ng

on
e-
sh
ot

30
0.
94

1.
63

0.
34

0.
95

0.
81

T
F
T
-T

T
M
at
in
g

R
ep

la
ce
m
en

t
N
um

er
ic
al

P
a
ra

m
e
te

r
S
el
ec
ti
o
n

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

R
em

o
va
l

μ
μ
0

λ
r

p
c

p
m

u
t

p
X

V
a
lu
e

st
oc
h.

to
ur
.
(0
.9
)

—
—

cr
ow

di
ng

co
un

t
bi
n.

in
d.

(I
ε
)

sh
ar
in
g
(0
.8
7)

se
qu

en
ti
al

70
0.
94

1.
47

0.
77

0.
99

0.
63

C
m
ax
-T

F
T
-T

T
M
at
in
g

R
ep

la
ce
m
en

t
N
um

er
ic
al

P
a
ra

m
e
te

r
S
el
ec
ti
o
n

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

R
em

o
va
l

μ
μ
0

λ
r

p
c

p
m

u
t

p
X

V
a
lu
e

de
t.

to
ur
.
(2
)

ra
nk

—
cr
ow

di
ng

—
h
-h
yp

.
co
nt
r.

cr
ow

di
ng

on
e-
sh
ot

40
0.
26

1.
68

0.
36

0.
85

0.
74

P
F
S
P

M
at
in
g

R
ep

la
ce
m
en

t
N
um

er
ic
al

P
a
ra

m
e
te

r
S
el
ec
ti
o
n

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

S
et
P
ar
t

Q
u
al
it
y

D
iv
er
si
ty

R
em

o
va
l

μ
μ
0

λ
r

p
c

p
m

u
t

p
X

V
a
lu
e

ra
nd

om
—

—
—

—
h
-h
yp

.
co
nt
r.

—
on

e-
sh
ot

60
0.
73

1.
53

0.
17

0.
76

0.
40

514 L.C.T. Bezerra, M. López-Ibáñez ,and T. Stützle

4 Results and Discussion

As shown in Table 5, the structures of AutoMOEACmax-TFT and AutoMOEAPFSP

differ substantially. AutoMOEACmax-TFT combines components from almost all
specific known MOEAs that built the basis for the algorithmic components in-
cluded in the framework. Its mating preference relation joins components from
MOGA (dominance rank), SMS-EMOA (hypervolume contribution), and NSGA-
II (crowding distance). The replacement preference relation is a combination of
the components from NSGA-II and IBEA. Interestingly, this very heterogeneous
MOEA is able to outperform all traditional MOEAs on many of the tested in-
stances. In fact, it is only outperformed by AutoMOEAPFSP. The structure of
AutoMOEAPFSP is radically simpler. The mating selection is performed ran-
domly, so no preference relation is required. For replacement, only the shared
hypervolume contribution proposed for HypE is used. However, the one-shot
removal policy is adopted, most likely to cope with the computational over-
head for the three-objective variant. Despite its relatively simple structure,
AutoMOEAPFSP outperforms, in the Cmax-TFT problem variant, all MOEAs
considered, including AutoMOEACmax-TFT.

The similarity of the structures of AutoMOEACmax-TT and AutoMOEAPFSP

is remarkable. In fact, the only significant differences between these two al-
gorithms lie in the addition of the crowding distance diversity operator in
AutoMOEACmax-TT and the population size, which in AutoMOEACmax-TT is
half the size used by AutoMOEAPFSP. These small differences are reflected on
the similar rank sums they achieve. This time, however, the variant-specific
AutoMOEACmax-TT outperforms the general AutoMOEAPFSP for several in-
stances. Both algorithms obtain better hypervolume values for almost all test
instances in comparison to the traditional MOEAs.

For the TFT-TT variant, results reflect the peculiarity of the problem’s struc-
ture. For this variant, the number of nondominated solutions decreases as the
problem size increases. This is confirmed by the fact that many algorithms ap-
plied to this variant tend to find a single solution for the larger instances. Having
this mixed nature, the design of AutoMOEATFT-TT is unable to outperform some
algorithms across the whole benchmark. In fact, MOGA is the only algorithm
to perform well in the instances with few nondominated solutions. We suspect
this unexpectedly good performance of MOGA can be explained by its capac-
ity to establish and maintain niches, an effective strategy for single-objective
EAs. Given the peculiarities of this variant, the high rank sum achieved by
AutoMOEAPFSP confirms that using general-purpose designed algorithms may
eventually present sub-optimal performance, and that using a variant-specific
design one can overcome to some extent this type of drawbacks.

This mixed characteristics of this variant are shown in the parallel coordinate
plots depicted in Fig. 1. For the “multi-objective” instances like the ones with 50
jobs and 20 machines (top), AutoMOEA often performs best. However, for the
“single-objective” ones, like the ones with 200 jobs and 20 machines (bottom),
all algorithms perform clearly worse than MOGA. To verify whether we could
automatically generate an AutoMOEA as good as MOGA for this problem,

Automatic Design of Evolutionary Algorithms 515

●

●

●

●

●

●

●

●

●

●

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

0.228

0.948

●

●
●

●

●

●

●

●

●

●

●

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

0.0304

0.7943

● AutoMOEA AutoPFSP HypE IBEA MOGA NSGA−II SMS−EMOA SPEA2

Fig. 1. MOEA’s average hypervolume on 10 instances of Cmax-TFT. Top: 50 jobs and
20 machines. Bottom: 200 jobs and 20 machines. Each vertical line depicts one instance.

we ran irace again under a different setup. First, we added the generational
removal policy from MOGA, which we had excluded from the parameter space in
an early development stage because of the evidence favoring elitism throughout
the MO literature. Second, we added the configuration of MOGA as an initial
candidate for irace. However, this candidate was discarded in the first iteration,
and the final configuration was very similar to the one presented here. This could
also be explained by possible differences in the training and test sets.

To conclude, the structure of AutoMOEACmax-TFT-TT combines elements from
AutoMOEACmax-TFT (mating) and AutoMOEACmax-TT (replacement), which was
expected since these components proved to be effective for these objectives. In-
terestingly, only the replacement hypervolume-based component is maintained.
This is likely explained by the computational overhead that the hypervolume-
based components introduce, particularly for three-objective scenarios. Concern-
ing the performance of this AutoMOEA, the rank sum depicted in Table 4 shows
that this AutoMOEA achieves hypervolumes that are better over almost all test
instances considered. AutoMOEAPFSP ranks second, confirming that it is a flex-
ible but effective algorithm.

516 L.C.T. Bezerra, M. López-Ibáñez ,and T. Stützle

5 Conclusions

In this paper, we have investigated the automatic design of multi-objective evo-
lutionary algorithms (MOEAs). We used an extended framework that combines
components from ParadisEO-MOEO, PISA, and PaGMO to deal with four dif-
ferent variants of the permutation flowshop problem (PFSP). We have used irace,
an offline algorithm configuration tool, to automatically select the components
that were more effective for each PFSP variant, thus producing novel MOEAs.
These automatically designed MOEAs (AutoMOEAs) have outperformed the
traditional MOEAs on all variants considered, confirming that novel combina-
tions of existing MOEAs can lead to much improvement on the state-of-the-art,
and reinforcing the need for research works on automatic algorithm design.

The analysis conducted here has reached its two main goals. The first was
to assess whether the state of the art of MOEAs could be improved (and by
how much) by using an automatic algorithm design methodology. The results
shown here confirm that improvements can be achieved in the context of combi-
natorial optimization, particularly for the PFSP. The second was to investigate
whether a single AutoMOEA could potentially outperform the variant-taylored
AutoMOEAs, given that the variants present different search space character-
istics. In terms of its structure, AutoMOEAPFSP is a simple yet flexible and
efficient algorithm. Concerning performance, the more general version outper-
forms the variant-specific AutoMOEA for the Cmax-TFT variant, but it is unable
to match the performance of the other variant-specific AutoMOEAs. However,
AutoMOEAPFSP often outperforms the other MOEAs considered in this work.

Finally, the results presented here are preliminary. More experimental analy-
sis, ranging from combinatorial to continuous, would be required to assess the full
potential of the automatic design of MOEAs. Nonetheless, these initial results
suggest that our approach is not only feasible but that it may give significant
insights about the role various algorithmic components of MOEAs play and lead
to completely new MOEA designs that have never been tested or considered pre-
viously. Moreover, deeper analysis on individual components and reasons for the
high performance of the automatically designed configurations are an important
open research question.

References

1. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic generation of multi-
objective ACO algorithms for the biobjective knapsack problem. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle,
T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012)

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic design of evolutionary
algorithms for multi-objective combinatorial optimization: Supplementary material
(2014), http://iridia.ulb.ac.be/supp/IridiaSupp2014-007/

http://iridia.ulb.ac.be/supp/IridiaSupp2014-007/

Automatic Design of Evolutionary Algorithms 517

5. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Deconstructing multi-objective evo-
lutionary algorithms: An iterative analysis on the permutation flowshop. In: Parda-
los, P., et al. (eds.) LION 8. LNCS. Springer (2014)

6. Biscani, F., Izzo, D., Yam, C.H.: A global optimisation toolbox for massively par-
allel engineering optimisation (2010), http://arxiv.org/abs/1004.3824

7. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and pro-
gramming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

9. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

10. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Forrest, S. (ed.) ICGA, pp. 416–423.
Morgan Kaufmann Publishers (1993)

11. Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. Journal of Machine Learn-
ing Research 9, 993–996 (2008)

12. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

13. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a con-
ceptual unified model for evolutionary multiobjective optimization: ParadisEO-
MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)

14. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package,
iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

15. López-Ibáñez, M., Knowles, J., Laumanns, M.: On sequential online archiving of
objective vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.)
EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011)

16. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

17. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on Comput-
ing 20(3), 451–471 (2008)

18. Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

19. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithms: An-
alyzing the state-of-the-art. Evolutionary Computation 8(2), 125–147 (2000)

20. Zhang, Q., Suganthan, P.N.: Special session on performance assessment of multi-
objective optimization algorithms/CEC 2009 MOEA competition (2009)

21. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al.
(eds.) EUROGEN 2001, pp. 95–100. CIMNE, Barcelona (2002)

23. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE
Trans. Evol. Comput. 14(1), 58–79 (2010)

24. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

http://arxiv.org/abs/1004.3824

Generic Postprocessing via Subset Selection

for Hypervolume and Epsilon-Indicator�

Karl Bringmann1, Tobias Friedrich2, and Patrick Klitzke3

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Friedrich-Schiller-Universität Jena, Jena, Germany
3 Universität des Saarlandes, Saarbrücken, Germany

Abstract. Most biobjective evolutionary algorithms maintain a popula-
tion of fixed size μ and return the final population at termination. During
the optimization process many solutions are considered, but most are dis-
carded. We present two generic postprocessing algorithms which utilize
the archive of all non-dominated solutions evaluated during the search.
We choose the best μ solutions from the archive such that the hypervol-
ume or ε-indicator is maximized. This postprocessing costs no additional
fitness function evaluations and has negligible runtime compared to most
EMOAs.

We experimentally examine our postprocessing for four standard al-
gorithms (NSGA-II, SPEA2, SMS-EMOA, IBEA) on ten standard test
functions (DTLZ 1–2,7, ZDT 1–3, WFG 3–6) and measure the average
quality improvement. The median decrease of the distance to the optimal
ε-indicator is 95%, the median decrease of the distance to the optimal hy-
pervolume value is 86%. We observe similar performance on a real-world
problem (wind turbine placement).

1 Introduction

Biobjective optimization aims at minimizing (or maximizing) a two-dimensional
fitness function f : X → R2. As the two objectives f1 and f2 are typically con-
tradicting, the outcome of the optimization is a set of incomparable solutions
describing a Pareto front. Multiobjective evolutionary algorithms (MOEA) typ-
ically maintain a set of solutions called population during the optimization. The
simplest MOEAs (like SEMO [13, 15, 16]) keep all non-dominated solutions in
the population. As the Pareto front of a biobjective fitness function can be ex-
ponential in the input size [11], this results in exponential runtimes of SEMO for
such fitness functions [7, 14]. More advanced MOEAs therefore avoid keeping all
non-dominated solutions in the population and assume some upper limit on the
size of the population.
� The research leading to these results has received funding from the Australian Re-
search Council (ARC) under grant agreement DP140103400 and from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no
618091 (SAGE). K.B. is a recipient of the Google Europe Fellowship in Randomized
Algorithms, and this research is supported in part by this Google Fellowship.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 518–527, 2014.
c© Springer International Publishing Switzerland 2014

Generic Postprocessing via Subset Selection 519

With a population of fixed maximum size, MOEAs have to decide in each step
which solutions to keep in the population and which solutions to remove. This
can be done based on various measures like the hypervolume contribution [24],
ε-approximation, crowding distance, or many others. Independent of the specific
measure, the archiving algorithm of a MOEA has to solve an online problem: It
has do decide which solutions to remove without knowing what new solutions
will be generated in the future. While the MOEA has to decide ‘online’ which
solutions to keep, an ‘offline’ algorithm would have access to all points generated
during the optimization process and would just choose the best set from this
archive. It is known that a MOEA which in each iteration keeps these μ solutions
in the population that maximize the hypervolume, can still only reach a final
hypervolume which is a factor μ smaller than achieved by the optimal choice of
μ solutions from the whole archive (in the worst case) [3].

This shows that MOEAs potentially lose a lot of information by dropping
solutions during the optimization. We suggest to make best use of the accumu-
lated information by collecting all search points seen during the optimization
in an archive. After the MOEA has stopped, we suggest to do a postprocess-
ing that selects the best subset (of size μ) from the whole archive. This costs
no additional fitness evaluations and should not reduce the quality of the re-
ported final population. Depending on the ultimate aim of the optimization,
the problem solved by this postprocessing is known as the Hypervolume Subset
Selection Problem (hypSSP) [1, 6, 17] or ε-Indicator Subset Selection Problem
(epsSSP) [6, 19, 21]. Until recently the best known runtimes for these subset
selection problems were quadratic in the archive size n. As a single run of a
MOEA can easily produce n = 105 or more non-dominated search points, a
runtime of O(n2) is prohibitively large. The postprocessing therefore only be-
comes tractable due to two recently published quasi-linear algorithms by the
authors [6], specifically, an algorithm for hypSSP with runtime O(n (μ+ logn))
and one for epsSSP with runtime O(n logn).

In this paper, we are going to investigate the effect of these two postprocessing
algorithms for four standard algorithms on 10 common multi-objective optimiza-
tion test functions and one real-world problem of optimizing the placement of
wind turbines [20, 22].
Quality Measures. There are several ways to measure the quality of solution
sets. We focus on two measures. Our first metric is the hypervolume indicator.
It measures the volume of the objective space dominated by the set of solutions
relative to a reference point. Its main disadvantage is its high computational
complexity in higher dimensions [2, 4]. Our second metric is the ε-indicator.
For measuring how well a set P approximates another set R, the (additive) ε-
indicator returns the minimal ε by which we have to increase all points in P
in all coordinates so that every point in R is dominated by some point in P .
The disadvantage of this notion is that its computation requires knowing the
Pareto front, as we would like to plug in the Pareto front for R. In contrast to
the hypervolume indicator, it can therefore not directly be used to guide the
search [5].

520 K. Bringmann, T. Friedrich, and P. Klitzke

2 Preliminaries

We consider biobjective minimization problems, where a vector-valued function
f = (f1, f2) : X → R2 is minimized with respect to the weak Pareto dominance
relation). We will mainly work in the objective space f(X) and say that a point
p = (p1, p2) ∈ R2 weakly dominates another point q = (q1, q2) ∈ R2 (denoted as
p) q) iff p1 ≤ q1 and p2 ≤ q2. The aim of most MOEAs is to approximate the
Pareto front F = {f(x) | x ∈ X : �y ∈ X : f(y)) f(x) ∧ f(x) �) f(y)}.
Hypervolume Indicator. For a set of points P ⊂ R2, the hypervolume indi-
cator is defined as the volume of the set of points that are weakly dominated
by solutions in P and at the same time weakly dominate a given reference point
r ∈ R2, that is, Ihyp(P) := Ihyp(P, r) := λ({z ∈ R2 | ∃a ∈ P : a) z) r}),
where λ is the Lebesgue measure.

The Hypervolume Subset Selection Problem (hypSSP) is then defined as fol-
lows: Given a set P ⊂ R2 of size n, r ∈ R2, and μ ∈ N, compute a subset
P ∗ ⊆ P of size at most μ that maximizes Ihyp(P ∗, r). We write the result of this
problem as hypSSP(P, r, μ).
ε-Indicator. How well a point p = (p1, p2) ∈ R2 approximates another point r =
(r1, r2) ∈ R2 in the objective space can be measured by the minimal number ε
by which we have to decrease p in both coordinates so that it dominates q. More
formally, we set Ieps(p, r) := max{p1 − r1, p2 − r2}. This can be used to define
how well a set P ⊂ R2 approximates a set R ⊂ R2: The ε-indicator is defined
as Ieps(P,R) := maxr∈R minp∈P Ieps(p, r). This denotes the minimal number ε
by which we have to decrease all points in P in both coordinates so that every
point in R is dominated by some point in P .

The ε-Indicator Subset Selection Problem (epsSSP) is defined as follows:
Given a set P ⊂ Rd of size n, R ⊂ Rd of size m, and μ ∈ N, compute a
subset P ∗ ⊆ P of size at most μ that minimizes Ieps(P ∗, R). We write the result
of this problem as epsSSP(P,R, μ).

3 Postprocessing

Consider any EMOA with population size μ running until it performed n fitness
evaluations. Let P be the final population after n fitness evaluations and A be
the archive of all n solutions that were evaluated during the run. We describe
our postprocessing in the objective space, i.e., we let P,A ⊂ R2.
Hypervolume. For Ihyp we may pick any reference point r ∈ R2. The general
optimization goal is then to find a population P ∗ of μ Pareto optimal points
that maximize the hypervolume, i.e., P ∗ = hypSSP(F , r, μ). Unfortunately, the
Pareto front is unknown. To overcome this problem, we introduce the assumption
that the archive converges to the Pareto front (as has been done in AGE [5] and is
implicit in the design of most EMOAs). Thus, our Ihyp-postprocessing computes
the set of μ points maximizing the hypervolume among all points in the archive,

PPhyp(A, μ) := hypSSP(A, r, μ).

Generic Postprocessing via Subset Selection 521

Typically the hypervolume of PPhyp(A, μ) should be larger than the hypervol-
ume of P , so that our postprocessing improves the quality. In Section 5 we
will see an experimental evaluation of this claim. In any case, since P ⊆ A we
have Ihyp(PPhyp(A, μ)) ≥ Ihyp(P), so our postprocessing does not decrease the
quality of the result.
ε-Indicator. In case of Ieps the general optimization goal is to find a popu-
lation P ∗ of μ Pareto optimal points that optimally approximate the Pareto
front, i.e., P ∗ = epsSSP(F ,F , μ). Again, F is unknown and we assume that the
archive converges to the Pareto front. Thus, our Ieps-postprocessing computes
the set of μ points among all points in the archive that best approximate the
archive,

PPeps(A, μ) := epsSSP
′(A,A, μ).

Here, the prime in epsSSP
′ hides a minor modification that improves the ex-

perimental results, namely that we choose a population P among all μ-subsets
of A that include the leftmost point of A and the bottommost point of A, i.e.,
the single-objective optima. Intuitively, this is necessary since these extrema are
needed to cover the boundaries of the Pareto front. We remark that one can
compute epsSSP

′(A,A, μ) with a minor modification of [6].
Again, typically Ieps(PPeps(A, μ),F) should be smaller than Ieps(P,F), so

that our postprocessing improves the quality, and we will examine this claim ex-
perimentally. A noteworthydifference to the hypervolume case is that our postpro-
cessing for Ieps does not come with the guarantee that quality cannot deteriorate,
in fact, we will see in Section 5 that worsenings can happen but are rare.
Complexity. For a population size of μ and n fitness evaluations, NSGA-II,
SPEA2, and IBEA have a running time of O(nμ logμ), while SMS-EMOA has
a running time of O(nμ2). Our postprocessing takes time O(n (μ + logn)) for
Ihyp and O(n log n) for Ieps [6], which is comparable to the runtime of typical
EMOAs. In our experiments, the postprocessing tends to be even faster, since
we only have to store the non-dominated points of the archive, which are much
less than n.

4 Experimental Setup

Implementation and Hardware. All presented algorithms have been imple-
mented in Java using the jMetal framework [10] and run on a compute cluster
with 128 nodes, each having two Intel Xeon E5620 @ 2.40GHz. The code is
available at http://docs.theinf.uni-jena.de/code/ssp.zip.
Benchmark Problems and EMOAs. We compared the improvement gained
by the postprocessing for the well established EMOAs NSGA-II [8], SPEA2 [26],
SMS-EMOA [12], and IBEA [23]. As test functions we used DTLZ1, DTLZ2,
DTLZ7 from DTLZ [9] with 7 variables, ZDT1–3 from ZDT [25] with 30 vari-
ables, and WFG3–6 from the [18] with 4 variables. We chose these benchmarks,
because explicit expressions for their Pareto fronts are readily available. For
measuring the hypervolume, we choose the reference point r = (11, 11).

http://docs.theinf.uni-jena.de/code/ssp.zip

522 K. Bringmann, T. Friedrich, and P. Klitzke

Additionally to the standard test functions, we used a simulation of a wind
turbine placement function [20], which optimizes for the maximum power and
the minimum perimeter of the convex hull formed by the turbine positions with
30 turbines on a discrete area of size 3000× 3000.

All experimental results (medians, quartiles, . . .) that we will report in the
next section are based on 700 independent runs for the benchmark problems and
100 independent runs for the turbine. As population size we used 100 for the
benchmark problems and 10 for the turbine.
Quality Evaluation. We want to compare the quality Ihyp(P, r) of a pop-
ulation P with the optimal hypervolume OPThyp := hypSSP(F , μ) of any μ
points on the Pareto front. For measuring the proximity to the front, we measure
IΔ
hyp(P, r) := OPThyp −Ihyp(P, r) in our experiments. However, as F is infinite

it seems impossible to compute OPThyp. Instead of F we therefore consider a set
F ′ ⊆ F of m points placed equidistantly along the front, which we can compute
because we know an explicit expression for F for the chosen benchmark prob-
lems. Now we simply replace F by F ′ in the definition of OPThyp to obtain an
approximation. In case of Ieps, for the same reasons we cannot directly compute
OPTeps := epsSSP(F ,F , μ). Moreover, we have the additional difficulty that
we cannot evaluate the quality Ieps(P,F) of a population P . Again, we replace
F by its finite approximation F ′ and obtain approximations for the optimum
and the quality of a population. We use IΔ

eps(P,F) := OPTeps − Ieps(P,F) as
quality measure.

In our experiments we choose m = 106, which makes the error smaller than
any of our reported values, and we ignore this error from now on. Note that
it is infeasible to make m much larger, since the runtime for computing the
approximation of, e.g., OPThyp is O(m (μ+ logm)).
Statistics. Additionally to calculating the (median) quality with and without
postprocessing, we also perform a non-parametric test on the significance of the
observed behavior. For this, we use the Wilcoxon-Mann-Whitney two-sample
rank-sum test at the 95% confidence level.

5 Experimental Results

Test functions. The results of our experimental study on standard test func-
tions are presented in Figure 1. The tables show the median of the indicators
IΔ
hyp and IΔ

eps after 100 000 fitness evaluations. Our postprocessing improves (or
does not worsen) the hypervolume and ε-indicator for all functions and algo-
rithms. In all but six (out of 80 combinations) the improvement is statistically
significant at the 95% confidence level. In fact, the median hypervolume is always
increased and the distance to the optimal hypervolume IΔ

hyp therefore decreased.
In 37 out of 40 cases the median IΔ

hyp decreases by more than 0.01%. The median
reduction of IΔ

hyp for all 40 combinations of algorithms and functions is −85.6%
(mean −60.5%). On the other hand, the median IΔ

eps could be decreased by more
than 0.01% in 36 out of 40 cases. The median reduction of IΔ

eps is −95.2% (mean
−73.4%).

Generic Postprocessing via Subset Selection 523

Function NSGA-II IBEA SPEA2 SMS-EMOA

DTLZ1 4.7 · 10−4−→ 7.1 · 10−5 (−85.0%) 8.1 · 10−2−→ 3.1 · 10−4 (−99.6%) 2.0 · 10−1−→ 5.4 · 10−5 (−99.9%) 3.1 · 10−5−→ 2.8 · 10−5 (−10.1%)
DTLZ2 1.9 · 10−3−→ 1.3 · 10−5 (−99.3%) 1.3 · 10−2−→ 1.1 · 10−5 (−99.9%) 1.7 · 10−1−→ 1.2 · 10−5 (−99.9%) 1.9 · 10−5−→ 1.1 · 10−5 (−41.3%)
DTLZ7 2.1 · 10 −→ 2.1 · 10 (±0%) 3.4 · 10 −→ 3.4 · 10 (−0.04%) 2.2 · 10 −→ 2.1 · 10 (−0.6%) 2.1 · 10 −→ 2.1 · 10 (±0%)
ZDT1 1.9 · 10−3−→ 1.8 · 10−5 (−99.1%) 5.4 · 10−2−→ 8.2 · 10−5 (−99.8%) 6.0 · 10−2−→ 2.3 · 10−5 (−99.9%) 2.7 · 10−5−→ 1.4 · 10−5 (−46.9%)
ZDT2 1.7 · 10−3−→ 1.4 · 10−5 (−99.2%) 1.6 · 10−2−→ 1.1 · 10−5 (−99.9%) 1.8 · 10−1−→ 2.9 · 10−5 (−99.9%) 3.7 · 10−5−→ 1.9 · 10−5 (−47.3%)
ZDT3 1.1 · 10−3−→ 6.1 · 10−6 (−99.4%) 3.5 · 10−2−→ 3.3 · 10−5 (−99.9%) 5.7 · 10−2−→ 9.2 · 10−6 (−99.9%) 1.3 · 10−5−→ 5.1 · 10−6 (−59.3%)
WFG3 2.9 · 10−2−→ 1.2 · 10−2 (−60.1%) 2.9 · 10−1−→ 7.7 · 10−3 (−97.4%) 8.1 · 10−1−→ 1.2 · 10−2 (−98.5%) 7.3 · 10−3−→ 7.2 · 10−3 (−2.1%)
WFG4 1.8 · 10−2−→ 1.7 · 10−3 (−90.5%) 9.5 · 10−2−→ 3.8 · 10−5 (−99.9%) 1.2 −→ 1.2 · 10−2 (−99.0%) 1.2 · 10−2−→ 1.2 · 10−2 (−0.4%)
WFG5 1.7 −→ 1.6 (−0.8%) 1.7 −→ 1.6 (−2.7%) 2.8 −→ 1.7 (−40.3%) 1.8 −→ 1.8 (±0%)
WFG6 1.9 · 10−1−→ 1.8 · 10−1 (−7.2%) 4.0 · 10−1−→ 2.0 · 10−1 (−49.0%) 1.3 −→ 1.9 · 10−1 (−86.2%) 2.3 · 10−1−→ 2.3 · 10−1 (−0.03%)

(a) Distance to optimal hypervolume: IΔ
hyp(P) = OPThyp − Ihyp(P).

Function NSGA-II IBEA SPEA2 SMS-EMOA

DTLZ1 4.1 · 10−3−→ 2.3 · 10−4 (−94.3%) 2.0 · 10−1−→ 7.5 · 10−3 (−96.2%) 2.5 · 10−2−→ 2.2 · 10−4 (−99.1%) 3.5 · 10−4−→ 1.7 · 10−4 (−50.4%)
DTLZ2 8.2 · 10−3−→ 1.7 · 10−4 (−97.9%) 4.0 · 10−2−→ 1.2 · 10−4 (−99.7%) 2.4 · 10−2−→ 1.4 · 10−4 (−99.4%) 6.7 · 10−4−→ 1.2 · 10−4 (−82.3%)
DTLZ7 2.3 −→ 2.3 (±0%) 3.6 −→ 3.6 (−0.03%) 2.3 −→ 2.3 (−0.2%) 2.3 −→ 2.3 (±0%)
ZDT1 8.3 · 10−3−→ 1.7 · 10−4 (−98.0%) 4.0 · 10−2−→ 1.0 · 10−4 (−99.7%) 2.2 · 10−2−→ 1.5 · 10−4 (−99.3%) 5.7 · 10−4−→ 1.2 · 10−4 (−79.7%)
ZDT2 8.1 · 10−3−→ 1.5 · 10−4 (−98.1%) 4.1 · 10−2−→ 1.8 · 10−4 (−99.6%) 2.5 · 10−2−→ 1.5 · 10−4 (−99.4%) 5.5 · 10−4−→ 1.3 · 10−4 (−76.1%)
ZDT3 6.0 · 10−3−→ 1.0 · 10−4 (−98.3%) 2.4 · 10−2−→ 3.8 · 10−4 (−98.4%) 2.5 · 10−2−→ 1.2 · 10−4 (−99.5%) 1.3 · 10−3−→ 6.6 · 10−5 (−94.9%)
WFG3 2.5 · 10−2−→ 1.1 · 10−3 (−95.5%) 1.1 · 10−1−→ 6.5 · 10−4 (−99.4%) 8.3 · 10−2−→ 1.1 · 10−3 (−98.7%) 1.9 · 10−3−→ 6.2 · 10−4 (−66.7%)
WFG4 2.4 · 10−2−→ 5.2 · 10−4 (−97.8%) 8.7 · 10−2−→ 2.3 · 10−4 (−99.7%) 1.0 · 10−1−→ 5.0 · 10−4 (−99.5%) 2.2 · 10−3−→ 1.7 · 10−4 (−92.4%)
WFG5 1.2 · 10−1−→ 1.2 · 10−1 (±0%) 1.3 · 10−1−→ 1.2 · 10−1 (−10.3%) 2.1 · 10−1−→ 1.2 · 10−1 (−41.0%) 1.4 · 10−1−→ 1.4 · 10−1 (±0%)
WFG6 3.3 · 10−2−→ 8.7 · 10−3 (−73.8%) 1.2 · 10−1−→ 9.8 · 10−3 (−91.9%) 1.1 · 10−1−→ 8.7 · 10−3 (−92.3%) 1.2 · 10−2−→ 1.0 · 10−2 (−16.2%)

(b) Distance to optimal ε-Indicator: IΔ
eps(P) = OPTeps − Ieps(P,F).

Fig. 1. Medians after 100 000 evaluations. We show the value of the respective indicator
before and after the postprocessing. We also give the factor by which the indicator got
smaller (=better). Improvements of less than 0.01% are treated as equal and marked
±0%. For each test function we marked the best indicator values before and after
postprocessing in blue.

Figure 2 gives a more detailed view on how the indicators IΔ
hyp and Ieps de-

crease over time for some exemplary combinations of MOEAs and test functions.
Shown are box-and-whisker plots that specify the median, quartiles, and whiskers
from minimum to maximum. Figures 2a and 2b show the typical behaviour of
our postprocessing for NSGA-II. It is interesting to compare Figure 2b with Fig-
ure 3a, which shows the size of the population and of the archive over time. This
shows that our postprocessing starts to “kick in” at the time we are starting to
throw away points, where the archive size diverges from the population size.

Figure 2c shows the visually largest improvement that our Ihyp-postprocessing
was able to achieve for any benchmark problem and MOEA. Note that SPEA2
without postprocessing converges to a suboptimal hypervolume, but our Ihyp-
postprocessing is able to correct this. Figure 2d shows a similar profitable situ-
ation for Ieps-postprocessing.

Since SMS-EMOA is hypervolume driven, one expects that Ihyp-
postprocessing is less effective for this algorithm compared to other EMOAs.
Indeed, Figure 1 confirms this expectation, specifically, the median improve-
ment of IΔ

hyp for SMS-EMOA is only −6.1% (mean −20.8%). However, Figure 2e
shows that even the hypervolume driven SMS-EMOA can benefit a lot from our
Ihyp-postprocessing in some situations.

524 K. Bringmann, T. Friedrich, and P. Klitzke

103 104 105
10−5

10−2

101

(a) IΔ
hyp for NSGA-II on WFG4

103 104 105

10−2

100

(b) IΔ
eps for NSGA-II on WFG3

103 104 105
10−5

10−2

101

(c) IΔ
hyp for SPEA2 on ZDT2

103 104 105

10−4

10−2

100

(d) IΔ
eps for IBEA on ZDT1

102 103 104 105

10−4

10−2

100

(e) IΔ
hyp for SMS-EMOA on DTLZ2

102 103 104 105

10−4

10−2

100

(f) IΔ
eps for SMS-EMOA on DTLZ2

Fig. 2. Quality measures as a function of time (evaluations) before (in red) and after (in
green) postprocessing for some exemplary combinations of MOEAs and test functions.

103 104 105

101

102

103

104

(a) Population size (in red) and archive
size (in green) as a function of time (eval-
uations) for NSGA-II on WFG3.

103 104 105
100

101

102

103

(b) Runtime (in milliseconds) of NSGA-II
(in red) on WFG3 compared to runtime of
postprocessing for Ihyp (in blue) and Ieps
(in green).

Fig. 3. Population size and runtime of NSGA-II on WFG3

Generic Postprocessing via Subset Selection 525

In contrast to the Ihyp-postprocessing, the Ieps-postprocessing can (at least
theoretically) make Ieps worse. However, Figure 2f shows the only case where
we observed that the Ieps-postprocessing visually worsens the algorithm at some
time, namely in a thin region from 2500 to 5000 fitness evaluations. After that
point, the Ieps-postprocessing gives again a huge improvement.

Figure 3b shows the total runtime up to n fitness evaluations of NSGA-II, the
runtime of the other algorithms is similar (with SMS-EMOA being somewhat
slower). Moreover, the runtime of the postprocessing when started after n fit-
ness evaluations is plotted. This shows that the runtime of both postprocessing
algorithms is negligible compared to the runtime of the MOEA.

101 102 103 104 105
0

0.2

0.4

0.6

0.8

Fig. 4. Experimental results for turbine:
Ihyp (not IΔ

hyp!) over time (evaluations)
for SMS-EMOA before (in red) and after
(in green) postprocessing

Additionally, we examined whether
a hypervolume-based algorithm (like
SMS-EMOA) achieves more hypervol-
ume than a non-hypervolume-based al-
gorithms (like NSGA-II, SPEA2) with
Ihyp-postprocessing. To this end, we
compared SMS-EMOA without post-
processing to the other three algorithms
with postprocessing. The Wilcoxon-
Mann-Whitney U-test at 95% confi-
dence level showed that NSGA-II with
Ihyp-postprocessing outperforms SMS-
EMOA without postprocessing on 7 out
of 10 test functions. The same holds for SPEA2, but not for IBEA. This shows
that our Ihyp-postprocessing makes algorithms that do not aim at maximizing
Ihyp very competitive, even compared to algorithms that directly optimize Ihyp.
As one might expect, we no longer observe this behavior if SMS-EMOA is also
allowed postprocessing: SMS-EMOA with Ihyp-postprocessing achieves higher
hypervolumes than all other algorithms with Ihyp-postprocessing (on more than
half of the test functions).

Figure 4 shows an exemplary result for the turbine problem for SMS-EMOA.
Note that we cannot plot IΔ

hyp as OPThyp is not known. We observe a signif-
icant improvement also for this real-world problem. Specifically, after 300 000
evaluations our Ihyp-postprocessing increased Ihyp by 14%.

6 Conclusion

We studied two generic postprocessing methods which have the potential to
improve the final output of any EMOA on any biobjective optimization prob-
lem. These methods choose the optimal subset of μ solutions from the archive
of all solutions seen during the run of an EMOA such that the hypervolume
or ε-indicator is optimized. This requires no additional fitness evaluations and
therefore zero additional ‘optimization time’. Moreover, the computation time of
our postprocessing methods is negligible compared to the computation time of
typical EMOAs. We experimentally evaluated the quality of our postprocessing

526 K. Bringmann, T. Friedrich, and P. Klitzke

on four standard EMOAs and ten standard test functions and one real-world
problem. This showed that our postprocessing typically returns a set of solu-
tions which is about 90% closer to the optimum than the regular outcome of the
EMOAs.

References

[1] Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Investigating and exploiting the
bias of the weighted hypervolume to articulate user preferences. In: Genetic and
Evolutionary Computation Conference, GECCO 2009, pp. 563–570 (2009)

[2] Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersec-
tions of high-dimensional geometric objects. Computational Geometry: Theory
and Applications 43, 601–610 (2010)

[3] Bringmann, K., Friedrich, T.: Convergence of hypervolume-based archiving algo-
rithms II: Competitiveness. In: Genetic and Evolutionary Computation Confer-
ence, GECCO 2012, pp. 457–464 (2012)

[4] Bringmann, K., Friedrich, T.: Parameterized average-case complexity of the hyper-
volume indicator. In: Genetic and Evolutionary Computation Conference, GECCO
2013, pp. 575–582 (2013)

[5] Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided
evolutionary multi-objective optimization. In: 22nd International Joint Conference
on Artificial Intelligence, IJCAI 2011, pp. 1198–1203. IJCAI/AAAI (2011)

[6] Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for
hypervolume and epsilon-indicator. In: Genetic and Evolutionary Computation
Conference, GECCO (2014)

[7] Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.:
On the effects of adding objectives to plateau functions. IEEE Trans. Evolutionary
Computation 13(3), 591–603 (2009)

[8] Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEETrans. Evolutionary Computation 6(2), 182–197
(2002)

[9] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Evolutionary Multiobjective Optimiza-
tion, Advanced Information and Knowledge Processing, pp. 105–145 (2005)

[10] Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective
optimization: Design and architecture. In: IEEE Congress on Evolutionary Com-
putation, CEC 2010, pp. 4138–4325 (2010)

[11] Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer (2005)
[12] Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO algorithm using the hyper-

volume measure as selection criterion. In: 3rd International Conference on Evolu-
tionary Multi-Criterion Optimization, EMO 2005, pp. 62–76 (2005)

[13] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4), 617–633 (2010)

[14] Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-
objective optimization. Theoretical Computer Science 411(6), 854–864 (2010)

[15] Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In:
IEEE Congress on Evolutionary Computation, CEC 2003, pp. 1918–1925 (2003)

Generic Postprocessing via Subset Selection 527

[16] Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evolutionary Computation 18(3), 335–356 (2010)

[17] Glasmachers, T.: Optimized approximation sets of low-dimensional benchmark
pareto fronts. In: 13th International Conference on Parallel Problem Solving from
Nature, PPSN (2014)

[18] Huband, S., Barone, L., While, R.L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: 3rd International Conference on Evolutionary Multi-Criterion
Optimization, EMO 2005, pp. 280–295 (2005)

[19] Ponte, A., Paquete, L., Figueira, J.R.: On beam search for multicriteria combina-
torial optimization problems. In: 9th International Conference in Integration of AI
and OR Techniques in Contraint Programming for Combinatorial Optimization
Problems, CPAIOR 2012, pp. 307–321 (2012)

[20] Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and
effective multi-objective optimisation of wind turbine placement. In: Genetic and
Evolutionary Computation Conference, GECCO 2013, pp. 1381–1388 (2013)

[21] Vaz, D., Paquete, L., Ponte, A.: A note on the ε-indicator subset selection. The-
oretical Computer Science 499, 113–116 (2013)

[22] Wagner, M., Day, J., Neumann, F.: A fast and effective local search algorithm for
optimizing the placement of wind turbines. Renewable Energy 51, 64–70 (2013)

[23] Zitzler, E., Künzli, S.: Indicator-based selection inmultiobjective search. In:Yao, X.,
et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

[24] Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto approach. IEEE Trans. Evolutionary Computa-
tion 3, 257–271 (1999)

[25] Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

[26] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In: Evolutionary Methods
for Design, Optimisation and Control with Application to Industrial Problems,
EUROGEN 2001, pp. 95–100 (2002)

A Provably Asymptotically Fast Version

of the Generalized Jensen Algorithm
for Non-dominated Sorting

Maxim Buzdalov and Anatoly Shalyto

ITMO University
49 Kronverkskiy prosp.

197101 Saint-Petersburg, Russia
buzdalov@rain.ifmo.ru, shalyto@mail.ifmo.ru

Abstract. The non-dominated sorting algorithm by Jensen, generalized
by Fortin et al to handle the cases of equal objective values, has the
running time complexity of O(N logK−1 N) in the general case. Here N
is the number of points, K is the number of objectives and K is thought
to be a constant when N varies. However, the complexity was not proven
to be the same in the worst case.

A slightly modified version of the algorithm is presented, for which it
is proven that its worst-case running time complexity is O(N logK−1 N).

Keywords: Non-dominated sorting, worst-case running time complex-
ity, multi-objective optimization.

1 Introduction

In the K-dimensional space, a point A = (a1, . . . , aK) is said to dominate a point
B = (b1, . . . , bK) when for all 1 ≤ i ≤ K it holds that ai ≤ bi and there exists j
such that aj < bj . Non-dominated sorting of points in the K-dimensional space
is a procedure of marking all points which are not dominated by any other point
with the rank of 0, all points which are dominated by at least one point of the
rank of 0 are marked with the rank of 1, all points which are dominated by at
least one point of the rank i− 1 are marked with the rank of i.

Many well-known and widely used multi-objective evolutionary algorithms
use the procedure of non-dominated sorting, or the procedure of determining the
non-dominated solutions, which can be reduced to non-dominated sorting. These
algorithms include NSGA-II [6], PESA [5], PESA-II [4], SPEA2 [11], PAES [9],
PDE [2], and many more. The time complexity of a single iteration of these
algorithms is often dominated by the complexity of a non-dominated sorting
algorithm, so optimization of the latter makes such multi-objective evolutionary
algorithms faster.

In Kung et al [10], the algorithm for determining the non-dominated solutions
is proposed with the complexity of O(N logK−1 N), where N is the number of
points and K is the dimension of the space. It is possible to use this algorithm to

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 528–537, 2014.
c© Springer International Publishing Switzerland 2014

A Provably Asymptotically Fast Version 529

perform non-dominated sorting: first, the non-dominated solutions are found and
assigned the rank of 0. Then, these solutions are removed, the non-dominated
solutions from the remaining ones are found and assigned the rank of 1. The
process repeats until all the solutions are removed. This leads to the complexity
of O(N2 logK−1 N) in the worst case, if the maximum rank of a point in the
result is O(N).

Jensen [8] was the first to propose an algorithm for non-dominated sorting
with the complexity of O(N logK−1 N). However, his algorithm was developed
for the assumption that no two points share a common value for any objective,
and the complexity was proven for the same assumption. The first attempt to fix
this issue belongs, to the best of the authors’ knowledge, to Fortin et al [7]. The
corrected (or, as in [7], “generalized”) algorithm works in all cases, and for the
general case the performance is still O(N logK−1 N), but the only upper bound
that was proven for the worst case is O(N2K).

We present a modified version of this algorithm, for which we prove that its
running time is O(N logK−1 N) for fixed K. The rest of the paper is structured
as follows. Section 2 contains the description of the new algorithm. In Section 3,
the proof of the worst-case running time complexity is given. In Section 4, some
words are given on the performance of the original algorithm by Fortin et al.
Section 5 concludes.

2 Algorithm Description

In this section, the modified algorithm is described. We try to be as much com-
patible with the notation of the original paper [7] as possible.

Multi-objective evolutionary algorithms work with candidate solutions to the
problem they solve, or individuals. Each individual is evaluated and assigned a
fitness. The fitness q = f(p) of the individual p in a multi-objective problem is
a vector of K objectives. We assume that the objectives are to be minimized.

The individuals along with their fitnesses are the input data for the non-
dominated sorting algorithm. The algorithm should assign a rank to each indi-
vidual, as described in Section 1. As two individuals with the same fitness will
be assigned the same rank, the algorithm first groups the individuals by their
fitnesses, and then works directly with fitnesses, assuming that no two fitnesses
are equal in all objectives.

Let qk be the k-th objective of the fitness q, q1:k be the first k objectives.
The relation q1:k ≺ t1:k means that q dominates over t in first k objectives.
Throughout all the listings in this paper, we denote as rank(q) the rank assigned
to the fitness q.

Theoriginal algorithmfromFortin et al [7]makesuse of the followingprocedures:

– NonDominatedSort(P , K), the main procedure, receives a population P
where each individual has a fitness withK objectives and returns the result of
the non-dominated sorting — a sequence of Pareto fronts on which the given
individuals reside. It does some preparation work, invokes NDHelperA and
constructs the answer.

530 M. Buzdalov and A. Shalyto

1: procedure NDHelperA(S, k)
2: if |S| < 2 then return
3: else if |S| = 2 then
4: {s(1), s(2)} ← S

5: if s
(1)
1:k ≺ s

(2)
1:k then

6: rank(s(2))← max{rank(s(2)),rank(s(1)) + 1}
7: end if
8: else if k = 2 then
9: SweepA(S)
10: else if |{sk|s ∈ S}| = 1 then
11: NDHelperA(S, k − 1)
12: else
13: L,M,H ← SplitBy(S,median{sk|s ∈ S}, k)
14: NDHelperA(L, k)
15: NDHelperB(L, M , k − 1)
16: NDHelperA(M , k − 1)
17: NDHelperB(L ∪M , H , k − 1)
18: NDHelperA(H , k)
19: end if
20: end procedure

Fig. 1. The procedure NDHelperA. It assigns ranks to fitnesses from S using the first
k objectives.

1: procedure NDHelperB(L, H, k)
2: if L = {} or H = {} then return
3: else if |L| = 1 or |H | = 1 then
4: for all h ∈ H , l ∈ L do
5: if l1:k h1:k then
6: rank(h)← max{rank(h),rank(l) + 1}
7: end if
8: end for
9: else if k = 2 then
10: SweepB(L, H)
11: else if max{lk|l ∈ L} ≤ min{hk|h ∈ H} then
12: NDHelperB(L, H , k − 1)
13: else if min{lk|l ∈ L} ≤ max{hk|h ∈ H} then
14: m← median{sk|s ∈ L ∪H}
15: L1,M1,H1 ← SplitBy(L,m, k)
16: L2,M2,H2 ← SplitBy(H,m, k)
17: NDHelperB(L1, L2, k)
18: NDHelperB(L1, M2, k − 1)
19: NDHelperB(M1, M2, k − 1)
20: NDHelperB(L1 ∪M1, M2, k − 1)
21: NDHelperB(M1, M2, k)
22: end if
23: end procedure

Fig. 2. The procedure NDHelperB. It adjusts ranks of fitnesses from H using the
first k objectives by comparing them with fitnesses from L.

A Provably Asymptotically Fast Version 531

1: procedure SplitBy(S, m, k)
2: L← {s ∈ S|sk < m}
3: M ← {s ∈ S|sk = m}
4: H ← {s ∈ S|sk > m}
5: return L, M , H
6: end procedure

Fig. 3. The generic split procedure. In each resulting set, the original order of elements
is preserved.

– NDHelperA(S, k) assigns ranks to the fitnesses from the set S based on the
first k objectives. It is recursive and may call itself, NDHelperB, SweepA

and SplitA.
– NDHelperB(L, H , k) assigns ranks to the fitnesses from the set H by

comparing them to the fitnesses from the set L based on the first k objectives.
It is recursive and may call itself, SweepB and SplitB.

– SweepA(S) assigns ranks to the fitnesses from the set S based on the first
two objectives. It is implemented using the sweep-line approach, and its
running time complexity is O(|S| log |S|).

– SweepB(L, H) assigns ranks to the fitnesses from the set H by comparing
them to the fitnesses from the set L based on the first two objectives. It is
implemented using the sweep-line approach, and its running time complexity
is O((|L| + |H |) log |L|).

– SplitA(S, k) partitions the set of fitnesses S in two sets around its median
for the objective k and balances the resulting sets using the elements equal
to the median.

– SplitB(L, H , k) partitions the sets of fitnesses L and H into two sets each
around the median of the largest set for the objective k and balances the
resulting sets using the elements equal to the median.

Procedures NonDominatedSort, SweepA and SweepB remain the same
as in Fortin et al [7]. The procedures SplitA and SplitB are not used by the
modified algorithm.

We redefine the procedures NDHelperA, which is shown in Fig. 1, and
NDHelperB, which is shown in Fig. 2. These procedures use the procedure
SplitBy, which is shown in Fig. 3.

The rest of this section concentrates on differences between the original al-
gorithm by Fortin et al and the proposed algorithm. The correctness of the
proposed algorithm can be proven in the same way as the correctness of the
original one.

2.1 Splitting into Three Parts, NDHelperA

The difference between the modified NDHelperA and its original version is
that the set S is split into three parts (line 12–13) instead of two parts as in
Fortin et al [7]. Generally, we have three sets:

532 M. Buzdalov and A. Shalyto

– the set L of the elements with the k-th objective less than the median;
– the set M of the elements with the k-th objective equal to the median;
– the set H of the elements with the k-th objective greater than the median.

In the original algorithm, the set M was added either to L or to H , depending
on their size. The correctness of the algorithm does not depend on the exact way
of splitting. Consider that we split S = (L ∪M) ∪H , so that we call:

– NDHelperA(L ∪M , k);
– NDHelperB(L ∪M , H , k − 1);
– NDHelperA(H , k).

It cannot be predicted without extra assumptions how the set L ∪M will be
split in the first recursive call to NDHelperA. However, any split such that
all values of the k-th objective in the left are strictly less than all such values
on the right is valid, and if the algorithm used it, the correctness would be
preserved. In particular, the set L ∪M can be split into L and M . After that,
NDHelperA(L ∪M , k) can be further expanded as follows:

– NDHelperA(L, k);
– NDHelperB(L, M , k − 1);
– NDHelperA(M , k).

However, it is known that the k-th objective in M is the same for all fitnesses,
which means that NDHelperA(M , k) can be rewritten as NDHelperA(M ,
k − 1). So finally the procedures are called in the following way:

– NDHelperA(L, k);
– NDHelperB(L, M , k − 1);
– NDHelperA(M , k − 1);
– NDHelperB(L ∪M , H , k − 1);
– NDHelperA(H , k).

This is exactly what one can see in lines 14–18 of the updated version of
NDHelperA.

2.2 Splitting into Three Parts, NDHelperB

The ideas from Section 2.1 can be applied to the procedure NDHelperB as
well. Assuming we have some pivot (in the original algorithm it is the median
of the largest of the L and H sets), we have six sets after the split:

– L1 — the elements of L with k-th objective less than the pivot;
– M1 — the elements of L with k-th objective equal to the pivot;
– H1 — the elements of L with k-th objective greater than the pivot;
– L2 — the elements of H with k-th objective less than the pivot;
– M2 — the elements of H with k-th objective equal to the pivot;
– H2 — the elements of H with k-th objective greater than the pivot.

A Provably Asymptotically Fast Version 533

In the original algorithm, the sets M1 and M2 are joined either to L1 and L2
or to H1 and H2, depending on the sizes of L1, L2, H1, H2. Note that, although
performance depends on the particular choice, correctness does not. To perform
the analysis, we merge Mi with Li. This results in the following sequence of
recursive calls:

– NDHelperB(L1 ∪M1, L2 ∪M2, k);
– NDHelperB(L1 ∪M1, H2, k − 1);
– NDHelperB(H1, H2, k).

Using the same reasoning as in Section 2.1, the first call can be expanded to:

– NDHelperB(L1, L2, k);
– NDHelperB(L1, M2, k − 1);
– NDHelperB(M1, M2, k).

The last call can be rewritten asNDHelperB(M1,M2, k−1) because all values
of the k-th objective are the same in all fitnesses. So the final call sequence is:

– NDHelperB(L1, L2, k);
– NDHelperB(L1, M2, k − 1);
– NDHelperB(M1, M2, k − 1);
– NDHelperB(L1 ∪M1, H2, k − 1);
– NDHelperB(H1, H2, k).

One can see exactly this sequence in lines 17–21 of the procedureNDHelperB.

2.3 The Choice of Pivot

Consider the last case of NDHelperB where the pivot is chosen. The original
choice of Jensen [8], followed by Fortin et al [7], was to choose the pivot in such
a way that the sizes of sets in the recursive calls did not exceed 3N/4, where
N = |H | + |L|. In the case of the proposed algorithm, it is more important to
ensure the sizes of the recursive calls with the same k to be small, while not caring
for the sizes of the middle sets M1 and M2. This forced us to choose the pivot to
be the median of k-th objectives of L∪H , which ensures that |L1|+ |L2| ≤ N/2
and |M1|+ |M2| ≤ N/2.

3 Running Time Estimation

Let us outline the statements about the procedures above:

– In the last case of NDHelperA, |L| ≤ N/2 and |H | ≤ N/2, where N = |S|.
This is due to the choice of the pivot equal to the median of k-th objectives
of elements from S.

– In the last case of NDHelperB, |L1|+ |L2| ≤ N/2 and |H1|+ |H2| ≤ N/2,
where N = |L| + |H |. As already noted in Section 2.3, this is due to the
choice of the pivot.

This helps us to prove the necessary theorems.

534 M. Buzdalov and A. Shalyto

3.1 Running Time of NDHelperB

Theorem 1. The running time of NDHelperB(L,H, k) is

TB(L,H, k) = O(N logk−1 N)

for constant k ≥ 2, where N = |H |+ |L|.

Proof. Consider the boundary cases where |L| ≤ 1 or |H | ≤ 1. In this case, the
running time is Θ(1) or Θ(Nk), both are O(N logN).

The non-boundary cases are proven using induction by k. The base case
is k = 2. NDHelperB(L,H, 2) just calls SweepB(L,H), which is O((|L| +
|H |) log |L|) = O(N logN).

For k > 2, assume that the induction statement is proven for k − 1. In the
worst case, the running time of NDHelper(L,H, k) is:

TB(L,H, k) = TB(L1, L2, k)+
+ TB(L1,M2, k − 1)+
+ TB(M1,M2, k − 1)+
+ TB(L1 ∪M1, H2, k − 1)+
+ TB(H1, H2, k)+
+Θ(|L|+ |H |).

where the Θ(|L| + |H |) addend corresponds to finding the pivot and splitting
the sets. The addends 2–4 and 6 in the expression above can be summarized as
O(N logk−2 N) by the induction assumption. It is known that |L1|+ |L2| ≤ N/2
and |H1|+ |H2| ≤ N/2. If we rewrite TB(A,B, k) as T ′

B(|A| + |B|, k), then:

TB(L,H, k) = T ′
B(N, k) ≤ 2T ′

B(N/2, k) +O(N logk−2 N).

From the results of Bentley [3], it follows that:

TB(L,H, k) = O(N logk−1 N).+,

3.2 Running Time of NDHelperA

Theorem 2. The running time of NDHelperA(S, k) is

TA(S, k) = O(N logk−1 N)

for constant k ≥ 2, where N = |S|.

Proof. In the boundary case of |S| ≤ 2, the running time is Θ(k) = Θ(1).
The non-boundary cases are proven using induction by k. The base case is k =

2. NDHelperA(S, 2) calls SweepA(S), which is O(|S| log |S|) = O(N logN).

A Provably Asymptotically Fast Version 535

For k > 2, assume that the induction statement is proven for k − 1. The
running time of NDHelperA(S, k) is at most:

TA(S, k) = TA(L, k)+
+ TB(L,M, k − 1)+
+ TA(M,k − 1)+
+ TB(L ∪M,H, k − 1)+
+ TA(H, k)+
+Θ(|S|).

where the Θ(|S|) addend corresponds to finding the pivot and splitting the sets.
The addends 2–4 and 6 can be summarized as O(N logk−2 N) by the induction
assumption. It is known that |L| ≤ N/2 and |H | ≤ N/2. Using [3], we find that:

TA(S, k) = T ′
A(N, k) ≤ 2T ′

A(N/2, k) +O(N logk−2 N) =

= O(N logk−1 N).+,

From the last theorem it immediately follows that the running time of the
whole algorithm is O(N logK−1 N).

4 Discussion

In this section, two topics are discussed. First, the worst case given in [7] is
shown to be not only “very unlikely”, but not happening when K is thought to
be a constant. Second, some ideas are given that may help to apply the proof
above, with some more detailed case analysis, to the original algorithm.

4.1 The Worst-Case Bound for the Original Algorithm

In [7], the worst-case running time estimation for the original algorithm is de-
duced from the following recurrence:

TA(N,K) = TA(N − 1,K) + TA(1,K)+
+ TB(N − 1, 1,K − 1) +Θ(N).

Such split can only occur in the case when there is only one element larger
than the median. As the median elements are always merged to the set which
size is smaller, there is at most one element smaller than the median. We can
predict that TA(N−1,K) will either be split as “one smaller element” and “N−2
median elements”, or just be delegated to TA(N − 1,K − 1).

The actual situation is that, in such heavily imbalanced cases, K decreases as
N decreases. This makes the “worst cases” be implementable only if K = Θ(N).
As an example, one may construct the following test case:

536 M. Buzdalov and A. Shalyto

(0, 0, 0, . . . , 0, 0, 1),
(0, 0, 0, . . . , 0, 1, 1),
. . .

(0, 0, 1, . . . , 1, 1, 1),
(0, 1, 1, . . . , 1, 1, 1),
(1, 1, 1, . . . , 1, 1, 1).

Here the recurrence for the running time for both the original algorithm and
the modified version appears to be:

TA(N,K) = TA(N − 1,K − 1) + TA(1,K)+
+ TB(N − 1, 1,K − 1) +Θ(N).

The solution can be written as TA(N,K) = Θ(N2K). However, N = K, so K
is not a constant anymore. In the situation of K depending on N , the analysis
which produced the expression O(N logK−1 N) actually gives another result, so
comparison of the expressions for constant K and for varying K is not valid.

As a final remark to this section, the “proof” of the worst-case performance
in the original paper does not prove that there exists a sequence of tests with
constant K and growing N , such that the running time of the algorithm grows
as O(N2K). It just considers a class of tests where K = Θ(N).

4.2 Applicability of the Proof to the Original Algorithm

The authors believe that the proof similar to the one given in this paper can
be constructed for the original algorithm from [7]. The reason is that, in the
heavily imbalanced cases (when |M | > max(|L|, |H |) for NDHelperA, and
when |M1| > max(|L1|, |H1|) and |M2| > max(|L2|, |H2|) for NDHelperB, see
Fig. 1 and Fig. 2) the splits in both procedures go in exactly the same way as in
the proposed algorithm. As the running time complexity in both well balanced
and heavily imbalanced cases is the same, the authors think that the overall
complexity is the same.

The immediate application of the proof to the original algorithm cannot be
performed because the splits in a partially balanced case for NDHelperB are
quite unpredictable due to the algorithm for pivot selection. The proper analysis
of such case is welcome.

5 Conclusion

A new version of the non-dominated sorting algorithm is presented. The ideas of
the algorithm were first presented by Jensen [8] and corrected by Fortin et al [7]
to handle the cases of equal objectives. The presented version differs from the
latter in the way the splits in the procedures NDHelperA and NDHelperB

are performed, as well as in the way the pivot is selected in NDHelperB.

A Provably Asymptotically Fast Version 537

We proved the running time complexity is O(N logK−1 N) in the worst case for
this version.

The implementation of the algorithm, along with some benchmarks, is avail-
able at GitHub [1].

This work was financially supported by the Government of Russian Federa-
tion, Grant 074-U01.

References

1. Source code for the implementation (a part of this paper),
https://github.com/mbuzdalov/papers/tree/master/

2014-ppsn-jensen-fortin

2. Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto Frontier Differential Evolu-
tion Approach for Multiobjective Optimization Problems. In: Proceedings of the
Congress on Evolutionary Computation, pp. 971–978. IEEE Press (2001)

3. Bentley, J.L.: Multidimensional Divide-and-conquer. Communications of
ACM 23(4), 214–229 (1980)

4. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based
Selection in Evolutionary Multiobjective Optimization. In: Proceedings of Genetic
and Evolutionary Computation Conference, pp. 283–290. Morgan Kaufmann Pub-
lishers (2001)

5. Corne, D.W., Knowles, J.D., Oates, M.J.: The Pareto Envelope-based Selection
Algorithm for Multiobjective Optimization. In: Deb, K., Rudolph, G., Lutton, E.,
Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN VI. LNCS,
vol. 1917, pp. 839–848. Springer, Heidelberg (2000)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-II. Transactions on Evolutionary Computation 6, 182–
197 (2000)

7. Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the Improved Run-time Com-
plexity Algorithm for Non-dominated Sorting. In: Proceeding of the Fifteenth An-
nual Conference on Genetic and Evolutionary Computation Conference, GECCO
2013, pp. 615–622. ACM (2013)

8. Jensen, M.T.: Reducing the Run-time Complexity of Multiobjective EAs: The
NSGA-II and Other Algorithms. Transactions on Evolutionary Computation 7(5),
503–515 (2003)

9. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172
(2000)

10. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
Journal of ACM 22(4), 469–476 (1975)

11. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimization. In: Proceedings of the
EUROGEN 2001 Conference, pp. 95–100 (2001)

https://github.com/mbuzdalov/papers/tree/master/2014-ppsn-jensen-fortin
https://github.com/mbuzdalov/papers/tree/master/2014-ppsn-jensen-fortin

Clustering-Based Selection for Evolutionary

Many-Objective Optimization

Roman Denysiuk1,3, Lino Costa2,3, and Isabel Esṕırito Santo2,3

1 Algoritmi R&D Center
roman.denysiuk@algoritmi.uminho.pt

2 Department of Production and Systems Engineering
3 University of Minho, Braga, Portugal

{lac,iapinho}@dps.uminho.pt

Abstract. This paper discusses a selection scheme allowing to employ a
clustering technique to guide the search in evolutionary many-objective
optimization. The underlying idea to avoid the curse of dimensionality
is based on transforming the objective vectors before applying a cluster-
ing and the selection of cluster representatives according to the distance
to a reference point. The experimental results reveal that the proposed
approach is able to effectively guide the search in high-dimensional objec-
tive spaces, producing highly competitive performance when compared
with state-of-the-art algorithms.

1 Introduction

As problems with a large number of objectives become widespread in practice,
the issue of dealing with many-objective problems has gained a significant atten-
tion in the evolutionary multiobjective optimization (EMO) community. Some
researchers suggest to handle many-objective problems by modifying the Pareto
dominance relation, assigning different ranks to nondominated solutions, using
the decision maker’s preferences during the search, incorporating the quality
indicators or scalarizing functions into the fitness assignment, or reducing the
problem’s dimensionality whenever redundant objectives are identified. A good
review of such approaches can be found in [1]. Despite the recent advances in
solving many-objective problems, there are a number of disadvantages related
to such approaches. In particular, the practical application of the hypervolume,
which has nice mathematical properties, is limited due to the high computational
cost. The use of a scalarizing fitness assignment necessitates a set of weight vec-
tors to be provided in advance, being not always an easy task especially for high
dimensions. The use of preference information during the search allows to find
only certain regions of the Pareto front, whereas dimensionality reduction tech-
niques are only suitable for problems having redundant objectives. Thus, the
need for efficient and self-adaptive methodologies persists.

In this work, we focus on improving the scalability of Pareto-dominance based
algorithms and argue that a clustering-based diversity maintenance can be suc-
cessfully used for solving many-objective problems. For this purpose, we pro-
pose to perform a transformation on objective vectors, aimed at reducing the

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 538–547, 2014.
c© Springer International Publishing Switzerland 2014

Clustering-Based Selection for Evolutionary Many-Objective Optimization 539

distances between solutions in high-dimensional spaces. So that a clustering can
group those solutions, which are distant in the original space but can be viewed
as representatives of similar regions of the fitness landscape. The necessary se-
lection pressure is provided by minimizing the distances of population members
to a reference point.

The remainder of this paper is organized as follows. Section 2 describes an evo-
lutionary algorithm with the proposed selection scheme. Section 3 presents the
results of a comparison study and discusses variants of the suggested selection.
Section 4 concludes the work and outlines further research opportunities.

2 Algorithm

In the following, we present an evolutionary many-objective optimization algo-
rithm with clustering-based selection (EMyO/C), considering an optimization
problem of the form:

minimize:
x∈Ω⊂Rn

f(x) = (f1(x), f2(x), . . . , fm(x))T, (1)

where m - is the number objective and n - is the number of variables.
EMyO/C reflects a general framework of an evolutionary algorithm with the

(μ + λ) selection scheme, where the mating selection, variation and environ-
mental selection are successively applied during the generation. In EMyO/C, an
initial population is randomly generated and a reference point, z, initialized as:
∀j ∈ {1, . . . ,m} : zj = min1≤i≤μ fj(xi). In the mating selection, each popula-
tion member is selected to the mating pool. The variation procedure relies on
the DE operator, adopting the idea presented in [2]. For each individual in the
mating pool, two different individuals are randomly selected. A difference vec-
tor, v, is calculated using these individuals. To introduce additional variation,
the polynomial mutation [3] is applied on the difference vector, v. The resulting
difference vector is restricted as follows:

vj =

⎧⎨⎩
−δj if vj < −δj
δj if vj > δj
vj otherwise

(2)

where
δj =

ubj − lbj
2

∀j ∈ {1, . . . , n}, (3)

ubj and lbj are the upper and lower bounds of the j-th variable, respectively.
An offspring, x′, is generated by mutating the parent individual, x, as:

x′
j =
{

xj + vj if rand < CR
xj otherwise ∀j ∈ {1, . . . , n}. (4)

To ensure the offspring feasibility, it is repaired as:

x′
j = min{max{x′

j , lbj}, ubj} ∀j ∈ {1, . . . , n}. (5)

540 R. Denysiuk, L. Costa, and I.E. Santo

The resulting offspring, x′, is compared with its parent, x. If there is a difference
in at least one gene, then the offspring is evaluated and added to the offspring
population. Otherwise, two other individuals are selected from the mating pool,
and the above described steps - including computation of v, mutation restric-
tion, and creation of x′ - are performed until an individual different from x is
produced. This allows to avoid a situation in which the offspring identical to
its parent is evaluated and added to the population. It should be noted that
applying the polynomial mutation allows to produce new genotypes even when
the whole population is converged to a single solution. Further, each time an off-
spring is evaluated, the components of the reference point are updated if there
are smaller objective values. The environmental selection performs the nondom-
inated sorting procedure [3] and selects a new population from the multiset of
parents and offspring, according to the rank values. In a case where the last ac-
cepted front, Fl, cannot be completely accommodated, the truncation procedure
is performed to select k best individuals as follows.

1. For each individual in Fl, the Euclidean distance in the objective space to
the reference point, z, is calculated.

2. For each individual in Fl, the objectives are translated as:

fi = fi − zi ∀i ∈ {1, . . . ,m}. (6)

3. Each individual in Fl is projected onto the unit hyperplane as:

fi = fi/

m∑
j=1

fj ∀i ∈ {1, . . . ,m}. (7)

4. Using projected individuals, k clusters are formed as follows:
Step 1 Initially, each individual is treated as a separate cluster
C = {C1, C2, . . . , C|Fl|}.
Step 2 If |C| = k, stop. Otherwise, go to Step 3.
Step 3 For each pair of clusters, the distance between two clusters, d12,
is calculated as:

d12 =
1

|C1||C2|
∑

i∈C1,j∈C2

d(i, j),

where d(i, j) is the Euclidean distance between individuals i and j.
Step 4 The pair of clusters having the smallest distance is merged.
Go to Step 2.

5. In each cluster, a representative is selected and added to the new population,
where a cluster representative is an individual having the smallest distance
to the reference point.

It should be noted that the proposed selection procedure does not require
any additional parameter, being completely adaptive and easy to implement.
The complexity of the clustering algorithm is mainly governed by the number of
points in Fl, whereas it is polynomial in the number of objectives. This feature
is especially attractive to solve problems with a large number of objectives.

Clustering-Based Selection for Evolutionary Many-Objective Optimization 541

3 Performance Assessment

To validate EMyO/C, it is compared with IBEA [4], MOEA/D [5], MSOPS [6],
MSOPS2 [7], and HypE [8] on the DTLZ test suite [9] with 30 decision variables
having between 2 and 20 objectives.

3.1 Performance Indicators and Statistical Comparison

The outcomes produced by the algorithms are assessed using the unary additive
epsilon (ε+) indicator [10], the hypervolume (HV) indicator [11], and the in-
verted generational distance (IGD) indicator [12]. To calculate the ε+ and IGD
indicators, for all problems, 1,000 uniformly distributed points along the Pareto
front are generated. To calculate the HV indicator, the nadir point is used as a
reference point. Solutions that do not dominate the nadir point are discarded.
If there is no solution dominating the nadir point, then the hypervolume of the
approximation set is equal to zero. Further, solutions used to calculate the hy-
pervolume are normalized using the ideal and nadir points. When the number of
objectives is more than 6 the hypervolume is approximated using 106 uniformly
sampled points, otherwise the hypervolume is computed exactly.

To provide the results with statistical confidence, the single-problem analysis
is performed using the Wilcoxon rank-sum test. The multiple-problem analysis
is performed on algorithms’ ranks using the Friedman test to determine whether
there is a significant difference among the results, and the Bonferroni proce-
dure for a post-hoc statistical analysis to detect concrete differences among the
algorithms [13]. All tests are performed at significance level of α = 0.05.

3.2 Experimental Setup

EMOy/C is implemented and tested in JavaTM, whereas IBEA and HypE are
used within the PISA [14] framework1, MOEA/D is used within the jMetal [15]
framework2, and the implementations of MSOPS and MSOPS2 are taken from
the author’s web page3.

For each algorithm, 30 independent runs are performed on each problem with
a population size of μ = 300, running for 500 generations. The other parameter
settings for EMyO/C are: CR = 0.15, ηm = 20, and pm = 1/n (n is the num-
ber of decision variables). The other algorithms use the default settings, except
common parameters with EMyO/C, which use the same values to guarantee a
fair comparison.

3.3 Performance Comparison

Table 1 presents the median values of the quality indicators and the statistical
comparison of the algorithms. In the table, the small values of the ε+ indicator
1 available at http://www.tik.ee.ethz.ch/pisa
2 available at http://jmetal.sourceforge.net
3 available at http://code.evanhughes.org

542 R. Denysiuk, L. Costa, and I.E. Santo

Table 1. Median values of the epsilon (the lower the better), hypervolume (the higher
the better), and IGD (the lower the better) indicators after 30 runs. The superscripts
1, 2, 3, 4, 5, and 6 indicate whether the respective algorithm performs significantly
better than EMyO/C, IBEA, MOEA/D, MSOPS, MSOPS2, and HypE, respectively.

EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE

2-objectives

DTLZ1
ε+ 0.0022,3,4,5,6 0.213,4,5 7.6965 6.8435 14.489 0.0342,3,4,5

HV 0.4982,3,4,5,6 0.1363,4,5 0 0 0 0.4392,3,4,5

IGD 0.0012,3,4,5,6 0.1213,4,5 10.0245 9.0995 19.336 0.022,3,4,5

DTLZ2
ε+ 0.0052,4,6 0.0064,6 0.0021,2,4,5,6 0.0076 0.0041,2,4,6 0.046

HV 0.2134,6 0.2134,6 0.2131,2,4,6 0.2126 0.2131,2,3,4,6 0.203

IGD 0.0022,4,6 0.0056 0.0011,2,4,5,6 0.0022,6 0.0011,2,4,6 0.009

DTLZ3
ε+ 0.0052,3,4,5,6 0.3413,4,5 22.4785 28.0015 40.545 0.122,3,4,5

HV 0.2132,3,4,5,6 0 0 0 0 0.132,3,4,5

IGD 0.0022,3,4,5,6 0.3973,4,5 27.5794,5 37.675 48.984 0.0612,3,4,5

DTLZ4
ε+ 0.0052,4,5,6 0.0054,5,6 0.0021,2,4,5,6 0.0095,6 0.265 0.0265

HV 0.2134,5,6 0.2131,4,5,6 0.2131,2,4,5,6 0.2125,6 0.051 0.2085

IGD 0.0022,4,5,6 0.0055 0.0011,2,4,5,6 0.0022,5,6 0.226 0.0055

DTLZ7
ε+ 0.0062,4,5,6 0.0185,6 0.0041,2,4,5,6 0.0112,5,6 3.77 0.0935

HV 0.3362,3,4,5,6 0.3354,5,6 0.3362,4,5,6 0.335,6 0 0.2935

IGD 0.0022,3,4,5,6 0.0074,5,6 0.0022,4,5,6 0.0085,6 2.945 0.1365

3-objectives

DTLZ1
ε+ 0.0212,3,4,5,6 0.2763,4,5,6 9.3995 4.0253,5 100.495 1.1873,4,5

HV 0.8062,3,4,5,6 0.2653,4,5,6 0 0 0 0

IGD 0.0122,3,4,5,6 0.1873,4,5,6 14.4585 5.8843,5 133.662 1.333,4,5

DTLZ2
ε+ 0.0513,4,6 0.0471,3,4,6 0.0876 0.0663,6 0.0431,2,3,4,6 0.121

HV 0.4393,4,6 0.4411,3,4,6 0.4196 0.4373,6 0.4421,2,3,4,6 0.397

IGD 0.0322,3,4,6 0.0616 0.0392,6 0.0342,3,6 0.031,2,3,4,6 0.077

DTLZ3
ε+ 0.0532,3,4,5,6 0.473,4,5,6 20.9745 17.6455 244.304 6.7173,4,5

HV 0.4392,3,4,5,6 0 0 0 0 0

IGD 0.0332,3,4,5,6 0.5533,4,5,6 28.4435 27.7965 327.555 7.0023,4,5

DTLZ4
ε+ 0.0533,4,5,6 0.0471,3,4,5,6 0.0815,6 0.063,5,6 0.634 0.0985

HV 0.4373,4,5,6 0.4411,3,4,5,6 0.4255,6 0.4363,5,6 0.241 0.4145

IGD 0.0322,3,4,5,6 0.065,6 0.0392,5,6 0.0342,3,5,6 0.247 0.0635

DTLZ7
ε+ 0.0512,3,4,5,6 0.0573,4,5,6 0.1675,6 0.1323,5,6 5.044 0.4285

HV 0.3642,3,4,5,6 0.3613,4,5,6 0.3095,6 0.3123,5,6 0 0.235

IGD 0.0372,3,4,5,6 0.0923,4,5,6 0.1034,5,6 0.1585,6 3.277 0.375

5-objectives

DTLZ1
ε+ 0.0752,3,4,5,6 0.3253,4,5,6 7.6195,6 2.163,5,6 102.255 15.7155

HV 0.932,3,4,5,6 0.4093,4,5,6 0 0 0 0

IGD 0.0692,3,4,5,6 0.2433,4,5,6 11.5025,6 3.3443,5,6 159.717 18.4515

DTLZ2
ε+ 0.1443,4,6 0.1311,3,4,5,6 0.186 0.1593,6 0.1351,3,4,6 0.377

HV 0.7053,4,5,6 0.7251,3,4,5,6 0.6516 0.73,5,6 0.6963,6 0.343

IGD 0.1642,3,4,6 0.214,6 0.2032,4,6 0.2166 0.1591,2,3,4,6 0.408

DTLZ3
ε+ 0.1432,3,4,5,6 0.5843,4,5,6 16.6885,6 11.7243,5,6 325.935 32.8665

HV 0.7032,3,4,5,6 0 0 0 0 0

IGD 0.1642,3,4,5,6 0.713,4,5,6 20.8955,6 16.9463,5,6 464.898 32.4645

DTLZ4
ε+ 0.1443,4,5,6 0.131,3,4,5,6 0.1836 0.1583,6 0.1746 0.213

HV 0.7033,5,6 0.7271,3,4,5,6 0.6666 0.7023,5,6 0.6626 0.604

IGD 0.1682,3,4,5,6 0.213,4,6 0.2466 0.2293,6 0.182,3,4,6 0.253

DTLZ7
ε+ 0.2314,5,6 0.2574,5,6 0.2174,5,6 0.465,6 8.895 0.8335

HV 0.3233,4,5,6 0.3371,3,4,5,6 0.2714,5,6 0.1995 0 0.2174,5

IGD 0.2612,3,4,5,6 0.3853,4,5,6 0.4134,5,6 0.5185,6 4.913 0.6485

10-objectives

DTLZ1
ε+ 0.2122,3,4,5,6 0.3343,4,5,6 2.5475,6 1.1513,5,6 65.446 11.5615

HV 0.4843,4,5,6 0.7291,3,4,5,6 0 0 0 0

IGD 0.2723,4,5,6 0.3043,4,5,6 3.4785,6 1.7663,5,6 108.78 17.8755

DTLZ2
ε+ 0.2492,3,4,5,6 0.2593,5,6 0.2895,6 0.2593,5,6 0.3646 0.656

HV 0.9173,4,5,6 0.9231,3,4,5,6 0.8675,6 0.9113,5,6 0.8216 0.348

IGD 0.4422,3,4,6 0.4814,6 0.4542,4,6 0.496 0.4151,2,3,4,6 0.679

DTLZ3
ε+ 0.4112,3,4,5,6 0.6323,4,5,6 5.6285,6 6.0455,6 209.395 25.3395

HV 0.552,3,4,5,6 0 0 0 0 0

IGD 0.5472,3,4,5,6 0.8493,4,5,6 7.1384,5,6 8.7625,6 266.516 25.635

DTLZ4
ε+ 0.2673,5,6 0.2481,3,4,5,6 0.3226 0.273,5,6 0.2823,6 0.988

HV 0.9263,4,5,6 0.9311,3,4,5,6 0.8886 0.9163,5,6 0.8916 0

IGD 0.4953,4,5,6 0.4751,3,4,5,6 0.5656 0.5453,6 0.5213,4,6 1.087

DTLZ7
ε+ 0.7272,3,4,5,6 0.7914,5,6 0.762,4,5,6 0.8265,6 13.077 0.8325

HV 0.0195 0.1831,3,4,5,6 0.0225 0.0331,3,5 0 0.1121,3,4,5

IGD 0.9473,4,5,6 0.973,4,5,6 1.0214,5,6 1.6225 7.274 1.0634,5

Clustering-Based Selection for Evolutionary Many-Objective Optimization 543

EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE

15-objectives

DTLZ1
ε+ 0.3455,6 0.3364,5,6 0.1361,2,4,5,6 0.4245,6 21.212 5.2765

HV 0.0075,6 0.8351,4,5,6 0.9181,4,5,6 0.0015,6 0 0

IGD 0.5864,5,6 0.321,4,5,6 0.211,2,4,5,6 0.775,6 35.516 7.4955

DTLZ2
ε+ 0.312,3,5,6 0.3485,6 0.3322,5,6 0.3142,3,5,6 0.376 0.646

HV 0.9663,4,5,6 0.9681,3,4,5,6 0.9065,6 0.9483,5,6 0.8116 0.515

IGD 0.6092,4,6 0.6626 0.5231,2,4,6 0.6132,6 0.5331,2,4,6 0.752

DTLZ3
ε+ 0.3962,3,4,5,6 0.6674,5,6 0.5012,4,5,6 3.1175,6 65.966 11.8385

HV 0.822,3,4,5,6 0 0.7012,4,5,6 0.0012 0.0012 0.0012

IGD 0.6672,4,5,6 0.9394,5,6 0.6922,4,5,6 4.9075,6 76.096 11.6915

DTLZ4
ε+ 0.3343,4,5,6 0.3151,3,4,5,6 0.3696 0.3483,5,6 0.3616 1.055

HV 0.9782,3,4,5,6 0.9733,4,5,6 0.956 0.9573,6 0.9553,6 0

IGD 0.6823,4,5,6 0.6511,3,4,5,6 0.6956 0.7036 0.6986 1.275

DTLZ7
ε+ 0.7722,3,4,5,6 3.6255 0.7932,4,5,6 0.8292,5,6 14.944 0.8412,5

HV 0.0015 0.0831,3,4,5,6 0.0011,5 0.0161,3,5,6 0 0.0131,3,5

IGD 1.4192,4,5 1.574,5 1.4352,4,5 3.3335 7.372 1.4122,3,4,5

20-objectives

DTLZ1
ε+ 0.1112,4,5,6 0.3635,6 0.0631,2,4,5,6 0.262,5,6 2.239 1.751

HV 0.6974,5,6 0.8024,5,6 0.9971,2,4,5,6 0.3635,6 0 0

IGD 0.1872,4,5,6 0.3514,5,6 0.1421,2,4,5,6 0.435,6 3.251 2.77

DTLZ2
ε+ 0.3832,6 0.4346 0.3321,2,5,6 0.3371,2,5,6 0.3591,2,6 0.638

HV 0.983,4,5,6 0.9813,4,5,6 0.8995,6 0.953,5,6 0.8136 0.559

IGD 0.72,6 0.7816 0.6071,2,4,5,6 0.651,2,6 0.6331,2,6 0.813

DTLZ3
ε+ 0.4072,4,5,6 0.994,5,6 0.3792,4,5,6 2.0485 8.54 3.0935

HV 0.9752,3,4,5,6 0.0164,5,6 0.832,4,5,6 0 04 05

IGD 0.7022,4,5,6 0.9934,5,6 0.6881,2,4,5,6 2.8165 13.802 2.865

DTLZ4
ε+ 0.44,5,6 0.3761,4,5,6 0.3851,4,5,6 0.4065,6 0.4266 0.927

HV 0.992,3,4,5,6 0.9873,4,5,6 0.9696 0.9696 0.9723,4,6 0.01

IGD 0.7934,5,6 0.7591,3,4,5,6 0.7721,4,5,6 0.7985,6 0.8076 1.173

DTLZ7
ε+ 0.7952,3,4,5,6 10.519 0.8052,4,5 0.8392,5 11.53 0.8032,4,5

HV 0.001 0.0291,3,4,5,6 0.0011,5 0.0011,3,5 0.0011 0.0011,3,5

IGD 1.8272,4,5 3.2044,5 1.8022,4,5 3.806 3.892 1.7651,2,3,4,5

suggest that approximation sets produced by EMyO/C are relatively close to
the true Pareto fronts. The HV values for EMyO/C are always greater than
zero, suggesting that EMyO/C generates solutions being within the bounds of
the Pareto fronts. Although the IGD indicator is non-Pareto compliant, the
small values of IGD indicate the closeness to the Pareto front and adequate
distributions of approximations obtained by EMyO/C.

From Table 1, it can be seen that EMyO/C dominates the other algorithms
regarding the quality indicators on DTLZ1,3,7 problems with up to 10 objec-
tives, besides IBEA and MOEA/D that give better results with respect to the ε+
and HV indicators on DTLZ7 in some dimensions. DTLZ1 and DTLZ3 are mul-
timodal problems with the linear and concave Pareto fronts, whereas the main
characteristic of DTLZ7 is the disconnected Pareto front. Thus, EMyO/C ap-
pears to be capable of dealing with such problem properties in high-dimensional
objective spaces. The competitive results for these problems in 15 and 20 di-
mensions confirm these observations. DTLZ2 and DTLZ4 do not present much
difficulties in terms of the convergence. The best indicator values for these prob-
lems in dimensions higher than 3 are obtained by IBEA and MOEA/D, apart
DTLZ2 with 5 and 10 objectives, being MSOPS the best algorithm with re-
spect to IGD. The superior performance of IBEA regarding the ε+ and HV
indicators is not surprising, since its selection procedure relies on the concept of
ε-dominance. On the other hand, MOEA/D uses a set of uniformly distributed
weight vectors that contributes to the high selection pressure and the uniform

544 R. Denysiuk, L. Costa, and I.E. Santo

Table 2. Mean ranks achieved by different algorithms. The superscripts 1, 2, 3, 4,
5, and 6 indicate whether the respective algorithm performs significantly better than
EMyO/C, IBEA, MOEA/D, MSOPS, MSOPS2, and HypE, respectively.

Indicator EMyO/C IBEA MOEA/D MSOPS MSOPS2 HypE
ε+ 1.734,5,6 2.635,6 3.105,6 3.505 5.27 4.87
HV 2.083,4,5,6 2.103,4,5,6 3.63 3.82 4.67 4.70
IGD 1.734,5,6 2.975,6 2.905,6 3.97 4.77 4.67

distribution of solutions. Nevertheless, EMyO/C provides a highly competitive
performance on all the considered problems.

The overall performance of the algorithms is compared by calculating ranks on
each problem with respect to the quality indicators. It should be noted that test-
ing DTLZ1-4,7 problems in 6 different dimensions there is a total of 30 distinct
problems. Table 2 presents the mean ranks and statistical comparison. From the
table, it can be seen that EMyO/C has the best mean ranks regarding all three
indicators, though no difference is detected between EMyO/C and IBEA, as
well as there is no difference between EMyO/C and MOEA/D regarding the ε+
and HV indicators. These results emphasize the competitiveness of the proposed
approach.

3.4 Selection on Different Shapes

We also investigate a generalized EMyO/C, which consists in controlling the
shape of Fl for performing the clustering. It can be defined by the following
transformation:

f̄i = fp
i ∀i ∈ {1, . . . ,m}, (8)

where p ∈ (0, inf) is a parameter controlling the shape, fi is the value obtained
in (7), and f̄i ∈ (0, 1) is the resulting value. For p > 1 solutions in Fl are
projected onto a convex shape, for p < 1 solutions in Fl are projected onto a
concave shape. According to p, we define three variants of EMyO/C:

1. EMyO/C-linear (p = 1).
2. EMyO/C-convex (p = 2).
3. EMyO/C-concave (p = 0.5).

We run these three variants with the aforementioned settings, including an EMO
algorithm referred as EMO/C. The difference between EMyO/C and EMO/C is
that the latter performs clustering on the original objective vectors.

Figure 1 shows the graphical representation of the median values of the quality
indicators obtained by the EMyO/C variants and EMO/C on the benchmark
functions with varying dimensions. From the figure, it can be seen that EMO/C
performs poorly on high-dimensional problems, having zero hypervolume and
large values of the ε+ and IGD indicators. All of the EMyO/C variants have
quite similar performance on DTLZ2,4,7. However, the three variants perform
differently on multimodal problems. EMyO/C-concave works better on DTLZ1,

Clustering-Based Selection for Evolutionary Many-Objective Optimization 545

2 3 5 10 15 20
0

0.2

0.4

0.6

dimension

ep
si

lo
n

20

60

100

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(a) DTLZ1 (the lower the better)

2 3 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimension

hy
pe

rv
ol

um
e

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(b) DTLZ1 (the higher the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

dimension

IG
D

50

100

150

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(c) DTLZ1 (the lower the better)

2 3 5 10 15 20
0

0.5

1

1.5

dimension

ep
si

lo
n

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(d) DTLZ2 (the lower the better)

2 3 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimension

hy
pe

rv
ol

um
e

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(e) DTLZ2 (the higher the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

dimension

IG
D

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(f) DTLZ2 (the lower the better)

10

200

400

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

dimension

ep
si

lo
n

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(g) DTLZ3 (the lower the better)

2 3 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimension

hy
pe

rv
ol

um
e

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(h) DTLZ3 (the higher the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

dimension

IG
D

400

500

600

700

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(i) DTLZ3 (the lower the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

dimension

ep
si

lo
n

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(j) DTLZ4 (the lower the better)

2 3 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimension

hy
pe

rv
ol

um
e

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(k) DTLZ4 (the higher the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

dimension

IG
D

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(l) DTLZ4 (the lower the better)

2 3 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

dimension

ep
si

lo
n

6

8

10

12
EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(m) DTLZ7 (the lower the better)

2 3 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

dimension

hy
pe

rv
ol

um
e

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(n) DTLZ7 (the higher the better)

2 3 5 10 15 20
0

0.5

1

1.5

2

2.5

3

dimension

IG
D

EMyO/C−linear
EMyO/C−convex
EMyO/C−concave
EMO/C

(o) DTLZ7 (the lower the better)

Fig. 1. Performance comparison of EMyO/C-linear, EMyO/C-convex, EMyO/C-
concave, and EMO/C on the DTLZ1-4,7 test problems. The plots present the median
values of the epsilon (left-hand side), hypervolume (center), and IGD (right-hand side)
indicators over 30 runs.

546 R. Denysiuk, L. Costa, and I.E. Santo

Table 3.Mean ranks achieved by the EMyO/C variants and EMO/C. The superscripts
1, 2, 3, and 4 indicate whether the respective algorithm performs significantly better
than EMyO/C-linear, EMyO/C-convex, EMyO/C-concave, and EMO/C, respectively.

Indicator EMyO/C-linear EMyO/C-convex EMyO/C-concave EMO/C
ε+ 1.632,4 2.90 2.074 3.40
HV 1.872,4 2.924 1.502,4 3.72
IGD 1.472,3,4 2.574 2.434 3.53

whereas EMyO/C-linear and EMyO/C-concave produce different performance in
different dimensions. The three variants perform better on DTLZ1 with m = 20
than with m = 15 due to the smaller number of distance parameters in the
former. The obtained results reveal that performing the clustering on different
shapes not only affects the distribution of solutions but the convergence and
entire performance of the algorithm. Thus, controlling the parameter p can be
beneficial for search.

Finally, Table 3 presents the mean ranks and statistical comparison for the
performed experiments. It can be seen that the EMyO/C variants are statisti-
cally better than EMO/C regarding all three indicators, except for EMyO/C-
convex concerning the ε+ indicator. EMyO/C-linear gives the best results with
respect to the ε+ and IGD indicators, whereas EMyO/C-concave performs the
best with regard to the HV indicator.

4 Conclusions

In this paper, we proposed a clustering-based selection scheme to guide the
search in high-dimensional objective spaces. The experimental results obtained
on problems with up to 20 dimensions reveal that the proposed scheme is capable
of dealing with many-objective problems, producing a highly competitive per-
formance when compared with the state-of-the-art algorithms. Furthermore, we
discussed different variants of the proposed approach, showing their advantages
and the relevance of the proposed approach.

As future work, we intend to extend the proposed selection to the domain
of GA-based algorithms, developing an effective parent selection mechanism.
Further, the self-adaptation of the parameter controlling the shape is another
promising direction, as well as calculating the distances in different spaces can
bring new opportunities.

Acknowledgements. This work has been supported by FCT Fundação para
a Ciência e Tecnologia in the scope of the project: PEst-OE/EEI/UI0319/2014.

References

1. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: A short review. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2008 (2008)

Clustering-Based Selection for Evolutionary Many-Objective Optimization 547

2. Denysiuk, R., Costa, L., Esṕırito Santo, I.: Many-objective optimization using dif-
ferential evolution with variable-wise mutation restriction. In: Proceedings of the
Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 591–598
(2013)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

4. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In:
Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria,
J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS,
vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

5. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 13(2), 284–302 (2009)

6. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2003, pp. 2678–2684 (2003)

7. Hughes, E.J.: MSOPS-II: A general-purpose many-objective optimiser. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, pp.
3944–3951 (2007)

8. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

9. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multi-objective optimization. Technical Report 112, Swiss Federal Institute
of Technology, Zurich, Switzerland (2001)

10. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

11. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–304. Springer, Heidelberg (1998)

12. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in
multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Com-
putation 7(2), 174–188 (2003)

13. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study
on the CEC 2005 special session on real parameter optimization. Journal of Heuris-
tics 15(6), 617–644 (2009)

14. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A platform and pro-
gramming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

15. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimiza-
tion. Advances in Engineering Software 42(10), 760–771 (2011)

On the Impact of Multiobjective Scalarizing Functions

Bilel Derbel1,2, Dimo Brockhoff1, Arnaud Liefooghe1,2, and Sébastien Verel3

1 Inria Lille - Nord Europe, DOLPHIN project-team, France
2 Université Lille 1, LIFL, UMR CNRS 8022, France
3 Université du Littoral Côte d’Opale, LISIC, France

Abstract. Recently, there has been a renewed interest in decomposition-based
approaches for evolutionary multiobjective optimization. However, the impact of
the choice of the underlying scalarizing function(s) is still far from being well un-
derstood. In this paper, we investigate the behavior of different scalarizing func-
tions and their parameters. We thereby abstract firstly from any specific algorithm
and only consider the difficulty of the single scalarized problems in terms of the
search ability of a (1+λ)-EA on biobjective NK-landscapes. Secondly, combin-
ing the outcomes of independent single-objective runs allows for more general
statements on set-based performance measures. Finally, we investigate the corre-
lation between the opening angle of the scalarizing function’s underlying contour
lines and the position of the final solution in the objective space. Our analysis is
of fundamental nature and sheds more light on the key characteristics of multiob-
jective scalarizing functions.

1 Introduction

Multiobjective optimization problems occur frequently in practice and evolutionary
multiobjective optimization (EMO) algorithms have been shown to be well-applicable
for them—especially if the problem under study is nonlinear and/or derivatives of the
objective functions are not available or meaningless. Besides the broad class of Pareto-
dominance based algorithms such as NSGA-II or SPEA2, a recent interest in the so-
called decomposition-based algorithms can be observed. Those decompose the multi-
objective problem into a set of single-objective, ‘scalarized’ optimization problems. Ex-
amples of such algorithms include MSOPS [1], MOEA/D [2], and their many variants.
We refer to [3] for a recent overview on the topic. The main idea behind those algo-
rithms is to define a set of (desired) search directions in objective space and to specify
the scalarizing functions corresponding to these directions. The scalarizing functions
can then be solved independently (such as in the case of MSOPS), or in a dependent
manner (like in MOEA/D where the recombination and selection operators are allowed
to use information from the solutions maintained in neighboring search directions).

Many different scalarizing functions have been proposed in the literature, see e.g. [4]
for an overview. Well-known examples are the weighted sum and the (augmented)
weighted Chebychev functions, where the latter has an inherent parameter that con-
trols the shape of the lines of equal function values in objective space. Especially with
respect to decomposition-based EMO algorithms, it has been reported that the choice
of the scalarizing function and their parameters has an impact on the search process [3].
Moreover, it has been noted that adapting the scalarizing function’s parameters dur-
ing the search can allow improvement over having a constant set of scalarizing func-
tions [5]. Although several studies on the impact of the scalarizing function have been

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 548–558, 2014.
c© Springer International Publishing Switzerland 2014

On the Impact of Multiobjective Scalarizing Functions 549

conducted in recent years, e.g. [6], to the best of our knowledge, all of them investi-
gate it on a concrete EMO algorithm and on the quality of the resulting solution sets
when more than one scalarizing function is optimized (typically as mentioned above,
in a dependent manner). Thereby, the focus is not in understanding why those perfor-
mance differences occur but rather in observing them and trying to improve the global
algorithm. However, we believe that it is more important to first understand thoroughly
the impact of the choice of the scalarizing function for a single search direction be-
fore analyzing more complicated algorithms such as MOEA/D-like approaches with
specific neighboring structures, recombination, and selection operators. In this paper,
we fundamentally investigate the impact of the choice of the scalarizing functions and
their parameters on the search performance, independently of any known EMO algo-
rithm. Instead, we consider one of the most simple single-objective scalarizing search
algorithms, i.e., a (1 + λ)-EA with standard bit mutation, as an example of a local
search algorithm that optimizes a single scalarizing function, corresponding to a single
search direction in the objective space. Experiments are conducted on well-understood
bi-objective ρMNK-landscapes.

More concretely, we look experimentally at the impact of the parameters of a gen-
eralized scalarizing function (which covers the special cases of the weighted sum and
augmented Chebychev scalarizing functions) in terms of the position (angle/direction)
reached by the final points, as well as their quality with respect to the Chebychev func-
tion. We then consider how the opening of the cones that describe the lines of equal
scalarizing function values can provide a theoretical explanation for the impact of the
final position of the obtained solutions in objective space. We also investigate the result-
ing set quality in terms of hypervolume and ε-indicator if several scalarizing (1 + λ)-
EAs are run independently for different search directions in the objective space. Finally,
we conclude our findings with a comprehensive discussion of promising research lines.

2 Scalarizing Functions

We consider the maximization of two objectives f1, f2 that map search points x ∈ X
to an objective vector f(x) = (f1(x), f2(x)) = (z1, z2) in the so-called objective
space f(X). A solution x is called dominated by another solution y if f1(y) ≥ f1(x),
f2(y) ≥ f2(x), and for at least one i, fi(y) > fi(x) holds. The set of all solutions, not
dominated by any other, is called Pareto set and its image Pareto front.

Many ways of decomposing a multiobjective optimization problem into a (set of)
single-objective scalarizing functions exist, including the prominent examples of weigh-
ted sum (WS), weighted Chebychev (T), or augmented weighted Chebychev (Saug) [4].
For most of them, theoretical results, especially about which Pareto-optimal solutions
are attainable, exist [4,7] but they are typically of too general nature to allow for state-
ments on the actual search performance of (stochastic) optimization algorithms. In-
stead, we are here not interested in any particular scalarizing function, but rather in
understanding which general properties of them influence the search behavior of EMO
algorithms. We argue by means of experimental investigations that it is not the actual
choice of the scalarizing function or their parameters that makes the difference in terms
of performance, but rather the general properties of the resulting lines of equal function

550 B. Derbel et al.

Table 1. Overview of the considered scalarizing functions, and the corresponding angles of the
lines of equal function values with the standard Pareto dominance cone

scalar function parameters in Sgen opening angles reference

WS(z) = w1|z̄1 − z1| + w2|z̄2 − z2| α = 0, ε = 1 θ1 = arctan
(− w1

w2

)

θ2 = π
2 + arctan

(w1
w2

) [4, Eq. 3.1.1]

T(z) = max{λ1|z̄1 − z1|, λ2|z̄2 − z2|} α = 1, ε = 0 θ1 = 0
θ2 = π/2

[4, Eq. 3.4.2]

Saug(z) = T(z) + ε (|z̄1 − z1| + |z̄2 − z2|) α = 1,
w1 = w2 = 1

θ1 = arctan
(− ε

λ1+ε

)

θ2 = π
2 + arctan

(
ε

λ2+ε

) [4, Eq. 3.4.5]

Snorm(z) = (1 − ε)T(z) + εWS(z) α = 1 − ε,
wi = 1/λi

θ1 = arctan(− εw1
(1−ε)λ2+εw2

)

θ2 = π
2 + arctan(εw2

(1−ε)λ1+εw1
)

here

values. To this end, we consider the minimization of the following general scalarizing
function that covers the special cases of WS1, T, and Saug functions:

Sgen(z) = α ·max {λ1 · |z̄1 − z1|, λ2 · |z̄2 − z2|}+ε (w1 · |z̄1 − z1|+ w2 · |z̄2 − z2|)
where z = (z1, z2) is the objective vector of a feasible solution, z̄ = (z̄1, z̄2) a utopian
point, λ1, λ2, w1, and w2 > 0 scalar weighting coefficients indicating a search direction
in objective space, and α ≥ 0 and ε ≥ 0 parameters to be fixed. For more details about
the mentioned scalarizing functions and their relationship, we refer to Table 1.

In the following, we also consider a case of Sgen that combines WS and T with a
single parameter ε: the normalized Snorm(z) = (1− ε)T(z)+ εWS(z) where α = 1− ε
and ε ∈ [0, 1]. For optimizing in a given search direction (d1, d2) in objective space,
we follow [1,8] and set λi = 1/di.2 In addition, we refer to the direction angle as
δ = arctan(d1/d2). For the case of Snorm, we furthermore choose w1 = cos(δ) and
w2 = sin(δ) (thus, w2

1 + w2
2 = 1) for the weighted sum part in order to normalize

the search directions in objective space uniformly w.r.t. their angles. Though, in many
textbooks you can find statements like “ε has to be chosen small (enough)”, we do not
make such an assumption but want to understand which influence ε has on the finally
obtained solutions and how it introduces a trade-off between the Chebychev approach
and a weighted sum. For the question of how small ε should be chosen to find all Pareto-
optimal solutions in exact biobjective discrete optimization, we refer to [9].

As mentioned above, one important property of a scalarizing function turns out to be
the shape of its sets of equal function values, which are known for the WS, T, and Saug

functions [4]. However, no description of the equi-function-value lines for the general
scalarizing function Sgen has been given so far. We think that it is necessary to state
those opening angles explicitly in order to gain a deeper intuitive understanding of the
above scalarizing approaches and related concepts such as the R2 indicator [8] or more
complicated scalarizing algorithms such as MOEA/D [2]. Moreover, it allows us to in-
vestigate how a linear combination of weighted sum and Chebychev functions affect the
search behavior of decomposition-based algorithms. The following proposition, proven
in the accompanying report [10], states these opening angles θi between the equi-utility
lines and the f1-axis, see also Fig. 2 for some examples.

1 Contrary to the standard literature, our formalization assumes minimization and we therefore
have included the utopian point z̄ that is typically assumed to be z̄ = (0, 0) for minimization.

2 The pathologic cases of directions parallel to the coordinates are left out to increase readability.

On the Impact of Multiobjective Scalarizing Functions 551

Table 2. Parameter setting

scalarizing functions ρMNK-landscapes (1 + λ)-EA
z̄ = (1, 1) ρ ∈ {−0.9,−0.8, . . . , 0.0, . . . , 0.9} λ = n
δ = j · 10−2 · π

2 , j ∈ [[1, 99]] m = 2 bit-flip rate = 1/n
Snorm: ε = � · 10−2; � ∈ [[0, 100]] n = 128 stopped after
Saug: ε = � · 10−k; � ∈ [[0, 10]]; k ∈ [[−1, 2]] k = 4 n iterations

Proposition 1. Let z̄ be a utopian point, λ1, λ2, w1, and w2 > 0 scalar weighting coef-
ficients, α ≥ 0 and ε ≥ 0, where at least one of the latter two is positive. Then, the polar
angles between the equi-utility lines of Sgen and the f1-axis are θ1 = arctan(− εw1

αλ2+εw2
)

and θ2 = π
2 + arctan(εw2

αλ1+εw1
).

3 Experimental Design

This section presents the experimental setting allowing us to analyze the scalarizing ap-
proaches introduced above on bi-objective ρMNK-landscapes. The family of
ρMNK-landscapes constitutes a problem-independent model used for constructing mul-
tiobjective multimodal landscapes with objective correlation [11]. A bi-objective
ρMNK-landscape aims at maximizing an objective function vector f : {0, 1}n →
[0, 1]2. A correlation parameter ρ defines the degree of conflict between the objectives.
We investigate a random instance for each parameter combination given in Table 2.

We investigate the two scalarizing functions Snorm and Saug of Table 1 with different
parameter settings for the weighting coefficient vector and the ε parameter, as reported
in Table 2. In particular, the WS (resp. T) function corresponds to Snorm with ε =
1 (resp. ε = 0). The set of weighting coefficient direction angles δj with respect to
the f1-axis (j ∈ {1, . . . , 99}) are uniformly defined with equal distances in the angle
space. For both functions, we set λ1 = 1/ cos(δj), and λ2 = 1/ sin(δj). We recall
that for Snorm, wi = 1/λi, and for Saug, wi = 1. To evaluate the relative and the joint
performance of the considered scalarizing functions, we investigate the dynamics and
the performance of a randomized local search, a simple (1 + λ)-EA. After initially
drawing a random solution, at each iteration, λ offspring solutions are generated by
means of an independent bit-flip mutation, where each bit of the parent solution is
independently flipped with a rate 1/n. The solution with the best (minimum) scalarizing
function value among parent and offspring is chosen for the next iteration. For each
configuration, 30 independent executions are performed. Due to space limitations, we
shall only show a representative subset of settings allowing us to state our findings.
More exhaustive results can be found in [10].

4 Single Search Behavior

This section is devoted to the study of the optimization paths followed by single in-
dependent (1 + λ)-EA runs for each direction angle δ and parameter ε of a scalarized
problem. In particular, we study the final solution sets reached by the (1 + λ)-EA in
terms of diversity and convergence and give a sound explanation on how the search
behaviour is related to the lines of equal function values of the scalarizing functions.

552 B. Derbel et al.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0 π/8 π/4 3π/8 π/2

F
in

al
 a

ng
le

 φ

Direction Angle δ

ε=0
ε=0.7

ε=0.4
ε=0.8

ε=0.5
ε=0.9

ε=0.6
ε=1

 0

 0.2

 0.4

 0.6

 0.8

 1

ε
∈

 [0
,1

]

 10

 100

 1000

0 π/8 π/4 3π/8 π/2

A
vg

. F
itn

es
s

D
ev

ia
tio

n
(%

)

Direction angle δ

ε=0
ε=0.7

ε=0.4
ε=0.8

ε=0.5
ε=0.9

ε=0.6
ε=1

 0

 0.2

 0.4

 0.6

 0.8

 1

ε
∈

 [0
,1

]

 6

 7

 8

 9

 10

 11

 0.5 0.6 0.7 0.8 0.9 1 1.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 π/8 π/4 3π/8 π/2

E
ps

ilo
n

ε

Direction angle δ

ρ = -0.7

ρ = 0.0

ρ = 0.7

Fig. 1. Left: Angles of final solutions for Snorm and ρ = −0.7 as a function of δ. Middle: Average
deviation to best as a function of weight vector for Snorm and ρ = −0.7. Right: ε-values providing
the smallest deviation for every fixed direction in Snorm and ρ ∈ {−0.7, 0.0, 0.7}.

4.1 Diversity: Final Angle

In Fig. 1 (Left), we examine the average angle of the final solution reached by the
algorithm with respect to the f1-axis using Snorm. The final angle of solution x is defined
as φ(x) = arctan(f2(x)/f1(x)). It informs about the actual direction followed by
the search process. We can see that the final solutions are in symmetric positions with
respect to direction angle π/4. This is coherent with the symmetric nature of ρMNK-
landscapes [11]. For WS (ε = 1), every single direction angle infers a different final
angle. For T (ε = 0), the extreme direction angles end up reaching ‘similar’ regions of
the objective space. These regions actually correspond to the lexicographically optimal
points of the Pareto front, which is because of the choice of the utopian point that lies
beyond them. Without surprise, we can also see that T and WS do not always allow to
approach the same parts of the Pareto front when using the same direction angle.

When varying ε for a fixed δ, the search process is able to span a whole range of
positions that are achieved by either T or WS but for variable δ values. Actually, when
considering the direction angle being in the middle (i.e. δ ≈ π/4), the choice of ε does
not substantially impact the search direction—because T and WS do allow to move
to similar regions in this case. However, as the direction angle goes away from the
middle, the influence of ε grows significantly; and the search direction is drifting in a
whole range of values. This indicates that the choice of δ is not the only feature that
determines the final angle but also the choice of ε highly matters: For some specific
ε-values, the direction angles allow to distribute final angles fairly between the two
lexicographically optimal points of the Pareto front—in the sense that each direction
angle is inferring a different final angle, just like what we observe for WS. For some
other ε-values, however, it may happen that the final angles are similar for two different
direction angles. In particular, this is the case for large ε-values in Snorm, for which WS
has more impact than T. We remark that equivalent conclusions can be drawn when
examining Saug, which we do not detail here due to lack of space.

The distribution of final directions is tightly related to the diversity of solutions com-
puted by different independent single (1+λ)-EAs. As it will be discussed later, this is
of crucial importance from a multiobjective standpoint, since diversity in the objective
space is crucial to approach different parts of the Pareto front.

On the Impact of Multiobjective Scalarizing Functions 553

4.2 Convergence: Relative Deviation to Best

In the following, we examine the impact of the scalarizing function parameters on the per-
formance of the (1+λ)-EA in terms of convergence to the Pareto front. For that purpose,
we compute, for every direction angle δ, the best-found objective vector z�δ,T correspond-
ing to the best (minimum) fitness value with respect toT, over all experimented parameter
combinations and over all simulations we investigated. For both functionsSnorm andSaug,
we consider the final objective vector z obtained for every direction angle δ and every
ε-value. We then compute the relative deviation of z with respect to z�δ,T, which we define
as follows: Δ(z) = (T(z)−T(z�δ,T))/T(z

�
δ,T). Notice that this relative deviation factor

is computed with respect to the T function, which is to be viewed as a reference measure
of solution quality. This value actually informs about the performance of the (1+λ)-EA
for a fixed direction angle, but variable ε-values.

In Fig. 1 (Middle), we show the average relative deviation to best as a function of
direction angles (δ) for different ε-values. To understand the obtained results, one has
to keep in mind the results discussed in the previous section concerning the final angles
inferred by a given parameter setting. In particular, since WS and T do not infer similar
final angles, the final computed solutions lay in different regions of the objective space.
Also, for the extreme direction angles, different ranges of ε imply different final angles.
Thus, it is with no surprise that the average relative deviation to best can be substantial
in such settings. However, the situation is different when considering direction angles in
the middle (δ ≈ π/4). In fact, we observe that for such a configuration, the ε-value does
not have a substantial effect on final angles, i.e., final solutions lie in similar regions of
the objective space. Hence, one may expect that the search process has also the same
performance in terms of average deviation to best. This is actually not the case since
we can observe that the value of ε has a significant impact on the relative deviation
for the non-extreme direction angles. To better illustrate this observation, we show, in
Fig. 1 (Right), the ε-value providing the minimum average relative deviation to best as
a function of every direction angle. We clearly see that the best performances of the
(1 + λ)-EA for different direction angles are not obtained with the same ε-value.

4.3 Understanding the Impact of the Opening Angle

In this section, we argue that the dynamics of the search process observed previously
is rather independent of the scalarizing function under consideration or its parameters.
Instead, we show that the search process is guided by the positioning of the lines of
equal function values in the objective space—described by the opening angle, i.e., the
angle between the line of equal function values and the f1-axis (cf. Proposition 1).

Fig. 2 shows three typical exemplary executions of the (1 + λ)-EA in the objective
space for different parameter settings. The typical initial solution maps around the point
z = (0.5, 0.5) in the objective space, which is the average objective vector for a random
solution of ρMNK-landscapes. The evolution of the current solution can be explained
by the combination of two effects. The first one is given by the independent bit-flip mu-
tation operator, that produces more offspring in a particular direction compared to the
other ones, due to the underlying characteristics of the ρMNK-landscape under consid-
eration. The second one is given by the lines of equal function values, i.e., the current

554 B. Derbel et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128 0.3

 0.4

 0.5

 0.6

 0.7

 0.3 0.4 0.5 0.6 0.7

f2

f1

Iter=1
Iter=2

Iter=4
Iter=8

Iter=16
Iter=32

Iter=64
Iter=128

Fig. 2. Exemplary runs of the (1 + λ)-EA for different direction angles δ (straight line) and
different ε-values (Snorm, ρ = −0.7). Shown are the best known Pareto front approximation, the
offspring at some selected generations, the evolution of the parent, and the lines of equal function
values. Left: ε = 0, δ = 3

10
· π

2
. Middle: ε = 1, δ = 3

10
· π

2
. Right: ε = 0.6, δ = 7

10
· π

2
.

π/8

π/4

3π/8

-π/2 -3π/8 -π/4 -π/8 0

F
in

al
 a

ng
le

 φ

Opening θ1

0

π/8

π/4

δ
∈

 [0
,π

/4
]

3π/16

π/4

5π/16

-π/2 -3π/8 -π/4 -π/8 0

F
in

al
 a

ng
le

 φ

Opening θ1

0

π/8

π/4

δ
∈

 [0
,π

/4
]

π/8

3π/16

π/4

5π/16

3π/8

π/8 3π/16 π/4 5π/16 3π/8

F
in

al
 a

ng
le

 φ
: S

no
rm

Final angle φ:Saug

δ = π/16

δ = π/8

δ = 3 π/16

δ = π/4

δ = 5 π /16

δ = 3 π /8

δ = 7 π /16

Fig. 3. Left (resp. Middle): scatter plots showing final angle φ(ε) and opening θ1(ε) for ρ = −0.7
and Snorm (resp. Saug). Every color is for a fixed δ and variable ε. Right: Scatter plot showing
(φ(Snorm), φ(Saug)).

solution moves perpendicular to the iso-fitness lines, following the gradient direction
in the objective space. We can remark that the search process is mainly guided by the
lower part of the cones of equal function values when the direction is above the initial
solution, and vice versa. When the direction angle δ is smaller (resp. larger) than π/4,
the dynamics of the search process are better captured by the opening angle θ1 (resp. θ2),
defined between the equi-fitness lines and the f1-axis. Geometrically, the optimal solu-
tion with respect to a scalarizing function should correspond to the intersection of one
of the ‘highest’ lines of equal fitness values in the gradient direction and the feasible
region of the objective space. Although the above description is mainly intuitive, a more
detailed analysis can support this general idea.

Let us focus on the influence of the opening angle θ1 when the direction angle δ is
smaller than π/4 (similar results hold for δ > π/4 and θ2). Fig. 3 shows the scatter
plots of the final angle φ as a function of the opening angle θ1 for different direction
angles δ ∈ [0, π/4]. A scatter plot gives a set of values (θ1(ε), φ(ε)) for the ε-values
under study. From Proposition 1, for a given direction angle δ, the opening angle θ1

belongs to the interval [δ − π/2, 0] for Snorm, and to the interval [−π/4, 0] for Saug.
Independently of the scalarizing function, when the direction angle is between 0 and
around 3π/16 (blue color), the value of φ is highly correlated with the opening angle
θ1. For such directions, a simple linear regression confirms this observation and allows
us to explain the relation between the opening angle and the final angle by means of the
following approximate equation: φ ≈ (c + π/4) + c · θ1, such that c equals 0.05, 0.2,
and 0.4 for ρ = −0.7, 0, and 0.7 respectively. We emphasize that this is independent

On the Impact of Multiobjective Scalarizing Functions 555

 0.03

 0.04

 0.05

 0.06

 0 0.2 0.4 0.6 0.8 1

H
yp

er
vo

lu
m

e
in

di
ca

to
r;

Epsilon

 1.05

 1.06

 1.07

 1.08

 1.09

 0 0.2 0.4 0.6 0.8 1

M
ul

tip
lic

at
iv

e
ep

si
lo

n
in

di
ca

to
r

Epsilon

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.2 0.4 0.6 0.8 1

H
yp

er
vo

lu
m

e
in

di
ca

to
r;

Epsilon

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 0 0.2 0.4 0.6 0.8 1

M
ul

tip
lic

at
iv

e
ep

si
lo

n
in

di
ca

to
r

Epsilon

Fig. 4. Column 1 and 3 (resp. 2 and 4) depict the hypervolume (resp. epsilon) indicators for scalar
function Snorm. Left (resp. right): objective correlations ρ = −0.7 (resp. ρ = 0.7).

of the definition of the scalarizing function, and depends mainly on the property of the
lines of equal function values. The previous equation tells us that the lines of equal fit-
ness values are guiding the search process following the gradient direction given by the
opening angle in the objective space. Fig. 3 (Right) shows that the obtained final angles
are equivalent when the opening angle is the same, even for different direction angles
and/or scalarizing functions. In fact, we observe that the final angles obtained are very
similar for the scalarizing functions Snorm and Saug if δ is the same for both functions
and the ε-values are chosen in order to have matching opening angles. Whatever the δ-
and ε-values, the points are close to the line y = x, which shows that independently of
the scalarizing function, the final angle is strongly correlated to the opening angle, and
not to a particular scalarizing function. Also, the opening of the lines of equal function
values have more impact on the dynamics of the search process than the direction an-
gle alone. In this respect, the opening angle should be considered as a key feature to
describe and understand the behavior of scalarizing search algorithms.

5 Global Search Behavior

In the previous section, we considered every single (1 + λ)-EA separately. However,
the goal of a general-purpose decomposition-based algorithm is to compute a set of
solutions approximating the whole Pareto front. In this section, we study the quality
of the set obtained when combining the solutions computed by different configurations
of the scalarizing functions. A natural way to do so is to use the same ε-value for all
direction angles. Fig. 4 illustrates the relative performance, in terms of hypervolume
difference and multiplicative epsilon indicators [12], when considering such a setting
and aggregating the solutions from the different weight vectors. The hypervolume ref-
erence point is set to the origin, and the reference set is the best-known approximation
for the instance under consideration.

Over all the considered ρMNK-landscapes, we found that the ε-values minimizing
both indicator-values correspond to those that allow to well distribute the final angles
among direction angles (cf. Fig. 1) independently of the considered scalarizing func-
tion. Some differences can however be observed depending on the considered indicator,
especially for the most correlated instances as illustrated in Fig. 4. To explain the differ-
ence of optimal ε-values between both indicators, we remark that the lexicographically
optimal regions of the Pareto front approximation have a higher impact on the hypervol-
ume indicator value, due to the setting of the reference point. For instance, for ρ = 0.7,
the smallest ε-values concentrate the final angles to the extreme of the Pareto front,

556 B. Derbel et al.

Table 3. Comparison of WS, T, and non-uniform Sε�

norm and Sε�

aug configured with ε-values giving
the best deviation w.r.t every direction. The number in braces shows the number of other algo-
rithms that statistically outperform the algorithm under consideration w.r.t. a given indicator and
a Mann-Whitney signed-rank statistical test with a p-value of 0.05 (the lower, the better).

Avg. hypervolume difference (×10−1) Avg. multiplicative epsilon

ρ WS T Sε�

norm Sε�

aug WS T Sε�

norm Sε�

aug

−0.7 0.353 (2) 0.434 (3) 0.324 (0) 0.307 (0) 1.057 (0) 1.075 (3) 1.059 (0) 1.057 (0)
0.0 0.418 (2) 0.458 (3) 0.357 (1) 0.322 (0) 1.056 (0) 1.084 (3) 1.062 (1) 1.064 (1)
0.7 0.391 (3) 0.350 (2) 0.303 (0) 0.292 (0) 1.044 (0) 1.062 (3) 1.047 (1) 1.047 (1)

which allows to obtain better results in terms of hypervolume. Contrarily, the epsilon
indicator values are better when the final angles are well-distributed around π/4.

Moreover, WS is found to be in general competitive with respect to other fixed ε-
values. This observation might suggest that WS is the best-performing parameter set-
ting, since every different direction angle leads to a different final angle. Nevertheless,
the diversity of final angles is not the only criterion that can explain quality. The effi-
ciency of the (1 + λ)-EA with respect to the single-objective problem implied by the
scalarizing function is also crucial. In Fig. 1, we observe that the ε-value exhibiting the
minimal average deviation to best is not necessarily the same for every direction. We
also observe that for direction angles in the middle of the weight space, the final angles
obtained for different ε-values can end up being very similar. Thus, it might be possible
that, by choosing different ε-values for different directions, one can find a configuration
for which final solutions are diverse, but also closest to the Pareto front. Indeed, we can
observe a significant difference between the non-uniform case where the scalarizing
function Snorm (or Saug) is configured with an ε providing the best deviation to best for
every direction, and the situation where ε is the same for all directions. As shown in
Table 3, such non-uniform configurations are both substantially better than T and also
competitive compared to WS. We only show the performance of the above non-uniform
configuration in order to illustrate how choosing different ε-values can improve the
quality of the resulting approximation set. However, this particular non-uniform con-
figuration might not be ‘optimal’. In other words, finding the ‘best’ parameter config-
uration in a setting where μ independent single (1 + λ)-EAs are considered, can itself
be formulated as an optimization problem with variables ε and δ; such that direction
angles in the optimal configuration might not necessarily be pairwisely different.

6 Open(ing) (Re)search Lines

We presented an extensive empirical study that sheds more light on the impact of scalar-
izing functions within decomposition-based evolutionary multiobjective optimization.
Our results showed that, given a weighting coefficient vector and a relative importance
of the weighted sum and the Chebychev term in the function, it is fundamentally the
opening of the lines of equal function values that explicitly guides the search towards a
specific region of the objective space. When combining multiple scalarizing search pro-
cesses to compute a whole approximation set, these lines play a crucial role to achieve
diversity. While our results are with respect to a rather simple setting where multi-
ple scalarizing search procedures are run independently, they make a fundamental step

On the Impact of Multiobjective Scalarizing Functions 557

towards strengthening the understanding of the properties and dynamics of more com-
plex algorithmic settings. It is our hope that the lessons learnt from our study can highly
serve to better tackle the challenges of decomposition-based approaches. They also rise
new interesting issues that were hidden by the complex design of well-established al-
gorithms. In the following, we identify a non-exhaustive number of promising research
directions that relate directly to our findings.

➊ Improving Existing Algorithms. Eliciting the best configuration to tackle a mul-
tiobjective optimization problem by decomposition can highly improve search perfor-
mance. As we demonstrated, similar regions can be achieved using different parameter
settings, and the performance could be enhanced by adopting non-uniform configura-
tions. One research direction would be to investigate how such non-uniform configu-
rations perform when plugged into existing approaches. To our best knowledge, there
exists no attempt in this direction, and previous investigations did only consider uniform
parameters, which do not necessarily guarantee to reach an optimal performance.
➋ Tuning the Opening Angles. Generally speaking, the parameters of existing scalar-
izing functions can simply be viewed as one specific tool to set up the openings of the
lines of equal function values. In this respect, other types of opening angles can be
considered without necessarily using a particular scalarizing function. This would offer
more flexibility when tuning decomposition-based algorithms, e.g., defining the open-
ing angles without being bound to a fixed closed-form definition, but adaptively, with
respect to the current search state. We believe that classical paradigms for on-line and
off-line parameter setting are worth to be investigated to tackle this challenging issue.
➌ Variation Operators and Problem-Specific Issues. In our study, we consider the
independent bit-flip mutation operator and bi-objective ρMNK-landscapes. In future
work, other problem types and search components should be investigated at the aim of
gaining in generality—also towards problems with more than two objectives.
➍ Theoretical Modeling. A challenging issue is to provide a framework, abstracting
from problem-specific issues, and allowing us to reason about decomposition-based ap-
proaches in a purely theoretical manner. This would enable us to better harness scalariz-
ing approaches and to derive new methodological tools in order to improve our practice
of decomposition-based evolutionary multiobjective optimization approaches.

References

1. Hughes, E.J.: Multiple Single Objective Pareto Sampling. In: CEC, pp. 2678–2684 (2003)
2. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decompo-

sition. IEEE TEC 11(6), 712–731 (2007)
3. Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: Generalized Decomposition. In: Purshouse,

R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811,
pp. 428–442. Springer, Heidelberg (2013)

4. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
5. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Adaptation of scalarizing functions

in MOEA/D: An adaptive scalarizing function-based multiobjective evolutionary algorithm.
In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009.
LNCS, vol. 5467, pp. 438–452. Springer, Heidelberg (2009)

558 B. Derbel et al.

6. Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing function
in MOEA/D for many-objective knapsack problems. In: LION7, pp. 231–246 (2013)

7. Kaliszewski, I.: Using trade-off information in decision-making algorithms. Computers &
Operations Research 27(2), 161–182 (2000)

8. Brockhoff, D., Wagner, T., Trautmann, H.: On the Properties of the R2 Indicator. In: Genetic
and Evolutionary Computation Conference, GECCO 2012, pp. 465–472 (2012)

9. Dächert, K., Gorski, J., Klamroth, K.: An Augmented Weighted Tchebycheff Method With
Adaptively Chosen Parameters for Discrete Bicriteria Optimization Problems. Computers &
Operations Research 39(12), 2929–2943 (2012)

10. Derbel, B., Brockhoff, D., Liefooghe, A., Verel, S.: On the impact of scalarizing functions
on evolutionary multiobjective optimization. Research Report RR-8512, INRIA Lille - Nord
Europe (March 2014),
http://hal.inria.fr/docs/00/96/81/45/PDF/RR-8512.pdf

11. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combi-
natorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2),
331–342 (2013)

12. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE TEC 7(2),
117–132 (2003)

http://hal.inria.fr/docs/00/96/81/45/PDF/RR-8512.pdf

Multi-objective Quadratic Assignment Problem
Instances Generator with a Known Optimum Solution

Mădălina M. Drugan

Artificial Intelligence lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
mdrugan@vub.ac.be

Abstract. Multi-objective quadratic assignment problems (mQAPs) are NP-hard
problems that optimally allocate facilities to locations using a distance matrix and
several flow matrices. mQAPs are often used to compare the performance of the
multi-objective meta-heuristics. We generate large mQAP instances by combin-
ing small size mQAP with known local optimum. We call these instances com-
posite mQAPs, and we show that the cost function of these mQAPs is additively
decomposable. We give mild conditions for which a composite mQAP instance
has known optimum solution. We generate composite mQAP instances using a set
of uniform distributions that obey these conditions. Using numerical experiments
we show that composite mQAPs are difficult for multi-objective meta-heuristics.

1 Introduction

The Quadratic assignment problem (QAP) models many real-world problems like the
computer-aided design in the electronics industry, scheduling, vehicle routing, etc. In-
tuitively, QAPs can be described as the (optimal) assignment of a number of facilities
to a number of locations. In general, QAP instances are NP hard problems, and QAP in-
stances are often included in the benchmarks for testing meta-heuristics [1, 2]. Special
cases of QAPs solvable in polynomial time are easy to solve [3]. Meta-heuristic search
algorithms based on local search are especially useful for large size QAPs, where ex-
act solutions are difficult to obtain. Furthermore, measuring the performance of meta-
heuristics is best done when the optimum solution for the test problem is known.

Generating large size QAPs with known local optimum solutions that are difficult
and interesting for exact and stochastic algorithms is a current challenge in the field
[4, 5]. The algorithms that generate large and hard single objective QAP instances with
known optima [6] are rather elaborated and difficult to generate. Drezner et al [4] pro-
pose QAP instances that are difficult to solve with heuristics but easy for exact solvers
because of the large amount of 0’s in the flow matrix.

Recently, Drugan [5] proposes a single objective QAP instance generator with addi-
tively decomposable cost function and known local optimum. Problems with additively
decomposable cost functions are considered useful test benchmark for meta-heuristic
algorithms that explore the structure of the search space. These QAP instances are dif-
ficult for both exact methods, like branch and bound, and for meta-heuristics.

Multi-objective Quadratic Assignment Problems [7] are an extension of QAP
with more than two flow matrices. Let us consider N facilities, the N × N distance

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 559–568, 2014.
c© Springer International Publishing Switzerland 2014

560 M.M. Drugan

matrix A = (aij), where aij is the distance between location i and location j. Consider
an mQAP with m flow matrices B = (B1, . . . , Bm), where m ≤ 2 and Bo = (boij) and
boij represents the k-th flow matrix from facility i to facility j. The goal is to minimise
the cost function in all objectives o

co(π) =
N∑
i=1

N∑
j=1

aij · boπiπj
(1)

where 1 ≤ o ≤ m and π is a permutation of N facilities and πi is the i-th element of π.
It takes quadratic time to evaluate each of these functions. We consider an mQAP as a
tuple (A,B1, . . . , Bm, s) where s, if known, is the optimum solution.

The Main Contribution. We design a multi-objective QAP instance generator that cre-
ates meaningful, i.e. large and difficult to solve, benchmark instances for multi-objective
meta-heuristics [2,8]. Our solution introduced in Section 2 is to aggregate several flow
and distance matrices with computable optimum solutions, into a larger mQAP such
that the optimum of the resulting mQAP is known, called composite mQAPs. These
mQAPs have additively decomposable cost functions that are the sum of component
mQAP’s cost functions plus an extra term corresponding to the cost of the region out-
side these component mQAPs.

In Section 3, we give mild conditions, e.g. upper and lower bounds for the values in
the mQAPs matrices such that the composite mQAP instance has the identity permu-
tation as the global optimum solution. However, to verify the global optimum solution
we compute a large number of cost functions equivalent with the number of permuta-
tions of the component mQAP instances into the permutation of the composite mQAP
instance.

In order to simplify the procedure of generating composite mQAPs with known
global optima, we consider uniform distributions which are also used to generate other
mQAPs from the literature [2, 7]. In Section 4, the conditions on the upper and lower
bounds are easily verifiable, and explicit numerical values are proposed.

Numerical experiments from Section 5 show that the composite mQAPs are difficult
to solve with multi-objective meta-heuristic instances [8] when compared with the
other mQAPs from literature [7]. We show that the global optimum is difficult to attain
and thus composite mQAPs are difficult to solve. Section 6 concludes the paper.

2 Composite Multi-objective QAP Instances Generator

In this section, we design an algorithm that generates composite mQAP instances from
small size component mQAP instances with computable optimum solution. The values
in the composite mQAP not assigned yet are also selected to have known optimum
value. Thus, there are three optimisation problems in composite mQAPs: i) optimising
the component mQAPs, ii) optimising the region outside these components, and iii) a
global optimisation problem for the entire mQAP. The pseudo-code for this algorithm
is given in Algorithm 1.

The algorithm generate composite mQAP has as input d component mQAP in-
stances, (Ak, B

1
k, . . . , B

m
k , I), ∀k ≤ d, with identity permutation I as optimum so-

lution, where ∀i ∈ {1, . . . , N}, Ii = i. In order to calculate the optimum solution of

Multi-objective QAPs with a Known Optimum Solution 561

Algorithm 1. generate composite mQAP
Require: d component mQAP instances {(A1, B

1
1 , . . . , B

m
1 , I), . . . , (Ad, B

1
d, . . . , B

m
d , I)}

Require: the distributions in the outside region RA, RB1 , . . ., RBm : the low values distribu-
tions LA, LB1 , . . ., LBm , and the high values distributionsHA,HB1 , . . .,HBm

/* I. Aggregate mQAP instances/*
Initialise A, B1, B2, . . ., Bm with 0s everywhere
for all k = 1 to d do

for all i, j = 1 to nk do
t← i+

∑k
r=1 nr; p← j +

∑k
r=1 nr;

atp ← atp + akij ; b1tp ← b1tp + b1kij ; . . .; bmtp ← bmtp + bmkij ;
end for

end for
/* II. Generate the set of elements in A, B1, . . ., Bm not assigned yet /*
for all α% elements aij ∈ RA, b1ij ∈ RB1 , . . ., bmij ∈ RBm do

Generate aij ∝ HA, and update the sorted listRA ←RA ∪ aij

Generate bot ∝ LBo , and update the sorted listRBo ←RBo ∪ bot , for all o ≤ m
t← t+ 1

end for
for all (1− α)% elements aij ∈ RA, b1ij ∈ RB1 , . . ., bmij ∈ RBm do

Generate aij ∝ LA, and update the sorted listRA ←RA ∪ aij

Generate bot ∝ HBo , and update the sorted listRBo ←RBo ∪ bot , for all 1 ≤ o ≤ m
t← t+ 1

end for
for all r = 1 to |RA| do

r ← rank of aij inRA

boij ← bot with rank |RA| − r inRBo , for all o ≤ m
end for
return (A,B1, . . . , Bm)

component mQAPs, we could, for example, exhaustively enumerate all possible permu-
tations. A straightforward method to transform a component mQAP with an optimum
solution s into an mQAP instance with the identity permutation as optimum solution is
to rename the facilities.

2.1 Aggregate Component mQAP Instances

For simplicity, we consider that each facility from the composite mQAP corresponds
to exactly one facility from a single component mQAP, and, vice-versa, each facil-
ity from a component mQAP corresponds to exactly one facility from the composite
mQAP. We consider that nk are the number of facilities of the k-th component mQAP,
(Ak, B

1
k, . . . , B

m
k , I). We call the reunion of all component mQAPs the component re-

gion. Note that the number of facilities N for the newly generated composite mQAP is
the sum of the number of facilities of the component mQAP, N =

∑d
k=1 nk.

For each pair of facilities in the k-th component mQAP (i, j) ∈ Ak, there is assigned
a pair of facilities in the composite mQAP (t, p) ∈ A, where t ← i +

∑k
r=1 nr and

562 M.M. Drugan

p ← j+
∑k

r=1 nr. We update the values atp ∈ A and botp ∈ Bo with the corresponding
values in akij ∈ Ak and bokij ∈ Bo

k, ∀o ≤ m.

2.2 Filling up the Composite mQAP Instances

Next, we assign the positions in A and B not assigned yet. Let RA and RBo be ordered
sets containing all unassigned values from A, and Bo, respectively. We call these sets,
the outside region of the corresponding matrices. The elements in the outside region are
generated using the rearrangement inequality [9] 1 such that their cost function has the
identity permutation as the optimum solution. Informally, the largest values in the o-th
flow matrix Bo correspond to the lowest values in the distance matrix A, and the lowest
values in Bo correspond to the largest values in A.

The low values distributions LA and LBo generate the lowest values of A and Bo,
respectively. The high values distributions HA and HBo generate the highest values of
A and Bo. We generate α% unassigned values in A from HA and (1 − α)% from LA.
Because of the rearrangement inequality, α% values in each of the flow matrices Bo are
generated from LBo and (1− α)% are generated from HBo .

In Algorithm 1, let r be the rank of aij in RA. If aij is generated from HA, then each
value boij is generated from LBo such that the rank of boij in RBo is |RA|− r. Similarly,
if aij is generated from LA, then boij is generated from HBo such that the rank of boij in
RBo is |RA| − r. Thus, the elements b1ij , . . ., bmij have the same ranking in the outside
regions of the corresponding flow matrices, B1, . . ., Bm.

3 Designing Composite mQAPs with Known Optimum Solution

Cela [3] showed that single QAP instances where all the elements obey the rearrange-
ment inequality are easy. This means that if the component mQAPs are degenerated,
n1 = . . . = nd = 1, then the composite mQAP also becomes ”easy”. Thus, we con-
sider the component mQAPs to be the ”difficult” region, and the outside region to be the
”easy” region of a composite mQAP. By design, the component mQAPs and the outside
region are optimised by the identity permutation. The composite mQAP, in general, is
not optimised by the identity permutation.

In this section, we give mild conditions under which the composite mQAP instances
have the identity permutation as the optimum solution. We consider that all the elements
in the outside region are either smaller or larger than all the elements in the component
mQAPs. Accordingly to the rearrangement inequality, if elements are exchanged be-
tween the component mQAPs and the outside region, then the cost of the composite
mQAP instance increases.

Additively Decomposable Cost Functions for the Composite mQAPs. In the fol-
lowing, we show that the composite mQAP instances have additively decomposable
cost functions with a residual term representing the cost of the outside region.

1 Let n variables be generated with any two distributions {x1, . . . , xn} and {y1, . . . , yn} for
which x1 ≤ . . . ≤ xn and y1 ≥ . . . ≥ yn. The rearrangement inequality states that

∑n
i=1 xi ·

yi ≤
∑n

i=1 xi · yπi , for all permutations π.

Multi-objective QAPs with a Known Optimum Solution 563

Consider the set Π(N) of all permutations of N facilities in the flow matrices. In
the permutation group theory, permutations are often written in the cyclic form. If π
is a permutation of facilities, we can write it as π = (π1, . . . , πd), where πk is the
k-th cycle containing a set of facilities that can be swapped with each other. These
cycles are disjoint subsets. We consider d cycles, each cycle contains the facilities of
exactly one component mQAP. If there are nk facilities in the k-th component mQAP,
the corresponding cycle is a nk-cycle. The cost function of the k-th cycle is

cok(π) =
∑

i,j,πi,πj

akij · bokπiπj
(2)

where k ∈ {1, . . . , d}, d is the number of component QAPs and akij is an element of
the k-th component QAP. Similarly, bokπiπj

is an element of the k-th component QAP.
By design, the optimal cost for each cycle in each objective is cok(I) ← minπ cok(π).

The cost function of π is now

co(π) =
N∑
i=1

N∑
j=1

aij · boπiπj
=

d∑
k=1

cok(π) +Ro(π) (3)

where Ro(π) is a residue defined as the cost in the outside region for the flow matrix o

Ro(π) =
∑

aij∈RA, boπiπj
∈RBo

aij · boπiπj
(4)

Swapping facilities in a cycle results in swapping elements in the component mQAP
and in the outside region. Swapping facilities between cycles results in swapping ele-
ments between the component mQAPs and the outside region.

3.1 Setting Up Bounds for the Generating Distributions

LetmA andmBo be the smallest element in the component distance matricesAk ,mA ←
mink≤d{akij}, and the component flow matrices Bo

k, ∀o, mBo ← mink≤d{bokij}, re-
spectively. Similarly, MA ← maxk≤d{aij} and MBo ← maxk≤d{bokij}. Let 	A and
LA be the lowest and the highest bound for the distribution LA, and let 	Bo and LBo be
the lowest and the highest bound for LBo . Let hA and HA be the lowest and the highest
bound for HA and let hBo and HBo be the lowest and the highest bound for HBo .

The next proposition sets conditions on the bounds for the composite mQAP with
the identity permutation as the optimum solution.

Proposition 1. Let be {(Ak, B1
k, . . . , B

m
k , I) | k = 1, . . . , d} a set of equal sized

mQAP instances with the optimum solution the identity permutation. Algorithm 1 gen-
erates a composite mQAP from these component mQAPs. Let following equations hold

	A < LA < mA < MA < hA < HA (5)

	Bo < LBo < mBo < MBo < hBo < HBo (6)

564 M.M. Drugan

min{mA,mBo}·(min{hA, hBo}+min{�A, �Bo}) > MA ·MBo +min{hA ·LBo , LA ·hBo}
(7)

d∑
k=1

(cok(I)− cok(π)) +
∑

aij∈RA, boπiπj
∈RBo

aij · (boij − boπiπj
) < 0 (8)

where π any permutation and for all objectives o ≤ m. Then, the composite mQAP
(A,B1, . . . , Bm, I) has the identity permutation as the optimum solution.

Proof. The proof follows directly from the proof of Proposition 1 from [5]. Intuitively,
the set Π(N) of all possible permutations is split in three subsets: i) exchange facilities
within a cycle, ii) cycle that completely switch their facilities with other cycles, and
iii) the general case where facilities are switched at random between cycles. The proof
considers the difference between the identity permutation and another permutation for
all these three cases. �

In Proposition 1, for Inequality 5 and 6, the rearrangement inequality holds. From
Inequality 7 and the rearrangement inequality, we have that a permutation where facili-
ties are swapped between the outside and the component region has a higher cost than
a permutation where solutions are swapped in the composite or in the outside region.
The condition in Inequality 7 can be fulfilled by setting the bounds for the distributions
HA and HBo high enough.

Inequality 8 states that if swapping elements in the outside region generates more
variance than swapping elements in the component mQAPs, then the identity permuta-
tion is the global minimum for the subset of permutations where cycles are completely
swapped. To decide if the generated composite mQAP has the identity permutation as
optimum solution, we need d! evaluations of Inequality 8 corresponding to all combi-
nations of the component mQAPs on the diagonal of the composite mQAP.

4 A Practical Composite mQAP Instance Generator

In this section, we generate composite mQAP instances to fulfil the conditions from
Proposition 1. The current mQAP instance generators [2, 7] use uniform distributions
to generate mQAPs. Thus, we also use uniform distributions to generate composite
mQAPs. Note that even though component mQAPs and the elements in the outside
region are generated by uniform random distributions, the values of the corresponding
composite mQAP instances are not generated by a uniform random distribution.

An uniform random distribution D generates all the component mQAPs. Let L and
H be the uniform independent distributions generating the outside region of the distance
matrix A and the flow matrices B.

We study the relationship between the inequalities from Proposition 1 on the bounds
for the uniform distributions. Let the two terms from Inequality 8 be denoted as the
variance of the composite region and of the outside region

ΔC =
d∑

k=1

ck(I) − ck(π), Δo
O = Ro(I)−Ro(π)

Multi-objective QAPs with a Known Optimum Solution 565

We explicitly compute the values of ΔC and Δo
O . If Δo

O + ΔC is non-negative, the
identity permutation is the global optimum solution.

Consider that there are L − 	 + 1 values in L, 	 = s0, s1, . . . , sL−� = L, and
H − h + 1 uniformly generated values in H, (h = t0), t1, . . . , (tH−h = H). Let’s
assume that L− 	 = H − h. With a perfect random generator, in any row and column
of mQAPs’ matrices values of L and of H are equally represented.

The Variance in the Outside Region. Assuming that all the values of the distributions
L and H are uniformly distributed, the cost of the outside region has the approximative
value of

Ro(I) =
∑

aij∈RA

aij · boij ≈
|RA|

H − h+ 1
·
(

L−�∑
i=0

si · tH−h−i

)
(9)

When α = 0.5, the elements in the flow and distance matrices are equally generated
from low and high distributions. The swapped elements are randomly distributed in the
corresponding matrices and, thus, the cost of the outside region in each objective o is
upper bounded by

Ro(π) ≤ |RA|
L− 	+H − h+ 2

·
⎛⎝L−�∑

i=0

si +
H−h∑
j=0

tj

⎞⎠2

For a permutation π, let assume that (1 − p) · |RA| percent of the outside region is
optimised and the remaining p · |RA| percent of the outside region is uniform randomly
positioned in the matrix. Then the cost of the outside region in each objective o is

Ro(π) ≈ (1− p) · |RA|
L− 	+ 1

·
(

L−�∑
i=0

si · tL−�−i

)
+

p · |RA| ·
(∑L−�

i=0 si +
∑H−h

j=0 tj

)2
L− 	+H − h+ 2

Given a certain value for p, the variance is the outside region is

Δo
O ≈ p · |RA|

L− 	+ 1
·
(

L−�∑
i=0

si · tL−�−i

)
−

p · |RA| ·
(∑L−�

i=0 si +
∑H−h

j=0 tj

)2
L− 	+H − h+ 2

(10)

The variance in the component mQAPs. The minimum cost of all d component
mQAPs is approximatively equal because all the values are generated from the same
uniform distribution. This cost could be increased by the imperfection of the random
generator, and the limited size of the component mQAP. Consider that there are M −
m + 1 values in D, such that (m = v0), v1 . . . , (vM−m = M). Let N2 − |RA| =
d ·n · (n− 1) be the total number of elements in the component mQAPs. Following the
same line of reasoning, the maximum variance is

ΔC <

d∑
k=1

ck(I)− N2 − |RA|
(M −m+ 1)2

(
M−m∑
i=0

vi

)2

(11)

566 M.M. Drugan

The elements of the component matrices are uniform randomly generated and posi-
tioned. Thus, when the component mQAPs are optimised and N →∞, we have

d∑
k=1

ck(I) ≈ N2 − |RA|
(M −m+ 1)2

(
M−m∑
i=0

vi

)2

(12)

and ΔC → 0.
The Variance in the Composite mQAPs. Note that if N → ∞, then ΔC is ap-

proaching 0, and ΔO has a negative value, ΔO < 0, and the identity permutation is the
optimal solution. This concludes our reasoning.

4.1 An Example

We choose the bounds for the composite mQAPs to be the same with the bounds for
the uniform randomly generated mQAPs from [2,7] with the purpose of comparing the
mQAP instances. These bounds are also set to cover a large number of values between
1 and 99, the same bounds as the randomly generated mQAP instances. Let’s consider
the following numerical values: i) m = 21 and M = 40, ii) h = 80 and H = 99,
and iii) 	 = 1 and L = 20. Thus L − 	 = H − h = 20. Let n = 8 be the number of
facilities in component mQAPs, where d ≥ 2. Further, si = i and ti = i + 80, where
i ∈ {1, . . . , 20}.

If d = 2, 3, . . ., then |RA| = 128, 384, 768, Using Equation 9, the cost of the
outside region is Ro(I) = |RA| · 1·99+...+20·80

20 = |RA| · 906.5. From Equation 10, we
have that Δo

O ≈ p · |RA| · 906.5− p · |RA| · 6703.2 ≈ −p · |RA| · 5807.7. Note that the
second term it is negative and dominates Δo

O . From N2 − |RA| = 112, 168, 224, . . .
and Equation 11, we have that ΔC <

∑d
k=1 c

k(I) − (N2 − |RA|) · 29241. From
Equation 12, we have that ΔC → 0, and thus the identity permutation is the optimum
solution for all the composite mQAPs with these uniform distributions. Note that the
condition from Inequality 7 was relaxed for this numerical example.

5 Difficulty of mQAP Instances

Our goal is to generate instances that are difficult to solve with local search. We propose
to use as difficulty measures for mQAPs: i) the covariance coefficients of the elements
in two different flow matrices, and ii) the correlation between the cost functions of two
objectives.

Dominance [7] is a measure of the amplitude of the variance for the flow matrix and
distance matrix. Note that there are m+1 dominance values: m flow dominance values
and one distance dominance value. We denote the distance and flow dominances with
da = σa

μa
% and dk = σ

bk

μ
bk
%, where μa and σa is the mean and the standard deviation for

the matrix a. A matrix with low epistasis has the dominance close to the lower bound,
0. The dominance’s upper bound is 100.

We propose to measure the amplitude of the sample covariance between two flow
matrices, bk and br. The dominance of the flow matrices bk and br is defined as dkr =

1√
μ
bk

·μbr
·
√∑

n
i,j=1(b

k
ij−μ

bk
)·(brij−μbr)

n2 %.

Multi-objective QAPs with a Known Optimum Solution 567

Table 1. Analytical and empirical properties of 9 bi-objective QAP instances

type N n Dominance Ruggedness Asymptotic behav Empirical behav
mQAPs da db1 db2 d12 φb1 φ12 Best Know Invers Gap % opt mean Gap

Knowless’
25 60 64 63 18 96 92 646561 672236 3.8
50 59 61 58 13 98 98 5264742 5333790 1.2
75 60 59 60 13 99 98 12285680 12476382 1.5

Composite

25
1

94 99 95 97 95 95 183427 1381042 87 100 183427 87
50 92 97 93 94 98 97 737069 6010180 87 7 1965328 67
75 91 96 91 94 99 99 1923900 13417974 88 0 4766598 64
25

5
83 93 83 88 95 95 189465 1352778 86 100 189465 86

50 85 95 85 90 96 96 745782 5560362 87 12 1707298 69
75 83 92 83 87 98 98 3317244 12324804 73 0 4768865 61
20

10
83 97 90 93 98 98 244998 536258 54 100 244998 54

50 84 93 84 89 98 97 742401 4807446 85 1 1790843 63
80 82 92 83 87 98 98 3870974 14129836 73 0 5351231 62

Ruggedness [10] is a normalisation of the autocorrelation coefficient for the cost
function ck when a (m)QAP is explored with local search. By definition, the auto-

correlation coefficient for the k objective is εck =
2·(IE[(ck)2]−μ2

ck
)

IE[(ck(π)−ck(π′))2] , where μck is the

average of ck and π and π′ are any two permutations. The ruggedness coefficient for
the k-th objective is φbk = 100− 400

n−2 · (εbk − n
4). A ruggedness coefficient close to 0

indicates a flat landscape, whereas a large φk, close to 100, indicates a steep landscape
with lots of local optima.

We propose to measure the correlation between the cost functions of two objectives,

ck and cr, εkr = IE[ck(π)−μ
ck

]
σ
ck

· IE[cr(π)−μcr]
σcr

. The ruggedness of the objectives k and r

is defined as φkr = 100− 400
n−2 · (εkr − n

4).
A difficult (m)QAP instance has both large dominance and ruggedness.
Asymptotic Behaviour of mQAPs calculates the difference between the optimum

value (or a known feasible solution) and the value of the solution generated with the
inverse permutation of that solution. Here, we consider the inverse of the optimum (or, if
optimum is unknown, the best known solution) an approximation of the worst solution
of an instance of composite mQAP. Thus, for mQAPs with the optimum solution I,
we assume that the reverse of the identity permutation, I−1, is an approximation of
the worst solution for that instance. The gap is inverse solution−best known solution

inverse solution ∗
100%, where the best known solution is the best solution returned by an algorithm
and inverse solution is the inverse solution for the best known so far.

Numerical Examples. Let consider the numerical example from Section 4. In Table 1
we compare the difficulty of several bi-objective QAP instances from [7] and the
composite bi-objective QAPs. We consider the correlation between the flow matrices
ρ = 0.75, and N = {25, 50, 75}. The asymptotic and empirical behaviour is shown
only for the first objective. To compute the empirical behaviour of bQAPs we run iter-
ated Pareto LS [8] for 50 times each run for 106 position swaps in a permutation. The
composite bQAPs are most difficult tested instances because they have the largest dom-
inance values, ruggedness coefficients and gaps. The small composite bQAPs, N = 25,
have a lower ruggedness than the large composite bQAPs, N = 75. The dominance val-
ues and the gap decrease with the size increase of the component bQAPs because there

568 M.M. Drugan

is less variance in the values of the component matrices. Note that the empirical gap is
much smaller than the asymptotic gap. To conclude, the analytical (difficulty measures)
and empirical properties of the composite bQAPs outperform the same properties of the
uniformly randomly generated bQAPs.

6 Conclusion

We propose a multi-objective quadratic assignment instance generator that aggregates
several small multi-objective QAP instances into a larger mQAP instance. Both the
component mQAP instances and the cost of the elements outside these components
have, by design, the identity permutation as the optimal solution. We give mild condi-
tions under which the resulting composite mQAP instances have identity permutation
as the optimum solution. We propose difficulty measures to compare the proposed com-
posite mQAPs with other mQAPs from literature. We conclude that composite bQAP
instances are more difficult than the uniform random bQAPs, and in addition, they have
a known optimum solution.

References

1. Puglierin, F., Drugan, M.M., Wiering, M.: Bandit-inspired memetic algorithms for solving
quadratic assignment problems. In: Proc. of CEC, pp. 2078–2085. IEEE (2013)

2. Drugan, M.M.: Cartesian product of scalarization functions for many-objective QAP in-
stances with correlated flow matrices. In: Proc. of GECCO, pp. 527–534. ACM (2013)

3. Çela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic
Publishers, Dordrecht (1998)

4. Drezner, Z., Hahn, P., Taillard, E.: Recent advances for the quadratic assignment problem
with special emphasis on instances that are difficult for meta-heuristic methods. Annals of
Operations Research 139(1), 65–94 (2005)

5. Drugan, M.: Generating QAP instances with known optimum solution and additively decom-
posable cost function. Journal of Combinatorial Optimization (2014)

6. Palubeckis, G.: An algorithm for construction of test cases for the quadratic assignment prob-
lem. Informatica, Lith. Acad. Sci. 11(3), 281–296 (2000)

7. Knowles, J.D., Corne, D.W.: Instance generators and test suites for the multiobjective
quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele,
L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)

8. Drugan, M.M., Thierens, D.: Stochastic pareto local search: Pareto neighbourhood explo-
ration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)

9. Wayne, A.: Inequalities and inversions of order. Scripta Mathematica 12(2), 164–169 (1946)
10. Angel, E., Zissimopoulos, V.: On the hardness of the quadratic assignment problem with

metaheuristics. J. Heuristics 8(4), 399–414 (2002)

Optimized Approximation Sets

for Low-Dimensional Benchmark Pareto Fronts

Tobias Glasmachers

Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
tobias.glasmachers@ini.rub.de

Abstract. The problem of finding sets of bounded cardinality maximiz-
ing dominated hypervolume is considered for explicitly parameterized
Pareto fronts of multi-objective optimization problems. A parameteriza-
tion of the Pareto front it often known (by construction) for synthetic
benchmark functions. For the widely used ZDT and DTLZ families of
benchmarks close-to-optimal sets have been obtained only for two objec-
tives, although the three-objective variants of the DTLZ problems are
frequently applied. Knowledge of the dominated hypervolume theoreti-
cally achievable with an approximation set of fixed cardinality facilitates
judgment of (differences in) optimization results and the choice of stop-
ping criteria, two important design decisions of empirical studies. The
present paper aims to close this gap. An efficient optimization strategy
is presented for two and three objectives. Optimized sets are provided
for standard benchmarks.

1 Introduction

Empirical benchmark studies play a major role for performance comparisons
of nature inspired (optimization) algorithms. For many benchmark problems in
widespread use the optimum is known analytically. This allows to compare algo-
rithms not only relative to each other but also in relation to the actual optimum.
This is a prerequisite, e.g., for the empirical investigation of convergence rates. It
is practically useful for the design of meaningful stopping criteria in benchmark
studies comparing the runtime of different (black-box) optimization algorithms
for reaching a predefined solution accuracy.

The situation in multi-objective optimization differs in various respects from
the single-objective case. The optimum is a set—the Pareto front—which can
be of uncountably infinite cardinality. In practice optimal subsets of a priori
bounded cardinality are of primary interest. There are multiple performance
indicators in common use, and the optimal set of course depends on the indicator.
In recent years the hypervolume indicator has advanced to the most widely
applied performance measure at least for up to three or four objectives. Hence
this study is focused on maximization of dominated hypervolume.

For the commonly used ZDT and DTLZ benchmark suites [13,7] sets with
close-to-optimal hypervolume coverage are known only for the simplest case of

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 569–578, 2014.
c© Springer International Publishing Switzerland 2014

570 T. Glasmachers

two objectives [1]. However, the DTLZ benchmarks are scalable to any number
of objectives, with a default of three objective functions [7].

The present study aims to close this gap. For this purpose an efficient gradient-
based hypervolume maximization algorithm based on an explicit parameteriza-
tion of the Pareto front is proposed. With this algorithm we compute optimized
fixed cardinality Pareto front approximations for bi-objective and tri-objective
benchmark problems.

2 Multi-objective Optimization

Consider a search space X and a set of m scalar objective functions f1, . . . , fm :
X → R, each of which (w.l.o.g.) is to be minimized. Instead of aggregating
the various goals encoded by the different functions into a single objective (e.g.
by means of a weighted combination), the goal of multi-objective optimization
(MOO) is to obtain the set of Pareto optimal (or non-dominated) points, which is
the set of Pareto optimal compromises. This set is often huge or even infinite and
we aim for a representative approximation set of a-priori bounded cardinality.

2.1 Dominance Order and Dominated Hypervolume

The objectives are collected in the vector-valued objective function f : X → Rm,
f(x) =

(
f1(x), . . . , fm(x)

)
. Let Y = {f(x) |x ∈ X} = f(X) ⊂ Rm denote the

image of the objective function (also called the attainable objective space). For
values y, y′ ∈ Rm we define the Pareto dominance relation

y) y′ ⇔ yk ≤ y′k for all k ∈ {1, . . . ,m} ,

y ≺ y′ ⇔ y) y′ and y �= y′ .

This relation defines a partial order on Y , incomparable values y, y′ fulfilling
y �) y′ and y′ �) y remain. The relation is pulled back to the search space X by
the definition x) x′ iff f(x)) f(x′).

The Pareto front is defined as the set of values that are optimal w.r.t. Pareto
dominance, i.e., the set of non-dominated values

Y ∗ =
{
y ∈ Y

∣∣∣ � ∃ y′ ∈ Y : y′ ≺ y
}

and the Pareto set is X∗ = f−1(Y ∗).
For generic objectives fk without simultaneous critical points the Pareto front

is a manifold of dimension m− 1. As such its cardinality is uncountably infinite.
We are often interested in picking a “representative subset” or approximation set
of fixed cardinality n. The approximation quality of a set S = {y1, . . . , yn} can be
judged with different set quality indicators of which the dominated hypervolume

Hr(S) = Λ
({

y′ ∈ Rm | ∃y ∈ S s.t. y) y′) r
})

Optimized Approximation Sets 571

(where Λ denotes the Lebesgue measure on Rm) is distinguished (up to weighting
of the Lebesgue measure) for its property of being compliant with Pareto dom-
inance [14,12]. The hypervolume indicator depends on a reference point r ∈ Rm

that needs to be set by the user. It defines an objective-wise cut-off for the
quality assessment.

One standard formalization of the goal of MOO is to produce a set {x1, . . . , xn}
ofn points so that the correspondingvalues yk = f(xk)maximize the hypervolume
indicator for given f , r, and n. It is easy to see that the elements of the set S∗ max-
imizing the hypervolumeHr(S) are Pareto optimal, i.e., S∗ = {y1, . . . , yn} ⊂ Y ∗.

The optimal set S∗ as well as the dominated hypervolume Hr(S∗) depend
on X and f only via Y ∗. Since we are interested only in S∗ and Hr(S∗) we
simplify the problem statement in the following by assuming that the set Y ∗

is known. This means that we will ignore a large part of the complexity of the
underlying MOO problem related to the black-box setting and the potentially
involved form of f . For practical purposes we may assume that a (surjective,
sometimes bijective) parameterization ϕ : U → Y ∗, U ⊂ Rm−1, is available. This
parameterization then replaces the (often much harder to optimize) objective
function.

2.2 Benchmark Problems and Existing Results

In this study we focus on well-established benchmark suits of problems with
continuous variables. The so-called ZDT functions [13] ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6 (ZDT5 is a discrete problem) are scalable to any search space
dimension X = Rd but come with only two objectives. The conceptually similar
DTLZ functions [7] DTLZ1, DTLZ2, DTLZ3, and DTLZ4 (the other members of
the family are rarely used) improve on this situation by being scalable to many
objectives, with the “recommended default” of three objectives.

For the ZDT and DTLZ families of problems the sets Y ∗ are known analyti-
cally. For m = 2 near optimal sets S of cardinalities 2, 3, 4, 5, 10, 20, 50, 100, 1000
for the reference point (11, 11) have been obtained, see [1]. The one-dimensional
fronts are visualized in figure 1 (a) to (f).

For m = 3 the DTLZ fronts become two-dimensional. They are depicted in
figure 1 (g) and (h). Fixed size sets with maximal hypervolume coverage are not
known. We provide such near optimal sets in section 5 and in the supplementary
material.

The problem of optimizing Hr(S) has been investigated theoretically, but
analysis is mostly restricted to two objectives [3,4,11]. Results include conditions
for the inclusion of extremal points in the optimal solution set, monotonicity of
Hr(S∗) in n = |S∗|, optimal sets on linear fronts, and asymptotically optimal
distributions on smooth fronts in the limit n → ∞. Basic results have been
obtained for m = 3 objectives [2]; but even asymptotically optimal distributions
based on local shape (derivative) features are unknown.

Finally, the most relevant precursors for obtaining optimal sets of fixed cardi-
nality n in practice are algorithms for the fast computation of the hypervolume
and its derivatives [10,9,8].

572 T. Glasmachers

f1

f2

(a) ZDT1, ZDT4
f1

f2

(b) ZDT2

f1

f2

(c) ZDT3
f1

f2

(d) ZDT6

f1

f2

(e) DTLZ1
f1

f2

(f) DTLZ2-4

f1

f2

f3

(g) DTLZ1

f1

f2

f3

(h) DTLZ2-4

Fig. 1. Pareto fronts of the ZDT and DTLZ problems for m = 2 and m = 3

3 Hypervolume Calculation

The computation of the dominated hypervolume Hr(S) of n values S = {y1, . . . ,
yn} ⊂ Y ∗ is known to be NP-hard, and the time complexity of the best known
algorithms for this problem is exponential in m [5,6]. However, for few objectives
(m ≤ 3) it can be carried out in O(n log(n)) operations [10,9,8].

In the present paper we consider only subsets S ⊂ Y ∗. Thus any pair of
different points yi, yj ∈ S is strictly incomparable (i.e., it holds yi �) yj and
yj �) yi).

3.1 Gradient of Dominated Hypervolume

It is easy to see that the dominated hypervolume Hr(S) for S = {y1, . . . , yn}
considered as a function of yk is nearly everywhere differentiable. Efficient al-
gorithms for the computation of the hypervolume and its derivatives for m ≤ 4
objectives have been proposed in [8]. It is sufficient for the purpose of practical
optimization to consider the vector of derivatives ∂Hr(S)

∂yk
, k ∈ {1, . . . , n}, and

to ignore issues of the argument S being an unordered set of values (refer to
[8] for a more careful derivation). With yk = ϕ(uk) the chain rule gives rise to
∂Hr(S)
∂uk

= ∂Hr(S)
∂yk

∂yk

∂uk
with ∂yk

∂uk
= ϕ′(uk). Note that in our setting the gradient

does not aid in finding the Pareto front, since the front is already implicitly en-
coded in the parameterization ϕ. Instead it indicates how to improve the spread
(distribution for maximal hypervolume) of the set S (e.g., by means a gradient
ascent step).

Optimized Approximation Sets 573

y1

y2
y3

y4
y5

y6

y7
y8

f1

f2
r

(a) cuboids for m = 2 objectives

y1

y2
y3

y4

y5

y6
y7 f1

f2

f3

r

(b) cuboids for m = 3 objectives

Fig. 2. Decomposition of the dominated hypervolume into disjoint cuboids

3.2 Decomposition into Cuboids

In this section we emphasize the possibility to represent the dominated hypervol-
ume explicitly as a disjoint1 union of simple volumes, in this case m-dimensional
axis-aligned cuboids (rectangles in two dimensions, cuboids in three dimensions).
We restrict the following consideration to m = 2 and m = 3. A crucial obser-
vation is that the cuboids are not only aligned to the coordinate axes but also
start and end at objective values that appear in the set S+ = S ∪ {r}. Each
rectangle can thus be represented as a 2m-tuple of values2 (y−1 , y+1 , . . . , y−m, y+m)
representing the cuboid

[
(y−1)1, (y

+
1)1
]× · · · × [(y−m)m, (y+m)m

] ⊂ Rm.
For m = 2 the set S is sorted by one objective, which results in the reverse

order in the other objective. Then the hypervolume is computed by splitting the
dominated set into disjoint rectangles and summing their areas (see figure 2 (a)).
Thus the decomposition into exactly n rectangles is a cheap by-product of the
hypervolume computation: sorting the points requires O(n log(n)) operations,
while there are only n rectangles.

For m = 3 we adopt the sweep-based algorithm from [10]. Instead of comput-
ing the hypervolume on the fly the modified algorithm stores and reports a list
of n to 2n − 1 and hence Θ(n) cuboids. So again the collection of the cuboids
is a rather cheap by-product of the O(n log(n)) hypervolume computation. The
result is illustrated in figure 2 (b).

The decomposition into cuboids is not more costly than the computation of
the hypervolume itself, and for m ≤ 3 the number of cuboids is only linear in n.

1 For simplicity of presentation the cuboids’ boundaries may overlap. However, the
corresponding open cuboids (the topological interiors) are disjoint. This does not
impact the hypervolume computation.

2 For efficiency reasons, indices or pointers may be used in actual implementations.

574 T. Glasmachers

This proceeding has the advantage that subsequent tasks such as the computa-
tion of the hypervolume or its partial derivatives (possibly higher derivatives) [8],
dependence of hypervolume contributions on other points [9], etc. do not need
to be incorporated into the bookkeeping-heavy sweeping algorithm. Instead they
can be realized in a unified scheme, namely by first invoking the cuboid decom-
position algorithm and a subsequent loop over the list of cuboids.

4 Hypervolume Optimization

4.1 Gradient-Based Optimization

In the following we assume an algorithm that represents the dominated hyper-
volume as a disjoint union of m-dimensional axis aligned cuboids as discussed
in section 3. This allows for the trivial computation of Hr(S) as the sum of the
elementary volumes.

The coordinate wise lower and upper bounds of the cuboids are given by
coordinates of points from the set S+ = S ∪ {r}. This representation allows for
trivial differentiation of Hr(S) w.r.t. points in S, yielding n derivatives ∂Hr(S)

∂yk

(see also section 3.1). Thus, starting from any initial configuration S can be
iteratively refined with a gradient-based optimization procedure.

We propose simple gradient ascent steps uk ← uk+η ·∇uk
Hr(S) with learning

rate η > 0. If a step happens to decrease the hypervolume then backtracking
is applied: the previous set S is restored and the learning rate η is halved.
Otherwise the learning rate is optimistically increased (here by a factor of 1.05).
This heuristic is analog to success-based step-size control in elitist evolution
strategies.

4.2 Dealing with Multi-modality

Gradient ascent is an efficient technique for the localization of a local maximum.
It turns out that for m > 2 multi-modality of the hypervolume indicator is a
practically relevant issue. We address this problem with two simple yet effective
techniques: proper initialization and a multi-start strategy.

Uniform initialization of the parameters {u1, . . . , un} ⊂ U may lead to a
highly distorted distribution of the actual values {ϕ(u1), . . . , ϕ(un)} ⊂ Y ∗. Fur-
thermore, at least in the limit n →∞ the density of values should depend on the
slope of the front. For m = 2 objectives this was derived in [3]. Here we present
a heuristic (inexact yet practical) extension of these ideas to m = 3 objectives.
Importantly, we do not claim to solve the problem of asymptotically optimal
distributions but rather aim for a procedure generating suitable initial solutions
for gradient-based optimization.

For simplicity let us assume that the hypervolume contribution of a point
y = ϕ(u) consists of the volume of a cuboid with side lengths b1, b2, b3 and
volume V = b1 · b2 · b3. Furthermore assume that the point is not close to the
boundary of the front and that the front surface is regular at y. This implies that

Optimized Approximation Sets 575

locally the front can be approximated by a hyperplane (here a plane), spanned
by the derivative vectors ∂ϕ

∂u1
and ∂ϕ

∂u2
. It’s orientation is characterized by the

normal vector w(u) = ∂ϕ
∂u1

× ∂ϕ
∂u2

, which can be obtained as the cross product of
the tangent vectors. The norm ‖w‖ measures the (local) volume growth of ϕ.

For large n the normal vector determines the local distribution of values y
which—in the optimum—locally have equal hypervolume contributions V ≈
const. At the same time it should hold w1b1 ≈ w2b2 ≈ w3b3 for the shape of the
cuboid. Putting these together we obtain that bi is proportional to 3

√
w1w2w3/wi.

The “area of the front” covered by the cuboid can be approximated by the area
of the triangle spanned by the cuboid vertices y + (b1, 0, 0), y + (0, b2, 0), and
y + (0, 0, b3). It is computed as A = 1

2 ·
√

b21b
2
2 + b21b

2
3 + b22b

2
3. Under the above

considerations the optimal density of parameters u is proportional to ‖w‖/A.
We sample an initial set of size n from the above density by means of rejection

sampling. For this purpose κ = 100 random points are drawn from the uniform
distribution on u ∈ U . The maximal value of ‖w‖/A over these points, multi-
plied by a safety margin of two, is kept as a tentative upper bound B on the
unnormalized density. Then parameters u are sampled uniformly and rejected
with probability min{1, 1− ‖w‖/(A · B)} until n samples are accepted.

Our multi-start procedure generates N independent initial sets of size n as
described above. Each initial set serves as a starting point for the gradient-based
optimization algorithm.

4.3 Implementation

We provide an efficient C++ implementation of the above described hypervolume
maximization algorithm with rejection sampling initialization and restart strat-
egy. The program can be downloaded from http://www.ini.rub.de/PEOPLE/

glasmtbl/code/opt-hv/.

5 Optimized Sets for the ZDT and DTLZ Problems

In this section we present the close to optimal sets obtained by our optimization
algorithm for the ZDT and DTLZ problems. In analogy to [1] we have conducted
all experiments for cardinalities n ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000}.

5.1 The Bi-objective Case

The ZDT and DTLZ problems have been optimized with specifically tailored algo-
rithms. The results are found on the website [1], which is a valuable resource when
experimenting with these benchmark problems. We stick to the original reference
point r = (11, 11). This test aims to validate our optimization algorithm.

We have run the gradient-based optimization procedure N = 100 times with
random initial configurations. The results are presented concisely in table 1.
Standard deviations across repetitions are extremely small (usually below 10−10).
The global optimum is obtained in each single run. Most of our results reproduce

http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/

576 T. Glasmachers

Table 1. Maximal dominated hypervolume covered by sets of cardinalities n ∈
{2, 3, 4, 5, 10, 20, 50, 100, 1000} for bi-objective problems with reference point (11, 11)

n ZDT1,4 ZDT2 ZDT3 ZDT6 DTLZ1 DTLZ2-4
2 120.0248764 120.0000000 128.0147714 117.2489467 120.7500000 120.0000000
3 120.3877279 120.1481481 128.4523400 117.3723140 120.8125000 120.0857864
4 120.4915975 120.2041588 128.5997409 117.4178988 120.8333333 120.1215851
5 120.5397291 120.2339071 128.6671568 117.4417417 120.8437500 120.1415358

10 120.6137609 120.2868199 128.7459431 117.4832459 120.8611111 120.1789660
20 120.6423963 120.3106986 128.7632012 117.5014399 120.8684211 120.1968576
50 120.6574465 120.3243978 128.7707848 117.5116580 120.8724490 120.2074851

100 120.6621372 120.3288807 128.7739496 117.5149559 120.8737374 120.2110337
1000 120.6662212 120.3328889 128.7774084 117.5178796 120.8748749 120.2142433

the optimized fronts obtained in [1]. For large values of n we observe slight im-
provements. For example, for problem DTLZ2 with n = 100 our gradient-based
procedure obtains a dominated hypervolume of 120.2110337 instead of the previ-
ously reported value of 120.210644. The improvement in itself may seem minor,
however, for n = 100 and n = 1000 our optimization procedure improves on
most of the existing numbers.

The ZDT3 problem is an exception. Here we observe improved values for
small n. This is because the left extreme point should not be fixed for the op-
timization, see also Theorem 2 in [3]. On the other hand our results for large
n are significantly worse than those reported at [1] since gradient-ascent cannot
deal well with the disconnected front of the ZDT3 problem and the resulting
discontinuous parameterization ϕ.

5.2 The Tri-objective Case

A major motivation for the present work is to obtain optimized fronts for the
DTLZ problems in their standard form, which is with three objectives. Re-
sults of our gradient-based optimizer are presented in table 2. The optimized
sets are available for download at http://www.ini.rub.de/PEOPLE/glasmtbl/
code/opt-hv/ in csv format, and as eps and png figures.

The variance in the results is significantly higher than in the bi-objective case.
This is because of the multi-modality of the problem. Hence we have increased
the number of runs to N = 10, 000. Running the procedure with even more
repetitions will most probably give slightly higher hypervolumes. However, most
reasonable optimization procedures may get stuck in local optima. Therefore not
only the global optimum is of interest but also the distribution of local optima.
The descriptive statistics in table 2 provide such data. This allows to judge the
performance of algorithm on an absolute scale w.r.t. a reference distribution,
e.g., by measuring how often a certain quantile of the empirical distribution of
local optima is reached.

http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/

Optimized Approximation Sets 577

Table 2. Characteristics (mean, standard deviation, quantiles, and maximum) of the
empirical distributions of dominated hypervolume for the DTLZ1 front (upper half)
and the DTLZ2-4 front (lower half) with m = 3 objectives, reference point r = (2, 2, 2),
and cardinalities n ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000}

front n mean stddev 25% 50% 75% max
2 7.5281031 0.0094041 7.5312500 7.5312500 7.5312500 7.5312500
3 7.8750000 0.1102255 7.6445649 7.8750000 7.8750000 7.8750000
4 7.8946157 0.0526134 7.9062500 7.9062500 7.9062500 7.9120370
5 7.9222298 0.0212193 7.9238281 7.9242346 7.9259728 7.9260397

DTLZ1 10 7.9532612 0.0005410 7.9529850 7.9532053 7.9537283 7.9539787
20 7.9644361 0.0001552 7.9643638 7.9644671 7.9645441 7.9647401
50 7.9712554 0.0000490 7.9712280 7.9712615 7.9712901 7.9713876

100 7.9739706 0.0000267 7.9739557 7.9739739 7.9739892 7.9740466
1000 7.9776989 0.0000039 7.9776965 7.9776992 7.9777016 7.9777110

2 6.0000000 0.0000000 6.0000000 6.0000000 6.0000000 6.0000000
3 6.8272558 0.3365748 7.0000000 7.0000000 7.0000000 7.0000000
4 7.0694591 0.1090694 7.0857864 7.0857864 7.0857864 7.0857864

DTLZ2 5 7.1467484 0.0206817 7.1493061 7.1493061 7.1493061 7.1493061
DTLZ3 10 7.2809948 0.0049230 7.2780682 7.2795647 7.2860090 7.2874732
DTLZ4 20 7.3485703 0.0022931 7.3472972 7.3488734 7.3501758 7.3545152

50 7.3994118 0.0010188 7.3987853 7.3995002 7.4001307 7.4022754
100 7.4228644 0.0006244 7.4224787 7.4229145 7.4232955 7.4246456

1000 7.4597704 0.0001156 7.4596963 7.4597782 7.4598501 7.4601203

6 Conclusion

We have presented an efficient algorithm for the maximization of dominated hy-
pervolume of sets of fixed cardinality when a parametric form of the Pareto front
is know. Such sets are of practical relevance when comparing multi-objective op-
timizers on benchmark problems. While existing studies have been restricted
to relative comparisons we are now in the position to relate differences to an
absolute scale given by the best known hypervolume and by the empirical distri-
bution of local optima as identified by our multi-start procedure. This also allows
to report the performance of a single (e.g., novel) algorithm on an absolute scale
rather than relative to (arbitrarily chosen) competitors. Our gradient-based pro-
cedure is computationally efficient. This algorithm has been integrated into a
standalone software with easy-to-use command line interface.

References

1. ZDT and DTLZ test problems, http://people.ee.ethz.ch/~sop/download/

supplementary/testproblems/ (accessed: March 17, 2014)
2. Auger, A., Bader, J., Brockhoff, D.: Theoretically Investigating Optimal μ-

Distributions for the Hypervolume Indicator: First Results for Three Objectives.
In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part I.
LNCS, vol. 6238, pp. 586–596. Springer, Heidelberg (2010)

http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/
http://people.ee.ethz.ch/~sop/download/supplementary/testproblems/

578 T. Glasmachers

3. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the Hypervolume Indica-
tor: Optimal μ-Distributions and the Choice of the Reference Point. In: Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp.
87–102. ACM (2009)

4. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based Multiobjec-
tive Optimization: Theoretical Foundations and Practical Implications. Theoretical
Computer Science 425, 75–103 (2012)

5. Bringmann, K.: Klee’s measure problem on fat boxes in time O(n(d + 2)/3). In:
Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry,
pp. 222–229. ACM (2010)

6. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contribu-
tor: NP-hard in general, but fast in practice. Theoretical Computer Science 425,
104–116 (2012)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimiza-
tion Test Problems. In: Congress on Evolutionary Computation, CEC 2002, pp.
825–830. IEEE Press (2002)

8. Emmerich, M., Deutz, A.: Time complexity and zeros of the hypervolume indica-
tor gradient field. In: Schuetze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E.,
Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Prob-
ability, Set Oriented Numerics, and Evolutionary Computation III. SCI, vol. 500,
pp. 169–193. Springer, Heidelberg (2014)

9. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low
dimensions: Asymptotically optimal algorithm and complexity results. In: Taka-
hashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576,
pp. 121–135. Springer, Heidelberg (2011)

10. Fonseca, C.M., Paquete, L., Lopez-Ibanez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: IEEE Congress on Evolutionary Com-
putation, CEC 2006, pp. 1157–1163 (2006)

11. Friedrich, T., Neumann, F., Thyssen, C.: Multiplicative Approximations, Optimal
Hypervolume Distributions, and the Choice of the Reference Point. Technical Re-
port arXiv:1309.3816, arXiv.org (2013)

12. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 862–876. Springer, Heidelberg (2007)

13. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Da Fonseca, V.: Performance as-
sessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on Evolutionary Computation 7(2), 117–132 (2003)

Start Small, Grow Big?

Saving Multi-objective Function Evaluations

Tobias Glasmachers1, Boris Naujoks2, and Günter Rudolph3

1 Ruhr-Universität Bochum, Germany
tobias.glasmachers@ini.rub.de

2 Cologne University of Applied Sciences, Germany
boris.naujoks@fh-koeln.de

3 Technische Universität Dortmund, Germany
guenter.rudolph@tu-dortmund.de

Abstract. The influence of non-constant population sizes in evolution-
ary multi-objective optimization algorithms is investigated. In contrast to
evolutionary single-objective optimization algorithms an increasing pop-
ulation size is considered beneficial when approaching the Pareto-front.
Firstly, different deterministic schedules are tested, featuring different pa-
rameters like the initial population size. Secondly, a simple adaptation
method is proposed. Considering all results, an increasing population
size during an evolutionary multi-objective optimization algorithm run
saves fitness function evaluations compared to a fixed population size.
In particular, the results obtained with the adaptive method are most
promising.

1 Introduction

The size of the population is an external parameter in evolutionary algorithms
(EA, [6,7]). Chosen once, it is expected to stay constant for the whole opti-
mization run. However, the right choice of the population size has an enormous
effect on the outcome of the EA run. Results vary from very good to very poor
only with respect to a proper setting. Choosing a population too small may
prevent the localization of optimal solutions, whereas choosing a population too
large wastes considerable resources, in particular if fitness function evaluations
are computationally expensive. Thus, a dynamic population size might help in
saving many function evaluations without any loss in solution quality.

A typical single-objective EA run can be split into two phases. During the
first phase the aim of the algorithm is to identify the basin of the globally best
solution. To this end, a larger population size seems to be adequate. Having
identified this basin or at least a good candidate for it, the goal of the algo-
rithm shifts to identifying the best solution within this basin. Here, a smaller
population size is sufficient. This possibly scales down to the (1 + 1) selection
scheme.

The situation changes completely if more than one objective is considered.
The optimization run of an evolutionary multi-objective optimization algorithm

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 579–588, 2014.
c© Springer International Publishing Switzerland 2014

580 T. Glasmachers, B. Naujoks, and G. Rudolph

(EMOA, [3,4]) can be split into two phases as well. However, the population
sizes are expected to be adapted best in a different way. Often, only a rather
limited population size is sufficient to approach a Pareto-front. Once the front
is reached, it needs to be explored and covered well, and, consequently, larger
populations are expected to perform better at this task.

Another difference is the role of the population in single and multi-objective
EA. In a single-objective EA, the population allows to sample the fitness land-
scape sufficiently well, and to maintain a set of diverse solutions. The perfor-
mance of the population is measured by the fitness of the best individual. In a
multi-objective EA, the population represents the algorithm’s current approx-
imation to the Pareto-front. All non-dominated individuals contribute to it’s
performance. Usually, there is a pre-defined upper limit on the allowable size of
the result set, which is often considered the canonical value of the population
size parameter.

As a consequence, the simple rule for adapting the population size of an
EMOA could be: start small, grow big. Big refers here to the limit of the result
set size, while we’d like to start with a much smaller size. In this study, we aim
at proving that increasing the population size like this saves fitness function
evaluations compared to a fixed population size.

Efforts for realizing a dynamic population size in evolutionary algorithms have
been driven mainly by the desires to eliminate an external parameter and to im-
prove performance. Only few attempts have been made to extend automatic
population size control to multi-objective optimization. An early example (1977)
of a dynamic population size in an EMOA was given by Peschel and Riedel [12],
where the new population was formed by the non-dominated individuals from
the union of parents and offspring. The PR1 algorithm [13] as well as the SEMO
algorithm [10] work similarly. Tan et al. [14] as well as Lu and Yen [11] impose
a cellular structure on the Pareto-front. This approach required prior knowledge
of the front, which is only practical for synthetic benchmark problems. In [8] the
population size develops as a function of a pre-defined time-dependent sched-
ule (deterministic component) and the number of non-dominated individuals
(adaptive component). It is maybe closest in spirit to the present study.

This study starts summarizing multi-criteria optimization basics before the
schedules are defined in section 3. Section 4 presents experiments and results
before we conclude our findings and provide a short outlook.

2 Multi-Criteria Optimization

Considering only one objective in applied optimization is a simplification that
does not mirror the complexity of the underlying application in most (or almost
all) cases. Often multiple objectives f1, . . . , fn : X → R need to be consid-
ered. Here we focus on two objectives. The most common way to deal with
multiple objectives appears to be aggregation, e.g., to a weighted sum f(x) =∑

i wifi(x). In contrast, multi-objective or multi-criteria optimization (MCO) of-
fers a different way to handle multiple objectives in a more unbiased, maybe more

Start Small, Grow Big? Saving Multi-objective Function Evaluations 581

effective way. For this approach, we have to consider the vector-valued objective
function f : X → Rn, f(x) =

(
f1(x), . . . , fn(x)

)
.

In MCO, an important concept is Pareto dominance, i.e., an objective value
y ∈ Rn dominates another value y′ ∈ Rn iff y is better in at least one dimension of
the objective space and not worse in all the others. More formally and considering
minimization, this reads

y ≺ y′ iff ∀i : yi ≤ y′i ∧ ∃j : yj < y′j .

If an objective value y is not dominated by any other value in the image A =
f(X) of the objective function (or generated by the algorithm), it is said to be
non-dominated, i.e., ∀y′ ∈ A : y′ �≺ y. This concept allows for ranking of sets
in the multi-dimensional objective space. MCO algorithms aim for the optimal
set A∗ = {y ∈ A | � ∃y′ ∈ A : y′ ≺ y}. It has the property that every two
points y and y′ from A∗ are mutually non-dominated, i.e. y′ �≺ y ∧ y �≺ y′.
This set is called the Pareto-front . The dominance relation is pulled back to the
decision space X via the objective function by defining x ≺ x′ iff f(x) ≺ f(x′)
for x, x′ ∈ X . The resulting set f−1(A∗) ⊂ X of optimal solutions is called the
Pareto-set.

In addition to the number of objectives, there is a structural change in the
step from one to multiple objectives. The strict order of objective values in the
single-criterion objective space turns into a partial order (induced by Pareto
dominance) in the multi-criteria objective space. This structural change implies
that besides Pareto dominance a secondary quality indicator is required for rank-
ing and thus for rank-based selection in EA.

In recent years, the hypervolume [15,17] set indicator turned from a frequently
used quality indicator to a well-established selection operator for EMOA. The
hypervolume of a set Y is defined as the n-dimensional volume of the space
spanned by the set and a reference point yref that needs to be defined by the
user:

Λ

⎛⎝⋃
y∈Y

{
y′ ∈ Rn

∣∣∣ y ≺ y′ ≺ yref

}⎞⎠
with Λ being the n-dimensional Lebesgue measure of the given set. The hyper-
volume of a set P ⊂ X of solutions (e.g., a population) is the hypervolume of
the corresponding values {f(x) |x ∈ P}.

Maximization of the hypervolume covered by the population implicitly covers
the traditional goals of convergence of the solution set to the optimal front as
well as good solution spread. Most prominent instances of hypervolume based
selection MCO algorithms are SMS-EMOA [2], Hyp-E [1], as well as MO-CMA-
ES [9].

The (μ + 1) selection mechanism in SMS-EMOA provides an elegant way to
enlarge and diminish the population size online. The population can be enlarged
by skipping the selection step, and it can be reduced by skipping the offspring
generation step. Therefore, this algorithm is used for the present study1.
1 The software is available on request by email to the first author.

582 T. Glasmachers, B. Naujoks, and G. Rudolph

3 Schedules

A population size schedule is simply a rule defining which population size to use
at which time. Such a rule may be a fixed function of the generation counter
or an adaptive decision rule based on online indicators. We investigate both
possibilities.

3.1 Fixed Schedules

We start with the definition of a family of fixed, parametric schedules. The
(increasing) population size is a function of time, measured by the number of
fitness evaluations (FE), and normalized in relation to a budget of FEbudget
fitness evaluations. In an application, this budget may be set to the affordable
number of fitness evaluations. We think of it as a conservative estimate. We
want to note clearly that the budget is a highly problem specific parameter.
It is hard to guess a sound value without prior experimentation. Therefore,
the requirement of providing an optimal budget parameter may not be realistic
in practice. Here, this proceeding allows us to define comparable schedules for
very different problems. As a practical solution, we also propose an adaptive
scheduling strategy below.

FE

FEinter FEfullFEbudgetS

Sstart

Sinter

Sfull

α

βγ

δ

Fig. 1. Illustration of the fixed schedules
and their parameters as functions of the
population size S over the number of fit-
ness evaluations FE. Refer to the text for
details.

The final population size Sfull is the
desired size of the Pareto-front ap-
proximation. In this study, it is fixed
to Sfull = 100. Besides these con-
stants, each schedule is defined by
four parameters α, β, γ, δ ∈ [0, 1] as
follows. The initial population size is
set to Sstart = �α · Sfull�. The time
FEfull by which the growing popula-
tion size reaches Sfull is represented
as a fraction of the budget: FEfull =
�β ·FEbudget�. In between we interpo-
late linearly. Thus, these parameters
define linearly growing schedules with
a cut-off at Sfull. This class of sched-
ules is further enriched by an intermediate point (FE inter, Sinter), defined by
FEinter = �γ · FEfull� and Sinter = �(1 − δ) · Sstart + δ · Sfull�. This construction
is illustrated in figure 1.

3.2 Adaptive Schedules

An alternative to a fixed schedule as a function of FE is an adaptive rule. We
have found the following extremely simple rule to be effective: maintain a fading
record of success probabilities, and increase the population size by a factor as
soon as the success rate drops below a threshold. This rule is inspired by Rechen-
berg’s famous 1/5 rule for the adaptation of the step size (mutation strength)

Start Small, Grow Big? Saving Multi-objective Function Evaluations 583

in evolution strategies. Here, a very similar rule is used successfully in a com-
pletely different context.

The algorithm works as follows. The low-pass filtered success rate is initialized
to a value of R ← 1/2. In each generation it is updated according to R ←
(1 − η) · R + η · 1suc where the success indicator 1suc is one if the offspring
generated in the current iteration survives the selection phase and zero otherwise.
A learning rate of η = 0.01 results in sufficiently stable behavior. Once the
success rate indicator R drops below the threshold of 1/5, the population size is
increased:

S ← min
{
�c · S�, Sfinal

}
, R ← 1/4

At the same time, the success rate R is reset away from 1/5 in order to avoid
multiple population size increases due to random effects. We set the increase
factor to c = 3/2.

The intuition behind this scheme is that initially the success rate is high, since all
individuals are selected with the same probability. As the population approaches
the front, successes become harder to sample as the success probability slowly ap-
proaches zero. At this stage, progress can be made only by spreading out the pop-
ulation over the front, which requires an increase of the population size.

This adaptive strategy has a number of parameters such as the initial value of
the success rate estimate, the success rate threshold of 1/5, the learning rate of
0.01 and the increase factor of 3/2. We did not tune these parameters. We have
run a few trials with other parameter settings and we did not find the algorithm
to be very sensitive to the exact values. However, the threshold should be kept
around 1/5 for the procedure to work well.

The only remaining critical parameter is the initial population size Sstart.
Analog to the fixed schedules defined above, we express this parameter by means
of α ∈ [0, 1] as Sstart = �α · Sfull�.

4 Experimental Evaluation

The goal of our experimental evaluation is two-fold. First of all, we aim for
an overview of whether and how many fitness evaluations can be saved with a
non-uniform population size schedule. To this end, we test a large number of
deterministic schedules against the baseline method, which is to run the EMOA
with the full target population size. Second, and maybe more importantly, we
investigate the performance of our adaptive population size control method. The
primary performance comparison is with the uniform baseline. The systematic
grid evaluation of non-adaptive schedules serves as a second baseline. It allows to
judge the performance of the algorithm relative to the possible gain that could
be expected from any population size adaptation algorithm.

We consider the benchmark problems ZDT1-4 and ZDT6 from [16], the two-
objective versions of DTLZ1-4 from [5], as well as Schaffer’s problem. We use
30 variables for ZDT1-3 and 10 variables for all other problems. The goal of

584 T. Glasmachers, B. Naujoks, and G. Rudolph

optimization is to cover 99.9% of the hypervolume theoretically achievable with
100 individuals, relative to the reference point (1.1, 1.1). Visual inspection re-
veals that this formalized goal corresponds to a reasonably accurate problem
solution. For the ZDT and DTLZ problems, the achievable hypervolume can
be obtained from the website http://www.tik.ee.ethz.ch/~sop/download/

supplementary/testproblems/ for the reference point (11, 11) and converted
easily. For Schaffer’s problem we use the formulation f1(x) = |x1 − 1

2 | and
f2(x) = |x1 + 1

2 |, so that the optimal front fits inside the unit square. The
achievable hypervolume with N points is 1.12 − 0.5− 0.5/(N − 1).

The first experiment compares SMS-EMOA with population size 100 to the
same algorithm with increasing population size schedules as described in sec-
tion 3. We have tested a four-dimensional grid of schedules given by the pa-
rameters α ∈ {0.01, 0.05, 0.1, 0.2, 0.5}, β ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, γ ∈
{0.5, 0.6, 0.7, 0.8, 0.9}, and δ ∈ {0.0, 0.1, 0.2, 0.3, 0.5, 0.7}. The budget FEbudget
was set to the number of FE required by the baseline, rounded up, see table 1.
The algorithm was run 100 times for each of the 1 050 schedules. The median
number of FE relative to the baseline is reported compactly in figure 2.

The results show two basic facts. First, the region where a good schedule
is found varies from problem to problem. This clearly shows the need for an
adaptive strategy. Second, problems exist where the baseline is hard to beat
with any schedule. This means that increasing populations help in many cases,
but not always, while it (nearly) never harms.

On the DTLZ4 benchmark all strategies with initial population size of less
than 50 hit the maximum of 500 000 FE in the median. It turns out that this
result is not due to an algorithmic flaw but must be attributed solely to numerical
problems2.

In the second experiment, the population size online adaptation procedure
is tested against plain SMS-EMOA and also ranked relative to the extensive
grid of deterministic schedules. The experimental setup remains unchanged. The
adaptive schedule has a single parameter α controlling the initial population size
Sstart. For a fair comparison, this parameter was varied in the same range as
before.

Table 1. Budgets for the definition of the fixed schedules. The budget values were
determined by rounding up the median FE required by plain SMS-EMOA for reaching
99.9% of the optimal hypervolume.

Problem Schaffer ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3 DTLZ4
Budget 6 000 9 000 11 000 10 000 40 000 7 000 36 000 6 000 105 000 6 000

2 The term cos(π/2 · x100
i) in the DTLZ4 problem applied to numbers xi < 0.83 gives

exactly one when evaluated with 64bit IEEE double precision numbers. This leads to
a large fitness plateau and a spurious local optimum. Control experiments with (a)
higher precision, (b) lower exponent, and (c) larger population confirm this finding.
Therefore, we do not consider the DTLZ4 benchmark any longer.

http://www.tik.ee.ethz.ch/~sop/download/supplementary/testproblems/
http://www.tik.ee.ethz.ch/~sop/download/supplementary/testproblems/

Start Small, Grow Big? Saving Multi-objective Function Evaluations 585

Sc
ha

ffe
r

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

D
T
L
Z
1

D
T
L
Z
2

D
T
L
Z
3

D
T
L
Z
4

(1)(1)

(1)(1)

(1)(1)

(1)(1)

(1)(1)

(5)(5)

(5)(5)

(5)(5)

(5)(5)

(5)(5)

(10)(10)

(10)(10)

(10)(10)

(10)(10)

(10)(10)

(20)(20)

(20)(20)

(20)(20)

(20)(20)

(20)(20)

(50)(50)

(50)(50)

(50)(50)

(50)(50)

(50)(50)

0

1/2

1

2

∞

Fig. 2. Performance of fixed and adaptive schedules. Each 5 × 7 matrix of bitmaps
encodes values of the parameters α (rows) and β (columns). In addition the initial pop-
ulation size is listed in brackets on the right. Within each bitmap, rows and columns
encode parameters δ and γ, respectively, so that the position within the bitmap re-
sembles the position of the intermediate point as indicated in figure 1. The column
on the right of the matrix reports results for the adaptive schedule. Pixel colors indi-
cate relative runtime, measures as number of FE divided by number of FE required
by SMS-EMOA. Values smaller than 1 (blueish color) indicate an improvement over
the baseline, values close to 1 (green) mark performance indifferent to the baseline,
and values larger than 1 (yellow to red) indicate deterioration of the performance as
compared to the baseline.

586 T. Glasmachers, B. Naujoks, and G. Rudolph

Table 2. Performance (median number of FE, lower is better) of plain SMS-EMO and
adaptive population size schedule, with the same initial population size of Sstart = 10

Problem Schaffer ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ1 DTLZ2 DTLZ3
Baseline 5 482 8 867 10 271 9 533 39 422 6 012 35 052 5 015 102 185
Adaptive 5 848 4 851 5 544 5 712 46 591 2 701 34 926 3 058 97 880

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

Schaffer

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

ZDT1

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

ZDT2

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

ZDT3

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

ZDT4

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

ZDT6

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

DTLZ1

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

DTLZ2

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

DTLZ3

Fig. 3. Evolution of the adaptively controlled population size starting with 10 indi-
viduals. All successful runs were rescaled to the same length which is displayed on a
percentage scale.

The results for the adaptive schedules are reported graphically in the column
right to the bitmap matrix in figure 2, as well as numerically in table 2. The
performance of the algorithm is rather robust w.r.t. its only parameter, the initial
population size. Our results suggest a default setting of α = 0.1 (corresponding
to Sstart = 10 in our experiments).

It becomes clear that on average the adaptive schedule works about as well
as a good fixed schedule. Importantly, this is achieved across different problems
that require different types of schedules, without prior knowledge of the budget,
and with a practically parameter free method.

An interesting question is how exactly the online adaptation evolves the popu-
lation size. Figure 3 answers this question. There is a high correlation between the
population size staying low for an extended period and a significant performance
improvement over the baseline (compare to figure 2). This is not surprising since
increasing the population size quickly basically means that plain SMS-EMOA
takes over quickly. Such behavior is hard to avoid on multi-modal problems
such as ZDT4, DTLZ1, and DTLZ3. Importantly, although in these cases online
adaptation does not help, it also does not (seriously) impair performance.

Start Small, Grow Big? Saving Multi-objective Function Evaluations 587

In contrast, for problems ZDT1, ZDT2, ZDT3, ZDT6, and DTLZ2 adaptively
increasing the population size results in considerable savings of FE, in the order
of about 50%. All of these problems can be solved by approaching the front with
a small population, resulting in increased selection pressure, and spreading the
increasing population over the front as soon as the progress rate drops.

In summary, starting small and growing the population big over the course
of a multi-objective optimization run can save a significant fraction of fitness
evaluations, while it nearly never hurts. Our adaptive algorithm performs in most
cases about as well as the (in general unknown) best deterministic schedule.

5 Conclusion and Outlook

We have proposed an online adaptation scheme for the population size of an
EMOA. This algorithm was compared with the usual proceeding of fixing the
population size to the desired cardinality of the result set, as well to a large num-
ber of systematically chosen deterministic increasing population size schedules.
The proposed adaptive algorithm compares favorably. It saves up to about 50%
of the fitness evaluations of the standard algorithm in case uni-modal problems,
whereas it shows nearly unchanged behavior on multi-modal benchmarks. The
comparison of the performance of the adaptive schedule to the large set of de-
terministic schedules reveals that significantly better results cannot be expected
with any population size schedule. Thus the strategy to start small and grow big
turns out to be successful in MCO.

A few open questions remain for future research. We did not present an adap-
tation rule for shrinking of the population size, although a similar success-based
adaptive rule is straightforward to design. However, at least on standard bench-
marks shrinking is not very useful. Another open question is how the adaptation
rule can be adapted to work with an evolution strategy without interfering with
the (often success-based) step size adaptation mechanism. An extension of this
study to more than two objectives is work in progress.

References

1. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based
Many-Objective Optimization. Evolutionary Computation 19(1), 45–76 (2011)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Re-
search 181(3), 1653–1669 (2007)

3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimiza-
tion Test Problems. In: Congress on Evolutionary Computation, CEC 2002, pp.
825–830. IEEE Press, Piscataway (2002)

588 T. Glasmachers, B. Naujoks, and G. Rudolph

6. DeJong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press,
Cambridge (2006)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Com-
puting Series. Springer, Berlin (2003)

8. Eskandari, H., Geiger, C.D., Lamont, G.B.: FastPGA: A dynamic population sizing
approach for solving expensive multiobjective optimization problems. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 141–155. Springer, Heidelberg (2007)

9. Igel, C., Hansen, N., Roth, S.: Covariance Matrix Adaptation for Multi-objective
Optimization. Evolutionary Computation 15(1), 1–28 (2007)

10. Laumanns, M.: Analysis and Applications of Evolutionary Multiobjective Opti-
mization Algorithms. Ph.D. thesis, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland (2003)

11. Lu, H., Yen, G.G.: Dynamic population size in multiobjective evolutionary algo-
rithms. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation,
CEC 2002, pp. 1648–1653. IEEE Press, Piscataway (2002)

12. Peschel, M., Riedel, C.: Use of vector optimization in multiobjective decision
making. In: Bell, D.E., Keeney, R.L., Raiffa, H. (eds.) Conflicting Objectives in
Decisions, pp. 97–121. Wiley, Chichester (1977)

13. Rudolph, G., Agapie, A.: Convergence properties of some multi-objective evolu-
tionary algorithms. In: Zalzala, A., et al. (eds.) Proceedings of the 2000 Congress
on Evolutionary Computation, CEC 2000, vol. 2, pp. 1010–1016. IEEE Press,
Piscataway (2000)

14. Tan, K.C., Lee, T.H., Khor, E.F.: Evolutionary algorithms with dynamic popula-
tion size and local exploration for multiobjective optimization. IEEE Transactions
on Evolutionary Computation 5(6), 565–588 (2001)

15. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and
Applications. Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (November 1999)

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary
Algorithms—A Comparative Study. In: Eiben, A.E., Bäck, T., Schoenauer,
M., Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer,
Heidelberg (1998)

Queued Pareto Local Search

for Multi-Objective Optimization

Maarten Inja, Chiel Kooijman, Maarten de Waard,
Diederik M. Roijers, and Shimon Whiteson

Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
{maarten.inja,chiel.kooijman,mrtndwrd}@gmail.com,

{d.m.roijers,s.a.whiteson}@uva.nl

Abstract. Many real-world optimization problems involve balancing
multiple objectives. When there is no solution that is best with respect to
all objectives, it is often desirable to compute the Pareto front. This paper
proposes queued Pareto local search (QPLS), which improves on existing
Pareto local search (PLS) methods by maintaining a queue of improve-
ments preventing premature exclusion of dominated solutions. We prove
that QPLS terminates and show that it can be embedded in a genetic
search scheme that improves the approximate Pareto front with every it-
eration. We also show that QPLS produces good approximations faster,
and leads to better approximations than popular alternative MOEAs.

1 Introduction

Many real-world optimization problems contain multiple objectives, e.g., when
mapping different processes of a software application to hardware components,
both processing time and power consumption should be minimized [7].

For specialized applications, it is sometimes possible to compute an exact set
of optimal trade-offs between the objectives, i.e., the Pareto front. However, when
the solution space of these problems is large, computing the Pareto front is often
intractable. In this case, multi-objective evolutionary algorithms (MOEAs) [2]
can compute a set of solutions that approximates the Pareto front. MOEAs are
general-purpose multi-objective optimization methods, and have been applied to
a large variety of optimization problems [1], from reinforcement learning [15] to
design space exploration [12].

To speed up MOEAs, one can use Pareto local search (PLS) algorithms [5,9,13].
PLS algorithms employ simple heuristic improvement algorithms to find reason-
ably good solutions in a short time. PLS methods find an approximate Pareto
front by looking in the (search space) neighborhood of the individual solutions
in this archive for solutions that improve upon the current Pareto archive. An
important advantage of this method is that the size of the archive is not limited.
This is important because the size of the Pareto front is often not known in
advance.

However, an important downside of current PLS methods is that promising
solutions are excluded from the Pareto-archive when an improvement is found for
another (unrelated) solution, before they have a chance to improve themselves.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 589–599, 2014.
c© Springer International Publishing Switzerland 2014

590 M. Inja et al.

Such premature deletions from the archive are undesirable since they reduce
genetic diversity that might be needed to find part of the Pareto front.

In this paper, we propose a new algorithm for Pareto local search that we
call queued Pareto local search (QPLS), which stores promising solutions in a
queue. When such a solution is popped off the queue, QPLS performs strict
Pareto improvements by looking for a stricly better solution (in all objectives)
in the neighborhood of the solution. Only when such improvements are no longer
possible, is it compared to a Pareto archive. This prevents premature deletion of
solutions. Unlike other PLS methods, the queued approach “protects” dominated
solutions until they are mutated to a locally optimal state. As in previous PLS
work, we embed QPLS in a genetic scheme.

We empirically compareGeneticQPLS against the state-of-the-artPLSmethod
Genetic SPLS [5], and against the popular non-PLS MOEAs NSGA-II [3] and
SPEA2 [21], usingmulti-objective coordination graphs [16,17].We show thatQPLS
can produce good approximate fronts for much larger problems than that can be
solvedwith exactmethods (such as [18]). Furthermore,we show thatGeneticQPLS
maintains a Pareto set with a larger hypervolume [19] than the other algorithms
both in the short and long run.

2 Background

We first introduce the problem setting and notation used throughout the paper.
A multi-objective optimization problem (MOOP) is a tuple < V ,S, f >, where:

– V = {v1, ..., vn} is the set of n enumerated variables,
– S = S1 × ... × Sn is the search space, i.e., the Cartesian product of the
domains of the variables in V , and

– f : S → .d is a d-objective fitness function that maps all points in the search
space to a d-objective fitness. We refer to the value of the i-th objective as
fi.

We define the neighborhood of s, N (s), as the set of solutions that differ in
exactly one variable. We assume that each objective needs to be maximized. We
refer to an approximation to the Pareto front as a Pareto archive, denoted P .
A solution s Pareto dominates a solution s′ when its fitness is larger in one
objective, and at least equal in all the others: f(s) / f(s′) = ((∀i) fi(s) ≥
fi(s′)) ∧ ((∃j) fj(s) > fj(s′)). In a Pareto archive, there are no solutions that
are Pareto dominated by another solution in that set. We say that a solution s
weakly dominates another solution s′, when it either dominates it, or has equal
value. If s does not dominate s′ and s′ does not dominate s then s and s′ are
incomparable. Two Pareto archives P and P ′ can be merged [5] by taking the
union and removing the dominated solutions.

2.1 Non-PLS Methods

Many MOEAs (e.g., [3,21]) do not employ PLS but instead maintain a popula-
tion of individual solutions that are improved upon via mutation and crossover

Queued Pareto Local Search for Multi-Objective Optimization 591

operators. When these operators are ergodic, the entire search space is scanned
in the limit [6]. This guarantees that MOEAs do not get permanently stuck in
local optima. This holds even for MOEAs that do not employ PLS.

Two popular MOEAs that do not employ PLS are NSGA-II [3] and SPEA2
[21]. NSGA-II applies elitism, uses a fast sorting algorithm and focuses on main-
taining diversity within the population. SPEA2 employs a measure of strength
for a solution based on the number of solutions that dominate it, the number of
solutions that are dominated by it, and the distance to the k-th nearest neigh-
bor. The advantage of both is that their population diversity prevents them
from getting stuck in local optima. However, neither of these algorithms employ
heuristics to find better solutions more quickly. NSGA-II and SPEA2 are the
two most popular algorithms for MOOPs [20].

2.2 PLS Methods

Paquete et al. [13] propose a Pareto local search (PLS) algorithm that maintains
an archive of non-dominated solutions P . Each solution s ∈ P is visited to search
its neighborhood N (s) for new solutions. This is achieved by merging the entire
neighborhood of s into P . A drawback is that the neighborhood of one solution
can overwrite the whole archive (especially early on), while the neighborhoods
of the overwritten solutions can contain solutions that would improve P even
further. Drugan and Thierens [5] propose a variation in which improvements are
made to the archive by adding a single improving solution with respect to P
(Pareto-dominant or Pareto-incomparable) from the neighborhood N (s) of one
solution s ∈ P at a time. This reduces the probability that promising solutions
in P are deleted after an improvement from a different solution. However, the
removed dominated solutions might still have had possible improvements.

Liefooghe et al. [9] generalize PLS algorithms into several categories based
on the current set selection for neighborhood scanning, exploration strategy,
archiving method and stopping conditions. Two types of archiving methods
are considered. An unbounded archive can be used to store the set of all non-
dominated solutions and a bounded archive stores a subset of the non-dominated
solutions. Some algorithms only store the dominating solutions as the archive is
filled. Other algorithms employ diversity criteria, such as crowding distance or
ε-dominance, to limit the size of the archive. However, all of these algorithms gen-
erate improvements from the neighborhood of current elements of the archive
and directly delete members of the archive due to these improvements, even
though these deleted elements could yield improvements if their neighborhoods
were inspected.

Two distinct strategies can be employed to select the next improving solution
s′ from the neighborhood of s, N (s). In the best-improvement strategy the entire
neighborhood N (s) is scanned for the best improvement. The selected improve-
ment s′ is guaranteed not to be dominated by another other solution in N (s). In
the first-improvement strategy, the first solution s′ in N (s) that improves s is re-
turned immediately. Hansen and Mladenović [8] find that for single-objective LS,
first-improvement usually leads to better empirical results. Liefooghe et al. [9] con-
firm this result for PLS algorithms, as do Drugan and Thierens [5] for SPLS.

592 M. Inja et al.

3 QPLS

Our main contribution, queued Pareto local search, is given in Algorithm 1. QPLS
prevents the premature deletion of promising solutions by maintaining a queue
of solutions to improve, which leads to a more diverse Pareto archive.

Algorithm 1. QPLS(f , Q, k)
Require: Initial queue Q
1: � the Pareto front
2: P ← ∅
3: while Q.notEmpty() do
4: s← Q.pop()
5: � recursive local improvements
6: s← PI(s, f)
7: � s undominated by P
8: if ∀p ∈ P : f(s) ⊀ f(p) ∧ f(s)
= f(p)
9: P ← merge(P, {s})
10: � new candidates
11: N←{s′∈N (s) : s
#s′}
12: Q.addK(N, k)
13: end if
14: end while
15: return P

Algorithm 2. GQPLS(α, pM)
Require: A random initial Q
1: P ← QPLS(Q, I)
2: while NOT Stopping condition do
3: Q.clear()
4: for s ∈ P do
5: if α > U(0, 1) or |P | < 2
6: s′ ← Mutate(s, pM)
7: else
8: Select s1
= s from P
9: s′ ← Recombine(s, s1)
10: end if
11: Q.add(s′)
12: end for
13: P ← merge(P, QPLS(Q))
14: end while
15: return P

The algorithm starts with an initial queue Q of candidate solutions, and an
empty Pareto archive (line 2). Until the queue is empty, these candidate solutions
are popped one by one (line 3–14). When a solution s is obtained from the queue,
it first runs a recursive Pareto improvement function (PI) at line 6. PI improves
solutions by repeatedly selecting a dominating solution from the neighborhood,
until such improvements are no longer possible.

After a solution s is found that is not dominated by any of its neighbors, it is
compared to the Pareto archive P (line 8), and when it is not weakly dominated
by any solution in P , s is merged into P (line 9). Then, new candidate solutions
are selected from the neighbors of s. The set N on line 11 is the set of neighbors
of s that are incomparable to s. From N , k candidates are randomly selected to
be added to the queue. By setting the parameter k, the amount of exploration in
the neighborhood of one solution can be controlled. Making k too large leads to
exploring a lot of unsuccessful candidates initially, whereas making k too small
reduces the archive’s genetic diversity. We typically choose k between 2 and 10.

Following previous work [5,8], we can distinguish two strategies for PI, a best-
improvement and a first-improvement implementation. Unlike SPLS, where im-
provements are applied once per iteration, we apply the improvements recursively
until no improvement can be found. Because solutions that have not yet been
optimized are protected in the queue, we do not have to worry about premature
deletions from our intermediate Pareto archive.

QPLS guarantees that all solutions in the Pareto archive are Pareto-
undominated with respect to their neighborhoods at any given time while the

Queued Pareto Local Search for Multi-Objective Optimization 593

algorithm runs. Furthermore, it can be proved that, in a finite state space, QPLS
terminates in a finite number of steps for any finite initial queue. This is because
there can be only a limited number of steps to any archive P ∗, and because there
can be no cycles in its execution.

However, QPLS converges to a locally optimal set. A naive method to find
better approximate Pareto fronts than the single locally optimal set returned by
QPLS is just to restart QPLS with different random initial queues, and merge
the result, i.e., multi-start QPLS (MQPLS). However, MQPLS does not exploit
the results of the individual QPLS runs to focus on more promising regions.

4 Genetic QPLS

Genetic QPLS (GQPLS) escapes local optima by mutating and recombining the
entire Pareto archive that result from individual QPLS runs. After a single QPLS
run, we can mutate all the solutions in the archive, and restart PLS with these
mutated solutions as input. In the case of QPLS, this input is the initial queue.

The genetic local search (GLS) scheme combines mutation and recombination.
We define GQPLS in Algorithm 2. It escapes local optima by restarting QPLS
with a set of new solutions, consisting of mutations and recombinations of solu-
tions from Pareto archive P returned by single QPLS runs. The implementation
of the genetic operators Mutate and Recombine are dependent on the problem.

GQPLS starts by running QPLS on an initial queue Q to find a locally optimal
Pareto archive P on line 1. On lines 3 to 12, a new queue is created which consists
of mutations and recombinations from the previous archive. For each solution
s ∈ P , either (with probability α) a mutation of s is generated (line 6), or (with
probability 1−α) we use a recombination of s with a random of solution s′ �= s
from the archive (line 9). The newly generated solution is then added to the new
queue. Finally, QPLS is called again with the new queue, and the result of which
is merged into P. Because we use the Pareto dominance relationship in merge,
the archive can only improve or remain the same. GQPLS runs indefinitely or
until some stopping condition is met.

When the crossover probability α = 0, one could regard this as an iterated
[4,10] version of QPLS. We view iterated QPLS as a special case of GQPLS.

5 Experiments

We compare QPLS to existing PLS and non-PLS MOEAs on randomly gener-
ated multi-objective coordination graphs (MO-CoGs) [16], which are single-state
problems from the multi-agent literature in which agents must work together
in order to obtain a shared (vector-valued) reward. Not only do these problems
form an important problem on their own (e.g., for resource gathering [16] or risk-
sensitive combinatorial auctions [11]), they are also a key subproblem in more
elaborate sequential settings (such as transport network maintenance planning
[14]). In these settings, time is often limited, making fast heuristic methods key

594 M. Inja et al.

to their applicability. Additionally, MO-CoGs allow for fast evaluation of a mu-
tation of an evaluated solution, which makes it possible to perform faster local
search. MO-CoGs form a class of flexible and scalable problems that can vary in
size (the number of variables and the size of the search space) and in complexity
(the complexity of the graphs), making them interesting MOEA benchmarks.

MO-CoGs are MOOPs in which V is a set of n enumerated agents, S = A =
A1 × . . . × An is the Cartesian product of the action spaces of the individual
agents. A specific joint action is denoted a. Finally, f is a vector sum over a set
of local payoff functions U : f(a) =∑ue∈U ue(ae). A local payoff function ue has
limited scope e, i.e., only a subset of agents participate in it. A local joint action
of the agents that participate in ue is denoted ae. The local joint actions ae on
the righthand side are derived from the full joint action a on the lefthand side.

The local payoff functions and the agents can be seen as the two sets of nodes
in a bipartite graph whose edges indicate which agents participate in which local
payoff functions. A small example graph with 3 agents (circles) and 2 local payoff
functions is shown in Fig. 1.

To generate MO-CoGs, we follow the random graph generation procedure pro-
posed by Roijers et al. [16]. This procedure takes the following input variables:
n, the number of agents; d, the number of objectives; ρ the number of local payoff
functions; and |Ai|, the action space size, which in this procedure is the same for all
agents. The values in each local payoff function are filled with real numbers drawn
independently from a uniform distribution on the interval 0 < ue,i(ae) < 10.

Fig. 1. A coordination graph

The payoff for a single local function depends
on the actions of all connected agents, and each
agent can participate in several local payoff func-
tions. Therefore, getting good payoffs requires
carefully coordinated actions. Randomly chang-
ing the action of random agents in a carefully
balanced solution can therefore cause the coor-
dination to collapse. To minimize the impact of
changes in a solution but still be able to escape from local optima, the function
Recombine copies the actions for adjacent agents from each solution. Specifically,
it uses the graph structure to decide where it is divided: starting with a random
payoff function, it adds the action from the first solution and iterates breadth-
first over the agents in the graph, stopping with a probability pS or when half
of the graph has been covered. The other actions are taken from the second so-
lution. pS was chosen so that the expected number of actions changed is a third
of the total.

The Mutate operator, by contrast, does not take graph structure into account.
It returns a new solutions that is a copy of its argument, except that every action
has a probability pM = 0.05 to switch to a random action in its action space.

We compare against two non-PLS-employing MOEAs: NSGA-II and SPEA2,
and against the PLS-employing method we emprically found best for MO-CoGs:
Drugan and Thierens’ first-improvement genetic SPLS [5]. We employ the same
Mutate and Recombine operators described above for all methods. All algorithms,

Queued Pareto Local Search for Multi-Objective Optimization 595

as well as the problem, were implemented in JAVA. All experiments were run
on an Intel Core i7-3610QM quad core CPU at 2.30GHz.

5.1 Parameter Optimization

For MO-CoGs of varying size, we optimized the parameters for each algorithm
separately. For SPEA2 a low probability of crossover (0.2) was better than only
using mutation. For NSGA-II 0.0 was best.

Genetic SPLS yielded the best results when the mutation probability α was
set to 0.5. The first Pareto-improvement exploration strategy (as was also found
by Drugan and Thierens [5] for quadratic assignment problems) was best.

Surprisingly, for Genetic QPLS the mutation only probability was best set to
α = 1. This can be explained by the observation that GQPLS has little trouble
finding good solutions in the center of the Pareto front but more difficulty finding
them around the edges of the Pareto front (as shown Fig. 4, which we discuss
further in Sect. 5.3). Recombining values from the center of the front may be
less likely to yield results on the edges, where the combination of two solutions
from different edges would result in a solution around the center.

For GQPLS, recursive best Pareto-improvement performed best. This contra-
dicts findings for earlier PLS algorithms [9], including GSPLS, the best other
PLS algorithm for this problem. This can be explained by the protection of
candidate solutions in the queue of QPLS. Best-improvement takes bigger steps
on average; therefore, in other PLS algorithms, the probability that promising
solutions in the Pareto archive are dominated by the resulting improvements
and thus prematurely deleted, is higher as well. Because QPLS does not run
the risk of deleting other candidate solutions from the queue, the best possible
improvement strategy just speeds up the search.

The maximal numbers of additions to the queue in QPLS was best set to
k = 5. When k was set higher, the individual runs of QPLS took longer, with
only slightly better results (that were more easily achieved with the genetic
scheme), and when k was lower the Pareto archives were initially narrower.

5.2 Approximation of the Pareto Front

We generated small MO-CoGs for which P ∗ was computed exactly using multi-
objective bucket elimination (MO-BE) [18]. We generated 2-objective MO-CoGs
of n = 5 to n = 30 agents, with ρ = 1.5n and |Ai| = 10. For larger MO-CoGs, it
is not feasible to compute the true Pareto front, as MO-BE has a runtime that
is exponential in the number of agents [16], and for more than 30 agents, its
memory requirements become intractable.

Pareto-set approximations are evaluated in terms of the hypervolume [22] as
a function of runtime. The hypervolume is defined as the volume of reward space
that is dominated between the positive reward origin and the Pareto archive.

In a large portion of MOEA literature, methods are compared using the num-
ber of fitness evaluations instead of time. However, PLS methods do not do full
fitness evaluations quite as often. Instead, they perform many tiny changes on
a local level, which can be evaluated in a fraction of the time, and only evalu-
ate fitness fully after recombinations and mutations. As a result, comparing the

596 M. Inja et al.

number of fitness evaluations gives an incomplete and possibly misleading pic-
ture of the computational costs. Hence, we measure hypervolume as a function
of runtime rather than number of evaluation function calls.

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS
86

88

90

92

94

96

98

100

T
ru

e
 H

y
p
e
rv

o
lu

m
e
 %

5 Agents

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS

10 Agents

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS

15 Agents

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS

20 Agents

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS

25 Agents

G
Q
PL

S

N
SG

A
-II

SP
EA

2

G
SP

LS

30 Agents

Fig. 2. Percentage of the real hypervolume found by GQPLS, NSGA-II, SPEA2 and
GSPLS after 15 minute runs on MO-CoGs of varying size; 10 runs per problem size

0 2 4 6 8 10 12 14
Time (minutes)

70

75

80

85

90

95

100

T
ru

e
 H

y
p
e
rv

o
lu

m
e
 %

GQPLS

GSPLS

NSGA-II

SPEA2

0 10 20 30 40 50 60
Time (minutes)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
y
p
e
rv

o
lu

m
e

1e7

GQPLS

GSPLS

NSGA-II

SPEA2

0 20 40 60 80 100 120
Time (minutes)

1.5

2.0

2.5

3.0

3.5

4.0

H
y
p
e
rv

o
lu

m
e

1e10

GQPLS

GSPLS

NSGA-II

SPEA2

Fig. 3. The hypervolume as a function of time for one randomly generated MO-CoG
for all tested MOEAs. (left) An n = 30, d = 2 MO-CoG, with hypervolume as a
percentage of the hypervolume of the true Pareto front. (middle) An n = 300, d = 2
MO-CoG. (right) An n = 300, d = 3 MO-CoG.

2200 2400 2600 2800 3000 3200 3400 3600 3800

Reward d
1

2200

2400

2600

2800

3000

3200

3400

3600

3800

R
e
w

a
rd

 d
2

GQPLS

GSPLS

NSGA2

SPEA2

2200 2400 2600 2800 3000 3200 3400 3600 3800

Reward d
1

2200

2400

2600

2800

3000

3200

3400

3600

3800

R
e
w

a
rd

 d
2

GQPLS

GSPLS

NSGA2

SPEA2

2200 2400 2600 2800 3000 3200 3400 3600 3800

Reward d
1

2200

2400

2600

2800

3000

3200

3400

3600

3800

R
e
w

a
rd

 d
2

GQPLS

GSPLS

NSGA2

SPEA2

Fig. 4. The Pareto-archives found by GQPLS, GSPLS, NSGA-II and SPEA2 on a
n = 300 MO-CoG: (left) after 20 seconds, (middle) 5 minutes, and (right) 1 hour

Figure 2 shows the fraction of the hypervolume of P ∗ that is found by the
MOEAs within 15 minutes in quantiles. All methods produce less accurate ap-
proximations as the problem size increases. However, GQPLS performs better
in terms of best, worst, and mean results than the other methods.

Figure 3 (left) shows the growth of the hypervolume over time for an n =
30 MO-CoG. After 15 minutes, all methods are still improving their Pareto
fronts but GQPLS has better approximations than the other algorithms at every
timestep. When comparing GQPLS to MO-BE in the 30-agent setting, we found
that after one iteration, which on average took 0.37% of the time required by

Queued Pareto Local Search for Multi-Objective Optimization 597

MO-BE to calculate the true Pareto front, GQPLS found a Pareto archive that
covered 92.4% of the hypervolume of P ∗.

We conclude that GQPLS can approximate P ∗ better and more quickly than
GSPLS, NSGA-II and SPEA2 for small problems, and that the difference in
approximation quality tends to get bigger as the problem size increases. Further-
more, GQPLS provides good results in a fraction of the time MO-BE takes to
find P ∗.

5.3 A Large MO-CoG

One the strengths of MOEAs lies in the fact that they can return approximate
results when calculating the exact Pareto front is intractable. Figure 3 shows
the results for n = 300, d = 2 (middle) and n = 300, d = 3 (right). In the d = 2
problem, GQPLS outperforms the other algorithms by a large margin, while
the difference is smaller in the d = 3 problem. A likely explanation is that the
benefit of protecting diversity (by using the queue) provides a smaller benefit in
higher dimensional problems, as there are more ways in which solutions can be
Pareto-equivalent, and thus fewer solutions are dominated and discarded.

Figure 4 shows how the fronts develop over time. Both NSGA-II and SPEA2
have a wide spread from early on and move slowly towards a higher reward
in both dimensions. Both GSPLS and GQPLS improve towards the center of
the graph first, but where GSPLS has difficulty widening the front, GQPLS is
able to explore the front’s edges while also finding improvements in the center.
We hypothesize that this is because improvements on the edges are often the
result of mutations that first take a rather big step back in both objectives and
only turn out well after a full recursive Pareto-improvement run. It is precisely
these mutations that need to be protected from premature deletion until such
improvement has taken place.

Overall, these results show that, like other PLS-based methods, GQPLS finds
a relatively good approximate front quickly and continues to improve in order to
find the best approximations. We therefore conclude that using a PLS method
that employs queues to protect promising candidates during Pareto local search
can lead to great speed-ups in MOEAs.

6 Discussion and Conclusion

In this paper, we proposed a PLS algorithm based on the principle that newly
mutated solutions should be allowed to find their full potential before comparing
them to other solutions. QPLS therefore protects these solutions in a queue. We
embedded QPLS in a genetic search scheme, yielding Genetic QPLS, to escape
from local optima. QPLS terminates and GQPLS finds the true Pareto front in
the limit. We showed empirically that QPLS outperforms other popular evolution-
arymulti-objective algorithms on random generated multi-objective coordination
graphs, where mutations of known sulutions can be evaluated efficiently.

In future work, we aim to employ ideas from other successful algorithms, such
as NSGA-II and SPEA2, and focus the search on those regions of the value
space that are less “crowded” by other solutions. The crowding distance, as

598 M. Inja et al.

defined by NSGA-II, can be used for such purposes. There are several ways the
crowding distance could be employed: (1) embed it inside QPLS to let solutions
with a higher crowding distance produce more candidate solutions in the queue,
(2) use it inside recursive best Pareto improvement to discriminate between
Pareto incomparable solutions, or (3) use it to seed new initial queues in the
outer loop of GQPLS. Furthermore we would like to compare GQPLS to more
recent MOEAs such as those reviewed by Zavala et al. [20].

Acknowledgements. This research is supported by the NWO DTC-NCAP
(#612.001.109) project.

References

1. Coello Coello, C.A., Lamont, G.B.: Applications of multi-objective evolutionary
algorithms, vol. 1. World Scientific (2004)

2. Coello, C.A.C., Lamont, G.B., Van Veldhuisen, D.A.: Evolutionary algorithms for
solving multi-objective problems. Springer, Heidelberg (2007)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN VI. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

4. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic Pareto local
search algorithms. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.)
PPSN XI. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010)

5. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood
exploration and perturbation strategies. J. Heur. 18(5), 727–766 (2012)

6. Eberhart, R.C., Shi, Y.: Comparison between genetic algorithms and particle
swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E.
(eds.) EP 1998. LNCS, vol. 1447, pp. 611–616. Springer, Heidelberg (1998)

7. Erbas, C., Cerav-Erbas, S., Pimentel, A.D.: Multiobjective optimization and evolu-
tionary algorithms for the application mapping problem in multiprocessor system-
on-chip design. IEEE Transactions on Evolutionary Computation 10(3), 358–374
(2006)

8. Hansen, P., Mladenović, N.: First vs. best improvement: An empirical study. Dis-
crete Appl. Math. 154(5), 802–817 (2006)

9. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.-G.: On dominance-
based multiobjective local search: Design, implementation and experimental analy-
sis on scheduling and traveling salesman problems. J. Heur. 18(2), 317–352 (2012)

10. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. arXiv preprint
math/0102188 (2001)

11. Marinescu, R.: Efficient approximation algorithms for multi-objective constraint
optimization. In: Brafman, R. (ed.) ADT 2011. LNCS (LNAI), vol. 6992, pp.
150–164. Springer, Heidelberg (2011)

12. Obayashi, S., Jeong, S., Chiba, K.: Multi-objective design exploration for aerody-
namic configurations. AIAA, 4666:2005 (2005)

13. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Gandibleux, X.,
Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Op-
timisation. LNEMS, vol. 535, pp. 177–199. Springer, Heidelberg (2004)

Queued Pareto Local Search for Multi-Objective Optimization 599

14. Roijers, D.M., Scharpff, J., Spaan, M.T., Oliehoek, F.A., de Weerdt, M., Whiteson,
S.: Bounded approximations for linear multi-objective planning under uncertainty.
In: ICAPS (2014)

15. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. JAIR 47, 67–113 (2013)

16. Roijers, D.M., Whiteson, S., Oliehoek, F.A.: Computing convex coverage sets for
multi-objective coordination graphs. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.)
ADT 2013. LNCS, vol. 8176, pp. 309–323. Springer, Heidelberg (2013)

17. Roijers, D.M., Whiteson, S., Oliehoek, F.A.: Linear support for multi-objective
coordination graphs. In: Proceedings of the 2014 International Conference on Au-
tonomous Agents and Multi-agent Systems, pp. 1297–1304. International Founda-
tion for Autonomous Agents and Multiagent Systems (2014)

18. Rollón, E., Larrosa, J.: Bucket elimination for multiobjective optimization prob-
lems. Journal of Heur. 12(4-5), 307–328 (2006)

19. Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E.: Empirical
evaluation methods for multiobjective reinforcement learning algorithms. Mach.
Learn. 84(1-2), 51–80 (2011)

20. Zavala, G., Nebro, A., Luna, F., Coello Coello, C.A.: A survey of multi-objective
metaheuristics applied to structural optimization. Struct. Multidiscip. O., 1–22
(2013)

21. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm (2001)

22. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P.
(eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 600–610, 2014.
© Springer International Publishing Switzerland 2014

Distance-Based Analysis of Crossover Operators
for Many-Objective Knapsack Problems

Hisao Ishibuchi, Yuki Tanigaki, Hiroyuki Masuda, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
{hisaoi@,yuki.tanigaki@ci.,hiroyuki.masuda@ci.,nojima@}

cs.osakafu-u.ac.jp

Abstract. It has been reported for multi-objective knapsack problems that the
recombination of similar parents often improves the performance of evolutio-
nary multi-objective optimization (EMO) algorithms. Recently performance
improvement was also reported by exchanging only a small number of genes
between two parents (i.e., crossover with a very small gene exchange probabili-
ty) without choosing similar parents. In this paper, we examine these perfor-
mance improvement schemes through computational experiments where
NSGA-II is applied to 500-item knapsack problems with 2-10 objectives.
We measure the parent-parent distance and the parent-offspring distance in
computational experiments. Clear performance improvement is observed when
the parent-offspring distance is small. To further examine this observation, we
implement a distance-based crossover operator where the parent-offspring
distance is specified as a user-defined parameter. Performance of NSGA-II is ex-
amined for various parameter values. Experimental results show that an appropri-
ate parameter value (parent-offspring distance) is surprisingly small. It is also
shown that a very small parameter value is beneficial for diversity maintenance.

Keywords: Mating schemes, evolutionary multiobjective optimization (EMO),
many-objective optimization, knapsack problems, NSGA-II.

1 Introduction

Evolutionary multi-objective optimization (EMO) has been an active research area in
the field of evolutionary computation in the last two decades. A number of multi-
objective continuous optimization problems have been proposed as test problems in
the EMO community. Whereas continuous problems have been mainly used to eva-
luate the performance of EMO algorithms, combinatorial test problems such as multi-
objective knapsack problems in Zitzler and Thiele [17] have also been used (e.g., see
Jaszkiewicz [9], Sato et al. [13], and Zhang and Li [16]).

For multi-objective knapsack problems, it has been reported in some studies [3],
[6], [13] that the recombination of similar parents improves the performance of EMO
algorithms such as SMS-EMOA [1] and NSGA-II [2]. MOEA/D [16] has an inherent
mechanism of recombining similar parents, which is local selection of parents based
on a neighborhood structure of solutions. It has been reported in [4] that the removal

 Distance-Based Analysis of Crossover Operators 601

of local selection deteriorates the performance of MOEA/D on multi-objective knap-
sack problems. Reported results in those studies suggest the existence of a negative
effect of recombining totally different parents on the performance of EMO algorithms.
Recently Sato et al. [14] demonstrated that the performance of EMO algorithms was
improved by exchanging only a small number of genes between two parents (i.e., using
a very small gene exchange probability) instead of choosing similar parents.

In this paper, we examine the above-mentioned two schemes for performance im-
provement of EMO algorithms through computational experiments on 500-item knap-
sack problems with 2-10 objectives. NSGA-II [2] is used to examine the effect of
each scheme. That is, NSGA-II is applied to each test problem under three settings of
crossover: Standard uniform crossover, uniform crossover of similar parents, and
modified uniform crossover with a very small gene exchange probability. In computa-
tional experiments, we measure the parent-parent distance and the parent-offspring
distance. Good results are obtained when the parent-offspring distance is small.

To further examine this observation, we implement a distance-based crossover op-
erator where the generated offspring always has a pre-specified distance from its
closer parent. That is, the parent-offspring distance is specified as a user-defined pa-
rameter. Performance of NSGA-II is measured for various parameter values to ex-
amine the relation between the parent-offspring distance and its performance. As
performance measures, we calculate the hypervolume of solutions obtained from each
run of NSGA-II using two reference points. One is far from and the other is close to
the Pareto front. The two reference points are used to examine the effect of the parent-
offspring distance on the diversification and convergence properties of NSGA-II.

The rest of this paper is organized as follows. In Section 2, we briefly explain our
test problems (i.e., 500-item knapsack problems with 2-10 objectives). In Section 3,
we explain the above-mentioned two performance improvement schemes. In Section
4, we report our experimental results where the performance of NSGA-II with each
scheme is evaluated. In Section 5, we discuss our experimental results using a dis-
tance-based crossover operator. Finally we conclude this paper in Section 6.

2 Multi-Objective and Many-Objective Knapsack Problems

Multi-objective knapsack problems with 2-4 objectives and 250, 500 and 750 items
were used in Zitzler and Thiele [17]. Their two-objective n-item problem is written as

Maximize ,))(),(()(21 xxxf ff= (1)

subject to ≤
=

n

j
ijij cxw

1
, ,2,1=i (2)

 =jx 0 or 1, ,...,,2,1 nj = (3)

where =
=

n

j
jiji xpf

1
)(x , .2,1=i (4)

602 H. Ishibuchi et al.

In Zitzler and Thiele [17], the profit pij and the weight wij of item j with respect to
knapsack i were specified as random integers in the interval [10, 100]. The capacity ci
of knapsack i was specified as 50% of the total weight of n items for knapsack i.
Since the number of objectives and the number of items can be arbitrarily specified,
multi-objective knapsack problems have been used as many-objective test problems
(e.g., [4], [7], [14]). They have also been used as large-scale multi-objective test prob-
lems with up to 10000 items [5].

In this paper, we use multi-objective 500-item knapsack problems with 2-10 objec-
tives. Those test problems are generated from the two-objective n-item problem in
(1)-(4) by specifying n as n = 500 and creating additional objectives as follows:

=
=

n

j
jiji xpf

1
)(x , 10.,..,4,3=i , (5)

where the profit pij of item j with respect to knapsack i is specified as a random integ-
er in the interval [10, 100] in the same manner as in [17]. We denote the k-objective
500-item knapsack problem as the k-500 problem. In this paper, we use five test prob-
lems with k = 2, 4, 6, 8, 10 (i.e., 2-500, 4-500, 6-500, 8-500, 10-500 problems).

The constraint conditions in (2) and (3) are always used in our test problems inde-
pendent of the number of objectives. This means that all of our test problems have the
same set of feasible solutions. As a result, the same greedy repair method in [17] is
used for constraint handling in all test problems in our computational experiments.

3 Two Performance Improvement Schemes

A similarity-based mating scheme was proposed and incorporated into NSGA-II to
recombine similar parents in Ishibuchi et al. [6]. In its simplest version, first one par-
ent is selected in the same manner as in NSGA-II (i.e., binary tournament selection
with replacement based on non-dominated sorting and crowding distance). Next β
candidates are selected by iterating the same parent selection mechanism as NSGA-II
β times. Then the closest candidate to the first parent is selected from the β candidates
using the Euclidean distance in the objective space. The selected candidate is used as
the mate of the first parent. The standard uniform crossover operator is applied to the
selected pair of similar parents. In the mating scheme, β is a user-defined parameter to
specify the strength of the selection pressure toward similar parent selection. The
larger value of β means the stronger selection pressure toward similar parent selection
(i.e., stronger tendency to choose similar parents). When β =1, the mating scheme
does not change the parent selection mechanism of NSGA-II at all.

Sato et al. [14] proposed an idea of exchanging only a small number of genes be-
tween two parents instead of selecting similar parents. They implemented the idea for
uniform crossover by using a very small gene exchange probability, which was de-
noted by αu in [14]. In the standard uniform crossover, genes of two parents are ex-
changed at each locus with the probability 0.5. In [14], good results were obtained for
multi-objective knapsack problems when αu was very small (e.g., 0.01).

 Distance-Based Analysis of Crossover Operators 603

4 Experimental Results

Three settings of crossover in NSGA-II are examined: Standard uniform crossover,
uniform crossover of similar parents, and modified uniform crossover with a small
gene exchange probability. One of the two children of crossover is randomly selected
and handled as an offspring in NSGA-II in our computational experiments. The fol-
lowing parameter values are examined in the performance improvement schemes:

The number of candidates: β = 1, 5, 10, 20, 30, 40, 50.
Gene exchange probability: αu = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20.

NSGA-II with each parameter value is applied to each test problem 100 times. The
hypervolume of the obtained solutions is calculated using a fast calculation method
[15] for each of the 100 runs for two reference points. One is (0, 0, ..., 0) which is far
from the Pareto front, and the other is (15000, 15000, ..., 15000) which is close to the
Pareto front. Computational experiments are performed under the following settings:

Population: 100 binary strings of length 500 with random initialization,
Termination condition: Evaluation of 400,000 solutions,
Crossover probability: 0.8 (One of the three versions of uniform crossover),
Mutation probability: 1/500 (Bit-flip mutation).

The calculated hypervolume value for each run with each parameter specification
of β and αu is normalized using the average result by NSGA-II with the standard
uniform crossover for each reference point. It should be noted that the standard uni-
form crossover corresponds to the setting of β = 1 and αu = 0.5. In computational
experiments, we also calculate the Hamming distance between two parents and be-
tween an offspring and its closer parent. The parent-offspring distance is measured
after mutation only when crossover is used. Experimental results are summarized in
Fig. 1 and Fig. 2 for each performance improvement scheme.

From Fig. 1 (a), we can see that the average normalized hypervolume value for the
reference point (0, 0, ..., 0) is improved for all test problems by similar parent recom-
bination from the baseline value 100 by the standard uniform crossover with β = 1
(the baseline value 100 is also obtained from the setting of αu = 0.5). In Fig. 2 (a),
larger performance improvement is achieved for the 6-500, 8-500 and 10-500 prob-
lems by small gene exchange probabilities than similar parent recombination in Fig. 1
(a). However, better results are obtained for the 2-500 and 4-500 problems by similar
parent recombination in Fig. 1 (a) than small gene exchange probabilities in Fig. 2 (a).

When the hypervolume for the reference point (15000, 15000, ..., 15000) is used as
a performance measure in Fig. 1 (b) and Fig. 2 (b), we can observe both positive and
negative effects of the performance improvement schemes. In Fig. 1 (b), the average
normalized hypervolume value is improved by similar parent recombination for the 2-
500 and 4-500 problems. However, the performance is degraded by similar parent
recombination for the 6-500, 8-500 and 10-500 problems. In Fig. 2 (b), the use of too
small gene exchange probabilities (e.g., αu = 0.01) severely degrades the performance
for the 6-500, 8-500 and 10-500 problems. However, when αu is specified between
0.1 and 0.2, the use of small gene exchange probabilities improves the performance
for those test problems.

604 H. Ishibuchi et al.

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

(β)

 2-Objective 4-Objective
 6-Objective 8-Objective
 10-Objective

β = 1

0 10 20 30 40 50
95

100

105

110

115

120

 (αu)

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e 2-Objective
4-Objective
6-Objective
8-Objective
10-Objective

0 0.05 0.10 0.15 0.20
95

100

105

110

115

120

 (a) Hypervolume for (0, 0, ..., 0) (a) Hypervolume for (0, 0, ..., 0)

(β)

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

β = 1

0 10 20 30 40 50
50

60

70

80

90

100

110

120

130

 (αu)

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 0.05 0.10 0.15 0.20
50

60

70

80

90

100

110

120

130

 (b) Hypervolume for (15000, ..., 15000) (b) Hypervolume for (15000, ..., 15000)

H
am

m
in

g
D

is
ta

nc
e

(β)

β = 1
 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 10 20 30 40 50
0

20

40

60

80

100

120

140

 (αu)

H
am

m
in

g
D

is
ta

nc
e

0 0.05 0.10 0.15 0.20
0

20

40

60

80

100

120

140

 (c) Parent-parent Hamming distance (c) Parent-parent Hamming distance

H
am

m
in

g
D

is
ta

nc
e

(β)

β = 1

 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

 (αu)

H
am

m
in

g
D

is
ta

nc
e 2-Objective

 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 0.05 0.10 0.15 0.20
0

5

10

15

20

25

30

35

40

45

 (d) Parent-offspring Hamming distance (d) Parent-offspring Hamming distance

 Fig. 1. Similar Parent Recombination Fig. 2. Small gene exchange probability

 Distance-Based Analysis of Crossover Operators 605

Fig. 1 (c) and Fig. 2 (c) show the average Hamming distance of two parents while
the distance in Fig. 1 (d) and Fig. 2 (d) is measured between an offspring and its clos-
er parent. In Fig. 1 (c), the average Hamming distance between two parents is de-
creased by increasing the value of β. That is, the similarity of two parents is increased
by increasing the value of β. As a result, the parent-offspring distance is decreased by
increasing the value of β in Fig. 1 (d). We can also see from Fig. 1 (c) and Fig. 1 (d)
that both the parent-parent distance and the parent-offspring distance are increased by
increasing the number of objectives.

In Fig. 2 (c), the parent-parent distance is not small. This is because no selection
mechanism of similar parents is used in Fig. 2. Thus, the average parent-parent dis-
tance in Fig. 2 (c) can be considered as being similar to the average distance between
two solutions in a population over all generations (whereas they are not exactly the
same). Fig. 2 (c) shows that the average parent-parent distance is increased by very
small gene exchange probabilities for all test problems. This observation suggests that
the performance improvement in Fig. 2 (a) is achieved by the increase in the diversity
of solutions. At the same time, the diversity improvement severely degrades the con-
vergence property, which leads to severe performance deterioration in Fig. 2 (b) by
very small gene exchange probabilities for the 6-500, 8-500 and 10-500 problems.

In Fig. 1 (d) and Fig. 2 (d), the parent-offspring distance is decreased by increasing
the parameter value of β (i.e., increasing the number of candidates for the second
parents) and decreasing the parameter value of αu (i.e., decreasing the gene exchange
probability), respectively. From Fig. 1 (a) and Fig. 1 (d), we can see that good results
are obtained in Fig. 1 (a) when the parent-offspring distance is small in Fig. 1 (d). The
same observation is also obtained from Fig. 2 (a) and Fig. 2 (d).

5 Further Discussions Using Distance-Based Crossover

In this section, we further discuss the relation between the parent-offspring distance
and the performance of NSGA-II. First we explain binary crossover using the concept
of geometric crossover, which has been proposed by Moraglio and Poli [10]-[12].
Standard binary crossover (e.g., uniform, one-point, and two-point crossover) is geo-
metric crossover in the sense that the sum of the Hamming distances between an
offspring and its two parents is always equal to the Hamming distance between the
two parents [8], [10]-[12]. That is, the following relation always holds for an
offspring C generated by standard binary crossover from its two parents P1 and P2:

H(C, P1) + H(C, P2) = H(P1, P2), (6)

where H(A, B) shows the Hamming distance between binary strings A and B. This
relation always holds for all standard binary crossover operators [8], [10]-[12].

When the similar parent recombination scheme is incorporated into NSGA-II, two
parents with a small Hamming distance are recombined as shown in Fig. 1 (c). That
is, the right-hand side (i.e., H(P1, P2)) of (6) is decreased by increasing the value of β
in the similar parent recombination scheme. As a result, the two terms in the left-hand
side of (6) are decreased as shown in Fig. 1 (d).

When the small gene exchange probability scheme is used, the right-hand side
of (6) is not decreased as shown in Fig. 2 (c). However, one of the two terms in the

606 H. Ishibuchi et al.

left-hand side of (6) is decreased as shown in Fig. 2 (d). That is, min{H(C, P1), H(C,
P2)} becomes very small when the gene exchange probability αu is very small.

Geometric crossover with the similar parent recombination scheme is illustrated in
Fig. 3 (a) using two parents P1, P2 and its offspring C. In Fig. 3 (a), the horizontal and
vertical axes show the Hamming distances from Parent P1 and Parent P2, respectively.
The short three arrows show the possible moves by mutation of a single gene of C. In
Fig. 3 (a), H(C, P1) + H(C, P2) = H(P1, P2) holds since H(C, P1) = 2, H(C, P2) = 2 and
H(P1, P2) = 4. Similar parent recombination means that H(P1, P2) is small in Fig. 3 (a).

Fig. 3 (b) illustrates geometric crossover with a small gene exchange probability.
Since no mechanism for similar parent recombination is used, two parents have a
larger Hamming distance in Fig. 3 (b) than Fig. 3 (a): H(P1, P2) = 10 in Fig, 3 (b).
However, due to a small gene exchange probability, the generated offspring C is close
to P1 or P2 as shown in Fig. 3 (b). In our computational experiments, one of the two
offspring is randomly selected for further use in NSGA-II.

In uniform crossover with a very small gene exchange probability αu, the expected
value of min{H(C, P1), H(C, P2)} can be approximated by αu H(P1, P2). For example,
when αu = 0.2 and H(P1, P2) = 10, the expected value of min{H(C, P1), H(C, P2)} is 2.
This means that the parent-offspring distance depends on the parent-parent distance,
which depends on the number of objectives and the value of αu as shown in Fig. 2 (c).

Hamming distance from Parent 1

H
am

m
in

g
di

st
an

ce
 f

ro
m

 P
ar

en
t 2

P1

P2
C

0 2 4 6 8 10

2

4

6

8

10

P1

P2

C

Hamming distance from Parent 1

H
am

m
in

g
di

st
an

ce
 f

ro
m

 P
ar

en
t 2

P1

P2
C

0 2 4 6 8 10

2

4

6

8

10

C

P1

P2

C

 (a) Similar parent recombination (b) Small gene exchange probability

Fig. 3. Illustration of the two performance improvement schemes

In order to examine the relation between the parent-offspring distance and the per-
formance of NSGA-II in a more straightforward manner, we implement the following
distance-based crossover operator, which is incorporated into NSGA-II:

Distance-Based Crossover Operator:
1. The parent-offspring distance is specified as a user-defined parameter. This para-

meter is denoted by D.
2. Two parents P1 and P2 are selected in the same manner as in NSGA-II.

 Distance-Based Analysis of Crossover Operators 607

3. If H(P1, P2) < 2D, we cannot generate an offspring C such that min{H(C, P1),
H(C, P2)} = D by geometric crossover (since H(C, P1) + H(C, P2) < 2D). In this
case, we use standard uniform crossover for P1 and P2. Otherwise (i.e., H(P1, P2)
≥ 2D), D loci are randomly selected from H(P1, P2) loci with different bit values
in P1 and P2. Each of those loci is selected uniformly with the same probability.
The genes (i.e., different bit values) in the selected D loci are exchanged between
P1 and P2. Since the D genes are exchanged, min{H(C, P1), H(C, P2)} = D holds.

4. One of the generated two offspring is randomly selected for further use in NSGA-II
(i.e., mutation is applied to the selected offspring in NSGA-II).

In the same manner as in Section 4, we apply NSGA-II with the distance-based
crossover to our test problems. We examine the following parameter specifications: D
= 1, 2, 3, 4, 5, 10, 15, 20. Experimental results are summarized in Fig. 4.

In Fig. 4 (a), the best results with respect to the hypervolume for the reference
point (0, 0, ..., 0) are obtained when the parent-offspring distance is specified as 1 or
2. That is, the best results are obtained when different genes in one or two loci are
exchanged between two parents. However, the distance-based crossover operator with
such a parameter specification severely degrades the hypervolume for the reference
point (15000, 15000, ..., 15000) in Fig. 4 (b). The hypervolume for this reference
point for the 8-500 and 10-500 problems are clearly improved when the parent-
offspring distance is specified as 10 or 15 in Fig. 4 (b). From Fig. 4 (c), we can see
that 10 and 15 are much smaller than the average parent-parent distance.

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

(D)

 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 5 10 15 20
95

100

105

110

115

120

 (D)

N
or

m
al

iz
ed

 H
yp

er
vo

lu
m

e

 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 5 10 15 20
50

60

70

80

90

100

110

120

130

 (a) Hypervolume for (0, 0, ..., 0) (b) Hypervolume for (15000, ..., 15000)

H
am

m
in

g
D

is
ta

nc
e

(D)0 5 10 15 20
0

20

40

60

80

100

120

140

H
am

m
in

g
D

is
ta

nc
e

(D)

 2-Objective
 4-Objective
 6-Objective
 8-Objective
 10-Objective

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

 (c) Parent-parent Hamming distance (d) Parent-offspring Hamming distance

Fig. 4. Distance-based crossover with the parent-offspring distance D

608 H. Ishibuchi et al.

One may notice that the average parent-offspring distance in Fig. 4 (d) for the 2-
500 problem is much smaller than D when D is large. This is because the standard
uniform crossover is used when H(P1, P2) < 2D (i.e., see Fig. 4 (c) for H(P1, P2)).

Experimental results in Section 4 and Section 5 are summarized in Table 1 and Ta-
ble 2 where the best average result by each scheme for each test problem is shown
together with the standard deviation and the best parameter value in parentheses. The
best result over the three schemes is highlighted by bold for each test problem. From
Table 1 and Table 2, we can see that the similar parent recombination does not work
well on the 6-500, 8-500 and 10-500 problems whereas it works well on the 2-500
and 4-500 problems. This is because a pair of similar parents is not actually selected
(since all solutions in a population are not similar to each other in many-objective
optimization). For example, in Fig. 1 (c), the average parent-parent distance is larger
than 10 even when the most similar parent is selected from 50 candidates (i.e., β = 50)
for the 10-500 problem. We can also see that the best specification of the parent-
offspring distance D is surprisingly small in the last column of Table 1.

Table 1. Experimental results for the normalized average hypervolume for the reference point
(0, 0, ..., 0). The best result by each scheme is shown for each test problem.

Problem Similar Parent (SD) (β) Probability (SD) (αu) Distance-Based (SD) (D)

2-500 102.3 (0.4) (20) 100.9 (0.4) (0.03) 101.6 (0.5) (1)
4-500 106.4 (0.9) (20) 104.8 (0.8) (0.02) 106.4 (0.8) (2)
6-500 108.5 (1.0) (20) 109.6 (1.0) (0.02) 112.1 (1.1) (2)
8-500 108.4 (1.5) (20) 113.4 (1.3) (0.02) 116.1 (1.2) (2)

10-500 108.2 (2.1) (20) 116.7 (1.6) (0.02) 119.7 (1.8) (2)

Table 2. Experimental results for the normalized average hypervolume for the reference point
(15000, 15000, ..., 15000). The best result by each scheme is shown for each test problem.

Problem Similar Parent (SD) (β) Probability (SD) (αu) Distance-Based (SD) (D)
2-500 107.4 (1.2) (20) 102.8 (1.4) (0.03) 104.7 (1.5) (1)
4-500 112.9 (4.7) (10) 102.2 (5.1) (0.05) 106.1 (4.9) (3)
6-500 103.0 (14.9) (5) 107.2 (14.3) (0.10) 109.6 (12.5) (5)
8-500 99.5 (31.6) (5) 116.1 (21.9) (0.10) 115.7 (24.8) (15)

10-500 109.9 (50.9) (5) 124.3 (34.1) (0.15) 122.6 (36.6) (15)

6 Conclusions

In this paper, we examined the existing two schemes (i.e., the recombination of simi-
lar parents and the exchange of only a small number of genes) for improving the
performance of EMO algorithm on multi-objective knapsack problems. For further
discussing their effects, we also implemented a distance-based crossover where the
distance from an offspring to its closer parent was specified in uniform crossover as a
user-defined parameter. The performance of NSGA-II with each scheme was eva-
luated using the hypervolume values for two reference points. One is far from and
the other is close to the Pareto front. For the reference point far from the Pareto
front, good results were obtained for all test problems with 2-10 objectives when the

 Distance-Based Analysis of Crossover Operators 609

parent-offspring distance was very small (i.e., their Hamming distance was 1 for the
2-500 problem and 2 for the other problems). In this case, the diversity of solutions
was very large. However, the convergence of solutions was severely deteriorated for
many-objective problems. For the reference point close to the Pareto front, good re-
sults were obtained for many-objective knapsack problems with 8 and 10 objective
when the parent-offspring distance was about 10-15.

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection based on
Dominated Hypervolume. European J. of Operational Research 181, 1653–1669 (2007)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

3. Ishibuchi, H., Akedo, N., Nojima, Y.: Recombination of Similar Parents in SMS-EMOA
on Many-Objective 0/1 Knapsack Problems. In: Coello Coello, C.A., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 132–
142. Springer, Heidelberg (2012)

4. Ishibuchi, H., Akedo, N., Nojima, Y.: Relation between Neighborhood Size and MOEA/D
Performance on Many-Objective Problems. In: Purshouse, R.C., Fleming, P.J., Fonseca,
C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 459–474. Springer,
Heidelberg (2013)

5. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of Multi-Objective Evolutionary Algo-
rithms on Many-Objective Knapsack Problems. IEEE Trans. on Evolutionary Computation
(in press)

6. Ishibuchi, H., Narukawa, K., Tsukamoto, N., Nojima, Y.: An Empirical Study on Similari-
ty-Based Mating for Evolutionary Multiobjective Combinatorial Optimization. European J.
of Operational Research 188, 57–75 (2008)

7. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A
Short Review. In: Proc. of IEEE CEC, pp. 2424–2431 (2008)

8. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Diversity Improvement by Non-Geometric Bi-
nary Crossover in Evolutionary Multiobjective Optimization. IEEE Trans. on Evolutionary
Computation 14, 985–998 (2010)

9. Jaszkiewicz, A.: On the Computational Efficiency of Multiple Objective Metaheuristics:
The Knapsack Problem Case Study. European J. of Operational Research 158, 418–433
(2004)

10. Moraglio, A., Poli, R.: Topological Interpretation of Crossover. In: Deb, K., Tari, Z. (eds.)
GECCO 2004. LNCS, vol. 3102, pp. 1377–1388. Springer, Heidelberg (2004)

11. Moraglio, A., Poli, R.: Product Geometric Crossover. In: Runarsson, T.P., Beyer, H.-G.,
Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX. LNCS,
vol. 4193, pp. 1018–1027. Springer, Heidelberg (2006)

12. Moraglio, A., Poli, R.: Inbreeding Properties of Geometric Crossover and Non-geometric
Recombinations. In: Stephens, C.R., Toussaint, M., Whitley, L.D., Stadler, P.F. (eds.)
FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007)

13. Sato, H., Aguirre, H.E., Tanaka, K.: Local Dominance and Local Recombination in
MOEAs on 0/1 Multiobjective Knapsack Problems. European J. of Operational Re-
search 181, 1708–1723 (2007)

610 H. Ishibuchi et al.

14. Sato, H., Aguirre, H., Tanaka, K.: Variable Space Diversity, Crossover and Mutation in
MOEA Solving Many-Objective Knapsack Problems. Annals of Mathematics and Artifi-
cial Intelligence 68, 197–224 (2013)

15. While, L., Bradstreet, L., Barone, L.: A Fast Way of Calculating Exact Hypervolumes.
IEEE Trans. on Evolutionary Computation 16, 86–95 (2012)

16. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decom-
position. IEEE Trans. on Evolutionary Computation 11, 712–731 (2007)

17. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3,
257–271 (1999)

Discovery of Implicit Objectives by Compression
of Interaction Matrix in Test-Based Problems

Paweł Liskowski and Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
{pliskowski,krawiec}@cs.put.poznan.pl

Abstract. In test-based problems, commonly solved with competitive
coevolution algorithms, candidate solutions (e.g., game strategies) are
evaluated by interacting with tests (e.g., opponents). As the number of
tests is typically large, it is expensive to calculate the exact value of objec-
tive function, and one has to elicit a useful training signal (search gradi-
ent) from the outcomes of a limited number of interactions between these
coevolving entities. Averaging of interaction outcomes, typically used to
that aim, ignores the fact that solutions often have to master different
and unrelated skills, which form underlying objectives of the problem.
We propose a method for on-line discovery of such objectives via heuristic
compression of interaction outcomes. The compressed matrix implicitly
defines derived search objectives that can be used by traditional multiob-
jective search techniques (NSGA-II in this study). When applied to the
challenging variant of multi-choice Iterated Prisoner’s Dilemma problem,
the proposed approach outperforms conventional two-population coevo-
lution in a statistically significant way.

Keywords: Test-based problems, coevolution, iterated prisoner dilemma,
multiobjective evolutionary algorithms.

1 Introduction

Test-based problems are search and optimization tasks where candidate solutions
are being evaluated by confronting them with tests. A single interaction between
a candidate solution and a test produces a scalar outcome that reflects the
capability of the former to pass the latter (expressed in the simplest case as
a binary value). Canonical examples of test-based problems are games, where
candidate solutions and tests are game strategies, while interactions boil down
to playing games between them.

Solving a test-based problem consists in finding a candidate solution with cer-
tain properties. In the most common case, it should maximize the expected utility,
i.e., the average outcome against all tests. Finding such a solution is challenging
in many test-based problems, because the number of tests is usually large, and
for some problems even infinite. This problem can be mitigated by estimating a
solution’s utility by confronting it with a sample of tests of a computationally
manageable size. Some evolutionary algorithms (e.g., [3]) implement this idea by

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 611–620, 2014.
© Springer International Publishing Switzerland 2014

612 P. Liskowski and K. Krawiec

maintaining a population of candidate solutions and assessing their fitness on a
sample of tests generated at random. Competitive coevolution algorithms (e.g.,
[14]) rely on tests that dwell either in the same population (for one-population
coevolution), or in a separate, coevolving population of tests (for two-population
coevolution). Hybrid approaches of coevolution with random sampling have also
been studied [12].

At first sight, averaging interaction outcomes over the available tests seems
natural, as the fitness obtained in this way approximates the expected utility,
i.e., the ultimate objective of the search process. If the test sample is drawn
at random, that approximation is even unbiased. On the other hand, such ag-
gregation inevitably incurs information loss. The outcomes of interactions may
compensate each other, so that candidate solutions can receive the same fitness
(and thus be indiscernible for selection), even if they fare very differently with
particular tests. It becomes thus natural to ask: do we have to ‘compress’ all the
information about interactions outcomes into one scalar value? Why not exploit
it more carefully, for the sake of making search more efficient?

Several studies in the past have investigated the possibility of scrutinizing
individual interaction outcomes and leveraging them for better performance of
an evolutionary process. Bucci [2] and de Jong [6] introduced coordinate systems
that compress the interaction outcomes into a multidimensional structure. Tech-
nically, given the dominance relation as defined by interaction outcomes (where
every test is treated as a separate objective), a coordinate system can be con-
structed that preserves this relation while typically featuring a lower number of
derived objectives (dimensions). Interestingly, every such objective can be said
to express a certain skill exhibited by the candidate solutions.

Unfortunately, even with a moderately large number of tests, it is unlikely
for any candidate solution to dominate (in the above sense) any other candidate
solution in the population. From such a sparse dominance relation, it is hard
to elicit any information that would efficiently drive the search process. In this
paper we propose a heuristic method that compresses the original interaction
outcomes into a few derived objectives in a ‘lossy’ manner. The method does not
guarantee to preserve the original dominance structure, but always produces a
low number of derived objectives that approximately capture the skills exhibited
by the candidate solutions. The experiments with two-population coevolutionary
algorithm demonstrate that the objectives obtained in this way can be better
‘search drivers’ than the conventional, averaging fitness function.

2 Background

Consider a test-based problem (S,T, g), where S is the set of all candidate so-
lutions, T is the set of all tests, and g : S × T → [0, 1] is interaction function
that characterizes solution’s capability to pass t. In particular, g(s, t) = 1 means
that s passed test t and g(s, t) = 0 is interpreted as s failing t. Our goal is to
solve this problem by finding a candidate solution that maximizes the expected
utility, i.e., s∗ = argmaxs∈S

∑
t∈T

g(s, t).

Discovery of Implicit Objectives by Compression of Interaction Matrix 613

We approach the test-based problems using two-population coevolutionary
algorithms, with a population of candidate solutions S ⊂ S of size m and a
population of n tests T ⊂ T. Evolving candidate solutions and tests in two
separate populations has been shown superior to one-population configuration
[13], as it allows them to specialize in their roles, where candidate solutions focus
on maximizing the search objective, while tests are responsible for creating a
learning gradient for them.

In the evaluation phase of evolutionary workflow, we apply g to S × T and
obtain an m × n interaction matrix G, where rows correspond to candidate
solutions and columns correspond to tests. G implicitly defines a dominance
relation / between the elements of S: si / sk ⇐⇒ ∀j gi,j ≥ gk,j ∧ ∃j : gi,j >
gk,j , where gi,j denotes the outcome of interaction between the ith candidate
solution and jth test, i = 1, . . . , n, j = 1, . . . ,m . This dominance relation, built
on a limited number of individuals in S and T , is transient and never reveals
their full characteristics. We assume that G is the only information available at
the given generation (S and T do not feature archives).

To perform selection of candidate solutions in S, i.e., to determine a sub-
set S′ ⊂ S of ‘promising’ candidate solutions, a coevolutionary algorithm has
to elicit information from G. Though there is a gamut of possible elicitation
methods, we first consider the following two extremes.

1. The direct approach could consist in employing the original dominance
relation / defined by G to carry out the selection process. Technically, one would
assume that, for every test t ∈ T , the outcomes of interactions with t determines
performance on the associated objective. In theory, this should enable applying
conventional multiobjective evolutionary methods, like NSGA-II [7].

The advantage of the direct approach is that it relies on all available and undis-
torted information on interaction outcomes. The downside is that the likelihood
of any solution in S dominating any other is low even for a moderate number
of tests in T , and becomes even lower when the tests become diversified (which
we want them to be). When the dominance relation becomes sparse, solutions
are often incomparable, and there is no information to base the selection process
on. Also, the conventional multiobjective evolutionary computation algorithms
are known to perform well only if the number of objectives is moderate; while
the population of tests in a typical coevolutionary setup hosts usually not a few,
but at least a few dozens of tests.

2. Scalarization. As the other extreme, the information contained in G can
be scalarized by aggregating the interaction outcomes over all tests available in
T and adopting the resulting quantity as solutions’ fitness:

f(s) =
∑
t∈T

g(s, t) (1)

The fitness defined in this way can be subsequently used to run an ordinary
selection stage (e.g., tournament selection). The advantage of this approach is
that f (when normalized) is an estimator of expected utility, which is our external
objective of the search process, so an algorithm’s ‘search driver’ is consistent
with the ultimate search goal. On the downside, aggregation incurs information

614 P. Liskowski and K. Krawiec

loss, and many pairs of solutions that were originally incomparable can receive
similar, if not identical, fitness (the latter case being particularly likely if the
underlying interaction function assumes only a few values, which is common in
test-based problems).

In this study, we are interested in combining the advantages of these ap-
proaches, i.e., to preserve some information on dominance while avoiding ag-
gregating interaction outcomes into a single scalar value. To this aim, we will
‘compress’ the original information in G into a few derived objectives. In a similar
spirit, several past studies on competitive coevolution [2,6,11] proposed formal
methods for deriving coordinate systems (CS) from interaction matrices. How-
ever, they all implement an exact approach, i.e., the spatial arrangement of
solutions in the CS exactly reproduces the original dominance structure. If that
structure was sparse, such was also the structure of the derived CS (which typ-
ically manifested in the CS having many dimensions). As a result, CSs defined
in this way are interesting tools for studying interaction outcomes, but not nec-
essarily useful ‘search drivers’. The approach we propose in the next section, by
compressing the interaction outcomes in a lossy manner, guarantees to result in
a few, albeit inexact, derived objectives.

3 Objective Compression Algorithm

Given an m× n interaction matrix G, the algorithm proceeds in two stages:
1. Clustering of tests. We treat every column of G, i.e., a vector of interaction

outcomes of all solutions from S with the specific test t, as a point in an m-
dimensional space. A clustering algorithm of choice is applied to the n points
obtained in this way. We employ k-means, as it is conceptually straightforward
and typically converges in a few iterations. With k being the number of clusters,
the outcome of this step is the clustering/partitioning {T1, . . . , Tk} of the original
n tests (columns in G) into k subsets.

2. Defining derived objectives. For each cluster Tc, we derive from it a new
search objective by averaging the corresponding columns in G row-wise. The
resulting vector is the centroid of the cluster Tc. The overall outcome is an m×k
derived interaction matrix G′, where the columns correspond to the new derived
objectives, while the rows correspond to candidate solutions in S.

The resulting derived objectives can be subsequently used to guide the selec-
tion process, e.g., employed as objectives in the NSGA-II algorithm, as in the
experimental part of this paper.

Example. Consider the matrix of interactions between the population of can-
didate solutions S = {a, b, c, d} and the population of tests T = {t1, t2, t3, t4},
shown in Fig. 2a. Clearly, the only dominance holding in this space is b / a. The
four-dimensional space of interaction outcomes is shown in two two-dimensional
plots (Figs. 2b and 2c) that span t1 × t2 and t3 × t4, respectively. This helps
to reveal that the performances of candidate solutions on the tests t1 and t3
are quite correlated. An analogous observation holds for t2 and t4. Assume the

Discovery of Implicit Objectives by Compression of Interaction Matrix 615

Fig. 1. Example of compression of interaction matrix (a) featuring a four-dimensional
dominance structure (b, c), into a derived interaction matrix (d), resulting with the
dominance structure shown in (e)

clustering algorithm decided to cluster t1 with t3 and t2 with t4. The centroids
of the clusters (Fig. 2d) form the derived objectives for this problem.

In the space of derived objectives (Fig. 2e) b still dominates a. However, now
also c dominates d, thought originally these two solutions were incomparable. As
a result of compressing the original interaction matrix and merging dimensions,
some information about the dominance structure has been lost.

In the particular case of c and d, introducing dominance in favor of c seems
reasonable, as c outperforms d on two original objectives (t3, t4), while only one
objective (t1) supports the opposite relation (t2 being neutral in this respect).
However, the clustering of interaction matrix columns in general does not pro-
vide this kind of guarantees. In this sense, the above transformation trades the
lower number of resulting objectives for certain inconsistency with the original
interaction outcomes. Nevertheless, we posit that this imprecision may be a price
worth paying for reducing the number of objectives and eliciting a potentially
useful learning gradient from them.

Properties of the Method. The objective compression algorithm is allowed to
distort the original dominance represented in the interaction matrix G. Though
this can be considered a downside, note that the information in G does not fully
characterize the candidate solutions in the first place, because of the limited
number of tests available in T . In other words, it may not make sense to perfectly
preserve the information in G if it is partial anyway (and not necessarily useful to
drive the search process, as we discussed in Section 2). For the same reasons, we
do not find it critical that the k-means algorithm employed here is a heuristic,
and may produce different derived objecives depending on the initial random
partitioning of original objectives.

The method features a few other properties. Trivially, clustering guarantees
including any pair of original objectives that are mutually redundant (i.e., identi-
cal columns in G) into the same derived objective. Moreover, the more two tests
are similar in terms of solutions’ performance on them, the more likely they will
end up in the same cluster and contribute to the same derived objective. The
clustering discovers thus certain skills of candidate solutions, as revealed in G.

For k = 1, the method degenerates to a single-objective approach (case #2 in
Section 2): all tests form one cluster, and G′ has a single column that contains
solutions’ (normalized) estimate of expected utility defined in (1).

616 P. Liskowski and K. Krawiec

Setting k = n implies G′ = G, and the method implements the direct approach
(case #1 in Section 2).

Finally, the derived objectives are additive components of scalar fitness (Eq.
1), i.e.,

∑k
j=1 g

′
i,j = f(sj), where the jth row in G′ corresponds to sj .

4 Experimental Verification

In the following we apply the proposed approach to the Iterated Prisoner’s
Dilemma (IPD), an abstract game that elegantly embodies the problem of achiev-
ing mutual cooperation in social, economic and biological interactions. The com-
putational experiment is aimed at verification whether the objective compression
algorithm influences the efficiency of coevolutionary learning.

Problem Definition. IPD is a two-player game involving a series of interac-
tions, each of which is a Prisoner’s Dilemma (PD) game. In a PD, a player can
make one of two choices: cooperate or defect. If both players cooperate, they
receive a payoff R, whereas if they both defect they get a smaller payoff P . De-
fecting against a cooperator gives a payoff T which is higher than R, and the
cooperator in such a case receives the lowest possible payoff S. The PD payoff
matrix must satisfy two conditions: T > R > P > S and 2R > S + T [15].

In this study, we consider IPD extended to multiple choices (or levels of co-
operation) [9,10,5,4] with payoff function that meets the above constraints:

p(cA, cB) =

{
2.5− 0.5cA + 2cB for player A

2.5− 0.5cB + 2cA for player B
.

An example of a payoff matrix for the 3-choice Prisoner’s Dilemma generated
using the above function is shown in Table 1, the possible choices being {−1, 0, 1}.
Strategy Representation. We adopt the direct look-up table [1] to represent
the strategies (candidate solutions and tests) and consider the memory-one form
of IPD in which the players remember their moves from the previous iteration
only. In such a case, the n-choice IPD strategy is an n×n matrix M , where mij

for i, j = 1, 2, . . . , n specifies the choice to be made given the player’s previous
move i and the opponent’s previous move j. The other element of the strategy
is the initial move m00.

In the experiments, we focus on IPD with n = 9 choices, which we found to
be much more demanding than 3-choice IPD used in some earlier coevolutionary
investigations [3]. Each strategy is a look-up table containing 9 × 9 + 1 = 82
choices and the size of search space is 982 ≈ 1.77× 1078.

Experimental Setup. We embed the objective compression algorithm in a typ-
ical two-population competitive coevolutionary setting (Section 2). The resulting
m × k matrix of derived objectives forms the input for the NSGA-II algorithm
[7] where they guide the selection process of candidate solutions. The role of
NSGA-II is to maintain a diverse front of well-performing candidate solutions

Discovery of Implicit Objectives by Compression of Interaction Matrix 617

Table 1. An exemplary payoff matrix for the 3-choice prisoner’s dilemma. Choice −1
is full defection, 1 is full cooperation. (pA, pB) denotes payoffs to players A and B,
respectively.

Player B
choice 1 0 −1

Player A
1 (4, 4) (2, 4.5) (0, 5)
0 (4.5, 2) (2.5, 2.5) (0.5, 3)

−1 (5, 0) (3, 0.5) (1, 1)

by Pareto-ranking the population and resolving ties on selection by means of
crowding distance.

In the population of tests, individuals are rewarded for making distinctions
[8] between candidate solutions. This fitness function promotes tests that differ-
entiate the candidate solutions and thus provide search gradient for them.

The objective compression algorithm (k-means in the following) is examined
in the presence of two control setups. In the first one, we replace the k-means
algorithm with a naive approach to clustering in which individuals are assigned
to clusters randomly (k-rand). This configuration is intended to control for the
relevance of clusters discovered by clustering. The second setup is an ordinary
two-population coevolutionary algorithm (cel, [14]), which is equivalent to 1-
means (see the discussion of algorithm properties at the end of Section 3).

All algorithms maintain populations of 50 candidate solutions and 50 tests.
However, because NSGA-II effectively merges parents and offspring prior to se-
lection (and in this sense features an internal archive), we set the candidate so-
lutions population size to 100 for cel. This provides for fair comparison between
the methods. As a result, in each generation of every method, 100× 50 = 5,000
IPD games are played, each of which consists of 150 PD episodes. Since each run
consists of 200 generations, it requires the total effort of 1,000,000 games.

Both populations use tournament selection with tournament size 5. The only
source of genetic variation is simple mutation which iterates over all elements of
the look-up table and with probability 0.2 replaces the original choice with one
of the remaining choices, selected at random. This operator has been found to
provide sufficient variation of behaviors for multiple-choice IPD [4].

Results. Algorithms that solve test-based problems do not rely on an objective
performance measure, so a candidate solution deemed good by an algorithm does
not have to be such in reality. In other words, fitness as defined in an algorithm (if
any) is subjective (internal) and may strongly differ from the true performance of
a candidate solution. To objectively (externally) assess the performance of a can-
didate solution, we estimate its expected utility by letting it play 50,000 games
against random opponents. Every random opponent is obtained independently
by filling the look-up table with random choices. This assessment, commonly
used with test-based problems, is external to a search algorithm and does not
affect its behavior. Below we report algorithm performance meant in this way.

We performed separate experiments for k = 2 . . . 5 clusters. Let us first dis-
cuss the search dynamics, illustrated in Fig. 2a, which reports the objective
performance of the best-of-generation candidate solutions, averaged over 120

618 P. Liskowski and K. Krawiec

0 200 400 600 800 1000

Games played (×1000)

75%

80%

85%

90%

95%

Pe
rf

or
m

an
ce

(e
xp

ec
te

d
ut

ili
ty

)

0 40 80 120 160 200

Generation

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
● ●

0.6

0.7

0.8

0.9

1.0

2−MEANS 3−MEANS 4−MEANS 5−MEANS 2−RAND 3−RAND CEL 4−RAND 5−RAND

Fig. 2. The expected utility of best-of-generation individuals averaged over 120 runs
(top) and distributions of expected utilities of the best-of-runs individuals (bottom).
Violin plot legend: white dot: median, black box: interquartile range, line: 1.5 interquar-
tile range, black dots: outliers. Both plots use the same colors.

coevolutionary runs. For reference, we plot the best-of-generation players found
by standard coevolutionary search (cel). Clearly, compression of the interac-
tion outcomes allows k-means outperform cel for every k. In particular, k = 2
seems to be optimal, suggesting that this may be the required number of skills
to effectively play the 9-choice IPD. We speculate that the two discovered skills
correspond to full defection and full cooperation in IPD, since defecting is the
dominant strategy of the game, while mutual cooperation pays off the most in
the long term. This hypothesis requires, however, verification in the future.

Interestingly, we also observe certain positive influence of decomposing the
scalar fitness function by random clustering (rand). In this case however, improve-
ment over cel is noticeable only for k = 2 (2-rand). Apparently, merging ran-
domly selected tests into derived objectives cannot efficiently capture meaningful

Discovery of Implicit Objectives by Compression of Interaction Matrix 619

Table 2. Expected utilities and 95% confidence intervals of best-of-run individuals
obtained by the algorithms for 9-choice Iterated Prisoner’s Dilemma

Method Expected utility Method Expected utility
cel 81.48 ± 0.90
2-means 91.28 ± 0.73 2-rand 83.64 ± 1.21
3-means 89.27 ± 0.99 3-rand 82.21 ± 1.11
4-means 87.96 ± 1.16 4-rand 79.99 ± 1.23
5-means 85.96 ± 1.20 5-rand 79.49 ± 1.17

skills that would effectively guide the multiobjective learning process towards im-
proving the population of candidate solutions.

When it comes to comparing algorithms’ end-of-run outcome, Table 2 presents
the average performance of the best-of-run individuals for each algorithm, ac-
companied by 95% confidence intervals, while Fig. 2b the distributions as violin
plots. To compare these final performances of the algorithms, we applied Shapiro-
Wilk test, which indicated the performance distributions to be likely non-normal
(all p-values < 10−6). We then conducted the nonparametric Kruskal-Wallis
rank sum test, which revealed a statistically significant (χ2 = 158.7, p-value <
2.2× 10−16) difference between the results obtained by particular algorithms. A
post-hoc analysis using pairwise Wilcoxon rank sum test with Holm correction
indicated the following ranking among the configurations:

2-means > 3-means > 4-means = 5-means>2-rand = 3-rand = 4-rand=5-rand=cel

where ‘>’ denotes significant difference and ‘=’ means no statistical difference.
This ranking corroborates our earlier observations: meaningful grouping of tests
(and associated original objectives) and using the resulting derived objectives in
multiobjective setting makes coevolutionary search more effective.

5 Conclusions

In this paper we proposed a heuristic method that compresses the original in-
teraction outcomes into a few derived, implicit objectives in a lossy manner.
Even though the method does not guarantee to preserve the original dominance
structure, it succesfully maganges to produce a low number of objectives that
approximately capture the skills exhibited by the candidate solutions. Crucially,
our method avoids aggregating interaction outcomes into a scalar value, there-
fore allowing multiobjective approach to the problem. We demonstrated how this
compression, combined with the NSGA-II algorithm, can be applied to effectively
enhance the coevolutionary search.

The experiments with two-population coevolutionary algorithm demonstrate
that the implicit objectives discovered in interaction outcomes are indeed bet-
ter search drivers than the conventional, averaging fitness function. Our results
support the claim that it is enough to preserve only some information on domi-
nance to obtain a useful learning gradient. Applicability of this approach to other
interactive and non-interactive domains is to be verified in future research.

620 P. Liskowski and K. Krawiec

Acknowledgments. P. Liskowski acknowledges support from grant no. DEC-
2013/09/D/ST6/03932 and K. Krawiec acknowledges support from grant no.
DEC-2011/01/B/ST6/07318.

References

1. Axelrod, R.: The evolution of strategies in the iterated prisoner’s dilemma. The
Dynamics of Norms, 1–16 (1987)

2. Bucci, A., Pollack, J.B., de Jong, E.: Automated extraction of problem structure.
In: Deb, K., Tari, Z. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 501–512.
Springer, Heidelberg (2004)

3. Chong, S.Y., Tino, P., Ku, D.C., Xin, Y.: Improving Generalization Perfor-
mance in Co-Evolutionary Learning. IEEE Transactions on Evolutionary Com-
putation 16(1), 70–85 (2012)

4. Chong, S.Y., Yao, X.: Behavioral diversity, choices and noise in the iterated pris-
oner’s dilemma. IEEE Transactions on Evolutionary Computation 9(6), 540–551
(2005)

5. Darwen, P.J., Yao, X.: Why more choices cause less cooperation in iterated pris-
oner’s dilemma. In: Proceedings of the 2001 Congress on Evolutionary Computa-
tion, vol. 2, pp. 987–994. IEEE (2001)

6. de Jong, E.D., Bucci, A.: DECA: Dimension extracting coevolutionary algorithm.
In: Cattolico, M.C., et al. (eds.) GECCO 2006: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA,
pp. 313–320. ACM Press (2006)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

8. Ficici, S.G., Pollack, J.B.: Pareto optimality in coevolutionary learning. In:
Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 316–325.
Springer, Heidelberg (2001)

9. Frean, M.: The evolution of degrees of cooperation. Journal of Theoretical Biol-
ogy 182(4), 549–559 (1996)

10. Harrald, P.G., Fogel, D.B.: Evolving continuous behaviors in the iterated prisoner’s
dilemma. Biosystems 37(1), 135–145 (1996)

11. Jaśkowski, W., Krawiec, K.: Formal analysis, hardness, and algorithms for extract-
ing internal structure of test-based problems. Evolutionary Computation 19(4),
639–671 (2011)

12. Jaśkowski, W., Liskowski, P., Szubert, M., Krawiec, K.: Improving coevolution
by random sampling. In: Blum, C. (ed.) GECCO 2013: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, Amsterdam, The
Netherlands, pp. 1141–1148. ACM (2013)

13. Juillé, H., Pollack, J.B.: Coevolving the “ideal" trainer: Application to the dis-
covery of cellular automata rules. University of Wisconsin, pp. 519–527. Morgan
Kaufmann (1998)

14. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary Principles.
In: Handbook of Natural Computing. Springer (2011)

15. Poundstone, W.: Prisoner’s Dilemma: John von Neuman, Game Theory, and the
Puzzle of the Bomb. Doubleday, New York (1992)

Local Optimal Sets and Bounded Archiving

on Multi-objective NK-Landscapes
with Correlated Objectives

Manuel López-Ibáñez1, Arnaud Liefooghe2, and Sébastien Verel3

1 IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
manuel.lopez-ibanez@ulb.ac.be

2 Université Lille 1, LIFL, UMR CNRS 8022, Inria Lille-Nord Europe, France
arnaud.liefooghe@univ-lille1.fr

3 Université du Littoral Côte d’Opale, LISIC, France
verel@lisic.univ-littoral.fr

Abstract. The properties of local optimal solutions in multi-objective
combinatorial optimization problems are crucial for the effectiveness of
local search algorithms, particularly when these algorithms are based on
Pareto dominance. Such local search algorithms typically return a set of
mutually nondominated Pareto local optimal (PLO) solutions, that is, a
PLO-set. This paper investigates two aspects of PLO-sets by means of
experiments with Pareto local search (PLS). First, we examine the im-
pact of several problem characteristics on the properties of PLO-sets for
multi-objective NK-landscapes with correlated objectives. In particular,
we report that either increasing the number of objectives or decreasing
the correlation between objectives leads to an exponential increment on
the size of PLO-sets, whereas the variable correlation has only a minor
effect. Second, we study the running time and the quality reached when
using bounding archiving methods to limit the size of the archive handled
by PLS, and thus, the maximum size of the PLO-set found. We argue
that there is a clear relationship between the running time of PLS and
the difficulty of a problem instance.

1 Introduction

Several state-of-the-art algorithms for multi-objective combinatorial optimiza-
tion problems (MCOPs) are based on local search. These local search algorithms
are either based on solving multiple scalarizations of the objective function vec-
tor, or they are based on Pareto dominance. The most successful local search
algorithms combine both approaches [3,4,10,13]. These successes explain the in-
creasing interest on understanding the role of local optimal solutions in the
context of MCOPs. Previous works have focused on the properties of individual
local optimal solutions [14]. However, algorithms for MCOPs typically return not
a single solution, but a set of solutions that approximates the Pareto set. Thus,
local search algorithms for MCOPs are typically concerned by (Pareto) local
optimal sets (PLO-sets), that is, sets of (Pareto) local optimal solutions where

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 621–630, 2014.
c© Springer International Publishing Switzerland 2014

622 M. López-Ibáñez, A. Liefooghe, and S. Verel

solutions are mutually nondominated and are also local optimal with respect to
the neighborhood of the other solutions in the set [12].

Experimental studies on PLO-sets have been so far limited to the study of
some of their properties for the bi-objective traveling salesman problem, in par-
ticular the number of solutions in each PLO-set and the connectedness of PLO-
sets [11]. This paper extends significantly this initial work in two aspects. First,
we consider multi-objective NK-landscapes with correlated objectives (ρMNK-
landscapes) [14], which allow us to examine the effect of various problem char-
acteristics on the properties of PLO-sets. Second, we examine the effect of using
bounded archiving methods [7,9] in order to limit the size of the PLO-set han-
dled by the local search. Archiving methods are often used in both local search
and evolutionary multi-objective algorithms, and there are a few recent works
on their theoretical properties [2,8,9]. Several authors have mentioned as inter-
esting future work the experimental study of the PLO-sets induced by bounded
archiving. To the best of our knowledge, we present in this paper the first results
of such a study. Our conclusions not only give support to previous theoretical
results, but also give insights on how to improve local search algorithms for par-
ticularly difficult MCOPs. In the following, we recall the required background
on problems and algorithms in Section 2; we provide the experimental setup of
our study in Section 3; we discuss our experimental results in Section 4; and we
conclude in the last section.

2 Background

Multi-Objective Combinatorial Optimization. A multi-objective combina-
torial optimization problem (MCOP) is defined by an objective function vector
f = (f1, . . . , fm) with m ≥ 2 objective functions, and a discrete set X of feasible
solutions in the solution space. Let Z = f(X) ⊆ Rm be the set of feasible out-
come vectors in the objective space. Each solution x ∈ X is assigned an objective
vector z ∈ Z on the basis of the multidimensional function vector f : X → Z
such that z = f(x). When all objectives are to be maximized, a solution x
weakly dominates another solution x′ if ∀i ∈ {1, . . . ,m}, fi(x) ≥ fi(x′). If, in
addition, ∃i ∈ {1, . . . ,m} such that fi(x) > fi(x′), then we say that x dominates
x′ (x ≺ x′). When x ⊀ x′ ∧ x′ ⊀ x, we say that x and x′ are mutually nondom-
inated. A solution x� ∈ X is Pareto optimal if �x ∈ X such that x ≺ x�. The
set of all Pareto optimal solutions is the Pareto set. Its mapping in the objective
space is the Pareto front. One of the goals in multi-objective optimization is to
identify the Pareto set, or a good approximation of it.

Pareto Local Optimal Sets. Set-based local search algorithms for MCOPs
generally combine the use of a neighborhood operator with the management
of an archive of mutually nondominated solutions found so far. A neighborhood
operator is a mapping function N : X → 2X that assigns a set of solutions
N (x) ⊂ X to any solution x ∈ X . N (x) is called the neighborhood of x, and
a solution x′ ∈ N (x) is called a neighbor of x. A solution x ∈ X is a Pareto
local optimum (PLO) with respect to a neighborhood structure N if there is no

Local Optimal Sets and Bounded Archiving 623

neighbor x′ ∈ N (x) such that x′ ≺ x [12]. A set S ⊆ X is a Pareto local optimal
set (PLO-set) with respect to N if, and only if, it contains only PLO-solutions
with respect to N and all solutions are mutually nondominated [12]. In addition,
a set S ⊆ X is a maximal PLO-set with respect to N if, and only if, ∀s′ ∈ N (S),
∃s ∈ S such that s ≺ s′ ∨ f(s) = f(s′), where N (S) =

⋃
s∈S N (s) [12]. In other

words, any neighbor of any solution in a maximal PLO-set is weakly dominated
by a solution in the set.

Pareto Local Search. A typical example of a multi-objective local search algo-
rithm is Pareto Local Search (PLS) [12]. PLS is an extension of the conventional
hill-climbing algorithm to the multi-objective case. An archive of nondominated
solutions is initialized with at least one solution. At each iteration, one solu-
tion is chosen at random from the archive and all its neighbors are evaluated
and compared against the archive. Each neighbor is added to the archive, and
marked as unvisited, if it is not dominated by any other solution in the archive.
Moreover, solutions in the archive dominated by this neighbor are removed. Once
all neighbors have been evaluated, the current solution is marked as visited. The
algorithm stops once all solutions from the archive are marked as visited.

PLS is known to be a well-performing algorithm, either as a stand-alone ap-
proach or as a hybrid component, for many MCOPs [3,4,10,13]. Moreover, inde-
pendently of the initial archive, PLS always terminates and returns a maximal
PLO-set [12]. However, the archive of (unvisited) solutions may grow exponen-
tially with respect to the instance size and, in that case, PLS may require an
exponential number of iterations. In such a situation, it would be more interest-
ing to bound the size of the archive in order to prevent an exponential grow, but
still return a (perhaps non-maximal) PLO-set.

Given an archive A and a maximum size μ, a bounded archiving method, or
archiver for short, will return a new archive A′ ⊆ A such that |A′| ≤ μ [7,9].
We can use an archiving method in PLS such that whenever a new solution x′

is added to the archive A and |A ∪ {x′}| = μ + 1, then the archiving method
will select one solution to be removed. This is equivalent to the μ + λ strat-
egy [2], with λ = 1. The various archiving methods differ on how the solution to
be removed is selected. Here we focus on two archiving methods, hypervolume
archiver (HVA) [6] and multi-level grid archiver (MGA) [8], which are the only
known archiving methods belonging to the class with the most desirable conver-
gence properties [9]. Two of these properties are: (i) accepting solutions outside
the objective space region dominating the current archive (diversifies) and (ii)
a subsequent archive cannot be worse in terms of Pareto dominance than an
earlier archive (�-monotone).

When PLS uses either HVA or MGA as its archiving method, then a run of
PLS will stop at a PLO-set, but not necessarily at a maximal PLO-set. Indeed,
there may exist a solution s′ ∈ N (A), such that �s ∈ A with s ≺ s′, but the
archiving method chose to discard s′ in order to maintain |A| ≤ μ. Therefore,
it is expected that when using an archiving method, PLS will converge faster
but to a possibly worse PLO-set. Moreover, since the decision of which solutions
are discarded are fundamentally different for HVA and MGA, we would expect

624 M. López-Ibáñez, A. Liefooghe, and S. Verel

that each method may converge to disjoint sets of PLO-sets. In the experiments
presented here, we study the properties of the PLO-sets returned by the classical
PLS (using an unbounded archive) and when PLS uses either HVA or MGA to
bound the archive size.

Multi-Objective NK-landscapes with Correlated Objectives. We study
the effect of various characteristics of MCOPs on the properties of PLO-sets
by means of ρMNK-landscapes, which are artificial multi-objective multimodal
problems with objective correlation [14]. They extend both single-objective NK-
landscapes [5] and multi-objective NK-landscapes with independent objective
functions [1]. Feasible solutions are binary strings of size n. The parameter k
refers to the number of variables that influence a particular position from the
bit-string (the epistatic interactions). The objective function vector is defined
as f : {0, 1}n → [0, 1)m. Each objective function is to be maximized, and can
be formalized as follows: fi(x) = 1

n

∑n
j=1 c

i
j(xj , xj1 , . . . , xjk), i ∈ {1, . . . ,m},

where cij : {0, 1}k+1 → [0, 1) defines the component function associated with
each variable xj , j ∈ {1, . . . , n}, for objective fi, and where k < n. By increasing
the number of variable interactions k from 0 to (n− 1), ρMNK-landscapes can
be gradually tuned from smooth to rugged.

We generate an instance of a ρMNK-landscape by randomly setting the po-
sition of these epistatic interactions, following a uniform distribution. The same
epistatic degree k and the same epistatic interactions are used for all the objec-
tives. Component function values are sampled within the range [0, 1) following a
multivariate uniform distribution of dimension m with a correlation coefficient ρ.
A positive (resp. negative) correlation coefficient decreases (resp. increases) the
degree of conflict between the objective function values.

3 Experimental Setup

In the following, we investigate ρMNK-landscapes with a problem size n ∈
{8, 16}, an epistatic degree k ∈ {1, 2, 4, 8} such that k < n, an objective space di-
mension m ∈ {2, 3, 5}, and an objective correlation ρ ∈ {−0.7,−0.2, 0.0, 0.2, 0.7}
such that ρ > −1

m−1 , because the corresponding correlation matrix is symmet-
ric positive-definite [14]. The investigated problem sizes allow us to enumerate
the solution space exhaustively, and then to solve all the instances to optimality.
One independent random instance is considered for each parameter combination:
〈ρ,m, n, k〉. This leads to a total of 91 problem instances.

In our implementation of PLS for ρMNK-landscapes, the neighborhood struc-
ture is taken as the 1-bit-flip. The archive is initialized with one random solution
from the solution space. At each iteration, the neighborhood of the selected so-
lution is explored exhaustively in a random order. This order has an impact
on the dynamics of PLS since bounded archiving methods treat incoming solu-
tions sequentially. The cost of each iteration of PLS is exactly n evaluations,
corresponding to the neighborhood size. We experiment with three variants
of PLS. PLSunb corresponds to the classical PLS with an unbounded archive.

Local Optimal Sets and Bounded Archiving 625

PLShva and PLSmga use HVA and MGA, respectively, to bound the size of the
archive to a maximum of μ solutions, where μ ∈ {10, 20, 40, 80}. We consider 25
different seeds for the random number generator used in PLS, and we run each
PLS variant on each problem instance using each random seed. This leads to a
total of 20 475 runs.

4 Experimental Analysis

4.1 Cardinality of Pareto Local Optimal Sets

Figure 1 shows the size of the PLO-sets identified by PLSunb with respect to
different instance characteristics. Each point gives the mean value over the 25
random seeds on the same instance, and the error bars indicate the standard
deviation. PLO-set sizes are plotted in logarithmic scale.

In general, the cardinality of PLO-sets increases exponentially with the num-
ber of objectives m, as shown in Figs. 1a–1c. The correlation between objective
values ρ is also a crucial factor: the cardinality of the PLO-sets increases expo-
nentially with the linear decrease of ρ (Fig 1c). The cardinality of PLO-sets also
increases with lower k, but much less noticeably (Fig. 1a). Moreover, the small
error bars in Figs. 1a–1d indicate that, for a given instance, maximal PLO-sets
consistently have roughly the same size.

Given the above results, restricting the size of the PLO-sets by using bounding
archiving methods must have a stronger effect as the correlation decreases and
the number of objectives increases. In the next section, we examine this effect
for each archiving method.

4.2 Quality of Local Optimal Sets

We examine the quality of the PLO-sets found by PLSunb, PLShva and PLSmga
in terms of two unary quality measures, namely, the hypervolume and the mul-
tiplicative epsilon [15]. In order to compare the hypervolume value for instances
with very different characteristics, we compute the hypervolume relative dif-
ference as hvr(A) = (hv(P) − hv(A))/hv(P), where A ⊆ Z is the image of a
PLO-set in the objective space and P is the exact Pareto front for the instance
under consideration. The reference point is set to the origin. The epsilon measure
gives the minimum multiplicative factor by which a PLO-set has to be shifted in
the objective space to weakly dominate the exact Pareto front. Thus, for both
measures, a lower value is preferred. Results are reported in Fig. 2 for different
parameter settings.

As conjectured above, a first observation is that, as the size of maximal PLO-
sets increases, the quality of PLO-sets obtained by bounded archiving decreases.
The increase in quality is almost logarithmic with respect to the archive size
limit (μ), as shown in Figs. 2a–2d. Here we show only results for m = 5, but the
trends are similar for a lower number of objectives, although less pronounced.
This trend appears independently of whether we measure quality in terms of

626 M. López-Ibáñez, A. Liefooghe, and S. Verel

10

50
100

500
1000

5000
10000

k

● ●
●

●

P
L

O
−

s
e

t
s
iz

e

1 2 4 8

●

m

2

3

5

(a) n = 16, ρ = −0.2

2

5

10

20

k

●

●

●

●P
L

O
−

s
e

t
s
iz

e

1 2 4 8

●

m

2

3

5

(b) n = 16, ρ = 0.7

5
10

50
100

500
1000

5000
10000

ρ

●
●

●
●

●

P
L

O
−

s
e

t
s
iz

e

−0.7 −0.2 0 0.2 0.7

●

m

2

3

5

(c) n = 16, k = 4

5
10

50
100

500
1000

5000
10000

ρ

●

●
●

●

P
L

O
−

s
e

t
s
iz

e

−0.2 0 0.2 0.7

●

k

1

2

4

8

(d) n = 16, m = 5

Fig. 1. Mean size of the PLO-sets returned by PLSunb. Error bars give the standard
deviation.

epsilon or hypervolume. Moreover, as in the single-objective case, the average
quality of local optima decreases with k [5], as shown in Figs. 2e–2f.

Lastly, there is not much difference in terms of quality between PLShva and
PLSmga. When differences occur, the PLO-sets returned by PLShva have a better
hypervolume (lower hvr value) than those returned by PLSmga (Figs. 2c–2d),
however, there is no clear winner in terms of epsilon value (Fig. 2a–2b).

4.3 Difficulty of Identifying Local Optimal Sets

For single-objective NK-landscapes, the number of iterations, or steps, of a con-
ventional hill-climbing algorithm provides an estimation of the average diameter
of the basins of attraction of local optima [5]. This diameter characterizes a
problem instance in terms of multimodality: The larger the length, the larger
the basin diameter and the lower the number of local optima. Conversely, the
smaller the length, the smaller the basin diameter and the higher the number
of local optima. Multimodality characterizes an important aspect of instance
difficulty (i.e., the number of local optima).

As in the single-objective case, the construction of ρMNK-landscapes implies
that they are isotropic, that the neighborhood has the same properties in every
direction of the objective space, and that the basins of attraction have a ball-
like shape. In this section, we report the length of PLS for different archiving

Local Optimal Sets and Bounded Archiving 627

1.1

1.2

1.3

1.4

1.5

μ

e
p

s
ilo

n

10 20 40 80

UNB

HVA

MGA

(a) n = 16, m = 5, k = 8, ρ = −0.2

1.10

1.15

1.20

1.25

1.30

μ

e
p

s
ilo

n

10 20 40 80

UNB

HVA

MGA

(b) n = 16, m = 5, k = 8, ρ = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

μ

h
v
r

10 20 40 80

UNB

HVA

MGA

(c) n = 16, m = 5, k = 8, ρ = −0.2

0.0

0.1

0.2

0.3

0.4

0.5

μ

h
v
r

10 20 40 80

UNB

HVA

MGA

(d) n = 16, m = 5, k = 8, ρ = 0

0.00

0.05

0.10

0.15

0.20

k

● ●
●

●

h
v
r

1 2 4 8

● UNB

HVA

MGA

(e) n = 16, m = 3, ρ = 0.0, μ = 10

0.0

0.1

0.2

0.3

0.4

k

● ● ●
●

h
v
r

1 2 4 8

● UNB

HVA

MGA

(f) n = 16, m = 5, ρ = 0.0, μ = 10

Fig. 2. Mean quality of the PLO-sets found by PLSunb, PLShva and PLSmga measured
in terms of multiplicative epsilon (epsilon) and hypervolume relative difference (hvr).
Error bars give the standard deviation.

strategies. This allows us to study the running time, in terms of number of
iterations, required by PLS to identify a PLO-set. Moreover, when the PLS
length is smaller under one setting than another, we can reasonably assume
that there exist more PLO-sets in the corresponding landscape since the search
process got stuck more easily on a local optima. Figure 3 shows the PLS length
for the same problem instances shown in Fig. 2. The comparison between each
pair of plots shows clearly a relationship between the length of PLS (Fig. 3) and
the quality of the results (Fig. 2): Larger length corresponds to better quality in
general. Interestingly, bounding the archive size substantially reduces both the

628 M. López-Ibáñez, A. Liefooghe, and S. Verel

50

100

150

200

μ

P
L

S
 l
e

n
g

th

10 20 40 80

UNB

HVA

MGA

(a) n = 16, m = 3, k = 8, ρ = −0.2

20

40

60

80

100

120

140

μ

P
L

S
 l
e

n
g

th

10 20 40 80

UNB

HVA

MGA

(b) n = 16, m = 3, k = 8, ρ = 0

0

2000

4000

6000

8000

μ

P
L

S
 l
e

n
g

th

10 20 40 80

UNB

HVA

MGA

(c) n = 16, m = 5, k = 8, ρ = −0.2

0

200

400

600

800

1000

μ

P
L

S
 l
e

n
g

th

10 20 40 80

UNB

HVA

MGA

(d) n = 16, m = 5, k = 8, ρ = 0

20

40

60

80

100

120

140

k

●

●
●

●

P
L

S
 l
e

n
g

th

1 2 4 8

● UNB

HVA

MGA

(e) n = 16, m = 3, ρ = 0.0, μ = 10

0

200

400

600

800

1000

1200

k

●

●

●

●

P
L

S
 l
e

n
g

th

1 2 4 8

● UNB

HVA

MGA

(f) n = 16, m = 5, ρ = 0.0, μ = 10

Fig. 3. Mean length of PLSunb, PLShva and PLSmga. Error bars give the standard
deviation.

quality of the obtained approximation as well as the running time of PLS. The
smaller the archive size, the larger the difference with PLSunb. However, this also
has the effect of increasing the number of PLO-sets. Indeed, when the archive
size is small, the PLS length is small, which suggests that the average distance
between a local optimum and the solutions from the corresponding basin of
attraction is also small and, hence, the number of PLO-sets is large.

Surprisingly, when the archive is unbounded as reported in Fig. 1, the PLS
length increases from k = 1 to k = 4 (despite we know that the number of PLO-
solutions increases linearlywith k [14]) and only becomes smaller for k = 8 (Fig. 3).
This increase in PLS length contradicts known results from single-objective

Local Optimal Sets and Bounded Archiving 629

optimization [5]. In fact, in the case of PLO-sets, both the number of PLO-solutions
and the average size of the neighborhood of a PLO-set influence the number of
PLO-sets. First, when the number of PLO-solutions increases, it is expected that
the number of PLO-sets also increases, which will decrease the PLS length. By
contrast, when a PLO-set is larger, the number of neighbor solutions in this set is
larger as well. This potentially reduces the number of PLO-sets, making PLS run
longer. The balance between these two effects could explain the PLS length; i.e.,
the PLS length starts to decrease when the number of PLO-solutions has a larger
impact on the number of PLO-sets than the size of PLO-sets. Overall, these re-
sults suggest that the length of PLS could provide an estimation of the number of
PLO-sets, and thus a measure of difficulty for archive-based local search.

5 Conclusions

In this paper, we analyzed the characteristics of local optima in set-based multi-
objective local search when applied to multi-objective NK-landscapes with corre-
lated objectives. First, the main factors affecting the cardinality of the maximal
PLO-sets returned by PLSunb are the number of objectives and the correla-
tion between them. By changing these two factors, the PLO-set size can vary
from a few tens to tens of thousands. Our results confirm trends already no-
ticed for other MCOP problems. In particular, the exponential increase in the
PLO-set size with lower objective correlation has already been reported for the
bi-objective QAP [13]. Another interesting observation is that, given a partic-
ular instance, the variability of PLO-set sizes is usually a very small fraction
of the average size, that is, most maximal PLO-sets for a given instance have
roughly the same size. This is not an obvious conjecture to make, and we cur-
rently do not know if it is also the case for other MCOPs. Our experiments also
strongly indicate that the relationship between local search length and number
of local optima, which is well-studied in the single-objective case [5] and in the
case of PLO-solutions [14], also applies to PLS and PLO-sets. Our results clearly
show that shorter PLS lengths typically correspond to lower quality results (and
hence, more difficult instances). A precise estimation of this relationship in the
case of PLO-sets would require to determine the exact number of PLO-sets for
a given instance.

From an algorithm design point of view, this work helps to better capture
the relation between running time and approximation quality according to the
problem instance characteristics. From a theoretical point of view, it would be
interesting to understand precisely the relationships between the PLO-sets ob-
tained by each archiving method. Moreover, it is clear to us that there is a direct
relationship between the PLO-solutions of a problem, and the number and size
of PLO-sets, however, a precise formulation remains to be described. Finally, we
left for future work discussing the implications of the results reported here with
respect to theoretical bounds reported in the literature [2]. Finally, complemen-
tary studies on other MCOPs and larger problem instances would allow us to
better understand the structure of PLO-sets for different archiving techniques.

630 M. López-Ibáñez, A. Liefooghe, and S. Verel

Acknowledgments. Manuel López-Ibáñez acknowledges support from the
Belgian F.R.S.-FNRS, of which he is a postdoctoral researcher.

References

1. Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of
MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

2. Bringmann, K., Friedrich, T.: Convergence of hypervolume-based archiving algo-
rithms I: Effectiveness. In: Krasnogor, N., et al. (eds.) Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2011, pp. 745–752. ACM
Press, New York (2011)

3. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood
exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

5. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)
6. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Op-

timization. Ph.D. thesis, University of Reading, UK (2002)
7. Knowles, J.D., Corne, D.: Bounded Pareto archiving: Theory and practice. In:

Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for
Multiobjective Optimisation. LNEMS, vol. 535, pp. 39–64. Springer, Heidelberg
(2004)

8. Laumanns, M., Zenklusen, R.: Stochastic convergence of random search methods to
fixed size Pareto front approximations. Eur. J. Oper. Res. 213(2), 414–421 (2011)

9. López-Ibáñez, M., Knowles, J., Laumanns, M.: On sequential online archiving of
objective vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.)
EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011)

10. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling
salesman problem. J. Heuristics 16(3), 475–510 (2010)

11. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biob-
jective traveling salesman problem: An experimental study. In: Gandibleux, X.,
Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Op-
timisation. LNEMS, vol. 535, pp. 177–200. Springer, Heidelberg (2004)

12. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combi-
natorial optimization problems. Annals of Operations Research 156, 83–97 (2007)

13. Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the
biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959
(2006)

14. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjec-
tive combinatorial search space: MNK-landscapes with correlated objectives. Eur.
J. Oper. Res. 227(2), 331–342 (2013)

15. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

Racing Multi-objective Selection Probabilities

Gaetan Marceau-Caron1,2 and Marc Schoenauer2

1 Thales Air Systems, Rungis, France
2 TAO Project, INRIA Saclay and LRI Paris-Sud University, Orsay, France

{marc.schoenauer,gaetan.marceau-caron}@inria.fr

Abstract. In the context of Noisy Multi-Objective Optimization, deal-
ing with uncertainties requires the decision maker to define some pref-
erences about how to handle them, through some statistics (e.g., mean,
median) to be used to evaluate the qualities of the solutions, and define
the corresponding Pareto set. Approximating these statistics requires
repeated samplings of the population, drastically increasing the overall
computational cost. To tackle this issue, this paper proposes to directly
estimate the probability of each individual to be selected, using some
Hoeffding races to dynamically assign the estimation budget during the
selection step. The proposed racing approach is validated against static
budget approaches with NSGA-II on noisy versions of the ZDT bench-
mark functions.

Keywords: Multi-Objective Evolutionary Optimization, Hoeffding Races,
Uncertaintly Handling, Noisy Multiobjective Optimization.

1 Introduction

Uncertainty handling is an important aspect of optimization since it concerns
most, if not all, real-world applications. Optimizing uncertain objectives aims at
taking into account modeling inaccuracies, measurement errors from sensors, or
prediction errors, that will interfere with the beliefs of a decision maker about
the environment. Therefore, optimization under uncertainty must include some
mechanisms that ensure, one way or another, that the proposed solutions are
effective, according to the user’s point of view w.r.t. optimality. And whereas
several definitions of such effectiveness can occur in the simplest case of a single
objective, the complexity of optimizing multiple uncertain objectives increases
drastically with the number of objectives.

The general framework of this work is that of multi-objective optimization in
uncertain context. The degrees of freedom of the decision maker are the variables
of the optimization problem, defined on the decision space, and observables are
some responses of the system when setting these variables. However, the same set-
ting will result in different responses every time it is used, and the output of the
system thus defines a probability distribution, conditionally dependent on the de-
cision variables. The goal of the optimization process is then to find the values of
the decision variables that will optimize some statistics on this probability distri-
bution. The choice of these statistics depends on the user’s goal and preferences.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 631–640, 2014.
c© Springer International Publishing Switzerland 2014

632 G. Marceau-Caron and M. Schoenauer

The average or the median are common choices, though probably sometimes only
because of the lack of efficient methods to handle other statistics. For instance,
risk-adverse users will prefer to minimize the consequences of the worst outcomes,
while risk-affine users will maximize their possible “profit” even if it comes at high
risk, optimizing the value at risk for a given risk level.

Except when the type of noise is known –a totally unrealistic hypothesis– a
common way to compute the desired statistics is to sample the fitness of each
individual as many times as necessary to obtain a good estimation thereof, and
the amount of computation per individual is user-defined, uniformly over the
individuals and the generations. In the single-objective framework, an alternative
has been proposed, using the idea of races [6], minimizing the number of re-
evaluations while keeping a high confidence level on the results. But only limited
attempts have been made in the multi-objective framework (see Section 2).

The approach proposed in this paper, Racing Selection Probability (RSP), is
an attempt, in the multi-objective case, to dynamically decrease the number of
sampling of all individuals by applying the principles of Hoeffding races directly
on the estimation of the probability of being selected for an individual, using
bounds on the behavior of that probability to decide as early as possible when
to definitely select or discard an individual, for a given confidence level. Bounds
on any statistics can be used, and straightforwardly embedded in any unmodified
EMOA, thus allowing to handle any preference of the user. Furthermore, any
type of noise can be handled that way.

The paper is organized the following way. Section 2 briefly surveys state-of-
the-art methods for uncertainty handling in Evolutionary Multi-Objective Op-
timization. Section 3 introduces the Hoeffding’s inequality used in RSP. Section
4 presents experimental results on perturbed ZDT test functions (with different
types of noise) where RSP is compared to the two basic noise-handling methods,
the implicit and static averaging. More details and results are available in the
corresponding Technical Report1.

2 Uncertainty Handling in Multi-objective Evolutionary
Optimization

The context of this work is that of Multi-Objective Optimization with Un-
certainty. On the space of decision variables X , several conflicting objectives
f1, . . . , fk are defined (to be minimized, w.l.o.g.), and, as discussed above, the
outcome of any given setting of the decision variables is a probability distri-
bution f over the objective space F ⊂ Rk that depends on the values of the
variables and on some additional unknown external random variable ε, aka noise.
In particular [1], there is no “true” value of the objectives to which some ran-
dom noise is added. Formally [11,12], the Multi-Objective Noisy Optimization
Problem (MNOP) can be written as

min
x∈X

((f |x, ε) = (f1, . . . , fk|x, ε)) (1)

1 http://hal.inria.fr/hal-01002854/en

http://hal.inria.fr/hal-01002854/en

Racing Multi-objective Selection Probabilities 633

where f is a random variable taking values in F , and each fi is a real-valued
random variable, a coordinate of f .

Even in the single objective case, the minimization of a random variable does
not make much sense. So the user must complete the problem definition by pro-
viding some preferences through some statistics over that random variable (e.g.,
minimizing the mean, the median, the 5% percentile, the variance with constraint
on the mean, . . .). The situation is the same in the multi-objective case, except
that there doesn’t exist any total order on the samples of the random variable of
interest. In the deterministic case, Pareto dominance has proved useful, and the
notion of Pareto front is accepted as a way to describe interesting solutions of the
multi-objective problem at hand. In particular, several multi-objective optimiza-
tion algorithms have been proposed, among which Evolutionary Multi-Objective
Algorithms (EMOAs) (see e.g., [13]). And because uncertainty is ubiquitous in
real-world problems, MNOPs have also been well studied, though not always
with such a degree of generality.

2.1 Previous Work

A first approach is to port to multi-objective context the single-objective static
averaging techniques, that re-evaluate every individual N times at each genera-
tion (also called implicit averaging if N = 1).

Several works consider the specific case of additive noise of known type: the
random variable (f |x, ε) is of the form g(x)+ε for some function g(x) and some
partly known noise ε. Depending on the form of ε, approximation of the prob-
abilistic dominance (probability that an individual Pareto-dominates another
one) can sometimes be computed at low computational cost. In [10], the noise is
supposed bounded, and exact calculations are done for uniform noise; In [7], the
noise is assumed Gaussian with known variance (that can be computed off-line
from static samples). This work is extended in [5] to the case of unknown (and
non-uniform) variance. Later, [4] proposed another way to compute the prob-
ability with more general hypotheses, but going back to using a fixed number
of samples (15 in experiments). In any case, it is clear that the hypothesis of a
known type of noise is highly unrealistic in practice.

An approach that is specific to indicator-based algorithms is proposed in [1],
that does not make any hypothesis about the noise and uses the general model
of Equation 1: the indicator ε+ is approximated using averages (over 5 samples),
and is used within the environmental selection. However, the problem being
solved there is the minimization of the expectation of the indicator at hand
(w.r.t. some reference set), that cannot be adapted to the user’s preferences.

Several works propose different approaches to probabilistic dominance for the
general MNOP (equation 1). Pareto Dominance in Uncertain environments(PDU)
[11] uses the convex hull of a fixed number of samples (10 in the paper) to estimate
both the mean and its uncertainty. In [12], PDU evaluates the certainty of the mean
using quartiles on each dimension, and some races are run for each objective, from
[6], with confidence 0.0001 and maximum race length 15. This latter work however
assumes that the noise distribution is symmetrical, and Suzuki and collaborators

634 G. Marceau-Caron and M. Schoenauer

propose anotherParetoDominance operator that does not need that hypothesis [2]
using a CPU-expensive SVM construct over the samples; [8] improves the method
using a non-parametric Mann-Whitney U-test. However, both works use a fixed
number of samples (resp. 30 and 20) to estimate the dominance operator.

In [9], six different resampling approaches are compared. All but one use some
absolute criteria that only depend on some statistics on the previous samples
and the individual at hand to decide on early stop of the resampling procedure
and derive an estimation of the mean of the sample with known confidence. That
mean is then used as the fitness in a standard EMOA. The last procedure (termed
OCBA) is the closest to RSP proposed here, in that it makes the minimal global
sampling allocation to estimate the confidence in a partition of the population
into a non-dominated and a dominated sets. However, the calculation of the
confidence assumes Gaussian noise on all objectives.

2.2 Discussion, and Rationale for RSP

Our goal is to design, within a given EMOA, an approach that will limit the
number of resampling while preserving some confidence on the resulting Pareto-
based selection, for a wide range of statistics describing the user’s preferences,
and without any requirement on the type of noise. Most of the works listed
above, however, use a fixed user-define resampling budget (except [9] and [12]).
Furthermore, either they derive estimations of the mean of a sample with some
confidence interval – and this does not allow to derive confidence bounds on
the comparison between those means (except in specific cases, e.g. Gaussian
distributions); or they do derive probabilistic Pareto dominance, with known
confidence, but omit the second component of Pareto-based selection, the diver-
sity preserving mechanism (the case of indicator estimation [1] is different, but
strictly limited to indicator-based EMOAs).

The idea of RSP borrows from [6], like [12] cited above, is using Hoeffding
races2 to decrease the number of resampling while nevertheless guaranteeing
some level of confidence on the statistic at hand. But contrary to the works above
(including [12]), Racing Selection Probability, as its name claims, will perform the
race on the probability of an individual to be selected by the selection mechanism
of the chosen EMOA.

3 Racing Selection Probability

Let us assume some selectionprocedure in an existingMOEA (e.g., non-dominated
sorting + crowding distance for NSGA-II [3]) that aims at selecting μ individuals
out of a population of size λ. The basic idea of RSP, inspired by [6], is to estimate,
for any individual i, with as few samples of fitnesses as possible thanks to Hoeffding
bounds, the probability pseli that i will be selected.

2 [6] also advocates Bernstein races when the range of values is not know – which is
not the case here. Hence Bernstein races will not be mentioned here.

Racing Multi-objective Selection Probabilities 635

Hoeffding’s inequality states that, for any random variable X with range width
R, and for any confidence level 1− δ, the absolute difference between the expec-
tation and the empirical mean computed using t samples is upper-bounded by
R
√
log(2/δ)/2t.

Every time all λ individuals are resampled, the standard selection procedure
of the EMOA at hand is applied to the current sample, determining the selected
μ ones. This results in a new sample for probabilities pseli . For any δ, lower and
upper values for all pseli can be computed at confidence level 1 − δ, thanks to
Hoeffding’s bound applied to pseli . Any individual i whose lower bound for pseli is
larger than the upper bound of at least λ−μ other pselk is definitely selected and
leaves the race. Symmetrically, any individual i whose upper bound for pseli is
smaller than the lower bound of at least μ other pselk is definitely discarded and
leaves the race. Remain in the race the uncertain individuals, and only those are
resampled again at next iteration. The race ends when either μ individuals are
definitely selected, or λ−μ individuals are definitely discarded, or some maximum
number of resampling TMax have been done. In the latter case, selection is made
without Hoeffding guarantee. Nevertheless, the proposed procedure allows to
quickly select the most promising individuals with given confidence. Note that
each selection step can also be done on some statistic for each individual given
the past t samples. This will be illustrated in Section 4 where variants using the
average or the median will be used, instead of the most recent sample. These
variants will be termed RSPAVG and RSPMED respectively, the variant that
does not use any statistic being denoted by RSPI .

There are however some specificities to the multi-objective context. First, the
selection step usually involves the whole population, be it indicator based, or
using some diversity secondary criterion. Hence the individuals that have left
the race should nevertheless be taken into account for the next selection steps
- but without being themselves re-evaluated, of course. A bootstrap procedure
is used here, to mimic an ever growing sample without any resampling. Note
that bootstrap is also used to avoid resampling individuals that have not been
modified by the variation operators from one generation to the next.

Finally, it might be beneficial to detect early that some race will not end before
the maximum number of samples because of actual ties between individuals that
remain in the uncertain set. Here, when the sum of absolute pairwise differences
of the empirical mean of the pseli becomes lower than a given threshold called
Proximity Threshold, the race stops and the μ best individuals according to the
current selection policy are returned.

4 Experimental Results

4.1 Experimental Conditions

Five methods have been experimentally compared: the implicit averaging, and
two variants of the static sampling, whether the average or the median of the
samples is used for the selection (see Section 2.1); and 3 variants of RSP, whether
the last sample, the average or the median of the previous samples are used in the

636 G. Marceau-Caron and M. Schoenauer

Table 1. Parameters for (top to bottom) benchmarks and noise; static sampling; RSP

ZDT Functions: {1,2,3,4,6} Number of runs: 25
Deterministic(DE): Dirac Delta Function Gaussian noise(GA): 0.25 ∗ N (0, I)
Cauchy Noise(CA): (0, 0.25) Gumbel noise(GU): (2, 2 ln(ln(2))
Population Size: 100 Nb Eval.: {100k,500k}
SBX Crossover: pc = 1.0, η = 20 Polynomial Mut.: pm = 1/|X |, η = 20
Confidence Level: {0.25, 0.95} Proximity Thres.: 0.5
Sampling Budget: {5, 10, 15, 20, 30, 50} Estimators: {None, AVeraGe, MEDian}

selection (see Section 3). All RSP variants have been implemented within NSGA-
II with standard SBX crossover and polynomial mutation. A common parameter
of static sampling and RSP is the Sampling Budget, that will denote the fixed
number of samples for each individual in the static case, and the maximum length
of the races in RSP. RSP also requires a Confidence Level and the Proximity
Threshold (see previous Section 3).

The testbench is based on the classical ZDT suite, used either as is (determin-
istic setting), or with known additional noise: Gaussian noise, that should favor
the average estimator compared to the median estimator, the empirical average
being the minimum-variance unbiased estimator of the expectation of a normal
distribution with unknown mean and variance; Cauchy noise, that has an infinite
mean, hence the mean estimator should be perturbed because of the outliers;
and Gumbel noise, an asymmetrical distribution with finite moments that is
used in extreme value theory to simulate rare events (its location parameter is
chosen in order to center the median).

The goal of the experiments is to study the impact of the two parameters
Sampling Budget and Confidence Level, and possibly their interaction, e.g., if the
required confidence level is too high, all races will reach the maximum budget,
and RSP amounts to static sampling. All parameter values (for the algorithms
and the noise models) that have been used for these experiments are listed in
Table 1). All runs were limited to 100k evaluations, except ZDT6 (500k), and 25
independent runs were run for each parameter setting. Due to space limitation,
results on ZDT2 are not shown, but are quite similar to those of ZDT4.

4.2 Results

The performances are compared using the difference hypervolume indicator w.r.t.
the real Pareto front, on the normalized objective space. The normalization is
done with respect to the Nadir point, computed from the union of the exact
Pareto front and every point generated by each algorithm for a given func-
tion and a given noise. Statistical significance is attested by p-values of the
Wilcoxon signed-rank test. Pisa performance assessment tools (http://www.
tik.ee.ethz.ch/sop/pisa) was used to compute the hypervolumes.

Each plot of the following figures summarizes the results obtained by all algo-
rithms on one function with one type of noise (or no noise at all): each plot dis-
plays several boxplots, each boxplot represents the statistics of the 25 hypervolume

http://www.tik.ee.ethz.ch/sop/pisa
http://www.tik.ee.ethz.ch/sop/pisa

Racing Multi-objective Selection Probabilities 637

Fig. 1. Results for ZDT1 (4 top plots) and ZDT3 (4 bottom plots). See Section 4.2.

values at the end of each of the 25 runs for the corresponding setting. Each plot
is divided into six regions. First boxplot is that of the implicit averaging I. Next 2
regions give the results of the static sampling (resp. AV G and MED), and display
6 boxplots each, corresponding to the 6 Sampling Budget values of Table 1. Next 3
regions give the results for RSPI , RSPAVG and RSPMED resp. For each region,
there are 6 subregions (the 6 values of Sampling Budget) with two boxplots each,
one for each confidence level (25%, 95%).

4.3 Discussion

First of all, in the deterministic case, the results of implicit averaging assesses
that the total budget of 100k samples is sufficient for NSGA-II to find a good
approximation of the Pareto front. Furthermore, as expected, the performance
of static resampling using an estimator degrades with the Sampling Budget, as
more and more samples are wasted on the (sometimes useless) estimation of the
statistic. In the same situation, RSP is able to detect the low (!) uncertainty

638 G. Marceau-Caron and M. Schoenauer

Fig. 2. Results for ZDT4 (4 top plots) and ZDT6 (4 bottom plots). See Section 4.2.

and to stop the race early, at least when using a Confidence Level of 25%. A
Confidence Level of 95% can sometimes, on the other hand, lead to a similar
degradation than in the static setting. The anomalies in that respect for RSP
on ZDT3 (discontinuous front) for small Sampling Budget (5 and 10) might
come from races that stop too early with all selected individuals in the same
component of the front.

On the noisy instances, implicit averaging does not perform very well com-
pared to the other uncertainty handling approaches. Surprisingly, even if the
medians are higher, the spread of the performances is not greater than the other
approaches, excepted for ZDT4-CA. It can be due to the fact that without any
uncertainty handling approach, the probability that every individual of the pop-
ulation is good or bad is small and so, at the population level, the performance
does not vary so much from one run to another.

Beside, implicit averaging is comparable to AVG in case of Cauchy noise, for
all functions but ZDT4: choosing by default the mean (a common choice) can

Racing Multi-objective Selection Probabilities 639

lead to poor results when the distribution of the noise is unknown. Using RSP
seems to mitigate this effect, probably because it uses the probability of survival
instead of the estimator of the mean.

Comparing, for each noisy function, the best configurations of RSP and static
sampling leads to the following considerations: the results are statistically equiv-
alent for all cases of noisy ZDT2 and ZDT4; RSP is significantly better (p-value
< 10−5) than static sampling in 5 cases (the 3 noisy ZDT6, and ZDT1 and 3 with
Cauchy noise), is slightly worse (p-value in [0.01, 0.1]) in 2 cases (both ZDT1 and
3 with Gaussian noise), and both approaches are equivalent (p-value > 0.1) on the
remaining 2 cases (both ZDT1 and 3 with Gumbel noise). On ZDT1 and 3 with
Gaussian noise, static sampling with averaging performs best: this is most proba-
bly related to the fact that AVG is based on the minimum-variance unbiased esti-
mator, while RSPAV G uses it indirectly to estimate the probability of survival.

Regarding the choice of estimator, racing seems to decrease the impact of the
average vs median issue. Indeed, when using static sampling, average performs
slightly better than median for Gaussian and Gumbel noises, whereas median is
consistently and significantly better when facing Cauchy noise. On the opposite,
all 3 variants of RSP perform in general similarly over all problems. In particular,
the no-estimator, RSPI , performs as good as both others on most problems. This
is good news, as it gives hope that the proposed racing approach might perform
well with a lot of estimators, allowing the user to actually choose his favorite
without having to care about the optimization algorithm in that respect.

5 Conclusion and Perspective

RSP is a general approach to uncertainty handling in existing EMOAs. It uses a
(μ, λ) Hoeffding race at a given confidence level, inspired by [6], though applied
directly on the selection probabilities of the individuals in the population. It
is agnostic w.r.t. the selection method, and hence can accomodate any user
preference that could be carried by the algorithm selection.

First experimental results within NSGA-II on noisy versions of ZDT bench-
marks, indicate that this path is worth following for future research: RSP per-
forms significantly better than implicit averaging or static sampling in many
situations, and never performs significantly worse. It is less sensitive to the Sam-
pling Budget parameter, especially for small (on zero) levels of noise, and sur-
prisingly almost insensitive to the choice of the estimator. On the other hand,
it is very sensitive to the Confidence Level of the races. However, these partial
conclusions should be sustained by deeper analyses and validated by more exper-
iments, with different levels of non-homogeneous noise, and other test functions
from real-world problems.

The main perspectives for further work are to couple RSP with other EMOAs
such as SPEA-2, IBEA and HYPE, in order to study the interaction between
racing and the indicator function. Also, RSP should also be compared to more
sophisticated uncertainty handling methods (see Section 2). It is also manda-
tory to test other estimators within RSP, as well as different noise models and
different noise intensities. On the more fundamental side, it should be possible

640 G. Marceau-Caron and M. Schoenauer

to better understand the intricate relationship between estimating the selection
probability and directly estimating the objective values.

A longer term research track is to come up with some adaptive procedure
to dynamically tune the Sampling Budget and, maybe more importantly, the
Confidence Level. Indeed, it is clear from the present results that this latter
parameter has a strong effect on the performance of the algorithm and should
be fixed carefully. In the case where its optimal value varies over the decision
space, only adaptive tuning can perform well on most functions. To conclude, we
feel that the use of RSP in EMOA is a promising avenue for taking into account
the decision maker’s preferences and increasing the reliability and robustness of
the solutions in many real-world applications.

References

1. Basseur, M., Zitzler, E.: A Preliminary Study on Handling Uncertainty in
Indicator-Based Multiobjective Optimization. In: Rothlauf, F., et al. (eds.)
EvoWorkshops 2006. LNCS, vol. 3907, pp. 727–739. Springer, Heidelberg (2006)

2. Boonma, P., Suzuki, J.: A Confidence-based Dominance Operator in Evolutionary
Algorithms for Noisy Multiobjective Optimization Problems. In: Proc. ICTAI 2009.
IEEE Press (2009)

3. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons (2001)

4. Eskandari, H., Geiger, C.D., Bird, R.: Handling uncertainty in evolutionary multi-
objective optimization: SPGA. In: CEC 2007, pp. 4130–4137. IEEE Press (2007)

5. Fieldsend, J., Everson, R.: Multi-Objective Optimisation in the Presence of Un-
certainty. In: CEC 2005, pp. 243–250. IEEE Press (2005)

6. Heidrich-Meisner, V., Igel, C.: Hoeffding and Bernstein Races for Selecting Policies
in Evolutionary Direct Policy Search. In: Danyluk, A.P., et al. (eds.) Proc. ICML
2009. ACM Intl. Conf. Proc. Series, vol. 382, p. 51 (2009)

7. Hughes, E.J.: Evolutionary Multiobjective Ranking with Uncertainty and Noise.
In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO
2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001)

8. Phan, D.H., Suzuki, J.: A Non-parametric Statistical Dominance Operator for
Noisy Multiobjective Optimization. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi,
H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 42–51. Springer,
Heidelberg (2012)

9. Siegmund, F.: Sequential Sampling in Noisy Multi-Objective Evolutionary Opti-
mization. Master’s thesis, School of Humanities and Informatics, Skövde (2009)

10. Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: Zitzler, E., Deb,
K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993,
pp. 314–328. Springer, Heidelberg (2001)

11. Trautmann, H., Mehnen, J., Naujoks, B.: Pareto-Dominance in Noisy Environ-
ments. In: Tyrrell, A. (ed.) Proc. CEC 2009, pp. 3119–3126. IEEE Press (2009)

12. Voß, T., Trautmann, H., Igel, C.: New Uncertainty Handling Strategies in Multi-
objective Evolutionary Optimization. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 260–269. Springer, Heidelberg
(2010)

13. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective
evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary
Computation 1(1), 32–49 (2011)

Shake Them All!

Rethinking Selection and Replacement in MOEA/D

Gauvain Marquet, Bilel Derbel, Arnaud Liefooghe, and El-Ghazali Talbi

1 Université Lille 1, LIFL, UMR CNRS 8022, France
2 Inria Lille - Nord Europe, DOLPHIN project-team, France

{firstname.lastname}@inria.fr

Abstract. In this paper, we build upon the previous efforts to enhance
the search ability of Moea/d (a multi-objective decomposition-based
algorithm), by investigating the idea of evolving the whole population
simultaneously. We thereby propose new alternative selection and re-
placement strategies that can be combined in different ways within a
generic and problem-independent framework. To assess the performance
of our strategies, we conduct a comprehensive experimental study on
bi-objective combinatorial optimization problems. More precisely, we
consider ρMNK-landscapes and knapsack problems as a benchmark, and
experiment a wide range of parameter configurations for Moea/d and
its variants. Our analysis reveals the effectiveness of our strategies and
their robustness to parameter settings. In particular, substantial im-
provements are obtained compared to the conventional Moea/d.

1 Introduction

Evolutionary multi-objective optimization (EMO) algorithms [1, 2] have been
proved extremely effective in computing a high-quality approximation of the
Pareto set, i.e., the set of solutions providing the best compromises between the
multiple objectives of an optimization problem. In particular, decomposition-
based (or aggregation-based) algorithms are gaining in popularity as an increas-
ing number of studies is being devoted to their development [3–7]. Recently,
Moea/d [4] (Multi-Objective Evolutionary Algorithm based on Decomposition)
has attracted a lot of interest; which is due to its simplicity, approximation qual-
ity, and computational efficiency. In this paper, we seek for new alternative se-
lection mechanisms for Moea/d at the aim of enhancing its search quality; and
we focus on bi-objective combinatorial problems as a case study.

Generally speaking, Moea/d builds upon the idea of decomposing the initial
multi-objective optimization problem into several single-objective sub-problems
by means of scalarizing functions [8] configured with different weight vectors. The
most original part of Moea/d is to define, for each sub-problem, a neighborhood
structure containing the set of the closest sub-problems. Then, Moea/d iterates
over sub-problems and performs the three following basic steps: (i) select par-
ents among the neighbors of the current sub-problem, (ii) generate an offspring
by applying problem-specific operators, and (iii) replace neighbors’ solutions if
the generated offspring is better. We remark that mating selection (Step (i))

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 641–651, 2014.
c© Springer International Publishing Switzerland 2014

642 G. Marquet et al.

is performed exclusively among neighbors. Assuming that nearby sub-problems
have similar solutions, the neighborhood size is critical for an accurate explo-
ration/exploitation balance. Moreover, the replacement mechanism (Step (iii))
can lead to a situation where several neighbors are replaced by the same off-
spring. This can imply a loss of diversity, and likely a loss in performance. These
issues have actually been addressed in [9], where two extra modifications have
been introduced when dealing with complicated continuous Pareto sets. The first
modification uses an extra probability parameter allowing parents to be selected
from the whole population. The second one uses an extra parameter to bound
the number of neighbors that can be replaced by a newly generated offspring.

In this paper, we propose new selection strategies to enhance the search ability
of Moea/d for combinatorial problems. The idea behind our strategies stems
from the observation that if an offspring is allowed to replace a neighboring solu-
tion in Moea/d, this solution is then ‘lost’ and it has no chance to get selected
for reproduction in subsequent iterations. To overcome this shortcoming, we in-
vestigate an alternative perspective in Moea/d by optimizing all sub-problems
at once. Intuitively, every solution from the population has a more fair chance to
participate in the evolution process. This allows us to propose different strategies
that can be plugged in the basic version of Moea/d. Our newly proposed strate-
gies do not distort the basic framework of Moea/d, neither do they induce a
loss in generality nor do they introduce new extra parameters; while being fully
compatible with the previous modifications introduced so far. Moreover, they
are proven to exhibit substantial improvements in approximation quality when
compared with basic Moea/d and its modifications. Our performance assess-
ment is in fact obtained as the byproduct of a thorough experimental analysis
on two bi-objective combinatorial optimization problems, namely, knapsack and
ρMNK-landscapes, and by considering a broad range of configurations. In the
remainder, we first recall in Sec. 2 some basic definitions as well as a brief de-
scription of Moea/d. In Sec. 3, we describe our algorithmic contribution in
designing new selection and replacement strategies for Moea/d. In Sec. 4, we
present the settings of our experimental study. In Sec. 5, we state our main
experimental findings. Finally, we conclude the paper in Sec. 6.

2 Background

Definitions. A multi-objective optimization problem can be defined by an ob-
jective function vector f = (f1, . . . , fm) with m 	 2, and a set X of feasible
solutions in the solution space. In the combinatorial case, X is a discrete set. Let
Z = f(X) ⊆ IRm be the set of feasible outcome vectors in the objective space.
To each solution x ∈ X is assigned an objective vector z ∈ Z, on the basis of the
function vector f : X → Z with z = f(x). In a maximization context, a solution
x ∈ X is dominated by a solution x′ ∈ X iff ∀i ∈ {1, . . . ,m}, fi(x) � fi(x′) and
∃i ∈ {1, . . . ,m} such that fi(x) < fi(x′). A solution x� ∈ X is said to be Pareto
optimal (or non-dominated), if there does not exist any other solution x ∈ X
such that x� is dominated by x. The set of all Pareto optimal solutions is the
Pareto set. Its mapping in the objective space is the Pareto front.

Shake Them All!: Rethinking selection and replacement in MOEA/D 643

Decomposition-Based EMO. Contrary to existing Pareto-based EMO algo-
rithms, likeNsga-ii or Spea2, which explicitly use the Pareto dominance relation
in their selection mechanism, decomposition-based EMO algorithms [10] rather
seek a good-performing solution in multiple regions of the Pareto front by decom-
posing the original multi-objective problem into a number of scalarized single-
objective sub-problems, which can be solved independently as in Msops [7], or
in a dependent way as in Moea/d [4]. Many different scalarizing functions have
been proposed in the literature [8]. Popular examples are the weighted sum (gws)
and the weighted Tchebycheff (gte) functions defined below:

gws(x, λ) =
m∑
i=1

λi · fi(x) , gte(x, λ) = max
i∈{1,...,m}

λi ·
∣∣z�i − fi(x)

∣∣
where x belongs to the solution space, λ = (λ1, . . . , λm) is a weighting coefficient
vector such that λi 	 0 for all i, and z� = (z�1 , . . . , z

�
m) is a utopian point, i.e.,

∀i, ∀x, z�i > fi(x). gte (resp. gws) is to be minimized (resp. maximized).

MOEA/D in a Nutshell. Let g be a scalarizing function and let (λ1, . . . , λμ)
be a set of μ uniformly distributed weighting coefficient vectors, corresponding
to μ sub-problems to be optimized. For each sub-problem i ∈ {1, . . . , μ}, the goal
is to approximate the solution x with the best scalarizing function value g(x, λi).
For that purpose, Moea/d maintains a population P = (p1, . . . , pμ), each indi-
vidual corresponding to a good-quality solution for one sub-problem. For each
sub-problem i ∈ {1, . . . , μ}, a set of neighbors B(i) is defined with the T closest
weighting coefficient vectors. To evolve the population, subproblems are opti-
mized iteratively. At a given iteration corresponding to one sub-problem i, two
solutions are selected at random from B(i), and an offspring solution x is created
by means of variation operators (mutation and crossover). A problem-specific re-
pair or improvement heuristic is potentially applied on solution x to produce x′.
Then, for every sub-problem j ∈ B(i), if x′ improves over j’s current solution
pj then x′ replaces it. The algorithm continues looping over sub-problems, op-
timizing them one after the other, until a stopping condition is satisfied. We
shall also consider the two modifications introduced in [9] to enhance Moea/d

in the context of continuous complicated Pareto sets. The first one allows to
select a parent from the whole population with a small probability parameter
(1− δ). More precisely, when dealing with a sub-problem i, its neighborhood is
set to B(i) with probability δ, and to the whole population P with probability
(1 − δ). The second one limits by a parameter nr the number of times that an
offspring x′, created when dealing with a sub-problem i, can replace solutions in
the neighborhood of i.

3 Rethinking Selection and Replacement in MOEA/D

As mentioned in the introduction, Moea/d could suffer from a lack of diversity
due to the locality of its selection and replacement mechanism.We argue that this
can also be caused by the fact that in Moea/d (and its modified variants), sub-
problems are optimized iteratively. In fact, since parents are selected randomly
from the neighborhood of the sub-problem being processed, it might happen that

644 G. Marquet et al.

a solution with the potential of producing a good offspring, gets never selected
for reproduction. Additionally, because a neighbor’s solution might be replaced
as soon as a better offspring is found, this solution gets actually no chance to
survive in the population. To increase the chance for a solution to survive in the
population, we investigate the idea of evolving the whole population simultane-
ously by optimizing all subproblems in one shot and not iteratively. This idea is
depicted in Algorithm 1 and discussed more thoroughly in the following.

Algorithm 1. Our proposed framework Moead-xy (x, y ∈ {s, c})
Input:

{
λ1, . . . , λμ

}
: weight vectors w.r.t sub-problems; g: a scalarizing function; B(i): the

neighbors of sub-problem i ∈ {1, . . . , μ}; P=
{
p1, . . . , pμ

}
: the initial population.

1 while Stopping Condition do
2 for i ∈ {1, . . . , μ} do
3 if rand(0, 1) < δ then Bi ← B(i) ; /* Neighborhood Setting */
4 else Bi ← P if x = s then /* Selfish mating selection */

5 k ← i;
6 else if x = c then /* Collective mating selection */
7 k ← rand(Bi);

8 � ← rand(Bi); while � = k do � ← rand(Bi)

9 if rand(0, 1) < cr then /* Variation operators */

10 oi ← crossover(pk, p�); oi ← mutation(oi);
11 else oi ← mutation(pk) if oi is infeasible then repair(oi)

12 for i ∈ {1, . . . , μ} do ci ← 0
13 for i ∈ {1, . . . , μ} do /* Environmental replacement */
14 if y = s then /* Selfish replacement */

15 p′ ← oi;
16 if g(p′, λi) better than g(pi, λi) then pi ← p′

17 else if y = c then /* Collective replacement */
18 shuffle(Bi);
19 for j ∈ Bi do

20 p′ ← oj ;
21 if cj < nr then

22 if g(p′, λi) better than g(pi, λi) then pi ← p′; cj ← cj + 1

Algorithm 1 is mainly divided in two stages (lines 2 to 11 and lines 12 to 22).
Contrary to Moea/d where a single offspring is generated at each iteration, our
framework is basically a (μ + μ)-EA where the first stage consists in generat-
ing μ offsprings and the second stage consists in updating the whole population
for the next round. The first stage corresponds to mating selection where one
new offspring is created for every subproblem. Specifically, we consider two al-
ternatives: (i) either the solution of the current subproblem is always selected
to be a parent and hence included for variation (x = s), or (ii) parents are
picked randomly from neighbors in the usual way Moea/d proceeds (x = c).
Moreover, every offspring is tagged with the identifier of the subproblem where
it has been created. Thus, we can identify the subproblem that originated the
creation of a given offspring. Only when all subproblems are treated and all μ
new offspring solutions are created, the second stage of replacement occurs. In
this stage, the subproblems are processed iteratively and we again consider two
alternatives: (i) either the solution of a subproblem is compared to the offspring
created at this subproblem (y = s), or (ii) the solution of the current subprob-
lem is compared to the offsprings created in neighboring subproblems (y = c).

Shake Them All!: Rethinking selection and replacement in MOEA/D 645

In both cases, the solution of the current subproblem gets replaced if the con-
sidered offspring shows an improvement.

Algorithm 1 is fully compatible with the baseline ideas of Moea/d; in par-
ticular, with the variants in [9], i.e., parameters δ and nr. Due to lack of space,
we omit describing all the standard aspects that are shared with Moea/d, e.g.,
weights initialization, neighborhoods, update of the reference point, archiving.

To summarize, Algorithm 1 differs from Moea/d by essentially the fact that
μ offsprings for all subproblems are created at each iteration. Moreover, since
two alternatives are designed for mating selection and replacement, four different
variants are possible:Moead-xy with x, y ∈ {s, c}— s (resp. c) refers to a Selfish
(resp. Collective) strategy where a subproblem privileges its own solution (resp.
its neighbors’ solutions). It is worth to notice that some parameter combinations
may not have any impact on some algorithm variants, e.g., nr does not have an
impact on Moead-ss and Moead-cs, neither δ on Moead-ss when cr = 0.

4 Experimental Setup

We analyze our approach on bi-objective ρMNK-landscapes and knapsack prob-
lems, with a broad range of instances with different structures and sizes.

ρMNK-Landscapes. The family of ρMNK-landscapes constitutes a problem-
independent model used for constructing multi-objective multi-modal landscapes
with objective correlation [11]. A bi-objective ρMNK-landscape aims at maxi-
mizing an objective function vector f : {0, 1}n → [0, 1]2. Solutions are binary
strings of size n. The parameter k defines the number of variables that influence
a particular position from the bit-string (the epistatic interactions). By increas-
ing the number of variable interactions k from 0 to (n − 1), landscapes can be
gradually tuned from smooth to rugged. The objective correlation parameter ρ
defines the degree of conflict between the objectives. The positive (resp. nega-
tive) data correlation allows to decrease (resp. increases) the degree of conflict
between the objective function values. This has an impact on the cardinality
of the Pareto front [11]. We investigate six random ρMNK-landscapes for each
parameter combination given in Table 1.

Knapsack. The knapsack problem is one of the most studied NP-hard problem.
Given a collection of n items and a set of 2 knapsacks, the 0 − 1 bi-objective
bi-dimensional knapsack problem seeks a subset of items subject to capacity
constraint based on a weight function vector w : {0, 1}n → N2, while maximizing
a profit function vector p : {0, 1}n → N2. More formally, it can be stated as:

max
∑n

j=1 pij · xj ; s.t.
∑n

j=1 wij · xj � ci i ∈ {1, 2}
xj ∈ {0, 1} j ∈ {1, . . . , n}

where pij ∈ N is the profit of item j on knapsack i, wij ∈ N is the weight of item j
on knapsack i, and ci ∈ N is the capacity of knapsack i. We consider the standard
instances proposed in [12], with random uncorrelated profit and weight integer
values from [10, 100], and where capacity is set to half of the total weight of a

646 G. Marquet et al.

Table 1. Parameter setting

ρMNK-landscapes Knapsack
m = 2, n = 128 m = 2

ρ ∈ {−0.7, 0.0, 0.7}, K ∈ {4, 8} n = 250 n = 500 n = 750
pop size μ 64, 128, 256 150 200 250

neighborhood size T 4, 8, 16, 32 10, 20, 30
max. number of replacements nr 1, 2, 3, 4, ∞ 2, 4, 8, 10, ∞

neighborhood probability δ 0.9, 1.0
crossover rate cr 0.0, 0.9, 1.0

scalarizing function g weighted sum (gws), weighted Tchebycheff (gte)
stopping condition 106 evaluation function calls 106 repair procedure calls

knapsack. Thirty different random problem instances are investigated for each
parameter combination given in Table 1. Moreover, we use the same advanced
weighted repairing procedure to handle constraints as in Moea/d [4].

Parameter Setting. Table 1 shows the parameter settings investigated in
our study. We consider the effect of the population size (μ), the neighborhood
size (T), the maximum number of neighboring solutions replaced (nr), the prob-
ability to select a parent outside of a neighborhood (1− δ), the scalarizing func-
tion (g), and the crossover probability (cr). The stopping condition is set to 106

evaluation (resp. repair) calls for ρMNK-landscapes (resp. knapsack). Standard
Moea/d [4, 9] is considered, together with our four variants. We use a bit-flip
mutation (where each bit is independently flipped with a rate 1/n) and one-point
crossover. The crossover probability parameter (cr) allows us to appreciate the
impact of the variation operator, from a pure randomized local search algorithm
(cr = 0.0) to a conventional genetic algorithm (cr = 1.0). The initial population
is generated randomly. An unbounded archive of all non-dominated solutions is
maintained with all the approaches. All algorithms have been executed under
comparable conditions and share the same base components. Overall, we tested
15918 different configurations, each one executed 30 times. Due to space limita-
tions, we only highlight a subset of settings allowing us to state our findings.

5 Experimental Analysis

Algorithm Comparison. We follow the performance assessment protocol pro-
posed by [13] using the hypervolume difference and multiplicative epsilon indica-
tors [14]. The hypervolume difference indicator (I−H) gives the difference between
the portion of the objective space that is dominated by the Pareto set approxima-
tion and some reference set. The reference point is set to the worst value obtained
over all approximations, and the reference set is the best-found approximation
over all tested configurations. The epsilon indicator (I×ε) gives the minimum
multiplicative factor by which the approximation found by an algorithm has to
be translated in the objective space to weakly dominate the reference set.

Due to space limitations, we shall not focus on eliciting the best configu-
rations; but give an overview of the differences between algorithms and their
robustness to parameters. A non-exhaustive set of results is shown in Tables 2
and 3. First, notice the strong impact of the scalarizing function (gws or gte) on

Shake Them All!: Rethinking selection and replacement in MOEA/D 647

performance and its dependency on the considered problem. Overall, Moead-sc
andMoead-cc are highly competitive and exhibit the most appealing behaviors.
For knapsack, these two variants perform similarly to Moea/d. This can be ex-
plained by the relative strength of the repair function, and also by the shape of
the Pareto front for knapsack problems, which is relatively easy to approximate.
For ρMNK-landscapes with different structures, substantial improvements are
reported, independently of the parameter setting. Actually, Moead-ss is also
found to be competitive, but only when the crossover is activated. This is be-
cause Moead-ss degenerates to a multiple independent search in this case; and
thus it is more likely trapped into independent local optima. At the opposite,
Moead-sc and Moead-cc are able to adequately use information from neigh-
bors, even when only a mutation operator is considered.

The previous discussion is in general valid when conducting an “anytime”
analysis as is illustrated in Fig. 1 rendering the convergence of competing algo-
rithms. We see that all algorithms are able to make improvements, with Moead-
sc andMoead-cc being consistently better thanMoea/d. These results confirm
that shaking many solutions at once can serve the approximation quality till the
early stages of the search process. We also remark that Moead-sc and Moead-
cc are more systematically improving upon Moead-ss for test instances having
conflicting objectives; whereas Moead-ss is able to outperform its competitors
as the objective correlation gets higher. Notice in fact that our strategies induce
different intensification/diversification trade-offs both at the local level of every
single-objective scalarized subproblem; but also at a more global level when con-
sidering the whole approximation set. When a selfish (resp. collective) mating
selection is considered, the probability that a solution in the population gets
selected for reproduction is 1 (resp. 1 − (1 − 1/T)T). Roughly speaking, this
means that all our strategies imply diversified offsprings since no solution in the
current population gets replaced before exploring its potential. At the replace-
ment stage, if a collective strategy is adopted, then the single-objective search
at every subproblem is intensified since the probability that a locally improving
solution can be found is higher. But this might increase the number of copies
in the current approximation set. When a selfish replacement is considered, it is
more likely that the number of copies is minimized; but at the price of delaying
the advance of the population towards the front. For correlated objectives, and
since the front is not too large, it is sufficient that only few solutions are able
to approach the front in order to get good overall performance. Thus, a selfish
replacement can be accurate. This is not the case for anti-correlated objectives
where both the local improvements at every subproblem and the global spread
of solutions is crucial. This explains the relative performance of our strategies
depending on the characteristic of the tackled problem.

Impact of Parameters. From Tables 2 and 3, we can already extract some
interesting observations on the impact of parameters, e.g., notice the differences
between gws and gte. Further observations from our data are sketched in Fig. 2,
where only Moea/d, Moead-sc and Moead-cc are highlighted. First (Fig. 2
left), we confirm the positive impact of small values of parameter nr [9] on

648 G. Marquet et al.

Table 2. Representative subset of configurations w.r.t I−H and I×ε and ρMNK-
landscapes (μ = 128, T = 8, δ = 1.0) at termination. For each row, the numbers
indicates how many algorithms (over the other 15 configurations given in columns)
outperforms the configuration under consideration with a statistical confidence level of
0.05 (the lower, the better).

gte gws

M
o
e
a
/
d

M
o
e
a
d
-s
s

M
o
e
a
d
-s
c

M
o
e
a
d
-c
s

M
o
e
a
d
-c
c

M
o
e
a
/
d

M
o
e
a
d
-s
s

M
o
e
a
d
-s
c

M
o
e
a
d
-c
s

M
o
e
a
d
-c
c

nr ∞ 2 – ∞ 2 – ∞ 2 ∞ 2 – ∞ 2 – ∞ 2
cr ρ K I−H

1.0

-0.7 4 2 2 8 0 0 5 0 0 4 5 0 6 2 7 5 6
-0.7 8 3 1 7 0 0 6 1 0 11 7 6 9 6 9 9 8
0.0 4 2 1 0 0 0 2 0 0 2 0 0 0 0 0 0 2
0.0 8 6 0 0 0 1 6 0 0 8 7 3 8 9 12 6 0
0.7 4 14 10 0 2 2 2 2 1 1 2 0 2 2 2 2 1
0.7 8 2 2 0 2 1 2 2 2 2 1 0 5 2 1 2 1

I×
ε

-0.7 4 8 8 1 0 0 1 0 0 0 5 0 5 0 8 2 3
-0.7 8 5 5 0 0 0 5 5 0 7 6 0 9 5 7 7 5
0.0 4 2 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1
0.0 8 4 0 0 0 1 3 0 0 9 9 6 9 9 10 7 7
0.7 4 15 4 0 2 2 2 2 0 2 2 0 2 2 2 3 0
0.7 8 1 1 0 2 0 1 1 2 2 1 1 6 2 1 4 2

I−H

0.0

-0.7 4 0 4 15 0 0 4 0 0 6 5 13 5 5 12 6 6
-0.7 8 1 1 15 1 0 6 0 0 9 6 6 6 6 10 6 8
0.0 4 3 0 15 0 0 0 0 0 3 0 11 0 0 0 0 0
0.0 8 0 0 15 0 0 4 0 0 6 8 6 8 5 6 6 5
0.7 4 9 1 9 1 0 1 1 0 3 1 2 0 0 0 0 0
0.7 8 0 1 0 4 0 1 1 1 2 1 0 1 1 1 4 4

I×
ε

-0.7 4 6 8 10 1 1 1 1 1 6 2 0 4 5 10 2 4
-0.7 8 3 5 5 1 1 5 1 1 8 5 0 7 5 10 5 9
0.0 4 3 1 13 0 0 1 0 0 1 1 1 0 0 1 1 1
0.0 8 0 0 8 0 0 0 0 0 8 8 6 8 8 8 8 8
0.7 4 6 0 4 0 0 1 0 0 3 2 3 0 0 0 0 0
0.7 8 0 1 0 3 0 1 0 0 2 0 0 2 2 0 10 6

Table 3. Relative performance of a representative subset of configurations for knap-
sack (T = 20, δ = 0.9). Metrics similar to those in Table 2 are reported.

gte gws

M
o
e
a
/
d

M
o
e
a
d
-s
s

M
o
e
a
d
-s
c

M
o
e
a
d
-c
s

M
o
e
a
d
-c
c

M
o
e
a
/
d

M
o
e
a
d
-s
s

M
o
e
a
d
-s
c

M
o
e
a
d
-c
s

M
o
e
a
d
-c
c

nr ∞ 2 – ∞ 2 – ∞ 2 ∞ 2 – ∞ 2 – ∞ 2
cr N I−H

0.9

250 8 8 7 8 8 8 8 8 0 0 0 0 0 0 0 0
500 8 8 8 8 8 13 8 8 0 0 0 0 0 0 0 0
750 8 8 8 8 8 14 8 8 0 0 0 0 0 0 0 0

I×
ε

250 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0
500 8 8 7 7 7 11 7 7 0 5 0 0 4 1 4 5
750 4 3 6 4 3 7 3 2 5 0 0 5 7 7 0 8

Shake Them All!: Rethinking selection and replacement in MOEA/D 649

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

 0.012
 0.014
 0.016
 0.018

 0.02
 0.022
 0.024
 0.026
 0.028

 0.03
 0.032

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

 0.005
 0.006
 0.007
 0.008
 0.009

 0.01
 0.011
 0.012
 0.013
 0.014
 0.015

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 0 20 40 60 80 100

I- H
 in

di
ca

to
r

Evaluations (x 104)

MOEA/D
MOEAD-ss
MOEAD-sc
MOEAD-cs
MOEAD-cc

Fig. 1. Convergence plots w.r.t. hypervolume difference and ρMNK-landscapes.
Columns are respectively for ρ ∈ {−0.7, 0.0, 0.7}. Rows are respectively for K ∈ {4, 8}.
Results are for μ = 128, T = 8, δ = 1.0, cr = 1.0, nr = 0 and gte.

nr=∞
nr=1
nr=2
nr=3
nr=4

nr=∞
nr=1
nr=2
nr=3
nr=4

nr=∞
nr=1
nr=2
nr=3
nr=4

0.010

0.015

0.020

0.025

0.030

hypervolume difference

M
O

E
A

D
M

O
E

A
D

−
sc

M
O

E
A

D
−

cc

nr=∞
nr=1
nr=2
nr=3
nr=4

nr=∞
nr=1
nr=2
nr=3
nr=4

nr=∞
nr=1
nr=2
nr=3
nr=4

1.04

1.06

1.08

1.10

1.12

1.14

epsilon indicator

T=4
T=8

T=16
T=32

T=4
T=8

T=16
T=32

T=4
T=8

T=16
T=32

0.010

0.015

0.020

0.025

0.030

Hypervolume difference

T=4
T=8

T=16
T=32

T=4
T=8

T=16
T=32

T=4
T=8

T=16
T=32

1.04

1.06

1.08

1.10

1.12

1.14

epsilon indicator

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

0.010

0.015

0.020

0.025

0.030

0.035

hypervolume difference

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

μ=64,δ=0.9
μ=64,δ=1.0

μ=128,δ=0.9
μ=128,δ=1.0
μ=256,δ=0.9
μ=256,δ=1.0

1.04

1.06

1.08

1.10

1.12

1.14

1.16

epsilon indicator

Fig. 2. Impact of parameters. The two subfigures in the left (resp. middle, right) show
the impact of nr (resp. T , μ combined with δ) as shown in the vertical axis for every
algorithm. The boxplots are w.r.t. the indicator depicted at the horizontal axis. Results
are for a ρMNK-landscape with ρ = −0.7 and K = 4. Whenever not explicit: μ = 128,
T = 8, cr = 1.0, δ = 1.0, nr = 2 and gte.

the performance of Moea/d for combinatorial problems. However, it was not
always clear what is the best value to choose independently of the other pa-
rameters, e.g., the recommended value of 2 is in fact accurate, but not always
optimal. Also, the impact of parameter nr on our strategies is rather mitigated.
Although we found that it could often bring improvements, the impact was not
pronounced compared to the case of Moea/d. For neighborhood size T (Fig. 2
middle), we found that, contrary to knapsack, small values of T are interestingly
more accurate for ρMNK-landscapes. We attribute this to the influence of the
crossover operator which, combined with the repair mechanism, does enable to
find high-quality solutions for knapsack. However, for ρMNK-landscapes, it is
more likely that the crossover diversifies the search too much when considering
parents in a relatively large neighborhood. Finally (Fig. 2 right), parameter δ
used for neighborhood selection is confirmed to have a positive impact on the
performance. However, we find that another parameter has even more effect;
namely the population size μ and especially for anti-correlated instances. We
attribute this to the fact that, when the Pareto front gets larger, it is beneficial
to increase the population size in order to distribute the population efficiently.

650 G. Marquet et al.

60
70
80
90

100

130

160

 0 20 40 60 80 100

S
iz

e
of

 th
e

ap
pr

ox
. p

ar
et

o
se

t

Evaluations (x 104)

MOEAD, μ=64
MOEAD, μ=128
MOEAD, μ=256

MOEAD-sc, μ=64
MOEAD-sc, μ=128
MOEAD-sc, μ=256

40

50

60

 0 20 40 60 80 100
Evaluations (x 104)

MOEAD, μ=64
MOEAD, μ=128
MOEAD, μ=256

MOEAD-sc, μ=64
MOEAD-sc, μ=128
MOEAD-sc, μ=256

10

12

14

16

 0 20 40 60 80 100
Evaluations (x 104)

MOEAD, μ=64
MOEAD, μ=128
MOEAD, μ=256

MOEAD-sc, μ=64
MOEAD-sc, μ=128
MOEAD-sc, μ=256

Fig. 3. Solution diversity. The y-axis gives the number of different solutions in the
population (in log-scale). Results are for a ρMNK-landscape with ρ ∈ {−0.7, 0.0, 0.7}
and K = 8 (μ = 128, T = 8, cr = 1.0, δ = 1.0, nr = 2 and gte).

Diversity Issues. We conclude our analysis by illustrating in Fig. 3 the size of
the Pareto set approximation extracted at different iterations from the popula-
tion (without the archive) for Moea/d and Moead-sc. In fact, we were able to
observe that our strategy tends to maintain more spread solutions and to dis-
tribute them efficiently over the weight vectors, independently of the population
size μ. We argue that this is a key feature of why our variants are able to exhibit
better performance over Moea/d. Of course, this is not the only ingredient for
optimal anytime performance; but it contributes much in finding a high-quality
approximation, especially for conflicting objectives.

6 Conclusions and Perspectives

We introduced a framework incorporating four strategies to deal with selection
and replacement in Moea/d. Our experimental results show that substantial
improvements can be obtained. Moreover, our study opens new possibilities for
improving the design of decomposition-based algorithms in several perspectives.
Firstly, one can wonder whether more general (μ + λ)-EA can be embedded
in our framework. Secondly, we think that our framework opens the road to
high-quality local search-basedMoea/d variants for combinatorial optimization
problems, e.g., plugging several (1 + λ)-EAs within each subproblem. Finally,
our strategies are inherently distributed in the sense that each sub-problem is
optimized concurrently in parallel. In this respect, an interesting research issue
would be to investigate the effective parallelization of our strategies.

References

1. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. JohnWiley
& Sons, Chichester (2001)

2. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems, 2nd edn. Springer (2007)

3. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-based
Methods in Many-objective Optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007)

Shake Them All!: Rethinking selection and replacement in MOEA/D 651

4. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE TEC 11(6), 712–731 (2007)

5. Chiang, T.C., Lai, Y.P.: MOEA/D-AMS: Improving MOEA/D by an adaptive
mating selection mechanism. In: CEC, pp. 1473–1480 (2011)

6. Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous Use of Differ-
ent Scalarizing Functions in MOEA/D. In: GECCO, pp. 519–526. ACM (2010)

7. Hughes, E.J.: Multiple Single Objective Pareto Sampling. In: CEC, pp. 2678–2684
(2003)

8. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer (1999)
9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto

sets, MOEA/D and NSGA-II. IEEE TEC 13(2), 284–302 (2009)
10. Giagkiozis, I., Purshouse, R.C., Fleming, P.J.: Generalized Decomposition. In:

Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO
2013. LNCS, vol. 7811, pp. 428–442. Springer, Heidelberg (2013)

11. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multi-
objective combinatorial search space: MNK-landscapes with correlated objectives.
EJOR 227(2), 331–342 (2013)

12. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE TEC 3(4), 257–271 (1999)

13. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. TIK Report 214, ETH Zurich (2006)

14. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.:
Performance Assessment of Multiobjective Optimizers: An Analysis and Review.
IEEE TEC 7(2), 117–132 (2003)

MH-MOEA: A New Multi-Objective

Evolutionary Algorithm Based on the Maximin
Fitness Function and the Hypervolume Indicator

Adriana Menchaca-Mendez and Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Computación
México D.F. 07300, México

adriana.menchacamendez@gmail.com, ccoello@cs.cinvestav.mx

Abstract. In this paper, we propose an approach that combines a
modified version of the maximin fitness function and the hypervolume
indicator for selecting individuals into a Multi-Objective Evolutionary
Algorithm (MOEA). Our proposed selection mechanism is incorporated
into a MOEA which adopts the crossover and mutation operators of
the Nondominated Sorting Genetic Algorithm-II (NSGA-II), giving rise
to the so-called “Maximin-Hypervolume Multi-Objective Evolutionary
Algorithm (MH-MOEA)”. Our proposed MH-MOEA is validated us-
ing standard test problems taken from the specialized literature, using
from three to six objectives. Our results are compared with respect to
those produced by MC-MOEA (which is based on the maximin fitness
function and a clustering technique), MOEA/D using Penalty Boundary
Intersection (PBI), which is based on decomposition and iSMS-EMOA
(which is based on the hypervolume indicator). Our preliminary results
indicate that our proposed MH-MOEA is a good alternative to solve
multi-objective optimization problems having both low dimensionality
and high dimensionality in objective function space.

1 Introduction

In the real world, there are many optimization problems which involve multiple
objective functions (normally in conflict with each other) that need to be satisfied
at the same time. They are called multi-objective optimization problems (MOPs).
In MOPs, the notion of optimality refers to the best possible trade-offs among
all the objectives. Consequently, there are several optimal solutions (the so-
called Pareto optimal set whose image is called the Pareto front). The use of
evolutionary algorithms for solving MOPs has become very popular, giving rise
to the so-called Multi-Objective Evolutionary Algorithms (MOEAs). We can
classify MOEAs, based on their selection mechanism, into two groups: (i) those
that incorporate the concept of Pareto optimality, and (ii) those that do not use
Pareto dominance to select individuals. Since Pareto-based MOEAs have several
limitations (from which the main one is that their behavior quickly degrades as

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 652–661, 2014.
c© Springer International Publishing Switzerland 2014

MH-MOEA: A New Multi-Objective Evolutionary Algorithm 653

we increase the number of objectives), MOEAs of type (ii) have gained increasing
popularity in the last few years.

We are interested in the maximin fitness function (MFF) and the hypervolume
indicator (IH). Both are of type (ii). MFF has some interesting properties and
its complexity is linear with respect to the number of objective functions. IH
is the only unary indicator which is known to be “Pareto compliant” [18]. The
main disadvantage of MOEAs based on IH is their high computational cost. In
this paper, we propose a hybrid of MFF and IH for selecting individuals into a
MOEA. The motivation behind this proposal is to alleviate the disadvantages of
MFF which does not select well-distributed individuals [13,15]. Our conjecture
is that it is possible to improve the approximation of the Pareto optimal set
obtained by a MOEA based on MFF, if we can improve the diversity of the
population at each generation. Therefore, we propose to use IH to correct the
possible errors produced when selecting with MFF. Finally, we incorporate our
new selection mechanism into a MOEA that uses the crossover and mutation
operators of NSGA-II to create new individuals. Our proposed MOEA is called
“Maximin-Hypervolume Multi-Objective Evolutionary Algorithm (MH-MOEA)”.

The remainder of this paper is organized as follows. Section 2 states the prob-
lem of our interest. The maximin fitness function is described in Section 3.
Section 4 describes the hypervolume indicator. Our proposal is discussed in
Section 5. Our experimental validation and the results obtained are shown in
Section 6. Finally, we provide our conclusions and some possible paths for future
work in Section 7.

2 Problem Statement

We are interested in the general multi-objective optimization problem (MOP),
which is defined as follows: Find x∗ = [x∗

1, x
∗
2, . . . , x

∗
n]T which optimizes

f (x) = [f1(x), f2(x), . . . , fk(x)]T (1)

such that x∗ ∈ Ω, where Ω ⊂ Rn defines the feasible region of the problem.
Assuming minimization problems, we have the following definitions.

Definition 1. We say that a vector x = [x1, . . . , xn]T dominates vector y =
[y1, . . . , yn]T , denoted by x ≺ y, if and only if fi(x) ≤ fi(y) for all i ∈ {1, ..., k}
and there exists an i ∈ {1, . . . , k} such that fi(x) < fi(y).

Definition 2. We say that a vector x = [x1, . . . , xn]T weakly dominates vector
y = [y1, . . . , yn]T , denoted by x) y, if x is not worse than y in all objectives.

Definition 3. A point x∗ ∈ Ω is Pareto optimal if there does not exist any
x ∈ Ω such that x ≺ x∗.

Definition 4. For a given MOP, f(x), the Pareto optimal set is defined as:
P∗ = {x ∈ Ω|¬∃y ∈ Ω : f(y) ≺ f(x)}.

Definition 5. Let f(x) be a given MOP and P∗ the Pareto optimal set. Then,
the Pareto Front is defined as: PF∗ = {f(x) | x ∈ P∗}.

654 A. Menchaca-Mendez and C.A. Coello Coello

3 Maximin Fitness Function

The maximin fitness function (MFF) was proposed by Balling [3]. Balling and
Wilson proposed the modified MFF [5] which works as follows. Let’s consider
a MOP with K objective functions. Let f i

k be the normalized value of the kth

objective for the ith individual in a particular generation. Then, the modified
MFF of individual i is defined as:

fitnessi = maxj
=i,j∈ND(mink(f i
k − f j

k)) (2)

where ND is the set of non-dominated individuals. The min is taken over all
the objective functions, and the max is taken over all non-dominated individuals
in the population, except for the same individual i. From eq. (2), we can say
the following: any individual whose maximin fitness is greater than zero is a
dominated individual, any individual whose maximin fitness is less than zero is
a non-dominated individual and, any individual whose maximin fitness is equal
to zero is a weakly nondominated individual. Also, MFF penalizes clustering of
non-dominated individuals and the maximin fitness of dominated individuals is
a metric of the distance to the non-dominated front.

MFF and its modified version have been incorporated into evolutionary algo-
rithms such as genetic algorithms [5,4], particle swarm [11,12] and ant colony [10]
optimizers. However, in those papers, only low dimensionality MOPs were con-
sidered and no extra diversity mechanism was adopted based on the idea that
MFF penalizes clustering. In recent years, two important disadvantages of MFF
were identified in [13]. The main disadvantage of MFF is related to the follow-
ing question: Is it better to prefer weakly nondominated individuals to
dominated individuals? The answer provided in [13] was that it is not good to
prefer weakly nondominated individuals (even if they are weakly nondominated
by any dominated individual). The authors showed in [13,15] that if we use a
MOEA based on MFF to solve a MOP in which one objective function is easier
to solve than the others, it is likely that the MOEA only obtains weakly Pareto
points or that its convergence slows down. In order to address this problem, the
following constraint was proposed in [13]: Any individual that we want to select
must not be similar (in any objective function) to another (selected) individual.

The second disadvantage of MFF has to do with the poor diversity obtained
in objective function space when we use it to select individuals. In [13,15], the
authors proposed to combine either MFF or its modified version with a clustering
technique in order to improve diversity.

4 Hypervolume Indicator

The hypervolume indicator (IH) was originally proposed by Zitzler and Thiele
in [17]. If Λ denotes the Lebesgue measure, IH is defined as:

IH(A,yref) = Λ

⎛⎝⋃
y∈A

{y′ | y ≺ y′ ≺ yref}
⎞⎠ (3)

MH-MOEA: A New Multi-Objective Evolutionary Algorithm 655

where yref ∈ Rk denotes a reference point that should be dominated by all the
Pareto optimal points. The contribution to IH of a solution x is defined as:

CH(x,A) = IH(A,yref)− IH(A \ x,yref) (4)

where x ∈ A. Then, the contribution of x is the space that is only covered by x.
Perhaps, the most popular MOEA based on IH is the S metric selection Evo-

lutionary Multi-Objective Algorithm (SMS-EMOA) [8]. SMS-EMOA generates
only one solution by iteration using the crossover and mutation operators of the
NSGA-II. After that, it applies Pareto ranking. When the last front has more
than one solution, SMS-EMOA uses the contribution to IH to decide which
solution will be removed. Therefore, when all individuals are non-dominated,
SMS-EMOA needs to calculate the contribution to IH of all individuals in the
population and the contribution of the new individual. This is not good because
we know that calculating these contributions is computationally expensive for
more than three objective functions. There are other MOEAs based on IH . How-
ever, most of them use the same competition scheme. Recently, a new selection
scheme based on IH and its locality property [2,1] was proposed in [14]. It works
as follows: Let’s assume that at each iteration of a MOEA, only one solution
xnew is created and the current population is P . Then, we choose the nearest
neighbor (xnear) of xnew in P and we also choose (randomly) another solution,
xrand, such that xrand ∈ P and xrand �= xnear. After that, xrand, xnew and
xnear) will compete to survive. The solution with the worst contribution to IH
is eliminated.

5 Our Proposed Approach

We propose here a selection mechanism based on the modified MFF and IH . The
idea is to use the modified MFF as our main selection mechanism and IH to cor-
rect its possible errors. Unlike SMS-EMOA [8] or iSMS-EMOA [14], in which only
one individual is created per iteration, our mechanism is designed to work with
population schemes. This is possible for two reasons: The maximin fitness of each
individual determines the order in which each individual competes to survive using
IH and in the competition scheme proposed in [14] each individual only competes
with two other individuals of the population (its nearest neighbor and a randomly
selected individual). Then, the combinatorial problem no longer exists.

Our selection mechanism works as follows: If we want to select S individuals
from a population P , we assign first a fitness value to each individual using
the modified MFF (see eq. (2)). Then, we proceed to select the individuals
according to their fitness, verifying similarity between selected individuals (see
Algorithm 1, lines 5 to 11). If we consider all individuals in the population and we
do not select S individuals, we select the remaining individuals considering only
the maximin fitness (see Algorithm 1, lines 13 to 20). If we already selected the
S individuals but there are still non-dominated individuals in P who have not
participated in the selection process, then, we proceed to use the contribution
to IH as follows: Let S be the set of current selected individuals. Then, for each

656 A. Menchaca-Mendez and C.A. Coello Coello

nondominated individual P [i] who has not participated in the selection process,
we obtain the index of its nearest neighbor in S (we call it NN) and we choose
a random index RI such that RI ∈ {1, · · · , ||S||} and RI �= NN . Finally, we
calculate the contribution to IH of P [i], S[NN] and S[RI]. If P [i] has a better
contribution than S[NN] or S[RI], then P [i] replaces the individual with the
worst contribution (S[NN] or S[RI]). See Algorithm 1, lines 22 to 34). The
process to verify similarity between individuals is shown in Algorithm 2, where
min dif is the minimum difference allowed between solutions with respect to all
objective functions and K is the number of objective functions.

In order to evaluate our new selection mechanism, we incorporate it into
a MOEA that uses the crossover and mutation operators of NSGA-II to cre-
ate new individuals. The proposed MOEA is called “Maximin-Hypervolume
Multi-Objective Evolutionary Algorithm (MH-MOEA)” and it works
as follows: If the size of the population is P , then we create P new individuals.
We use a binary tournament to select the parents. At each tournament, two
individuals are randomly selected and the one with the higher maximin fitness
value is chosen. After that, we combine the population of parents and offspring
to obtain a population of size 2P . Then, we use our proposed selection mecha-
nism to choose the P individuals that will take part of the following generation.
This process is repeated for a certain (pre-defined) number of generations.

6 Experimental Results

We compared our proposed MH-MOEA with respect to MC-MOEA [15] (the
version in which the modified MFF is used all the time), MOEA/D [16] (using
PBI to decompose the MOP1) and iSMS-EMOA [14].2 For MOEA/D, we gen-
erated the convex weights using the technique proposed in [6] and after that,
we applied clustering (k-means) to obtain a specific number of weights. It is
worth noticing that all of these MOEAs use the same operators to create new
individuals, which allows a fair comparison of the selection operators.

For our experiments, we adopted seven problems from the Deb-Thiele-Lau-
manns-Zitzler (DTLZ) test suite [7]. We used k = 5 for DTLZ1, DTLZ3 and
DTLZ6 and k = 10 for the remaining test problems. Also, we adopted seven
problems from the Walking-Fish Group (WFG) toolkit [9], with k factor = 2
and l factor = 10. For each test problem, we performed 30 independent runs. For
all algorithms, we adopted the parameters suggested by the authors of NSGA-II:
pc = 0.9 (crossover probability), pm = 1/n (mutation probability), where n is
the number of decision variables. Both for the crossover and mutation operators,
we adopted ηc = 15 and ηm = 20, respectively. In the case of MC-MOEA and
our MH-MOEA, we used min dif = 0.0001. Regarding to MOEA/D, we used a

1 We decided to use the PBI approach because the resultant optimal solutions in the
PBI should have a more uniform distribution than those obtained by the Tchebycheff
approach [16].

2 The source code of the all algorithms used here can be provided by the first author
upon request.

MH-MOEA: A New Multi-Objective Evolutionary Algorithm 657

Algorithm 1. Maximin-Hypervolume Selection
Input : P (Population), S (number of individuals to choose S < ‖P‖).
Output: S (Selected individuals).
/*Assign fitness to each individual in the population, using the modified maximin

fitness function */
1 AssignFitness(P);
2 numNonDom ← Number of nondominated solutions in P;

/*Sorting with respect to the maximin fitness */
3 Sort(P);
4 s ← 1, i ← 1, S ← ∅;

/*Fill up the new population with the best copies according to the maximin fitness,
verifying that there is not a similar one */

5 while s ≤ S AND i ≤ ‖P‖ do
6 if P[i] is not similar to any individual in S then

/*Select individual i */
7 S ← S ∪ P[i];
8 s ← s + 1;
9 end

10 i ← i+ 1;
11 end
12 if s ≤ S then

/*Choose the remaining individuals considering only the maximin fitness */
13 i ← 1;
14 while s ≤ S do
15 if P[i] has not been selected then
16 S ← S ∪ P[i];
17 s ← s + 1;
18 end
19 i ← i+ 1;
20 end

21 else
/*Improve the diversity according to the contribution to IH */

22 while i < numNonDom do
23 if P[i] is not similar to any individual in S then
24 NN ← Index of nearest neighbor to P[i] in S;
25 RI ← Index of a randomly selected individual in S such that NN
= RI;

/*Calculate the contributions to the hypervolume */
26 CNN ← CH(S[NN],S);
27 CRI ← CH(S[RI],S);
28 Ci ← CH(P[i],S);

/*Remove the individual with the worst contribution */
29 worst ← Index of the individual with the worst contribution (NN , RI or i);
30 if worst = NN or worst = RI then
31 Replace S[worst] with P[i];
32 end

33 end

34 end

35 end
36 return S;

Algorithm 2. Verify similarity
Input : x (individual), S (population).
Output: Returns 1, if the individual x is similar to any individual in the population S;

otherwise, returns 0.
1 for i ← 1 to ‖S‖ do
2 for k ← 1 to K do
3 if |x.f [k]− S[i].f [k]| < min dif then
4 return 1;
5 end

6 end

7 end
8 return 0;

658 A. Menchaca-Mendez and C.A. Coello Coello

niche of size 20. We performed a maximum of 50,000 fitness function evaluations
(we used a population size of 100 individuals and we iterated for 500 generations).
Only in DTLZ3 we performed 100,000 evaluations (we used a population size of
100 individuals and we iterated for 1000 generations).

6.1 Performance Indicators

We adopted only IH to validate our results because it rewards both conver-
gence towards the Pareto front as well as the maximum spread of the solu-
tions obtained. Also, IH is Pareto compliant. To calculate the hypervolume in-
dicator, we used the following reference points: yref = [y1, · · · , yM] such that
yi = 0.7 for DTLZ1, yref = [y1, · · · , yM] such that yi = 1.1 for DTLZ(2-6),
yref = [y1, · · · , yM] such that yM = 6.1 and yi
=M = 1.1 for DTLZ7. In the
case of the WFG test problems, we generated the reference point using a value
slightly higher than the highest value found for each objective function taking
into account all the outputs of the algorithms.

6.2 Discussion of Results

In Table 1, we present the results obtained with respect to IH as well as the
statistical analysis applied to the experiments using Wilcoxon’s rank sum. In
(a), we can see that our MH-MOEA obtained better results than MC-MOEA
in eleven problems. It is important to see that we can reject the null hypothesis
“medians are equal” in all cases, and then, we can say that in these problems
our MH-MOEA outperformed MC-MOEA. Only in DTLZ1, MC-MOEA out-
performed our MH-MOEA. In (b), we compare our MH-MOEA with respect to
MOEA/D and we can see that it outperformed MOEA/D in eleven cases and,
only in DTLZ1, MOEA/D outperformed our MH-MOEA. Finally, in (c), we
can see that iSMS-EMOA outperformed our MH-MOEA in four problems, our
MH-MOEA outperformed iSMS-EMOA in four problems and, in four problems,
we can observe that the null hypothesis cannot be rejected, which means that
both algorithms have a similar behavior. Also, in (d), (e) and (f), we show an
scalability analysis with respect to the number of objectives for some of the prob-
lems adopted, using four, five and six objective functions. In these Tables, we
can see that our MH-MOEA continues to work well when we increase the num-
ber of objectives. For example, we can say that our MH-MOEA outperformed
MC-MOEA and MOEA/D because it obtained better results with respect to
IH , in all problems, and only in two cases, the null hypothesis cannot be re-
jected: In DTLZ3 with six objectives, our MH-MOEA has a behavior similar to
MC-MOEA and in DTLZ7 with six objective functions, our MH-MOEA has a
similar behavior to MOEA/D. With respect to iSMS-EMOA, our MH-MOEA
outperformed iSMS-EMOA in two problems, it is outperformed by iSMS-EMOA
in four problems and they have a similar behavior in three problems. Finally, in
Table 2, we present plots of the average running time required by each algorithm
to find the approximation of the Pareto optimal set in the problems adopted for
the scalability analysis and we can note that MOEA/D and MC-MOEA are the

MH-MOEA: A New Multi-Objective Evolutionary Algorithm 659

fastest algorithms. However, in Table 1, we saw that they are outperformed by
our proposed MH-MOA. An interesting thing is that our MH-MOEA requires
less running time than iSMS-EMOA and, as we saw in Table 1, it obtains com-
petitive results with respect to iSMS-EMOA.

Table 1. Comparison of results in the DTLZ and WFG test problems using IH . We
show average values over 30 independent runs. The values in parentheses correspond
to the standard deviations. The third column of each table shows the results of the
statistical analysis applied to our experiments using Wilcoxons rank sum. H = 0 in-
dicates that the null hypothesis (“medians are equal”) cannot be rejected at the 5%
level. H = 1 indicates that the null hypothesis can be rejected at the 5% level.

f
mc-moea

IH
mh-moea

IH H

DTLZ1(3) 0.311(0.00) 0.301(0.05) 1
DTLZ2(3) 0.696(0.00) 0.757(0.00) 1
DTLZ3(3) 0.666(0.02) 0.732(0.07) 1
DTLZ5(3) 0.424(0.00) 0.439(0.00) 1
DTLZ7(3) 1.851(0.20) 1.939(0.21) 1
WFG1(3) 17.62(1.37) 21.03(0.60) 1
WFG2(3) 0.115(0.00) 0.118(0.01) 1
WFG3(3) 0.407(0.00) 0.465(0.00) 1
WFG4(3) 20.85(0.55) 33.80(0.33) 1
WFG5(3) 7.997(0.20) 9.877(0.01) 1
WFG6(3) 0.920(0.01) 1.024(0.00) 1
WFG7(3) 17.28(0.72) 22.74(0.08) 1

moead
IH

mh-moea
IH H

0.303(0.00) 0.301(0.05) 1
0.708(0.00) 0.757(0.00) 1
0.702(0.00) 0.732(0.07) 1
0.416(0.00) 0.439(0.00) 1
1.607(0.20) 1.939(0.21) 1
16.21(0.31) 21.03(0.60) 1
0.088(0.00) 0.118(0.01) 1
0.388(0.01) 0.465(0.00) 1
22.85(0.54) 33.80(0.33) 1
8.501(0.14) 9.877(0.01) 1
0.845(0.00) 1.024(0.00) 1
16.22(1.85) 22.74(0.08) 1

isms-emoa
IH

mh-moea
IH H

0.206(0.09) 0.301(0.05) 1
0.757(0.00) 0.757(0.00) 1
0.049(0.12) 0.732(0.07) 1
0.439(0.00) 0.439(0.00) 1
1.923(0.22) 1.939(0.21) 0
21.21(0.16) 21.03(0.60) 0
0.124(0.00) 0.118(0.01) 1
0.466(0.00) 0.465(0.00) 1
29.38(0.07) 33.80(0.33) 1
9.875(0.01) 9.877(0.01) 0
1.023(0.00) 1.024(0.00) 0
23.89(0.10) 22.74(0.08) 1

(a) (b) (c)

f
mc-moea

IH
mh-moea

IH H

DTLZ3(4) 0.857(0.03) 1.027(0.03) 1
DTLZ5(4) 0.205(0.02) 0.436(0.00) 1
DTLZ7(4) 0.554(0.06) 0.758(0.10) 1
DTLZ3(5) 0.999(0.04) 1.117(0.32) 1
DTLZ5(5) 0.164(0.02) 0.444(0.00) 1
DTLZ7(5) 0.064(0.01) 0.153(0.05) 1
DTLZ3(6) 1.060(0.09) 1.426(0.22) 1
DTLZ5(6) 0.138(0.04) 0.453(0.00) 1
DTLZ7(6) 0.003(0.00) 0.020(0.01) 1

moead
IH

mh-moea
IH H

0.849(0.00) 1.027(0.03) 1
0.395(0.00) 0.436(0.00) 1
0.510(0.13) 0.758(0.10) 1
0.907(0.01) 1.117(0.32) 1
0.384(0.00) 0.444(0.00) 1
0.090(0.02) 0.153(0.05) 1
0.836(0.12) 1.426(0.22) 1
0.386(0.00) 0.453(0.00) 1
0.017(0.00) 0.020(0.01) 0

isms-emoa
IH

mh-moea
IH H

1.013(0.10) 1.027(0.03) 1
0.437(0.00) 0.436(0.00) 1
0.739(0.16) 0.758(0.10) 0
1.288(0.02) 1.117(0.32) 1
0.446(0.00) 0.444(0.00) 1
0.164(0.05) 0.153(0.05) 0
1.1780(0.60) 1.426(0.22) 1
0.461(0.00) 0.453(0.00) 1
0.027(0.00) 0.020(0.01) 0

(d) (e) (f)

Table 2. Time required by MC-MOEA, MOEA/D, iSMS-EMOA and our proposed
MH-MOEA for the test problems adopted in the scalability analysis. s = seconds.
All algorithms were compiled using the GNU C compiler and they were executed on
a computer with a 2.66GHz processor and 4GB in RAM. We can see that the worst
algorithm, regarding running time, is ISMS-EMOA in all three MOPs (DTLZ3, DTLZ5
and DTLZ7 with 4, 5 and 6 objective functions). While the best algorithm is MOEA/D.
Also, we can see that our MH-MOEA outperforms iSMS-EMOA in all cases.

4 5 6

10^0

10^1

10^2

10^3

10^4

#objectives

ru
nn

in
g

tim
e

(s
ec

on
ds

)

DTLZ3

mc−moea

moead

isms−emoa

mh−moea

4 5 6

10^0

10^1

10^2

10^3

10^4

#objectives

ru
nn

in
g

tim
e

(s
ec

on
ds

)

DTLZ5

mc−moea

moead

isms−emoa

mh−moea

4 5 6

10^0

10^1

10^2

10^3

10^4

#objectives

ru
nn

in
g

tim
e

(s
ec

on
ds

)

DTLZ7

mc−moea

moead

isms−emoa

mh−moea

660 A. Menchaca-Mendez and C.A. Coello Coello

7 Conclusions and Future Work

We have proposed a new selection mechanism based on the modified maximin
fitness function (MFF) and the hypervolume indicator (IH). Unlike other se-
lection mechanisms based on IH , such as the one adopted in the SMS-EMOA
algorithm or its improved version (iSMS-EMOA), our selection mechanism works
with populations. Our idea is to use the modified MFF as our main selection
mechanism and IH to correct the possible errors in the selection process. Our
preliminary results indicate that our MH-MOEA is able to outperform MOEAs
such as MC-MOEA and MOEA/D, both with few and many objectives. Also,
MH-MOEA is competitive with respect to iSMS-EMOA, outperforming it in
some cases, while requiring a lower computational time.

As part of our future work, we are interested in studying mechanisms to
approximate the contribution to IH and to use one of them instead of adopting
the exact calculation. Since we only use IH to correct possible errors generated
when we select with the maximin fitness, we expect to retain, as much as possible,
the quality in our solutions when we approximate the contribution to IH .

References

1. Auger, A., Bader, J., Brockhoff, D.: Theoretically Investigating Optimal μ-
Distributions for the Hypervolume Indicator: First Results for Three Objectives.
In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI, Part I.
LNCS, vol. 6238, pp. 586–596. Springer, Heidelberg (2010)

2. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the Hypervolume Indica-
tor: Optimal {μ}-Distributions and the Choice of the Reference Point. In: FOGA
2009: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Ge-
netic Algorithms, Orlando, Florida, USA, pp. 87–102. ACM (January 2009)

3. Balling, R.: Pareto sets in decision-based design. Journal of Engineering Valuation
and Cost Analysis 3, 189–198 (2000)

4. Balling, R.: The Maximin Fitness Function; Multiobjective City and Regional Plan-
ning. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO
2003. LNCS, vol. 2632, pp. 1–15. Springer, Heidelberg (2003)

5. Balling, R., Wilson, S.: The Maximin Fitness Function for Multi-objective Evolu-
tionary Computation: Application to City Planning. In: Spector, L., et al. (eds.)
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2001, pp. 1079–1084. Morgan Kaufmann Publishers, San Francisco (2001)

6. Das, I., Dennis, J.E.: Normal-boundary intersection: A new method for generating
the pareto surface in nonlinear multicriteria optimization problems. SIAM J. on
Optimization 8(3), 631–657 (1998)

7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evo-
lutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R.
(eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Ap-
plications, pp. 105–145. Springer, USA (2005)

8. Emmerich, M.T.M., Beume, N., Naujoks, B.: An EMO Algorithm Using the Hyper-
volume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre,
A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg
(2005)

MH-MOEA: A New Multi-Objective Evolutionary Algorithm 661

9. Huband, S., Hingston, P., Barone, L., While, L.: A Review of Multiobjective Test
Problems and a Scalable Test Problem Toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

10. Li, H., Huang, X., Feng, Q.: Optimizing expressway maintenance planning by cou-
pling ant algorithm and geography information system transportation in hubei
province, china. In: 2011 IEEE International Geoscience and Remote Sensing Sym-
posium, IGARSS, pp. 2977–2979 (July 2011)

11. Li, X.: Better Spread and Convergence: Particle Swarm Multiobjective Optimiza-
tion Using the Maximin Fitness Function. In: Deb, K., Tari, Z. (eds.) GECCO
2004. LNCS, vol. 3102, pp. 117–128. Springer, Heidelberg (2004)

12. Li, X., Branke, J., Kirley, M.: On Performance Metrics and Particle Swarm Meth-
ods for Dynamic Multiobjective Optimization Problems. In: 2007 IEEE Congress
on Evolutionary Computation, CEC 2007, pp. 576–583. IEEE Press (September
2007)

13. Menchaca-Mendez, A., Coello Coello, C.A.: Solving Multi-Objective Optimization
Problems using Differential Evolution and a Maximin Selection Criterion. In: 2012
IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia,
June 10-15, pp. 3143–3150. IEEE Press (2012)

14. Menchaca-Mendez, A., Coello Coello, C.A.: A New Selection Mechanism Based on
Hypervolume and its Locality Property. In: 2013 IEEE Congress on Evolutionary
Computation, CEC 2013, Cancún, México, June 20-23, pp. 924–931. IEEE Press
(2013)

15. Menchaca-Mendez, A., Coello Coello, C.A.: Selection Operators based on Max-
imin Fitness Function for Multi-Objective Evolutionary Algorithms. In: Purshouse,
R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS,
vol. 7811, pp. 215–229. Springer, Heidelberg (2013)

16. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731
(2007)

17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary
Algorithms–A Comparative Study. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg
(1998)

18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

Empirical Performance of the Approximation

of the Least Hypervolume Contributor

Krzysztof Nowak1, Marcus Märtens2, and Dario Izzo1

1 European Space Agency, Noordwijk, The Netherlands
2 TU Delft, Delft, The Netherlands

Abstract. A fast computation of the hypervolume has become a crucial
component for the quality assessment and the performance of modern
multi-objective evolutionary optimization algorithms. Albeit recent im-
provements, exact computation becomes quickly infeasible if the optimiza-
tion problems scale in their number of objectives or size. To overcome this
issue, we investigate the potential of using approximation instead of exact
computation by benchmarking the state of the art hypervolumealgorithms
for different geometries, dimensionality and number of points. Our exper-
iments outline the threshold at which exact computation starts to become
infeasible, but approximation still applies, highlighting the major factors
that influence its performance.

Keywords: Hypervolume indicator, performance indicators, multi-
objective optimization, many-objective optimization, approximation
algorithms.

1 Introduction

The hypervolume indicator (also known as Lebesgue measure [1] or S-metric [2])
is a popular quality measure for multi-objective optimization [3]. It was first sug-
gested by Zitzler and Thiele [4] as the size of the objective space covered by the
non-dominated solutions. It has the property of being strictly Pareto-compliant,
i.e., the Pareto-optimal front guarantees the maximum possible hypervolume
while any dominated set will assign a lower hypervolume [5]. Besides its appli-
cation as a performance indicator, the exclusive contribution of one individual
to the total hypervolume is used by Multi-Objective Optimization Algorithms
(MOEA) for selection, diversification and archiving. Because well-established
Pareto dominance-based MOEA like NSGA-II [6] and SPEA2 [7] deteriorate in
performance as the number of objectives increases, indicator-based algorithms [8]
such as SMS-EMOA [9], HypE [10] and MO-CMAES [11] provide an alternative
optimization design. A fast computation of the hypervolume indicator and the
contributions has thus become important for multi-objective optimization.

Bringmann and Friedrich [12] show that computing the hypervolume indicator
is #P-complete, which implies that there exists no polynomial-time algorithm
unless P = NP . Similar hardness results hold for computing hypervolume contri-
butions. However, the same authors also show that computing the hypervolume

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 662–671, 2014.
c© Springer International Publishing Switzerland 2014

Empirical Performance of the Approximation 663

is fixed parameter tractable in the average case which gives hope that exact al-
gorithms might be useful in practice [13]. Given this opportunity, we investigate
and compare the state of the art approaches for determining the least contribu-
tor: exact algorithms approaching the problem from a computational geometry
standpoint and the approximation algorithm by Bringmann and Friedrich [12]
which can offer a better runtime at the cost of the precision.

2 Related Work

For dimensions d ≤ 4, hypervolume computation is in general tractable, as there
exist algorithms tailored for d = 2, 3 and 4 [14–16]. For arbitrary dimensions,
the best currently known algorithms in terms of asymptotical runtime all rely
on the Klee measure problem, of which the computation of the hypervolume in-
dicator is a special case. For d ≥ 7 Bringmann [17] gives an algorithm that runs
in O(n

d+2
3) whereas Yildiz and Suri [18] are asymptotically better for d = 4, 5, 6

with O(n
d−1
2 logn). The HOY [19] algorithm uses a space partitioning based on

the divide and conquer paradigm and runs in O(n
d
2 n logn). The drawback of

these methods are the large data structures that need to be maintained during
the run. The fastest algorithm based on dimension-sweeping is the FPL algo-
rithm by Fonseca et al. [20] that has an asymptotic complexity of O(nd−2 logn)
while using only linear space. The WFG [21] is based on using bounding boxes
to determine the exclusive contributions of points, which are then used to com-
pute the total hypervolume. Despite its asymptotic run-time of O(nd), there is
experimental [22] and theoretical evidence [13] that it is currently the fastest
exact algorithm for higher dimensions in practice. Although a good average
case complexity was proven, hypervolume computations are still tremendously
time-consuming for todays computers already starting with d = 10. Approxi-
mation algorithms and heuristics make it possible to explore problem domains
of d ≥ 10, which often needed to be scaled down (i.e. by aggregation) before
to become tractable. There exists a fully polynomial randomized approximation
scheme (FPRAS) for the hypervolume indicator [23], which allows for its ap-
proximation with given precision and probability in polynomial time. Ishibuchi
et al. [24] give a heuristic that uses achievement scalarizing functions to approx-
imate the hypervolume indicator, however, no approximation ratio is known.
Essential topic of our research is the algorithm of Bringmann and Friedrich [12]
which combines a Monte Carlo-like sampling method with a racing approach to
directly approximate the least hypervolume contributor. It is the only algorithm
we are aware of that gives a guarantee that for any given δ, ε ≥ 0 the obtained
solution is with a probability of (1− δ) larger by at most a factor of (1+ ε) than
the least contributor.

Closely related to this work is the one of Bringmann et. al [25] where the
empirical performance of MO-CMAES is evaluated when using the approxi-
mation algorithm as a subroutine. While it was shown that the runtime of
MO-CMAES could be reduced, it is unclear which sort of geometries during evo-
lution had to be processed by the approximation algorithm and how fast it did so.

664 K. Nowak, M. Märtens, and D. Izzo

Also, the problem with highest dimensionality chosen was d = 8, for which ar-
guably an exact computation might still be feasible. As we will analyze the
runtime of the approximation algorithm unbiased by any MOEA from 2 to 100
dimensions, our approach is more direct and comprehensive, extending the pre-
liminary results from the original work. In particular, we follow the suggestion
made by the authors at the end of the original work [12] to create a broader
experimental setup, in which we can observe the occurrence and influence of
hard cases along other factors that impact the runtime by orders of magnitude,
but were never addressed in previous works before.

3 Experimental Setup

In this section we describe the datasets we used for our experiments1. Since
the hypervolume indicator computation is inherently connected with a reference
point, we propose a robust selection procedure. Finally, we assess the set of
the best-performing exact algorithms to provide a reliable comparison with the
approximation algorithm in the next section.

3.1 Datasets

We assume minimization in our setup and that each point in the dataset is con-
strained to a unit box [0, 1]d. We generate the datasets with three analytically-
defined geometries (Convex, Concave and Planar). In order to show the perfor-
mance of the algorithms on the maximization problems of the same geometries
(and also to close the gap between the publications that assume it), we provide
their inverted variants: InvertedConvex, InvertedConcave and InvertedPlanar.

Datasets were generated by sampling a multivariate normal distribution, sim-
ilarly to how it was outlined in [12]. Let q = (q1, q2, . . . , qd) be a vector of d
normal deviates, and p ∈ R+ a parameter of the norm in Lp space. We sample
n non-dominated points using S:

S(q, p) =
(|q1|, |q2|, . . . , |qd|)

(qp1 + qp2 + . . .+ qpd)
1
p

. (1)

For p = 2, p = 1 and p = 0.5 we obtain the Convex, Planar and Concave
shapes respectively. Inverted variants of the shapes above involve the extra step
of multiplication of each obtained vector by a scalar of −1 and translation by
the vector (1, 1, . . . , 1):

SInverted(q, p) = (1, 1, . . . , 1)− S(q, p). (2)

Figure 1 visualizes the shapes for d = 3.
Additionally, we generate a group of Random datasets. Random dataset A

(initially empty) is obtained by a repeated sampling of a point inside the box
[0, 1]d and performing a test for the pairwise non-dominance with all of the
previously sampled points in A. This process continues until |A| = n.
1 Source code available: https://github.com/esa/pagmo/wiki/Hypervolume.

https://github.com/esa/pagmo/wiki/Hypervolume

Empirical Performance of the Approximation 665

Fig. 1. Regular (green) and inverted (blue) dataset shapes, possible reference point
(red) at (1, 1, 1)

Dataset size ranges from 10 to 100 points by a step of 10 and then from 100 to
a 1000 points by a step of 100. Dimension ranges from 2 to 20 by a step of one,
and then from 20 to 100 by a step of 10. We generate a sample of 10 datasets
in each shape and for each combination of dimension and number of points.
Although current state of the art in multi-objective optimization does not deal
with problems of such extreme dimensionality, we are interested in presenting
the empirical scaling capabilities of the algorithm itself.

3.2 Reference Point

Every hypervolume computation requires a reference point. One way of obtaining
it, is simply assuming a fixed point which is guaranteed to be strongly dominated
by all of the points in the set.When the hypervolume is employed for the optimiza-
tion scenarios, this information might not be known upfront. In such cases, the
reference point is chosen dynamically, i.e. dependent on the point set. A common
approach is constructing a point out of the maxima in each coordinate (known
as the nadir point), and offsetting it by a small constant. This assures that the
points on the boundaries of the space have non-zero contribution to the total hy-
pervolume, as it was explained in the work of Beume et al. [9]. However, a constant
offset for the reference point may lead to problems, as any fixed value may be rela-
tively large in comparison to the space boundary. In such case, border points may
be influencing the hypervolume too strongly. In order to avoid that, we will shift
the nadir point relatively to the boundary of the point set, as it was proposed by
Knowles [26]. With N as the nadir point, and I as the ideal point (minima among
all coordinates), we compute the reference point as follows:

R = N + α · (N − I). (3)

For our experiment we assume α = 0.01, resulting in a reference point shifted
by 1% in each of the dimensions of the bounding box.

3.3 Selecting the Exact Algorithms and Experiment Design

We test selected exact hypervolume algorithms in order to determine a robust
and efficient candidate, which we will use for the comparison with the approxi-
mation algorithm. We consider three dimension-specific algorithms: Dimension-
sweep algorithm for d = 2 (HV2D), algorithm by Beume for d = 3 (HV3D)

666 K. Nowak, M. Märtens, and D. Izzo

Fig. 2. Distribution of 10 hypervolume indicator computation times (Random dataset)

and algorithm by Guerreiro for d = 4 (HV4D). Besides these, we test three
dimension-independent algorithms: WFG, FPL and HOY. All of the implemen-
tations of algorithms used for this research, can be found in the PaGMO library2.

Figure 2 shows the median times of 10 hypervolume indicator computations
for algorithms WFG, FPL, and the family of dimension-specific algorithms:
HV2D, HV3D and HV4D, with whiskers describing the middle 8 runtimes (out-
liers are denoted with a “plus” mark). On each figure only the best and the second
best performing algorithms are displayed per dimension. All of the dimension-
specific algorithms tend to perform no worse in their domain than the dimension-
independent ones. Out of the dimension-independent algorithms, WFG performs
better than FPL and HOY on every test instance with more than 5 dimensions.
For 5 dimensions, FPL performs better than WFG for 80 points or less.

Least contributor is obtained through n+1 computations of the hypervolume:

LeastContributor(S) = argmin
p∈S

(Hypervolume(S)−Hypervolume(S \ {p})). (4)

We improve on that by employing the algorithm by Emmerich et al. [16] for 3
dimensions, and a version of WFG optimized for the least contributor compu-
tation. Figure 3 presents the results for the least contributor computation. For
d ≥ 4 WFG outperformed all other algorithms.

We propose a group of best performing algorithms for the computation of the
least contributor, which we will compare with the PaGMO implementation of the
approximation algorithm by Bringmann and Friedrich [12] (to which we will refer
as BFA). For that task we select all dimension-specific algorithms for d ≤ 3 and
WFG in every other case. Because BFA employs a mechanism in which difficult
subproblems can be solved using the computation of the hypervolume indicator,
we define a set of the best performing algorithms for the hypervolume indicator
as well. For d ≤ 4 we will use all of the dimension-specific algorithms, for d = 5
and n < 80 we will employ FPL, while the remaining cases will be handled by
the WFG algorithm. We run the approximation algorithm with the parameters
recommended by the authors, namely δ = 10−6 and ε = 10−2. All experiments

2 Available online at https://github.com/esa/pagmo

https://github.com/esa/pagmo

Empirical Performance of the Approximation 667

Fig. 3. Distribution of 10 least hypervolume contributor computation times (Random
dataset)

were conducted on an Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz with 20480 KB
of cache.

4 Results

This sections covers the results obtained by our comparison experiment. As exact
computation of the least contributor is intractable for the majority of our test
cases – rendering the measurement of empirical accuracy of BFA infeasible – we
have to restrict our analysis to the runtime only.

Runtime patterns derived for the exact algorithms and the BFA algorithm can
be seen in Figure 4. Given the extent of the data, we terminate each computation
after 30 seconds to make the experiment feasible and to show the general out-
look of the runtime patterns. First, we observe that Planar, Concave and Convex
shapes were similar in the runtime patterns they produced, thus we used Convex
as a representative of this group of shapes. For the same reason InvertedConvex
was chosen as the representative of the inverted variants of the shapes above.
The runtime pattern of the exact algorithm was similar across all shapes, while
BFA performed worse for the first group (Planar, Concave and Convex) when
compared with their corresponding inverted variants. Figures 4(c), 4(d) and
Figures 4(e), 4(f) show a significant difference in the performance of the approx-
imation algorithm. Due to space limitation we do not provide the corresponding
plots for the BFA’s performance on the Random shape, which was similar to the
Convex shape. Figure 4(b) shows that using the fastest known exact algorithms
can still be efficient when the dimension is no larger than 7 or when the front
consists of 20 points or fewer.

To better understand the runtime pattern of BFA in Figures 4(c) and 4(d), we
drop the 30 second termination criterion and rerun the experiment for 200 points
until completion. Figure 5 presents the interdependence of BFAs runtime (left
plot) to the total number of Monte Carlo samplings performed by the algorithm
(middle plot). We observe that for a fixed number of points, variance of the
runtime increases at d = 10, while the average runtime slowly declines as the
dimension increases (Figures 4(c) and 4(d)). Taking the exact computation usage

668 K. Nowak, M. Märtens, and D. Izzo

(a) Exact algorithm, Convex dataset (b) Exact algorithm, Convex dataset

(c) BFA, Convex dataset (d) BFA, Convex dataset

(e) BFA, InvertedConvex dataset (f) BFA, InvertedConvex dataset

Fig. 4. Runtime of the exact algorithm – figures (a) and (b) – on Convex dataset, and
the BFA algorithm – figures (c) to (f) – on Convex and InvertedConvex datasets

into account (rightmost plot in Figure 5) it is evident that the usage of exact
computations for d ≤ 7 amortizes the runtime in lower dimensions for BFA.

To investigate further, we pick the case with the highest runtime for each
dimension and present the distribution of the number of samples over 200 points
in Figure 6. We observe a dependence of the number of samples to the dimen-
sion. It is most of the time the (true) least contributor and one or two of other
candidates which constitute for the majority of total number of samples, sug-
gesting that these points remained in the race for a long time. This happens
when two or more points differ very little in their contribution, which supports
the impact of the hardness of approximation, as is was described in the original
work by Bringmann and Friedrich. Surprisingly, this effect seems to be inversely
proportional to the dimension (given a fixed number of points). We believe that
this can be attributed to relatively sparse distribution of points as the dimension
increases, leading to fewer occurrences of hard cases.

Empirical Performance of the Approximation 669

Fig. 5. Runtime of BFA algorithm (left), total number of performed sampling rounds
(middle) and the number of exact computations performed by the algorithm (right)
Distribution over 10 runs per dimension on Convex dataset of 200 points

Fig. 6. Runtime of BFA algo-
rithm (dashed line) and the distri-
bution of the number of performed
sampling rounds over 200 points
(least contributors marked with a
green square, red line shows the
total number of samples). Maxi-
mal runtimes for each dimension
picked from Convex datasets of
200 points.

While the high runtime has already been tied to the shape of the data, we have
observed the reference point to also influence the empirical runtime performance
of BFA. Figure 7 shows a runtime comparison of an exact computation using
WFG and the approximation using BFA, with varying offsets applied to the
nadir point. Altering the reference point influences the relative contributions
of the border points, thus the least contributor can change. While the runtime
of WFG seems to be indifferent to the reference point, the observed runtime of
BFA spans over two orders of magnitude, in favor of smaller offsets. We suggest
using a reference point relative to the size of the objective space and with a small
offset (1% per objective), as we have done in our previous experiments.

Fig. 7. Impact of the reference
point offset on the runtime of
WFG and BFA algorithms and the
number of Monte Carlo sampling
rounds. Change of the least con-
tributor marked by a dashed line.
Concave dataset with 100 points
in 10 dimensions.

670 K. Nowak, M. Märtens, and D. Izzo

5 Conclusions

Since the currently best available exact computation algorithms quickly reach
their limits for problems with 10 or more dimensions, BFA provides a superior
performance as it scales much better in that regard. However, easy to overlook
factors such as the geometry of the dataset or the choice of the reference point
can degrade the runtime of the approximation algorithm up to two orders of
magnitude, even though their observed impact on the exact methods was mini-
mal. Although our test data was not explicitly designed to create hard cases for
BFA, we observed their frequent occurrence, indicating that its runtime, while
still much faster than those of exact algorithms, could be nevertheless unexpect-
edly high in ill-conditioned cases. By outlining the relation between the runtime
of BFA and the behaviour of the underlying Monte Carlo sampling scheme, we
highlight easy to overlook factors that need to be considered before employing
the algorithm in practice. Taking these points into account, hypervolume ap-
proximation has a great potential for opening up previously intractable problem
domains for optimization and research.

Acknowledgement. We thank Tobias Friedrich for his encouragement and
helpful comments at the early stages of our research.

References

1. Fleischer, M.: The measure of Pareto optima applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

2. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and
applications, vol. 63. Shaker Ithaca (1999)

3. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

4. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- A comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

5. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the
design of Pareto-compliant indicators via weighted integration. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 862–876. Springer, Heidelberg (2007)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

7. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm (2001)

8. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

Empirical Performance of the Approximation 671

9. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume. European Journal of Operational Re-
search 181(3), 1653–1669 (2007)

10. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

11. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation 15(1), 1–28 (2007)

12. Bringmann, K., Friedrich, T.: Approximating the least hypervolume contribu-
tor: Np-hard in general, but fast in practice. Theoretical Computer Science 425,
104–116 (2012)

13. Bringmann, K., Friedrich, T.: Parameterized average-case complexity of the hyper-
volume indicator. In: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, GECCO 2013, pp. 575–582. ACM,
New York (2013)

14. Beume, N., Fonseca, C.M., López-Ibáñez, M., Paquete, L., Vahrenhold, J.: On
the complexity of computing the hypervolume indicator. IEEE Transactions on
Evolutionary Computation 13(5), 1075–1082 (2009)

15. Guerreiro, A.P., Fonseca, C.M., Emmerich, M.T.: A fast dimension-sweep algo-
rithm for the hypervolume indicator in four dimensions. In: CCCG, pp. 77–82
(2012)

16. Emmerich, M.T.M., Fonseca, C.M.: Computing hypervolume contributions in low
dimensions: asymptotically optimal algorithm and complexity results. In: Taka-
hashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576,
pp. 121–135. Springer, Heidelberg (2011)

17. Bringmann, K.: An improved algorithm for Klee’s measure problem on fat boxes.
Computational Geometry 45(5), 225–233 (2012)

18. Yildiz, H., Suri, S.: On Klee’s measure problem for grounded boxes. In: Proceedings
of the 2012 Symposuim on Computational Geometry, pp. 111–120. ACM (2012)

19. Beume, N.: S-metric calculation by considering dominated hypervolume as Klee’s
measure problem. Evolutionary Computation 17(4), 477–492 (2009)

20. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep al-
gorithm for the hypervolume indicator. In: IEEE Congress on Evolutionary Com-
putation, CEC 2006, pp. 1157–1163. IEEE (2006)

21. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes.
IEEE Transactions on Evolutionary Computation 16(1), 86–95 (2012)

22. Priester, C., Narukawa, K., Rodemann, T.: A comparison of different algorithms for
the calculation of dominated hypervolumes. In: Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference, GECCO 2013,
pp. 655–662. ACM, New York (2013)

23. Bringmann, K., Friedrich, T.: Approximating the volume of unions and inter-
sections of high-dimensional geometric objects. Computational Geometry 43(6),
601–610 (2010)

24. Ishibuchi, H., Tsukamoto, N., Sakane, Y., Nojima, Y.: Indicator-based evolutionary
algorithm with hypervolume approximation by achievement scalarizing functions.
In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 527–534. ACM (2010)

25. Bringmann, K., Friedrich, T., Igel, C., Voß, T.: Speeding up many-objective opti-
mization by Monte Carlo approximations. Artificial Intelligence 204, 22–29 (2013)

26. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Transactions on Evolu-
tionary Computation 10(1), 50–66 (2006)

A Portfolio Optimization Approach to Selection

in Multiobjective Evolutionary Algorithms

Iryna Yevseyeva1, Andreia P. Guerreiro2,
Michael T. M. Emmerich3, and Carlos M. Fonseca2

1 Centre for Cybercrime and Computer Security
School of Computing Science, Newcastle University

Newcastle upon Tyne, NE1 7RU, UK
iryna.yevseyeva@ncl.ac.uk

2 CISUC, Department of Informatics Engineering, University of Coimbra,
Pólo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal

{apg,cmfonsec}@dei.uc.pt
3 Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
emmerich@liacs.nl

Abstract. In this work, a new approach to selection in multiobjective
evolutionary algorithms (MOEAs) is proposed. It is based on the portfo-
lio selection problem, which is well known in financial management. The
idea of optimizing a portfolio of investments according to both expected
return and risk is transferred to evolutionary selection, and fitness assign-
ment is reinterpreted as the allocation of capital to the individuals in the
population, while taking into account both individual quality and popu-
lation diversity. The resulting selection procedure, which unifies parental
and environmental selection, is instantiated by defining a suitable notion
of (random) return for multiobjective optimization. Preliminary exper-
iments on multiobjective multidimensional knapsack problem instances
show that such a procedure is able to preserve diversity while promoting
convergence towards the Pareto-optimal front.

Keywords: Fitness assignment, portfolio selection, Sharpe ratio, evo-
lutionary algorithms, multiobjective knapsack problem.

1 Introduction

In evolutionary algorithms (EAs), selection shapes the direction in which the
search is performed by dictating which individuals are allowed to reproduce.
Typically, better individuals are assigned higher fitness, and are, therefore, se-
lected for breeding. Carrying out selection based exclusively on individual per-
formance (e.g., proportionally to a global objective value or individual rank)
may work well when a single best solution is sought, but it typically leads to
an undesired loss of population diversity when searching for multiple optimal
solutions to multimodal problems. For this reason, techniques such as crowding
and fitness sharing [17] are used in several multiobjective EAs (MOEAs) [6,7],

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 672–681, 2014.
c© Springer International Publishing Switzerland 2014

A Portfolio Optimization Approach to Selection in MOEAs 673

to promote a good coverage of the Pareto-optimal front. Individuals located in
more crowded regions are penalized, and greater chance of reproduction is given
to individuals in less crowded regions.

Another approach is based on the use of quality indicators [20]. It consists of
defining a notion of population quality and then inferring how much each individ-
ual contributes to the quality of the population. Algorithms such as LAHC [12],
SMS-EMOA [4] and HyPE [1] instantiate this idea by using the hypervolume
indicator as the measure of population quality, and clearly define what the con-
tribution of each individual to that value is, albeit in different ways. In this
work, the opposite view is adopted. An interpretation of fitness assignment as
a (financial) portfolio selection problem (PSP) is proposed, where individuals
are seen as assets with given (randomly distributed) monetary return values,
and the fitness assigned to each individual represents an investment in that in-
dividual. In this case, it is the quality of the population that is inferred from
the quality of the individuals that compose it, represented by the corresponding
return distributions.

It is known from portfolio selection theory that investing only in one asset, or
in similar assets, carries a risk associated with the variability of the individual
returns, which is directly reflected in the variability of the overall return. Sim-
ilarly, it is well known that selecting only a few of the best individuals in an
EA population may lead to loss of population diversity and even to premature
convergence. Therefore, the proposed analogy is completed by associating lack
of population diversity with risk in the financial sense.

This paper is organized as follows. The classical PSP formulation is reviewed
in the next section, leading to the proposed interpretation of fitness assignment
as a portfolio selection problem. In Section 3, a new fitness assignment strategy
for MOEAs is developed based on the classical PSP formulation, by specifying
suitable notions of expected return and risk. This strategy is then extended to
encompass solution archiving as well, allowing parental and environmental selec-
tion to be unified into a single selection problem. Preliminary experimental results
on multiobjective multidimensional knapsack problem instances are presented in
Section 4. The paper concludes with a discussion of the proposed approach.

2 Background

2.1 Portfolio Selection

In the classical Markowitz formulation [16] of the portfolio selection problem,
asset returns are modeled as random variables, the expected values of which can
usually be estimated from historical data. Risk is assessed as the variance of
the overall portfolio return, and depends not only on how much individual asset
returns vary, but also on how they vary in relation to one another. Thus, the
covariance matrix of the joint asset return distribution is considered in addition
to the expected values. A financial portfolio should optimize two conflicting
objectives: maximizing the expected portfolio return and minimizing portfolio
return variance. Formally:

674 I. Yevseyeva et al.

maximize
n∑

i=1

rixi = rTx (1)

minimize
n∑

i=1

n∑
j=1

qijxixj = xTQx (2)

subject to
n∑

i=1

xi = 1, xi ∈ [0, 1], i = 1, . . . , n (3)

where n is the number of assets, ri is the expected return of asset i, and qij is the
covariance of the returns of assets i and j. The unknown solution is represented
by x = (x1, . . . , xn)T , where each xi denotes the proportion of capital to be
invested in asset i.

Sharpe Ratio. The solution to the PSP defined by expressions (1–3) is a set
of Pareto-optimal portfolios. The portfolios in this set are efficient with respect
to expected return and return variance, and reflect different investor behavior:
portfolios composed mostly of high-return assets are usually riskier, but simply
avoiding risk is seldom profitable. Risk is usually reduced by combining assets
with negatively correlated returns, although the expected return of the portfolio
will necessarily decrease due to the inclusion of lower-return assets.

Several notions of an optimal return-to-risk trade-off have been proposed in
the literature. Among them, the most widely used risk-adjusted performance
index is the Sharpe ratio [5], also called reward-to-volatility ratio. The Sharpe
ratio assesses how well the expected return of a given portfolio compensates the
risk taken by measuring the excess return per unit of deviation from the mean
with respect to a baseline, risk-free investment. The portfolio with the maximum
Sharpe ratio, or optimal risky portfolio, x∗, is the solution of the following non-
linear programming problem:

maximize
rTx− rf√

xTQx
(4)

subject to
n∑

i=1

xi = 1, xi ∈ [0, 1], i = 1, . . . , n (5)

where rf is the (deterministic) return of a reference, riskless asset. Naturally, the
expected return of an efficient portfolio should be at least rf .

This non-convex problem can be transformed into the, easier to solve, convex
quadratic programming problem:

minimize yTQy (6)

subject to
n∑

i=1

(ri − rf) yi = 1, yi ≥ 0, i = 1, . . . , n (7)

by homogenizing the objective function (4), as detailed in [5]. A standard quad-
ratic programming solver may then be used to determine the optimal risky port-
folio, x∗ = y∗/k, where k =

∑n
i=1 y

∗
i .

A Portfolio Optimization Approach to Selection in MOEAs 675

2.2 Fitness Assignment as a Portfolio Selection Problem

In order to express fitness assignment in EAs as a portfolio selection problem,
suitable analogues of individual expected return, r, and return covariance, Q,
must be considered. Having established the values of these parameters, the de-
sired fitness assignment, x, can be obtained by solving the resulting PSP, e.g.
for the maximum Sharpe ratio portfolio.

In particular, when the covariance matrix Q is a scalar matrix and the ex-
pected return of each individual is set to the corresponding (single) objective
value to be maximized, maximizing the Sharpe ratio will assign fitness propor-
tionally to the difference between the individual objective values and the refer-
ence return value considered, if this difference is positive, and zero otherwise.

PSPs corresponding to other traditional fitness assignment strategies, such as
linear ranking [3] and sigma-scaling [10], can also be formulated by considering
ranks instead of objective values and/or appropriately selecting the value of the
reference return. Consequently, the portfolio selection interpretation of fitness
assignment extends conventional proportional fitness assignment by making the
notion of risk explicit in the form of a covariance matrix.

The question remains of how to design the covariance matrix in order to
control the loss of population diversity due to selection, while maintaining an
appropriate level of selective pressure towards better solutions. One possible
answer in the context of multiobjective optimization is proposed next.

3 A New Approach to Multiobjective Selection

Most current MOEAs attempt to drive the individuals in the population towards,
and to distribute them across, the Pareto front of the problem, so that the final
solution may be selected by a Decision Maker (DM) in an a posteriori fashion.
In this way, modeling the (subjective) preferences of the DM is avoided, but
the whole Pareto front must be approximated as well as possible in order to
maximize the chance that at least one of the solutions found satisfies the DM.

3.1 Fitness Assignment

In such an a posteriori setting, the return of a given candidate solution may be
seen as a random variable modeling the uncertainty associated with the unknown
preferences of the DM. A simple scenario will be considered:

– Without loss of generality, the problem to be solved consists of the mini-
mization of a d-dimensional objective function, f .

– There are n > 1 individuals in the population. To each individual i, i =
1, . . . , n, corresponds an objective vector fi ∈ Rd.

– Preferences are expressed by the Decision Maker in terms of a single goal
vector, drawn from some probability distribution over the objective space.
In particular, a uniform distribution on a given orthogonal range [l, u] of the
objective space will be assumed, where l, u ∈ Rd.

676 I. Yevseyeva et al.

– Individuals are either “acceptable” or “not acceptable” depending on whether
or not they weakly dominate such a random goal vector, respectively. There-
fore, each individual will be deemed acceptable with a certain probability, and
the corresponding return (or acceptability) is a Bernoulli random variable tak-
ing a value of 1 if the solution is acceptable and 0 otherwise.

Under these conditions, the expected return ri of an individual i is equal to
the proportion of the (given orthogonal range of the) objective space which fi
dominates, i.e.,

ri = pi =
λ([fi,∞[∩ [l, u])

λ([l, u])
(8)

where λ(·) denotes the Lebesgue measure (or hypervolume) of the given region,
and [fi,∞[is the region dominated by fi. Since returns are Bernoulli distributed,
the return covariance for a pair of individuals is

qij = pij − pipj (9)

=
λ([fi,∞[∩ [fj ,∞[∩ [l, u])

λ([l, u])
− pipj (10)

=
λ([(fi ∨ fj),∞[∩ [l, u])

λ([l, u])
− pipj (11)

where fi∨fj denotes the join, or componentwise maximum, of objective vectors
fi and fj , for i, j = 1, . . . , n. Note that pii = pi, and that qii = pi − p2i is simply
the variance of the return of individual i. As a consequence, the return of a
riskless asset must be zero (rf = 0) under this model.

The above expressions show that the return covariance relates the size of the
region simultaneously attained by two individuals to the sizes of the regions
attained individually by each one, an idea which is also at the heart of the
definition of an extended dominance relation known as volume dominance [13],
although the details of the two methods are considerably different. Whereas
the aim of volume dominance is to establish whether an individual should be
considered better than another, here the aim is to gauge the (dis)similarity
between individuals. Positive covariance indicates that two individuals attain
much the same region of the objective space, whereas negative covariance is
a sign that the regions attained do not overlap much. Since portfolio variance
is reduced by combining negatively correlated assets, and greater returns are
preferred, a risk-adjusted portfolio should consist of a diverse set of individuals
along the non-dominated front.

Illustrative examples are presented in Fig. 1. When all individuals are non-
dominated and evenly distributed on a linear front (left), the fitness assigned
to each one by maximizing the Sharpe ratio is the same. On the other hand, if
they are not evenly distributed (center), isolated individuals are assigned greater
fitness values than those in crowded regions of the front. In the more general
case (right), dominated individuals, as well as some non-dominated individuals,
are assigned zero fitness, whereas the remaining non-dominated individuals are

A Portfolio Optimization Approach to Selection in MOEAs 677

Fig. 1. Maximum Sharpe ratio fitness assignment. Left and center: 30 non-dominated
individuals. Right: an arbitrary 30-individual population. Circle area is proportional
to assigned fitness. l = (0, 0), u = (1, 1).

assigned high fitness values. Therefore, the optimal risky portfolio may not max-
imize the hypervolume indicator on an arbitrary front, although it would seem
to correctly identify at least some interesting non-dominated solutions.

3.2 Environmental Selection and Archiving

The portfolio selection model described so far is aimed at parental selection, i.e.,
at the selection of individuals for breeding. Once fitness has been assigned, this
is typically achieved with a sampling procedure such as roulette-wheel selection
(RWS) [8] or stochastic universal sampling (SUS) [2].

Environmental selection, on the other hand, is aimed at replacing old indi-
viduals with new ones, and may be performed based on fitness, the number of
iterations an individual has survived in the population, or even randomly. Also,
offspring may replace the parents unconditionally or depending on whether they
outperform them. A replacement strategy where the best individuals always
survive is known as elitist.

In contrast to the single objective case, the implementation of elitist environ-
mental selection in the multiobjective case must deal with the possible incompa-
rability between individuals. If only dominated individuals are ever replaced by
new ones, either the population is allowed to grow indefinitely or the algorithm
will terminate as soon as all individuals in the population are non-dominated. For
this reason, alternative environmental selection strategies where non-dominated
individuals may be replaced by new ones in order to keep the size of the popu-
lation constant have been proposed and extensively studied [12,11,15]. Because
the population acts as an archive of non-dominated solutions, such strategies
have become known as bounded archiving strategies.

MOEAs typically implement environmental selection separately from parental
selection. However, the two can be meaningfully combined into a single portfolio
selection problem with a cardinality constraint. Assuming a parental population
size of n and the production of m offspring at each iteration, the new problem
consists of assigning non-zero fitness to at most n individuals from the n + m

678 I. Yevseyeva et al.

parents and offspring currently available. In this way, environmental selection is
performed so as to maximize the Sharpe ratio of the resulting portfolio. It is not
difficult to see that this approach guarantees that the Sharpe ratio may never
decrease from one iteration to the next. Therefore, this combined environmental
selection and fitness assignment mechanism implements a monotonic bounded
archiving strategy [15].

Unfortunately, portfolio selection with cardinality constraints is no longer a
convex optimization problem, and may be difficult to solve exactly (it is generally
NP-hard). In practice, however, this will depend on how tightly constrained a
particular instance turns out to be. Indeed, solving the relaxed problem will, in
many cases, lead to a solution that satisfies the cardinality constraint, unless
the population is so well distributed that more than n individuals would, in
principle, be assigned non-zero fitness. This simply requires that m is chosen to
be sufficiently small in comparison to n.

4 Experimental Results

The proposed approach to multiobjective selection was implemented in an oth-
erwise conventional mutation-selection evolutionary algorithm with population
size n = 200. The parental population was sampled proportionally to assigned
fitness using SUS [2] to select m = 50 parents that were mutated to produce m
offspring. For simplicity, no recombination operator was used.

The algorithm was applied to multiobjective knapsack instances from [19] with
100 and 500 items, with 2, 3 and 4 objectives, and as many capacity constraints
as objectives. For the purpose of constructing the portfolio selection problems,
knapsack values and weights were taken to range from zero to their maximum
values (when all items are included). The return distribution of each individual
was computed as described in section 3.1, but using the preferability relation [7]
instead of dominance, in order to accommodate constraints and objectives in
the same formulation. Additional (linear) constraints on fitness were imposed so
that no individual could expect to reproduce more than once in each generation.

Individuals were represented as binary strings, and mutation consisted of ei-
ther flipping one bit at random or exchanging two randomly-selected bits of
different value, so as to uniformly sample the resulting 1-flip-exchange neighbor-
hood [14]. In order to study the long-run behavior of the algorithm, here referred
to as Portfolio Optimization Selection Evolutionary Algorithm (POSEA), and
account for its stochasticity, 13 long runs with 1 million function evaluations
each were performed for each instance. For comparison purposes, equally long
runs were performed using SPEA2 [18], NSGA-II [6] and SMS-EMOA [4] with
the same population size (n = 200) and mutation operator. As before, no recom-
bination was used. The number of offspring per generation, m, was set to the
default in each case: m = n in SPEA2 and NSGA-II and m = 1 in SMS-EMOA.

Experimental results are presented in Figs. 2 and 3, where the maximum,
median and minimum of 13 runs are shown for each algorithm on 2-, 3- and
4-objective instances. SPEA2 and NSGA-II do not use hypervolume informa-
tion, and tend to perform worse or, at most, slighly better than SMS-EMOA

A Portfolio Optimization Approach to Selection in MOEAs 679

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

H
y
p
e
rv

o
lu

m
e
 I
n
d
ic

a
to

r

1e7

0.0 0.2 0.4 0.6 0.8 1.0
evaluations 1e6

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5
1e10

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
1e14

POSEA

SMS-EMOA

NSGA-II

SPEA2

0.0 0.2 0.4 0.6 0.8 1.0
1e6

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

S
h
a
rp

e
 R

a
ti

o

0.0 0.2 0.4 0.6 0.8 1.0
evaluations 1e6

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

0.0 0.2 0.4 0.6 0.8 1.0
1e6

4.00

4.05

4.10

4.15

4.20

4.25

POSEA

SMS-EMOA

NSGA-II

SPEA2

Fig. 2. Performance on 100-item knapsack instances: 2 objectives (left), 3 objectives
(center) and 4 objectives (right)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

1.5

2.0

2.5

3.0

3.5

4.0

4.5

H
y
p
e
rv

o
lu

m
e
 I
n
d
ic

a
to

r

1e8

0.0 0.2 0.4 0.6 0.8 1.0
evaluations 1e6

2

3

4

5

6

7

8
1e12

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0.4

0.6

0.8

1.0

1.2

1e17

POSEA

SMS-EMOA

NSGA-II

SPEA2

0.0 0.2 0.4 0.6 0.8 1.0
1e6

2.0

2.1

2.2

2.3

2.4

2.5

2.6

S
h
a
rp

e
 R

a
ti

o

0.0 0.2 0.4 0.6 0.8 1.0
evaluations 1e6

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

0.0 0.2 0.4 0.6 0.8 1.0
1e6

4.00

4.05

4.10

4.15

4.20

4.25

POSEA

SMS-EMOA

NSGA-II

SPEA2

Fig. 3. Performance on 500-item knapsack instances: 2 objectives (left), 3 objectives
(center) and 4 objectives (right)

680 I. Yevseyeva et al.

and POSEA with respect to both the hypervolume indicator and the Sharpe
ratio. SMS-EMOA can be seen to perform best with respect to the hypervolume
indicator, whereas POSEA clearly does not cover the Pareto-front as well as
SMS-EMOA. On the other hand, SMS-EMOA achieves lower or, at most, simi-
lar values of Sharpe ratio, indicating that POSEA focused on the most relevant
non-dominated solutions according to the DM model adopted.

5 Conclusions

In this work, a fitness assignment approach based on (financial) portfolio opti-
mization was proposed. By modeling the uncertainty associated with Decision
Maker preferences probabilistically, the quality (or return) of each individual
solution becomes a random variable, and fitness assignment consists of form-
ing a portfolio of individuals balancing overall expected return against return
variance, e.g., based on the Sharpe ratio.

Although the probabilistic Decision Maker model adopted in this work is
rather simplistic, empirical evidence suggests that it possesses some interesting
properties, such as not favoring dominated solutions over non-dominated ones
and promoting diversity in the population, even if it does not maximize the
hypervolume indicator in the general case. A theoretical study of these and other
properties is currently under way [9], but more experimentation is required to
evaluate the performance of POSEA and how the number of offspring, m, may
influence it. Furthermore, since the size of the quadratic programming problem
to be solved at each generation is independent of the number of objectives, the
method is potentially much faster than hypervolume-based selection (depending
on m), especially as the number of objectives grows.

The proposed approach establishes a bridge between multiobjective selection
and optimization under uncertainty. By considering alternative probabilistic DM
models based on other indicators and/or preference articulation strategies, the
portfolio optimization paradigm should contribute to unifying solution-oriented
preferences and set-oriented preferences under a common framework.

Acknowledgments. I. Yevseyeva’s research was funded by the Academy of Fin-
land (grant 126476) and the EC Erasmus Mundus ECW Lot 6 project at the Faculty
of Science and Technology of the University of Algarve, Portugal. A. P. Guerreiro
acknowledges Fundação para a Ciência e a Tecnologia (FCT) for Ph.D. studentship
SFHR/BD/77725/2011, co-funded by the European Social Fund and by the State
Budget of the Portuguese Ministry of Education and Science in the scope of NSRF–
HPOP–Type 4.1–Advanced Training.

References

1. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-
objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

2. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc.
Second International Conference on Genetic Algorithms, pp. 14–21 (1987)

A Portfolio Optimization Approach to Selection in MOEAs 681

3. Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proc. First
International Conference on Genetic Algorithms, pp. 101–111 (1985)

4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. EJOR 181, 1653–1669 (2007)

5. Cornuejols, G., Tutuncu, R.: Optimization Methods in Finance. Cambridge Uni-
versity Press (2007)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

7. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint
handling with evolutionary algorithms—Part I: A unified formulation. IEEE Trans-
actions on Systems, Man and Cybernetics—Part A: Systems and Humans 28(1),
26–37 (1998)

8. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

9. Guerreiro, A.P.: Portfolio Selection in Evolutionary Algorithms. Ph.D. thesis pro-
posal, University of Coimbra, Coimbra, Portugal (2012)

10. Hancock, P.J.B.: An empirical comparison of selection methods in evolutionary
algorithms. In: Fogarty, T.C. (ed.) AISB-WS 1994. LNCS, vol. 865, pp. 80–94.
Springer, Heidelberg (1994)

11. Knowles, J., Corne, D.: Properties of an adaptive archiving algorithm for stor-
ing nondominated vectors. IEEE Transactions on Evolutionary Computation 7(2),
100–116 (2003)

12. Knowles, J., Corne, D., Fleisher, M.: Bounded archiving using the Lebesgue mea-
sure. In: Proc. IEEE Congress on Evolutionary Computation (CEC 2003), vol. 4,
pp. 2490–2497. IEEE Press, New York (2003)

13. Le, K., Landa-Silva, D.: Obtaining better non-dominated sets using volume
dominance. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp.
3119–3126 (September 2007)

14. Liefooghe, A., Paquete, L., Figueira, J.R.: On local search for bi-objective knapsack
problems. Evolutionary Computation 21(1), 179–196 (2013)

15. López-Ibáñez, M., Knowles, J., Laumanns, M.: On sequential online archiving of
objective vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.)
EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011)

16. Markowitz, H.: Portfolio selection. Journal of Finance 7(1), 77–91 (1952)
17. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE

Transactions on Evolutionary Computation 2(3), 97–106 (1998)
18. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolu-

tionary algorithm. In: Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems (EUROGEN 2001), pp. 95–100 (2002)

19. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
— A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

20. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Grunert da Fonseca, V.: Per-
formance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation 7(2), 117–132 (2003)

Using a Family of Curves to Approximate the Pareto
Front of a Multi-Objective Optimization Problem

Saúl Zapotecas Martı́nez1, Vı́ctor A. Sosa Hernández2, Hernán Aguirre1,
Kiyoshi Tanaka1 and Carlos A. Coello Coello2

1 Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
saul.zapotecas@gmail.com,{ahernan,ktanaka}@shinshu-u.ac.jp

2 Computer Science Department, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360,
San Pedro Zacatenco, Mexico D.F., Mexico

msosa@computacion.cs.cinvestav.mx, ccoello@cs.cinvestav.mx

Abstract. The design of selection mechanisms based on quality assessment in-
dicators has become one of the main research topics in the development of Multi-
Objective Evolutionary Algorithms (MOEAs). Currently, most indicator-based
MOEAs have employed the hypervolume indicator as their selection mechanism
in the search process. However, hypervolume-based MOEAs become inefficient
(and eventually, unaffordable) as the number of objectives increases. In this paper,
we study the construction of a reference set from a family of curves. Such refer-
ence set is used together with a performance indicator (namely Δp) to assess the
quality of solutions in the evolutionary process of an MOEA. We show that our
proposed approach is able to deal (in an efficient way) with problems having many
objectives (up to ten objective functions). Our preliminary results indicate that
our proposed approach is highly competitive with respect to two state-of-the-art
MOEAs over the set of test problems that were adopted in our comparative study.

1 Introduction

In spite of the success of Multi-Objective Evolutionary Algorithms (MOEAs) for solv-
ing engineering and scientific problems, their application in problems with many ob-
jectives continues to be a hot research topic. In the last decade, several indicator-based
MOEAs have been proposed [1,13,16]. The main motivation for using indicator-based
MOEAs is that Pareto optimality quickly degrades its performance as we increase the
number of objectives. One of the most popular indicator-based MOEAs of today is the
S Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA) [1], which is
based on the use of the hypervolume. However, SMS-EMOA has an important disad-
vantage: computing the hypervolume in high dimensionality (i.e., for problems with 4
or more objectives) is computationally expensive and quickly becomes unaffordable.

This has led to the use of other quality indicators such as: R2 [10] and Δp [14]. For
these two indicators, it is possible to use a reference set in order to compute such met-
rics.1 In fact, it is absolutely necessary the definition of a reference set for the Δp indi-
cator. In the specialized literature, most authors working with indicator-based MOEAs,

1 The version of R2 using a reference set is called R2R in [10].

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 682–691, 2014.
c© Springer International Publishing Switzerland 2014

Using a Family of Curves to Approximate the Pareto Front 683

have preferred the use of R2 (see e.g., [2,7,11]), while the use of Δp has been scarcely
explored (see e.g. [8,13]). This is, perhaps, because it is easier to formulate a set of
cost functions (another form of using R2) than to define a reference set (this requires an
appropriate discretization of the real Pareto front). Since the features of the real Pareto
front of a multi-objective optimization problem (MOP) are unknown, the construction
of an appropriate reference set becomes a real challenge for the design of MOEAs
based on reference sets. Some authors have defined the reference set by constructing
segments of the possible Pareto front employing information of the nondominated so-
lutions found along the search process, see e.g. [13]. Nonetheless, the construction of
a generalized structure (a generalized reference set) constitutes a field still unexplored.
In this paper, we propose the Reference Indicator-Based Evolutionary Multi-Objective
Algorithm (RIB-EMOA), which is based on Δp [14] and builds a reference set by using a
family of curves. Our proposed approach is compared with respect to two other MOEAs
using standard test problems having between three and ten objectives.

The remainder of this paper is organized as follows. In Section 2, we present the
basic concepts required to understand this paper. In Section 3, we explain the general
framework of our proposed approach. The detailed description of the construction of
the reference set is presented in Section 4. In Section 5, we present the validation of our
proposed approach. Finally, the conclusions and some possible paths for future research
are drawn in Section 6.

2 Basic Concepts

2.1 Multi-objective Optimization

Assuming minimization, a continuous MOP can be formulated as:

min
x∈Ω

F(x) (1)

where Ω ⊂ Rn defines the decision space and F : Ω → Rk is defined as the vector
of continuous functions, such that each f j : Ω → R (j = 1, . . . , k) represents the
function to be minimized. In this paper, we consider the box-constrained case, i.e.,
Ω =

∏n
i=1[a j, b j]. Therefore, each variable vector x = (x1, . . . , xn)T ∈ Ω is such that

ai ≤ xi ≤ bi for all i ∈ {1, . . . , n}.
Definition 1. a) Let x, y ∈ Ω. Then the vector x “dominates” y (denoted by x ≺ y)

with respect to the problem (1), if and only if: i) fi(x) ≤ fi(y) for all i ∈ {1, . . . , k};
and ii) f j(x) < f j(y) for at least one j ∈ {1, . . . , k}.

b) Let x� ∈ Ω, we say that x� is a “Pareto optimal” solution, if there is no other
solution y ∈ Ω such that y ≺ x�.

c) The Pareto set (PS) of problem (1) is defined by: PS = {x ∈ Ω : x is a Pareto
optimal solution} and the Pareto front (PF) is defined by: PF = {F(x) : x ∈ PS }.

2.2 Δp Indicator

The Δp indicator [14], can be viewed as the Hausdorff distance between an approxima-
tion set and the real PF of a MOP. This indicator is defined by a slight modification

684 S. Zapotecas Martı́nez et al.

Input:
a stopping criterion;
N: the population size;
Output:
Pt : the final approximation to the PF.

1 t = 0;
/* Initialize a population of N individuals */

2 Pt = {x1, . . . , xN };
3 while stopping criterion is not satisfied do

/* Generate a trial solution */
4 q = generate(Pt);

/* Select the N best individuals */
5 Pt+1 = reduce(Pt ∪ {q});
6 t = t + 1;
7 end

Algorithm 1: RIB-EMOA

Input:
Q: the population to be reduced;
Output:
Q� : the reduced population.

1 P� = nondominated solutions(Q);
2 if P� � Q then
3 s = arg maxy∈Q d(y,Q);
4 else
5 s = arg maxy∈Q Ψ (y,Q,R);
6 end
7 Q� = Q \ {s};
8 return (Q�)

Algorithm 2: reduce(Q)

from the well-known quality indicators: Generational Distance (GD) [15] and Inverted
Generational Distance (IGD) [3]. Formally, the Δp indicator can be defined as follows.

Definition 2. Let P = {x1, . . . , x|P|} an approximation and R = {r1, . . . , r|R|} be a dis-
cretization of the real PF of a MOP. The “Δp indicator” is defined as:

Δp(P,R) = max{IGDp (P,R), IIGDp(P,R)} (2)

where IGDp and IIGDp are a slight modification from GD and IGD, respectively. They are

defined as: IGDp (P,R) =
(

1
|P|
∑|P|

i=1 dp
i

) 1
p and IIGDp (P,R) =

(
1
|R|
∑|R|

j=1 d̂p
j

) 1
p , where di and

d̂ j are: the Euclidean distance from xi to its closest member r ∈ R, and the Euclidean
distance from r j to its closest member x ∈ P, respectively.

Therefore, a low Δp value means that the set P has a better approximation to the real
PF. More details of the Δp indicator and its properties can be found in [14].

3 The Reference Indicator-Based EMOA

3.1 General Framework

RIB-EMOA initializes a population Pt (t = 0) of N randomly generated individuals.
A new individual q is generated by choosing (in a random way) two different parents
from P. The parents are recombined by means of Simulated Binary Crossover (SBX)
and the resulting children are mutated using Polynomial-Based Mutation (PBM) [5].2

The new individual q (defined by any child) becomes a member of the next population
Pt+1, if replacing another individual leads to a higher quality of the population in terms
of the Δp indicator. The general framework of RIB-EMOA is presented in Algorithm 1.
In the following sections, we will explain the reduction procedure (in Algorithm 1) and
the proposed reference set construction procedure.

2 However, the use of any other evolutionary operators is also possible.

Using a Family of Curves to Approximate the Pareto Front 685

3.2 Reduction Procedure

The procedure “reduce” (in Algorithm 1) selects the N best individuals from Q =
Pt ∪ {q} using the Δp indicator and a discretization of the real PF (denoted as R). In
the following description, let us consider P� and d(y,Q) as the set of nondominated
solutions in Q and the number of points from Q that dominate solution y ∈ Q, respec-
tively. More formally, d(y,Q) = |{x ∈ Q : x ≺ y, x � y}|. Since the cardinality of Q is
N+1, one solution from Q needs to be discarded. The following definition is introduced.

Definition 3. Let R be a discretization of the real PF of a MOP. The exclusive contri-
bution of a solution y ∈ Q to the Δp indicator is defined as:

Ψ (y,Q,R) = Δp(Q \ {y},R) (3)

Clearly, if P� = Q, then all solutions in Q are nondominated and all of them are equally
efficient in terms of Pareto optimality. In this case, we discard the solution s ∈ Q such
that it maximizes the contribution to the Δp indicator, that is: s = arg maxy∈Q Ψ (y,Q,R).
On the other hand, if P� � Q then there exist solutions in Q dominated by any solution
in P�. In this case, we discard the solution with the highest d(y,Q) value instead of
using the Δp indicator. With that, the computation of Δp is avoided, thus reducing the
computational cost of RIB-EMOA. Algorithm 2 shows the general reduce procedure.

Since we do not have any information related to the real PF of the MOP, the dis-
cretization of the reference set (R) is carried out by generating an artificial surface which
should be a proper representation to the real PF. The next section will explain (in detail)
the construction of such reference surface.

4 Reference Set Construction

4.1 Pareto Front Families

In real-world applications, there exist several problems for which the features of the
real PF of a MOP are unknown. However, such PF could describe a convex or concave
curve in objective space; otherwise, the PF could draw a linear surface where there is
neither concavity nor convexity. Without loss of generality, we will assume that the PF
of a MOP is normalized in the range [0, 1], i.e., 0 ≤ f j ≤ 1, for each j ∈ {1, . . . , k}.
Then, we associate such PF to a curve of the following family:{

(y1)α + . . . + (yk)α = 1 : y j ∈ [0, 1], α ∈ (0,∞)
}

(4)

This family of curves possesses the following properties: 1) if α > 1, the curve is
concave; 2) if α < 1, the curve is convex; and 3) if α = 1, a linear surface is defined.
Clearly, if α = 1, then each vector yi = (yi

1, . . . , y
i
k)T in the surface satisfies

∑k
j=1 yi

j = 1
and yi

j ≥ 0, for each i ∈ {1, . . . , μ}. In other words, if α = 1, the surface will describe a
set of weight vectors, which could be much easier to be discretized.

Remark 1. Let C = {c1, . . . , cμ} be a set of μ weight vectors in Rk, i.e., each ci =

(ci
1, . . . , c

i
k)T satisfies

∑k
j=1 ci

j = 1 and ci
j ≥ 0, for each i ∈ {1, . . . , μ}. Then, the vector:

yi = (ci
1/||ci||α, . . . , ci

k/||ci||α)T (5)

satisfies equation (4), where || · ||α denotes the α-norm function.

686 S. Zapotecas Martı́nez et al.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Fig. 1. Reference curves for α = 1
2 ,

7
10 , 1,

8
5 ,

5
2 in MOPs with two and three objective functions

The above remark motivates the construction of a set of weight vectors. Moreover,
if the weight vectors are properly distributed in Rk, a proper representation of the refer-
ence curve could be reached. Therefore, the weight set shall be the starting point for the
construction of different curves by using equation (4). In Figure 1, we show different
curves for different α values in problems with two and three objectives, respectively.

4.2 Weights Set

In the specialized literature, there are several strategies for generating weight vectors
in an Euclidean space. Among these techniques, the Uniform Design (UD) method [9]
has shown to be an effective technique in the design of weight vectors properly scat-
tered. However, this technique becomes inefficient when the dimensionality (k) and the
cardinality (μ) of the weights set increase; it has a computational complexity of O

(
μ
k

)
.

Since we use the reference surface (constructed from the weights set) to compute the
Δp indicator, for a better quality of measurement, the number of elements in the dis-
cretized reference surface should be greater than the approximation to the PF given by
the MOEA. Here, we generate the weights set by using a low discrepancy sequence
based on lattices, whose complexity is given by O(μ × k), which is far lower than the
one given by the UD method.

Let d be the dimension of each vector in the low discrepancy sequence. Then, the ith

vector in the sequence (for i = 1, . . . , μ) is defined by:

(i/k, {i × ρ1}, . . . , {i × ρd−1}) (6)

where ρ1, . . . , ρd−1 are d−1 distinct irrational numbers and {·} denotes the fractional part
of the real value (modulo-one arithmetic). In this work, we stated each ρl by the tran-

scendental number ϕ =
√

5+1
2 (the golden section), i.e., ρl = ϕ for each l ∈ {1, . . . , d−1}.

Let Bk−1 = [0, 1]k−1 be the (k − 1)-dimensional design space in a unit cube. Let
B� = {b1, . . . , bμ} be the lattice-based low discrepancy sequence on Bk−1 generated by
equation (6). Each weight vector ci = (ci

1, . . . , c
i
k)T ∈ C = {c1, . . . , cμ} is achieved by

employing each bi = (bi
1, . . . , b

i
k−1)T ∈ B� according to the following equation:

Using a Family of Curves to Approximate the Pareto Front 687

ci
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1 − (bi

j)
1

k− j

)
j−1∏
l=1

(bl
i)

1
k−l , if j ∈ {1, . . . , k − 1}

k−1∏
l=1

(bi
l)

1
k−l , if j = k

(7)

The above transformation, satisfies
∑k

j=1 ci
j = 1, ci

j ≥ 0, for each i ∈ {1, . . . , μ} [9].

4.3 Reference Surface Construction

After obtaining the weights set (C), the reference surface is constructed by finding the
α value that will transform the set C in an appropriate curve for a determined MOP. The
following definition is relevant.

Definition 4. Let x�j be the respective global minimizers of f j(x), j = 1, . . . , k over

x ∈ Ω. Let F�j = F(x�j), j = 1, . . . , k. Let Φ be the k × k matrix whose jth column

is F�j − F�. Then, the set of points in Rk that are convex combinations of F�j , i.e.,

H = {Φβ : β ∈ Rk,
∑k

j=1 β j = 1, β j ≥ 0} is referred to as the Convex Hull of Individual
Minima (CHIM) [4].

In the above definition, F� = (f �1 , . . . , f �k)T denotes the utopian vector defined by
the global minima values of each objective function f j.

Let us consider Q = Pt ∪ {q} as the current approximation to the real PF achieved
by RIB-EMOA. Then, we state the extremes (individual minima) of the PF (denoted
by ξi’s, for each i ∈ {1, . . . , k}) according to the following achievement function.

ξi = arg minx∈Q
k

max
j=1

(
(f j(x) − f �j)/ei

j

)
(8)

where ei = (ei
1, . . . , e

i
k)T is the canonical basis in Rk (i.e., ei denotes the vector with a 1

in the ith coordinate and 0 elsewhere). Each f �j is stated by the minimum value of the

jth objective function found along the search process. For ei
j = 0, we use ei

j = 1 × 10−6.

Let us consider Hb = (zb, nb) as the hyper box formed by the extreme vectors
{ξ1, . . . , ξk}. More precisely, the hyper box Hb is defined by the vectors zb = (z1, . . . , zk)T

and nb = (n1, . . . , nk)T , such that: z j = mink
i=1 ξ

i
j and n j = maxk

i=1 ξ
i
j, for each j ∈

{1, . . . , k}. Then, the computation of α for the creation of the reference surface takes
place according to the following description.

Let A = {x1, . . . , x|A|} be the set of nondominated solutions from Q such that each
solution vector F(xi) = (f1(xi), . . . , fk(xi))T is contained in the hyper box Hb. We con-
sider that each solution vector F(xi) is normalized in [0, 1], and it will be denoted as
F̂(xi) = (f̂1(xi), . . . , f̂k(xi))T , for each i ∈ {1, . . . , |A|}. Then, the convex hull H in the
normalized space corresponds to be a set of weight vectors and we denote to this as Ĥ .

The α value is stated by finding the solution vector F̂(xb) which describes the max-
imum bulge (sometimes called “knee”) formed by the convex hull Ĥ and the solution
vectors F̂(xi)’s. We state this solution (xb) such that it minimizes a Tchebycheff prob-
lem. To be more precise: xb = arg minx∈A max1≤ j≤k{λ j| f̂ j(x) − f �j |} with the weight

vector (λ1 =
1
k , . . . , λk =

1
k)T , where k denotes the number of objective functions.

688 S. Zapotecas Martı́nez et al.

In order to ensure that the reference curve will touch the maximum bulge, it is ini-
tially defined by finding the α value which satisfies equation (4) for the solution vector
F̂(xb). In other words:3 α = arg minα̂∈(0,∞) f̂1(xb)α̂ + · · · + f̂k(xb)α̂ − 1.

Let us consider the weights set C as an appropriate discretization of Ĥ . Then, the
construction of the reference surface R = {y1, . . . , yμ} is carried out by transforming
each weight vector ci ∈ C according to equation (5), for each i ∈ {1, . . . , μ}. This
transformation does not guarantee that all the elements in R dominate to all solution
vectors F̂(xi), for each xi ∈ A. However, since the surface (R) intersects the maximum
bulge (i.e., it passes through the point F̂(xb)) and all solutions in A are nondominated,
most solutions in A should be dominated by R. Nevertheless, the reference surface is
fixed to dominate all the solutions in A.

For each solution vector F̂(xi) there exists a vector hi = (hi
j, . . . , h

i
k)T with direction

F̂(xi) (from the origin) such that hi is a weight vector, i.e., hi ∈ Ĥ . Such weight vector
can be reached by hi

j = f̂ j(xi)/
∑k

j=1 f̂ j(xi), for each i ∈ {1, . . . , |A|} and j ∈ {1, . . . , k}.
Then, before computing the transformation of the whole weights set, we verify if hi under
the transformation of α in equation (5) (denoted by hi

α) is dominated by F̂(xi). In such
case (i.e., if F̂(xi) ≺ hi

α), a new search of α needs to be conducted, but using the solution
vector F̂(xi) instead of F(xb). Finally, the normalized surface R is translated to the utopian
vector F� and scaled to the individual minima ξ’s, i.e., in the original objective space.

5 Experimental Study

In order to assess the performance of our proposed approach, we compared its results
with respect to those obtained by SMS-EMOA and a version of SMS-EMOA that uses
Monte Carlo simulations to approximate the S metric (we called it HyPE-EMOA). We
adopted the seven unconstrained MOPs from the well-known DTLZ test suite [6]. Due
to space limitations and the known geometrical shapes of each DTLZ problem, we com-
pare herein, the performance of each algorithm by using only the Generational Distance
(GD) [15]. The GD for DTLZ1 was computed as GD = 1

|P|
∑

x∈P ||F(x)||1 − 0.5 since its
PF is a hyperplane that intersects each axis in 0.5. For DTLZ2-DTLZ4 we used GD =
1
|P|
∑

x∈P ||F(x)||2 − 1 since the PF for theses problems describes a sphere of radius 1.
For DTLZ5-DTLZ7, we used the value of each auxiliary function g(x) defined for each

RIB−EMOA
SMS−EMOA
HyPE−EMOA

10

100

1000

10000

100000

1e+06

3 4 5 6 7 8 9 10

DTLZ1

3 4 5 6 7 8 9 10

DTLZ2

3 4 5 6 7 8 9 10

DTLZ3

3 4 5 6 7 8 9 10

DTLZ4

3 4 5 6 7 8 9 10

DTLZ5

3 4 5 6 7 8 9 10

DTLZ6

3 4 5 6 7 8 9 10

DTLZ7

Se
co
nd

s

Fig. 2. Average time (axis y) over 30 independent runs for each MOEA when performing 40,000
functions evaluations for each DTLZ test problem (from 3 to 10 objectives functions (axis x))

3 We find out the α value by using the golden search method [12] within the interval (0.05, 20).

Using a Family of Curves to Approximate the Pareto Front 689

problem (for details see [6]). The PF of DTLZ5 and DTLZ6 is achieved when g(x) = 0,
while the PF of DTLZ7 is reached when g(x) = 1. Thus, we used each g function to
compute a variant of GD, defined by GDg =

1
|P|
∑

x∈P g(x) (for DTLZ5 and DTLZ6) and

GDg =
1
|P|
∑

x∈P g(x)−1 (for DTLZ7), where P denotes the final approximation achieved
by each MOEA. Therefore, a value GD = 0 indicates that the approximation P is in the
real PF. For each algorithm, we used ηc = 15, ηm = 20, pc = 0.9 and pm = 1/n for the
indexes and ratios in the crossover and mutation operators, respectively. For each MOP,

Table 1. Comparison of results with respect to GD for the DTLZ test problems

Objs. Algorithm
DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7

GD GD GD GD GD GD GD
(σ) (σ) (σ) (σ) (σ) (σ) (σ)

3

RIB-EMOA
0.004213 0.000041 17.487000 0.000029 0.000001 3.877700 0.001201

(0.005947) (0.000048) (7.263660) (0.000045) (0.000003) (0.173200) (0.000394)

SMS-EMOA
0.001780 0.000065 12.160000 0.000043 0.000003 2.617500 0.001615

(0.001996) (0.000011) (4.633868) (0.000016) (0.000001) (0.067991) (0.000177)

HyPE-EMOA
0.029672 0.000458 12.147000 0.000363 0.000040 4.459300 0.016254

(0.023956) (0.000071) (5.979108) (0.000165) (0.000011) (0.138107) (0.001617)

4

RIB-EMOA
0.037965 0.000155 18.517000 0.000107 0.000004 8.367200 0.036396

(0.049938) (0.000085) (7.833201) (0.000197) (0.000007) (0.841955) (0.016740)

SMS-EMOA
0.001861 0.000201 17.132000 0.000115 0.571280 3.306000 0.007434

(0.001276) (0.000025) (8.927643) (0.000047) (0.023577) (0.092850) (0.000678)

HyPE-EMOA
0.977570 0.001886 64.291000 0.001209 0.296780 9.936200 0.122510

(1.153816) (0.000293) (18.986294) (0.000301) (0.045810) (0.358386) (0.025145)

5

RIB-EMOA
0.029738 0.000316 13.776000 0.000536 0.004092 10.489000 0.157760

(0.027467) (0.000147) (7.468234) (0.000226) (0.009992) (0.639423) (0.045098)

SMS-EMOA
0.002510 0.000415 9.849800 0.000656 0.787580 3.374800 0.014730

(0.001591) (0.000056) (2.726240) (0.000036) (0.053845) (0.082385) (0.001261)

HyPE-EMOA
1.929400 0.005508 83.570000 0.003014 0.330560 11.866000 0.307590

(1.138770) (0.000839) (16.132044) (0.000682) (0.043337) (0.346546) (0.059810)

6
RIB-EMOA

0.097693 0.000809 20.824000 0.000887 0.041967 12.185000 0.128210
(0.144339) (0.000255) (11.602267) (0.000321) (0.057430) (0.569374) (0.080949)

HyPE-EMOA
2.018500 0.011268 98.789000 0.005243 0.348890 13.047000 0.477420

(1.313371) (0.001611) (21.181272) (0.001365) (0.026693) (0.322326) (0.115235)

7
RIB-EMOA

0.374010 0.001308 26.081000 0.001996 0.065241 13.460000 0.122180
(0.525594) (0.000443) (14.997568) (0.000985) (0.103754) (0.480379) (0.041164)

HyPE-EMOA
2.409300 0.017296 99.057000 0.009122 0.362480 13.732000 0.670290

(1.449388) (0.002415) (19.874297) (0.002152) (0.032717) (0.309724) (0.119358)

8
RIB-EMOA

0.493850 0.001746 26.249000 0.006156 0.082622 14.323000 0.187260
(0.739671) (0.000450) (14.347574) (0.002254) (0.071311) (0.283957) (0.066961)

HyPE-EMOA
2.451000 0.023798 105.050000 0.017033 0.380640 14.494000 1.020500

(1.522215) (0.003426) (23.295721) (0.004348) (0.036984) (0.247828) (0.090525)

9
RIB-EMOA

0.459380 0.004350 26.887000 0.012242 0.093066 14.655000 0.267120
(0.491440) (0.002952) (16.594691) (0.003688) (0.080599) (0.384037) (0.077010)

HyPE-EMOA
2.142300 0.031247 105.460000 0.026099 0.376190 14.657000 1.458500

(1.183025) (0.006355) (24.807379) (0.004833) (0.029685) (0.233302) (0.086545)

10
RIB-EMOA

0.312500 0.008835 30.731000 0.018094 0.118400 15.062000 0.446840
(0.366907) (0.004312) (16.845582) (0.006016) (0.097462) (0.371148) (0.126770)

HyPE-EMOA
2.574600 0.034142 109.580000 0.039354 0.398900 15.090000 1.962400

(1.366155) (0.005567) (19.801898) (0.010316) (0.026573) (0.297923) (0.086160)

690 S. Zapotecas Martı́nez et al.

30 independent runs were performed with each algorithm. We employed a population
size N = 200 and the search was restricted to 40,000 fitness function evaluations for
each problem. The cardinality of the reference set was set as μ = ρ × N (here, we used
ρ = 3). The results obtained are summarized in Table 1. This table displays both the
average and the standard deviation (σ) for the GD performance measure for each MOP.
For an easier interpretation, the best results are presented in boldface.

In our study, we tested the abilities of RIB-EMOA using our proposed reference set
construction when solving MOPs with many objectives (between three and ten objective
functions). From Table 1, we can see that RIB-EMOA obtained better approximations
to the real PF than HyPE-EMOA in most of the test problems. Nevertheless, SMS-
EMOA obtained better results than RIB-EMOA for DTLZ1, DTLZ3 and DTLZ6 test
problems. The poor performance of RIB-EMOA in these problems could be due to the
high multi-modality (in the case of DTLZ1 and DTLZ3) and the degeneration (in the
case of DTLZ6) that these problems have in their PFs. Although DTLZ5 also has a de-
generate PF, it is much more difficult to approximate solutions to the real PF of DTLZ6
than to the real PF of DTLZ5 (for details of these problems see [6]). In fact, RIB-
EMOA relies on the proper construction of the reference set which is constructed from
the individual minima of each problem. Thus, given the features of these MOPs, the
achievement function (in equation (8)) which establishes the individual minima could
be not the best in order to construct a proper surface for them. Nonetheless, an improve-
ment mechanism for our proposed reference set construction, is indeed, a possible path
for future research. On the other hand, according to Fig. 2, we can see that SMS-EMOA
achieved good results for DTLZ1, DTLZ3 and DTLZ6 (see Table 1) but consuming a
higher computational time than RIB-EMOA. However, the computational time required
by our RIB-EMOA was lower than that of SMS-EMOA and HyPE-EMOA even when
solving MOPs with 10 objective functions. Moreover, the time consumption for SMS-
EMOA was so high that we could only test it with MOPs having up to 5 objectives.
Based on the previous discussion, we consider that our proposed approach is a good
choice in order to deal with MOPs with a high number of objectives.

6 Conclusions and Future Work

In this paper, we have presented a first attempt to generalize a reference set for a given
MOP. For this sake, we have considered the fact that the PF of a MOP could be de-
scribed as a linear, convex, or concave manifold in the objective function space. In such
cases, the PFs present geometries which can be associated to a curve of the family de-
scribed in equation (4). The proposed reference set construction was found to be appro-
priate, since it yields a suitable surface in order to approximate solutions to the real PF
by using the Δp indicator (however, it could also be used with other MOEAs that adopt
a reference set). According to our results, we showed the potential of our proposed ap-
proach for attracting solutions towards the real PF along the search process. It is indeed
desirable to compare our proposed approach against more state-of-the-art MOEAs and
this will be part of our future work. It is worth noting that our RIB-EMOA produced
competitive results even with respect to problems having non-well-defined PFs (e.g.,
in DTLZ5-DTL7 (these MOPs have discontinuities and degenerations in their PFs)),
which could be a useful feature when dealing with real-world MOPs.

Using a Family of Curves to Approximate the Pareto Front 691

As part of our future research, we intend to focus on designing another strategy in
order to improve the construction of the reference set. It is also desirable to introduce
the use of preferences to our proposed approach. Finally, we also aim to extend our
proposed approach to deal with constrained MOPs having many objectives, which is an
area that has remained practically unexplored so far, to the authors’ best knowledge.

References

1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on
dominated hypervolume. EJOR 181(3), 1653–1669 (2007)

2. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indicator. In: GECCO
2012, pp. 465–472. ACM (2012)

3. Coello Coello, C.A., Cruz Cortés, N.: Solving Multiobjective Optimization Problems using
an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190
(2005)

4. Das, I.: Nonlinear Multicriteria Optimization and Robust Optimality. PhD thesis, Rice Uni-
versity, Houston, Texas (1997)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE TEVC 6(2), 182–197 (2002)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Mul-
tiobjective Optimization. In: Ajith, A., et al. (eds.) Evolutionary Multiobjective Optimization.
Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)

7. Diaz-Manriquez, A., Toscano-Pulido, G., Coello Coello, C.A., Landa-Becerra, R.: A rank-
ing method based on the R2 indicator for many-objective optimization. In: CEC 2013, pp.
1523–1530. IEEE (2013)

8. Dominguez-Medina, C., Rudolph, G., Schutze, O., Trautmann, H.: Evenly spaced pareto
fronts of quad-objective problems using psa partitioning technique. In: CEC 2013, pp.
3190–3197. IEEE (2013)

9. Fang, K.T.: The Uniform Design: Application of Number-Theoretic Methods in Experimen-
tal Design. Acta Math. Appl. Sinica 3, 363–372 (1980)

10. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-
dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modeling,
Technical University of Denmark (1998)

11. Hernandez Gomez, R., Coello Coello, C.A.: MOMBI: A new metaheuristic for many-
objective optimization based on the R2 indicator. In: CEC 2013, pp. 2488–2495. IEEE (2013)

12. Kiefer, J.: Sequential minimax search for a maximum. Proceedings of the American Mathe-
matical Society 4(3), 502–506 (1953)

13. Rodrı́guez Villalobos, C.A., Coello Coello, C.A.: A new multi-objective evolutionary algo-
rithm based on a performance assessment indicator. In: GECCO 2012, pp. 505–512. ACM
(2012)

14. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff
distance as a performance measure in evolutionary multi-objective optimization. IEEE
TEVC 16(4), 504–522 (2012)

15. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and
New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate
School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (May
1999)

16. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

Travelling Salesman Problem Solved ‘in materio’
by Evolved Carbon Nanotube Device

Kester Dean Clegg1, Julian Francis Miller1, Kieran Massey2, and Mike Petty2

1 The University of York, UK
{kester.clegg,julian.miller}@york.ac.uk

2 Durham University, UK
{m.k.massey,m.c.petty}@durham.ac.uk

Abstract. We report for the first time on finding shortest path solutions for the
travelling salesman problem (TSP) using hybrid “in materio” computation: a
technique that uses search algorithms to configure materials for computation.
A single-walled carbon nanotube (SWCNT) / polymer composite material de-
posited on a micro-electrode array is configured using static voltages so that volt-
age output readings determine the path order in which to visit cities in a TSP. Our
initial results suggest that the hybrid computation with the SWCNT material is
able to solve small instances of the TSP as efficiently as a comparable evolution-
ary search algorithm performing the same computation in software. Interestingly
the results indicate that the hybrid system’s search performance on TSPs scales
linearly rather than exponentially on these smaller instances. This exploratory
work represents the first step towards building SWCNT-based electrode arrays in
parallel so that they can solve much larger problems.

1 Introduction

As material variability starts to limit the design of modern silicon-based processors
[1,2], the NASCENCE project [3] has started investigating how nano-scale materials
and devices that could be configured for computation [4]. While engineering for com-
putation at such small scales remains extremely difficult, it is possible to use a method
of automatically configuring materials so that they can perform a dedicated task [5].
In this paper, we illustrate a method to achieve this using a single-walled carbon nan-
otube (SWCNT) material configured by applying static voltages to specific locations on
a micro-electrode array. The remaining electrodes act as inputs to the computation, in
this case a small instance of the Travelling Salesman Problem (TSP). The hybrid system
successfully finds the shortest path in many cases and its search performance is on a par
to a comparable (optimised) evolutionary algorithm implemented in software. We be-
lieve this work represents the first time a benchmark search problem has been solved by
a machine configured material and could pave the way toward designing novel compu-
tational materials: resulting in small, single purpose devices that are stable, low voltage
and yet able to compute answers to challenging tasks.

Previous work in computer controlled configuration of physical systems for compu-
tation has had limited success [6,7,8]; results were sometimes unstable [9,10], able to

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 692–701, 2014.
c© Springer International Publishing Switzerland 2014

Travelling Salesman Problem Solved 693

Map input data to
physical input

(Optional)

Apply test data and
measure fitness

Generate population
of genotypes

subject to search

Map genotype to
physical

configuration

Map physical output
to output data

Configurable
material

Computer
Domain

Physical
Domain

Physical input
(Optional)

Physical output
(Optional)

Physical
configuration

Fig. 1. Overview of hybrid computation with ‘in materio’ configuration performed by evolution-
ary search. The computer configures the application of physical signals to a material and tests
the output. A genotype of configuration instructions is subject to evolutionary mutation. Physical
output from the materials acts as computational input to the selection process. The configura-
tion loop stops when the computational inputs have found a solution or no more improvement is
required or possible.

carry out only low level processing tasks [6,11] or performed no better than exhaus-
tive search [12,13]. Most work done on configuring materials to carry out computation
has used search-based algorithms to exploit physical characteristics within the material
without much concern as to how those characteristics could be formally understood or
engineered [14,15]. An overview of the hybrid approach to materials-based computa-
tion is shown in Figure 1.

2 Hardware and Material Description

The NASCENCE consortium [3] is investigating candidate materials and techniques
that could be employed to configure materials for computation. The project is looking at
SWCNT held in fixed, gel and liquid mediums (such as liquid crystal). In this paper we
report results using a fixed material system (supplied by Durham University) prepared
on gold micro-electrode arrays with contacts arranged in either a 3x4 or a 4x4 grid.
The early prototype 3x4 grid array has pads that are 40µm diameter with a pitch of

694 K.D. Clegg et al.

Final configuration voltages are circled with values. Output
electrode numbering starts bottom left and goes anti−clockwise.

 60μm

−0.8209

−1.0913 −2.9854

1 2 3 4 5 6 7 8 9
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Output electrode

V
o
lt
a
g
e

Voltages on output electrodes using configuration voltages:
−0.8209 −1.0913 −2.9854

900 950 1000 1050 1100
900

920

940

960

980

1000

1020

1040

1060

1080

1100 1

 2

 3

 4

 5 6

 7

 8

 9

Path visited for this configuration:
7 6 5 4 3 2 1 9 8

Path cost = 615.5041

0 5 10 15 20 25 30
600

700

800

900

1000

1100

1200

Generations

F
it
n
e
s
s

Original fitness scores for this run

Fig. 2. Top left: shows the CNT dispersal over an earlier prototype 3x4 grid electrodes (x200
mag). Note unevenness of material over electrodes and the mask fault on the third electrode does
not appear to affect the evolutionary search when finding the shortest path of the TSP (the evolu-
tionary history is shown by the best performing genotype for each generation, bottom right). In
this final configuration, voltages are applied to the circled electrodes and the remaining electrodes
provide the floating point values into the TSP. Top right: recorded voltages which when sorted
determine the path order to visit cities. Bottom left: Optimum path solution of the TSP.

100µm, leaving an electrode separation of approximately 60µm, while the later 4x4
grid has a spacing of 50µm pads and separation. The material is composed of 0.10% (by
weight) of single-walled carbon nanotubes (purchased from Carbon Nanotechnologies
Inc. Houston, TX, USA) mixed with poly-methyl methacrylate (PMMA, Aldrich Mw
= 93,000) and dissolved in Anisole (VWR, analytical reagent grade). Approximately
20µL of material is dispensed on the electrode array which is then dried at 100◦C for
30mins to leave a “thick film”. The density of SWCNTs within the PMMA is quite
variable, as is the accuracy of the mask to create the electrodes (see top left panel,
Figure 2), however these inconsistencies in the substrate do not appear to present a
problem to evolutionary search.

The 4x4 electrode array is connected a 16x16 analogue cross point switch which
controls connections from the substrate to a data acquisition (DAQ) card, enabling us

Travelling Salesman Problem Solved 695

to place configuration voltages anywhere within the array. The DAQ card first digitally
configures the switch connections and then inputs analogue configuration voltages to
the material and records the corresponding analogue outputs. The number of configu-
ration voltages deployed depends on the problem being tackled and the availability of
spare electrodes on the array. The configuration voltages and electrodes to which they
connect are decided by a 1+4 evolutionary algorithm (see method). The range is re-
stricted to ±3V and all connections are one to one (i.e. one configuration voltage can
only go to one electrode). We apply the voltages for 1s and take mean values of the final
0.2s to minimize any noise or “settling periods” within the material. The time required
to configure the analogue switch and set up channels on the DAQ card means that test-
ing a configuration takes several seconds. While this is relatively “slow” to perform a
computation, signals from the SWCNT-PMMA materials have negligible noise levels
after the initial 50ms and our sampling times could be substantially reduced.

3 Problem and Method

The TSP was selected as our computational task as the problem belongs to a class of
computationally hard problems known as NP-complete, it has been extensively studied
[16] and there exist excellent free solvers against which we can check our solutions1. In
terms of the search, the total number of paths within a given TSP increases factorially
with the number of cities to visit, making it an excellent problem to see whether a solver
can scale to larger problems.

A circular layout of cities has an easily identifiable shortest path. For symmetric
TSPs, the minimum number of shortest paths is equal to double the number of cities,
as a path can start at any city and go in either direction along the shortest path. Thus
a circular 9 city TSP has 18 shortest paths, while an irregular 9 city layout may have
more. A path can be expressed as a permutation, therefore the total number of paths for
a given TSP is given by the factorial of the number of cities:

9 city = 9! = 362,880
10 city = 10! = 3,628,800
11 city = 11! = 39,916,800

Our representation maps the path visiting each city to a sorted vector of floating point
numbers (the voltage outputs from the substrate, see below). The computational aim is
to get the evolutionary algorithm to select the connections and configure the material
with voltages so that it outputs a vector that represents the shortest path in the TSP (see
bottom left of Figure 2). The sorted vector, or ‘smallest position value’ representation
[17], can be readily applied to many other well-known computational problems such as
classification tasks [18].

Currently, when we tackle a 10 city TSP with a 4x4 electrode array, we can in theory
use the remaining 6 voltages to configure the SWCNT-PMMA material. In practice we
are limited to a maximum of 4 analogue outputs from our current DAQ card and the
results presented here reflect this limitation. However, we are having bespoke hardware

1 http://www.math.uwaterloo.ca/tsp/concorde/

http://www.math.uwaterloo.ca/tsp/concorde/

696 K.D. Clegg et al.

built for the NASCENCE consortium [3] that will allow many more analogue inputs
and outputs to connect to the electrode arrays and permit us to look at a broader range
of problems.

For example, using our current electrode array and DAQ card to configure the SWCNT-
PMMA material on a 12 city TSP, we can use between 2–4 configuration voltages to con-
figure the substrate and use the remaining electrodes of the array to provide the 12 input
values to the problem. The input vector of values (1.a below — note just a few values are
shown for clarity) is converted to a path by using the original indices after sorting (1.b);
the sorted indices then become the order in which to visit the cities (see also bottom left
Figure 2). In the following example city 6 would be visited first, then 2, then 4 and so on:

1. a) 1.892 0.321 2.064 0.984 1.664 0.056 2.391 2.907
1 2 3 4 5 6 7 8

1. b) 0.056 0.321 0.984 1.664 1.892 2.064 2.391 2.907
6 2 4 5 1 3 7 8

The use of a 16x16 cross point switch permits an evolutionary algorithm to select
which electrodes in the array will be used for the configuration voltages and which are
to be used as inputs to the TSP. This selection allows the search algorithm to exploit
the physical resources available to different electrodes (this can be important, note the
variable SWCNT dispersion shown top left of Figure 2). After the path order to visit
cities is determined, the path length is calculated and this represents the evolutionary
fitness for that configuration.

The evolutionary algorithm uses a 1+4 schema, where the best is kept and 4 copies
are mutated for each generation. If a mutant scores an equivalent fitness to the previ-
ous best it is selected to form the subsequent generation so that the search continues to
‘move on’ despite not increasing solution fitness. The schema was chosen for its sim-
plicity rather than its efficiency [19,20,21]. We impose a limit of 1500 generations on
the search, as a run that fails to find the shortest path within this will have taken approx-
imately 14 hours to complete. However, failure to solve these smaller instances of the
TSP using the SWCNT-PMMA material is relatively rare (although the failure rate has
been observed to increase on larger problems with fewer configurations); so allowing
the search to continue beyond 1500 generations seems unlikely to impact the average
number of generations to find the shortest path.

4 Results

To the best of our knowledge, this work represents the first time the TSP has been
solved using search algorithms to configure a material for computation. Knowing the
exact size of the solution space for small instances of TSP allows us to calculate the
proportion of samples taken from the total solution space that were required to find
the shortest path. By comparing the number of samples taken from the total solution
space to the number taken by doing the same computation entirely in software, we get
an insight into whether performing the computation via the SWCNT-PMMA material
has any advantages over doing the same task entirely in software. In order to do this,
we wanted to chose an evolutionary algorithm that could be meaningfully compared to

Travelling Salesman Problem Solved 697

C2

C1

C3

Cn

I2

I1

I3

In

...

... ...
...
...

...

n1 V2

V1

V3

Vn

I2

I1

I3

In

...

... ...
...
...

n3

n6 n5

n4 n7

n2

n8

n9

n10

n12

...

Fig. 3. The two evolutionary search algorithms are not exact correlates. The LHS represents the
CGP evolved network of nodes and mathematical operators. In this schema, the inputs C1..n to
the network are constants initially chosen at random but which do not change. The remaining
connections and operators within each node are open to mutation, including those nodes selected
as connecting to the inputs I1..n to the TSP. The RHS shows the SWCNT-PMMA material over
an early 4x3 electrode. In this case the evolutionary algorithm is able to select which electrodes
serve as inputs to the TSP and which will take the configuration voltages V1..n (note that in
contrast to CGP, the input voltages are subject to evolutionary selection).

our hybrid material-based computation. Although we have no current means to analyse
what electrical networks or properties are created within the SWCNT-PMMA material
during its configuration, we can treat it as a ‘black box’ which takes certain inputs and
transforms them into our desired outputs.

Cartesian Genetic Programming (CGP [22]) is a technique that creates a similar
‘black box’ of up to a 1000 networked nodes, within which mathematical and arith-
metic operators transform inputs before passing on the values to other nodes or outputs
[23]. The evolutionary mutation of the genotypes that describe the CGP network has
parallels with our evolutionary mutation of the voltages and switch connections that af-
fect the SWCNT-PMMA material’s configuration. We show a schematic comparison of
the two methods in Figure 3. As CGP is known to be an efficient technique at solving
well known benchmark problems [24] one would not normally expect a 1+4 evolution-
ary schema in software to outperform a similar schema in CGP. We encoded the same
TSP instances to be solved by CGP and compared its performance against the SWCNT–
PMMA material. It should be noted that as CGP running in software runs many times
quicker than the hybrid SWCNT-PMMA system, it was possible to experiment with the
CGP parameters to optimise its performance on the problem. Indeed, we discovered
that we could improve the average number of generations to find the shortest path for
CGP by a factor of ten or more. Time constraints meant this sort of experimentation
was impossible for the SWCNT-PMMA material.

Since Thompson’s work it has been known that evolutionary algorithms with access
to physical resources can make use of them in ways that are difficult to analyse or
even predict [25]. Even so we were not expecting that instances of the TSP would be
solved almost as efficiently (in terms of sampling the solution space) and reliably (in
terms of successful runs) by the hybrid system using the SWCNT-PMMA material as an
optimised encoding of CGP. While it is difficult to draw exact comparisons between the
methods, both Table 1 and Figure 4 show that increasing the number of configuration

698 K.D. Clegg et al.

Table 1. Results for an optimised version of CGP and the hybrid evolutionary system with
SWCNT-PMMA material for different instances of the TSP. Note proximity in the median num-
ber of generations of highlighted instances despite a decrease in the average number of samples
from the solution space by a factor of almost ten.

Computation type Size of
TSP

No. of
configuration

voltages

Average no. of
generations for
successful runs

Median no. of
generations

Average %
sample of

solution space

SWCNT-PMMA
substrate

9 2 158.6 104.5 0.1751
9 3 57.36 42.5 0.0741
9 4 118.4 61.5 0.1308
10 2 157.95 155 0.0174
10 3 79.76 63.5 0.0086
10 4 68.03 46.5 0.0075
11 2
11 3
11 4 170.7 92 0.0017

Software (CGP
encording)

9 n/a 34.04 29.5 0.4599
10 n/a 48.96 40.5 0.0643
11 n/a 91.96 65.5 0.0065

voltages exposed to evolutionary selection seems to improve search performance up
to point, beyond which the performance starts to degrade again. We do not yet have a
hypothesis as to why this is as it is impossible to know what physical characteristics
in the material that the search algorithm is exploiting. However, the results hold true
across different SWCNT-PMMA materials (i.e. changing the percentage of CNT within
the PMMA) and across different city layouts for the TSP instances (e.g. random and
irregular geometric arrangements).

Some instability observed in the population’s fitness scores during the evolutionary
runs for TSPs with 2 configuration voltages (first column in Figure 4) led us to suspect
that increasing the number of configuration voltages on larger instances would lead
to better performance. While we observed almost identical levels of performance for
10 city with 4 configuration voltages as for 9 city with 3, we are unable to verify the
performance of the hybrid system on an 11 city TSP beyond 4 configuration voltages as
this is the maximum number of analogue outputs that our current equipment supports.
It may be the case that there is a “sweet spot” for optimal performance based on the
proportion of configuration voltages to the number of cities in the TSP instance, which
from our (limited) initial results might be somewhere between a third and a half (e.g.
12 city might need around 5).

The instability during some evolutionary runs is caused by voltages that are recorded
as floating point numbers in the sorting vector converging to nearly identical values.
Noise (in the µV range) can then cause a radical difference to the permutation that
determines which order the cities are visited. This re-ordering of vector values can mean
that a search run which had reached a plateau representing a local fitness optima can
escape and go on to find the global optimum. We suspect this “feature” of the hardware
may be one factor that helps the SWCNT-PMMA materials outperform CGP in one
case, although we are aware this argument is contrary to results for the 9 city TSP with
3 and 10 city with 4 configuration voltages as in these instances there is almost no
instability recorded during the evolutionary runs and there may well be more important
factors.

Travelling Salesman Problem Solved 699

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200

F
it
n

e
s
s
 s

c
o

re
s
 (

 p
a

th
 d

is
ta

n
c
e

)

3 config 9 city TSP. Median no. of generations: 42.5

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200
4 config 9 city TSP. Median no. of generations: 61.5

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200

F
it
n

e
s
s
 s

c
o

re
s
 (

 p
a

th
 d

is
ta

n
c
e

)

3 config 10 city TSP. Median no. of generations: 63.5

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200
4 config 10 city TSP. Median no. of generations: 46.5

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200

F
it
n

e
s
s
 s

c
o

re
s
 (

 p
a

th
 d

is
ta

n
c
e

)

Number of Generations

4 config 11 city TSP. Median no. of generations: 92

200 400 600 800 1000 1200
600

700

800

900

1000

1100

1200

Number of Generations

4 config 11 city TSP. Median no. of generations: 92

Fig. 4. The plots show the evolutionary histories of 30 runs of 9, 10 and 11 TSP instances using
the same SWCNT-PMMA material over 1500 generations. There appears to be a “sweet spot”
for the number of configurations voltages for optimal search performance that may increase as
the number of cities increases. Unfortunately we cannot confirm this as our current hardware is
limited to a maximum of 4 configuration voltages. Note how the material struggles with insuf-
ficient configuration voltages; those runs using 2 configuration voltages all show instability and
occasional failure to find the shortest path. The median number of generations to find the shortest
path is given as some runs have outliers.

Another intriguing finding is that despite the factorial increase in solution space be-
tween 9, 10 and 11 city TSPs, the average number of generations for the SWCNT-
PMMA material to find the shortest path remains almost constant in the best cases. This
might suggests that the performance of the hybrid system with the SWCNT-PMMA
material could have a linear time complexity (rather than exponential) on NP complete
problems such as the TSP. However until we are able to build and test larger SWCNT-
PMMA electrode arrays, we are cannot confirm that this is the case and can only say
that the potential for the hybrid SWCNT-PMMA system to solve large instances of the
TSP efficiently appears promising.

700 K.D. Clegg et al.

5 Conclusion

Currently our 16 electrode array and low number of analogue outputs restrict the max-
imum size of TSP we can tackle. However, our most recent experiments suggest it is
possible to split the genome of TSP configuration so that the problem is effectively
halved. This allows us to sequentially process much larger TSP instances using the
same array. While this appears to work, the evolutionary runs are more than doubled
in duration making it difficult to acquire meaningful performance data. However, as a
proof of concept it lays the way towards trying to tackle scalability by making two 4x4
arrays and using them to solve a single larger instance of the TSP. Such an approach
would demonstrate parallel computation that could massively speed up search times, as
all inputs to the problem are read simultaneously. While we are at an early stage in this
research, we believe that it may be possible in the future to configure many thousands of
small SWCNT-based electrode arrays to perform a computation in the way we currently
manufacture and program millions of logic gates in silicon.

References

1. Walker, J., Trefzer, M., Bale, S., Tyrrell, A.: Panda: A reconfigurable architecture that adapts
to physical substrate variations. IEEE Transactions on Computers 62(8), 1584–1596 (2013)

2. Walker, J.A., Trefzer, M.A., Tyrrell, A.M.: Designing function configuration decoders for the
PAnDA architecture using multi-objective cartesian genetic programming. In: Suganthan,
P.N. (ed.) 2013 IEEE Symposium Series on Computational Intelligence, Singapore, April
16-19, pp. 96–103 (2013)

3. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project: Nanoscale
engineering for novel computation using evolution. International Journal of Unconventional
Computing 8(4), 313–317 (2012)

4. Graham, A.P., Duesberg, G.S., Hoenlein, W., Kreupl, F., Liebau, M., Martin, R., Rajasekha-
ran, B., Pamler, W., Seidel, R., Steinhoegl, W., Unger, E.: How do carbon nanotubes fit into
the semiconductor roadmap? Applied Physics A 80(6), 1141–1151 (2005)

5. Harding, S., Miller, J.F.: Evolution in materio: Evolving logic gates in liquid crystal. Inter-
national Journal of Unconventional Computing 3(4), 243–257 (2007)

6. Thompson, A.: Evolving electronic robot controllers that exploit hardware resources. In:
Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp.
640–656. Springer, Heidelberg (1995)

7. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation in materi-
als. Evolutionary Intelligence 7, 49–67 (2014)

8. Mills, J.W.: Polymer processors, tech. rep. tr580. Technical report, Department of Computer
Science, University of Indiana (1995)

9. Harding, S., Miller, J.F.: Evolution in materio: Investigating the stability of robot controllers
evolved in liquid crystal. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS,
vol. 3637, pp. 155–164. Springer, Heidelberg (2005)

10. Thompson, A.: Evolving fault tolerant systems. In: Proc. 1st IEE/IEEE Int. Conf. on Genetic
Algorithms in Engineering Systems: Innovations and Applications (GALESIA 1995), IEE
Conf. Publication No. 414, pp. 524–529 (1995)

11. Harding, S., Miller, J.: Evolution in materio: a tone discriminator in liquid crystal. In:
Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 1800–1807 (June 2004)

Travelling Salesman Problem Solved 701

12. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266
(5187), 1021–1024 (1994)

13. Adamatzky, A.: Reaction-Diffusion Automata: Phenomenology, Localisations, Computa-
tion. Springer, Heidelberg (2013)

14. Thompson, A.: Exploring beyond the scope of human design: Automatic generation of FPGA
configurations through artificial evolution (Keynote). In: Proc. 8th Annual Advanced PLD &
FPGA Conference, Miller Freeman, pp. 5–8 (1998)

15. Harding, S.L., Miller, J.F., Rietman, E.A.: Evolution in materio: Exploiting the physics
of materials for computation. International Journal of Unconventional Computing 4(2),
155–194 (2008)

16. Reinelt, G.: The Traveling Salesman. LNCS, vol. 840. Springer, Heidelberg (1994)
17. Fatih Tasgetiren, M., Sevkli, M., Yun-Chia, L., Gencyilmaz, G.: Particle swarm optimization

algorithm for single machine total weighted tardiness problem. In: Congress on Evolutionary
Computation, CEC 2004, vol. 2, pp. 1412–1419 (2004)

18. Tasgetiren, F., Chen, A., Gencyilmaz, G., Gattoufi, S.: Smallest position value approach.
In: Onwubolu, G.C., Davendra, D. (eds.) Differential Evolution: A Handbook for Global
Permutation-Based Combinatorial Optimization. SCI, vol. 175, pp. 121–138. Springer, Hei-
delberg (2009)

19. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Frommann-Holzbog (1973)

20. Schwefel, H.P.: Numerical optimization of Computer models. John Wiley & Sons, Ltd.
(1981)

21. Beyer, H.G., Schwefel, H.P., Wegener, I.: How to analyse evolutionary algorithms. Theoret-
ical Computer Science 287(1), 101–130 (2002)

22. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)
23. Miller, J.F., Mohid, M.: Function optimization using Cartesian Genetic Programming. In:

Proc. Conf. on Genetic and Evolutionary Computation (Companion), pp. 147–148 (2013)
24. Walker, J., Miller, J.F.: The automatic acquisition, evolution and re-use of modules in carte-

sian genetic programming. IEEE Transactions on Evolutionary Computation 12, 397–417
(2008)

25. Thompson, A.: An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. In: Higuchi,
T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 390–405. Springer,
Heidelberg (1997)

Randomized Parameter Settings for Heterogeneous
Workers in a Pool-Based Evolutionary Algorithm

Mario García-Valdez1, Leonardo Trujillo1,
Juan Julián Merelo-Guérvos2, and Francisco Fernández-de-Vega3

1 Instituto Tecnológico de Tijuana, Tijuana B.C., México
2 Universidad de Granada, Granada, Spain

3 Grupo de Evolución Artificial, Universidad de Extremadura, Mérida, Spain
{mario,leonardo.trujillo}@tectijuana.edu.mx

jmerelo@geneura.ugr.es, fcofdez@unex.es

Abstract. Recently, several Pool-based Evolutionary Algorithms (PEAs) have
been proposed, that asynchronously distribute an evolutionary search among het-
erogeneous devices, using controlled nodes and nodes outside the local network,
through web browsers or cloud services. In PEAs, the population is stored in a
shared pool, while distributed processes called workers execute the actual evolu-
tionary search. This approach allows researchers to use low cost computational
power that might not be available otherwise. On the other hand, it introduces the
challenge of leveraging the computing power of heterogeneous and unreliable
resources. The heterogeneity of the system suggests that using a heterogeneous
parametrization might be a better option, so the goal of this work is to test such
a scheme. In particular, this paper evaluates the strategy proposed by Gong and
Fukunaga for the Island-Model, which assigns random control parameter values
to each worker. Experiments were conducted to assess the viability of this strat-
egy on pool-based EAs using benchmark problems and the EvoSpace framework.
The results suggest that the approach can yield results which are competitive with
other parametrization approaches, without requiring any form of experimental
tuning.

Keywords: Pool-based Evolutionary Algorithms, Distributed Evolutionary Al-
gorithms, Algorithm Parametrization.

1 Introduction

Evolutionary computation (EC) research has allowed scientists and engineers from
many fields to understand the power of the natural search process described by the bi-
ological theory of Neo-Darwinian evolution [13]. Inspired in biological evolution, EC
researchers have developed a variety of search and optimization algorithms [6]. While
EAs are inspired by evolution, they mostly follow an abstract model of the natural pro-
cess. For instance, one aspect that is omitted from most EAs is the open-ended nature
of evolution, in practice EAs are used to solve problems with well defined objectives,
while natural evolution is an adaptive process without an a priori goal or purpose. Bio-
logical evolution is also an intrinsically parallel, distributed and asynchronous process,

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 702–710, 2014.
c© Springer International Publishing Switzerland 2014

Randomized Parameter Settings for Heterogeneous Workers in a PEA 703

undoubtedly important features that have allowed evolution to produce impressive re-
sults throughout nature. However, some of these features are not trivially included into
standard EAs [1], which are mostly coded as sequential and synchronous algorithms
[6]. For instance, a large body of work exists in EA parallelization, a comprehensive in-
troduction can be found in [1]. However, distributed and asynchronous EAs have started
to become common only recently. In particular, recent trends in information technology
have opened new lines of future development for EC research.

Today, computing resources range from personal computers and smart-devices to
massive data centers. These resources are easily accessible through Internet technolo-
gies, such as cloud computing, peer-to-peer networks and web environments. Several
EAs have been proposed that distribute the evolutionary process among heterogeneous
devices, not only among controlled nodes within an in-house cluster or grid, but also
to others outside the data center, in web browsers, smart phones or cloud services. This
reach out approach allows researchers to use low cost computational power that would
not be available otherwise, but on the other hand, have the challenge to manage hetero-
geneous and mostly unreliable computing resources. In particular, we are interested in
systems that follow a pool-based approach, where the search process is conducted by a
collection, of possibly heterogeneous, collaborating processes using a shared repository
or population pool. We will refer to such algorithms as pool-based EAs or PEAs, which
are intrinsically parallel, distributed and asynchronous.

Despite promising results, PEAs present several challenges. From a technological
perspective, lost connections, low bandwidth, abandoned work, security and privacy
are all important issues. This work, however, focuses on algorithm parametrization, a
common issue with most EAs that is amplified in a PEA. In general, EAs are sometimes
criticized by the large number of parameters they posses, that for real world problems
need to be tuned empirically or require additional heuristic processes to be included
into the search to adjust the parameters automatically [15, 16]. In the case of a PEAs,
this issue is magnified since the underlying system architecture adds several degrees of
freedom to the search process, with unknown interactions.

This work studies the recently proposed EvoSpace system, a framework to develop
PEAs using an heterogeneous collection of possibly unreliable computing resources.
Despite promising initial results [9–11, 21], research devoted to EvoSpace has not ad-
dressed the parametrization issue. Therefore, in this paper the recent approach called
Randomized Parameter Setting Strategy (RPSS) [12, 20] is tested with EvoSpace. The
idea behind RPSS is that in a distributed EA, algorithm parametrization may be com-
pletely skipped and still conduct a successful search. Results suggest that when the
number of distributed process is large enough, algorithm parameters can be set ran-
domly and still achieve good results. However, work on RPSS has only focused on
the well-known Island Model for EAs, a distributed but synchronous system. On the
other hand, the goal of this work is to evaluate RPSS on a PEA implemented through
EvoSpace, that does not have a fixed population structure.

The remainder of the paper proceeds as follows. Section 2 reviews related work.
Section 3 briefly describes the EvoSpace framework and provides implementation de-
tails. The problem statement and experimental work are presented in Section 4. Finally,
concluding remarks are outlined in Section 5.

704 M. García-Valdez et al.

2 Related Work

In terms of parallelizing EAs, a large body of work has been developed, covering many
different EAs, with important practical and theoretical results [1]. However, only re-
cently has the topic of distributed systems been explored. For instance, Fernández et
al. [8] use the Berkeley Open Infrastructure for Network Computing (BOINC) to dis-
tribute EA runs across an heterogeneous network of volunteer computers using virtual
machines. However, such a system, as well as most distributed and parallel systems,
does not follow the PEA approach studied in the current paper. In general, a pool-
based system employs a central repository where the evolving population is stored.
Distributed clients interact with the pool, performing some or all of the basic EA pro-
cesses (selection, genetic operators, survival). For example, Smaoui Feki et al. [19] uses
BOINC redundancy to deal with the volatility of computing nodes. In that work each
BOINC work unit consisted of a fitness evaluation task and multiple replicas were pro-
duced and sent to different clients. Merelo et al. [17] developed a Javascript PEA that
distributes the evolutionary process over web browsers, this provides the added advan-
tage of not requiring additional software installations on client machines. Other similar
cloud-based solutions are based on a global queue of tasks and a Map-Reduce imple-
mentation [5, 7, 18]. The current work, however, focuses on the EvoSpace presented in
[9–11, 21] and summarized in Section 3.

One of the main problems with implementing successful EAs is parameter tuning
[16], of particular importance in real-world scenarios, where usually there is little prior
insights regarding what might be the best configuration for an EA, especially if the
intent is to use it as a black-box optimizer; a comprehensive survey on this topic is given
in [16]. Indeed, this problem has received a growing level of interest in recent years, as
evidenced by the Self-Search track at GECCO for instance, where the aim is to develop
self-adaptive or auto-tuning systems that reduce the amount of human intervention that
might be required before performing an EA-based search or optimization.

A noteworthy contribution in [16] is the chapter by Cantú Paz that tackles the prob-
lem of deriving theoretical models of the effects of key EA parameters, such as popu-
lation size and migration schemes in Island-Model EAs (IMEA) [2]. However, it does
not cover the effects of all possible parameters, or the specific intricacies of a PEA al-
gorithm. Here, we would stress some important differences between PEAs and IMEAs.
First, an IMEA presents a fixed topological structure, with a predefined interaction pro-
tocol among each evolving population, this leads to a coordinated, or even synchro-
nized, interaction between the islands. On the other hand, a PEA does not include such
constraints, which means that the interactions between workers is much less structured
or controlled. Second, in an IMEA each island represents an individual evolutionary
process, sharing some of the same dynamics as standard EAs. In a PEA, however, only
a single centralized population exists, samples of which are distributed across workers,
but ultimately combined once again in the centralized pool. Therefore, some of the well-
known insights derived from IMEA research (regarding, for example, migration poli-
cies) are not necessarily relevant in the PEA framework. Therefore, new parametrization
approaches must be explored.

Several parameter tuning methodologies for EAs are presented in [16], that can sub-
stantially reduce the computational cost when compared with an exhaustive search in

Randomized Parameter Settings for Heterogeneous Workers in a PEA 705

parameter space. However, these methods focus on standard EAs, based on serial and
synchronous searchers. On the other hand, recent works [12, 20] have shown a promis-
ing simpler alternative to tune EAs that employ multiple evolving populations. In par-
ticular, the RPSS approach proposed in [12] which quite intriguing given its simplicity.
First, consider the original configuration studied in [12, 20], an IMEA where a set of
N separate populations, or demes, run semi-isolated evolutionary processes, organized
using a particular neighborhood structure, such as ring or a random graph. Each deme
is not totally isolated, since after a certain amount of time (generations or function eval-
uation) a set of individuals is exchanged between neighboring demes, a process known
as migration. Obviously, drastically increasing the number of system parameters makes
sweeping parameter space computationally unfeasible, since it is not possible to as-
sume that the best configuration is an homogeneous system where all demes share the
same parametrization. Moreover, the additional complexity of the Island Model incor-
porates additional degrees of freedom that must be tuned before performing a run. Such
a tuning task can become overwhelming, particularly if the number of islands is large.
Therefore, the proposal in [12] is to set the parameter values randomly, without a tun-
ing or self-adaptive process whatsoever. The RPSS approach is to set the parameters of
each deme randomly at the beginning of the run, a very simple and apparently naive ap-
proach. Nevertheless, results reported in [12, 20] show promise, achieving competitive
results while substantially reducing the amount of effort required to tune the system (the
approach only requires the user to specify a range of valid values for each parameter).

3 EvoSpace

EvoSpace is based on the tuple space model [11], consisting of two main components
(see figure 1): (i) the EvoSpace container that stores the population and (ii) EvoWork-
ers, which execute the actual evolutionary process, while EvoSpace acts only as a pop-
ulation repository. In a basic configuration, EvoWorkers pull a small random subset
of the population, and use it as the initial population for a local EA executed on the
client machine. Afterward, the evolved population from each EvoWorker is returned
to the EvoSpace container. When individuals are pulled from the container they re-
main in a phantom state, they cannot be pulled again but they are not deleted. Only
if the EvoWorker returns new individuals, are the phantom individuals deleted. If the
EvoSpace container is at risk of starvation or when a time-out occurs, phantom individ-
uals are reinserted and made available again. This can be done because a copy of each
sample is stored in a priority queue, used to re-insert the sample to the central popula-
tion; similar to games where characters are re-spawned. In the experiments conducted
in this work re-insertion occurs when the population size is below a certain threshold.
Figure 1 illustrates the main EvoSpace components.

The population of an EA is stored in-memory using the key-value database Redis, cho-
sen because it provides a hash based implementation of sets and queues which are natural
data structures for a PEA model. EvoSpace is implemented as a python module and ex-
posed as a web service using Cherrypy. The EvoSpace modules are freely available with a
Simplified BSD License at https://github.com/mariosky/EvoSpace. The
EvoSpace system is deployed using Heroku, a multi-language Platform-as-a-Service

https://github.com/mariosky/EvoSpace

706 M. García-Valdez et al.

Fig. 1. Main components and dataflow within EvoSpace

(PaaS). The basic unit of composition on Heroku is a lightweight container running a
single user-specified process. These containers, which they call dynos, can include web
(only these can receive http requests) and worker processes (including systems used
for database and queuing, for instance). Once deployed the web process can be scaled
up by assigning more dynos; in our case and in the more demanding configurations of
our experiments, the web process was scaled to 20 dynos. Instructions and code for de-
ployment is available at https://github.com/mariosky/EvoSpace. For the
experiments carried out for this paper, EvoSpace workers are distributed using the Pi-
Cloud PaaS.

4 Problem Statement and Experimental Work

As stated before, one of the main practical issues with EAs is parameter tuning. Fol-
lowing [12], the proposal of the current work is to apply the RPSS approach to a PEA
developed with EvoSpace. However, before turning to the experimental work, lets high-
light the main differences between a PEA and the Island Model studied in [12, 20]. First,
the Island Model is a synchronous EA, while it implements a higher level of paralleliza-
tion than a normal EA, and is amenable to distributed implementations, it still relies on
a synchronized system to perform migration events. Second, the PEA approach based
on EvoWorkers can be implemented as a more heterogeneous system than the Island
Model, since new EvoWorkers can be added or removed dynamically. In particular, the
sample (population) size and number of generations executed by each EvoWorker can
be different, since synchronized migrations do not take place. Notice that in EvoSpace,
there is no explicit migration process, on the other hand EvoWorkers exchange pop-
ulation members through the centralized pool. These differences could be important

https://github.com/mariosky/EvoSpace

Randomized Parameter Settings for Heterogeneous Workers in a PEA 707

Table 1. Ranges for each EvoWorker parameter

Parameter Range

Crossover probability [0,1]
Mutation probability [0,1]
Sample Size [12,24]
Generations [5,30]

regarding the applicability of RPSS on an EvoSpace PEA, which is evaluated in the
experimental work.

Therefore, the goal of this paper is to evaluate RPSS on a PEA developed over
EvoSpace, in particular a genetic algorithm (GA). In other words, to determine if a
random configuration for each of the n EvoWorkers that collaborate on a given run can
achieve competitive results. The parameters considered are: 1) crossover probability; 2)
mutation probability; 3) sample size; and 4) number of generations (executed locally in
each EvoWorker). The valid ranges established for each parameter are summarized in
Table 1.

To gauge the effectiveness of RPSS on a PEA, it is compared with three different
parametrization strategies, similar to what is done in [12, 20]. All methods are compared
based on average performance over a set of runs. First, the simplest approach consists
on setting all of the EvoWorker parameters homogeneously. To do this, 200 random
parametrizations are created, based on the ranges established in Table 1. The average
performance of these runs characterizes the random-homogeneous parametrization, de-
noted Average-Homogeneous.From these runs, the best configuration is chosen, the one
that achieved the best results, and then 20 independent runs are carried out, this method
is called Best-Homogeneous 1. Finally, the random-heterogeneous-parametrization is
considered, where the parameters of each worker are set independently at random at the
beginning of each run; 20 independent runs are performed, the method is denoted as
Average-Heterogeneous.

4.1 Benchmark

The algorithms are evaluated using the P-Peaks generator of multimodal problems pro-
posed by De Jong et al. [3]. A P-Peaks instance is created by generating a set of P
random N-bit strings, which represent the location of the P peaks in the space. To eval-
uate an arbitrary bit string x first locate the nearest peak (in Hamming space). Then the
fitness of the bit string is the number of bits the string has in common with that nearest
peak, divided by N. The optimum fitness for an individual is 1. This particular problem
generator is a generalization of the P-peak problems introduced in [4], defined by

fP−PEAKS(x) =
1
N

P
max
i=1

{N− hamming(x,Peaki)} . (1)

1 This is a very naive approach to choose the best possible configuration, with much more com-
prehensive approaches reviewed in [16]. However, here we use the Best-Homogeneous ap-
proach for direct comparison with [12, 20].

708 M. García-Valdez et al.

Table 2. GA configuration for each benchmark problem

Feature P-Peaks

Crossover (probability) Two Points (0.7)
Mutation (probability) Flip Bit (0.2)
Selection Tournament (size=4)
Variable range {0,1}
Survival Elitist (Keep-Best)
Individuals in the Pool 300,1000 (16,120 workers)

(a) 16 EvoWorkers (b) 120 EvoWorkers

Fig. 2. Convergence plots for the P-Peaks with 16 (a) and 120 (b) EvoWorkers

A large number of peaks induces a time-consuming search, which is convenient since
in order to justify a distributed EA implementation, the cost of computing fitness has
to be significantly larger than the implicit communication costs over the network or
Cloud. However, according to Kennedy and Spears [14] the length of the string being
optimized has a greater effect on the difficulty of the search.

4.2 Experimental Set-up and Results

Experiments are carried out using a different number N of EvoWorkers to solve the
benchmark problem. The first group of runs are done with N = 16 EvoWorkers, and the
second with N = 120. Based on [12, 20], it is assumed that with an increased number
of workers the RPSS approach should achieve relatively better results, much closer to
the Best-Homogeneous configuration. This is particularly important, since increasing
the number of EvoWorkers greatly magnifies the dimensionality of the tuning problem.
Results are summarized by tracking how the best solution varies with respect to the
total number of samples taken from the EvoSpace pool of individuals. These results are
presented in Figure 2, where the average performance for each of the three methods
evaluated here.

First, for the P-Peaks problem with 16 EvoWorkers we can see a clear trend, the
random Heterogeneous configuration is very similar with the best homogeneous con-
figuration, depicted in Figure 2(a). This is a promising initial observation, since the

Randomized Parameter Settings for Heterogeneous Workers in a PEA 709

heterogeneous configuration did not require any parameter tuning, while the best ho-
mogeneous configuration is chosen from a set of 200 runs. Moreover, we see that using
an homogeneous configuration with random values achieves noticeably inferior perfor-
mance. When the number of EvoWorkers is increased, shown in Figure 2(b), a similar
trend appears, however the differences among the algorithms is reduced. Nevertheless,
it is obvious that using a random heterogeneous parametrization can be used as an off-
the shelf approach on this problem.

5 Conclusions and Further Work

This paper presents an evaluation of the RPSS parametrization approach on a pool-
based EA developed over the EvoSpace system. The basic idea, which is quite simple,
is to randomly set the parameter values of each EvoWorker, that connect to the central
population pool and perform an independent evolutionary search on a sampled set of
individuals. While PEAs developed over EvoSpace have been studied before with good
initial results, they suffer from the fact that they have a large number of degrees-of-
freedom, requiring extensive parameter tuning. However, using the RPPS approach, it
seems that a PEA can be executed successfully without any form of parameter tuning,
achieving comparable results to standard homogeneous parametrizations. Future work
will focus on exploring the limits of the approach using a more diverse set of benchmark
problems, as well as other EA techniques, such as genetic programming or particle
swarm optimization.

Acknowledgements. Funding provided by CONACYT (Mexico) Project No. 29537
from the Programa de Estimulo a la Innovación, CONACYT Basic Science Re-
search Project No. 178323, DGEST (Mexico) Research Projects No.5149.13-P and
TIJ-ING-2012-110, and IRSES project ACoBSEC from the European Commission.
Additional funding provided by projects P08-TIC-03903 (Andalusian Regional Gov-
ernment), TIN2011-28627-C04-02 (Spanish Ministry of Science and Innovation),
project 83 (CANUBE) awarded by the CEI-BioTIC UGR. Regional Government Junta
de Extremadura, Consejería de Economía, Comercio e Innovación and FEDER, project
GRU10029.

References

1. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. John Wiley & Sons (2005)
2. Cantú-Paz, E.: Parameter setting in parallel genetic algorithms. In: Lobo, F.G., Lima, C.F.,

Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp.
259–276. Springer, Heidelberg (2007)

3. De Jong, K.A., Potter, M.A., Spears, W.M.: Using problem generators to explore the effects
of epistasis. In: Bäck, T. (ed.) ICGA, pp. 338–345. Morgan Kaufmann (1997)

4. De Jong, K.A., Spears, W.M.: An analysis of the interacting roles of population size and
crossover in genetic algorithms. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS,
vol. 496, pp. 38–47. Springer, Heidelberg (1991)

710 M. García-Valdez et al.

5. Di Martino, S., Ferrucci, F., Maggio, V., Sarro, F.: Towards migrating genetic algorithms
for test data generation to the cloud. In: Software Testing in the Cloud: Perspectives on an
Emerging Discipline, pp. 113–135. IGI Global (2013)

6. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)
7. Fazenda, P., McDermott, J., O’Reilly, U.-M.: A library to run evolutionary algorithms in

the cloud using mapReduce. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS,
vol. 7248, pp. 416–425. Springer, Heidelberg (2012)

8. Fernández De Vega, F., Olague, G., Trujillo, L., Lombraña González, D.: Customizable ex-
ecution environments for evolutionary computation using boinc + virtualization. Natural
Computing 12(2), 163–177 (2013)

9. Garcia-Valdez, M., Mancilla, A., Trujillo, L., Merelo, J.-J., Fernandez-de Vega, F.: Is there a
free lunch for cloud-based evolutionary algorithms? In: 2013 IEEE Congress on Evolution-
ary Computation (CEC), pp. 1255–1262 (2013)

10. García-Valdez, M., Trujillo, L., de Vega, F.F., Merelo Guervós, J.J., Olague, G.: Evospace-
interactive: A framework to develop distributed collaborative-interactive evolutionary algo-
rithms for artistic design. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART
2013. LNCS, vol. 7834, pp. 121–132. Springer, Heidelberg (2013)

11. García-Valdez, M., Trujillo, L., Fernández de Vega, F., Merelo Guervós, J.J., Olague, G.:
EvoSpace: A Distributed Evolutionary Platform Based on the Tuple Space Model. In:
Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 499–508. Springer,
Heidelberg (2013)

12. Gong, Y., Fukunaga, A.: Distributed island-model genetic algorithms using heterogeneous
parameter settings. In: IEEE Congress on Evolutionary Computation, pp. 820–827. IEEE
(2011)

13. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)
14. Kennedy, J., Spears, W.: Matching algorithms to problems: an experimental test of the parti-

cle swarm and some genetic algorithms on the multimodal problem generator. In: The 1998
IEEE International Conference on Evolutionary Computation Proceedings, IEEE World
Congress on Computational Intelligence 1998, pp. 78–83 (May 1998)

15. Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. SCI, vol. 147. Springer,
Heidelberg (2008)

16. Lobo, F.G., Lima, C.F., Michalewicz, Z.: Parameter Setting in Evolutionary Algorithms.
Springer Publishing Company, Incorporated (2007)

17. Merelo-Guervos, J., Castillo, P., Laredo, J.L.J., Mora Garcia, A., Prieto, A.: Asynchronous
distributed genetic algorithms with Javascript and JSON. In: 2008 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1372–1379 (June 2008)

18. Sherry, D., Veeramachaneni, K., McDermott, J., O’Reilly, U.-M.: Flex-GP: Genetic program-
ming on the cloud. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp.
477–486. Springer, Heidelberg (2012)

19. Smaoui Feki, M., Nguyen, H.V., Garbey, M.: Parallel genetic algorithm implementation for
boinc. In: PARCO, pp. 212–219 (2009)

20. Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy for
island-model evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp.
1263–1270. IEEE (2013)

21. Trujillo, L., Valdez, M.G., de Vega, F.F., Guervós, J.J.M.: Fireworks: Evolutionary art
project based on evospace-interactive. In: IEEE Congress on Evolutionary Computation, pp.
2871–2878. IEEE (2013)

PaDe: A Parallel Algorithm Based on the

MOEA/D Framework and the Island Model

Andrea Mambrini1,� and Dario Izzo2

1 University of Birmingham, Birmingham, UK
2 European Space Agency, Noordwijk, The Netherlands

Abstract. We study a coarse grained parallelization scheme (thread
based) aimed at solving complex multi-objective problems by means of
decomposition. Our scheme is loosely based on the MOEA/D framework.
The resulting algorithm, called Parallel Decomposition (PaDe), makes
use of the asynchronous generalized island model to solve the various de-
composed problems. Efficient exchange of chromosomic material among
islands happens via a fixed migration topology defined by the proximity
of the decomposed problem weights. Each decomposed problem is solved
using a generic single objective evolutionary algorithm (in this paper we
experiment with self-adaptive differential evolution (jDE)). Comparing
our algorithm to MOEA/D-DE we find that it is attractive in terms of
performances and, most of all, in terms of computing time. Experiments
with increasing numbers of threads show that PaDe scales well, being
able to fully exploit the number of underlying available cores.

1 Introduction

In many real-world decision problems several conflicting criteria need to be op-
timized at the same time. Those problems can be modelled as Multi-objective
Optimization Problems (MOPs). A MOP is defined as follow:

Minimize F (x) = (f1(x), . . . , fo(x))
subject to x ∈ Ω

where Ω is the decision space, F (x) : Ω → Ro consists in o objective functions,
Ro being the objective space. In continuous problems Ω ⊂ Rs and s is defined as
the problem size.

Being u = (u1, . . . , uo) and v = (v1, . . . , vo) two objective vectors in Ω, we say
that u dominates v if ui ≤ vi for i = 1, . . . , o and the strict inequality sign holds
for at least one objective. A point x∗ ∈ Ω is called Pareto Optimal if there isn’t
any x ∈ Ω such that F (x) dominates F (x∗). The set of all pareto optimal points
in Ω is called Pareto Set and the set of the associated objectives is called Pareto
Front. The aim of a multi-objective optimisation algorithm is to find a well spread
set of points in the Pareto Set, or as close as possible to the Pareto Set.
� Andrea Mambrini has been partially supported by EPSRC through grant no.
EP/I010297/1.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 711–720, 2014.
c© Springer International Publishing Switzerland 2014

712 A. Mambrini and D. Izzo

Traditionally, multi-objective evolutionary algorithms (MOEAs) are
dominance-based. In dominance-based algorithms, individuals are selected using
the Pareto dominance notion and some auxiliary criteria aimed at maintaining a
good distribution along the same non-dominated front. Examples of dominance-
based MOEAs are NSGA-2 [1] and SPEA-2 [2]. Decomposition is another way
to solve a MOP. MOEA/D [3] decomposed the original multi-objective problem
into many single objective problems constructed in a way that the optimal so-
lution to each of these subproblems is a point on the optimal Pareto Front of
the original MOP. It then uses a single-objective optimization algorithm to solve
concurrently the subproblems and returns as Pareto Set the union of the optimal
solution to each single objective subproblem.

There are two main components of a MOEA/D. The first one is the mech-
anism to decompose the MOP into subproblems. Traditionally weight vectors
are randomly generated and from each of them a single objective problem is
obtained using weighted sum [4], Tchebycheff [4] or Boundary Intersection [5].
Some recent work propose a way to adapt the weight vectors throughout the
run [6]. The second important component is the way to solve the single ob-
jective problems obtained from the decomposition. The original approach uses
point crossover and standard mutation [3], while other approaches use different
operators, e.g. from Differential Evolutions [7] or Particle Swarm Optimization
[8]. As the decomposed problems are solved concurrently, it is natural to con-
sider parallel implementations of a MOEA/D algorithm. In recent work [9] [10] a
thread-based parallelization of MOEA/D-DE has been proposed. The approach,
a fine-grained scheme, is that of parallelizing the original MOEA/D-DE algo-
rithm by dividing the main population loop in different threads. In order for
this fine-grained approach to balance the work load across threads, the number
of threads must be kept small in comparison to the population size and the
objective function evaluation must account for most of the computing time.

In this paper we introduce a new algorithm called Parallel Decomposition
(PaDe) using a different approach to parallelize a MOEA/D algorithm. The
idea is to solve each subproblem in a separate logical computational unit and
to then use the island model [11] paradigm to introduce exchange of solutions
across problems. In an island model, several subpopulations (islands) are evolved
independently. Selected individuals are then sent to other islands during a pro-
cess called migration. Island models are well suited for parallelization since group
of islands can run in parallel on different computational units. Traditionally in
an island model each island runs the same algorithm and solves the same prob-
lem. PaDe uses instead a generalised (or heterogeneous) island model where
each island solves a different problem and can run a different optimisation algo-
rithm [12]. A recent theoretical work studied how heterogeneous island models
can find approximate solutions to NP-Hard problems [13]. Compared to fine-
grained parallelization approaches the asynchronous island model at the core of
PaDe, is suitable for modern multi-cores architectures as well as for heteroge-
neous parallel architecture (e.g. grid computing). Moreover the modularity of
this approach allow to employ any single objective solver or even run different

PaDe: A Parallel Algorithm Based on the MOEA/D Framework 713

ones on each island, thus assigning different areas of the Pareto Front to different
algorithms.

We made a C++ implementation of PaDe available as part of the open source
scientific library PaGMO [14], and its python front-end PyGMO [15].

Firstly we compare PaDe (with a self-adaptive version of Differential Evolu-
ton) to the MOEA/D-DE algorithm [7]. We will show that the two approaches
get similar pareto front’s quality. We then investigate the parallel performances
of PaDe showing how increasing the number of threads up to the population size,
PaDe is able, unlike fine grained approach proposed elsewhere [9] [10], to fully
take advantage of the underlying cores (linear speedup) even when the objective
function has small computational cost.

2 Algorithm Definition

PaDe is a multi-objective evolutionary framework based on decomposition and
parallelized using the island model. It first generates m weight vectors of dimen-
sion o (being o the number of objectives of the original multi-objective problem)
using a weight vector generation method W . The o components of the weight
vector must sum to 1, thus the vector must lie on the standard (o− 1)-simplex.
The weight vectors can be generated using one of the following methods:

– GRID : the weights are generated to optimally maximize their spread as
described in [3]. Using this method it is not possible to generate any amount
of weight vectors. In fact, for any fixed H ∈ N this method can generate
m =

(
o−1

H+o−1

)
, where o is the dimension of the weight vectors.

– RANDOM : differently from GRID it can generate any amount of vectors. It
generates each weight vector sampling uniformly at random between 0 and 1
each component. In order to enforce that the sum of all the components of a
weight vector is equal to 1, each vector is projected to the o-dimensional stan-
dard simplex. This method cannot guarantee the optimality of the spread as
the previous method.

– LOW-DISCREPANCY : a novel method to generate any amount of weight
vectors with a good spread. An Halton sequence [16] of m points of size o is
generated. As in the RANDOM method it is then projected to the standard
(o − 1)-simplex. This method is a good compromise between the maximum
spread guaranteed by the GRID method, and the freedom to generate any
amount of vectors guaranteed by RANDOM. We introduced this method as
in our island model it is often useful to increase/decrease the population sizes
adaptively, which would be not allowed by the standard weight generation
method GRID.

After generating the weight vectors, PaDe decomposes the originalmulti-objective
problem intom single objective problems Pi using one decomposition method be-
tweenWeighted, Tchebycheff and Boundary Intersection, obtaining each problem
from a weight vector wi. It then assigns each subproblem to an island defined by
a single-objective solver S and a population of size T + 1. The evolution of the

714 A. Mambrini and D. Izzo

islands is executed by n threads, each one taking care of evolving m/n islands.
In order to fully take advantage of the parallelism, n should be set at least as the
number of available computational nodes, so that each core will execute at least
one thread. Each island i, associated with the weight vector wi, is connected to
the T islands whose weight vectors are the closest to wi according to the Euclid-
ian distance: this way migration will exchange solutions between islands solving
similar problems.

Then the following is repeated for GP (PaDe’s number of generations) times:
each island is evolved using the single objective solver S for GS generations
(solver’s number of generations) and, at the end of the evolution, the worst T
individuals of each island are replaced from the best individuals from each of the
T neighbouring islands (migration). Eventually the union of the best individuals
from each island is returned as final population. Algorithm 1 provides an high
level pseudo-code description of PaDe.

Algorithm 1. PaDe (Decomposition method D, single-objective solver S,
weight generation method W , number of threads n)

Generate m weight vectors w1, . . . , wm using W
For each wi find the set Ni containing the T indices of the Euclidian closest weights

Generate m problems Pi using weights wi and decomposition method D
Create m random populations Pi of dimension T + 1
Assign each population Pi to a decomposed problem Pj

for k = 0 to GP do
Set s = 1
while s < (m+ n) do

for i = s to min(s+ n,m) in parallel do
Migrate solutions from Pj , j ∈ Ni

Evolve Pi using S for GS generations
s = s+ n

In its current implementation PaDe needs a reference point z∗ to be defined
upfront and kept fixed throughout the entire run. Such a point could also be de-
fined as the ideal point of the population and updated adaptively during the run,
similarly to what done in MOEA/D-DE. In the implementation here discussed
this is not done, and z∗ is defined as the origin of the axis, which is appropriate
as we experiment with DTLZ and ZDT problems. The online update of the z∗

point is indeed an area of improvement for PaDE and it is a delicate issue as
it must be implemented as to not break the island asynchronicity, while still
providing an effective adaptation mechanism for z∗.

2.1 Comparison to a Traditional MOEA/D Implementation

PaDe has several advantages compared to a traditional MOEA/D implementa-
tion: the main one being its simple and effective parallelization. In fact, MOEA/D
is a steady state algorithm as each individual must be evaluated in sequence.
This limit the possibility to solve the subproblems in parallel as it requires syn-
chronization between the nodes and communication at each generation. A simple

PaDe: A Parallel Algorithm Based on the MOEA/D Framework 715

transformation of MOEA/D-DE into a generational variant, on the other hand,
simply degrades too much performances. In PaDe we use asynchronous migration
to help each problem with solutions from the neighbours. This approach is eas-
ier to parallelize since each problem is independently solved by every island and
communication between islands doesn’t need to apply at each generation, while
the original performances are kept.

Moreover the island model used by PaDe is asynchronous. That means that
each island migrates when it is ready, without waiting for other islands, and each
island can receive immigrants at any moment. This and the fact that communi-
cation doesn’t need to happen at every generation, is particularly helpful when
PaDe is deployed on an heterogeneous parallel architecture mixing slow and fast
nodes, as for example a grid, where its performances, though, would be affected
and need to be evaluated.

The main disadvantage of PaDE is in the overhead caused by the internal
island model, and by the population based evolutionary algorithm used on each
subproblem, an overhead that is only justified when the decomposed problems
are hard, and thus the deployment of generic, state of the art, single objective
evolutionary algorithm on the decomposed problems is justified.

Finally PaDe is a flexible and modular algorithm: the decomposition and the
optimization of each single-objective subproblem are two phases that can be
designed independently. In our implementation [14] we propose a novel method
for the former (LOW-DISCREPANCY, see Section 2), while for the latter we
provide many well known single objective solvers (Covariance Matrix Adaptation
Evolutionary Startegy, Differential Evolution, PSO, Harmony Search, . . .).

3 Experiments

The aim of the experiments is to investigate the parallel scalability of PaDe and
whether this appraoch is competitive with other common MOEA/D implemen-
tations from a quality of the final Pareto Front point of view. First, we compare
PaDe (using a self-adaptive version of Differential Evolution as a solver) with
the MOEA/D-DE algorithm [7]. The implementations we used for both the algo-
rithms, are available as part of the open source scientific library PaGMO [14]. We
then investigate the parallel performances of PaDe showing how increasing the
number of threads up to the population size PaDe is able to fully take advantage
of the underlying cores.

3.1 Performance Measures

We have considered the following performance measures

– p-distance: measures the average distance between points on a non domi-
nated front and the optimal Pareto Front [17]. The indicator can only be
defined for ZDT and DTLZ problems and is zero if the non dominated front
belongs to the Pareto Front. A smaller p-distance is better. A zero p-distance
means that all points are on the Pareto Front.

716 A. Mambrini and D. Izzo

– Hypervolume: the hypervolume of the Pareto Front calculated according to
a reference point shared between both the algorithms and all the runs for
the same benchmark problem. The reference point is chosen as the largest
point to box all the final non dominated fronts, or equivalently as the nadir
point of the union of the populations of all the runs and all the algorithms
for the same benchmark problem. Since the reference point is different for
each problem we report the hypervolumes normalized as follow h̃i = (hi −
min(h1, h2))/max(h1, h2), where h1 and h2 are the hypervolume for PaDe
and MOEA/D-DE respectively. When the normalized hypervolume is zero,
it indicates that the algorithm achieved the smallest hypervolume. To know
how much smaller, one has to read the normalized hypervolume of the other
algorithm. Small values will indicate, essentially, that the same quality has
been achieved.

– Fitness Evaluations this is simply the number of calls to the fitness functions
throughout one run. In PaDe the number of fitness evaluations cannot be
fixed in advance as the inner algorithm S may have multiple termination
conditions (as jDE has). For a fair comparison GP has been set to get,in
almost all cases, a similar number of fitness evaluations between PaDe and
MOEA/D-DE.

– cpu-time for both the parallel and the sequential experiments this is the
wall-clock time for the algorithm to stop after evaluating the given number
of generations.

3.2 Sequential Experiments

PaDe running on a single thread has been tested against MOEA/D-DE on the
following continuous multi-objective benchmark problems ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6 (problem size equal to 30), and for the 3-objectives, 4-objectives
and 5-objectives version of DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6,
DTLZ7 (problem size equals to 30). For both the algorithms the decomposition
method is Tchebycheff, and weight vectors are generated using GRID (see Sec-
tion 2). The population size has been set to 100 for the 2-objectives problems,
105 for the 3-objectives ones, 120 for the 4-objectives ones and 126 for the 5-
objectives one to accommodate the limitation imposed by the grid method (see
Section 2). The number of neighbours is set to T=15.

PaDe runs for GP = 20 generations on n = 1 threads, the solver S used is a
self-adaptive differential evolution jDE [18] running for GS = 100 generations.
The best/1/exp variant is used. MOEA/D-DE uses a crossover probability equal
to 1, it uses both the diversity preserving mechanism described in [7] and it runs
for GD = 32000 generation. This has been chosen to have a comparable number
of generations between PaDe and MOEA/D. In fact PaDe needs to run the solver
on m populations of size T + 1. That means that approximately, the number of
fitness evaluations required by PaDe is GP ·m · (T +1) ·GS , while MOEA/D-DE
will perform approximatelym·GD fitness evaluations. We run the two algorithms
30 times on each problem. We report the median of the measures presented in
Section 3.1 on Table 1.

PaDe: A Parallel Algorithm Based on the MOEA/D Framework 717

Fig. 1. Comparison between the Pareto Fronts found by MOEA/D-DE (first row) and
PaDe (second row) on the 3-objective problems in which PaDe gets a worse p-distance
than MOEA/D-DE [DTLZ4,5,6,7 respectively in 1st, 2nd, 3rd and 4th column]

The two algorithms have comparable performances from a quality of the fronts
point of view. In Fig. 1 we show the Pareto Fronts for the problems in which
PaDe achieves higher p-distance than MOEA/D. Excluding DTLZ7 for which
MOEA/D-DE is much better, for the other problems the gap between MOEA/D-
DE and PaDe in term of p-distance is due to few point which don’t converge to
the optimal front rather than to the whole Pareto Front not converging. We sus-
pect this happens because MOEA/D-DE adapts the reference point throughout
the run, while PaDe fixes it to the origin. We don’t plot the Pareto Fronts for
the problems in which PaDe is better because they look very similar to the the
ones obtained by MOEA/D. From Table 1 we can also notice that the way we
set GS and GP is appropriate, since it leads to a comparable number of fitness
evaluations between MOEA/D and PaDe. Hypervolumes are still very similar
between the two methods, while in terms of cpu-time PaDe is faster even if it is
executed on a single thread.

3.3 Parallel Experiments

The scalability of PaDe has been tested running it on a 8-core machine with hy-
perthreading for increasing n (number of threads). Results for the ZDT, DTLZ-
3obj, DTLZ-4obj, DTLZ-5obj problems are summarized in Fig. 2. We define the
speedup as the ratio between the running time using an increasing number of
threads and the running time using just one thread. As all the problems tested
do not require to access neither memory nor other peripherals, hyperthreading
is not expected to help, thus the maximum theoretical speed-up achievable on
the tested architecture is sM = 8.

We see in Fig. 2 how increasing the number of threads up to the population
size PaDe is able to fully take advantage of the underlying cores and to get very
close to the linear speedup of 8 for most of the problems tested.

718 A. Mambrini and D. Izzo

T
a
b
le

1
.
Sequential

experim
ental

results.
In

grey
the

best
results

am
ong

the
tw

o
algorithm

s.
See

Section
3.1

for
a
description

of
the

perform
ance

m
easures.

p-distance
norm

alized
hypervolum

e
cpu-tim

e
F
itness

evaluations
P
rob/A

lg
P
aD

e
M
O
E
A
/D

-D
E

P
aD

e
M
O
E
A
/D

-D
E

P
aD

e
M
O
E
A
/D

-D
E

P
aD

e
M
O
E
A
/D

-D
E

Z
D
T
1

1.56e-06
2.04e-05

7.69e-06
0.00e+

00
5.83

12.34
3151320

3200000
Z
D
T
2

9.77e-07
9.94e-06

0.00e+
00

1.77e-05
5.70

12.31
3150480

3200000
Z
D
T
3

2.26e-01
2.73e-05

0.00e+
00

8.65e-05
5.33

13.01
2523240

3200000
Z
D
T
4

8.89e-09
8.01e-04

2.01e-04
0.00e+

00
15.39

21.95
2967360

3200000
Z
D
T
6

4.15e-01
2.38e-04

0.00e+
00

9.89e-05
6.48

13.43
2801200

3200000

D
T
L
Z
-3ob

j
1.23e-09

3.77e-03
0.00e+

00
1.20e-06

20.42
30.45

3050240
3360000

D
T
L
Z
2-3ob

j
1.38e-11

3.27e-04
0.00e+

00
2.02e-05

11.34
20.38

2976920
3360000

D
T
L
Z
3-3ob

j
5.18e-10

1.42e-03
0.00e+

00
2.56e-05

21.08
32.56

2968840
3360000

D
T
L
Z
4-3ob

j
3.00e-01

8.59e-04
0.00e+

00
1.22e-05

12.41
21.95

2952000
3360000

D
T
L
Z
5-3ob

j
7.16e-02

3.53e-05
0.00e+

00
4.31e-05

10.37
20.88

2692640
3360000

D
T
L
Z
6-3ob

j
5.39e-01

6.93e-06
0.00e+

00
4.37e-04

20.46
29.89

3341920
3360000

D
T
L
Z
7-3ob

j
4.44e-01

2.29e-04
0.00e+

00
5.84e-03

6.29
20.43

1774400
3360000

D
T
L
Z
1-4ob

j
3.68e-10

2.73e-03
0.00e+

00
1.89e-05

23.49
40.49

3518080
3840000

D
T
L
Z
2-4ob

j
3.14e-11

1.43e-04
0.00e+

00
9.62e-05

14.60
30.06

3422600
3840000

D
T
L
Z
3-4ob

j
2.99e-10

8.12e-04
0.00e+

00
6.16e-05

26.12
44.63

3411480
3840000

D
T
L
Z
4-4ob

j
6.37e-01

6.71e-04
0.00e+

00
2.13e-05

16.61
31.82

3308120
3840000

D
T
L
Z
5-4ob

j
1.19e+

00
9.07e-01

0.00e+
00

1.33e-05
12.82

33.21
2938800

3840000
D
T
L
Z
6-4ob

j
3.62e+

00
3.13e+

00
0.00e+

00
5.26e-04

25.33
76.12

3811040
3840000

D
T
L
Z
7-4ob

j
1.42e+

00
8.65e-04

0.00e+
00

7.74e-03
8.76

28.47
2421680

3840000

D
T
L
Z
1-5ob

j
2.51e-10

2.20e-03
0.00e+

00
2.13e-05

25.06
46.64

3752200
4032000

D
T
L
Z
2-5ob

j
7.29e-13

4.98e-05
0.00e+

00
1.07e-04

17.75
38.20

3691240
4032000

D
T
L
Z
3-5ob

j
1.90e-12

2.22e-03
0.00e+

00
5.76e-05

30.10
53.63

3673960
4032000

D
T
L
Z
4-5ob

j
1.06e+

00
9.13e-05

0.00e+
00

1.94e-05
21.25

41.26
3566560

4032000
D
T
L
Z
5-5ob

j
2.20e+

00
1.84e+

00
9.66e-04

0.00e+
00

14.08
33.54

2802120
4032000

D
T
L
Z
6-5ob

j
6.70e+

00
6.47e+

00
0.00e+

00
1.06e-05

28.78
75.43

3968080
4032000

D
T
L
Z
7-5ob

j
1.46e+

00
1.42e-03

0.00e+
00

5.47e-03
10.04

35.14
2669200

4032000

PaDe: A Parallel Algorithm Based on the MOEA/D Framework 719

Fig. 2. The number of threads used versus the speedup (ratio between the cpu-time
obtained with one thread and the cpu-time obtained with that amount of threads)

4 Conclusions

We have introduced a new multi-objective evolutionary approach, based on the
MOEA/D framework and on the island model. The new algorithm, called PaDe
is compared to MOEA/D-DE. Experiments show that PaDe can find good ap-
proximations to the Pareto Fronts on the tested problems in shorter time than
MOEA/D-DE even when deployed on one single CPU. When deployed on mul-
tiple CPU architectures, and, unlike fine-grained parallelization approaches for
MOEA/D-DE, PaDe is able to provide considerable (close to linear) speed ups
also with non CPU intensive fitness landscapes. Moreover the asynchronous is-
land model at the core of PaDe, make the algorithm suitable for modern multi-
cores architectures as well as for heterogeneous parallel architecture in which
slow nodes are mixed with fast ones (e.g. grid computing).

As future work PaDe should be tested on harder problems, where it could
perform better than MOEA/D from a quality of the Pareto Front point of view,
and a parallel-safe mechanism to adapt the reference point z∗ throughout the
run should be implemented to make PaDe competitive also for problems for
which setting z∗ to the origin is not a sensible choice.

720 A. Mambrini and D. Izzo

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Proceedings of the EURO-
GEN 2001 Conference (2001)

3. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)

4. Miettinen, K.: Nonlinear Multiobjective Optimization. International series in op-
erations research & management science. Kluwer Academic Publishers (1999)

5. Das, I., Dennis, J.: Normal-boundary intersection: An alternate method for gener-
ating pareto optimal points in multicriteria optimization problems (1996)

6. Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective optimization by decompo-
sition with pareto-adaptive weight vectors. In: Seventh International Conference
on Natural Computation, ICNC 2011 (2011)

7. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 13(2), 284–302 (2009)

8. Al Moubayed, N., Petrovski, A., McCall, J.: A novel smart multi-objective particle
swarm optimisation using decomposition. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph,G. (eds.) PPSNXI. LNCS, vol. 6239, pp. 1–10. Springer, Heidelberg (2010)

9. Nebro, A.J., Durillo, J.J.: A Study of the Parallelization of the Multi-Objective
Metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 303–317. Springer, Heidelberg (2010)

10. Durillo, J.J., Zhang, Q., Nebro, A.J., Alba, E.: Distribution of Computational
Effort in Parallel MOEA/D. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683,
pp. 488–502. Springer, Heidelberg (2011)

11. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer (2005)

12. Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. In: Fernandez de
Vega, F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel Architectures & Bioin-
spired Algorithms. SCI, vol. 415, pp. 151–170. Springer, Heidelberg (2012)

13. Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models
for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20.
Springer, Heidelberg (2012)

14. PaGMO: Parallel Global Multiobjective Optimizer,
http://pagmo.sourceforge.net/pagmo/

15. PyGMO: Python Parallel Global Multiobjective Optimizer,
http://pagmo.sourceforge.net/pygmo/

16. Halton, J.H.: Algorithm 247: Radical-inverse quasi-random point sequence. Com-
mun. ACM 7(12), 701–702 (1964)

17. Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a new
migration operator and its performance. In: Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference, pp. 1173–1180.
ACM (2013)

18. Brest, J., Zumer, V., Maucec, M.S.: Self-adaptive differential evolution algorithm
in constrained real-parameter optimization. In: IEEE Congress on Evolutionary
Computation, CEC 2006, pp. 215–222. IEEE (2006)

http://pagmo.sourceforge.net/pagmo/
http://pagmo.sourceforge.net/pygmo/

Evolution-In-Materio: Solving Machine Learning

Classification Problems Using Materials

Maktuba Mohid1, Julian Francis Miller1, Simon L. Harding2, Gunnar Tufte2,
Odd Rune Lykkebø3, Mark K. Massey3, and Michael C. Petty

1 Department of Electronics, University of York, York, UK
{mm1159,julian.miller}@york.ac.uk, slh@evolutioninmaterio.com

2 Department of Computer and Information Science,
Norwegian University of Science and Technology, 7491 Trondheim, Norway

{gunnart,lykkebo}@idi.ntnu.no
3 School of Engineering and Computing Sciences and Centre for Molecular and

Nanoscale Electronics, Durham University, UK
{m.k.massey,m.c.petty}@durham.ac.uk

Abstract. Evolution-in-materio (EIM) is a method that uses artificial
evolution to exploit the properties of physical matter to solve computa-
tional problems without requiring a detailed understanding of such prop-
erties. EIM has so far been applied to very few computational problems.
We show that using a purpose-built hardware platform called Mecobo, it
is possible to evolve voltages and signals applied to physical materials to
solve machine learning classification problems. This is the first time that
EIM has been applied to such problems. We evaluate the approach on
two standard datasets: Lenses and Iris. Comparing our technique with
a well-known software-based evolutionary method indicates that EIM
performs reasonably well. We suggest that EIM offers a promising new
direction for evolutionary computation.

Keywords: Evolutionary algorithm, evolution-in-materio, material com-
putation, evolvable hardware, machine learning, classification problem.

1 Introduction

Natural evolution could be viewed as an algorithm which exploits the physical
properties of materials. Evolution-in-materio (EIM) aims to mimic the exploita-
tion of physical properties by natural evolution by manipulating physical systems
using computer controlled evolution (CCE) [6,10]. In particular, EIM aims to
exploit the properties of physical systems for solving computational problems.

Evolution-in-materio was first described by Miller and Downing [10]. The
concept was inspired by the work of Adrian Thompson who investigated whether
it was possible to evolve working electronic circuits using a silicon chip called a
Field Programmable Gate Array (FPGA). He evolved a digital circuit that could
discriminate between 1kHz or 10kHz signal [12]. When the evolved circuit was
analysed Thompson discovered that artificial evolution had exploited physical

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 721–730, 2014.
c© Springer International Publishing Switzerland 2014

722 M. Mohid et al.

properties of the chip. To demonstrate that EIM was possible, Harding and
Miller attempted to replicate these findings using a liquid crystal display. They
found that computer-controlled evolution could utilize the physical properties of
liquid crystal to help solve a number of computational problems [4]:

– Two input logic gates: OR, AND, NOR, NAND, etc. [6].
– Tone Discriminator: A device was evolved which could differentiate different

frequencies [4].
– Robot Controller: A controller for a simulated robot with wall avoidance

behavior [5].

In this paper, we describe the use of a purpose built platform called Mecobo
that facilitates computer controlled evolution of a material (the hardware is
described in detail in [8]). The Mecobo platform has been developed within an
EU funded research project called NASCENCE [3]. The computational material
we have used in this investigation is a mixture of single-walled carbon nanotubes
and a polymer. Evolutionary computation has been widely used to solve machine
learning classification problems. Here, we show that using the Mecobo platform
it is possible to evolve solutions to two classification problems using materials. To
form a basic assessment of effectiveness of the technique we have compared our
results with a well-known software-based evolutionary computation technique
called Cartesian Genetic Programming (CGP) [9] on the same problems.

The organisation of the paper is as follows. In Sect. 2 we give a brief conceptual
overview of EIM. We describe the Mecobo EIM hardware platform in Sect. 3. The
preparation and composition of the physical computational material is described
in Sect. 4. Sect. 5 describes the machine learning classification problem. The
way we have used the Mecobo platform for classification problem is described in
Sect. 6. We describe our experiments and analysis of results in Sect. 7. Finally
we conclude and offer suggestions for further investigation in Sect. 8.

2 Conceptual Overview Of Evolution-In-Materio

EIM is a hybrid system involving both a physical material and a digital com-
puter. In the physical domain there is a material to which physical signals can
be applied or measured. These signals are either input signals, output signals
or configuration instructions. A computer controls the application of physical
inputs applied to the material, the reading of physical signals from the material
and the application to the material of other physical inputs known as physi-
cal configurations. A genotype of numerical data is held on the computer and
is transformed into configuration instructions. The genotypes are subject to an
evolutionary algorithm. Physical output signals are read from the material and
converted to output data in the computer. A fitness value is obtained from the
output data and supplied as a fitness of a genotype to the evolutionary algorithm
[11]. Figure 1 shows conceptual overview of EIM.

Miller and Downing noted that only certain materials may be suitable for EIM
and they gave some guidelines for choosing materials [10]. The material needs to

Evolution-In-Materio: Solving Machine Learning Classification Problems 723

Fig. 1. Concept of evolution-in-materio [11]

be reconfigurable, i.e., it should be able to be evolved over many configurations to
get the desired response. It is also important for a physical material to be able to
be “reset” in some way before applying new input signals to it, otherwise it might
preserve some memory of a past configuration and give fitness scores that are de-
pendent on the past. Preferably, the material should also be able to be physically
configured using small voltage and be manipulable at a molecular level.

3 Mecobo Hardware Platform

The hardware system we have used has three main components: a host com-
puter, the Mecobo platform and an electrode array. The Mecobo platform is
designed to interface a large variety of materials. The hardware allows the pos-
sibility to map inputs, outputs, configurations and signal properties in arbitrary
ways. The platform’s software components, i.e. the EA and the software stack,
are as important as the hardware. Mecobo includes a flexible software platform
including hardware drivers, support of multiple programming languages and the
possibility to connect to hardware over the internet. This makes Mecobo a highly
flexible platform for EIM experimentation [8].

Mecobo is built on PCBs with an FPGA as the main component. The digital
and analogue parts of Mecobo are implemented on separate PCBs. All the ana-
logue components are placed on a daughter board; such as crossbar switches and
analogue-digital converters. This has the advantage that it allows the redesign of
the analogue part of the system without changing the digital part of the moth-
erboard. A micro controller stands as a communication interface between the
FPGA and an external USB port.

At present the Mecobo hardware allows only two types of inputs to the mate-
rial. One is constant voltage (0V or 3.5V) and the other is a square wave signal.

724 M. Mohid et al.

Fig. 2. Mecobo Hardware platform together with gold electrode array and material
sample

Different characteristics or input parameters associated with these inputs can be
chosen, these control the amplitude of an input, the square wave frequency, cycle
time (percentage of period square wave is 1), phase, and the start and stop times
of applied input. The start time and end time of each input signal determine how
long an input is applied. Mecobo only samples using digital voltage thresholds,
hence the material output is interpreted as strictly high or low, (i.e. 0 or 1). In
later versions of this hardware, analogue inputs and outputs will be possible.

In the case that an electrode is chosen to be read (see section 4), a user-defined
output sampling frequency determines the buffer size of output samples. If the
output frequency is Fout, start time T imestart and end time is T imeend, then
the buffer size is Bufsize is given by:

Bufsize = Fout(T imeend − T imestart)/1000 (1)

Where, T imestart and T imeend are measured in milliseconds. However, in
practice due to pin latency, the real buffer size is generally smaller.

4 Physical Computational Material

The experimental material consists of single-walled carbon nanotubes mixed
with polymethyl methacrylate (PMMA) and dissolved in anisole (methoxyben-
zene) 1. The sample is baked causing the anisole to evaporate. This results in
material which is mixture of carbon nanotube and PMMA. The concentration of
carbon nanotube is 0.71% (weight% fraction of PMMA). Carbon nanotubes are
conducting or semi-conducting and role of the PMMA is to introduce insulating
regions within the nanotube network, to create non-linear current versus voltage
characteristics. Another benefit of the polymer is to help with dispersion of the
nanotubes in solution. The preparation of experimental material is given below:

1 Mark K. Massey and Michael C. Petty prepared the materials used as substrates
and the electrode masks for our experiments.

Evolution-In-Materio: Solving Machine Learning Classification Problems 725

– A M3 sized nylon washer was glued on the electrode array to contain the
material whilst drying;

– 20 μL of material were dispensed into the washer;
– This was dried at ≈ 100o C for ≈1 h to leave a “thick film”.

The experimental material is placed in the middle of a plate of the electrode
array. Twelve gold electrodes are connected directly with the experimental ma-
terial in the plate. The electrode array is connected directly with the Mecobo
board via wires. The electrode sample is shown in Fig. 2.

5 Machine Learning: Classification Problems

Classification is an important class of problems in Machine learning. The objec-
tive is to correctly classify data instances. In this paper we have evaluated our
approach on two classification problems: Lenses and Iris. [2]. Both datasets have
four attributes which are classified into one of three classes. The Lenses dataset
consists of 24 instances with integer attributes. The attributes are categorical
in nature and take values either 1,2 or 1, 2, 3. We used the first 16 instances
as training data and the last 8 as testing data. The Iris dataset contains 150
instances with real-valued attributes. The first fifty instances are class 1, the
second fifty class two and third set of 50 are class 3. We divided the data set into
two groups (training and testing set) of 75 instances each. Each set contained
exactly 25 instances of each class.

6 Classifying Data Using Evolution-In-Materio

6.1 Methodology

The experiments were performed with an electrode array having 12 electrodes.
For both datasets, four electrodes have been used as inputs (i.e. they are at-
tribute related), 3 electrodes have been used as outputs (i.e. to define the class)
and the remaining 5 electrodes have been used for configuration voltages. Each
output electrode is associated with an output class. Each chromosome defined
which electrodes are either outputs, inputs (receive square waves) or receive the
configuration data (square waves or constant voltage). We accumulated sampled
output values in a buffer for 128 milliseconds using a 25KHz sampling frequency.

The fitness calculation in the evolutionary algorithm only used training data.
Once the evolutionary algorithm finished the configuration of electrodes having
the best fitness was subsequently tested with the test data to determine its
ability to predict correctly unseen data (the test set).

6.2 Genotype Representation

Each chromosome used ne = 12 electrodes at a time. Associated with each
electrode there were six genes which define which electrode was used, or charac-
teristics of the input applied to the electrode: signal type, amplitude, frequency,

726 M. Mohid et al.

Table 1. Description of genotype

Gene Symbol Signal applied to, or read from Allowed values

ith electrode

pi Which electrode is used 0, 1, 2 . . . 11
si Type 0 (constant), 1 (square-wave)
ai Amplitude 0 , 1
fi Frequency 500 ,501 . . . 10K
phi Phase 1, 2 . . . 10
ci Cycle 0, 1, 2 . . . 100

phase, cycle (see Sect. 3). This means that each chromosome required a total of
72 genes. Mutational offspring were created from a parent genotype by mutating
a single gene (i.e., one gene of 72). The values that genes could take are shown
in Table 1, where i takes values 0, 1, . . . 11.
The genotype for a chromosome of an individual consists of the 72 genes shown
below:

p0s0a0f0ph0c0 . . . p11s11a11f11ph11c11

6.3 Input Mapping

The inputs to the electrode array (representing the data instances) were square
waves of a particular frequency. The frequency was determined by a linear map-
ping of attribute data. Denote the ith attribute in a dataset by Ii, where i takes
values 1, 2, 3, 4. Denote the maximum and minimum value taken by this attribute
in the whole data set by Iimax and Iimin respectively. Denote the maximum and
minimum allowed frequencies be denoted by Fmax and Fmin respectively. Then
the linear mapping given in Eqn. 2 allows the ith attribute of an instance Ii to
map to a square-wave frequency Fi which was applied to a given electrode. In
the experiments we chose Fmin = 500Hz and Fmax = 10000 Hz.

Fi = aiIi + bi (2)

where the constants ai and bi are found by setting Ii and Fi to their respective
maximum and minimum and solving for ai and bi.

ai = (Fmax − Fmin)/(Iimax − Iimin) (3)
bi = (FminIimax − FmaxIimin)/(Iimax − Iimin) (4)

6.4 Output Mapping

We determined the class that an instance belonged to, by examining the output
buffers which contain samples taken from the output electrodes. The current
Mecobo platform can only recognize binary values, so the output buffers contain
a binary string. We used the transitions from 0 to 1 in the output buffers to define
the class that an instance belonged to. For each output buffer, the positions of
transitions were recorded and the gaps between consecutive transitions were

Evolution-In-Materio: Solving Machine Learning Classification Problems 727

measured and an average calculated. A transition based fitness was used as it
is frequency related. Since instance data determine the frequencies of applied
signals, it seemed natural to use a method of reading output buffer bitstrings
that is itself frequency related. An example of average gap calculation for an
output electrode has been shown in Fig. 3.

Fig. 3. Example of average transition gap calculation for an output electrode

The output class was determined by the output buffer with largest average
transition gap. If two or more buffers had the same average gap then the class
was determined by the first such buffer encountered (starting at 1).

6.5 Fitness Score

The fitness calculation required counts to be made of the number of true positives
TP , true negatives TN , false positives, FP and false negatives, FN . For an
instance having a class c, according to the dataset, and a predicted class p, we
can calculate TP , TN , FP , and FN as shown in Eqn. 5.

if p = c then TP = TP + 1; TN = TN + 2
if p �= c then FP = FP + 1; FN = FN + 1; TN = TN + 1 (5)

The explanation of this is as follows. If the predicted p is correct, then it is
a true positive so TP should be incremented. It is also a true negative for the
other two classes, hence TN should be increased by two. If the predicted class
is incorrect, then it is a false positive for the class predicted, so FP should be
incremented. It is also a false negative for the actual class of the instance, so FN
should be incremented. Finally, the remaining class is a true negative, so TN
should be incremented. Once all instances have been classified we calculated the
fitness of a genotype using Eqn. 6 [1].

fitness =
TP.TN

(TP + FP)(TN + FN)
(6)

So if all instances are correctly predicted, the fitness is 1, since in this case
FP = 0 and FN = 0. In the case that all instances are incorrectly predicted,
then TP = 0 and TN = 0, so the fitness is zero.

728 M. Mohid et al.

7 Experiments

For each of the datasets a 1+λ−ES evolutionary algorithm with λ = 4 was used
[9] and run for 500 generations. This evolutionary algorithm has a population
size of 1 + λ and selects the genotype with the best fitness to be the parent of
the new population. If there is no offspring better than the parent but at least
one with a fitness equal to the parent, then an offspring is chosen to be the
new parent. The remaining members of the population are formed by mutating
the parent. Thirty and twenty independent runs were carried out for the Lenses
dataset and Iris dataset respectively. The smaller number of runs for the latter
was due to the large time required for each experiment. It took more than 12
hours to run 500 generations on the Iris training set. This time also precluded
using leave-one-out cross validation methods.

7.1 Using CGP For Classification

To evaluate the effectiveness of the EIM method for solving classification prob-
lems we compared results with those obtainable using CGP using the same 1+4
evolutionary algorithm over the same number of generations using the same
fitness function. It should be noted that CGP has previously been shown to
perform well on classification problems (e.g. with Mars terrain images [7] and
mammograms [13]). CGP is a graph-based form of genetic programming [9]. The
genotypes encode directed acyclic graphs and the genes are integers that repre-
sent where nodes get their data, what operations nodes perform on the data, and
where the output data required by the user is to be obtained. In classification
problems the number of outputs, nO is chosen to be equal to the number of
classes in the dataset. The class of a data instance is defined as the class indi-
cated by the maximum numerical output. The function set chosen for this study
was defined over the real-valued interval [0.0, 1.0] and consisted of the following
primitive functions of their inputs. The functions were assumed to have three
inputs, z0, z1, z2 (but some are ignored):

(z0 + z1)/2; (z0 − z1)/2; z0z1;
if |z1| < 10−10 then 1 else if |z1| > |z0| then z0/z1 else z1/z0;
if z0 > z1 then z2/2 else 1− z2/2.

We used three mutation parameters. A percentage for mutating connections,
μc and functions, μf . Mutation of outputs μo, is done probabilistically. In all
experiments μc = 3%, μf = 3%, and μo = 0.5. The output mutation probability
was set as 0.5 because there are only as many outputs as there are classes.
We chose a linear CGP geometry by setting the number of rows, nr = 1 and
the number of columns, nc = 100 with nodes being allowed to connect to any
previous node.

Evolution-In-Materio: Solving Machine Learning Classification Problems 729

Table 2. Experimental results comparing results of experimental material with CGP
on machine learning classification problem using two datasets: Lenses and Iris. Accu-
racy is the percentage of the training or test set correctly predicted.

Dataset Average Average Best Average Average Best
Training Test Accuracy Training Test Accuracy
Accuracy Accuracy of Accuracy Accuracy of
of of Experimental of of CGP
Experimental Experimental Material CGP CGP
Material Material

Lenses 92.7% 65.8% 95.8% 93.8% 68.3% 95.8%
Iris 84.7% 77.1% 96.7% 97.7% 93.6% 98.0%

7.2 Results and Discussion

It can be seen from Table 2 that in the case of the Lenses dataset the training and
testing of experimental material are very close to the corresponding accuracies
of CGP and best accuracy of experimental material is same as that of CGP. In
the case of the Iris dataset, although the results with training and test for the
experimental material are not as good as CGP, the best accuracy is quite close.

8 Conclusions and Future Outlook

We have shown how using a purpose-built evolutionary platform called Mecobo,
we can evolve configurations of a physical system to perform classification. The
material we have used is a mixture of single-walled carbon nanotubes and a
polymer. The aim of the paper is not to show that the experimental results of
solving machine learning classification problems using EIM is competitive with
state-of-the-art machine learning classification algorithms, but rather to start a
new beginning in the world of computation. To our knowledge, this is the first
time that classification problems have been attempted by the manipulation of
a physical material. There were many decisions that were made in this inves-
tigation that require more detailed experiments before the ideal experimental
conditions can be ascertained. This implies that it is likely that much better re-
sults could be obtained in the future. Increasing the number of electrodes could
allow us to consider more instances or instances with more attributes, this could
make the system faster and scale up to larger problems. Circuitry could be po-
tentially built that allows the electrode array and material sample to act as a
standalone classifier (i.e. no PC, or Mecobo board). There remain many ques-
tions for the future. The Mecobo platform is currently under development and
the next version will be able to allow the utilization of analogue voltages.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 317662.

730 M. Mohid et al.

References

1. Akbarzadeh, V., Sadeghian, A., dos Santos, M.: Derivation of relational fuzzy clas-
sification rules using evolutionary computation. In: IEEE Int. Conf. on Fuzzy Sys-
tems, pp. 1689–1693 (2008)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

3. Broersma, H., Gomez, F., Miller, J.F., Petty, M., Tufte, G.: Nascence project:
Nanoscale engineering for novel computation using evolution. International Journal
of Unconventional Computing 8(4), 313–317 (2012)

4. Harding, S., Miller, J.F.: Evolution in materio: A tone discriminator in liquid crys-
tal. In: Proc. Congress on Evolutionary Computation 2004, vol. 2, pp. 1800–1807
(2004)

5. Harding, S., Miller, J.F.: Evolution in materio: A real time robot controller in
liquid crystal. In: Proc. NASA/DoD Conference on Evolvable Hardware, pp.
229–238 (2005)

6. Harding, S.L., Miller, J.F.: Evolution in materio: Evolving logic gates in liquid
crystal. Int. J. of Unconventional Computing 3(4), 243–257 (2007)

7. Leitner, J., Harding, S., Forster, A., Schmidhuber, J.: Mars terrain image classifi-
cation using cartesian genetic programming. In: 11th International Symposium on
Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS (2012)

8. Lykkebø, O.R., Harding, S., Tufte, G., Miller, J.F.: Mecobo: A Hardware and
Software Platform for In Materio Evolution. In: Ibarra, O.H., Kari, L., Kopecki,
S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 267–279. Springer, Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-319-08123-6_22

9. Miller, J.F. (ed.): Cartesian Genetic Programming. Springer (2011)
10. Miller, J.F., Downing, K.: Evolution in materio: Looking beyond the silicon box.

In: Stoica, A., Lohn, J., Katz, R., Keymeulen, D., Zebulum, R.S. (eds.) The 2002
NASA/DoD Conference on Evolvable Hardware, vol. 7, pp. 167–176. IEEE Com-
puter Society (2002)

11. Miller, J.F., Harding, S.L., Tufte, G.: Evolution-in-materio: evolving computation
in materials. Evolutionary Intelligence 7, 49–67 (2014)

12. Thompson, A.: Hardware Evolution - Automatic Design of Electronic Circuits in
Reconfigurable Hardware by Artificial Evolution. Springer (1998)

13. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification
of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS,
vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-319-08123-6_22

An Analysis of Migration Strategies

in Island-Based Multimemetic Algorithms

Rafael Nogueras and Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

ccottap@lcc.uma.es

Abstract. Multimemetic algorithms (MMAs) are memetic algorithms
that explicitly represent and evolve memes (computational representa-
tions of problem solving methods) as a part of solutions. We consider
an island-based model of MMAs and provide a comparative analysis of
six migrant selection strategies and two migrant replacement operators.
We use a test suite of four hard pseudoboolean functions to examine
qualitative behavioral differences at the genetic and memetic level, and
provide a sound statistical analysis of performance. The results indicate
the choice of migrant selection operator is more important than that of
migrant replacement, and that policies based on fitness or pure genetic
diversity do not compare favorably to more holistic strategies.

1 Introduction

Memetic optimization [11] is a long standing search paradigm conceived as
a pragmatic combination of population-based global search techniques and
trajectory-based local search techniques. The notion of meme as unit of imitation
(ultimately translating to local-improvement procedures in this computational
context) in central to this paradigm. While many simple memetic approaches
rely on predefined local-search procedures (i.e., static memes), the idea of explic-
itly exploiting the computational evolution of memes has been around for some
time [10] and is now the central tenet of memetic computing [13] defined as “...a
paradigm that uses the notion of meme(s) as units of information encoded in
computational representations for the purpose of problem solving”. Such an ex-
plicit treatment of memes can be found in multimemetic algorithms (MMAs) [9],
in which solutions carry memes indicating how they are going to self-improve.

An important issue in such MMAs is the way in which memes propagate
throughout the population. In this sense, meme propagation dynamics is more
complex than that of their genetic counterparts, if only because memes are only
indirectly evaluated according to the effect they exert on the solutions they are
attached to (hence, mismatches between genes and memes may cause potentially
good memes become extinct or poor memes proliferate [12]). These issues are
specifically relevant to multi-population models of MMAs, in which in addition
to internal population dynamics one also has to consider the effect of the com-
munication among populations. Although the influence of the migration policy

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 731–740, 2014.
c© Springer International Publishing Switzerland 2014

732 R. Nogueras and C. Cotta

has been well-studied in the context of evolutionary algorithms –e.g., [1, 3, 14];
see also [5, 17]– to the best of our knowledge it has not been attempted on this
family of MMAs. Notice that in addition to the role that the migration policy
can have on properties such as population diversity, in this family of techniques
individuals are also responsible for conducting actively part of the search in a
self-adaptive way, and carry information for this purpose. Hence design decisions
regarding migration do not just affect implicitly the search process via gene dif-
fusion but do it explicitly by means of meme propagation. In this work we take
some steps in this direction and provide a comparative analysis of migration
policies on a class of MMAs.

2 Island-Based Multimemetic Model

To analyze the impact that the choice of migration strategies has on island-based
MMAs, let us firstly describe the basic underlying model and then go to detail
the migration policies considered in the experimentation.

2.1 Basic Algorithmic Model

Our MMA is close in spirit to the model defined by Smith [15] in which each indi-
vidual in the population carries a binary genotype and a single meme. The latter
represents a rewriting rule expressed as a pair 〈condition, action〉 as follows: let
〈C,A〉 be a rule, with C,A ∈ Σr where Σ = {0, 1,#} is a ternary alphabet in
which ‘#’ represent a wildcard symbol; now, given a genotype b1b2 · · · bn, a rule
〈c1 · · · cr, a1 · · · ar〉 could be potentially applied on any part of the genotype into
which the condition fits, i.e., bibi+1 · · · bi+r−1 = c1 · · · cr (wildcard symbols in the
right hand side are assumed to match any symbol in the left hand side). Were the
rule applied on a site i, its action would be to implant the action A = a1 · · · ar in
that part of the genotype, i.e., letting bibi+1 · · · bi+r−1 ← a1 · · ·ar (here, wildcard
symbols in the right hand side are interpreted as don’t-change symbols, leaving
the corresponding symbol in the left hand side unchanged). To avoid positional
bias, the order in which the genotype is scanned is randomized. Once a match is
found the rule is applied and the resulting neighboring genotype is evaluated. In
order to keep the total cost of the process under control, a parameter w which
determines the maximal number of rule applications per individual is used. The
best neighbor generated (if better than the current genotype) is kept.

Besides the use of memes embedded within individuals, our MMA other-
wise resembles a standard memetic algorithm in which parents are selected us-
ing binary tournament, and in which recombination, mutation and local-search
(conducted using the meme linked to the individual) are used to generate the
offspring, which replaces the worst parent following the model presented in [12].

2.2 Migration Strategies Considered

In order to deploy the MMA described before on a multi-island model it is neces-
sary to define a interconnection topology (e.g., a ring, a grid, a hypercube, etc.)

An Analysis of Migration Strategies in Island-Based MMAs 733

and a migration policy. Such a policy encompasses determining parameters such
as the number m of individuals undergoing migration, the frequency ζ of such
events, the procedure ωS used to select the individuals to be migrated from the
emitting island, the procedure ωR used to handle migrants in the receiving is-
land, and the synchronous/asynchronous character of the interaction – see [1].
In this work we are going to consider synchronous interaction and we will be
specifically concerned about ωS and ωR, whose nature is qualitative as opposed
to the quantitative nature of the numerical parameters m and ζ, and whose
study cannot therefore be approached using a numerical tuning approach.

Regarding the migrant selection operator ωS , we have considered the following
six possibilities:

– best: the best m individuals in the emitting population are selected for mi-
gration. This strategy could be seen as an attempt to provide the maximal
immediate boost in fitness in the receiving island, probably inducing the
latter to re-focus the search if the migrants start to takeover the population.

– random: migrants are selected by random sampling (without replacement)
of the emitting population. In this case, the goal is injecting diversity in
the target population by providing a random sample of the genetic/memetic
material of the emitting island.

– probabilistic: this strategy borrows inspiration from estimation of distribution
algorithms and is related in spirit to the previous strategy. Here, a proba-
bilistic model of the emitting population is created and used to produce the
migrants. Hence, these provide a sample of the information contained in the
emitting island but do not necessarily correspond to existing individuals in
the latter. It can thus be seen as more exploratory than random selection.
In this work we consider a simple univariate model in which migrants are
generated so that the probability of each symbol in a given position matches
the relative frequency of that symbol in that position in the population.

– diverse-gene: in the line of the multikulty algorithm [2], migrants are here
selected so as to introduce as much diversity as possible in the target popula-
tion, cf. [4]. To this end, individuals whose genotypic distance (in a Hamming
sense) to individuals in the receiving population is maximal are selected.

– diverse-meme: this is the natural extension of the previous strategy to the
memetic realm. In this case, migrants are individuals carrying memes whose
distance (again in a Hamming sense) to memes in the receiving island is
maximal. The goal is thus not introducing explicit genetic diversity but do
this implicitly by introducing diversity in the way solutions are improved.

– random-immigrants: this strategy generates the migrants completely at ran-
dom whenever they are needed [7]. Since it does not take into account the
emitting island at all, this strategy represents an attempt to measure the raw
effect of introducing new individuals in the target population, decoupling it
from the effects attributed to the actual information exchange between is-
lands. In some sense, it thus provides a performance baseline above which
the performance of the other strategies could be assessed.

734 R. Nogueras and C. Cotta

As to the migrant replacement operator ωR, we have considered the following
two possibilities:

– replace-worst: the worst individuals in the population are replaced by the
incoming migrants.

– replace-random: the migrants replace randomly selected individuals.

In either case we choose to perform the replacement unconditionally (i.e., the
migrants are always accepted in the target population) for two reasons: firstly,
we aim to maximize the effects (positive or negative) of the migration operation,
and secondly we promote diversity over immediate fitness loss (recall that in
MMAs, solutions are subject to local improvement and hence such losses can be
relieved via meme application; furthermore, exploring the basins of attraction
of other optima may be a more valuable asset than a good quality solution in a
well-represented –by other solutions in the population– basin of attraction).

3 Experimental Analysis

The migration strategies introduced in the previous section have been subject to
experimental scrutiny. Before presenting the actual results, next section describes
the experimental setting and test suite considered in the experimentation.

3.1 Benchmark and Settings

The MMA has been tested using the following four different problems defined
on binary strings:

– Deb’s 4-bit fully deceptive function (TRAP henceforth) [6]. In our exper-
iments we have considered the concatenation of k = 32 4-bit traps (i.e.,
128-bit strings, opt = 32).

– Watson et al.’s hierarchically consistent test problems (HIFF and HXOR)
[16]. These are recursive epistatic problems defined on 2k-bit strings which
force the algorithm to search for combinations of increasingly larger building
blocks. We have considered k = 7 (i.e., 128-bit strings, opt = 576).

– Boolean satisfiability: a classical NP-complete problem in which a truth as-
signment to n variables has to be found in order to satisfy a certain Boolean
formula Φ. We consider this formula is expressed in conjunctive normal form
with n = 128 variables and k = 3 variables per clause. We use a problem gen-
erator approach, generating a different satisfiable instance with the critical
clauses/variable ratio (opt = m = 4.3n = 550) in each run of the MMA.

We consider an island-based MMA (iMMA) as described in Sect. 2.1, with a
population size of μ = 128 individuals, recombination probability pX = 1.0 and
mutation probability pM = 1/	 (= 128, the genome length). This population
is arranged in ni ∈ 1, 2, 4, 8 islands, each of them comprising μ/ni individuals.
The case ni = 1 (denoted as sMMA) corresponds to panmixia and involves
no migration whatsoever. In the remaining scenarios, the islands are arranged

An Analysis of Migration Strategies in Island-Based MMAs 735

in a unidirectional ring and migration takes place every ζ = 20 generations,
thus allowing a reasonable lapse of isolated evolution in each deme, cf. [1]. One
migrant is selected using ωS and inserted in the receiving population using ωR,
where both ωS , ωR are the strategies described in Sect. 2.2. The memes are
expressed as rules of length r = 3 and we consider w = 1. In all cases the cost
of applying a meme is accounted as a fractional evaluation (i.e., as the fraction
of the fitness function that needs being reevaluated as a result of a genotypic
change) and added to the total number of evaluations. A run is terminated upon
reaching 50,000 evaluations, and 20 runs are performed for each combination of
problem, number of islands, ωS and ωR.

3.2 Experimental Results

First of all, full numerical results are provided in Table 1. As expected, the
quality of results does globally improve when the number of islands is increased
(note that all problems considered are maximization problems, and hence higher
values are better). This is a well-known consequence of the use of decentralized
evolutionary algorithms which naturally manifests itself in the multimemetic
context as well. The main focus of this analysis is not how better results can
get by increasing the number of islands though (an admittedly interesting issue
that can be tackled in subsequent research), but the relative effect that design
decisions regarding migrant selection and replacement have on the performance
of the algorithm. To this end, we have conducted a systematic statistical analysis
to ascertain the relative impact that each migration policy exerts on the iMMA.

We firstly consider results of all migrant selection strategies for either ωR =
replace-worst or ωR = replace-random. We perform a rank-based comparison by
computing the relative ordering of each ωS operator for a given problem and
number of islands ni: the selection strategy with the best mean is given rank 1
and the worst one is given rank 6 (recall there are six ωS operators). In case of
ties, the mean rank of the tied positions is awarded. Fig. 2 shows the distribu-
tion of ranks for each ωS operator. Notice that these ranks are mostly consistent
for both migrant replacement strategies. The fact that random-immigrants ranks
consistently in the last positions is compatible with the fact that the iMMA is
actually benefiting from the information exchange among islands beyond pure
random diversity (hence the better results for a increasing number of islands
– see Table 1). Also, best ranks in a poor position in both cases. This is often
attributed to the premature convergence induced by this more intensive strat-
egy. Indeed, this effect is illustrated in Fig. 1 (left). Note in any case that higher
global diversity per se does not equate to better performance: MMAs also require
that memes sustainedly support the search process and strategies such as random
and diverse-meme are better at this, see Fig. 1 (right). In fact, another interest-
ing observation is that migrant selection strategies based on memetic diversity
perform better that their genetic counterparts. This indicates that injecting new
diverse memetic material can have a larger influence in the behavior of the al-
gorithm than just new genetic material, in line with the active role that the
former actually has on the search process itself. The random strategy provides

736 R. Nogueras and C. Cotta

Table 1. Results (20 runs) of the different iMMAs on TRAP, HIFF, HXOR and SAT,
using the replace-worst strategy (upper half) and the replace-random strategy (lower
half). The median (x̃), mean (x̄) and standard error of the mean (σx̄) are shown.

TRAP HIFF HXOR SAT
replace-worst x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

sMMA ni = 1 31.4 30.0 ± 0.5 408.0 427.6 ± 13.9 360.0 360.2 ± 4.4 547.0 546.6 ± 0.4
ni = 2 30.6 30.3 ± 0.3 456.0 471.1 ± 17.2 380.0 382.4 ± 6.2 547.0 547.3 ± 0.3

random ni = 4 31.2 30.6 ± 0.4 520.0 509.2 ± 15.7 408.0 416.0 ± 10.5 548.0 547.5 ± 0.4
ni = 8 31.6 30.7 ± 0.4 576.0 564.0 ± 8.3 412.0 415.1 ± 7.3 547.0 547.5 ± 0.3
ni = 2 29.6 30.0 ± 0.3 436.0 470.0 ± 20.4 372.0 379.4 ± 7.6 547.0 547.1 ± 0.4

best ni = 4 30.8 30.3 ± 0.4 456.0 469.4 ± 17.2 380.0 385.8 ± 5.4 546.0 546.5 ± 0.4
ni = 8 31.4 30.3 ± 0.4 576.0 519.6 ± 14.5 374.0 378.2 ± 6.9 547.0 546.9 ± 0.4
ni = 2 29.6 29.6 ± 0.4 456.0 473.8 ± 16.5 384.0 384.0 ± 4.7 548.0 547.4 ± 0.3

diverse-gene ni = 4 30.2 30.0 ± 0.4 528.0 499.7 ± 18.3 395.0 404.6 ± 10.7 547.0 546.9 ± 0.4
ni = 8 30.4 30.1 ± 0.4 576.0 543.6 ± 11.8 394.0 404.8 ± 8.5 547.0 547.3 ± 0.4
ni = 2 30.6 30.1 ± 0.4 456.0 475.8 ± 16.0 380.0 381.4 ± 4.4 548.0 547.4 ± 0.4

diverse-meme ni = 4 31.0 30.5 ± 0.4 472.0 501.2 ± 16.1 404.0 411.2 ± 11.4 548.0 547.5 ± 0.3
ni = 8 31.2 30.7 ± 0.3 576.0 553.2 ± 10.5 402.0 418.2 ± 11.9 548.0 547.5 ± 0.3
ni = 2 29.4 29.4 ± 0.5 436.0 451.0 ± 15.7 352.0 356.4 ± 5.0 547.0 547.5 ± 0.3

random-immigrants ni = 4 28.6 28.7 ± 0.5 454.0 453.2 ± 16.0 348.0 351.6 ± 3.6 547.0 546.9 ± 0.3
ni = 8 30.4 29.3 ± 0.5 454.0 471.1 ± 14.8 331.0 336.9 ± 4.3 547.0 546.8 ± 0.3
ni = 2 31.4 30.5 ± 0.4 456.0 493.6 ± 17.6 374.0 386.2 ± 7.2 547.0 547.0 ± 0.3

probabilistic ni = 4 32.0 30.8 ± 0.4 464.0 500.0 ± 13.6 394.0 387.6 ± 5.0 548.0 547.4 ± 0.3
ni = 8 32.0 30.4 ± 0.5 576.0 551.6 ± 11.3 390.0 390.2 ± 3.9 547.0 547.4 ± 0.3

TRAP HIFF HXOR SAT
replace-random x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

sMMA ni = 1 31.4 30.0 ± 0.5 408.0 427.6 ± 13.9 360.0 360.2 ± 4.4 547.0 546.6 ± 0.4
ni = 2 30.4 30.1 ± 0.3 456.0 480.0 ± 18.9 380.0 390.4 ± 7.5 547.0 547.0 ± 0.4

random ni = 4 30.8 30.2 ± 0.4 520.0 506.8 ± 16.5 412.0 426.6 ± 10.0 547.0 547.2 ± 0.3
ni = 8 31.4 30.7 ± 0.3 576.0 543.2 ± 11.6 408.0 414.9 ± 6.4 548.0 547.5 ± 0.3
ni = 2 29.6 30.0 ± 0.4 440.0 457.2 ± 19.3 378.0 379.2 ± 5.8 547.0 547.1 ± 0.3

best ni = 4 31.0 30.3 ± 0.4 468.0 482.8 ± 20.5 378.0 390.6 ± 7.8 547.5 547.0 ± 0.5
ni = 8 31.4 30.2 ± 0.5 576.0 518.8 ± 14.8 384.5 384.6 ± 6.6 547.0 547.1 ± 0.3
ni = 2 30.6 30.2 ± 0.4 456.0 471.0 ± 17.4 384.0 385.7 ± 8.1 547.0 546.7 ± 0.3

diverse-gene ni = 4 30.0 29.7 ± 0.4 520.0 503.8 ± 17.1 385.0 391.9 ± 7.7 547.0 546.8 ± 0.4
ni = 8 31.6 30.4 ± 0.4 576.0 546.8 ± 11.6 382.0 388.5 ± 5.7 547.0 546.6 ± 0.3
ni = 2 31.0 30.2 ± 0.4 464.0 490.6 ± 18.6 388.0 386.0 ± 6.6 547.0 547.2 ± 0.3

diverse-meme ni = 4 30.6 30.5 ± 0.3 472.0 503.2 ± 14.1 396.0 405.1 ± 5.9 548.0 547.6 ± 0.3
ni = 8 32.0 31.1 ± 0.3 576.0 535.0 ± 12.8 408.0 411.9 ± 9.4 547.0 547.3 ± 0.3
ni = 2 30.6 29.8 ± 0.5 432.0 442.4 ± 15.1 352.0 355.6 ± 3.9 546.5 546.9 ± 0.4

random-immigrants ni = 4 28.4 28.8 ± 0.5 456.0 446.3 ± 19.6 352.0 353.9 ± 2.9 548.0 547.3 ± 0.4
ni = 8 28.6 29.1 ± 0.5 456.0 475.8 ± 16.4 338.0 337.8 ± 4.1 547.0 547.0 ± 0.4
ni = 2 30.9 30.5 ± 0.4 464.0 482.4 ± 16.8 370.0 372.4 ± 5.1 547.0 546.7 ± 0.4

probabilistic ni = 4 31.6 30.9 ± 0.3 576.0 518.6 ± 15.5 384.0 384.6 ± 4.9 547.0 547.3 ± 0.3
ni = 8 31.0 30.3 ± 0.5 576.0 548.4 ± 13.1 394.0 400.9 ± 5.8 547.0 547.3 ± 0.3

An Analysis of Migration Strategies in Island-Based MMAs 737

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

best
random
probabilistic
diverse−gene
diverse−meme
random−immigrants

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

im
pr

ov
em

en
t r

at
e

best
random
probabilistic
diverse−gene
diverse−meme
random−immigrants

Fig. 1. (Left) Global population entropy (Right) Meme success rate (percentage of
meme applications that result in an improvement). In both cases the data corresponds
to HIFF, ni = 8, ωR = replace-worst.

Table 2. Statistical tests for the migration selection strategies (α = 0.05)

Critical value replace-worst replace-random
Friedman 11.070498 35.416667 28.238095

Quade 2.382823 14.811603 9.189948

high performance as well, which could be attributed to its constituting a good
tradeoff between genetic and memetic diversity. Along this line, note that this
selection strategy performs slightly better in a relative sense when used in con-
junction with replace-worst due to its more exploratory nature being compen-
sated by the more intensive character of the latter replacement strategy. Note
finally how the probabilistic generation of migrants sits comfortably in the third
position in either case, not far from random selection. Obviously, a simple uni-
variate model cannot adequately grasp the interdependencies among variables
and hence this strategy behaves as a more exploratory variation of the random
strategy.

To determine the extent to which rank differences are significant we use two
well-known non-parametric statistical tests, namely Friedman and Quade tests.
The results, at the standard level of α = 0.05, are shown in Table 2. The statistic
values obtained are clearly higher than the critical ones, thus indicating signif-
icant differences in their ranks. Hence, we have performed a post-hoc analysis
using Holm test to determine whether the differences are significant with respect
to a control strategy (in this case the strategy which provided the best average
rank as shown in Fig. 2). Table 3 shows the results of this test. Notice that the
test is passed in either case for random-immigrants, best and diverse-gene, hence
indicating the control algorithm is significantly better than these. No statistical
differences can be shown between diverse-meme, random and probabilistic.

If an analysis is conducted along the replacement dimension, i.e., by keeping
fixed the selection strategy and comparing both replacement strategies, we can

738 R. Nogueras and C. Cotta

1 2 3 4 5 6

random

diverse−meme

probabilistic

diverse−gene

best

random−immigrants

rank
1 2 3 4 5 6

diverse−meme

random

probabilistic

diverse−gene

best

random−immigrants

rank

Fig. 2. Rank distribution of migration selection strategies. Each box comprises from
the first to the third quartile of the distribution, the median (2nd quartile) is marked
with a vertical line, the mean with a circle, whiskers span 1.5 times the inter-quartile
range, and outliers are indicated with a plus sign. (Left) Results for ωR = replace-worst
(Right) Results for ωR = replace-random.

Table 3. Results of Holm test. (Top) ωR = replace-worst using ωS = random as control
strategy (Bottom) ωR = replace-random using ωS = diverse-meme as control strategy.

i strategy z-statistic p-value α/i

1 diverse-meme 0.436436 0.331260 0.050000
2 probabilistic 1.091089 0.137617 0.025000

replace-worst 3 diverse-gene 2.454951 0.007045 0.016667
4 best 3.818813 0.000067 0.012500
5 random-immigrants 4.637130 0.000002 0.010000
1 random 0.381881 0.351275 0.050000
2 probabilistic 0.872872 0.191367 0.025000

replace-random 3 diverse-gene 2.291288 0.010973 0.016667
4 best 2.891387 0.001918 0.012500
5 random-immigrants 4.364358 0.000006 0.010000

observe that replace-worst performs slightly better than replace-random but the
difference does not reach significance at 0.05 level in any case, using a Wilcoxon
ranksum test to perform head-to-head comparisons between both replacement
strategies in each (problem, ωS , ni) combination. If we analyze specific (ωS , ωR)
pairs, we find that there are statistically significant differences in the rank dis-
tribution of the 12 combinations (using Friedman and Quade test: values of
71.317308 and 11.251898 are respectively obtained, much larger than the critical
values 19.675138 and 1.868615). Holm test is subsequently performed as shown
in Table 4. Consistently with the previous results, the test is passed for all pairs
involving random-immigrants, best and diverse-gene using random+replace-worst
as control algorithm. No statistical differences can be shown between pairs in-
volving diverse-meme, random and probabilistic.

An Analysis of Migration Strategies in Island-Based MMAs 739

Table 4. Results of Holm Test for all combinations of selection/replacement strategies,
using random+replace-worst as control strategy

i strategy z-statistic p-value α/i

1 diverse-meme+replace-worst 0.651059 0.257504 0.050000
2 diverse-meme+replace-random 0.735980 0.230871 0.025000
3 probabilistic+replace-worst 1.075663 0.141039 0.016667
4 random+replace-random 1.103970 0.134803 0.012500
5 probabilistic+replace-random 1.755029 0.039627 0.010000
6 diverse-gene+replace-worst 2.745772 0.003018 0.008333
7 diverse-gene+replace-random 3.085455 0.001016 0.007143
8 best+replace-random 3.623287 0.000145 0.006250
9 best+replace-worst 4.132811 0.000018 0.005556
10 random-immigrants+replace-worst 5.123554 0.000000 0.005000
11 random-immigrants+replace-random 5.180167 0.000000 0.004545

4 Conclusions

The choice of migrant selection and migrant replacement operators is acknowl-
edged as having a crucial impact on the performance of island-based GAs. In this
work we have conducted an analysis of the influence of these two operators in the
context of MMAs, in which individuals are not just points in the search space but
also carry information on how to perform the search. Besides confirming some
results which had been previously reported in the context of GAs (such as, e.g.,
the fact a migrating the best individual leads to a quick degradation of diver-
sity and diminished performance), we have found that the replacement strategy
(at least in the two incarnations considered) has less impact than the selection
strategy, and that a selection strategy purely aimed at maintaining genotypic
diversity does not compare favorably to other strategies based on memetic di-
versity (although the former still provides better results than a single-island
panmictic model or a strategy based on random immigrants). The latter per-
forms statistically similar to two other strategies aimed at randomly sampling
the emitting population. It is specifically interesting to note that a probabilistic
modeling of the population (even an arguably simple one such as the univariate
model considered here) is still competitive with other migration operators. This
suggest a potential line of future developments focusing on more complex proba-
bilistic models capturing bivariate or multivariate dependencies [8]. Confirming
these findings on problem instances of higher dimensionality and on other self-
adaptive memetic models [15] are other interesting lines of future work.

Acknowledgements. This work is supported by MICINN project ANYSELF
(TIN2011-28627-C04-01), by Junta de Andalućıa project DNEMESIS (P10-TIC-
6083) and by Universidad de Málaga, Campus de Excelencia Internacional An-
dalućıa Tech.

740 R. Nogueras and C. Cotta

References

1. Alba, E., Troya, J.M.: Influence of the migration policy in parallel distributed GAs
with structured and panmictic populations. Appl. Intell. 12(3), 163–181 (2000)

2. Araujo, L., Merelo Guervós, J.J.: Multikulti algorithm: Using genotypic differ-
ences in adaptive distributed evolutionary algorithm migration policies. In: IEEE
Congress on Evolutionary Computation, pp. 2858–2865. IEEE, Trondheim (2009)

3. Cantú-Paz, E.: Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics 7(4), 311–334 (2001)

4. Cheng, J., Zhang, G., Neri, F.: Enhancing distributed differential evolution
with multicultural migration for global numerical optimization. Information Sci-
ences 247, 72–93 (2013)

5. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Biological
invasion–inspired migration in distributed evolutionary algorithms. Information
Sciences 207, 50–65 (2012)

6. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D.
(ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan
Kaufmann, Vail (1993)

7. Grefenstette, J.: Genetic algorithms for changing environments. In: Männer, R.,
Manderick, B. (eds.) Parallel Problem Solving from Nature II, pp. 137–144.
Elsevier, Brussels (1992)

8. Hauschild, M., Pelikan, M.: An introduction and survey of estimation of distribu-
tion algorithms. Swarm and Evolutionary Computation 1(3), 111–128 (2011)

9. Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms
for protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G.,
Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439,
pp. 769–778. Springer, Heidelberg (2002)

10. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization. Mcgraw-Hill’s Advanced Topics In
Computer Science Series, pp. 219–234. McGraw-Hill, London (1999)

11. Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. SCI, vol. 379.
Springer, Heidelberg (2012)

12. Nogueras, R., Cotta, C.: Analyzing meme propagation in multimemetic algorithms:
Initial investigations. In: 2013 Federated Conference on Computer Science and
Information Systems, pp. 1013–1019. IEEE Press, Cracow (2013)

13. Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future.
IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

14. Skolicki, K., Jong, K.D.: The influence of migration sizes and intervals on is-
land models. In: Genetic and Evolutionary Computation Conference 2005, pp.
1295–1302. ACM, New York (2005)

15. Smith, J.: Self-adaptative and coevolving memetic algorithms. In: Neri, F., Cotta,
C., Moscato, P. (eds.) Handbook of Memetic Algorithms. SCI, vol. 379, pp. 167–
188. Springer, Heidelberg (2012)

16. Watson, R.A., Pollack, J.B.: Hierarchically consistent test problems for genetic
algorithms: Summary and additional results. In: 1999 IEEE Congress on Evolu-
tionary Computation, pp. 292–297. IEEE Press, Washington D.C (1999)

17. Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential
evolution. Information Sciences 181(12), 2488–2511 (2011)

Tuning Evolutionary Multiobjective Optimization
for Closed-Loop Estimation

of Chromatographic Operating Conditions

Richard Allmendinger, Spyridon Gerontas,
Nigel J. Titchener-Hooker, and Suzanne S. Farid

Department of Biochemical Engineering, University College London,
Torrington Place, London WC1E 7JE, UK

{r.allmendinger,s.gerontas,nigelth,s.farid}@ucl.ac.uk

Abstract. Purification is an essential step in the production of biopharmaceuti-
cals. Resources are usually limited during development to make a full assessment
of operating conditions for a given purification process commonly consisting of
two or more chromatographic steps. This study proposes the optimization of all op-
erating conditions simultaneously using an evolutionary multiobjective optimiza-
tion algorithm (EMOA). After formulating the closed-loop optimization problem,
which is subject to constraints and resourcing issues, four state-of-the-art EMOAs
— NSGAII, MOEA/D, SMS-EMOA, and ParEGO — were tuned and evaluated
on test problems created from real-world data available in the literature. The sim-
ulation results revealed that the performance of an EMOA depends on the set-
ting of the population size, and constraint and resourcing issue-handling strategies
adopted. Tuning these algorithm parameters revealed that the EMOAs, in particu-
lar SMS-EMOA and ParEGO, are able to discover reliably within 100 evaluations
operating conditions that lead to high levels of yield and product purity.

1 Introduction

Manufacturing costs of therapeutic proteins are driven by costs associated with the pu-
rification of a protein of interest from impurities, such as host cell proteins and DNA,
arising during the fermentation and harvest process, and by the need to achieve strictly
controlled levels of key impurities. Chromatography is a commonly-used technique for
purifying proteins and has been identified as a key cost driver [1]. The overall goal of
this study is to optimize the operating conditions of a chromatography platform so as to
improve multiple criteria, such as recovery yield and final product purity, contributing
to a reduction in manufacturing costs.

Approaches for optimizing a chromatographic process can be classified
broadly into two classes: experimentally-validated simulation approaches or direct ex-
perimental approaches [2]. The former includes approaches that describe a chromato-
graphic process using a (predictive) linear or non-linear model based on mass transfer
and thermodynamics [3]. Although simulation-based, this approach relies on physical
experiments being performed to calibrate and validate the model. Various optimization
methods have been used to estimate the parameters of a chromatographic model (see
e.g. [3,4]).

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 741–750, 2014.
c© Springer International Publishing Switzerland 2014

742 R. Allmendinger et al.

If the process modeled is not well-understood or cost prohibitive to define in terms of
a simulation model, then a direct experimental optimization approach can be adopted.
Such approaches optimize a chromatographic process by performing physical experi-
ments guided, for example, by design of experiments (DoE) in combination with a re-
sponse surface analysis [5,6] or an evolutionary algorithm (EA) [2,7]. An experimental
optimization approach might incur high experimental costs, whilst a simulation-based
approach relies heavily on the computational resources available.

Recently, multiobjective methods have found application in chromatography pro-
cesses optimization. For example, in [8] an evolutionary multiobjective optimization
algorithm (EMOA) was used within a simulation-based approach to optimize purity,
productivity, and/or yield of a single chromatography step. EMOAs have found appli-
cation in various experimental optimization problems [9], and are easily adaptable to
problems featuring constrained, non-linear, non-convex, noisy, dynamically changing,
and/or multiple objective functions. EMOAs have also been extended to cope with re-
sourcing issues in experimental optimization leading e.g. to delayed/missing objective
values [10] and temporary non-availability of certain solutions for evaluation [9]. The
issue around missing objective values can also be encountered in chromatography pro-
cess optimization and is investigated in more detail in this study.

Although a chromatographic purification process consists of multiple steps, the work
cited above focuses on the optimization of a single step only. The goal of this study is
to optimize multiple chromatography steps simultaneously so as to maximize recovery
yield and final product purity (or equivalently minimize impurities). Optimizing multi-
ple steps means that ideally interactions, technical limitations and/or resourcing issues
between steps can be accounted for in the optimization. The lack of models capable
of capturing interactions and constraints between multiple chromatography steps ac-
curately, means however that a direct experimental approach needs to be adopted. To
realize this experimental optimization platform, a sophisticated and precise laboratory
setup is required as well as an optimization method capable of dealing efficiently with
the enlarged search space and additional constraints (arising due to the presence of mul-
tiple chromatography steps). This study focuses on the design of an effective optimizer
to guide the selection of conditions for physical experiments.

2 Problem Definition

This section describes the problem formulation for the multiobjective optimization
of chromatographic operating conditions (MOCOC) subject to resourcing issues. The
experimental platform adopted for the optimization of operating conditions across mul-
tiple chromatography steps is visualized in Figure 1, and can be formulated mathemat-
ically as follows:

maximize f(x, σ) = (f1(x, σ), ..., fm(x, σ))
subject to x ∈ X,

where x = (x1, ..., xl) is a solution vector (here a set of operating conditions), and X a
feasible search space (here the set of all possible operating conditions). The objective

Tuning Evolutionary Multiobjective Optimization 743

Step yields (Y1, ..., Yk)

HPLC

Physical
material

Data

Set of operating
conditions x

Computer

Y1 Yk

...
Sequence of chromatography steps

Impurity levels (IP1, ..., IPs)

Fig. 1. Schematic of a typical experimental setup for the closed-loop optimization of chromato-
graphic operating conditions. Following the set up of the operating conditions, defined by x, the
sample is passed through a sequence of chromatography steps i = 1, ..., k. An HPLC device is
used to obtain the step yields Yi and the final levels of individual impurities IPj, j = 1, ..., s.
Based on this quality measure, an optimizer running on the computer then selects the next set of
operating conditions for testing.

vector function f is a black box and represents a time-consuming and costly physi-
cal experiment on x, which is characterized by m > 0 noisy measurements f1, ..., fm.
The functions fi are known as objectives and are typically in conflict. The vector σ
represents environmental factors that cannot be controlled, e.g. imprecision in the ex-
perimental equipment. In the following, these problem features are described in more
detail.

Decision variables x1, ..., xl: A solution vector x represents a set of relevant operating
conditions, such as pH and salt concentration, for a set of chromatography steps i =
1, ..., k. Figure 2 shows the solution encoding used in this work: each step i is associated
with a pre-defined resini and a variable number of operating conditions ci,j, 1 ≤ j ≤
di, resulting in l = ∑k

i=1 di decision variables in total. Typically, the values ci,j are
represented by discretized real values.
Objective functions f1, ..., fm: Two (m = 2) commonly-used metrics were considered
in order to characterize the quality of a chromatographic process: the overall recovery
yield Y and the final product impurities ∑ IPj:

maximize f1 = Y = Y1 × ...× Yk

minimize f2 = ∑ IPj =
s

∑
j=1

IPj,

where Yi is the yield of chromatography step i, and IPj, j = 1, ..., s, the levels of dif-
ferent impurity types, such as host cell proteins and DNA; note, the objective of mini-
mizing product impurities is equivalent to maximizing purity and used here due to the
structure of the test problems considered (see Section 3.1). Both objectives, yield and
(im)purity, are obtained by analyzing the sample using an HPLC (high-performance
liquid chromatography) device. Measuring the yield and levels of different impurities
takes around 4 min and 30 min per sample, respectively, whilst the robot takes around 1

744 R. Allmendinger et al.

...conditions:

resink

ck,dk
...ck,1

resini

ci,di
...ci,1

resin1Resins:

...c1,1 c1,d1 ...
Operating

Fig. 2. Representation of a solution x for a process with i = 1, ..., k chromatography steps. Each
step i is linked to a fixed resini and a set of operating conditions ci,j, 1 ≤ j ≤ di.

hour per chromatography step to prepare a sample (this robotic step can be parallelized
to up to 8 samples).
Feasible Search Space X: In addition to standard constraints on the decision vari-
able value ranges, the search space may be defined by dependency constraints between
chromatography steps. For instance, setting the salt concentration of a step i dictates
the lowest possible salt concentration of the successive step, or ci,j ≤ ci+1,t, assum-
ing indices j and t point to the salt concentration at chromatography step i and i + 1,
respectively.

In addition to constraints defining the search space X, there may also be constraints
on the objective values f1, ..., fm. For example, for antibodies, regulatory requirements
specify that the final product impurities needs to be ∑ IPj < 5%. Moreoever, in the
presence of limited resources, there may be a threshold Ymin on the minimum recovery
yield. This limitation can be seen as a resourcing issue and shall prevent the waste of
resources dedicated to the evaluation of inefficient purification processes. Mathemati-
cally, this resourcing issue can be expressed by a Boolean clause as follows

if Yi × ... ×Yp < Ymin then terminate experiment and return Y1, ..., Yp (1)

where p ≤ k denotes the chromatography step after which the cumulative yield is below
the threshold Ymin. That is, if the resourcing issue is ‘activated’, then the objectives Y
and ∑ IPj are missing. However, the measurements Y1, ..., Yp are available and might
be used to estimate Y and/or ∑ IPj.
Uncertainties: The decision variables x1, ..., xl and the measurements f1 and f2 might
be subject to some level of uncertainty (noise) given the experimental nature of the
problem. This level is typically low if the experimental platform is set up accurately,
and thus neglected here.

3 Experimental Setup

This section describes the case study, extensions augmented on the EMOAs for coping
with the challenges of the MOCOC problem, and algorithm parameter settings as used
in the subsequent experimental analysis.

3.1 Case Study

Ultimately, the goal is to tackle MOCOC problems with k ≈ 3 chromatography steps
and l ≈ 8 operating conditions in total. The purification sequence considered in [6]
falls into this problem domain and was used in this study as the “test problem” to
tune and validate different state-of-the-art EMOAs (using computational experiments).

Tuning Evolutionary Multiobjective Optimization 745

Table 1. MOCOC problem characteristics

Chromat. Operating Value Step
Step i condition range size δ

i = 1, pHwash [4.5; 5.5] 0.1
affinity pHelution [2.5; 3.5] 0.1

NaClwash [50; 500] 25
i = 2, pHload,2 [4.5; 5.5] 0.1
cation Grad. length [10; 20] 2

exchange Load [45;55] 1
i = 3, pHload,3 [7; 8] 0.1
anion Load [100; 200] 5

exchange

Table 2. EMOA default parameter settings

EMOA Parameter Setting

All

Max evaluations G 100
Crossover probability pc 0.6

Per-variable mutation
1/l

probability pm
NSGAII Population size n 10

MOEA/D
Population size n 20
#Weight vectors T 20

SMS-EMOA Population size μ 4

ParEGO
Initial population size n 50

#Scalar vectors s 10

Table 1 lists the operating conditions to be optimized for each of the k = 3 steps
(affinity, cation and anion exchange); the operating condition values were discretized
as specified by the step size δ. The heatmap data published in [6] was used to construct
two interpolated fitness landscapes for each of the k = 3 steps, one for the step yield Yi
and one for the step’s impurity level IPi, using the Kriging approach.1 The experimental
study considered the problem with k = 2 steps (the first two steps) and l = 6 operat-
ing conditions, and the complete problem with all k = 3 steps and l = 8 operating
conditions.

The independent optimization of each chromatography step has been studied
before [6]. In our work the problem was extended by dependency constraints and re-
sourcing issues (mimicking real limitations of the problems of interest): the dependency
constraint was defined by pHwash ≤ pHload,2 (for the sake of this constraint, the value
ranges of both variables were set identically), and the resourcing issue was represented
by Equation (1).

3.2 Tuning Evolutionary Search for the MOCOC Problem

To run an EMOA on the MOCOC problem, strategies for coping with the constraints
and resourcing issues need to be defined.
Handling Dependency Constraints: Four strategies — random, copy, swap, and re-
generate — were investigated for coping with the dependency constraint defined above.
Upon encountering an infeasible solution, the strategy random sets its pHload,2 value to
a random value selected from the range [pHwash, 5.5], whilst the strategy copy sets
pHload,2 =pHwash. The strategy, swap, swaps the values of pHload,2 and pHwash, which
results in a feasible solution due to the identical value range of the two variables. Fi-
nally, the strategy regenerate iteratively generates new solutions until it generates one
that is feasible.
Handling Resourcing Issues: Three strategies — strict penalizing, relaxed penaliz-
ing, and fitness-inheritance — were investigated for coping with the resourcing issue
defined in Equation (1). The aim of these strategies is to substitute missing objective

1 A Kriging function, Krig(), was used from the fields package of the statistical software R.

746 R. Allmendinger et al.

values with some surrogate. The strategy, strict penalizing, sets the objectives of a so-
lution violating Equation (1) to the worst possible values; i.e. f1 = 0 = 1 (assuming a
normalized objective space). The strategy, relaxed penalizing, uses the available yield
measurements to set the objective values to f1 = Yi × ... × Yp and f2 = 0. Finally,
the strategy, fitness-inheritance, selects for a solution with missing objectives a solu-
tion from the set of all solutions evaluated so far that is both closest to it in the decision
space (in terms of normalized Euclidean distance) and has no missing objectives, and
then simply copies the solution’s values of f2 and Yp+1, ..., Yk to allow the computation
of f1.

3.3 Algorithm Parameter Settings

Four state-of-the-art EMOAs were considered in the experimental analysis: NSGAII [11],
MOEA/D [12], SMS-EMOA [13], and ParEGO [14]. All EMOAs avoided the evalua-
tion of duplicate solutions (solutions were regenerated until a unique one is created),
each used a latin hypercube initialization procedure, uniform crossover, binary tourna-
ment selection (with replacement), and a mutation operator that selects a value at ran-
dom from the feasible variable value range (see Table 1). Both NSGAII and MOEA/D
employ a generational reproduction scheme (using a fixed population size of μ), whilst
SMS-EMOA uses a steady-state scheme, and ParEGO considers all solutions evaluated
to create a single solution.

The aim of the experimental study was to understand how the performance of the
EMOAs is affected by different algorithm parameter settings, and constraint and re-
sourcing issue-handling strategies. The default settings of the EMOAs are given in
Table 2. The total number of evaluations G = 100 represents the estimated budget
available for the problems of interest. Results shown are the average across 30 indepen-
dent runs. Hypervolume and attainment surface results were obtained by considering
all solutions found during a run that had no missing objective values. For the hypervol-
ume calculation, the objective values were normalized to lie in the range [0,1], and the
reference point was set to a value of 2 for all objectives.

4 Experimental Analysis

The first two sets of experiments investigate the performance of the constraint-handling
strategies and sensitivity of algorithm parameter settings in the absence of the resourc-
ing issue, which is the focus of the last set of experiments.

Investigation of Constraint-Handling Strategies: Figure 3 shows the performance
of the different constraint-handling strategies when augmented on NSGAII. From Fig-
ure 3(a) it is apparent there is a trade-off between the population size n and the number
of generations G/n available for optimization: the performance increases until a popu-
lation of n ≈ 10 after which any further increases in n lead to a performance reduction
(due to the smaller number of generations available). The random strategy performs
most robustly, followed closely by the copy and regenerate strategy. The swap strategy
performs significantly worse than the other strategies, in particular around the sweet
spot of n ≈ 10, as it deteriorates the original solution’s string most. The attainment

Tuning Evolutionary Multiobjective Optimization 747

 0.972

 0.974

 0.976

 0.978

 0.98

 0 20 40 60 80 100

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

Population size n

Random
Copy
Swap

Regenerate

(a)

 0

 10

 20

 30

 40

 50

 88 90 92 94 96 98 100

Im
pu

ri
tie

s
ΣI

P
j

Yield Y

Random
Copy
Swap

Regenerate
Pareto front

(b)

Fig. 3. a)Average hypervolume and its standard error as a function of the population size n, and
b) worst (thin lines) and median (bold lines) attainment surfaces for n = 10 obtained by different
constraint-handling strategies augmented on NSGAII for a MOCOC problem with k = 2 steps
and l = 6 variables. For every setting marked by a point in a), a Kruskall-Wallis test (significance
level of 5%) has been carried out. Random, copy, and regenerate perform best for n = 10. There
is no clear winner for the other settings.

surface plot, Figure 3(b), confirms this ranking as well as the significant gap of the ran-
dom strategy to the estimated true Pareto front (which has been obtained by taking the
non-dominated front discovered across multiple and long runs of NSGAII). The perfor-
mance patterns were similar for both test problems, i.e. k = 2 and 3 steps, and the other
EMOAs. For ParEGO, the choice of the constraint-handling strategy is not as crucial
as the search for a new solution is performed over an interpolated landscape (instead of
the actual search space), which is cheap to evaluate.

Investigation of Crucial Algorithm Parameter Settings: Figure 4 analyses the sen-
sitivity in performance of the different EMOAs as a function of algorithm parameter
settings, in particular the population size n. From Figure 4(a), it is obvious that the per-
formance of all EMOAs improves until a certain n is reached, and then degrades for
further increases in n. SMS-EMOA is able to achieve the highest average hypervolume,
when used in combination with small population size of n ≈ 4. ParEGO performed
slightly worse than SMS-EMOA in terms of the average hypervolume but is more ro-
bust to variations in n. Note, for n = 100, no optimization was performed as all EMOAs
sample the search space using a latin hypercube design, which can be seen as the de-
fault performance obtained with a DoE approach. As can be seen from Figure 4(a), this
performance is clearly beaten by the EMOAs for most settings of n. The performance
ranking of EMOAs with respect to worst and median attainment surfaces obtained,
which are shown in Figure 4(b), was in alignment with the hypervolume results. It is
also apparent from the plot that SMS-EMOA and ParEGO were able to get significantly
closer to the Pareto front than NSGAII.

Investigation of Resourcing Issue-Handling Strategies: Finally, Figure 5 analyzes
the performance of the resourcing issue-handling strategies when augmented on SMS-
EMOA. In Figures 5(a) and 5(b), the resourcing issue was present from the very be-
ginning of the optimization, whilst, in Figures 5(c) and 5(d), it was ignored and the
evaluation completed for the first 10 solutions with a cumulative yield below Ymin.

748 R. Allmendinger et al.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0 20 40 60 80 100

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

Population size n

ParEGO
NSGAII

MOEA/D, T = 2
MOEA/D, T = min{20, n}

SMS-EMOA
Pareto Front

(a)

 0

 10

 20

 30

 40

 50

 88 90 92 94 96 98 100

Im
pu

ri
tie

s
ΣI

P
j

Yield Y

ParEGO, n = 50
NSGAII, n = 10

MOEA/D, n = T = 10
SMS-EMOA, n = 4

Pareto Front

(b)

Fig. 4. a) Average hypervolume and its standard error as a function of the population size n, and
b) worst (thin lines) and median (bold lines) attainment surfaces obtained for optimal settings of
n by several EMOAs for a MOCOC problem with k = 2 steps and l = 6 variables. For every
setting marked by a point in a), a Kruskall-Wallis test (significance level of 5%) has been carried
out. SMS-EMOA performs best for n < 10, and ParEGO for 25 < n < 100. There is no clear
winner for the other settings.

From Figures 5(a) and 5(c) it can be observed that the presence of the resourcing is-
sue has a significant negative impact on performance for Ymin > 90%. Relaxing the
resourcing issue reduces the impact on performance but it is an expensive approach.
Preventing the optimizer from entering certain regions of the objective space introduces
a search bias towards other parts of the Pareto front, as evident from the attainment sur-
faces shown in Figures 5(b) and 5(d), especially in Figure 5(b), for Ymin = 94%. Com-
paring the different resource issue-handling strategies, it is apparent that a penalizing
strategy performs best in Figures 5(a) and 5(b). A fitness-inheritance strategy performs
better in the relaxed scenario (Figures 5(c) and 5(d)) because, once the resourcing issue
is switched on, it allows the optimizer to enter more quickly a feasible region in the ob-
jective space than the penalizing strategies (as indicated by the number of experiments
below Ymin). Note, although relaxing the resourcing issue leads to more distributed at-
tainment surfaces (see Figure 5(d)), the surfaces are further away from the Pareto front
than in the unrelaxed case due to the lower level of exploitation. The other EMOAs are
affected in a similar way by the resourcing issue.

5 Conclusion and Future Work

This paper has considered a real-world problem concerned with the optimization of
operating conditions for chromatographic purification processes so as to maximize re-
covery yield and product purity. The problem has been formulated as a multiobjective
closed-loop optimization problem subject to dependency constraints, resourcing issues,
uncertainties, and a limited number of evaluations. Several strategies were proposed
for dealing with the constraints and resourcing issues, and subsequently augmented
and validated on four state-of-the-art EMOAs — ParEGO, NSGAII, MOEA/D, and
SMS-EMOA — for two test problems created from published real-world data. The ex-
perimental study revealed that EMOAs can achieve a better performance within 100

Tuning Evolutionary Multiobjective Optimization 749

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 86 88 90 92 94 96 98
 0

 20

 40

 60

 80

 100
A

ve
ra

ge
 h

yp
er

vo
lu

m
e

#E
valuations below

 Y
m

in

Minimum yield threshold Ymin

Unconstrained
Strict penalizing

Relaxed penalizing
Fitness-inheritance

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 86 88 90 92 94 96 98 100

Im
pu

ri
tie

s
ΣI

P
j

Yield Y

Unconstrained
Strict penalizing

Relaxed penalizing
Fitness-inheritance

Pareto Front

(b)

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 86 88 90 92 94 96 98
 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

#E
valuations below

 Y
m

in

Minimum yield threshold Ymin

Unconstrained
Strict penalizing

Relaxed penalizing
Fitness-inheritance

(c)

 0

 10

 20

 30

 40

 50

 60

 70

 86 88 90 92 94 96 98 100

Im
pu

ri
tie

s
ΣI

P
j

Yield Y

Unconstrained
Strict penalizing

Relaxed penalizing
Fitness-inheritance

Pareto Front

(d)

Fig. 5. a) and c) Average hypervolume, its standard error, and #evaluations below Ymin as a func-
tion of the threshold Ymin, and b) and d) worst (thin lines) and median (bold lines) attainment
surfaces obtained for Ymin = 94% by SMS-EMOA for a MOCOC problem with k = 3 steps and
l = 8 variables. In a) and b), the resourcing issue was present throughout the search, whilst, in
c) and d), it was ignored for the first 10 solutions with f1 < Ymin. For every setting marked by a
point in a) and c), a Kruskall-Wallis test (significance level of 5%) has been carried out. Relaxed
penalizing performs best in a) for Ymin = 95%, whilst fitness-inheritance performs best in c) for
Ymin = 92% and 94%. There is no clear winner for the other settings.

evaluations than a standard DoE approach, such as a latin hypercube design. The best
performance was achieved by SMS-EMOA when used in combination with a small pop-
ulation of size n ≈ 4 and a random sampling-based constraint-handling strategy. The
performance of an EMOA depended on the resourcing issue-handling strategy: A pe-
nalizing strategy performed best if a resourcing issue is present throughout the search,
whilst a fitness-inheritance approach performs better if the resourcing issue is relaxed.
Future research will focus on applying SMS-EMOA to guide real physical chromato-
graphic experiments.

References

1. Pollock, J., Bolton, G., Coffman, J., Ho, S.V., Bracewell, D.G., Farid, S.S.: Optimising the
design and operation of semi-continuous affinity chromatography for clinical and commer-
cial manufacture. Journal of Chromatography A 1284, 17–27 (2013)

750 R. Allmendinger et al.

2. Susanto, A., Treier, K., Knieps-Grünhagen, E., von Lieres, E., Hubbuch, J.: High throughput
screening for the design and optimization of chromatographic processes: automated opti-
mization of chromatographic phase systems. Chemical Engineering & Technology 32(1),
140–154 (2009)

3. Guiochon, G.: Preparative liquid chromatography. Journal of Chromatography A 965(1),
129–161 (2002)

4. Irizar Mesa, M., Llanes-Santiago, O., Herrera Fernández, F., Curbelo Rodrı́guez, C., Da
Silva Neto, A.J., Câmara, L.D.T.: An approach to parameters estimation of a chromatogra-
phy model using a clustering genetic algorithm based inverse model. Soft Computing 15(5),
963–973 (2011)

5. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., Brandao, G.C.,
da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., dos Santos, W.N.L.: Box-
behnken design: An alternative for the optimization of analytical methods. Analytica Chim-
ica Acta 597(2), 179–186 (2007)

6. GE Healthcare Life Sciences. A platform approach for the purification of antibody fragments
(fabs). Application note 29-0320-66 AA (2012)

7. Treier, K., Berg, A., Diederich, P., Lang, K., Osberghaus, A., Dismer, F., Hubbuch, J.: Ex-
amination of a genetic algorithm for the application in high-throughput downstream process
development. Biotechnology Journal 7, 1203–1215 (2012)

8. Nfor, B.K., Zuluaga, D.S., Verheijen, P.J.T., Verhaert, P.D.E.M., van der Wielen, L.A.M., Ot-
tens, M.: Model-based rational strategy for chromatographic resin selection. Biotechnology
Progress 27(6), 1629–1643 (2001)

9. Allmendinger, R., Knowles, J.: On handling ephemeral resource constraints in evolutionary
search. Evolutionary Computation 21(3), 497–531 (2013)

10. Allmendinger, R., Knowles, J.: ‘Hang On a Minute’: Investigations on the Effects of Delayed
Objective Functions in Multiobjective Optimization. In: Purshouse, R.C., Fleming, P.J., Fon-
seca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 6–20. Springer,
Heidelberg (2013)

11. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

12. Zhang, Q., Hui, L.: MOEA/D: a multiobjective evolutionary algorithm based on decomposi-
tion. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

13. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on
dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669
(2007)

14. Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expen-
sive multiobjective optimization problems. IEEE Transactions on Evolutionary Computa-
tion 10(1), 50–66 (2006)

A Geometrical Approach to the Incompatible

Substructure Problem in Parallel Self-Assembly

Navneet Bhalla1, Dhananjay Ipparthi2, Eric Klemp3, and Marco Dorigo2

1 Cornell University, Ithaca, New York, USA
navneet.bhalla@cornell.edu

2 Université Libre de Bruxelles, Brussels, Belgium
{dhananjay.ipparthi,mdorigo}@ulb.ac.be

3 University of Paderborn, Paderborn, Germany
eric.klemp@uni-paderborn.de

Abstract. The inherent massive parallelism of self-assembly is one of
its most appealing attributes for autonomous construction. One chal-
lenge in parallel self-assembly is to reduce the number of incompatible
substructures that can occur in order to increase the yield in target struc-
tures. Early studies demonstrated how a simple approach to component
design led components to self-assemble into incompatible substructures.
Approaches have been proposed to reduce the number of incompatible
substructures by increasing component complexity (e.g. using mechani-
cal switches to determine substructure conformation). In this work, we
show how a geometrical approach to self-assembling target structures
from the inside-out eliminates incompatible substructures and increases
yield. The advantages of this approach includes the simplicity of com-
ponent design, and the incorporation of additional techniques to reduce
component interaction errors. An experiment using millimeter-scale, 3D
printed components is used to provide physical evidence to support our
geometrical approach.

Keywords: Self-assembly, parallelism, yield, mesoscale, 3D printing.

1 Introduction

Self-assembly is prevalent throughout nature, and is the basis of construction for
a myriad of complex biological structures [10]. Inspired by nature, self-assembly
is viewed as an enabling technology for the creation of artificial systems [12]. Self-
assembly is the autonomous organization of a set of components, in an environ-
ment, into structures without human intervention [16]. However, many aspects
of self-assembly require further investigation in order to apply the advantages
seen in nature to engineered systems, such as massive parallelism [9].

Parallelism in self-assembly can be exploited in two primary forms: (1) the
parallel construction of a single target structure, versus (2) the parallel construc-
tion of multiple target structures. In both cases, emerging substructures may be
incompatible due to binding mechanisms or geometry. In the latter case, a set

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 751–760, 2014.
c© Springer International Publishing Switzerland 2014

752 N. Bhalla et al.

of components that can self-assemble into a single target structure may not be
suitable for constructing multiple target structures due to newly introduced com-
ponent interactions [2]. For example, an intuitive approach to designing a set of
components that can self-assemble into a target hexagonal structure is to dissect
the hexagon into fundamental, triangular components [7]. This simple approach
is effective for self-assembling a single target structure in parallel. However, this
leads to incompatible substructures (e.g. with two and five components) when
constructing multiple target structures in parallel.

Furthermore, the latter case is connected to the yield problem, where the
objective is to maximize the number of self-assembled target structures and
minimize the amount of waste [12]. Reducing or eliminating the number of in-
compatible substructures that can occur during the self-assembly process is one
approach to improving yield [7]. Here, we present a geometrical approach to the
design of components that eliminates incompatible substructures from forming,
by directing the self-assembly process to construct a target structure from the
inside-out. The geometry of components in the context of parallel self-assembly
has already been considered [11]. However, in this study the focus was not on
the construction of target structures (with defined shape) and yield, but rather
on the construction of arrays of components (without defined boundaries).

The following section presents the specific incompatible substructure problem
of interest here, and methods for directing the self-assembly process to differen-
tiate our geometrical approach. Next, an overview of our geometrical approach
is provided, including the designs of components and their environment, in com-
parison to the simple approach. A description of an experiment follows, which
uses millimeter-scale components fabricated by a 3D printer. Components are
confined to the surface of a tray, and placed on an orbital shaker. Magnetism is
used to attract and repel components. The results show a statistically significant
difference between our geometrical approach and the simple approach, especially
as the number of potential substructures grows. We discuss several areas of im-
provement to our approach as future work. We conclude by summarizing how
this work provides physical evidence to support our geometrical approach to the
incompatible substructure problem in parallel self-assembly.

2 Background

The seminal work by Hosokawa et al. [7] is used to introduce the incompatible
substructure problem. Next, the proposed method for directing the self-assembly
process by Hosokawa et al. to address this problem is described. Three additional
methods to direct the process are presented to contrast our geometrical approach.

2.1 Incompatible Substructure Problem

An early work with the aim of analyzing the dynamics of self-assembling systems
was presented by Hosokawa et al. [7]. The target structure for their study was a
regular hexagon. The hexagon was divided into six equilateral triangles, serving

A Geometrical Approach to the Incompatible Substructure Problem 753

a b c

Fig. 1. A triangle component with magnetic north (black) and south (grey) and a target
hexagon (a). An example of 12 components for 2 target structures in an intermediate
state with incompatible substructures (b) versus compatible substructures (c).

as the base-shape for the centimeter-sized components in their system. Each
mechanical component had two permanent magnets, with magnetic north and
magnetic south facing outwards on two separate edges (Fig. 1).

With magnetism used to bind components, vibrational energy was used to
mix the components. Components were confined to the surface of a rectangular
box. The box was oriented vertically, and rotated perpendicularly to its major
axis. Misaligned components, errors, could be corrected through component-
component/environment interactions due to the vibrations and gravity.

Substructures consisted of one to five components. It is impossible to have
incompatible substructures when constructing a single target structure, with
the exact number of components. However, when constructing multiple target
structures in parallel, incompatible substructures can occur (Fig. 1). Hosokawa et
al. calculated the probability of the five types of substructures binding together
[7]. Based on these probabilities, they were able to derive a master equation,
conceptually similar to chemical kinetics. Their analytical method was used to
both calculate yield and understand the dynamics of this system over time.

2.2 Directed Self-Assembly

To improve yield, Hosokawa et al. proposed an alternative set of components to
the simple, homogenous set of components [7]. The alternative set exploited con-
formational switching, a mechanism that changes a feature (e.g. binding mech-
anism or geometry) of a component based on local component interaction [13].

754 N. Bhalla et al.

The alternative set consisted of two types, seed and variable, components. One
seed component is required for each target structure. Permanent magnets of op-
posite polarity were embedded within two edges of a seed component. However,
variable components had two permanent magnets placed within their interior,
which would only move to the edge when a magnet of opposite polarity was
present in a neighboring component. The use of a seed and variable components
created an assembly sequence, and eliminated the formation of incompatible
substructures. One drawback was that the proposed seed components could self-
assemble, resulting in errors (due to magnetic binding and the triangular shape
of the components). Hosokawa et al. analytically showed how their conforma-
tional switching approach could improve yield over their simple approach [7]. To
the best of our knowledge, this system has not been physically implemented.

Additional designs for conformational switching and alternative methods for
directing the self-assembly process have been developed. Engineered proteins us-
ing ligand switches [4] and robotic modules using electro-mechanical switches [8]
have been physically implemented. Synthesized DNA using a nucleic acid switch
has been theorized [5]. DNA self-assembly using the abstract Tile Assembly
Model, leverages seed tiles, environment temperature, and cooperative binding
to direct crystallization [17]. Seed tiles with a larger number of binding sites
have been physically demonstrated to improve the yield of algorithmic crystals
[1]. Alternatively, the self-assembly process can be divided into time steps, and
the set of components at different stages can also be used to direct the process
by constructing target structures from the inside-out [2].

There are several drawbacks to theses methods. For the staging method, it
becomes an increasingly difficult task to prevent error interactions when increas-
ing the number of components and interdependent stages. Permitting binding
at one temperature and preventing binding at another is the biggest challenge
in physically implementing systems based on the abstract Tile Assembly Model.
Conformational switches are challenging to engineer, and as shown in the next
section, unnecessary for self-assembling target structures with basic geometries.

3 Geometrical Approach

We present our geometrical approach to the incompatible substructure problem
in parallel self-assembly. The core idea of our approach is that component ge-
ometry can direct the self-assembly process, as an alternative to conformational
switching, multiple environmental conditions, or staging. A variation to the sim-
ple component set, by Hosokawa et al., is used to contrast a component set
based on our geometrical approach. This change in geometry directs the target
structure to form from the inside-out, instead of the less versatile assembly path
generated by the conformational switching approach by Hosokawa et al.

Instead of a regular hexagon, a circle is used as the target structure. This
change in target shape reduces the contact surface area between target struc-
tures, decreasing the potential for interaction errors and improving the mixing of
target structures and substructures. It also allows for the target shape to remain

A Geometrical Approach to the Incompatible Substructure Problem 755

constant, while being able to vary the number of components with regularity.
Scaling the number of divisions of the circle from three (minimum number for
incompatible substructures to form) to six allows for deeper investigation.

Mesoscale (micrometer to millimeter) self-assembly offers flexibility in design
and functionality that is unparalleled by molecular systems [15]. Millimeter-scale
components, fabricated by a 3D printer, are used in this work. The target circle
is 25 mm in diameter. Three types of components are used in this work, sector
(first, homogenous set), and disc and ray (second, heterogeneous set).

Sector components are similar to the simple set used by Hosokoawa et al.
(named after dividing a circle into equal subunits). Sector (S) components are
denoted by CS

x , where x ∈ {3, 4, 5, 6}. Instead of embedding two magnets of
opposite polarity in the edges, one permanent magnet (polarity north) and a
ferromagnetic micro-screw are used (Fig. 2). This reduces misalignment errors
by up to 50%, in comparison to the simple component set by Hosokawa et al.

The design of disc and ray components are based on our geometrical approach
(named after sunflowers; ray flowers around the middle disc flowers [14]). Disc
(D) and ray (R) components are denoted by CD

x and CR
x , where x ∈ {3, 4, 5,

6}. A ferromagnetic micro-screw is used in each ray, and one permanent magnet
(polarity north) is used in each ray location in a disc (Fig. 2). As well, key-lock
shapes are used to reduce interaction errors [2]. Exploiting symmetry, discs are
not magnetically attracted and cannot misalign due to geometry, in comparison
to the assembly errors of the seed components by Hosokawa et al. The geometry
of these components prevents incompatible substructures from forming.

Sector and disc-ray component sets use identical circular tray environments
(similar to petri dishes). The dimensions of a tray include an inner wall diameter
of 118.55 mm and height of 6 mm. A tray is fastened horizontally to an orbital

a b c

d

Fig. 2. Abstract examples of CS
6 (a), CD

6 (b), and CR
6 (c), and the 8 types of target

structure with 3D printed components embedded with magnets and micro-screws (d)

756 N. Bhalla et al.

shaker, providing vibrational energy to the passive, mechanical components; a lid
constrains the components to the tray surface. Each tray accommodates 10 target
structures. The shaking speed and the tray dimensions are based on preliminary
experiments conducted by the authors. Complete physical specifications of the
tray, and the sector, disc, and ray components are provided in [3].

4 Experiment

The benefit of our geometrical approach will be shown by a statistically signifi-
cant difference in yield between the sector and disc-ray component sets. The null
hypothesis, H0, is that there is no difference in the yield of self-assembled circular
target structures between the sector and disc-ray component sets. The alterna-
tive hypothesis, H1, is that there is a difference in the yield of self-assembled
circular target structures between the sector and disc-ray component sets.

To test H0, 10 trials of this experiment are conducted. The dependent variable
is the number of self-assembled target structures. The independent variable is the
set of components. A trial is conducted for CS

3−6, and CD
3−6 and CR

3−6. Enough
components are provided to self-assemble 10 target structures. The control group
is the set of sector components and the experimental group is the set of disc-ray
components (subgroups denoted by CGS

y and EGDR
y , where y ∈ {3, 4, 5, 6}).

The structure of all the components is made from a photopolymer resin, fab-
ricated using an Objet Eden 3D printer. Finishing the components includes
manually inserting permanent magnets and micro-screws. Four trays are used
in the experiment, in order to conduct trials in parallel. The base of each tray
is made from ABS plastic, fabricated using a Stratasys Fortus 3D printer. The
laser-cut tray lids are made from clear acrylic. A full list of the materials and
procedures for constructing the components and trays is provided in [3].

The four trays are fastened to an Excella E5 orbital shaker. At the start of
each trial, all the components in a subgroup are randomly placed into one of
the four trays (ensuring components are not initially aligned to self-assemble).
The shaker is turned on and set to 300 rpm. The shaker is turned off after
300 seconds. A complete description of the experiment procedure is provided
in [3]. At the end of each trial, the following four quantitative measurements
are recorded: (1) the number of self-assembled target structures, (2) the number
and type of compatible substructures, (3) the number and type of incompatible
substructures, and (4) the number and type of errors (misalignment and defects).

5 Results

Frequency histograms for the number of self-assembled target structures, for
the control and experimental groups, are provided in Fig. 3. The frequency his-
tograms show that the yield in target structures is not normally distributed for
both groups. Therefore, the non-parametric Mann-Whitney-U test is used to
test H0 [6]. The sample size, and median and mean number of self-assembled
target structures for the control group are 40, 7, and 6, for the experimental

A Geometrical Approach to the Incompatible Substructure Problem 757

group are 40, 9, and 9. The calculated critical value, U, is 1,394. The difference
in yield between the control and experimental groups is statistically significant
(two-tailed test, p-value < 0.001). Therefore, we reject H0.

A deeper investigation illustrates the difference in yield and waste between the
subgroups, CGS

3−6 and EGDR
3−6. Here, waste is considered to be any substructure

that remains at the end of a trial. The first box-and-whisker plot shows the
interquartile range and the minimum and maximum number of self-assembled
target structures, yield, for each subgroup (Fig. 3). The second box-and-whisker
plot shows the interquartile range and the minimum and maximum number of
compatible substructures and incompatible substructures for CGS

3−6 (Fig. 3).
The third box-and-whisker plot shows the interquartile range and the minimum
and maximum number of disc-based substructures and the number of single ray
components for EGDR

3−6 (Fig. 3).
Notably, CGS

4 achieved a consistently high yield, and only had incompatible
substructures occur in trials 9 and 10 (substructures with 3, 3, and 2 components
for both trials). This high yield might be attributed to symmetry, but requires
further investigation. Trials 1 and 2 of CGS

5 did not have incompatible substruc-
tures, and instead had compatible substructures with 3 and 2 components for
both trials. For CGS

5 , trials 3 to 10 did not have any compatible substructures.
Only trials 2, 3, and 4 of CGS

6 had compatible substructures. The typical num-
ber of components in the incompatible substructures for CGS

5 and CGS
6 were

one less than required for the target structures. For trials 1−10, for EGDR
3−5, only

a single, unattached CR
3−5 prevented 10 target structures from self-assembling.

For EGDR
6 , trials 1, 5, and 6 had a single CR

6 each. Trial 3 had one CD
6 with one

empty slot and a second CD
6 with two empty slots (three CR

6). Trials 4, 7, and 9
had two CD

6 with one empty slot each (two CR
6). And, trial 8 had one CD

6 with
two empty slots (two CR

6). A larger sample size is required to directly compare
CGS

3−6 to EGDR
3−6. Fig. 4 shows examples from the experiment.

No misalignment errors were observed. Only one defect error occurred in trial
4 of EGDR

6 , where a magnet from CD
6 dislodged and self-assembled two CR

6 .
Despite this error, the difference in yield between the sector and disc-ray groups
is statistically significant. Even when increasing the number of components in a
target structure, we attribute this difference to our geometrical approach.

6 Future Work

We are currently investigating three extensions to our approach. First, we are
setting-up a camera tracking system to record the physical trials, in order to
conduct deeper analysis into the self-assembly process of target structures in
parallel. One of the shortcomings of the geometrical approach described here is
that it is restricted to a single layer of components. Second, we are investigating
new geometries in order to scale the number of components to additional layers,
and leverage the new geometries to autonomously stage the construction of each
layer from the inside-out. For example, more complex arrangements of multiple
permanent magnets can be used to selectively attract and repel a wider variety

758 N. Bhalla et al.

Fig. 3. (I) Histograms for control (black) and experimental (grey) groups. (II) Box-and-
whisker plot for the number of self-assembled target structures in 10 trials for CGS

3−6

(A-D) and EGDR
3−6 (E-H). (III) Box-and-whisker plot for the number of compatible,

CGS
3−6 (I-L), and the number of incompatible, CGS

3−6 (M-P), substructures in 10 trials.
(IV) Box-and-whisker plot for the number of disc-based substructures, EGDR

3−6 (Q-T),
and the number of single ray components, EGDR

3−6 (U-X), in 10 trials.

A Geometrical Approach to the Incompatible Substructure Problem 759

Fig. 4. Example of incompatible substructures (2, 5, and 5 component substructures,
CGS

6 , trial 10; left), and of self-assembled target structures (EGDR
6 , trial 10; right)

of component types (i.e. components in different layers), while self-assembling
structures from the inside-out [2]. Third, we are considering new component and
environment designs in order for the components to move and self-assemble in
three spatial dimensions.

7 Conclusions

In this work, we presented our geometrical approach to the incompatible sub-
structure problem. The primary contribution of this work is that our approach
eliminates incompatible substructures from forming during the self-assembly
process. The secondary contributions of this work includes the reduction of
component interactions errors by combining a permanent-ferromagnetic binding
mechanism with the key-lock principle, and a physical experiment that produced
a high yield in target structures (even as the number of components increased)
while reducing waste. The evidence from this experiment supports our geometri-
cal approach to the incompatible substructure problem in parallel self-assembly.

Acknowledgments. This work has been partially supported by a Postdoctoral
Fellowship provided by the Natural Sciences and Engineering Research Council
of Canada, and by the European Research Council through the ERC Advanced
Grant “E-SWARM: Engineering Swarm Intelligence Systems” (contract 246939).
Marco Dorigo acknowledges support from the Belgian F.R.S.–FNRS. We thank
the Direct Manufacturing Research Center and Hamburg University of Applied
Sciences for 3D printing the parts used in the experiment.

References

1. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci.
U.S.A. 106(15), 6054–6059 (2009)

760 N. Bhalla et al.

2. Bhalla, N., Bentley, P.J., Vize, P.D., Jacob, C.: Staging the self-assembly process:
Inspiration from biological development. Artificial Life 20(1), 29–53 (2014)

3. Bhalla, N., Ipparthi, D., Klemp, E., Dorigo, M.: A geometrical approach to the
incompatible substructure problem in parallel self-assembly: supplementary ma-
terial. Tech. Rep. TR/IRIDIA/2014-010, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium (2014)

4. Dagliyan, O., Shirvanyants, D., Karginov, A.V., Dinga, F., Feea, L.,
Chandrasekarana, S.N., Freisingerd, C.M., Smolend, G.A., Huttenlocherd, A.,
Hahnc, K.M., Dokholyana, N.V.: Rational design of a ligand-controlled protein
conformational switch. Proc. Natl. Acad. Sci. U.S.A. 110(17), 6800–6804 (2013)

5. Gautam, V.K., Haddow, P.C., Kuiper, M.: Reliable self-assembly by self-triggered
activation of enveloped DNA tiles. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B.,
Vega-Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 68–79. Springer,
Heidelberg (2013)

6. Hettmansperger, T.P., McKean, J.W.: Robust nonparametric statistical methods.
Chapman & Hall/CRC Press, Boca Rotan (2010)

7. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems:
Analogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

8. Klavins, E.: Programmable self-assembly. IEEE Control Systems Magazine 27(4),
43–56 (2007)

9. Mastrangeli, M., Abbasi, S., Van Hoof, C., Celis, J.P., Böhringer, K.F.: Self-
assembly from milli- to nanoscales: methods and applications. Journal of Microme-
chanics and Microengineering 19(8), 1–37 (2009)

10. Mendes, A.C., Baran, E.T., Reis, R.L., Azevedo, H.S.: Self-assembly in na-
ture: using the principles of nature to create complex nanobiomaterials. WIREs
Nanomedicine and Nanobiotechnology 5(6), 582–612 (2013)

11. Miyashita, S., Nagy, Z., Nelson, B.J., Pfeifer, R.: The influence of shape on parallel
self-assembly. Entropy 11(4), 643–666 (2009)

12. Pelesko, J.A.: Self Assembly: The Science of Things that Put Themselves Together.
Chapman & Hall/CRC Press, Boca Rotan (2007)

13. Saitou, K.: Conformational switching in self-assembling mechanical systems. IEEE
Transactions on Robotics and Automation 15(3), 510–520 (1999)

14. Schneiter, A.A., Miller, J.F.: Description of sunflower growth stages. Crop Sci-
ence 21(6), 901–903 (1981)

15. Whitesides, G.M., Boncheva, M.: Beyond molecules: Self-assembly of mesoscopic
and macroscopic components. Proc. Natl. Acad. Sci. U.S.A. 99(8), 4769–4774
(2002)

16. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295(5564),
2418–2421 (2002)

17. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394, 539–544 (1998)

Application of Evolutionary Methods to

Semiconductor Double-Chirped Mirrors Design

Rafa�l Biedrzycki1, Jaros�law Arabas1, Agata Jasik2, Micha�l Szymański2,
Pawe�l Wnuk3, Piotr Wasylczyk3, and Anna Wójcik-Jedlińska2

1 Institute of Electronic Systems, Warsaw University of Technology, Poland
{rbiedrzy,jarabas}@elka.pw.edu.pl

2 Institute of Electron Technology, Warsaw, Poland
{ajasik,mszyman,awojcik}@ite.waw.pl

3 Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Poland
{Pawel.Wnuk,Piotr.Wasylczyk}@fuw.edu.pl

Abstract. This paper reports on a successful application of evolution-
ary computation techniques to the computer aided design of a dedicated
highly dispersive mirror which is used in an ultrafast laser. The mir-
ror is a GaAs plate coated with many interleaving layers of GaAs/AlAs
and SiO2/Si3N4 layers whose thickness undergo optimization. We report
and compare results obtained by leading global optimization techniques:
Covariance Matrix Adaptation Evolution Strategy and Differential Evo-
lution, as well as few efficient local optimization methods: Nelder-Mead
and variable metric. The evolutionary designed mirror has been manufac-
tured by the Molecular Beam Epitaxy technology and the measurements
confirmed successful implementation of the instrument.

Keywords: CMA-ES, Differential Evolution, Double Chirped Mirror.

1 Introduction

In the evolutionary computation history, it has been relatively early observed
that the driving force of development of methods is their application for global
optimization. Since the 1990ies, many benchmark problems have been adopted
from the global optimization domain and have been used to test efficiency of evo-
lutionary computing techniques. In 2005 and 2009, two families of benchmark
sets were born: CEC [1] (starting from CEC2005) and BBOB [2] (starting from
BBOB 2009). These benchmark sets include not only the test problems, but also
specify procedures to test optimization methods and to interpret their results.
With the use of benchmark sets it is possible to compare two optimization meth-
ods to answer the question which of them will, on average, provide better results
than the other. This allows to organize competitions to select algorithms that
perform most efficiently on the benchmark set.

A practitioner’s perspective is somewhat different, since he/she is not inter-
ested in the long-lasting tuning of many parameters of a beloved algorithm to
make it perform better that other competitors. Instead, the practitioner is fo-
cused on obtaining an acceptable solution of a particular problem with the least

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 761–770, 2014.
c© Springer International Publishing Switzerland 2014

762 R. Biedrzycki et al.

effort. Results of benchmarking may be useful to perform preliminary selection
of optimization methods. Parameter-free methods are obviously preferred over
these with many settings to be tuned, since the practitioner is interested in easy
use rather than in the development of optimization methods. Hence, software
packages with predefined parameter setting will usually be preferred.

In the presented work we followed this practitioner’s point of view. We report
results of an application of two packages for the R environment [3], DEoptim
[4] and cmaes [5], which implement DE [6] and CMA-ES [7] — two global op-
timization methods from the evolutionary family which have been usually on
top of efficiency rankings based on benchmarking [1,8]. These methods have
a relatively small number of user-defined parameters and the aforementioned
packages provide default parameter settings. We applied these methods to the
computer aided design of a mirror, which was dedicated for an ultrafast laser.
The mirror design was represented as a vector of 126 real numbers. We have
performed multiple runs of compared methods and we report statistics of the
results to select the optimization method. Further tests were carried out to as-
sess influence of starting point generation method upon mirror quality. The best
structure of the mirror, which was found by the CMA-ES, was performed in
a semiconductor technology and successfully tested for conformance with the
design assumptions. This structure, after antireflective layer deposition, will be
used to build the ultrafast laser in the near future.

2 Designing Mirrors for Ultrafast Lasers

Ultrafast lasers, which generate optical pulses in the picosecond and femtosec-
ond range, have found numerous applications, e.g., in industry [9], biology and
medicine [10]. The basic technique allowing for generation of ultrashort pulses is
modelocking. We distinguish between active and passive modelocking, while the
latter providesmuch shorter pulses [11]. The underlying principle of this technique
is to induce a fixed phase relationship between the modes inside the resonant cav-
ity. In order to achieve it, all kinds of dispersion appearing in the cavity must be
compensated. This can be achieved either by using the prism pair or grating pair,
or a multilayer mirror, called also a Chirped Mirror (CM) [12].

The CM is a structure that contains an alternating sequence of layers of two
different optical materials. Thickness of each pair of layers is linearly variable.
In effect, light from a range of wave length is effectively reflected, and longer
wavelengths penetrate the structure deeper than shorter ones. Thus the delay of
the reflected light depends on its wavelength. This process can be characterized
by the Group Delay Dispersion (GDD) coefficient and typically, the dependence
of GDD on the wavelength is very irregular, which is undesirable. This effect
can be reduced in a Double Chirped Mirror (DCM) where thickness of layers is
changing non-linearly. Properly designed DCM should exhibit high reflection in
a broad wavelength band together with non-oscillating dependence of GDD on
the wavelength.

There are several theoretical approaches to design DCMs in an analytical way.
Coupled mode theory is a perturbational approach for analyzing the coupling of

Application of Evolutionary Methods to SDCM Design 763

vibrational systems (inter alia optical) in space or in time [13]. WKB approxima-
tion is a method for finding approximate solutions to linear partial differential
equations with spatially varying coefficients [14]. For example these methods
have been used by Matuschek to derive formulas for reflectivity and group de-
lay [12]. Such analytical works undoubtedly enabled deeper understanding of
chirped mirrors, but the GDD characteristics of the resulting DCM exhibited
oscillatory behavior and it needed further fine tuning.

The majority of approaches to designing DCMs have used the transfer matrix
method [15] to model the light reflection from multilayer structure and to op-
timize layers’ thickness to achieve desired DCM properties. Such approach was
used by Yakovlev et al. [16] who applied a memetic algorithm to design a 49-
layer dielectric SiO2/TiO2/Ta2O5 chirped mirror. Dielectric materials were also
used by other authors, e.g. Yan-Zhi et al. [17] applied a needle optimization tech-
nique [18] to design 52-layers structure with GDD ≈ −60 fs2. They have also
reported successful physical implementation of the design. Another successful
DCM implementation has been reported by Pervak et al. [19] who used a com-
mercial package OptiLayer to design a dielectric DCM for GDD ≈ −2500 fs2.
Unfortunately, all aforementioned articles did not report important information
about optimization methods, like the objective function formulation, settings of
parameters or the starting point, which does not allow to reproduce the results.

This paper briefly describes the design process of a Semiconductor DCM
(SDCM). Semiconductor materials, GaAs and AlAs, which are used for the mir-
ror realization, have high refractive indexes (3.51 and 2.95) which makes it hard
to avoid reflection of the light from the mirror surface. For this reason, the SDCM
should be additionally covered by an Anti-Reflective (AR) layer composed of few
layers of dielectric materials. The difference of refractive indexes of GaAs and
AlAs is lower than in the case of dielectric materials used by other authors,
therefore more layers are needed to achieve mirror parameters comparable to
dielectric DCMs. More layers means also more interfaces between layers which
increases risk of harmful interferences that disrupt the GDD curve. DCMs with
larger number of layers are also harder to optimize due to the “curse of dimen-
sionality”.

The SDCM production process consists of two technological stages: the Molec-
ular Beam Epitaxy (MBE, see Fig. 1) to produce semiconductor layers on a
two-inch GaAs substrate and the plasma-enhanced chemical vapor deposition
technology to coat it with dielectric AR layers.

3 SDCM Design Problem Formulation

SDCM Model. Mathematical model of the reflection process assumes that a
time-harmonic plane wave falls on the stratified medium, which is schematically
depicted in Fig. 2. The electric field E(x) satisfies the Helmholtz equation [13]:

764 R. Biedrzycki et al.

a) b)
Fig. 1. a) MBE reactor which is used to produce SDCM, b) 2” substrate wafers on
which the mirror is deposited

Fig. 2. Schematic view of a stratified medium

d2E(x)
dx2 +

[
(ñnk0)2 − β2]E(x) = 0, (1)

where ñn is the complex refractive index of the n-th layer, β = neffk0 is the
propagation constant, k0 = 2π/λ0, λ0 is the free space wavelength and neff is
the effective refractive index. In the n-th layer, the field E(x) is a superposition
of waves traveling towards the left and the right direction:

E(x) = An exp(iKnx) +Bn exp(−iKnx), (2)

whereKn = k0
√

ñ2
n − n2

eff , andAn, Bn are constants. AssumingA0 = 1,BN+1 =
0, we identify B0 and AN+1, as coefficients of mirror reflectivity and mirror trans-
mission, respectively.

DCM analysis method based on the transfer matrix [15] is facilitated on the
fact that the field and its first derivative must be continuous at the interfaces.
According to this method we derive a matrix equation of the form:[

a11 a12
a21 a22

] [
B0

AN+1

]
=
[
b1
b2

]
. (3)

Elements akl and bk depend on thickness and refractive indexes of layers. Solution
of (3) yields the key parameters of SDCM:

R = |B0|2,GDD =
d2(argB0)

dω2 . (4)

where ω = 2πc/λ0 denotes the angular frequency, c is the light velocity, R is the
reflectivity coefficient, and GDD is the Group Delay Dispersion.

Application of Evolutionary Methods to SDCM Design 765

Representation of Solutions and Constraints. On the basis of our exper-
imentally verified knowledge it was assumed that SDCM should consist of 120
semiconductor layers and 6 dielectric AR layers. The structure is represented as
a sequence of real numbers which define thickness of layers. Layers are numbered
according to the sequence in which they are penetrated by the light which enters
into the mirror structure. Hence, the sequence starts from AR layers, i.e. from
3 pairs of SiO2 and TiO2. They are followed by 60 pairs of GaAs/AlAs. Upper
limit of each semiconductor layer thickness was assumed to 0.2 μm. Lower limits
of thickness were 7 nm for dielectric layers and 0.6 nm for semiconductor layers,
except for the the first semiconductor layer which had to be at least 30 nm thick.
The first semiconductor layer is thicker to prevent the destructive oxidation of
AlAs.

Objective Function. The design objective was to achieve the following mirror
parameters: GDD= −2500± 100 fs2, R≥ 0.999 in a band from λl = 1.02μm to
λh = 1.04μm. Having performed a series of trials we decided to use the following
objective function to be minimized:

q = a · qR + (1− a) · qD (5)

where qD and qR are the distance from the target levels of GDD and R, and a is
scalarization coefficient. It is known that optimization of GDD is much harder
than R, therefore a was set to 0.01. Values of qD and qR are defined as

qD = b
∑
λ

(D0 −Dλ)2, qR = u
∑
λ

(1−Rλ)2 (6)

where b, u are the scaling factors responsible for bounding values of qD and qR
in range 〈0, 1〉, λ is a wavelength sampled from range 〈λl, λh〉, D0 is the required
GDD value, Dλ and Rλ are the GDD and R values calculated for wavelength λ.
Note that the objective function values come from the range 〈0, 1〉. The objective
function is very irregular — sample two-dimensional cross-sections are provided
in Fig. 3.

a)
0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

 0.1

 0.15

 0.2

 0.25

 0.25

 0.25

 0.25

 0.25

 0.3

 0.3

 0
.3

 0.3

 0.3

 0.3

 0.3

 0.35

 0.35 0.35

 0.35

 0.35

 0.4

 0.4
 0.4

 0.4
 0.4

 0.4

 0.4

L
ay
er

61

Layer 1 b)
0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

 0.05

 0.05

 0.05

 0.1

 0.1

 0.1
 0.1

 0.15
 0.15

 0.15

 0.15

 0.2

 0.2

 0.2

 0.2

 0.25

 0.25

 0.25

 0.25

 0.3
 0.3 0.3

 0.3

 0.35

 0.35

 0
.3

5

 0.35

 0.4

 0.4 0.4
 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4 0.4

 0.4

 0.4

 0.4

 0.4

Layer 61

L
ay
er

62

c)
0 50 100 150 200

0
5

0
1

0
0

1
5

0
2

0
0

 0.002

 0.0025

 0.0025

 0.0025

 0.003 0.003 0.003

 0.0035

 0.0035

 0.0035

 0.0035

 0.004

 0.004

 0.0045

 0.0045

 0.005

 0.005

Layer 119

L
ay
er

12
0

Fig. 3. Fitness function contour plot for varying thickness of: a) layers 1 and 61, b)layers
61 and 62, c) layers 119 and 120. Dotted lines marks values achieved after mirror
optimization

766 R. Biedrzycki et al.

4 Optimization of the SCDM Design

The solution of the SDCM design problem was a two stage process. In the first
stage we performed experimental comparison of results obtained by several op-
timization methods. For all compared methods it was observed that the quality
of results was unacceptable when the initial SDCM structure was set randomly
with uniform distribution in the admissible area. Acceptable results were ob-
tained when the starting structure was the design obtained by application of the
theory provided by Matuschek [12]. This starting point, which will be denoted by
DCM0, was used for selection of the best performing optimization method. In the
second stage, for the selected method, different starting points were examined
which finally gave the setup that would allow for obtaining high quality results.
In addition to DCM0, we considered the Bragg mirror, which was designed to
achieve high reflectivity for a single wavelength, and the single chirped Bragg
mirror for which high-reflectivity bandwidth is significantly increased. Plots of
the layers’ thickness for these starting points are shown in Fig. 4.

a)
0 20 40 60 80 100 120

7
0

7
5

8
0

8
5

9
0

L
ay
er

th
ic
kn

es
s
(n
m
)

Layer # b)
0 20 40 60 80 100 120

7
0

7
5

8
0

8
5

9
0

L
ay
er

th
ic
kn

es
s
(n
m
)

Layer # c)
0 20 40 60 80 100 120

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

L
ay
er

th
ic
kn

es
s
(n
m
)

Layer #

Fig. 4. Layers thickness of: a)Bragg mirror, b)single chirped Bragg mirror, c)DCM0

Our previous experience with similar design problems [20,21] showed that
metaheuristics from the evolutionary family would be good candidates for solving
engineering problems. According to results of competitions [8,22] we selected
Differential Evolution (DE) [6] and Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [7]. We also tested two efficient local optimization methods:
nonlinear simplex by Nelder and Mead (NM), and the L-BFGS-B algorithm. The
whole process of simulation and optimization of SDCM structures, and of testing
optimization methods, was performed under the R environment [3]. We used R
packages: cmaes for the CMAES [5] and DEoptim for the DE [4]. Implementations
of NM was provided by Bihorel et al. [23] and L-BFGS-B [24] was taken from
the optim package.

Selection of the Most Efficient Optimization Method. In preliminary
tests we observed that DE was able to improve the quality of the initial design
using default parameter settings but the GDD spectral characteristics was far

Application of Evolutionary Methods to SDCM Design 767

from satisfactory. Default parameter settings for CMA-ES yielded no improve-
ment to the initial design. Therefore we performed manual parameter tuning and
we ended up with different settings which gave acceptable solutions. In the case
of CMA-ES, Hansen suggested [25] that in most cases default values of param-
eters which are used by the ”reference” implementation of CMA-ES should be
appropriate if design variables are scaled to fit into the range 〈0, 10〉. Our design
variables are bounded by 0.0006 and 0.2, so they are not in CMA-ES ”favorite”
range. Instead of scaling, we changed the σ parameter and we observed good
results for σ = 0.0003. We used the default DE version in the DEoptim package,
which was the DE/local-to-best/1/bin algorithm. The best results were obtained
for CR=1 and the remaining parameters were set to the default values. The DE
method must be started with a diversified population. To achieve this, the initial
population was filled with Gaussian perturbations of the starting point.

An additional comments needs to be made on the NM method. We tested its
three different implementations: NM1 [26], NM2 [23] and NM3 from the optim

package. These three versions gave substantially different results: NM1 was 10
times worse than NM3 and 33 times worse than NM2. For this reason we report
only the results by NM2.

In Fig. 5a, box and whisker plots are provided of the distribution of the
best objective function values obtained in 25 independent runs of compared
algorithms; for NM and L-BFGS-B a single value is provided, since they are
deterministic methods and the starting point is always the same.

According to the results, bothDEandCMA-ESoutperformed their competitors
when starting from the initial design DCM0. CMA-ES revealed greater variability
thanDE, but in the same timemedian of its results was significantly better than for
DE. For this reason, an additional experiment was made to check if the CMA-ES
efficiency could be further improved by using a different starting point.

Sensitivity to the Starting Point. From preliminary experiments we learned
that the CMA-ES was unable to generate acceptable solutions when started
from a random solution. The DCM0 structure is a nearly optimal design which
introduces a risk that it would become a trap which would not allow CMA-ES
to generate better solutions which are substantially different than the initial
structure. In Fig. 5b we provide statistics of objective function values achieved
for 25 independent runs of CMA-ES for three starting points depicted in Fig. 4.
The DCM0 structure appeared the worst among all considered starting points,
although this structure is the result of the most advanced analytical approach
to the DCM design. Much better results were obtained for simple Bragg and
linearly chirped mirrors — in most of runs CMA-ES was able to approach the
global minimum of the fitness. For the single chirped structure the number of
successful runs was greater so we conclude that this was the best choice of
starting point for CMA-ES.

Solutions generated from this starting point revealed another advantage over
those generated from DCM0. According to the technology experts, they were
easier to produce, because thickness of neighboring layers is less diversified. An-
other advantage of obtained designs was that they allowed for reduction of the

768 R. Biedrzycki et al.

a)

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

DE CMA-ES

ob
je
ct
iv
e
fu
nc

ti
on

va
lu
e

L-BFGS NM2

b)

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0
0

.0
0

2
5

Bragg Single chirped DCM0

ob
je
ct
iv
e
fu
nc

ti
on

va
lu
e

Fig. 5. Box and whisker plots of the best objective function values obtained in 25
independent runs of each method; a) Results for various optimization methods with
starting point DCM0, b) results of CMA-ES for three different starting points

number of layers. We took the best result obtained in all experiments and we
removed 10 semiconductor layers and 4 dielectric layers (in both cases layers
were removed from the base side). Additionally we changed TiO2 dielectric into
Si3N4. This was the starting point for CMA-ES which yielded another solution
that satisfied design criteria. This solution was the final design (see Fig. 6a).

5 Implementation and Tests of the Designed Mirror

The final design obtained by CMA-ES was used to produce the semiconductor
part of the mirror in the MBE reactor (Fig. 1) in the Institute of Electron
Technology (ITE). Prior to coating the mirror with AR layers, its R and GDD
factors were measured by the ITE and Institute of Experimental Physics in the
assumed wavelength band.

Measurements of GDD were performed using a modified Michelson interfer-
ometer illuminated with a white light source, delivered by a halogen bulb, to
obtain GDD characteristic in a broad range of wavelengths. A reference curve
of GDD vs. wavelength has been generated from the SDCM model and it was
verified if it is approximately matched by the measured curve. The results, which
are presented in Fig. 6b, indicate a good agreement of both curves.

Mirror reflectance was measured using a dark configuration of a standard
optical set-up, where a broadband source light is dispersed by a monochromator
and formed to a quasi-parallel probe beam which illuminates the sample surface
at normal incidence. Reflected light is optically collected and focused onto a
silicon detector. The measurement confirmed that the mirror reflectance matched
the design criteria.

The measurements confirm that the mirror was correctly produced by the
MBE process, and it therefore can undergo the second phase of production –

Application of Evolutionary Methods to SDCM Design 769

a)

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

L
ay
er

th
ic
kn

es
s
(n
m
)

Layer # b)

1.015 1.020 1.025 1.030 1.035 1.040 1.045

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

G
D
D

λ(μm)

Fig. 6. a)Layers thickness of designed SDCM. b)Comparison of theoretical (circles)
and measured (squares) GDD characteristics.

deposition of 2 dielectric layers of AR coating. The resulting product will be used
as a component of an ultrafast laser constructed by Institute of Experimental
Physics.

6 Conclusions

We presented a successful practical application of evolutionary techniques to
the design of a Double Chirped Mirror which was produced in the semiconduc-
tor technology. Application of CMA-ES yielded a solution that outperformed
engineering practice of designing DCM structures. Obtained design was also ac-
ceptable from the production technology point of view. The mirror has been
performed and it will be used to build a compact ultrafast laser.

The design problem size exceeds an informal limit of 100 dimensions which
was suggested for CMA-ES applications. Quality of obtained results is sensitive
to the starting point which indicates that analyzed methods realize a form of
a “globalized local search” — they are only partially robust against getting
trapped into local optima. The objective function used for the design, which has
been implemented in the R language, is very irregular and it may serve as a
benchmark problem for testing global optimization methods.

References

1. Liang, J., et al.: Problem definitions and evaluation criteria for the CEC 2013 spe-
cial session on real-parameter optimization. Technical report, Comp. Intell. Lab.,
Zhengzhou University and Nanyang Technological University (2013)

2. INRIA: Black-box optimization benchmarking (BBOB) (2013),
http://coco.gforge.inria.fr/doku.php?id=bbob-2013

3. R Core Team: R: a language and environment for statistical computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2013)

http://coco.gforge.inria.fr/doku.php?id=bbob-2013

770 R. Biedrzycki et al.

4. Ardia, D., et al.: DEoptim: Differential Evolution in R (2013), Package ver. 2.2-2
5. Trautmann, H., Mersmann, O., Arnu, D.: cmaes: Covariance Matrix Adapting

Evolutionary Strategy (2011) R package version 1.0-11
6. Storn, R.: Differential evolution research – trends and open questions. In:

Chakraborty, U. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp.
1–31. Springer, Heidelberg (2008)

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

8. Hansen, N., et al.: Comparing results of 31 algorithms from the black-box opti-
mization benchmarking BBOB-2009. In: GECCO, pp. 1689–1696. ACM (2010)

9. Weiler, S.: Ultrafast lasers-high-power pico-and femtosecond lasers enable new ap-
plications. Laser Focus World 47(10), 55 (2011)

10. Braun, M., Gilch, P., Zinth, W.: Ultrashort laser pulses in biology and medicine.
Springer (2008)

11. Keller, U.: Recent developments in compact ultrafast lasers. Nature 424(6950),
831–838 (2003)

12. Matuschek, N.: Theory and design of double-chirped mirrors. PhD thesis, ETH
Zürich (1999)

13. Marcuse, D.: Theory of dielectric optical waveguides. Academic, New York (1974)
14. Bialynicki-Birula, I., Cieplak, M., Kaminski, J.: Theory of quanta. Oxford Univer-

sity Press, New York (1992)
15. Chilwell, J., Hodgkinson, I.: Thin-films field-transfer matrix theory of planar mul-

tilayer waveguides and reflection from prism-loaded waveguides. JOSA A 1(7),
742–753 (1984)

16. Yakovlev, V., Tempea, G.: Optimization of chirped mirrors. Applied Optics 41(30),
6514–6520 (2002)

17. Yan-Zhi, W., et al.: Design and fabrication of chirped mirror. Chinese Physics
Letters 26(9) (2009)

18. Tikhonravov, A.V.: Needle optimization technique: the history and the future. In:
Optical Science, Engineering and Instrumentation 1997, International Society for
Optics and Photonics, pp. 2–7 (1997)

19. Pervak, V., et al.: High-dispersive mirrors for femtosecond lasers. Optics Ex-
press 16(14), 10220–10233 (2008)

20. Adamski, K.: Evolutionary algorithm versus variable metric method in digital FIR
filter design. In: EUROCON 2007, pp. 116–121 (2007)

21. Arabas, J., Miazga, P.: Computer aided design of a layout of planar circuits by
means of evolutionary algorithms. CIT. Journal of Computing and Information
Technology 7(1), 61–76 (1999)

22. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization 56(3),
1247–1293 (2013)

23. Bihorel, S., Baudin, M.: Neldermead: R port of the Scilab neldermead module
(2014), R package version 1.0-8

24. Zhu, C., et al.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

25. Hansen, N.: CMA-ES source code (2014),
https://www.lri.fr/~hansen/cmaes_inmatlab.html

26. Varadhan, R., Borchers, H.W.: dfoptim: derivative-free optimization (2011), R
package version 2011.8-1

https://www.lri.fr/~hansen/cmaes_inmatlab.html

Evolving Neural Network Weights for Time-Series
Prediction of General Aviation Flight Data

Travis Desell1, Sophine Clachar1, James Higgins2, and Brandon Wild2

1 Department of Computer Science, University of North Dakota, USA
tdesell@cs.und.edu, sophine.clachar@my.und.edu

2 Department of Aviation, University of North Dakota, USA
{jiggins,bwild}@aero.und.edu

Abstract. This work provides an extensive analysis of flight parameter estima-
tion using various neural networks trained by differential evolution, consisting
of 12,000 parallel optimization runs. The neural networks were trained on data
recorded during student flights stored in the National General Aviation Flight
Database (NGAFID), and as such consist of noisy, realistic general aviation flight
data. Our results show that while backpropagation via gradient and conjugate
gradient descent is insufficient to train the neural networks, differential evolution
can provide strong predictors of certain flight parameters (10% over a baseline
prediction for airspeed and 70% for altitude), given the four input parameters
of airspeed, altitude, pitch and roll. Mean average error ranged between 0.08%
for altitude to 2% for roll. Cross validation of the best neural networks indicate
that the trained neural networks have predictive power. Further, they have po-
tential to act as overall descriptors of the flights and can potentially be used to
detect anomalous flights, even determining which flight parameters are causing
the anomaly. These initial results provide a step towards providing effective pre-
dictors of general aviation flight behavior, which can be used to develop warning
and predictive maintenance systems, reducing accident rates and saving lives.

Keywords: Time-Series Prediction, Asynchronous Differential Evolution, Neu-
ral networks, Flight Prediction, Aviation Informatics.

1 Motivation

General aviation comprises 63% of all civil aviation activity in the United States; cov-
ering operation of all non-scheduled and non-military aircraft [12,24]. While general
aviation is a valuable and lucrative industry, it has the highest accident rates within civil
aviation [21]. For many years, the general aviation accident and fatality rates have hov-
ered around 7 and 1.3 per 100,000 flight hours, respectively [1]. The general aviation
community and its aircraft are very diverse, limiting the utility of the traditional flight
data monitoring (FDM) approach used by commercial airlines.

The National General Aviation Flight Information Database (NGAFID) has been
developed at the University of North Dakota as a central repository for general aviation
flight data. It consists of per-second flight data recorder (FDR) data from three fleets
of aircraft. As of January 2014, the database stores FDR readings from over 208,000

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 771–781, 2014.
c© Springer International Publishing Switzerland 2014

772 T. Desell et al.

flights, with more being added daily. It currently stores almost 400 million per-second
records of flight data. The NGAFID provides an invaluable source of information about
general aviation flights, as most of these flights are from aviation students, where there
is a wider variance in flight parameters than what may normally be expected within data
from professionally piloted flights.

This research presents initial work done using data from the NGAFID for the pre-
diction of flight data parameters. Five flights were selected from the NGAFID, and a
rigorous examination of training the weights to various neural networks using back-
propagation and differential evolution [23] was performed. Backpropagation is shown
to be insufficient to train the neural networks. 12,000 runs of parallel differential evo-
lution with various search parameters were executed on a high performance computing
cluster, testing 15 different neural network designs. The results show that it is possible to
have significant improvement over a baseline random noise estimator for airspeed and
altitude. The best neural networks were cross-validated on flights they were not trained
on, showing predictive ability and the potential to detect anomalous flights. These re-
sults provide a first step towards accurate prediction of FDR parameters, which could
not only warn pilots of problematic flight behavior, but also be used to predict impend-
ing failures of engines and other hardware. This has the potential to reduce costs for
maintaining general aviation fleets, and more importantly save lives.

2 Time-Series Prediction
Neural networks have been widely used for time series data prediction [7,29], however
to the authors’ knowledge, this is the first attempt to utilize them in predicting general
aviation flight parameters. Our approach is similar to Khashei et al. [16] and Omer et
al. [22], who utilize residuals, or lags, from linear data as additional inputs to the neural
network. A significant difference is that this work uses multiple streams of input time-
series data (airspeed, altitude, pitch and roll) to predict future values of each of those
parameters; instead of prediction on single parameter time series data. This allows us to
exploit dependencies between the input parameters.

2.1 Neural Network Design

Feed forward, Jordan and Elman networks were examined, each with 0, 1 and 2 lay-
ers of lag variables (as used in ARIMA time series models [28]); and 0 and 1 hidden
layers, except for the Elman networks which require at least 1 hidden layer. The neural
networks were used to predict one of the four input parameters, with examples shown
in Figure 1. All the networks were fully connected between layers. The lag layers were
added as additional input nodes to the neural network (one lag layer would add four ad-
ditional input nodes, and two lag layers would add eight). The first order lag variables
(Δ) are the difference between the current and previous timestep, e.g.:

Δt(Airspeed) = Airspeedt −Airspeedt−1 (1)

where t is the current timestep and t− 1 is the previous timestep. The second order
lag variables (Δ2) are the difference between the current and previous first order lag
variables, e.g.:

Δ2
t (Airspeed) = Δt(Airspeed)−Δt−1(Airspeed) (2)

Evolving Neural Network Weights for Time-Series Prediction 773

The following naming scheme was used to describe the various neural networks:
network type/l(lag layers)/h(hidden layers). In the following scheme, ff/l1/h1 would
describe a feed forward network, with one lag layer and one hidden layer; while jor-
dan/l2/h0 would describe a Jordan network with two lag layers (the first order lag vari-
ables and the second order lag variables) and no hidden nodes.

Airspeed

Altitude

Pitch

Roll

Est. Output

1.0Bias 1.0

(A) Input
layer

Hidden
layer 1

Output
layer

Airspeed

Altitude

Pitch

Roll

Est. Output

1.0Bias 1.0

(B) Input
layer

Hidden
layer 1

Recurrent
layer

Output
layer

Airspeed

Altitude

Pitch

Roll

Est. Output

1.0Bias 1.0

(C) Input
layer

Hidden
layer 1

Recurrent
layer

Output
layer

Fig. 1. Feed Forward (A), Jordan (B) and Elman (C) networks with a hidden layer and single out-
put node. These networks were trained separately for each of the four possible outputs: airspeed,
altitude, pitch and roll.

2.2 Objective Function

The neural networks were designed to predict the next second of flight data given the
previous second of flight data and the first and second order lags variables, if used. To
determine the optimal weights for the neural networks, the following objective function
was used for both backpropagation and differential evolution:

f(w) =
∑n−1

t=0 |nn(It, Δt, Δ
2
t , w)output − It+1,output|
n− 1

(3)

Where f(w) is the objective function evaluated over the weights w. With It being the
input at timestep t, the absolute difference between the output predicted by the neural
network, nn(. . .)output, and that value at the next time step, It+1,output, is calculated
over every per second data reading (0...n − 1), given the input parameters, and input
lags if used (It, Δt, Δ2

t). This was then divided by the number of comparisons, n− 1.
This produces the mean absolute error (MAE) for the target output for the entire flight.

774 T. Desell et al.

2.3 Neural Network Bounds and Data Cleansing

The flight data required some cleaning for use, as it is stored as raw data from the
flight data recorders uploaded to the NGAFID server and entered in the database as
per second data. When a FDR turns on, some of the sensors are still calibrating or not
immediately online, so the first minute of flight data can have missing and erroneous
values. These initial recordings were removed from the data the neural networks were
trained on. Further, the parameters had wide ranges and different units, e.g., pitch and
roll were in degrees, altitude was in meters and airspeed was in knots. These were all
normalized to values between 0 and 1, where 0 was the minimum value recorded and 1
was the maximum value recorded for each parameter to remove bias.

Additionally, the recurrent neural networks needed to be bounded. The flights con-
sisted of between 5412 and 5941 per second recordings (over an hour and a half of per
second data). This led to a problem where poor weights to the recurrent layer resulted
in the fitness growing beyond the bounds of double precision. To alleviate this problem,
the values for the recurrent nodes were bounded between -2 and 3 which eliminated
overflow errors. Lastly, the weights for the neural networks were all bounded between
-1.5 and 1.5 to limit the search space of the evolutionary algorithms and initial values
for backpropagation.

3 Parallel Evolutionary Algorithms

A wide range of evolutionary algorithms have been examined for different distributed
computing environments. Generally, these fall into three categories: single population
(panmictic, coarse-grained); multi-population (island, medium-grained); or cellular
(fine-grained); as classified by Cantu-Paz [6]. These various approachs have different ef-
fects on the explorative and exploitative properties of the evolutionary algorithms [26],
with smaller subpopulations allowing faster exploitation of their search subspaces.

Given the scale of the data in the NGAFID, and the potential complexity of examin-
ing complex neural networks over per-second flight data, a package requiring easy use
of high performance computing resources was required. While there exist some stan-
dardized evolutionary algorithms packages [2,5,27,17], as well as those found in the R
programming language [20,3] and MATLAB [18], they do not easily lend themselves
towards use in high performance computing environments.

This work utilizes the Toolkit for Asynchronous Optimization (TAO), which is used
by the MilkyWay@Home volunteer computing to perform massively distributed
evolutionary algorithms on tens of thousands of volunteered hosts [10,11,8]. It is im-
plemented in C and MPI, allowing easy use on clusters and supercomputers, and also
provides support for systems with multiple graphical processing units. Further, TAO has
shown that performing evolutionary algorithms asynchronously can provide significant
improvements to performance and scalability over iterative approaches [25,9]. Its code
is also open source and freely available on GitHub, allowing easy use and extensibility1.

1 https://github.com/travisdesell/tao

https://github.com/travisdesell/tao

Evolving Neural Network Weights for Time-Series Prediction 775

4 Results

4.1 Runtime Environment

All results were gathered using a Beowulf HPC cluster with 32 dual quad-core compute
nodes (for a total of 256 processing cores). Each compute node has 64GBs of 1600MHz
RAM, two mirrored RAID 146GB 15K RPM SAS drives, two quad-core E5-2643 In-
tel processors which operate at 3.3Ghz, and run the Red Hat Enterprise Linux (RHEL)
6.2 operating system. All 32 nodes within the cluster are linked by a private 56 giga-
bit (Gb) InfiniBand (IB) FDR 1-to-1 network. The code was compiled and run using
MVAPICH2-x [13], to allow highly optimized use of this network infrastructure.

Each run of a differential evolution/neural network combination was submitted as
a single job, allocating 32 processes across 4 nodes, with 1 master process to han-
dle generating new individuals and updating the population, and 31 to handle the ob-
jective function calculations. The asynchronous differential evolution implementation
from TAO was used to perform this optimization.

The results for optimizing all combinations of the neural networks and input param-
eters to differential evolution required 12000 jobs, approximately 4,800 hours of single
CPU compute time. These jobs had a minimum runtime of 2.3 seconds, a maximum
runtime of 278 seconds and an average runtime of 45.1 seconds. As such, utilizing par-
allel differential evolution on a HPC system enabled running these jobs in a reasonable
amount of time, taking approximately a week given shared resources with other users
of the cluster.

4.2 Evaluation Metrics

A random noise estimator (RNE), which uses the previous value as the prediction for the
next value, prediction(ti+1) = ti, was chosen as a baseline comparison, as it represents
the best predictive power that can be achieved for random time series data. If the neural
networks did not improve on this, then the results would have been meaningless and
potentially indicate that the data is too noisy (given weather and other conditions) for
prediction. Additionally, it provides a good baseline in that it is easy for neural networks
to represent the RNE: all weights can be set to 0, except for a single path from the path
from the corresponding input node to the output node having weights of 1. Because of
this, it also provides a good test of the correctness of the global optimization techniques,
at the very least they should be able to train a network as effective as a RNE; however
local optimization techniques (such as backpropagation) may not reach this if the search
area is non-convex and the initial starting point does not lead to a good minimum.

4.3 Infeasibility of Backpropagation

Backpropagation was evaluated using both stochastic gradient descent (GD) and con-
jugate gradient descent (CGD) on flight 13588. Stochastic GD and CGD were run 20
different times for the networks described in Section 2. Figure 2 presents the range
of fitnesses found for each backpropagation and network combination. In all cases,
stochastic GD and CGD performed worse than RNE, demonstrating the challenging
and non-convex nature of this search area. Accuracy further decreased and became

776 T. Desell et al.

Fig. 2. Histograms for the estimation of airspeed for flight 13588 using backpropagation via
gradient descent (GD) and conjugate gradient descent (CGD). The dashed line shows the baseline
estimation for random noise, using the value at timestep ti as the prediction for the value at
timestep ti+1.

more variable as neural networks became more complicated. Stochastic GD and CGD
performed similarly for altitude, pitch, and roll.

Backpropagation was also evaluated using GD and CGD starting from a neural net-
work which simulates a RNE, to address the case of all the initial starting positions
of stochastic GD and CGD being poor. However, even the neural networks represent-
ing RNE for each network type were close to a local minima. Using backpropagation
starting from a RNE, Airspeed was only improved upon at best by 0.018%, altitude im-
proved on by 0.5%, pitch improved on by 0.025%, and roll improved upon by 0.022%.

4.4 Neural Network Optimization

Given previous experience training these neural networks, and in order to perform the
analysis of more types of neural networks, we limited the differential evolution options
to de/best/3/bin and de/rand/3/bin (differential evolution with best or random parent
selection, 3 pairs, and binary recombiation – for a detailed descripton of differential
evolution variants see [19]), with a population size of 500; as these settings had been
shown to provide good convergence rates and effective solutions in the past.

Five flights (13588, 15438, 17269, 175755 and 24335) were used for analysis, and
neural networks were trained to predict each of the four flight data parameters (airspeed,
altitude, pitch and roll) used as input. Each differential evolution strategy and neural
network combination was run 20 times, for a total of 12000 runs (2 DE strategies x
15 neural networks x 4 output parameters x 5 flights x 20 runs each). The parallel
differential evolution was terminated after 15,000,000 total objective functions had been
evaluated, or the best fitness in the population had not improved after 1,000 generations.

Table 1 show rankings for the different neural networks in terms of how well they
predicted the given output. The ranks are what order the network came in, in terms of
prediction; i.e., a 1 means the neural network gave the best fitness for one of the flights, a
2 means it gave the second best fitness, and so on. Ties (in some cases multiple networks
had the same best fitness) were given the same rank, so in some cases there are more
than 5 of each rank. The rank column provides the average rank the network came in
across all flights, and the avg. evals column gives the average number of evaluations it
took for the differential evolution to terminate.

Evolving Neural Network Weights for Time-Series Prediction 777

Table 1. Neural Network Rankings
Airspeed

Network Rank Ranks Avg. Evals

elman/i0/h1 19.9 10, 16, 17, 17, 19, 20, 23, 25, 26, 26 2667750
elman/i1/h1 14.0 4, 10, 11, 12, 13, 16, 18, 18, 19, 19 3334000
elman/i2/h1 6.7 1, 3, 3, 4, 5, 6, 7, 9, 14, 15 4225500
ff/i0/h0 22.6 21, 21, 22, 22, 23, 23, 23, 23, 24, 24 830000
ff/i0/h1 24.1 22, 23, 23, 24, 24, 24, 25, 25, 25, 26 1050000
ff/i1/h0 13.0 11, 11, 12, 12, 13, 13, 14, 14, 15, 15 1515000
ff/i1/h1 14.5 12, 13, 13, 14, 14, 15, 15, 16, 16, 17 1720000
ff/i2/h0 6.6 5, 5, 5, 6, 6, 6, 8, 8, 8, 9 2615000
ff/i2/h1 8.3 6, 7, 7, 7, 8, 8, 9, 10, 10, 11 2225000
jordan/i0/h0 19.8 19, 19, 19, 19, 20, 20, 20, 20, 21, 21 1573750
jordan/i0/h1 21.9 20, 20, 21, 21, 21, 22, 22, 22, 24, 26 2551750
jordan/i1/h0 5.0 2, 2, 3, 3, 3, 3, 5, 6, 11, 12 6897750
jordan/i1/h1 15.5 9, 13, 14, 15, 16, 17, 17, 18, 18, 18 3712000
jordan/i2/h0 1.6 1, 1, 1, 1, 1, 2, 2, 2, 2, 3 11695500
jordan/i2/h1 7.4 4, 4, 4, 5, 7, 8, 9, 10, 11, 12 5078750

Altitude
Network Rank Ranks Avg. Evals

elman/i0/h1 22.4 20, 21, 21, 22, 22, 22, 23, 23, 24, 26 2629000
elman/i1/h1 16.6 11, 13, 13, 13, 16, 17, 17, 17, 24, 25 3704000
elman/i2/h1 16.2 12, 12, 13, 13, 15, 16, 18, 19, 19, 25 4583750
ff/i0/h0 20.4 18, 18, 19, 19, 20, 20, 21, 21, 24, 24 780000
ff/i0/h1 21.7 19, 19, 20, 20, 21, 22, 22, 23, 25, 26 1205000
ff/i1/h0 8.6 7, 7, 8, 8, 8, 8, 10, 10, 10, 10 1635000
ff/i1/h1 10.0 8, 9, 9, 9, 9, 10, 11, 11, 12, 12 1705000
ff/i2/h0 3.2 2, 2, 3, 3, 3, 3, 4, 4, 4, 4 2060000
ff/i2/h1 4.2 3, 3, 4, 4, 4, 4, 4, 5, 5, 6 2335000
jordan/i0/h0 17.1 15, 16, 16, 16, 16, 16, 17, 18, 20, 21 1153500
jordan/i0/h1 15.9 14, 14, 14, 15, 15, 15, 17, 18, 18, 19 2425500
jordan/i1/h0 6.6 6, 6, 6, 6, 6, 6, 7, 7, 8, 8 4860500
jordan/i1/h1 10.7 7, 9, 9, 10, 10, 11, 11, 12, 14, 14 4421750
jordan/i2/h0 1.3 1, 1, 1, 1, 1, 1, 1, 2, 2, 2 11706250
jordan/i2/h1 5.1 2, 3, 3, 5, 5, 5, 6, 7, 7, 8 6343750

Pitch
Network Rank Ranks Avg. Evals

elman/i0/h1 13.0 6, 10, 10, 12, 12, 12, 12, 16, 20, 20 3543250
elman/i1/h1 11.6 1, 10, 10, 11, 11, 11, 13, 14, 16, 19 4104750
elman/i2/h1 6.2 1, 1, 2, 2, 3, 7, 8, 9, 11, 18 4793500
ff/i0/h0 23.8 23, 23, 23, 23, 24, 24, 24, 24, 25, 25 905000
ff/i0/h1 25.3 24, 24, 25, 25, 25, 25, 26, 26, 26, 27 1105000
ff/i1/h0 16.4 15, 15, 15, 15, 17, 17, 17, 17, 18, 18 1200000
ff/i1/h1 17.9 16, 16, 17, 17, 18, 18, 19, 19, 19, 20 1675000
ff/i2/h0 5.2 3, 3, 5, 5, 6, 6, 6, 6, 6, 6 2595000
ff/i2/h1 5.4 1, 2, 4, 5, 5, 7, 7, 7, 8, 8 2045000
jordan/i0/h0 20.7 20, 20, 20, 20, 21, 21, 21, 21, 21, 22 1372500
jordan/i0/h1 22.3 21, 21, 22, 22, 22, 22, 23, 23, 23, 24 2449750
jordan/i1/h0 12.5 9, 10, 12, 12, 13, 13, 13, 14, 14, 15 4874750
jordan/i1/h1 15.4 13, 13, 14, 14, 15, 15, 16, 17, 18, 19 3640000
jordan/i2/h0 3.1 1, 2, 2, 3, 3, 3, 4, 4, 4, 5 9692500
jordan/i2/h1 7.6 4, 5, 6, 7, 8, 8, 9, 9, 9, 11 5269750

Roll
Network Rank Ranks Avg. Evals

elman/i0/h1 18.3 4, 16, 17, 17, 18, 19, 21, 23, 24, 24 3096000
elman/i1/h1 13.7 1, 2, 14, 15, 16, 16, 17, 18, 18, 20 3882500
elman/i2/h1 5.0 1, 1, 1, 1, 2, 2, 3, 9, 14, 16 4707750
ff/i0/h0 23.8 22, 22, 23, 23, 24, 24, 25, 25, 25, 25 710000
ff/i0/h1 25.3 23, 24, 24, 25, 25, 26, 26, 26, 27, 27 1090000
ff/i1/h0 11.6 8, 8, 11, 11, 11, 11, 13, 13, 15, 15 1435000
ff/i1/h1 13.1 9, 10, 12, 12, 13, 13, 14, 15, 16, 17 1655000
ff/i2/h0 5.4 4, 4, 4, 4, 5, 6, 6, 6, 7, 8 2355000
ff/i2/h1 7.2 5, 5, 6, 6, 7, 7, 8, 9, 9, 10 2375000
jordan/i0/h0 19.7 18, 18, 19, 19, 20, 20, 20, 21, 21, 21 1522500
jordan/i0/h1 21.5 19, 20, 21, 21, 22, 22, 22, 22, 23, 23 2387500
jordan/i1/h0 10.0 7, 7, 9, 10, 10, 10, 10, 10, 13, 14 3954750
jordan/i1/h1 14.5 11, 11, 12, 13, 14, 15, 15, 17, 18, 19 3740750
jordan/i2/h0 3.3 2, 2, 2, 3, 3, 3, 3, 4, 5, 6 6838000
jordan/i2/h1 7.7 3, 4, 5, 7, 7, 8, 8, 11, 12, 12 5292750

These results show that there is no clear cut best neural network for prediction of all
these flight parameters. However, the Jordan and Elman networks tend to outperform
the feed forward neural networks; and in most cases adding input lags improves the
predictive ability of the network. Except in the case of the Elman networks, adding
a hidden layer does not seem to provide much benefit (perhaps due to the increased
difficulty of optimization). Generally speaking, it seems that Jordan networks (with 2
input lags and no hidden layer) perform the best for predicting altitude and airspeed,
while Elman networks (with 2 input lags and 1 hidden layer) perform the best for pitch
and roll. Also worth noting is that when the Jordan networks perform the best, they take
significantly longer to converge to a solution. Given this, it may be the case that the
Elman networks are either converging prematurely or getting stuck. This question does
beg further examination, as the more complicated neural networks should theoretically
be able to provide more predictive power.

4.5 Cross Validation

In order to gauge the predictive power of the trained neural networks, the best found
neural networks for each flight and output parameter were cross validated against the
other flights. In Table 2, each row shows the best found neural network for each flight.
The first row shows the random noise estimation (RNE), for baseline comparison. Each
column in that row shows the mean absolute error (MAE) for the neural network trained
for the flight specified flight against all the other flights. The bold values show the MAE

778 T. Desell et al.

where the input flight was the flight compared against; while italicized values show
where the neural network performed worse than the RNE.

These results show that the trained neural networks have predictive parameters of
other flights. They also show a dramatic difference in predictive ability for the differ-
ent output parameters. Excluding the neural networks trained on flight 17269, predicted
airspeed showed a 10-12% improvement over RNE, altitude showed near 70% improve-
ment, while pitch and roll were much lower at 5-7% and 0.5-3%, respectively. Most of
the trained neural networks were able to improve over RNE for all the other flights that
they were not trained on. Further, the predictions are fairly accurate. As the input and
output parameters were normalized between 0 and 1, the mean average error is also
the average percentage error for the prediction. Airspeed predictions were around 0.6%
error, altitude predictions were around 0.08% error, pitch was around 1.5% error, and
roll was around 2% error.

These results lead to some interesting findings: first, the four parameters used (alti-
tude, airspeed, pitch and roll) are probably not sufficient for prediction of pitch and roll,
however they do provide good inputs for predicting airspeed and especially altitude. Us-
ing additional input parameters should allow better prediction for these values. Second,
using this cross validation it appears that flight 17269 is an outlier, especially in pitch,
as it was 50% worse than RNE in predicting pitch from the other flights. These find-
ings present the possibility that it may be possible to determine atypical flights utilizing
trained neural networks and potentially identify problematic parameters.

5 Conclusions and Future Work

This work provides an extensive analysis of flight parameter estimation using various
neural networks and input parameters to differential evolution. The neural networks
were trained on data recorded during actual student flights, and consist of noisy, real-
istic general aviation flight data. Results show that while backpropagation is unable to
provide much improvement over a random noise estimator (RNE), parallel differential
evolution can provide strong predictions of airspeed (10% better than RNE) and alti-
tude (70% better than RNE). These results were also fairly accurate, ranging between
0.08% accuracy for altitude to 2% accuracy for roll. Cross validation indicate that the
trained neural networks have predictive ability, as well as the potential to act as overall
descriptors of the flights. The trained neural networks could be used to detect anoma-
lous flights, and even determine which flight parameters are causing the anomaly (e.g.,
pitch in flight 17269).

For future work, how well the neural networks can be trained using particle swarm
optimization [15] is of particular interest; as well as using autoencoders and other deep
learning strategies [4], or hybrid strategies with genetic algorithms or ant colony op-
timization to evolve the structure of more complicated neural networks. Performing a
grid search over potential evolutionary algorithm parameters is also suboptimal, which
can be improved on by using hyperparameter optimization [14] or other metaheuristics.
Further, training the neural networks over groups of flights could potentially improve
their overall predictive ability as well as minimize overtraining.

The National General Aviation Flight Database (NGAFID) provides an excellent
data source for researching evolutionary algorithms, machine learning and data mining.

Evolving Neural Network Weights for Time-Series Prediction 779

Table 2. Cross Validation for All Flight Parameters and Flights

Airspeed
Method 13588 15438 17269 175755 24335 Improvement

ti+1 = ti 0.00512158 0.00316859 0.00675531 0.00508229 0.00575537 0.0
13588 elman/i2/h1 0.00472131 0.00250284 0.00656991 0.00465581 0.00495454 10.78%
15438 jordan/i2/h0 0.00500836 0.00218919 0.0067222 0.00480868 0.00498588 10.47%
17269 jordan/i2/h0 0.00513133 0.0027844 0.00620534 0.00505878 0.00552826 4.90%

175755 jordan/i2/h0 0.0047884 0.00240848 0.00643301 0.00459774 0.00498664 11.63%
24335 jordan/i2/h0 0.00487011 0.00226412 0.00666179 0.00471104 0.00485888 11.54%

Altitude
Method 13588 15438 17269 175755 24335 Improvement

ti+1 = ti 0.00138854 0.00107117 0.00200011 0.00137109 0.00192345 0.0
13588 jordan/i2/h0 0.000367535 0.000305193 0.000895711 0.000399587 0.000485329 69.18%
15438 jordan/i2/h0 0.000394097 0.000263834 0.000837357 0.0004203 0.00048358 69.87%
17269 jordan/i2/h0 0.000702832 0.000765161 0.000801323 0.000694245 0.000846411 48.65%

175755 jordan/i2/h0 0.00037486 0.0003003 0.000883877 0.000390743 0.00048446 69.42%
24335 jordan/i2/h0 0.000380966 0.000281196 0.000906039 0.000404582 0.000468267 69.43%

Pitch
Method 13588 15438 17269 175755 24335 Improvement

ti+1 = ti 0.0153181 0.010955 0.0148046 0.0161251 0.0173269 0.0
13588 elman/i1/h1 0.014918 0.0100763 0.0147712 0.01514 0.0160249 4.90%
15438 jordan/i2/h0 0.0163609 0.00881572 0.0159061 0.0150275 0.015552 4.47%
17269 elman/i2/h1 0.0199653 0.0249148 0.0142671 0.0199625 0.0291537 -49.24%

175755 ff/i2/h1 0.0153644 0.00917981 0.0148751 0.0145228 0.0153566 7.35%
24335 elman/i2/h1 0.0157302 0.00911826 0.0160291 0.014868 0.0149484 5.47%

Roll
Method 13588 15438 17269 175755 24335 Improvement

ti+1 = ti 0.0158853 0.00604479 0.0204441 0.012877 0.0192648 0.0
13588 elman/i2/h1 0.0154541 0.00587058 0.0206536 0.0127999 0.0182611 2.08%
15438 elman/i2/h1 0.0164341 0.00544584 0.0217141 0.0129252 0.0176981 1.60%
17269 elman/i1/h1 0.0157483 0.00613587 0.0201234 0.0129124 0.0184769 0.95%

175755 elman/i2/h1 0.0156503 0.00573676 0.0205158 0.0125207 0.017983 3.13%
24335 elman/i2/h1 0.0163245 0.00578885 0.0215668 0.0131439 0.0174324 0.68%

Further analysis of these flights along with more advanced prediction methods will en-
able more advanced flight sensors, which could prevent accidents and save lives; which
is especially important in the field of general aviation as it is has the highest accident
rates within civil aviation [21]. As many of these flights also contain per-second data of
various engine parameters, using similar predictive methods it may become possible to
detect engine and other hardware failures, aiding in the maintenance process. This work
presents an initial step towards making general aviation safer through machine learning
and evolutionary algorithms.

References

1. Aircraft Owners and Pilots Association (AOPA) (January 2014)
2. Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M.,

Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN
2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)

3. Bartz-Beielstein, T.: SPOT: An R package for automatic and interactive tuning of optimiza-
tion algorithms by sequential parameter optimization. arXiv preprint arXiv:1006.4645 (2010)

780 T. Desell et al.

4. Bengio, Y.: Learning deep architectures for ai. Foundations and trends R© in Machine Learn-
ing 2(1), 1–127 (2009)

5. Cahon, S., Melab, N., Talbi, E.-G.: Paradiseo: A framework for the reusable design of parallel
and distributed metaheuristics. Journal of Heuristics 10(3), 357–380 (2004)

6. Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et
Systems Repartis 10(2), 141–171 (1998)

7. Crone, S.F., Hibon, M., Nikolopoulos, K.: Advances in forecasting with neural networks?
Empirical evidence from the NN3 competition on time series prediction. International Jour-
nal of Forecasting 27(3), 635–660 (2011)

8. Desell, T.: Asynchronous Global Optimization for Massive Scale Computing. PhD thesis,
Rensselaer Polytechnic Institute (2009)

9. Desell, T., Anderson, D., Magdon-Ismail, M., Heidi Newberg, B.S., Varela, C.: An analysis
of massively distributed evolutionary algorithms. In: The 2010 IEEE Congress on Evolution-
ary Computation (IEEE CEC 2010), Barcelona, Spain (July 2010)

10. Desell, T., Szymanski, B., Varela, C.: Asynchronous genetic search for scientific modeling on
large-scale heterogeneous environments. In: 17th International Heterogeneity in Computing
Workshop, Miami, Florida (April 2008)

11. Desell, T., Varela, C., Szymanski, B.: An asynchronous hybrid genetic-simplex search for
modeling the Milky Way galaxy using volunteer computing. In: Genetic and Evolutionary
Computation Conference (GECCO), Atlanta, Georgia (July 2008)

12. Elias, B.: Securing general aviation. DIANE Publishing (2009)
13. Huang, W., Santhanaraman, G., Jin, H.-W., Gao, Q., Panda, D.K.: Design of high perfor-

mance MVAPICH2: MPI2 over InfiniBand. In: Sixth IEEE International Symposium on
Cluster Computing and the Grid, CCGRID 2006, vol. 1, pp. 43–48. IEEE (2006)

14. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter
importance. In: Proc. of ICML 2014 (to appear, 2014)

15. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference
on Neural Networks, vol. 4, pp. 1942–1948 (1995)

16. Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and arima models
for time series forecasting. Applied Soft Computing 11(2), 2664–2675 (2011)

17. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4j: a modular framework for meta-
heuristic optimization. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, GECCO 2011, pp. 1723–1730. ACM, New York (2011)

18. MathWorks. Global optimization toolbox (March 2013) (accessed online)
19. Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.C.A.: Modified differential evo-

lution for constrained optimization. In: IEEE Congress on Evolutionary Computation 2006,
CEC 2006, Vancouver, BC, pp. 25–32 (July 2006)

20. Mullen, K., Ardia, D., Gil, D., Windover, D., Cline, J.: Deoptim: An r package for global
optimization by differential evolution. Journal of Statistical Software 40(6), 1–26 (2011)

21. National Transportation Safety Board (NTSB) (2012)
22. Ömer Faruk, D.: A hybrid neural network and arima model for water quality time series

prediction. Engineering Applications of Artificial Intelligence 23(4), 586–594 (2010)
23. Schwefel, H.-P.: Evolution and Optimization Seeking. John Wiley & Sons, New York (1995)
24. Shetty, K.I.: Current and historical trends in general aviation in the United States. PhD thesis,

Massachusetts Institute of Technology Cambridge, MA 02139 USA (2012)
25. Szymanski, B.K., Desell, T., Varela, C.: The effects of heterogeneity on asynchronous pan-

mictic genetic search. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J.
(eds.) PPAM 2007. LNCS, vol. 4967, pp. 457–468. Springer, Heidelberg (2008)

26. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algor-
ithms: A survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

Evolving Neural Network Weights for Time-Series Prediction 781

27. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: Jclec: a java framework for
evolutionary computation. Soft Computing-A Fusion of Foundations, Methodologies and
Applications 12(4), 381–392 (2008)

28. Wei, W.W.-S.: Time series analysis. Addison-Wesley, Redwood City (1994)
29. Zhang, G.P.: Neural networks for time-series forecasting. In: Handbook of Natural Comput-

ing, pp. 461–477. Springer (2012)

Random Partial Neighborhood Search

for University Course Timetabling Problem

Yuichi Nagata1 and Isao Ono2

1 Education Academy of Computational Life Sciences,
Tokyo Institute of Technology, Japan
2 Institute of Technology and Science,
The University of Tokushima, Japan

nagata@is.tokushima-u.ac.jp, isao@dis.titech.ac.jp

Abstract. We propose an tabu search algorithm using an candidate
list stratety with random sampling for the university course timetabling
problem, where the neighborhood size can be adjusted by a parameter
ratio. With this framework, we can control the trade-off between explo-
ration and exploitation by adjusting the neighborhood size. Experimen-
tal results show that the proposed algorithm outperforms state-of-the-art
algorithms when the neighborhood size is set properly.

1 Introduction

To solve optimization problems that are computationally intractable, heuristic
(approximation) algorithms have been widely used for finding nearly optimal
solutions in a reasonable computation time. In particular, neighborhood search
is a wide class of heuristic algorithms, where the current solution is iteratively
moved to a solution in the neighborhood at each iteration.

Crucial issues in the design of an effective neighborhood search algorithm are
the choices of the neighborhood structure and search strategy. The neighborhood
is defined as a set of solutions that are obtained typically by performing prear-
ranged local modifications on the current solution. The choice of the neighbor-
hood structure is very important because it directly affects the fitness landscape.
The choice of the search strategy is also important because it controls the trade-
off between exploration and exploitation of the search. A lot of search strategies
have been proposed in the literature, ranging from simple hill-climbing, simu-
lated annealing, tabu search, guided local search [7] to more sophisticated ones,
where the trade-off between exploration and exploitation can be controlled by
their specific parameters (e.g. temperature for SA, tabu tenure for TS, and λ
value for GLS).

Most of the neighborhood search algorithms use a fixed neighborhood struc-
ture (sometimes a composite of several neighborhoods) throughout the search
while controlling the trade-off between exploration and exploitation by the search
strategy. Contrary to these algorithms, candidate list strategies [3] consider only
a subset of a predefined full neighborhood at each iteration in order to reduce

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 782–791, 2014.
c© Springer International Publishing Switzerland 2014

Random Partial Neighborhood Search 783

the computational effort. The simplest way of introducing candidate list strat-
egy is to define a neighborhood as a randomly selected part of a predefined full
neighborhood. Apart from the effect of reducing the computational effort, this
candidate list strategy is useful for diversifying the search. With this strategy, we
can control the trade-off between exploration and exploitation by adjusting the
ratio of the size of the partial neighborhood to that of the full neighborhood; the
smaller the neighborhood size is, the more diverse is the search. This is because
the quality of a solution accepted in the partial neighborhood becomes worse
with decreasing the neighborhood size (if a solution must be accepted at each
iteration).

In this paper, we incorporate the candidate list strategy with random sampling
into a tabu search framework to construct an effective neighborhood search algo-
rithm for the university course timetabling problem (UCTP), and in this paper
we call this algorithm random partial neighborhood search (RPNS). In addition,
we analyze the effect of changing the neighborhood size on the performance. Ex-
perimental results on the well-studied benchmark set of Socha et al. [6] show
that the RPNS algorithm outperforms the state-of-the-art algorithms [1][4][5][2]
when the neighborhood size is set properly.

The remainder of this paper is organized as follows. The definition of the
UCTP is described in Section 2. The framework of RPNS is presented in Section
3. The computational analysis of the RPNS algorithm and the performance com-
parison with state-of-the-art algorithms are presented in Section 4. Conclusions
are presented in Section 5.

2 The University Course Timetabling Problem

Several formulations of the UCTP have been proposed in the literature, and we se-
lect the one proposed by Socha et al. [6] because the corresponding benchmark set,
which is available at http://iridia.ulb.ac.be/~msampels/tt.data/, have
been intensively tackled by many algorithms.

Let E = {e1, e2, . . . , eN} denote a set of N events, T = {t1, t2, . . . , tK} a set
of K timeslots (K = 45, 5 days of 9 hours), and R = {r1, r2, . . . , rL} a set of L
rooms, S = {s1, s2, . . . , sM} a set of M students. For each event, the students
who attend this event and a set of the rooms that meet requirements for this
event 1 are known.

A timetable is represented as an assignment of the events to the timeslots
and rooms. A timetable is said to be feasible if it satisfies the following hard
constraints (H1-H3).

H1: No student attends more than one event in the same timeslot.
H2: Each event must be assigned to a room that meets the requirements for

this event.
H3: Only one event can be assigned to each room at any timeslot.
1 In the original benchmark data set, this information is not explicitly given, but it is
easily obtained from the given data.

784 Y. Nagata and I. Ono

The objective is to find a feasible timetable that minimizes the total violations
of the soft constraints (S1-S3) described below.

S1: A student has an event scheduled in the last timeslot of a day.
S2: A student has more than two consecutive events 2.
S3: A student has only one event on a day.

More formally, the total violations of the soft constraints for a timetable x is
defined as follows:

f(x) = f1(x) + f2(x) + f3(x),

where fi(x) (i = 1, 2, 3) is the number of the occurrence of constraint violations
in terms of soft constraint Si.

3 Solution Method

As used in some of the previous works, we employ a two-stage approach where
a feasible timetable is constructed in the first stage (not main focus of this
paper) and then the total violation of the soft constraints is minimized in the
second stage (main focus of this paper) while maintaining the feasibility. We first
present the RPNS algorithm that is used in the second stage and then describe
the outline of the first stage.

3.1 Random Partial Neighborhood Search

Neighborhoods. We first define the two neighborhoods N1 and N2, which are
widely used in neighborhood searches for various timetabling problems.

N1(x): A set of the feasible timetables that are obtained from a timetable x by
moving an event e to another timeslot-room pair (t, r) for all possible (e, r, t)
combinations.

N2(x): A set of the feasible timetables that are obtained from a timetable x
by exchanging the timeslots of two events (e1, e2) for all possible (e1, e2)
combinations, where a change of the room is allowed unless the room is not
occupied by other events.

The neighborhood N2 is slightly different from the standard swap neighbor-
hood because the standard swap move is to exchange the assignment of timeslot-
room pairs between two events (or exchange is allowed only if two events are
assigned to the same room). This modification is reasonable because the N2
neighborhood is more flexible in the assignment of rooms and it scarcely increases
the computational effort to evaluate all possible moves in the neighborhood.

To vary the neighborhood size, we introduce two neighborhoods N1(x, ratio)
and N2(x, ratio) as partial neighborhoods of N1(x) and N2(x), respectively,
where ratio (0 ≤ ratio ≤ 1) is a parameter that specifies the ratio of the size of
the partial neighborhood to that of the full neighborhood. These neighborhoods
are defined as follows.
2 Two events in different days are not regarded as consecutive. If the number of con-
secutive events is s (≥ 3), the number of violations caused by these events is s− 2.

Random Partial Neighborhood Search 785

N1(x, ratio): A set of the feasible timetables that are obtained from a timetable
x by moving an event e to another timeslot-room pair (t, r) for e ∈ I1 and
all possible (r, t) combinations, where I1 is defined by randomly selecting
�ratio×N� elements of E.

N2(x, ratio): A set of the feasible timetables that are obtained from a timetable
x by exchanging the timeslots of two events (e1, e2) for e1 ∈ I2 and e2 ∈
E (e1 < e2) (i.e., at least one of the two events is selected from I2) where I2 is
defined by randomly selecting � 12

{
2N − 1−√4N(N − 1)(1− ratio) + 1

}
�

(= N2) element of E. The change of room is allowed for both events e1 and
e2 unless the room is not occupied by other events.

Note that N2 in the definition of N2(x, ratio) neighborhood is determined
such that the size of N2(x, ratio) neighborhood divided by the size of N2(x)
neighborhood is equal to ratio. In fact, N2 is obtained by solving the following
equation: N2N − N2(N2+1)

2 = ratio× N(N−1)
2 .

Algorithm. The idea of using the random partial neighborhood is incorpo-
rated into tabu search (TS) to construct a RPNS algorithm, which is presented
in Algorithm 1. Before starting iterations, the current timetable x and the cur-
rent best timetable xbest are initialized with an input feasible timetable (line
1). At each iteration, the best non-tabu solution x′, which will become the next
current timetable, is selected from the union of the two partial neighborhoods
N1(x, ratio) and N2(x, ratio) where the selection of a tabu solution is forbidden
(line 3). Tabu solutions are defined as follows. If an event e is moved using N1
neighborhood (or two events e1 and e2 are swapped using N2 neighborhood),
event e (or two events e1 and e2) is regarded as “tabu event” during the subse-
quent T iterations, where T is a parameter called tabu tenure. At each iteration,
a timetable obtained by moving an tabu event using N1 neighborhood or by
swapping two tabu events using N2 neighborhood is regarded as a tabu solution.
In addition, the aspiration criterion is considered where a solution that improves
the current best solution xbest is regarded as a non-tabu solution. After selecting
the best non-tabu solution x′, the current solution x and current best solution
xbest (if necessary) are updated by x′ (line4). Iterations are repeated until the to-
tal number of iterations reaches a given maximum number of iterations iterMax
(lines 2 and 5), and the current best timetable xbest is returned (line 7).

We should note that it is also possible to define tabu solutions based on
the attribute of event-timeslot pairs (e.g. an event is forbidden from moving
back to timeslot t during the subsequent T iterations after this event is moved
from timeslot t in a previous iteration) rather than the attribute of only events.
However, we decided to employ our definition because we confirmed that the
performance of RPNS with the tabu definition based on only events was slightly
better than that with tabu definition based on event-timeslot pairs and the
former one is simpler.

786 Y. Nagata and I. Ono

Algorithm 1. Tabu-Search(xinput)
1: Set x := xinput, xbest := xinput and iter := 0;
2: while (iter ≤ iterMax) do
3: Select a best non-tabu solution x′ ∈ N1(x, ratio) ∪ N2(x, ratio) (the aspiration

criterion is considered);
4: Update x := x′ and xbest := x′ (if x′ is better than xbest);
5: Set iter := iter + 1;
6: end while
7: return xbest;

3.2 Construction of an Initial Feasible Timetable

To construct an initial feasible timetable in the first stage, we use an algorithm
similar to tabu search (TS) where a current solution is represented as a par-
tial timetable during the course of the search. Here, a partial timetable refers
to an incomplete timetable in which one or more events are not scheduled. A
partial timetable is regarded as feasible if the scheduled events satisfy all hard
constraints. We evaluate the quality of partial timetables by the number of the
unscheduled events (small number is better). The unscheduled events are stored
in a list called ejection list (EL).

The procedure is started by initializing both the current timetable x and the
current best timetable xbest with an empty timetable and EL with all events
in a random order. At each iteration, an event ein is popped from EL, and
an attempt is made to schedule the selected event into the current (partial)
timetable x without violating any hard constraints. Let Nin out(ein, x) be a set
of the feasible (partial) timetables that are obtained from x by assigning ein to a
timeslot-room pair and ejecting the conflicting events caused by the insertion of
ein (no event is ejected if no hard constraint violation occurs) in all possible ways.
Note that ein must be assigned to a room that satisfies the requirement for this
event (hard constraint H2), while the violation of the hard constraints H1 and H3
caused by the insertion of ein can be resolved by ejecting the conflicting events in
the same timeslot. The next current timetable x′ is selected from Nin out(ein, x)
so that the number of the ejecting events is minimized. In practice, the idea
of tabu search is incorporated to diversity the search; the selection of a tabu
solution is forbidden where a timetable obtained by assigning ein to a timeslot
t is regarded as a tabu solution during the subsequent T (= 100) iterations after
ein is assigned to a timeslot t in the previous iteration. In addition, the aspiration
criterion is considered, where a solution that improves the current best solution
xbest is always regarded as a non-tabu solution. After the selection of the next
current timetable, push the ejected events into EL if one or more events are
ejected, and the current solution x and current best solution xbest (if necessary)
are updated by x′. Iterations are repeated until all events are scheduled, and the
obtained feasible timetable is returned.

Random Partial Neighborhood Search 787

4 Computational Experiments

4.1 Experimental Settings

We investigated the performance of the RPNS algorithm on the benchmark set
of Socha et al. [6] because this benchmark set has been intensively tackled by
many algorithms. This benchmark set consists of 11 instances, which are divided
into three categories (5 small instances, 5 medium instances, and one large in-
stance) according to the number of courses, rooms, and students. The numbers
of (courses, rooms, students) are (100, 5, 80) for the small instances, (400, 10,
200) for the medium instances, and (400, 10, 400) for the large instance. We do
not show results for the small instances because some of the previous approaches
in the literature as well as RPNS can find feasible timetables with a penalty cost
of zero, which makes these instances useless for comparison purposes.

The RPNS algorithm was implemented in C++ and was executed in a virtual
machine environment (i.e., each job is executed on a single core, but multiple jobs
may be executed in the same node) on a cluster with Intel Xeon 2.93 GHz nodes.
We performed the RPNS algorithm with various combinations of tabu tenure
(T = 0, 5, 10, 20, 30, 50, 70, 100, 120, 150, and, 200) and neighborhood size
(ratio = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.5, and 1) in order to investigate
their effects and relation on the performance. We set iterMax = � 100,000ratio � in
order to makes the total number of evaluations of solutions in a single run
(and therefore the computation time) the same regardless of the difference in
the neighborhood size. For each of all configurations, we performed the RPNS
algorithm 10 times on each instance.

4.2 Results

Figure 1 shows the results of the RPNS algorithm for all possible pairs of ratio
and T ; each curve, which corresponds to a value of ratio, is a plot of the average
penalty values over 10 runs against the different values of T .

The RPNS algorithm with the full neighborhood (ratio = 1) finds high quality
timetables that improves the lowest penalty timetables reported in the litera-
ture (except for instance large) if T is set to the best value for each instance.
However, the quality is fairy sensitive to the value of T , meaning that the trade-
off between exploitation and exploration must be controlled appropriately to
achieve a high performance.

We can see that when T is set to the best value for each value of ratio, the use
of partial neighborhoods (ratio < 1) improves the result of the full neighborhood
(ratio = 1) unless the neighborhood size is too small. This is attributed to the
trade-off between the positive effect of the increase in the number of iterations
and the negative effect of the decrease in the possibility of finding a better solu-
tion in the neighborhood at each iteration. An important observation is that the
best value of T decreases as the value of ratio is decreased. The reason for this is
that a reduction of the neighborhood size has an effect to diversify the search. An
interesting observation is that the best performance over all possible pairs of ratio

788 Y. Nagata and I. Ono

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.03
0.05
0.1
0.2
0.3
1.0

ratio

(medium 1)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.03
0.05
0.1
0.2
0.3
1.0

ratio

(medium 2)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.03
0.05
0.1
0.2
0.3
1.0

ratio

(medium 3)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.03
0.05
0.1
0.2
0.3
1.0

ratio

(medium 4)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.01
0.02
0.03
0.05
0.1
1.0

ratio

(medium 5)

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200

A
ve

ra
ge

 p
en

al
ty

Tabu tenure

0.01
0.02
0.03
0.05
0.1
1.0

ratio

(large)

Fig. 1. Results of RPNS (iterMax = � 100,000
ratio

�), where horizontal dotted lines represent
the best penalty values found in the literature

and T seems to be obtained when the neighborhood size is optimized under the
setting of T = 0. For example, in the result on medium 1, the best performance is
obtained by setting T = 5 and ratio = 0.1, but a better (or similar) result will
be obtained by setting T = 0 and ratio between 0.05 and 0.1. This is a little bit
surprising because the strength of tabu search is completely spoiled in the setting
of T = 0, meaning that a mechanism of diversifying the search depends solely on
the reduction of the neighborhood size. From a practical standpoint, this is a nice
property because the best performance is attained by adjusting only one param-
eter ratio instead of adjusting both parameters T and ratio.

4.3 Analysis

In RPNS, the reduction of the neighborhood size plays an important role in
diversifying the search, and we analyze this effect in more detail. Graph (a)
of Figure 2 shows the number of students attending to each of the events for

Random Partial Neighborhood Search 789

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

N
o.

 o
f S

tu
de

nt
s

Events

medium1

medium5
(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(b)
medium1:
ratio=1.0, T=0

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(c)
medium5:
ratio=1.0, T=0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(d)
medium1:
ratio=1.0, T=30

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(e)
medium1:
ratio=0.1, T=0

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(f)
medium1:
ratio=0.02, T=0

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(g)
medium5:
ratio=1.0, T=150

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400

N
o.

 o
f m

ov
es

Events

(h)
medium5:
ratio=0.1, T=0

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300 350 400
N

o.
 o

f m
ov

es
Events

(i)
medium5:
ratio=0.02, T=0

Fig. 2. (a) The number of students attending to each of the events, and (b–i) the
cumulative number of moves for each of the events in a single run of RPNS

medium 1 and medium 5, where the events are re-indexed in descending order of
the number of the students. We can see that the number of students varies widely
among the events in medium 5, while the difference in the number of students
is relatively small in medium 1. The other graphs (b)–(i) show the cumulative
number of moves for each of the events (e.g. if events e1 and e2 are exchanged,
both counts of e1 and e2 are incremented) in a single run of the RPNS algorithm
for several settings of ratio and T on the two instances, where the events are re-
indexed in the same order as in the graph (a). Note that the cumulative number
of moves presented in Figure 2 is the result when the number of iterations is
100,000.

Graphs (b) and (c) show the results of a setting (ratio = 1, T = 0) on the two
instances. We can see that in medium 5 the cumulative number of moves tends
to increase as the number of students decreases (graph (c)). This is a natural
consequence because the impact of an event on the penalty cost increases as the
number of students increases. A similar situation does not occur in medium 1

because the difference in the number of students between the events is small,
but cycling occurred frequently during the search and therefore the cumulative
number of moves are concentrated in a part of the events (graph (b)).

Graphs (d)–(f) shows the results of three settings (ratio = 1, T = 30),
(ratio = 0.1, T = 0), and (ratio = 0.02, T = 0) on medium 1, where T = 30 is
the best value (when ratio = 1) and ratio = 0.1 is the best value

790 Y. Nagata and I. Ono

Table 1. Comparisons with the state-of-the-art algorithms

GDTS NGDHH ENGDHH HHSA RPNS
(5 runs) (10 runs) (20 runs) (10 runs) (10 runs)

best best best best ave. best
medium 1 78 71 38 99 14.8 7
medium 2 92 82 37 73 12.4 10
medium 3 135 112 60 130 32.3 24
medium 4 75 55 39 105 9.6 5
medium 5 68 103 55 53 16.6 6

large 556 777 638 385 262.0 205

(when T = 0) for this instance. Graphs (g)–(i) shows the results of three set-
tings (ratio = 1, T = 150), (ratio = 0.1, T = 0), and (ratio = 0.02, T = 0) on
medium 5, where T = 150 is the best value (when ratio = 1) and ratio = 0.02
is the best value (when T = 0) for this instance.

Compared to the result of the full neighborhood (ratio = 1) with T = 0
(graphs (b) and (c)), the distribution of the cumulative number of moves is
spread by setting T = 30 (medium 1) and T = 150 (medium 5) through the effect
of tabu search. More importantly, we can see that a similar effect is obtained by
decreasing the neighborhood size even if the value of T is set to zero, and this
effect becomes more prominent as the value of ratio is decreased. These results
show that the degree of diversification of the search can be controlled by the
neighborhood size.

4.4 Comparisons with Other Algorithms

Finally, we compare the performance of RPNS (iterMax = � 100,000ratio �) with those
of leading algorithms that have shown competitive performance on the bench-
mark set of Socha et al. Table 1 shows the comparison results. The compared
algorithms, which are selected from about thirty algorithms found in the litera-
ture are Great Deluge with Tabu Search (GDTS) [1], Non-linear Great Deluge
Hyper Heuristic (NGDHH) [4], Extended version of Non-linear Great Deluge Hy-
per Heuristic (ENGDHH) [5], and Hybrid Harmony Search Algorithm (HHSA)
[2]. For RPNS, we present the best and average results of 10 runs obtained with
the setting of T = 0 and the best value of ratio for each instance (see Figure 1)
where the values of ratio are 10 (medium 1), 10 (medium 2), 5 (medium 3), 10
(medium 4), 2 (medium 5), and 2 (large), respectively. For each of the compared
algorithms, the best results obtained by multiple runs with various parameter
settings (if experiments were conducted with various settings) are presented.
Note that our purpose here is not to allege the superiority of RPNS over the
compared algorithms because the value of ratio was adjusted for each instance
in RPNS, but we can see that the quality of the timetables obtained by RPNS
is far ahead of others.

The average computation times for a single run of RPNS with the best values
of ratio (and T = 0) were 323 seconds (medium 1), 282 seconds (medium 2), 451
seconds (medium 3), 315 seconds (medium 4), 826 seconds (medium 5), and 418

Random Partial Neighborhood Search 791

seconds (large), respectively. For the compared algorithms, the average compu-
tation times for a single run for each of the instances were approximately 12 hours
(GDTS), 3–5 hours (NGDHH), 2.5–5 hours (ENGDHH), and 6 hours (HHSA),
respectively. We can see that the computational effort of RPNS is reasonable
even allowing for the differences in the computer speed and implementation.

5 Conclusion and Future Work

We have proposed an tabu search algorithm using an candidate list stratety
with random sampling (random partial neighborhood search, RPNS) for the
the university course timetabling problem, where the neighborhood size can be
adjusted by a parameter ratio. Experimental results show that the degree of
diversification of the search can be controlled by the neighborhood size, and the
RPNS algorithm attains a very good performance when the neighborhood size is
set properly especially when the tabu tenure is set to zero. In fact the quality of
the timetables obtained by the RPNS algorithm with the best value of ratio is
far ahead of those of the state-of-the-art algorithms. However, the quality is fairy
sensitive to the value of ratio. At the current moment, it is difficult to estimate
the best value of ratio for a given instance before or during the search, and a
possible direction for future research is to develop a self-adapting mechanism for
the value of ratio.

References

1. Abdullah, S., Shaker, K., McCollum, B., McMullan, P.: Construction of course
timetables based on great deluge and tabu search. In: Proceedings of MIC 2009:
VIII Metaheuristic International Conference, pp. 13–16 (2009)

2. Al-Betar, M.A., Khader, A.T., Zaman, M.: University course timetabling using a
hybrid harmony search metaheuristic algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 42(5), 664–681 (2012)

3. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers (1997)
4. Obit, J., Landa-Silva, D., Ouelhadj, D., Sevaux, M.: Non-linear great deluge with

learning mechanism for solving the course timetabling problem. In: 8th Metaheuris-
tics International Conference, MIC 2009 (2009)

5. Obit, J.H., Landa-Silva, D., Sevaux, M., Ouelhadj, D.: Non-linear great deluge
with reinforcement learning for university course timetabling. In: Metaheuristics–
Intelligent Decision Making. Series Operations Research/Computer Science Inter-
faces. Springer (2011)

6. Socha, K., Knowles, J.D., Sampels, M.: AMAX −MIN ant system for the univer-
sity course timetabling problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.)
Ant Algorithms 2002. LNCS, vol. 2463, pp. 1–13. Springer, Heidelberg (2002)

7. Voudouris, C., Tsang, E.P., Alsheddy, A.: Guided local search. Springer (2010)

Balancing Bicycle Sharing Systems:

An Analysis of Path Relinking and
Recombination within a GRASP Hybrid�

Petrina Papazek, Christian Kloimüllner, Bin Hu, and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{papazek,kloimuellner,hu|raidl}@ads.tuwien.ac.at

Abstract. In bike sharing systems, a vehicle fleet rebalances the system
by continuously moving bikes among stations in order to avoid rental
stations to run entirely empty or full. We address the static problem
variant assuming initial fill levels for each station and seek vehicle tours
with corresponding loading instructions to reach given target fill levels
as far as possible. Our primary objective is to minimize the absolute
deviation between target and final fill levels for all rental stations. Build-
ing upon a previously suggested GRASP hybrid, we investigate different
approaches for hybridizing them with Path Relinking (PR) and simpler
recombination operators. Computational tests on benchmark instances
derived from a real world scenario in Vienna give insight on the impacts
of the PR and recombination techniques and manifest that certain PR
extension improve the results significantly. Ultimately, a hybrid exclu-
sively searching a partial PR path in the neighborhood of the guiding
solutions turns out to be most fruitful.

1 Introduction

Public Bicycle Sharing Systems (BSSs) are booming in many cities around the
globe. A BSS comprises a set of automated rental stations, which allows users to
rent and return bikes at any station of the system at any time. Establishing BSSs
in cities is beneficial as they augment public transport very well, are “green”
alternatives to motorized traffic, and contribute to public health [1]. However,
BSSs face one major issue: without actively redistributing bikes among stations,
i.e. balancing the stations, most would either run out of available bikes or free
slots. This natural disbalance of a BSS originates from diverse circumstances,
such as topography, commuting patterns, and weather conditions. To keep the
system in balance, most BSS operators actively redistribute bikes among stations
by a vehicle fleet.
� This work is supported by the Austrian Research Promotion Agency (FFG), contract
831740. The authors thank Citybike Wien, the Austrian Institute of Technology
(AIT), and Energie und Umweltagentur Niederösterreich (eNu) for the collaboration
in this project.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 792–801, 2014.
c© Springer International Publishing Switzerland 2014

Balancing Bicycle Sharing Systems 793

We consider the Balancing Bicycle Sharing System (BBSS) problem as intro-
duced in [2]: Given a set of vehicles and a certain time budget, our goal is to
find vehicle tours with corresponding bicycle loading instructions such that the
stations’ fill levels are brought to specified target values as far as possible.

Building upon our previous work, in particular a GRASP hybrid, we inves-
tigate different extensions by Path Relinking (PR) and simpler recombination
operators and their impacts. While straight-forward applications of PR do not
yield significant improvements in solution quality but rather increase the com-
putational costs substantially, a variant, where only a part of the complete PR
path in the vicinity of the guiding solution is searched, turns out to be fruitful.
The GRASP hybrid in conjunction with this restricted form of PR is able to
improve previously leading results on mid-size instances significantly.

2 Related Work

Although BBSS is a relatively new problem domain already several different
algorithmic approaches have been suggested for diverse variants of it. Most of
them apply integer linear programming techniques [3,4,5,6], whose applicability,
however, is restricted to small instances or strongly simplified problem variations.

In our previous work we have developed a greedy construction heuristic which
we improved by the PILOT method [7]. As metaheuristic approaches we estab-
lished a Variable Neighborhood Search (VNS) [2] with an embedded Variable
Neighborhood Descent (VND) and GRASP [7]. Our results about the static case
have been refined together with comprehensive computational tests in the Jour-
nal of Global Optimization [8]. A more detailed description of these approaches
can be found in Section 4. Comparing different work on BBSS is usually difficult
because they consider various specific problem variants. Di Gaspero et al. [9,10]
proposed approaches based on constraint programming, ant colony optimiza-
tion, and large neighborhood search and tested them on the same benchmark
instances as ours, though they could not outperform our previous approaches
mentioned above.

For the dynamic case, where the system is rebalanced while usage is simulated,
only few work has been published so far [11]. In a recent work we considered this
scenario and extended our techniques to handle expected dynamic user demands
without relying on an expensive time-discretization [12].

Much more work exists on other aspects of BSSs, such as an optimal network
design [13], system characteristics and usage patterns [14], but they are not in
the scope of this paper.

3 Problem Definition

We consider the static or offline BBSS problem variant which neglects user in-
teraction during rebalancing and model the BSS as a complete directed graph
G0 = (V0, A0). The vertices V0 comprise all rental stations V and the depot 0,
which is the start and end point of the tours. The arcs A0 connect all vertices

794 P. Papazek et al.

and are weighted with time tu,v. This time represents the travel time between
nodes u, v ∈ V0 including an average service time for loading or unloading bikes
at node v. Furthermore, we are given for each station v ∈ V the capacity Cv,
i.e., the number of bike slots, the initial fill level pv, and a target fill level qv.
The BSS operator employs a fleet of vehicles L for distributing the bikes. Each
vehicle l ∈ L starts empty at the depot and may visit an arbitrary number of
stations before it has to return empty to the depot again. Each vehicle l ∈ L has
associated a bike capacity Zl.

A solution to the BBSS problem comprises a tour for each vehicle l ∈ L
and corresponding loading instructions for each stop. We define this ordered
sequence of visited stations as rl = (r1l , . . . , r

ρl

l) with ril ∈ V , i = 1, . . . , ρl, and
ρl being the number of visited stations. An important aspect is that stations
may be visited multiple times by the same or different vehicles. Each visit has
associated loading instructions yil ∈ {−Zl, . . . , Zl} with l ∈ L and i = 1, . . . , ρl,
specifying how many bikes are to be picked up (yil > 0) or delivered (yil < 0)
at that visit. A solution is feasible if vehicle and station capacities are never
exceeded, the number of bikes available at stations is never below zero, a vehicle
does not deliver more bikes than it has actually loaded, and if the working time
tl of a vehicle l ∈ L does not exceed a given total time budget t̂.

Let av be the final number of bikes at each station v ∈ V after rebalancing.
The primary objective is to minimize the deviation from the target values qv,
i.e., the disbalance |av − qv| at each station v ∈ V . As secondary objectives we
want to minimize the total number of loading operations |yil | over all visits ρl
and all vehicles L and the working time tl of all drivers l ∈ L. This is expressed
by the following objective function:

min ωbal
∑
v∈V

|av − qv|︸ ︷︷ ︸
disbalance

+ ωload
∑
l∈L

ρl∑
i=1

|yil |︸ ︷︷ ︸
loading operations

+ ωwork
∑
l∈L

tl︸ ︷︷ ︸
working time

(1)

The scaling factors ωbal, ωload, and ωwork control the relative importance of
these terms. We assume that any improvement in balance is always preferred
over decreasing the number of loading actions or reducing the working time and
set the scaling factors accordingly (ωbal = 1 and ωload = ωwork = 1/100 000).
The reason is that a balanced system is top priority for maximizing customer-
satisfaction while from the operator’s point of view, workers are paid for the
whole shift length anyway, and therefore a reduction in the tour lengths is just
a secondary aspect.

4 Metaheuristics Approaches

This section gives an overview on the metaheuristic approaches we proposed
in [8]. All of these approaches utilize an incomplete solution representation by
considering vehicle tours only; corresponding loading operations are computed
via an auxiliary procedure whenever a solution is evaluated. From the different

Balancing Bicycle Sharing Systems 795

variants for this procedure considered in [8], we use here the fastest greedy heuris-
tic [2,8], which is the most reasonable approach in practice since it scales best
for large instances and nevertheless yields close to optimal loading operations.

To create an initial solution we employ two alternative construction heuris-
tics: a greedy construction heuristic (GCH) and an extension of it based on the
PILOT method [15]. GCH sequentially constructs vehicle tours following a local
best successor strategy. To derive a tour for each vehicle, we compute the max-
imum number of bicycles γv that can be picked up or delivered at any not yet
balanced station v without exceeding/deceeding its target value. For each vehi-
cle, we construct a tour by starting at the depot and evaluating the next best
successor by the ratio γv/tu,v. Here, we only consider a station v if enough time
remains to return to the depot afterwards. If there are no further feasible stations
left, we proceed with the next vehicle. Afterwards, we derive loading instructions
by an auxiliary heuristic. The PILOT construction heuristic (PCH) extends the
greedy construction heuristic by overcoming possibly shortsighted successors.
In particular, PCH evaluates each potential successor more accurately by con-
structing a complete temporary route utilizing the objective function value as
evaluation criterion. This approach requires more time than GCH, but yields
substantially better results in return.

For locally improving candidate solutions, we employ a Variable Neighbor-
hood Descent (VND) [16] using seven neighborhood structures and applying a
best improvement strategy [8]: remove station, insert unbalanced station, replace
station, intra or-opt, 2-opt* inter-route exchange, and intra-route 3-opt.

As the solution construction followed by VND is still quite fast and improve-
ment potential remains, the approach is further extended into a Variable Neigh-
borhood Search (VNS) [8] with the following shaking operators: move-sequence,
exchange-sequence, destroy-&-recreate, and remove-stations.

In addition to the VNS, we investigated a hybrid Greedy Randomized Adap-
tive Search Procedure (GRASP) [17] by iteratively applying randomized versions
of either GCH or PCH, locally improving each solution with the VND, and fi-
nally returning the overall best solution. Here, the PCH version with a random
neighborhood in the VND turned out to perform best.

In the experimental evaluation in [8], VNS yields the best results on small
and mid-size instances with up to 300 stations, while PCH-GRASP performed
better on large instances with up to 700 stations.

5 Path Relinking and Recombination in GRASP

Glover et al. [18] define PR as the evolutionary technique of altering an initial
solution I towards a guiding solution G – typically a solution from an elite set
– by a series of simple moves. These moves describe a trajectory or path of (not
necessarily feasible) solutions, and a best encountered solution is returned as re-
sult. According to numerous studies such as [19,20], PR yields promising results
on diverse related vehicle routing problems. Moreover, simpler recombination
techniques as they are mainly used in evolutionary algorithms are able to yield

796 P. Papazek et al.

possibly promising candidate solutions from the joined properties of two input
solutions in a fast manner. Therefore, we investigate extensions of the above
hybrid GRASP by PR and simpler recombination techniques. This section de-
scribes several specific approaches in detail, which we found most meaningful in
the context of BBSS, and explains how to embed it into GRASP.

5.1 PR and Recombination Variants

In order to iteratively transform solution I into solution G inside PR, we need to
define basic moves. Again, we consider loading instructions to be always calcu-
lated by the auxiliary greedy heuristic for each intermediate candidate solution
on the fly and thus, solely concentrate on the tours. One basic move edits a
single vehicle tour rl by removing, adding, or replacing exactly one station.

We adopt the common principle from PR for other vehicle routing problems to
match each tour of I with a tour in G and individually relink or recombine each
pair of corresponding tours. As we consider the case of having a not necessarily
homogeneous vehicle fleet, we relate each vehicle tour of I with the tour of the
same vehicle in G. Then, we transform the tours from I into corresponding ones
from G, yielding a series of intermediate solutions. These intermediate solutions
are not necessarily feasible as the relinked tours may exceed the allowed time
budget t̂. Consequently, we repair such infeasible tours by pruning them from
the end before they are evaluated. In the following we denote by rl(G) the tour
of vehicle l in solution G and by rl(I) the corresponding tour in solution I, l ∈ L;
ρl(G) and ρl(I) denote their respective tour lengths. We consider the following
operators for systematically generating intermediate solutions.

Sequential Replace PR (Seq-PR). Within this basic PR operator, we se-
quentially transform each tour rl(I), l ∈ L step-by-step with basic moves into
G’s corresponding tour. This is achieved by iterating over the stops ril with
i = 1, . . . , ρl(G) and replacing each corresponding stop ril (I) by ril(G) or adding
it if I’s original tour was shorter.

One-Point-Recombination (OP-Rec). Starting from the parent solutions
I and G, we randomly select a vehicle l ∈ L and a crossover position p ∈
{1, . . . ,min(ρl(I), ρl(G))}. In a first offspring, the tour rl becomes

(r1l (I), . . . , r
p−1
l (I), rpl (G), . . . , rρl(G)

l (G))

and in a second

(r1l (G), . . . , rp−1
l (G), rpl (I), . . . , r

ρl(I)
l (I)).

For each of the next vehicles l ∈ L we randomly decide whether its tour is copied
from rl(G) or rl(I) without any further change.

Balancing Bicycle Sharing Systems 797

Single Tour Recombination (ST-Rec). This recombination variant basically
works like OP-Rec by first selecting a vehicle and performing one-point crossover
on the two corresponding tours, but then, all remaining tours are only adopted
from I for the first offspring and only G for the second offspring, respectively.
Thus, this operator changes a parent solution only in a part of one tour.

Restricted Multistart PR (MS-PR). This operator combines concepts from
Seq-PR and ST-Rec. A main drawback of Seq-PR is its high computational cost.
To speed up Seq-PR, we skip the evaluation of solutions in the middle part of
the tours, since most potential solutions are in the close neighborhood of the
optimized tours in I and G. As we found out in preliminary analysis, the best
solutions on trajectories from I to G are almost always located relatively close
to G and for this reason we focus on the final stations of tours. We therefore
restrict ourself in MS-PR to final parts of paths from I to G. This is achieved by
starting with a whole copy of G and replacing just one tour rl(G), l ∈ L, by a
copy from rl(I). This tour rl(I) is then step-by-step relinked as in Seq-PR until
G is reached again. In particular, it turned out most successful to solely evaluate
the first and three final stations of the tour. If there is more than one vehicle, we
perform the same procedure also for all the other vehicles in L; i.e., we perform
multiple starts, one for each vehicle, which gives the operator its name.

Applying VND to the final best solution from the PR operator as suggested
by [21] typically improves our results, because of frequent unfavorable ordering
of stations by merely merging arbitrary tours. Note that our PR primarily uses
replace operations without more sophisticated best improvement insert strate-
gies. To integrate a reordering of stations into the PR or recombination operator,
we can additionally employ VND to each intermediate/offspring solution.

However, performing the full VND at each step may soon become too expen-
sive for large instances. In order to speed up the process, we use a limited variant
of VND, which works as follows: For each intermediate PR solution, we test if
applying a single move of each VND neighborhood leads to a solution that is
better than I. Only if this is the case, a full VND is applied. This way lots of
mediocre solutions on the path are skipped relatively quickly.

5.2 Embedding in GRASP

For applying PR and recombination operators within our PILOT-GRASP from
[8], we add a memory to GRASP through an elite set of best solutions. Fiesta et
al. [21] proposed different adaptive variants to join PR and GRASP, in particular
Path Relinking GRASP (PR-GRASP), which we adopt here.

In PR-GRASP we employ the PR or recombination operator on each new
VND improved GRASP solution and a randomly selected member of the elite
set. The elite set is initialized by adding solutions from the GRASP procedure
with the condition that they must be different from each other. If the initial elite
set is sufficiently large (e.g., after five GRASP iterations), we employ the PR
or recombination operator in each GRASP iteration. Before embarking the next

798 P. Papazek et al.

GRASP iteration, we consider to incorporate the PR or recombination enhanced
candidate solution to the elite set in case it is different from all other already
included members. In this context, a pure random update strategy turned out
to perform best: We select a random element from the elite set and replace it by
the new candidate solution if the objective value of the new one is better. In or-
der to enhance diversity and quality in the elite set, we also tested the common
approach of considering a minimal solution edit distance as proposed by [21].
However, preliminary tests revealed that this distance-based replacement strat-
egy did not yield significantly better solutions but introduced a non-negligible
runtime overhead due to the distance calculations.

6 Computational Analysis

In this section we show the results of our PR and recombination hybrids and
compare them with the leading approaches from [8]. The instances of our bench-
mark sets1 have been derived from the real-world scenario in Vienna provided by
Citybike Wien and the AIT. The initial fill levels pv of the stations are taken from
a historical snapshot of the system in Vienna whereas the target fill levels qv are
calculated according to the estimated user demands at the particular stations.
For further reference on the computation of target values, please, refer to our
publication in the Journal of Global Optimization [8]. We consider an amount
of stations |V | ∈ {60, 90, 180, 300, 400, 500}, a time budget t̂ of 2, 4, 8 hours,
and a number of vehicles |L| between 1% and 2% of |V | in order to test rea-
sonable settings for practical scenarios. Large instances beyond 500 stations are
neglected because the PR-GRASP variants are able to run only a few iterations,
and PR extensions would make no sense in such situations. All benchmark sets
include 30 instances and represent unique combinations of |V | and |L|. We run
each instance on a single core of an Intel Xeon E5540 machine with 2.53 GHz.
For every algorithmic variant we use a common CPU time limit of 15 minutes
for small instances with 30 stations, 30 minutes for medium instances with 60
to 90 stations, and 60 minutes for large instances with more than 90 stations.

Tables 1 and 2 include the results for the basic PR and recombination variants
in conjunction with PILOT-GRASP as well as our previously developed meta-
heuristics from [8] and our most successful PR-GRASP variants: PILOT-GRASP
with ST-Rec including full VND and MS-PR including limited VND. We list the
mean objective values obj, the counted best values #best (i.e., the number of
instances where the approach has been superior to all other variants over both
tables), and the number of major GRASP-iterations gtot for each instance.

The OP-Rec operator is comparatively fast and enables many GRASP iter-
ations. In particular, it requires only two VND evaluations per iteration and is
thereby substantially faster than the Seq-PR operator. Both variants, Seq-PR
as well as OP-Rec, are only competitive on smaller instances and are worse for
mid-size and large instances. Thus, it is most interesting to concentrate on in-
stances of smaller size for these PR variants. We observe that for these smaller
1 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

Balancing Bicycle Sharing Systems 799

Table 1. Computational results of Seq-PR- and OP-Rec-GRASP

Seq-PR-GRASP OP-Rec-GRASP
Inst. set full VND limited VND full VND limited VND

|V | |L| t̂ #best obj gtot #best obj gtot #best obj gtot #best obj gtot
30 1 2 26 147.33499 715197.0 26 147.33499 713813.0 26 147.33499 713312.0 26 147.33499 723585.5
30 1 4 22 95.60334 43876.5 28 95.40335 20617.0 28 95.40335 53717.0 22 95.73667 74951.0
30 1 8 24 29.20639 3605.5 29 29.20639 1142.0 28 29.27305 5352.5 26 29.20639 8773.0
60 1 4 18 270.93692 44641.5 26 269.93695 19738.0 26 269.93695 48428.5 20 270.73692 65299.5
60 1 8 15 170.80700 4086.0 20 170.34035 1273.0 19 170.27369 5616.0 15 170.87366 9330.5
60 2 2 24 293.93664 92158.0 26 293.80331 45680.5 26 293.80331 116599.5 24 293.93664 133458.0
90 2 4 8 347.60720 6505.0 12 346.27390 1783.5 19 345.94057 8604.0 5 347.80719 14387.5
90 2 8 5 174.94703 647.0 0 176.28033 99.0 0 175.88033 1039.5 0 174.94702 1971.0
90 4 4 0 197.94672 1537.0 0 198.54669 217.5 0 197.61337 2490.0 1 197.21339 5547.5

180 4 4 1 721.21426 1459.0 3 721.14757 236.0 2 721.34759 2486.5 1 722.01424 4505.0
180 4 8 0 380.29379 146.5 0 385.09377 16.0 0 383.82704 261.0 1 379.89377 654.5
180 5 8 0 271.23286 91.0 0 275.83275 11.0 0 275.56617 160.5 0 269.69964 465.5
300 6 4 0 1249.08822 311.5 0 1253.88816 38.0 0 1253.22150 530.0 0 1249.08824 1220.5
300 6 8 0 718.77440 38.0 0 725.04097 7.0 0 724.44097 60.5 3 716.24113 187.0
300 9 8 0 399.45832 18.0 0 403.59148 6.0 0 402.99165 29.0 0 396.45840 103.0
400 8 4 0 1660.96188 128.5 0 1668.42848 16.0 0 1665.62856 237.5 0 1660.36191 563.0
400 8 8 0 954.52126 17.0 0 956.92125 6.0 0 957.92127 27.0 3 950.72133 86.5
400 12 8 2 530.27760 10.0 0 531.27760 6.0 0 532.07758 14.0 8 525.81105 49.5
500 10 4 1 2094.23569 61.0 0 2104.63555 9.0 0 2101.96892 110.5 1 2092.36906 297.0
500 10 8 1 1207.40169 11.0 2 1211.06830 6.0 0 1211.80159 15.5 3 1203.53505 47.0
500 15 8 1 665.83047 7.0 2 666.96383 6.0 2 667.16383 9.0 3 662.96395 27.0

Total 148 12581.61667 914552.0 174 12631.01597 804726.5 176 12623.41628 959100.0 162 12556.95064 1045509.0

Table 2. Computational results of ST-Rec- and MS-PR-GRASP

Inst. set VNS PILOT-GRASP ST-Rec-GRASP MS-PR-GRASP

|V | |L| t̂ #best obj gtot #best obj gtot #best obj gtot #best obj gtot
30 1 2 28 147.20166 1215760.5 29 147.13500 618965.5 26 147.33499 724028.0 26 147.33499 698800.0
30 1 4 27 95.20336 269610.5 23 95.73667 100840.0 28 95.40335 52850.5 22 95.80334 60057.5
30 1 8 26 29.20639 37254.0 26 29.27305 10879.0 28 29.20639 5422.0 25 29.27305 6728.0
60 1 4 29 269.60362 310747.5 17 271.20358 77673.0 26 269.93695 48277.0 18 270.93692 55162.0
60 1 8 18 170.47367 44431.5 12 171.00699 10889.5 25 170.20702 5539.5 13 170.87366 7755.0
60 2 2 23 293.80331 505746.0 22 294.06999 190196.5 27 293.60332 118511.5 23 294.00330 79788.0
90 2 4 15 346.27390 50771.5 2 348.74052 17740.5 21 345.87391 8492.5 5 347.40721 9292.5
90 2 8 18 173.14705 7677.0 2 175.34702 2325.5 2 176.08031 1015.0 3 174.74701 1296.5
90 4 4 21 193.74679 15854.5 0 197.88006 6829.5 5 196.41340 2693.5 5 195.41342 2103.5

180 4 4 15 718.08096 14634.5 1 722.61423 5184.0 2 720.21427 2739.0 6 719.61426 2174.5
180 4 8 12 374.22726 1687.5 0 379.96048 739.0 0 382.42709 278.0 17 372.76058 308.5
180 5 8 11 264.03307 996.5 0 269.83290 510.0 0 272.96620 187.5 19 263.16634 187.5
300 6 4 19 1241.28831 3209.0 1 1248.82158 1355.5 0 1248.95489 699.0 10 1242.35494 459.0
300 6 8 6 715.10780 322.5 0 715.64113 201.0 0 722.04101 75.0 22 709.37453 79.5
300 9 8 3 403.25824 127.5 9 394.39177 114.5 0 401.52495 39.5 18 391.99176 37.0
400 8 4 13 1654.16199 1179.5 2 1658.49534 612.0 2 1660.89527 336.0 13 1653.16199 196.0
400 8 8 0 958.58794 120.0 6 949.05467 91.5 0 956.32119 37.0 21 946.52135 37.0
400 12 8 0 543.47730 53.0 13 524.34443 52.0 1 531.27757 21.0 7 526.47768 19.0
500 10 4 5 2092.16902 517.0 2 2091.90240 322.0 0 2095.03570 177.5 21 2084.03580 90.0
500 10 8 0 1225.46808 55.5 11 1202.93505 49.5 1 1209.66824 21.5 12 1202.66836 21.0
500 15 8 0 690.22984 26.5 16 660.43057 28.0 3 666.63055 13.0 4 664.96383 12.0

Total 289 12598.74956 2480782 194 12548.81743 1045598 197 12592.01657 971453.5 310 12502.88432 924604.0

instances it does not make sense to apply the limited VND since only a few solu-
tions are actually improved. Moreover, ST-Rec yields significantly better results
than the original OP-Rec operator because we destroy less well working parts of
the tours.

Comparing with state-of-the-art approaches (i.e., VNS and PILOT-GRASP),
the PR extensions are able to boost the performance of GRASP on medium
instances which have so far been dominated by VNS. Among the PR-GRASP
variants, we observe that MS-PR-GRASP is superior on medium and large in-
stances with 180 to 500 stations whereas ST-Rec-GRASP is able to enhance
GRASP for small instances with 60 to 90 stations. While VNS still performs

800 P. Papazek et al.

best on medium instances with 90 stations in overall, the results indicate that
our new GRASP variants are able to catch up on instances with smaller time
budgets of 2 and 4 hours. These observations are confirmed by the Wilcoxon
Rank Sum test on an error level of 5%.

7 Conclusions and Future Work

To improve results of a state-of-the-art PILOT-GRASP hybrid for the static
BBSS variant, we analyzed different variants of PR and recombination opera-
tors to obtain new promising candidate solutions by joining parts of two parental
solutions. Seq-PR follows a very traditional way of performing PR and introduces
a quite high computational overhead. In contrast, OP-Rec is an implementation
of a fast, rather classical one-point crossover in the context of our solution rep-
resentation. It turned out that intermediate solutions that are constructed from
large parts of both parent solutions are in general less promising than when
most properties are inherited from one parent and only a smaller portion is
adopted from the second parent. Consequently, we came up with ST-Rec, which
performs the crossover only on a single tour and adopts all other tours from
a single parent. It turned out that this generally less disruptive recombination
yields significantly better results. We then also modified Seq-PR into MS-PR,
where we investigate only parts of whole paths from an initial solution to the
guiding solution that are close to the guiding solution and skip solutions in the
middle of tours. This modification was most fruitful and yields the best results.
In this way we could obtain new leading solutions and significantly improved
average results especially on larger instances with up to 500 nodes.

More generally, we strongly believe that also in other problems, the parts of
path relinking trajectories close to either the initial or the guiding solutions may
be more promising than the middle ones, and consequently, focusing the search
on those ends may yield significant improvements or speedups. With respect to
BBSS, we intend to integrate PR also in our GRASP-variant for the dynamic
BBSS [12], where user interactions during rebalancing are also considered.

References

1. DeMaio, P.: Bike-sharing: History, impacts, models of provision, and future. Public
Transportation 12(4), 41–56 (2009)

2. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C.
(eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)

3. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)

4. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Transp. and Log., 1–43 (2013)

5. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier,
F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO –
Operations Research 45(1), 37–61 (2011)

Balancing Bicycle Sharing Systems 801

6. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Ve-
hicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School
of Business, Carnegie Mellon University (2013)

7. Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B.: A PILOT/VND/GRASP
hybrid for the static balancing of public bicycle sharing systems. In: Moreno-Dı́az,
R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST. LNCS, vol. 8111, pp.
372–379. Springer, Heidelberg (2013)

8. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: PILOT, GRASP, and VNS
approaches for the static balancing of bicycle sharing systems. Journal of Global
Optimization (2013), doi:10.1007/s10898-014-0147-5

9. Di Gaspero, L., Rendl, A., Urli, T.: A hybrid ACO+CP for balancing bicycle
sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 198–212. Springer, Heidelberg (2013)

10. Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing
bike sharing systems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 758–773.
Springer, Heidelberg (2013)

11. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a dynamic public bike-
sharing system. Technical Report CIRRELT-2012-09, Montreal, Canada (2012)

12. Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing sys-
tems: An approach for the dynamic case. In: Evolutionary Computation in Com-
binatorial Optimization, 12 p. (to appear, 2014)

13. Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle
sharing system design: Formulation and solution. Computers & Industrial Engi-
neering 65(1), 77–86 (2013)

14. Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing
systems: Analysis of Vélib’. Int. Journal of Sustain. Transp. 7(1), 85–106 (2013)

15. Voß, S., Fink, A., Duin, C.: Looking ahead with the PILOT method. Annals of
Operations Research 136, 285–302 (2005)

16. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(11), 1097–1100 (1997)

17. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249.
Kluwer Academic Publishers (2003)

18. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 29(3), 653–684 (2000)

19. Ho, S.C., Grendreau, M.: Path relinking for the vehicle routing problem. Heuris-
tics 12(1-2), 55–72 (2006)

20. Rahimi-Vahed, A., Crainic, T., Gendreau, M., Rei, W.: A path relinking algorithm
for a multi-depot periodic vehicle routing problem. Heuristics 19(3), 497–524 (2013)

21. Festa, P., Resende, M.G.C.: Hybridizations of GRASP with path-relinking. In:
Talbi, E.-G. (ed.) Hybrid Metaheuristics. SCI, vol. 434, pp. 139–159. Springer,
Heidelberg (2013)

Multiobjective Selection of Input Sensors

for SVR Applied to Road Traffic Prediction

Jiri Petrlik, Otto Fucik, and Lukas Sekanina

Brno University of Technology, Faculty of Information Technology, IT4I Centre,
Czech Republic

{ipetrlik,fucik,sekanina}@fit.vutbr.cz

Abstract. Modern traffic sensors can measure various road traffic vari-
ables such as the traffic flow and average speed. However, some mea-
surements can lead to incorrect data which cannot further be used in
subsequent processing tasks such as traffic prediction or intelligent con-
trol. In this paper, we propose a method selecting a subset of input
sensors for a support vector regression (SVR) model which is used for
traffic prediction. The method is based on a multimodal and multiob-
jective NSGA-II algorithm. The multiobjective approach allowed us to
find a good trade-off between the prediction error and the number of
sensors in real-world situations when many traffic data measurements
are unavailable.

Keywords: Road traffic forecasting, multiobjective feature selection,
multiobjective genetic algorithms.

1 Introduction

Modern traffic sensors (induction loop detectors, radars and camera detectors)
can measure various road traffic variables such as the traffic flow representing the
number of vehicles passing a given road segment per time interval, the occupancy
which is a dimensionless traffic variable describing the fraction of a time interval
in which the current place is occupied by a vehicle, and the arithmetic mean speed
of vehicles passing the current place. The detectors usually aggregate these data
from intervals between 20 s and 5 min [1]. The information provided by traffic
sensors is used in modern intelligent traffic systems (ITS), for traffic system
planning and other purposes.

As the traffic sensors are not one-hundred percent reliable, the problem of
estimation of missing values was identified. Various solutions to this problem
have been proposed by means of modern soft computing methods which, in
addition to the estimation, can also be employed to predict the future values
on desired sensors. The predicted values can be utilized in ITS to control, for
example, traffic lights and variable message signs. One of the most promising
machine learning methods of short-term traffic flow forecasting is support vector
regression (SVR). Previous methods based on SVR have not considered the
selection of proper inputs (sensors). However, a proper selection of these sensors
can significantly influence the quality of prediction.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 802–811, 2014.
c© Springer International Publishing Switzerland 2014

Multiobjective Selection of Input Sensors for SVR 803

In this paper, we propose a new multiobjective optimization method based
on a genetic algorithm for selection of a subset of inputs for SVR. The proposed
solution can be used for short-term traffic forecasting or for estimation of unmea-
sured values from broken sensors. Dealing with the missing values is important,
because if the value from an input sensor is unavailable, the SVR method does
not work at all! The proposed method is constructed as multiobjective because
there is a natural trade-of between the error of prediction, the number of input
sensors for SVR model and the data unavailability rate (a time fraction in which
the SVR model can not be used because of missing data). The proposed method
is evaluated using publicly available data and compared with a single objective
optimization scenario.

The rest of the paper is organized as follows. Section 2 introduces the short-
term traffic forecasting problem and methods based on SVR which can be used to
solve this problem. Section 3 deals with multiobjective evolutionary algorithms.
In Section 4, the proposed method is described. Experimental evaluation is per-
formed in Section 5. Section 6 concludes the paper.

2 Road Traffic Forecasting Using SVR

Artificial neural networks and SVR were applied to solve the road traffic fore-
casting problem [2,4,5,6]. However, SVR becomes a more popular method in
this task. SVR is a variant of support vector machine (SVM). While SVMs are
usually used for classification problems, SVR is designed for regression and pre-
diction problems [3]. The original SVM algorithm could work only as a linear
classifier. In order to deal with non-linear problems, SVM/SVR was extended to
support nonlinear kernel functions such as polynomial kernels, Gaussian radial
basis kernels, and hyperbolic tangent kernels.

A SVR modification called Online-SVR (OL-SVR) [4] was previously used
for short-term prediction of traffic behavior. The data from seven randomly
selected highways were used to evaluate this method under typical and atypi-
cal traffic conditions. The atypical traffic conditions can appear, for example,
during holidays or traffic incidents. The method was compared with neural net-
works (multilayer perceptron), Gaussian maximum likelihood (GML) and Holt’s
exponential smoothing. For typical traffic conditions the OL-SVR model outper-
formed the multilayer preceptron and Holt’s exponential smoothing, but GML
model provided better results. For atypical traffic conditions the OL-SVR model
outperformed all other methods [4].

SVR requires to correctly set various meta-parameters such as the kernel
type and regularization parameter. For example, chaotic simulated annealing
was successfully used for parameter tuning. The results showed that SVR with
optimized meta-parameters is as good as other techniques like seasonal autore-
gressive integrated moving average (SARIMA), seasonal Holt-Winter’s model
and back-propagation neural networks [5]. In another approach, a modified ver-
sion of a particle swarm optimization (PSO) was utilized to find the optimal
settings of SVR meta-parameters. The results proved that SVR model with

804 J. Petrlik, O. Fucik, and L. Sekanina

meta-parameters set by PSO can outperform the back propagation neural net-
works and ARMA model [6].

However, all the methods assumed that all sensors work nearly all the time,
which is an unrealistic assumption. Hence the main objective of this paper is
finding a solution which will work with unreliable sensors, i.e. missing data.

3 Multiobjective Genetic Algorithms

The most important objective in the prediction tasks is minimizing the error of
prediction which is usually calculated by some error metrics such as the root
mean squared error (RMSE). However, in real-world scenarios, other objectives
have to be considered, for example, the number of data streams (sensors) has to
be minimized because of their cost, maintainability, and reliability. In the context
of this paper, the goal of the multiobjective scenario is to find the smallest subset
of input sensors for which the number of missing values is minimal and the RMSE
is minimal. In general, the multiobjective optimization problem can be defined
in the following form:

minimize: fm(x), m = 1, 2, ...,M
subject to: gj(x) ≥ 0 j = 1, 2, ..., J (1)

hk(x) = 0 k = 1, 2, ...,K

where x = (x1, x2, . . . , xn) is a vector representing the solution consisting of n
decision variables. The objective functions are denoted f1, . . . , fM . These func-
tions are to be minimized. Functions gj(x) and hk(x) define the optimization
constrains. In order to compare two solutions, Pareto-dominance relations were
established [7]: Solution x(1) dominates another solution x(2) if the following
conditions are satisfied: (1) The solution x(1) is no worse than x(2) in all objec-
tives. (2) The solution x(1) is strictly better than x(2) in at least one objective.

In the set of solutions P , the non-dominated subset of solutions P ′ contains
those solutions that are not dominated by any member of P . The non-dominated
subset of all possible solutions is called Pareto-optimal set. The goal of multiob-
jective optimization is to find solutions of the Pareto-optimal set.

In the past, many variants of multiobjective genetic algorithms were pro-
posed, for example, Vector Evaluated Genetic Algorithm (VEGA), Strength
Pareto Evolutionary Algorithm (SPEA), and non-dominated sorting genetic al-
gorithm (NSGA-II) [8]. A modification of NSGA-II algorithm called the multi-
modal NSGA-II was previously successfully used to solve the feature selection
problem – identifying a minimal subset of genes for cancer classification [9]. Mul-
timodal algorithms are utilized in the case that many different but equally good
solutions exist and it is important to find many of them.

4 Method

The proposed method can be used to either predict the traffic flow or estimate
missing values for a broken sensor. In the first phase, the SVR model is trained

Multiobjective Selection of Input Sensors for SVR 805

using historical data (train set) in the supervised learning scenario [10]. Trained
SVR model then describes mathematical dependencies among the values of the
sensor for which predictions are desired and other sensors in the area. Other his-
torical data, unseen during the learning phase (test set), are used to validate the
resulting model. The multiobjective multimodal NSGA-II algorithm is employed
to find the proper subset of input sensors for the SVR model.

Traffic data are usually available as a set of time series s1, . . . , sn; one time
series for each variable measured by a traffic sensor. In order to train the SVR
model, it is necessary to convert these data into training samples (Fig. 1). By
means of a sliding window, the current value (s(0)i) and a few (h) previous values
(s(−1)

i , . . . , s
(−h)
i) from each series are taken into a training sample. In the case

of estimating the current value of a broken sensor (Fig. 1, left), the current value
f (0) is included into the training sample as a dependent variable. In the case of
traffic forecasting in the place of sensor, the future value f (+l) is included into
the training sample (Fig. 1, right), where l represents the prediction horizon.

Fig. 1. Composition of training samples for SVR: prediction of a current value (left)
and prediction of a future value (right) of a sensor producing f

We employed the multiobjective multimodal NSGA-II operating over binary
strings. Each gene represents one input sensor, where 1 denotes including and 0
excluding of a particular sensor from the input vector fed to SVR (Fig. 2).

Fig. 2. Chromosome encoding and a corresponding phenotype (SVR model)

Three objectives are considered (all to be minimized) – the number of sen-
sors used as inputs for SVR, the rate of missing samples for prediction and the

806 J. Petrlik, O. Fucik, and L. Sekanina

prediction error. The rate of missing samples is portion of time for which the
concrete model can’t be used because of missing data. All objectives are evalu-
ated using the test set. Two well-known metrics can be used: root mean squared
error (RMSE) and relative squared error (RSE) defined as

RMSE =

√∑d
i=1(yi − y′i)2

d
RSE =

∑d
i=1(yi − y′i)

2∑d
i=1(yi − y)2

, (2)

where d represents the number of regression samples, yi is the desired value for
ith regression sample and y′i is predicted by current model. The value y denotes
the mean value predicted by a naive regression model. In the further evaluation
of our method we will use RMSE as the error metric.

5 Experimental Results

5.1 Data Sets

We used publicly available data from traffic sensors in Seattle [11]. Sensors are
placed on 23 intersections in the city and measure the traffic flow, occupancy
and average speed. The rough data are aggregated in data tables into 1 minute
intervals for a period starting on May 1st and ending on October 31st 2011.
Among other information in the data tables, each row contains the traffic flow,
occupancy and average speed for one sensor, and a flag indicating correctness
of the measured data. All our experiments are performed using the data coming
from one subarea of Seattle. Incorrect records were removed from the data tables
and the remaining data were aggregated into 5 minute intervals.

5.2 SVR Parameters Setting

Although the optimization of SVR metaparameters is not the primary objective
of this work, we tried to identify the most suitable setting of basic parameters of
SVR which employs radial basis kernels (RBF). Figure 3 shows RSE for various
settings of the regularization parameter (C = {2−5, 2−4, . . . , 214, 215}) and kernel
parameter (γ = {2−15, 2−14, . . . , 22, 23}). In the following experiments we will
utilize C = 23 and γ = 2−12 because a clear minimum of RSE can be seen for
them in Fig. 3.

5.3 Evaluation of NSGA-II

The proposed method was evaluated on places 6, 11, 19, 22, and 23 of the area
[11]. For each sensor located on these places, four SVR models were created.
The first two SVR models are trained to perform a short-term prediction in
the horizon of 15 minutes. One of them uses only the actual values measured
on the neighbor detectors in the area and the second one uses the actual values
and the values measured on these sensors in previous 15 minutes. The other two

Multiobjective Selection of Input Sensors for SVR 807

Fig. 3. The effect of setting of the regularization parameter C and kernel parameter γ
on the quality of SVR prediction

SVR models are trained to estimate the actual value on the sensor in the case
of a sensor error. And again, one of them uses only the actual values measured
on the neighbor detectors in the area and the second one uses the actual values
and the values measured on these sensors in previous 15 minutes.

The parameters of the NSGA-II genetic algorithm are as follows. The proba-
bility of uniform crossover is 70% and the probability of mutation is 5%. Each
NSGA-II run, which operates with a 40 member population and 100 generations
(4000 fitness evaluation), is repeated 20 times. The prediction error is given as
the RMSE. The evolution utilizes approximately 50% of the available data to
train SVR model, the remaining data are used to validate the evolved SVR mod-
els in the following figures and tables. Experiments were performed on an Anselm
supercomputer whose nodes are equipped with two Intel Sandy Bridge E5-2665
chips. These chips contain 8-core processors working at 2.4 GHz. One run takes
approximately 10 hours of one processor core. Our software was implemented in
the scripting language of the system R for statistical computing [12]. We used
publicly available R package e1071 for training of SVR models.

Figure 4 shows the resulting Pareto fronts from a typical NSGA-II run. Nu-
merous non-dominated compromises between RMSE and the number of input
sensors (left) and RMSE and the ratio of missing samples (right) are shown.
The results were obtained for the future traffic forecasting scenario with the
prediction horizon of 15 minutes for sensor number 3 measuring the traffic flow
on place 19. The predicted values and correct values for one example solution
are shown in Fig. 5.

Another experiment shows that the proposed method, in contrast with a com-
mon approach reported in the literature, can provide reasonable results even if
many samples are unavailable. The best results obtained from 20 independent
runs of NSGA-II are presented as box plots in Fig. 6. Resulting RMSE values
are shown for the traffic flow and occupancy (l = 3, h = 3) when less than 10%,
30%, 50%, and 70% samples are unavailable. The results are given for sensor 3
on place 11. It is important to note that, for example, a value of 70% means that

808 J. Petrlik, O. Fucik, and L. Sekanina

Fig. 4. Non-dominated compromises obtained for the future traffic forecasting scenario
with the prediction horizon of 15 minutes for sensor number 3 measuring the traffic
flow on place 19

Fig. 5. Predicted values (dashed line) and correct values (normal line) of traffic flow
for sensor 3 on place 19 on July 1st, 2011

for a given SVR model the samples from the test set incorect in 24 · 0.7 = 16.8
hours of a day, i.e. the SVR model will not work for most of the time.

In order to provide results for some other sensors, Fig. 7 summarizes the best
RMSE values obtained for places 6, 11, 19, 22, 23. For each place, 3 sensors
exhibiting the biggest mean traffic flow and occupancy were chosen. It can be
seen that RMSE increases when more samples are available in the test set. The
short term traffic prediction scenario with horizon of 15 minutes and 15 minute
history is considered in the figure.

And finally, Fig. 8 summarizes the mean RMSE over all sensors on all predic-
tion places in all considered scenarios. The columns are:

– actual – the prediction of the actual values on a broken sensor using the
actual values on sensors from other places (l = 0, h = 0)

– actual (15 min.) – see actual, but in addition, some historical data are used
(l = 0, h = 3)

Multiobjective Selection of Input Sensors for SVR 809

Fig. 6. Prediction error (RMSE) when less than 10%, 30%, 50%, and 70% samples
are unavailable from sensor 3 on place 11

Fig. 7. Prediction error (RMSE) at 5 places (each with 3 sensors) for different amount
of unavailable samples (v – traffic flow, o – occupancy)

– 15 min. future – the traffic prediction in near future with a 15 minute pre-
diction horizon (l = 3, h = 0). As the input for SVR model the actual values
on other sensors were used.

– 15 min. future, 15 min. history – see the previous one, but the historical
data are used (l = 3, h = 3).

5.4 Comparison with a Single Objective GA

In order to justify the multiobjective approach, we consider a single criterion
optimization scenario, in which RMSE is used as the only fitness function. The
single-objective GA works with 40 individuals in the population, the probability
of crossover is 70%, the probability of mutation is 5%, and 2-individual tour-
nament selection (with elitism) is chosen. Table 1 compares NSGA-II with the
single objective GA for several places and sensors (the best values from 20 in-
dependent runs are reported). It can be seen that the single objective GA tends
to provide solutions with very small RMSE values; however, it opportunistically

810 J. Petrlik, O. Fucik, and L. Sekanina

Fig. 8. Mean RMSE over all sensors on all prediction places in all considered scenarios

Table 1. The best RMSE on selected sensors and places for NSGA-II (less than 10%,
30%, 50% and 70% samples unavailable) and a single objective GA

Location Multiobjective approach Best single objective GA result
RMSE for Unavailable ratio:

Place Sensor Variable < 10% < 30% < 50% < 70% RMSE Unavailable ratio
Current values on sensor.
11 3 traffic flow 5.27 4.63 4.16 4.01 2.66 96.9
11 3 occupancy 3.81 3.5 3.31 3.31 0.31 99.4
22 4 traffic flow 5.33 4.86 4.31 4.2 1.48 99.4
Prediction horizon 15 min.
11 3 traffic flow 5.5 4.9 4.37 4.23 2.96 97.2
11 3 occupancy 4.02 3.57 3.41 3.35 0.33 99.4
22 4 traffic flow 5.51 4.89 4.56 4.35 1.84 99
Current values on sensor, 15 min. history.
11 3 traffic flow 5.2 4.58 3.91 3.34 1.15 99.4
11 3 occupancy 4.04 2.72 2.18 1.5 0.19 99.4
22 4 traffic flow 5.62 4.71 4.09 3.37 1.04 99.4
Prediction horizon 15 min., 15 min. history
11 3 traffic flow 5.62 5.05 4.48 3.82 1.17 99.4
11 3 occupancy 4.03 2.68 2.27 1.59 0.24 99.4
22 4 traffic flow 5.64 4.98 4.17 3.66 1.15 99.4

exploits the test data containing over 85% missing values (in many cases, over
99%, see the Unavailable ratio column). Such a SVR model will thus be useless in
practice, because it will not provide any prediction most of the time. Therefore,
the single optimization scenario fails in this task.

Multiobjective Selection of Input Sensors for SVR 811

6 Conclusions

In this paper, we proposed a new method for multiobjective selection of input
sensors for prediction of the traffic flow. The method is based on SVR and mul-
timodal and multiobjective NSGA-II algorithm. Contrasted to a single objective
optimization scenario, in which only the prediction error has to be minimized,
the multiobjective approach allowed us to find a good trade-of between the pre-
diction error and the number of sensors in real-world situations when many
traffic data measurements are not available. One can observe that adding the
historical data reduces the prediction error of the occupancy prediction.

Acknowledgments. This work was supported by the IT4Innovations Cen-
tre of Excellence CZ.1.05/1.1.00/02.0070, Brno University of Technology under
number FIT-S-14-2297, and Technology Agency of the Czech Republic (TACR)
project TA02030915.

References

1. Treiber, M., Kesting, A., Thiemann, C.: Traffic Flow Dynamics: Data, Models and
Simulation. Springer (2012)

2. Dia, H.: An object-oriented neural network approach to short-term traffic forecast-
ing. European Journal of Operational Research 131(2), 253–261 (2001)

3. Basak, D., Pal, S., Patranabis, D.C.: Support vector regression. Neural Information
Processing-Letters and Reviews 11(10), 203–224 (2007)

4. Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., Han, L.D.: Online-SVR for short-
term traffic flow prediction under typical and atypical traffic conditions. Expert
Systems with Applications 36(3, pt. 2), 6164–6173 (2009)

5. Hong, W.-C.: Traffic flow forecasting by seasonal svr with chaotic simulated an-
nealing algorithm. Neurocomputing 74(12-13), 2096–2107 (2011)

6. Li, M.-W., Hong, W.-C., Kang, H.-G.: Urban traffic flow forecasting using gausssvr
with cat mapping, cloud model and pso hybrid algorithm. Neurocomputing 99(1),
230–240 (2013)

7. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley In-
terscience Series in Systems and Optimization. Wiley (2001)

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

9. Deb, K., Reddy, A.R.: Reliable classification of two-class cancer data using evolu-
tionary algorithms. Biosystems 72(1-2), 111–129 (2003)

10. Marsland, S.: Machine Learning: An Algorithmic Perspective. CRC (2009)
11. University of Washington Transportation Research Center, Research Data Ex-

change Website, Seattle Data Environment, datasets: Arterial Travel Times,
www.its-rde.net (retrieved May 2013)

12. R Core Team: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria (2013)

www.its-rde.net

Evolving DPA-Resistant Boolean Functions

Stjepan Picek1,2, Lejla Batina1, and Domagoj Jakobovic2

1 Radboud University Nijmegen, Institute for Computing and Information Sciences
Postbus 9010, 6500 GL Nijmegen, The Netherlands

2 Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, Zagreb, Croatia

Abstract. Boolean functions are important primitives in cryptography.
Accordingly, there exist numerous works on the methods of constructions
of Boolean functions. However, the property specifying the resistance
of Boolean functions against Differential Power Analysis (DPA) attacks
was until now scarcely investigated and only for S-boxes. Here, we evolve
Boolean functions that have higher resistance to DPA attacks than oth-
ers published before by using two well-known evolutionary computation
methods where genetic programming shows best performance.

Keywords: Genetic Algorithms, Genetic Programming, Boolean Func-
tions, Cryptographic Properties, Transparency Order.

1 Introduction

In the area of private-key cryptography, one common division is to block ciphers
and stream ciphers [7]. In both areas the nonlinear elements often represent the
key part of the algorithm. The usual nonlinear elements are Boolean functions
and S-boxes (vectorial Boolean function, i.e. a generalization of a Boolean func-
tion). In accordance with their importance, over the years there have been nu-
merous works on constructing those nonlinear elements. Methods used in those
works can be divided into algebraic constructions [5], random search [3] and
heuristic methods [11] where each method has its drawbacks and benefits. Main
advantages of heuristic methods are in a relatively easy addition of cryptographic
properties to the evaluation functions and in results comparable with algebraic
constructions. From this point on, we will concentrate only on Boolean functions
and conduct the research accordingly. Here we note that if a Boolean function
has n inputs, then there are 22

n

Boolean functions possible. For n larger than
4 it is impractical to do an exhaustive search. Therefore, generating Boolean
functions with desirable cryptographic properties is a hard problem.

1.1 Related Work

Here we mention only a small number of papers where the goal was to find
optimal Boolean functions considering certain cryptographic properties.

Simulated annealing is used by McLaughlin and Clark to evolve Boolean
functions that have several cryptographic properties with optimal values [10].

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 812–821, 2014.
c© Springer International Publishing Switzerland 2014

Evolving DPA-Resistant Boolean Functions 813

Aguirre et al. use evolutionary multiobjective approach to evolve Boolean func-
tions with high nonlinearity [1]. Picek et al. use genetic programming and ge-
netic algorithms to find Boolean functions that have good cryptographic proper-
ties [13]. Genetic algorithms are also used by Picek et al. to evolve S-boxes with
good DPA (Differential Power Analysis) resistance for the AES case [12].

1.2 Our Contribution

To our best knowledge we are the first to consider a property that concerns
the resistance of a Boolean function to side-channel attacks - transparency or-
der [14]. Up to now, transparency order has been only vaguely investigated in
the case of S-boxes but never for Boolean functions [9]. Furthermore, we give a
comparison between some of the currently designed Boolean functions by means
of evolutionary computation techniques and a Boolean function created by an
algebraic method, used in an actual cryptographic algorithm. In our research we
use genetic programming (GP) and genetic algorithms (GAs) to evolve Boolean
functions with good transparency order values. Since there are no prior attempts
to evaluate the resistance of a Boolean function to side-channel attacks, that
makes a fair comparison more difficult.

In Section 2 we give some preliminary information on side-channel attacks
and cryptographic properties of Boolean functions. Evolution of Boolean func-
tions with GAs and GP when considering the transparency order is described
in Section 3. In Section 4 we present experimental results and discussion about
them. Finally, conclusion and future research is given in Section 5.

2 Preliminaries

In this section we present background details about cryptographic properties of
Boolean functions and introduce basic notions of side-channel analysis.

2.1 Side-Channel Analysis

Small devices on which cryptographic algorithms are implemented, such as smart
cards, have become pervasive in our lives and lots of our security and privacy-
sensitive data is stored on those constrained platforms. These devices typically
provide unintentional output channels, often called side channels releasing some
physical leakage that relates to the operations and/or even data being processed.
There are several side channels possible when considering unleashed physical
information, such as power consumption or electromagnetic emanation, and we
refer an interested reader to [8].

2.2 Boolean Functions

A Boolean function is in mathematics usually defined as a mapping from {0, 1}n
to {0, 1}.

814 S. Picek, L. Batina, and D. Jakobovic

A unique representation of a Boolean function is a truth table (TT) [2]. When
the total lexicographical order is assigned, Boolean function f with n inputs has
a truth table with 2n elements, where each element a fulfills a ∈ {0, 1}.

A Boolean function is uniquely represented by its Walsh transform which is
a real-valued function defined for all ω ∈ Fn

2 as [2]

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕x·ω
, (1)

where x · ω is the scalar product of vectors x and ω.
Here, Fn

2 is an n-dimensional vector space over Galois field with two ele-
ments [2].

The Hamming weight HW (f) of a Boolean function f is the number of ones
in its binary truth table [2].

Boolean function f with n inputs is balanced if its Hamming weight equals
2n−1, i.e. the number of ones equals the number of zeros in the truth table [2].

The nonlinearity NLf of a Boolean function is its minimum Hamming dis-
tance to any affine function and it can be calculated as [2]:

NLf =
1
2
(2n −max|Wf (ω) |) . (2)

In 2005, Prouff introduced a new cryptographic property of S-boxes: trans-
parency order, which can be defined for an (n,m)-function as follows [14].

Tf = maxβ∈Fm
2
(|m− 2HW (β)| − 1

22n − 2n∑
a∈Fn∗

2

|
∑

v ∈ F
m
2

HW (v) = 1

(−1)v·βWDaf (0,v)|). (3)

Here, WDaf represents Walsh transform of the derivative of f with respect to
a vector a ∈ Fn

2 . This property is special since it is related with the resistance of
the S-boxes to the differential power analysis attacks where higher transparency
order value means lower resistance to DPA attacks [14]. Since Boolean functions
are a special form of S-boxes with one output variable (therefore, m = 1) maxi-
mum (and the worst) possible transparency order for a Boolean function equals
1 [14].

For a Boolean function to be usable in cryptography it needs to be balanced,
with high nonlinearity, high algebraic degree and high correlation immunity. For
further information about these properties we refer readers to [2]. Furthermore, if
one aims at better resistance against side-channel analysis then the transparency
order should be as low as possible. However, Prouff showed that minimal trans-
parency equals 0 and is achieved only in case of linear or affine functions which
are not suitable for cryptography [14]. Therefore, there are two problems when
creating Boolean functions with improved transparency order. The first problem
is to determine an appropriate level of nonlinearity from a cryptographic per-
spective. The second problem is to find a Boolean function with at least that
level of nonlinearity and with transparency order as good as possible.

Evolving DPA-Resistant Boolean Functions 815

3 Evolving Boolean Functions

To capture good cryptographic properties, we need to devise an appropriate
fitness function to guide the evolution process. In our experiments, fitness func-
tions incorporate properties mentioned in Sect. 2 (balancedness, nonlinearity
and transparency order). There exist more properties, but since there is a trade-
off between some of the them we decided to go for as simple as possible fitness
function [2].

The balancedness property is the only one which is always strict as a part
of the fitness function, since unbalanced Boolean functions are not appropriate
for cryptography. The balancedness property (BAL) is used as a penalty, and
presented in pseudo-code it calculates as
if (HW (TT) > 2n

2) then
BAL = 2n−HW (TT)

HW (TT) ·X
else

BAL = HW (TT)
2n−HW (TT) ·X

end if

where we experimentally find that X = - 5 scales well for Boolean functions
with n = 8 inputs. Balancedness is rated gradually, so that a balanced function
receives the value 1, and unbalanced functions receive a negative value corre-
sponding to the level of unbalancedness in the range r, where r ∈ [−1275,−5].
Minimum value is given when the number of ones is either 0 or 2n.

A balanced Boolean function has an upper bound on nonlinearity as given
in [2]:

NLf = 2n−1 − 2
n
2 −1. (4)

This bound can be achieved only when n is even. Functions that have maximal
nonlinearity are called bent functions, but they are not appropriate for use in
cryptography since they are not balanced. Therefore, we expect to find functions
with nonlinearity below 120 for n = 8 case.

As mentioned in Section 2, the worst possible transparency order equals 1.
Based on the results fromMazumdar et al. who show 0.1 decrease in transparency
order over the AES example as 8×8 vectorial Boolean function, we conclude that
it is possible to expect the improvement in transparency order of around 1/8th
of 0.1 which amounts to 0.0125 [9]. Therefore, on the basis of the data from
above, we see that the nonlinearity is in range [0, 120] and transparency is in
range [0, 1] for a balanced Boolean functions with 8 inputs.

3.1 Fitness Functions

We present here the two settings we are interested in from the experimental
perspective. In the first setting the goal is to find as high as possible nonlinearity
value and for that nonlinearity level the best corresponding transparency order.
This is represented with the following fitness function:

fitness1 = BAL+NLf + (1− Tf). (5)

816 S. Picek, L. Batina, and D. Jakobovic

Given Equation (5), the optimization problem considers the maximization
of the fitness function. Note that, once the balancedness is achieved, the main
driving force of fitness is the nonlinearity, with values in excess of 100. Since the
nonlinearity NLf can only assume integer values, and transparency Tf assumes
values in [0, 1], it is clear that transparency is used as a secondary objective, to be
able to perform selection of different solutions with the same level of nonlinearity.

Since there are three different properties to optimize, one possible approach
would be the use of multiobjective optimization. We do not use that approach
for several reasons; first of all, the balancedness is an absolute requirement and
should not be included as an independent measure. On the other hand, we have
to differentiate the unbalanced solutions in the evolution and allow them to
improve, so a part of the fitness function (BAL) is devised to produce the greatest
penalty. The second most important property is nonlinearity, for which we want
it to be as high as possible. Since we do not know in advance what nonlinearity is
achievable, the algorithm should be driven to find the maximum value, regardless
of the other properties. Only when this is evolved, we need to find solutions
with the transparency order as good as possible. Since the nonlinearity can only
assume a fixed number of levels, the search can be adjusted to suit those values,
which is investigated in the following setting.

In the second setting the goal is to find low transparency order values for a
certain nonlinearity level. Here we reiterate that the lowest possible transparency
order is achieved for linear and affine functions, but since they are not appropri-
ate for the use in cryptography we do not consider them as a viable choice [2].
Because it is difficult to say what would be an appropriate nonlinearity value,
we decided to set several levels as a constraint. Therefore, we look for the best
transparency order with a target minimum nonlinearity level, NLt. We set 4
levels of nonlinearity, at the values of 86, 92, 98 and 104. Fitness function for
the second set of experiments is defined as:

fitness2 = BAL+ (1 − Tf)− pos (2× (NLt −NLf)) , (6)

where the function pos(x) returns x if x > 0 and zero otherwise.

3.2 Algorithms, Representations and Parameters

As previously mentioned there are several ways to uniquely represent Boolean
functions. For GA we decided to represent the individuals as strings of bits where
values are truth tables of functions, and GP individuals as trees of Boolean
primitives which are then evaluated according to the truth table they produce.
We use two selection mechanisms, namely steady-state with tournament operator
(SST) and generational with roulette-wheel (RW) selection. In the first one, 3
solutions are selected at random and the worst among them is replaced by the
offspring of the remaining two. The offspring is mutated with a given probability
(0.3).

The RW selection uses the fitness proportional roulette-wheel operator applied
to thewholepopulation to select thenewgenerationof survivors, towhich crossover

Evolving DPA-Resistant Boolean Functions 817

and mutation are then applied; in this scenario, the offspring replaces the parents.
The same two selections are applied both toGAandGP.All the employedmethods
are a part of the Evolutionary Computation Framework (ECF) [6].

In the experiments we initialize population with random individuals where
we do not require that the solutions are balanced. That is opposite from what
is usually done [4, 11], but we expect that the evolution process would benefit
from that additional diversity.

In an effort to find the differences in the performance of the algorithms, we
also compare the best algorithms with the balanced random search algorithm.
Balanced random search uses random sampling of solutions, but only consider-
ing balanced Boolean function as a solution candidate, as opposed to a purely
random choice of solutions. Stopping criterion for the random search algorithm
is 200 000 evaluations.

GA Variations. For GA representation, mutation is selected uniformly at
random between simple mutation, where a single bit is inverted, and mixed
mutation, which randomly shuffles the bits in a randomly selected subset. Addi-
tionally, we use a balanced mutation that preserves balancedness of the solution
by changing 2 bits of the individual if it is already balanced.

For all mutation operators we experiment also with an adaptive mutation
rate. In the beginning, the mutation is given as a fixed probability (0.3), but as
the evolution starts to stagnate (i.e. no improvement in the best solution), the
mutation probability raises. The probability is increased linearly with the num-
ber of generations without improvement, until it reaches a predefined maximum
level (0.8) after a given maximum number of generations without improvement
has passed. If a new best solution is found, the mutation rate is reset to initial
value. The crossover operators used in GA are one-point and uniform crossover,
performed at random for each new offspring.

GP Variations. Of the modifications in the previous section, with GP we
employ only the adaptive mutation rate, in the same manner as for the GA. The
function set for genetic programming in all the experiments is OR, NOT, XOR,
AND, IF, and terminals correspond to 8 Boolean variables. Genetic programming
has maximum tree depth of 11. For the Boolean functions we are interested only
in XOR and AND operators, but it is quite easy to transform the function from
one notation to the other.

Common Parameters. Parameters that are in common for every round of the
experiments are the following: the size of Boolean function is 8 (the size of the
truth table is 256) and the population size is 500. In the roulette-wheel selec-
tion the crossover probability is 0.5 and the ratio of the probability of survival
of the best and the worst individual is scaled to 10. Mutation probability for
non-adaptive variations is set to 0.3 per individual. The parameters above are
the result of a combination of a small number of preliminary experiments and
our experience with similar problems; no thorough parameter tuning has been
performed.

818 S. Picek, L. Batina, and D. Jakobovic

Unlike in the traditional optimization case, our main goal is not to compare
different approaches we implement, but rather to find the best possible solutions.
In that case, we do not limit the algorithms with a fixed number of evaluations
(and compare the averages), but allow the algorithms to run as long as something
useful might occur. That is why the stopping criterion is set to a given number of
generations without improvement, rather than a fixed maximum number, which
is a reasonable criterion for researchers trying to find an adequate solution.

Further information regarding experimental setup is listed when needed.

4 Results and Discussion

When presenting the best achieved results, we also compare them with some of
the existing results from the literature. For previously published Boolean func-
tions, we use the following notation: for the Boolean function from the Burnett
et al. paper we use the name Function 1 [4], from the work by McLaughlin and
Clark we abbreviate Boolean function with Function 2 [10]. For the Boolean
function from the work by Picek et al. we abbreviate it with Function 3 [13],
and finally, for Rakaposhi Boolean function we abbreviate it with Rakaposhi [5].

Here we emphasize that Boolean function in Rakaposhi cipher is obtained
through algebraic construction, more specifically the finite field inversionmethod.
Rakaposhi stream cipher is an example of a modern, state-of-the-art stream ci-
pher that uses Boolean function as a nonlinear element. The algorithm names
presented in tables are abbreviated in the following way: after the abbreviation
of the algorithm we write in the subscript the distinguishing properties of the al-
gorithm: SST represents steady state tournament selection, RW roulette wheel
selection, balanced means balanced mutation operator and variable represents
variable mutation rate.

With the objective to find the best individuals, the stopping criterion is set to
50 generations without improvement for all algorithm variations and the number
of independent runs is 400. In Table 1 we give the best result for each of the
experiments conducted, as well as for random search algorithm and Boolean
functions from related works. Here, evolutionary algorithms use fitness function
as defined by Equation (5). All solutions are balanced so we did not specifically
write that property.

Table 1. Best Boolean functions, fitness1

Algorithm NLf Tf Algorithm NLf Tf

GPSST 116 0.962 GPSST,variable 112 0.919
GPRW,variable 112 0.965 GASST 112 0.934
GASST,balanced,variable 112 0.931 GASST,balanced 112 0.938
GARW,balanced 112 0.935 Random search 110 0.934
Function 1 100 0.927 Function 2 116 0.969
Function 3 116 0.976 Rakaposhi 112 0.946

Evolving DPA-Resistant Boolean Functions 819

Based on the related work, we choose nonlinearity levels of 112 and 116 as
the most interesting ones. The best (lowest) transparency results for those non-
linearity levels are in bold style.

When optimizing the second fitness function (6), we concentrate on 4 pre-
defined nonlinearity levels. Here we do not compare this results with literature
since previous works did not investigate transparency property (and therefore
those works can have better nonlinearity in general, but when looking at both of
those properties related works have worse results). In this case we are interested
in the lowest transparency value that can be obtained with a given minimum
nonlinearity. For fitness2 equation the best results are presented in Table 2.

Table 2. Best Boolean functions, fitness2

Algorithm 86 92 98 104

GPSST,variable 0.774 0.815 0.866 0.898

GASST,balanced,variable 0.78 0.817 0.822 0.866

Random Boolean 0.887 0.894 0.905 0.915

The space of possible Boolean functions is huge and therefore it is impractical
to do an exhaustive search for Boolean functions with the number of inputs
relevant in cryptography. However, the space of Boolean functions with “good”
cryptographic properties is also large. In such a large space it is difficult to find
Boolean functions with excellent cryptographic properties. This is an obvious
example of the convergence of the algorithm towards the local optima. In an
attempt to search beyond those local optima we employ different algorithms
and modifications.

In the experiments we use two different selection methods where we expected
that the roulette-wheel selection should be the best one, because preliminary re-
sults (also the results from other researchers) showed that all algorithms display
very quick convergence. However, algorithms with the steady-state tournament
selection consistently found the best solutions among all the algorithms.

A simple fitness function, that includes only a subset of the desired properties,
has the advantage that there are no conflicts between variables, and some high
quality properties inherently mean that other properties will also be good. In our
previous experiments, preliminary results show that it is not trivial to combine
many properties in a single fitness value because of varying magnitudes (scaling
issues) of different property values.

Statistical analysis (not presented in the paper) shows that all GA varia-
tions give similar results with smaller standard deviation than in GP variations.
We also conducted pairwise comparison between GP algorithm with steady-
state tournament selection and all other algorithms where the results show there
are no statistically significant differences. However, genetic programming with
steady-state tournament produced the single best result when considering the
nonlinearity value. For a nonlinearity level 112 the best result was achieved with

820 S. Picek, L. Batina, and D. Jakobovic

GPSST,variable algorithm. In this case we can also see that this Boolean function
has better transparency order value than the Rakaposhi Boolean function.

As evident form the results, we found Boolean functions with better trans-
parency order values but the improvements are rather small. One could ask if
such small improvements make a difference. We consider this to be true, since
we did not expect obtaining a big difference if the analogy with S-boxes (where
0.1 is a significant improvement) is valid. Furthermore, side-channel analysis of
stream ciphers is more difficult and therefore even small improvements are rele-
vant. Naturally, further investigation of the relevance of the transparency order
property is needed in order to put these results in proper perspective. Our new
Boolean functions present viable choice for future implementations since they
are offering improvement in the properties while not bringing additional area or
speed drawbacks.

5 Conclusions and Future Work

Finding Boolean functions with improved DPA resistance is a difficult problem,
not only because of the huge search space, but also due to the lack of previous
work. As far as we know, we are the first to experiment with the transparency
order property for Boolean functions and additionally to use evolutionary al-
gorithms to find suitable functions. Our experiments showed that it is possible
to find Boolean functions with better transparency order than that in reference
work. From cryptographic perspective, genetic programming achieve the highest
nonlinearity level with an improved transparency order value. However, from the
evolutionary point of view, the results show no statistically significant difference
with respect to the genetic algorithm. Due to the lack of prior work on this topic,
results obtained here should be also regarded as a baseline for future research.

As future research directions we plan to experiment with other algorithms like
Cartesian GP or Estimation of Distribution. Initial experiments give promising
results.

Acknowledgments. This work was supported in part by the Technology Foun-
dation STW (project 12624 - SIDES), The Netherlands Organization for Scien-
tific Research NWO (project ProFIL 628.001.007) and the ICT COST action
IC1204 TRUDEVICE.

References

1. Aguirre, H., Okazaki, H., Fuwa, Y.: An evolutionary multiobjective approach to
design highly non-linear boolean functions. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2007, pp. 749–756 (2007)

2. Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven (2006)

3. Burnett, L.: Heuristic Optimization of Boolean Functions and Substitution Boxes
for Cryptography. PhD thesis, Faculty of Information Technology, Queensland Uni-
versity of Technology (2005)

Evolving DPA-Resistant Boolean Functions 821

4. Burnett, L., Millan, W., Dawson, E., Clark, A.: Simpler methods for generating
better boolean functions with good cryptographic properties. Australasian Journal
of Combinatorics 29, 231–247 (2004)

5. Cid, C., Kiyomoto, S., Kurihara, J.: The RAKAPOSHI Stream Cipher. In: Qing, S.,
Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 32–46. Springer,
Heidelberg (2009)

6. Jakobovic, D., et al.: Evolutionary computation framework (December 2013),
http://gp.zemris.fer.hr/ecf/

7. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC, Boca Raton (2008)

8. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer-Verlag New York, Inc.,
Secaucus (2007)

9. Mazumdar, B., Mukhopadhay, D., Sengupta, I.: Constrained Search for a Class
of Good Bijective S-Boxes with Improved DPA Resistivity. IEEE Transactions on
Information Forensics and Security PP(99), 1 (2013)

10. McLaughlin, J., Clark, J.A.: Evolving balanced boolean functions with opti-
mal resistance to algebraic and fast algebraic attacks, maximal algebraic degree,
and very high nonlinearity. Cryptology ePrint Archive, Report 2013/011 (2013),
http://eprint.iacr.org/

11. Millan, W.L., Clark, A.J., Dawson, E.: Heuristic design of cryptographically strong
balanced boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 489–499. Springer, Heidelberg (1998)

12. Picek, S., Ege, B., Batina, L., Jakobovic, D., Chmielewski, L., Golub, M.: On Using
Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box.
In: Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 2014, pp. 13–18. ACM, New York (2014)

13. Picek, S., Jakobovic, D., Golub, M.: Evolving Cryptographically Sound Boolean
Functions. In: GECCO (Companion), pp. 191–192 (2013)

14. Prouff, E.: DPA Attacks and S-Boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

http://gp.zemris.fer.hr/ecf/
http://eprint.iacr.org/

Combining Evolutionary Computation

and Algebraic Constructions to Find
Cryptography-Relevant Boolean Functions

Stjepan Picek1,2, Elena Marchiori1, Lejla Batina1, and Domagoj Jakobovic2

1 Radboud University Nijmegen, Institute for Computing and Information Sciences
Postbus 9010, 6500 GL Nijmegen, The Netherlands

2 Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, Zagreb, Croatia

Abstract. Boolean functions play a central role in security applications
because they constitute one of the basic primitives for modern crypto-
graphic services. In the last decades, research on Boolean functions has
been boosted due to the importance of security in many diverse public
systems relying on such technology. A main focus is to find Boolean func-
tions with specific properties. An open problem in this context is to find
a balanced Boolean function with an 8-bit input and nonlinearity 118.
Theoretically, such a function has been shown to exist, but it has not been
found yet. In this work we focus on specific classes of Boolean functions,
and analyze the landscape of results obtained by integrating algebraic
and evolutionary computation (EC) based approaches. Results indicate
that combinations of these approaches give better results although not
reaching 118 nonlinearity.

Keywords: Boolean Functions, Nonlinearity, Evolutionary Computa-
tion, Bent Functions, Cryptographic Properties.

1 Introduction

Cryptography is crucial in most security applications by helping cryptographic
services to achieve secure communication through unsecured channels. The main
goal is to secure messages so that only the relevant parties can read them. A
message (plaintext) is transformed into an incomprehensible form (ciphertext)
by a process called encryption, while an encrypted message is mapped to its
original form through a process called decryption. Encryption and decryption
are performed using symmetric key algorithms. Boolean functions constitute one
of the basic primitives for symmetric key algorithms, most notably in stream ci-
phers [1]. Stream ciphers, based on an input key, generate a sequence of random
bits which is used as keystream that will never be used again during the run
of the cipher. Boolean functions for cryptography must satisfy various possi-
bly contrasting properties, such as being balanced, highly nonlinear, correlation
immune, t-resilient. Therefore, it is typically hard if not impossible to find an
optimal function [1, 2]. Finding Boolean functions for cryptography is clearly a

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 822–831, 2014.
c© Springer International Publishing Switzerland 2014

Combining Evolutionary Computation and Algebraic Constructions 823

challenging problem, because there are 22
n

possible Boolean functions of n in-
puts (for instance, when n equals 8 which is usual size in today cryptography,
this gives 2256 candidate solutions). There are three main approaches to gener-
ate Boolean functions for cryptography: algebraic construction, random genera-
tion and heuristic construction. Algebraic construction employs well established
mathematical procedures that give very good results [3]. Random generation
of Boolean functions has its advantages, most prominent one being easy and
fast construction, but the resulting Boolean functions usually have suboptimal
properties for cryptography [4]. Heuristic methods provide a relatively easy and
efficient way of producing large number of Boolean functions with very good
cryptographic properties [2]. In particular, Evolutionary computation (EC) has
been successfully applied to evolve Boolean functions for cryptography as listed
below. So far, researchers on Boolean function generation for cryptography have
focused on the optimization of some cryptographic properties. In this work we
focus on specific classes of Boolean functions, and analyze the “landscape” of
results generated using and integrating algebraic and EC based approaches, in
an effort to gain deeper insights on their individual and joint performance.

Specifically we focus on an open problem in cryptography: find a balanced
8-bit Boolean function with nonlinearity 118. Although theoretically it has been
proved that such a function exists, no one has succeeded in finding it. Our goal
is to investigate properties of EC methods based on the integration of the above
mentioned approaches, in particular how difficult is to find Boolean functions
with certain set of properties (for instance bent Boolean functions of a specific
size) and what is the influence of a specific initial population (consisting of
previously evolved bent Boolean functions).

1.1 Our Contributions

Besides evolving balanced function with 118 nonlinearity, our experiments in-
vestigate hardness of evolving bent Boolean functions and functions that can be
used in algebraic constructions. As far as the authors know, we are the first to
investigate the evolution of 7-bit functions and to give insights about the hard-
ness of that problem and distribution of resulting Boolean functions. Our hybrid
methods prove to be much more successful in evolving highly nonlinear balanced
functions than simple evolution methods.

The remainder of this paper is organized as follows: after a short overview of
related works, in Section 2 we describe the problem and relevant properties of
Boolean functions. In Section 3 the considered methods are described, and in
Section 4 experimental setup and results are given. Finally, Section 5 concludes
with some suggestions for future work.

1.2 Related Work

We distinguish two main categories of methods for generating Boolean functions
with properties of interest: those dealing with algebraic constructions based on

824 S. Picek et al.

mathematical results and those dealing with heuristic methods. For each of these
categories we give only a short overview of work related to our investigation.

Algebraic Constructions. Sarkar and Maitra propose new construction
methods which were used to obtain functions that were not known earlier [5].
In the same year, those authors also present a theorem that states stricter up-
per bound on nonlinearity of resilient Boolean functions [6]. Zheng and Zhang
improve upper bound of the nonlinearity of high order correlation immune func-
tions [7]. Pasalic et al [8] construct several functions that were not known before
that have upper bound on nonlinearity. Those functions were stipulated to exist
due to the paper of Sarkar and Maitra [6].

Evolutionary Computation. Aguirre et al. use evolutionary multiobjective
approach to evolve Boolean functions that have high nonlinearity [9]. Clark et
al. use simulated annealing to find Boolean functions that satisfy several prop-
erties desired for cryptographic usage [10]. Burnett et al. create two heuristic
methods to evolve Boolean functions for usage in cryptography. Picek et al.
use genetic programming and genetic algorithms to find Boolean functions with
cryptographic properties [11].

2 Preliminaries

In this section we describe relevant cryptographic properties of Boolean functions
and theoretical results that inspired our investigation. In the sequel a ·b denotes
the inner product of vectors a and b defined as ⊕n

i=1aibi, where “ ⊕ ” denotes
addition modulo 2.

2.1 Representations and Properties

A Boolean function f on Fn
2 can be uniquely represented by a truth table (TT),

which is a vector (f(0), ..., f(1)) that contains the function values of f , ordered
lexicographically [1].

Walsh transform is a second type of unique representation of a Boolean func-
tion. It measures the similarity between f(x) and the linear function a · x [1].
Walsh transform of a Boolean functions f equals

Wf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x. (1)

Third unique representation of an Boolean function f on Fn
2 is by means of

a polynomial in F2 [x0, ..., xn−1] /(x2
0 − x0, ..., x

2
n−1 − xn−1). This form is called

algebraic normal form (ANF) [1]. Algebraic normal form is the multivariate
polynomial P defined in [1] as:

P (x) = ⊕a∈F
n
2
h(a) · xa. (2)

Next, we present some of the properties of Boolean functions that play an
important role in security algorithms: nonlinearity, bent, correlation immunity,
balancedness, t-resiliency and algebraic degree.

Combining Evolutionary Computation and Algebraic Constructions 825

The nonlinearity NLf of a Boolean function f can be expressed in terms of
the Walsh coefficients as [1]

NLf = 2n−1 − 1
2
maxa∈Fn

2
|Wf (a)|. (3)

Boolean function f is bent if it has maximum nonlinearity equal to [1]

NLf = 2n−1 − 2
n
2 −1. (4)

Boolean function f is correlation immune of order t - CI(t) if the output
of the function is statistically independent of the combination of any t of its
inputs [1]. Boolean function f is t-resilient if it is balanced and with correlation
immunity of degree t [1].

A Boolean function is balanced (BAL) if its Hamming weight is equal to
2n−1 [1].

From this point on, when we talk about Boolean functions we consider them
t-resilient (i.e. balanced) if not specified otherwise.

Algebraic degree deg(f) of a Boolean function f, is defined as the number
of variables in the largest product term of the functions’ algebraic normal form
(ANF) having a non-zero coefficient [2].

2.2 Theoretical Background

Sarkar and Maitra showed that if a t-resilient Boolean function f has an even
number of inputs n and t+ 1 ≤ n

2 − 1 then its nonlinearity NLf is bounded as
follows [6]:

NLf ≤ 2n−1 − 2
n
2 −1 − 2t+1. (5)

From the formula it follows that the maximum nonlinearity for n = 8 and
t = 0 equals 118.

In that same paper the authors gave a second theorem that inspired one of
our experiments.

Suppose f is a Boolean function with 8 inputs, resilience 0 and nonlinearity
118. Then degree deg of f must be 7 and it is possible to write

f = (1⊕X8)f1 ⊕X8f2 (6)

where f1 and f2 are Boolean functions with 7 inputs, nonlinearity 55 and alge-
braic degree 7 [6].

An interesting implication of this result is that if it is not possible to construct
an 8-bit Boolean function with nonlinearity 118, degree 7 and resilience 0 by
concatenating two 7 inputs Boolean functions with nonlinearity 55 and degree 7
then the maximum nonlinearity of 8 inputs Boolean function is 116 [6].

3 Approach and Methods

Recall that we focus on the open problem of finding an 8-bit Boolean function
with nonlinearity 118. We adopt a methodology consisting of two main phases.

826 S. Picek et al.

In the first phase, we consider EC methods and their hybridization with al-
gebraic constructions.

– Simple evolution. To analyze the effectiveness of EC methods we apply
them directly to evolve 8-bit Boolean function with nonlinearity 118.

– Bent functions. Because bent functions have high maximum nonlinearity
(see Equation (4)), in this setting we search for 8-bit bent functions. We
do this in two ways: (a) using EC methods to directly evolve 8-bit bent
functions, and (b) using EC methods to evolve 6-bit bent Boolean func-
tions and use them to construct 8-bit bent functions by means of algebraic
technique [12]. Furthermore, we use the resulting bent functions to seed the
initial population of a EC algorithm for finding an 8-bit Boolean function
with nonlinearity 118. This allows us to can gain insight in the influence of
the bent functions as initial population.

– Algebraic concatenation. In this setting we evolve 7-bit functions with
nonlinearity 55 and degree 7. Then we combine and concatenate those func-
tions using Equation (6). Note that 7-bit functions are not balanced.

In the second phase, we select the best performing algorithm and investigate
algorithmic hybridizations based on combinations of the algorithms and bent
Boolean functions.

The above methodology allows us to address the following questions related
to the effectiveness of EC for evolving Boolean functions.

– How difficult is to find bent Boolean functions of various sizes?
– What is the influence of the initial population in the evolution of balanced
Boolean functions?

– How hard is to find Boolean functions with certain set of properties that are
useful in further search process?

We describe below the techniques employed in our investigation.

3.1 Algorithms, Representations, and Fitness Functions

We consider three EC methods, namely genetic algorithms (GAs), genetic pro-
gramming (GP) and genetic annealing (GAn). All the employed methods are a
part of the Evolutionary Computation Framework (ECF) [13].

Genetic Algorithm. We use a simple genetic algorithm with 3-tournament
selection [14], where in each iteration 3 solutions are selected randomly, and
the worst of those is replaced with the crossover offspring of the remaining two.
Mutation is performed on the offspring, using randomly simple mutation, where
a single bit is inverted, and mixed mutation, which randomly shuffles the bits in
a randomly selected subset. The crossover operators are one-point and uniform
crossover, performed at random for each new offspring.

Genetic Programming. The function set for genetic programming used in
all experiments consists of Boolean functions OR, XOR, AND (taking two argu-
ments), NOT (one argument) and IF (which takes three arguments and returns

Combining Evolutionary Computation and Algebraic Constructions 827

the second argument if the first one evaluates to “true”, and the third one oth-
erwise). The terminals correspond to n Boolean variables. Genetic programming
has maximum tree depth of 11. Boolean functions can be expressed only in XOR
and AND operators, but it is quite easy to transform from one representation to
another. Genetic programming uses the same selection as the GA, with simple
subtree crossover and subtree mutation.

Genetic Annealing. Genetic annealing is an evolutionary extension of the
Simulated Annealing algorithm (SA) [15]. The SA operates on a single potential
solution, which is locally changed in each iteration and its new fitness value
is recorded. The new solution is accepted if it is an improvement, but a worse
solution can also be accepted provided a certain level of global energy bank, which
depletes with worse and increases with better solutions. The GAn is a simple
extension in which the whole process is performed on a population of individuals.

Local Search Algorithm. For local search algorithm we chose strong hill
climbing (HC) algorithm where all possible combinations of changes of 2 com-
plementary bits are investigated. This process is repeated until there is no more
improvement for every individual in population. Hill climbing algorithm uses
truth table representation which means when using GP, individuals need to be
transformed from tree representation to truth table representation. Additionally,
we change 2 bits since initial solutions are balanced and we need to preserve it
by changing one bit from 0 to 1, and other bit from 1 to 0.

Representations. As mentioned in Section 2, there are several ways to
uniquely represent Boolean functions. For genetic algorithms and genetic an-
nealing we decided to represent the individuals as strings of bits where values
are truth tables of functions; for genetic programming, individuals are trees of
Boolean primitives which are then evaluated according to the truth table they
produce.

Fitness Functions. To evolve bent functions of different input sizes we con-
sider the maximization of the following simple fitness function.

fitness = NLf . (7)

When searching for 7-bit functions with nonlinearity 55 and degree 7 we con-
sider the maximization of the fitness function:

fitness = NLf + deg. (8)

When searching for 8-bit balanced function with as good as possible nonlin-
earity we try to maximize the following objective function:

fitness = BAL+NLf . (9)

When calculating balancedness property, we assign it to a value 1 when the
function is balanced, otherwise we assign it the difference up to the balancedness
multiplied with a constant, which was set to 5 after a short parameter tuning
phase.

828 S. Picek et al.

4 Experimental Setup and Results

Parameters that are common for every algorithm are the following: the size of
Boolean function is 8 (the size of the truth table is 256) and the population size
is 500. Mutation probability is set to 0.3 per individual. The number of inde-
pendent runs for each experiment is 2000; we are aware that 30-50 is sufficient
for statistical purposes, but our main concern is not a statistical comparison of
algorithms, but finding the best possible solutions. Furthermore, we use the rate
of successful runs (finding the optimum), rather than the average fitness, as a
metric for algorithm comparison.

4.1 Results

Due to the lack of space we give only a short overview of results from phase 1. We
mention that some of those results deserve additional experiments on its own;
EC methods are not often used to generate bent functions and there is a clear
lack of literature of how difficult it is or what methods perform the best. Further-
more, we are not aware that anyone before tried to evolve 7-bit functions with
nonlinearity 55 and degree 7. In Table 1 we give results for phase 1 experiments.
Column SUCCESS represents the percentage of runs that the algorithm reaches
maximum value and column NLf represents maximum nonlinearity reached by
the algorithm. Naturally, we tested a random search method on all these prob-
lems but got no SUCCESS results. Based on this results we selected GP as the
algorithm of choice for phase 2 as we can see that GP has best results when
looking for functions with 8 inputs.

From the results for Equation (9) we see that evolving functions with non-
linearity 55 and degree 7 is easy. However, our experiments show that the level
of unbalancedness differ significantly as shown in Figure 1. Therefore, it is not

Table 1. Phase 1 experiments

Algorithm, fitness, size NLf Min Max Mean Stdev SUCCESS(%)

GA, (8), 6-bit 28 26 28 26.141 0.512 7.1
GAn, (8), 6-bit 28 28 28 28 0 100
GP, (8), 6-bit 28 26 28 27.382 0.924 69.1

GA, (8), 8-bit 116 112 116 113.157 0.975 0
GAn, (8), 8-bit 114 112 114 113.9 0.1 0
GP, (8), 8-bit 120 112 120 114.5 2.318 13.8

GA, (9), 7-bit 55 60 62 61.97 0.22 98
GAn, (9), 7-bit 55 60 62 61.63 0.77 81.6
GP, (9), 7-bit 55 60 62 60.06 0.33 3

GA, (10), 8-bit 114 113 115 113.524 0.879 52.4
GAn, (10), 8-bit 114 113 115 113.03 0.25 3.2
GP, (10), 8-bit 116 109 117 112.23 1.01 0.5
HC, (10), 8-bit 112 103 113 108.02 1.43 0.5

Combining Evolutionary Computation and Algebraic Constructions 829

easy to find two unbalanced 7-bit functions that produce a balanced 8-bit func-
tion. For example, if we find a function with desired properties that has 69 zeros
and 59 ones, then the other function needs to have 59 zeros and 69 ones (this
function should not be affine equivalent to the first one since then it will have
nonlinearity of 110) to produce a balanced 8-bit function. Since there were no
prior experiments on this topic, these levels of unbalancedness present signifi-
cant guideline for future work. With the concatenation method we obtained a
balanced function with maximum nonlinearity of 110.

Fig. 1. Distribution of 7-bit unbalanced Boolean functions

In the second phase we use the best algorithm (GP) from the first phase when
looking on the ways to further improve solutions. In this phase we concentrate
only on Eq. (10) and function size 8. As the first experiment (I) in the second
phase we run GP algorithm that has initial population made from bent functions
from phase 1. We do not distinguish here between bent functions with 8-bit size
that are directly evolved from Boolean functions with 6-bit size that are evolved
and then algebraically expanded to 8-bit size. The second experiment (II) uses
results from the first experiment and performs the hill climbing algorithm. In the
last, third experiment (III) we run GA on the results from the first experiment.
In Table 2 we give results for hybridizations of algorithms where we can see that
these approaches improve algorithm behavior and percentage of the obtained
maximum values. The approach that combines solutions from GP with bent
functions as initial population and GA gives the best result.

EC methods we investigated did not succeed in finding a 8-bit balanced
Boolean function with nonlinearity 118. So this problem remains open. Results

Table 2. Phase 2 - algorithm combinations

Experiment NLf Min Max Mean Stdev SUCCESS(%)

I (GP+seed) 116 113 117 113.55 1.379 13.8
II (GP+seed+HC) 116 113 117 113.8 0.91 19.6
III (GP+seed+GA) 116 113 117 115.32 0.43 67.1

830 S. Picek et al.

indicate that GP performs best. Not only did it find solutions with highest non-
linearity but it also resulted in final population with greatest diversity. Bent
functions are not suitable for the use in cryptography and therefore not usu-
ally defined as the goal of evolutionary search. Previous works that evolved
bent Boolean functions include [4,16]. Our results show that evolving 6-bit bent
Boolean functions is relatively easy because each of the algorithms obtained nu-
merous global optima. Here, GA behaves interestingly since it always reached
the optimum although many of the obtained solutions are the same. When con-
sidering 8-bit bent functions, only GP is capable to find them.

When looking at 7-bit unbalanced functions and Eq. (9), we see that GA
performs best. However, it is not possible to concatenate every of those solutions
since the resulting functions must be balanced. Prior to this research, as far as
the authors know, there were no reports on the level of unbalancedness these
functions can reach or on their distribution. From this perspective, this research
provides new insights to guide future work.

When setting bent Boolean functions as the initial population for GP, we see
that we are still not able to reach nonlinearity 118 but the percentage of the pop-
ulation with the best currently known nonlinearity (116) significantly increases.
With a larger population a larger number of unique solutions is obtained. We
recommend this procedure for researchers interested to use functions that were
not previously known with nonlinearity 116.

The rationale behind HC algorithm was not only to show the feasibility of
improving solutions previously obtained with GP, but also to confirm that there
is no 118 nonlinearity in the “proximity” of solutions with nonlinearity 116. We
see that average value of the final population slightly improved. When repeating
the same experiment, but using GA instead of HC we see that this setting was
also unable to find 118 nonlinearity function. However, the provided summary
statistics show that this setting performs much better. Therefore, it seems ben-
eficial to combine multiple EC algorithms where the initial population for one
algorithm is the final population of other EC algorithm.

5 Conclusions and Future Work

In this research we had two goals; one was to find balanced Boolean function
with 118 nonlinearity and the second one was to investigate the strength of EC
methods hybridized with algebraic techniques for this task. Although we did not
find an 8-bit function with nonlinearity 118 our results provide new insights in
the area of evolving Boolean functions. As future work we are interested in fitness
functions where additional variable is Hamming distance between the solutions.

Acknowledgments. This work was supported in part by the Technology Foun-
dation STW (project 12624 - SIDES), The Netherlands Organization for Scien-
tific Research NWO (project ProFIL 628.001.007) and the ICT COST action
IC1204 TRUDEVICE.

Combining Evolutionary Computation and Algebraic Constructions 831

References

1. Braeken, A.: Cryptographic Properties of Boolean Functions and S-Boxes. PhD
thesis, Katholieke Universiteit Leuven (2006)

2. Burnett, L.D.: Heuristic Optimization of Boolean Functions and Substitution
Boxes for Cryptography. PhD thesis, Queensland University of Technology (2005)

3. Cid, C., Kiyomoto, S., Kurihara, J.: The RAKAPOSHI Stream Cipher. In: Qing, S.,
Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 32–46. Springer,
Heidelberg (2009)

4. Millan, W., Fuller, J., Dawson, E.: New concepts in evolutionary search for boolean
functions in cryptology. Computational Intelligence 20(3), 463–474 (2004)

5. Sarkar, P., Maitra, S.: Construction of nonlinear boolean functions with impor-
tant cryptographic properties. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 485–506. Springer, Heidelberg (2000)

6. Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient boolean
functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532.
Springer, Heidelberg (2000)

7. Zheng, Y., Zhang, X.-M.: Improved upper bound on the nonlinearity of high or-
der correlation immune functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000.
LNCS, vol. 2012, pp. 262–274. Springer, Heidelberg (2001)

8. Pasalic, E., Maitra, S., Johansson, T., Sarkar, P.: New constructions of resilient
and correlation immune boolean functions achieving upper bound on nonlinearity.
Electronic Notes in Discrete Mathematics 6, 158–167 (2001)

9. Aguirre, H., Okazaki, H., Fuwa, Y.: An Evolutionary Multiobjective Approach to
Design Highly Non-linear Boolean Functions. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO 2007, pp. 749–756 (2007)

10. Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean
Functions Satisfying Multiple Criteria. In: Menezes, A., Sarkar, P. (eds.)
INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002)

11. Picek, S., Jakobovic, D., Golub, M.: Evolving Cryptographically Sound Boolean
Functions. In: GECCO (Companion), pp. 191–192 (2013)

12. Adams, C., Tavares, S.: Generating and counting binary bent sequences. IEEE
Transactions on Information Theory 36(5), 1170–1173 (1990)

13. Jakobovic, D., et al.: Evolutionary computation framework (December 2013),
http://gp.zemris.fer.hr/ecf/

14. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Heidelberg (2003)

15. Yao, X.: Optimization by genetic annealing. In: Proc. of 2nd Australian Conf. on
Neural Networks, pp. 94–97 (1991)

16. Fuller, J., Dawson, E., Millan, W.: Evolutionary generation of bent functions for
cryptography. In: The 2003 Congress on Evolutionary Computation, CEC 2003,
vol. 3, pp. 1655–1661 (December 2003)

http://gp.zemris.fer.hr/ecf/

A Memetic Algorithm for Multi Layer

Hierarchical Ring Network Design�

Christian Schauer and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

{schauer,raidl}@ads.tuwien.ac.at

Abstract. We address the Multi Layer Hierarchical Ring Network De-
sign Problem. This problem arises in the design of large telecommuni-
cation backbones, when high reliability is emphasized. The aim is to
connect nodes that are assigned to different layers using a hierarchy of
rings of bounded length. We present a memetic algorithm that focuses
on clustering the nodes of each layer into disjoint subsets. A decoding
procedure is then applied to each genotype for determining a ring con-
necting all nodes of each cluster. For local improvement we incorporate a
previous variable neighborhood search. We experimentally evaluate our
memetic algorithm on various graphs and show that it outperforms the
sole variable neighborhood search approach in 13 out of 30 instances,
while in eight instances they perform on par.

1 Introduction

In this paper we present a memetic algorithm for the Multi Layer Hierarchi-
cal Ring Network Design (MLHRND) problem. MLHRND arises in the field of
telecommunication network design and finds applications in large, hierarchically
structured networks with a strong need of survivability. It originates from a
cooperation with an Austrian telecommunication provider.

Since our society increasingly depends on large and fast telecommunication
networks, the matter of reliability became more and more important. In partic-
ular, it has to be avoided that larger parts of the network become disconnected
in case of limited failures of devices or links. The simplest way to achieve sur-
vivability in a network is the use of a ring topology since the network stays
connected in case of a single node or link failure.

For the backbone of wide area networks a single ring would not be efficient any-
more. The failure of two nodes or links at the same time could disconnect large
parts of the network. Moreover, requirements with respect to bandwidth and
maximal delays physically limit the size of a ring. To fulfill physical constraints
and ensure a high degree of survivability in larger networks, multiple intercon-
nected rings are frequently used as backbones. To allow scalability this intercon-
nection is often realized in a hierarchical fashion using rings on every layer of the
� This work has been funded by the Vienna Science and Technology Fund (WWTF)
through project ICT10-027.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 832–841, 2014.
c© Springer International Publishing Switzerland 2014

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 833

hierarchy. Such a network is hence called a Hierarchical Ring Network. If two
rings are connected over a single node (single homing), the network can compen-
sate for a link failure but does not stay connected if the concatenation node fails.
To additionally cover this situation the rings must be connected over two differ-
ent nodes on each ring, which is also called dual homing. The Multi Layer Hi-
erarchical Ring Network Design (MLHRND) deals with a hierarchical structure
spanning nodes on multiple layers using rings of bounded length and dual hom-
ing to ensure fault tolerance in case of single link and node failures. In this work
we divide MLHRND into two depending subproblems, a partitioning problem
to determine the nodes belonging to each ring and a ring computation problem
for each partition. We propose a memetic algorithm for addressing the parti-
tioning aspect, while a decoding procedure determines the actual rings for each
partition. Furthermore, we practically evaluate this approach in experiments.

The rest of the paper is organized as follows. Related work is discussed in
Section 2, while Section 3 provides a formal definition of the problem. In Sec-
tion 4 we describe our memetic algorithm. Computational results are presented
in Section 5. We conclude this paper in Section 6.

2 Related Work

In [8], we introduced MLHRND for the three-layer case and described a variable
neighborhood search (VNS) and a greedy randomized adaptive search procedure
(GRASP) for heuristically solving it. We further argued that MLHRND is NP-
hard, even for the three layer case, since the classical Capacitated Vehicle Routing
Problem can be reduced to MLHRND. To our knowledge MLHRND has not been
addressed by other authors in the literature yet. However, several other problems
are strongly related to it.

Balakrishnan et al. [1] describe the Multi-Level Network Design (MLND)
problem, a generalization of the well-known Steiner network problem [4]. Nodes
of the network are assigned to L different levels. For Two-Level Network Design
(L = 2) the authors discuss two MIP formulations and point out that those
approaches can easily be extended to a higher number of levels.

The Ring Spur Assignment Problem (RSAP) was introduced by Carroll and
McGarraghy in [2]. The authors present a MIP formulation using connectivity
constraints and an attempt for a cutting plane approach to solve larger problem
instances. In RSAP the network is structured by a tertiary ring to which local
rings connect to. Additionally, some nodes can be connected to a local ring by a
single edge, which the authors call a spur. Thus, the resulting network is a three
level network with rings on the top two levels and spurs on the third.

Gendreau et al. describe in [6] the Ring Design Problem, where nodes on
a single layer are connected via interconnected rings, and propose an integer
programming formulation with a quadratic objective function. The authors argue
that heuristic techniques are needed to solve large size instances. Therefore, they
present three ring construction heuristics based on TSP heuristics and three
destroy and reconstruct approaches for post-optimization.

834 C. Schauer and G.R. Raidl

Proestaki and Sinclair present in [7] a variant of MLND using rings and dual
homing for matters of survivability, where the node to level assignment is not
given a priori but to determine during the optimization process. The objective
function incorporates both the traffic on the rings and the overall ring length. As
an exact approach the authors present a binary integer linear programming for-
mulation. Additionally, they discuss a partition, construct, and perturb heuristic
that iteratively, for each level, creates a solution.

Similarities further exist between MLHRND and some variations of capaci-
tated vehicle routing problems when considering satellite depots. For instance
Schwengerer et al. [9] study the Two-Echelon Location-Routing Problem, a com-
bination of the VRP and the Facility Location Problem (FLP). To solve the
problem the authors present a variable neighborhood search. As in MLHRND
the node set is split into three subsets, which are platforms (layer 1), satellites
(layer 2), and customers (layer 3). In the context of vehicle routing dual homing
is not a meaningful requirement.

3 Multi Layer Hierarchical Ring Network Design

This section gives a formal definition of MLHRND and discusses some observa-
tions concerning this problem.

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
A weighting function assigns costs cij ≥ 0 to each edge (i, j) ∈ E. Moreover,
V is partitioned into K ≥ 3 disjoint subsets V1, . . . , VK representing the layers
each node belongs to. Edges exist between all pairs of nodes of the same and the
successive layer, i.e., E =

⋃
k=1,...,K(Vk × Vk) ∪

⋃
k=1,...,K−1(Vk × Vk+1).

A feasible solution to MLHRND is a subgraph GL = (V,EL) connecting all
nodes in V and satisfying the following conditions; see Figure 1 for an example.

1. All nodes in V1 are connected by a single independent ring containing no
other node.

2. The remaining layers are connected by K − 1 respective sets of paths con-
taining no nodes from other layers. Each node must appear in exactly one
path, i.e., the paths are node and edge disjoint to ensure reliability.

3. The end nodes of each path at layer k ∈ {2, . . . ,K} are further connected
to two different nodes (hubs) in layer k− 1, i.e., dual homing is realized. We
refer to the edges connecting paths to hubs as uplinks.

4. The two hub nodes, a path is connected to, must themselves be connected
by a simple path at their layer, i.e., the connection to a ring may not be
established via more than two layers.

5. The lengths of layer k ∈ {2, . . . ,K} paths in terms of the number of edges
is bounded below and above by blk ≥ 1 and buk ≥ blk, respectively.

The objective is to find a feasible solution with minimum total costs:
c(EL) =

∑
(i,j)∈EL

cij
From condition 1 we can conclude that finding the layer 1 ring resembles the
classical Traveling Salesman Problem (TSP). Since there are no further lim-
itations for the layer 1 ring, this subproblem can be solved independently.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 835

(a) (b)

Fig. 1. Schematic representations for K = 3, of (a) a feasible solution and (b) an
infeasible solution (the numbers in brackets indicate the violated constraints)

The situation changes when considering the remaining layers. Through the com-
bination of the dual homing aspect (condition 3) and the connection of the hubs
via simple paths (condition 4) the optimal structures of layers k ∈ {2, . . . ,K}
strongly depend on each other and cannot be treated separately. This combi-
nation marks the challenging aspect of MLHRND both to model and solve it.
Note that relaxing either condition 3 or condition 4, each layer could be solved
independently to achieve an overall optimal solution.

4 A Memetic Algorithm for MLHRND

As already mentioned, layer 1 corresponds to the classical TSP and can be solved
independently. As the TSP is well studied and our primary interest lies in the
structurally more complex further layers, we use in our experiments the Concorde
TSP solver [3] to determine an optimal layer 1 ring. The following memetic algo-
rithm (MA) is therefore used to solve the remaining layers. The main idea behind
the MA is to split MLHRND into two subproblems: the first, to cluster the nodes
of each layer into different subsets; the second, to compute Hamiltonian paths
through the subsets and determine the uplinks for the paths in order to form
together with the upper layer feasible rings. While the MA is used to optimize
the clusters, a decoding procedure is used for calculating the paths and rings.

4.1 Representation and Decoding Procedures

A main problem, when genetic algorithms (GAs) are applied to clustering prob-
lems, is to find a proper encoding scheme for the genotype that is independent
from the order of the clusters and the order of the elements within each cluster of
the phenotype. An encoding scheme that compensates these problems is linear
linkage encoding (LLE) proposed by Du et al. [5]. This representation stores for
each gene the index of a fellow gene within the same cluster. By requesting that
the stored index must be greater or equal than the own index, LLE provides a
unique representation for each individual without the mentioned encoding prob-
lem. For MLHRND we label all nodes with indices 1, . . . , |V | to define a natural

836 C. Schauer and G.R. Raidl

order on V . By sorting the nodes within each cluster and the clusters according
to the first node of each cluster, both in ascending order, we achieve a unique
representation of a candidate solution similar to LLE. Our tests showed that the
computational effort for this encoding process is negligible.

Since finding a minimum weight Hamiltonian path is an NP-complete task,
we implemented a heuristic decoding procedure. The idea is to first compute
the path through the nodes of a cluster and in a second step determine the up-
links for the end nodes of the path. Preliminary tests showed that a decoding
procedure based on the nearest neighbor principle for the TSP performed best
in terms of solution quality and runtime. This procedure uses the shortest edge
within a cluster as initial path, which is then iteratively extended by greedily
appending nodes on both ends. The next node to be appended is always the
nearest one to one of the end nodes. Ties are broken in favor of the node with
the smaller index to keep the heuristic deterministic. This procedure is repeated
until all nodes within a cluster are connected to a Hamiltonian path. Moreover,
tests showed that improving each path with local search using a two edge ex-
change neighborhood structure pays off considering the increase of runtime and
the improvement potential. To additionally speed up the decoding we store all
decoded partitions with their resulting paths in an archive for later reuse.

Moreover, we designed a decoding strategy based on integer linear program-
ming techniques to optimally determine the Hamiltonian path together with the
uplinks. This approach allows an optimal decoding of the genotype but it per-
forms too slowly to decode every partitioning created by the MA. Instead we
use it only in the end to exactly decode the best solution found by the MA.

4.2 Initial Population

For the initial population we create one third of individuals using the randomized
construction heuristic we proposed in [8]. This heuristic appends a path based
on the nearest neighbor idea until buk is reached and then starts a new path,
which results in solutions with few but long paths. For this work we adapted
this heuristic by also considering hub nodes and therefore to close a path in an
earlier stage in case a hub node is nearer than a node on the same layer. Another
third of the individuals is generated by a version of this heuristic, randomized
in the same way as the first one, which creates solutions with more and shorter
paths. Furthermore, we implemented another construction heuristic based on
the savings principle. This heuristic iteratively creates paths for each layer by
computing the savings for every pair of nodes on the layer and sorting them in
descending order. Then we iterate over the savings until all nodes of the layer
are connected to feasible paths, which results in solutions with many but short
paths. By randomly shuffling instead of sorting the positive savings on layer 2 we
obtain a randomized construction heuristic to create the remaining individuals.
For the remaining layers we use the sorted savings lists, otherwise the solutions
obtained would be too random. Using these three heuristics with their different
solution characteristics leads to a promising and diverse initial population.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 837

4.3 Recombination and Mutation

We designed two crossover operators using two parents and creating two de-
scendants. Both operators recombine on the cluster level employing the same
strategy for each layer k ∈ {2, . . .K}.

One Point Crossover (1PX) chooses a random splitting point between the
list of clusters on each layer. In a first step, the clusters before the splitting point
are copied from parent one to offspring one and from parent two to offspring
two, respectively. Afterwards, the clusters after the splitting point are passed
vice versa from parent two to offspring one and from parent one to offspring
two, respectively. Now care must be taken that none of the nodes occurs twice
in different clusters. Therefore, a check is needed for each node whether it can be
added to the cluster or must be dropped. If too many nodes are dropped and blk
is not satisfied, the cluster is not added to the offspring at all. This means on the
other hand that some nodes might be skipped. Thus, in a third step remaining
nodes are iteratively added to clusters containing nodes located nearby and not
fulfilling buk. The idea is that the increase of length of the Hamiltonian path
might be smaller if there are other nodes closely located to the new one. If all
clusters have size buk, then a new cluster is created and the node is added there.

Uniform Crossover (UX) decides randomly from which parent the next
cluster is passed to the offspring. This means that the next cluster can either
be passed from parent one or two to offspring one and correspondingly either
from parent two or one to offspring two. If the number of clusters differs for
the parents, the remaining clusters are added to both descendants. As in 1PX
clusters not satisfying blk are not added to the offspring at all. Again care must
be taken that none of the nodes is added twice to an offspring. To add remaining
nodes UX uses the same insertion strategy as 1PX.

The mutation operators are based on neighborhood structures described in Sec-
tion 4.4. A mutation of an individual resembles a single random move in the
respective neighborhood.

Two Node Exchange Mutation (2NE-M) swaps two nodes from different
clusters on the same layer. At first, a layer, two clusters on this layer, and two
nodes on the respective clusters are determined randomly. These two nodes are
then swapped between the two clusters. Since no constraints could be violated
this mutation is always applicable without further restrictions.

One Node Move Mutation (1NM-M) shifts a single node from one clus-
ter to another on the same layer. The layer, the two clusters, and the shifted node
are all determined randomly and then the mutation is performed. For 1NM-M
care must be taken that neither blk for the original cluster nor buk for the desti-
nation cluster are violated. If no such clusters exist on the chosen layer then the
mutation is automatically tried on another layer.

Merge Cluster Mutation (MC-M)merges two clusters on the same layer.
The layer and the two clusters are chosen randomly. The two clusters must be
selected so that after the merge buk is not exceeded. In case a merge is not possible
on the chosen layer an attempt on another layer is made.

838 C. Schauer and G.R. Raidl

Split Path Mutation (SP-M) operates on a decoded path of the phenotype
and splits this path at a given position into two new paths. Since the nodes within
a cluster in the genotype are stored in ascending order, dividing a cluster into
two would not be meaningful. The layer and the splitting point on the path are
determined randomly ensuring that the two new paths both exceed blk. Again if
a split is not possible on the chosen layer another layer is tried.

4.4 Local Improvement by Variable Neighborhood Search

For local improvement we use a downgraded version of the general variable
neighborhood search (VNS) proposed in [8]. It includes an embedded variable
neighborhood descent (VND), in which we consider the following neighborhood
structures:

Two Edge Exchange (2EE) is applied to every path on every layer sepa-
rately starting with the first uplink and ending with the second investigating
all feasible candidate solutions that differ in at most two edges.

Change Uplinks (CU) finds the optimal uplinks for each path considering
that the hub nodes must be different and connected via a simple path.

Split Rings (SR) divides a long path into two feasible shorter paths and con-
nects them to the preceding layer.

Two Node Exchange (2NE) swaps two nodes from different paths on the
same layer.

One Node Move (1NM) shifts a single node from one path to another on
the same layer taking care that neither blk on the original path nor buk on the
destination path is violated.

Append Rings (AR) can be seen as inversion of SR and connects the end
nodes of two short paths to a feasible long path.

We did not use the Three Edge Exchange (3EE) and Merge Rings (MR) neigh-
borhood structures from [8] because tests showed that their application was time
consuming but had only a minor impact on the solution quality.

Taking a closer look one can observe that a move within 2EE and CU only
affects a single path while a move in the other neighborhood structures affects
greater parts of the solution. Therefore, we separated 2EE and CU from the
others in an intra-VND, which is called every time a move within one of the
other neighborhood structures was performed and only applied to the affected
paths. The operators in the main VND are applied in the order as listed before.

For shaking we used the same strategy as in [8], i.e., 2K − 2 shaking neigh-
borhood structures N1,...,2K−2 defined as follows:

Ni = one random move in 2NE on layer K − i+ 1, ∀i = 1, . . . ,K − 1
Ni = one random move in 1NM on layer 2K − i, ∀i = K, . . . , 2K − 2

Since the VNS operates on the solution graph the shaking neighborhood struc-
tures cannot be compared with the mutation operators, which permute the clus-
ters. Therefore, it makes sense to not only apply the VND but also to perform

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 839

shaking within the local improvement phase. In this case, we terminate the VNS
if no improvement after shaking in N2K−2 was found. Therefore, the increase in
runtime pays off in relation to the improvement obtained.

5 Results

For testing purposes we focus on the K = 3 layer scenario and use the same
TSPLIB1 based benchmark instances as in [8] for the VNS and GRASP. Ad-
ditionally, we extended the test set by new random instances especially to in-
crease the variety of smaller instances. For this purpose, we randomly placed
nodes in a grid of size 10000 × 10000, used k-means clustering to determine
the layer 1 and layer 2 nodes, and added corresponding edges. In this way
we obtained a total of 74 test instances with up to 439 nodes. By using dif-
ferent combinations of upper bounds buk for the path lengths we obtained 380
test cases. For the lower bound blk we always assumed one edge as the min-
imum length for all paths. All these test instances can be downloaded from
www.ads.tuwien.ac.at/w/Research/Problem Instances.

We tested our MA using either 1PX or UX as crossover operators. As pa-
rameter setting for all test cases we used a population size of 50 individuals,
tournament selection over three individuals and elitism for the best five. As
stopping criterion we used a time limit as indicated in Table 1. We did not allow
duplicates within the population of the same generation. The mutation rate was
set to 9% for 2NE-M, 1NM-M, and MC-M and 4.5% for SP-M. We performed lo-
cal improvement on the best five individuals every 500 generations. For instances
with less than 300 nodes we used the VNS for larger instances the VND only,
since the increase in runtime was too high. In the end, the best solution found
by the MA is always improved by VNS and finally the exact decoding procedure
is applied. We implemented our approach in Java 1.6 using IBM CPLEX 12.6
for the exact decoding procedure. For each of the test cases we performed 30
runs executed on a single core of an Intel Xeon (Nehalem) Quadcore CPU with
2.53GHz and 3GB of RAM. For comparison we adapted the VNS from [8] by
using the intra-VND (with 3EE on the second position) with the main VND
(with MR on the last position) and executed this approach on all test cases.

Results are summarized in Table 1. The columns have the following meaning:
instance indicates the underlying graph our derived test cases are based on
(with the number of nodes in the graph at the end of the name); # denotes
the number of different test cases for each graph; bu2 and bu3 lists the different
upper layer bounds, where all combinations were tested; t refers to the runtime
limit in seconds; for the MA with 1PX and UX crossover and VNS the average
objective values (score) together with their standard deviations (dev) are listed;
columns pAB show a statistical comparison between approach A and B based
on a Student’s t-test with an error level of 5%, < (>) means that A performs
better(worse) than B, ≈ indicates no significant difference between A and B.

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

840 C. Schauer and G.R. Raidl

Table 1. Experimental results for the MA using either 1PX or UX as crossover operator
and the VNS with average objective values and their standard deviations. Columns pAB

show a statistical comparison between approach A and B based on a Student’s t-test
with an error level of 5%. The first columns list the instance name, the number of test
cases, test values for bu2 and bu3 , and the runtime limit for each instance.

1PX

p
1
U

p
1
V UX

p
U

V VNS

instance # bu2 bu3 t[s] score dev score dev score dev

ulysses22 2 4 4,6 150 123.31 0.28>≈ 123.20 0.24< 123.36 0.27
rand25 2 4 4,6 150 71255.47 221.34≈< 71255.47 221.34< 72820.93 801.01
rand30 4 4 4,6 150 88484.53 3542.46≈< 88365.69 3422.10< 89373.55 2975.65
rand35 4 4 4,6 150 89182.22 2888.34≈≈ 89167.36 2874.31≈ 89457.32 3067.79
rand45 4 4 4,6 150 99145.13 2039.62≈< 99126.84 1992.77< 101496.14 3640.91
att48 4 4 4,6 150 59663.81 632.16≈< 59596.17 681.46< 60169.25 966.66
eil51 4 4 4,6 150 743.72 15.56≈≈ 743.02 15.63≈ 746.89 16.28
berlin52 4 4 4,6 150 13370.03 201.04≈< 13364.96 197.50< 13451.39 279.67
rand55 4 4 4,6 150 111846.88 2971.71≈< 111882.44 2878.37< 113360.76 2299.75
rand70 12 4,7 4,7,11 150 126402.60 2322.23>< 125926.40 2264.46< 127383.39 3835.20
eil76 12 4,7 4,7,11 150 902.71 21.82≈≈ 902.03 23.09≈ 903.94 24.27
rand85 18 4,7 4,7,11 150 136312.04 3237.14≈< 136050.13 3227.32< 136995.32 3755.33
gr96 18 4,7 4,7,11 300 925.80 21.40≈< 926.07 22.21< 930.99 21.11
kroA100 18 4,7 4,7,11 300 40043.51 1132.73≈≈ 39992.35 1151.43≈ 40066.80 1152.69
kroB100 18 4,7 4,7,11 300 40759.91 1068.90≈≈ 40780.24 1122.37≈ 40826.96 1219.67
bier127 12 7,11 7,11,14 300 202817.43 2601.11≈> 202674.00 2836.98>201500.32 2445.40
ch150 18 7,11 7,11,14 300 11719.20 236.62≈> 11715.27 246.43> 11638.03 230.24
rand175 18 7,11 7,11,14 300 184434.64 4073.46≈> 184749.36 4161.79>182736.31 3843.28
kroA200 18 7,11 7,11,14 300 53045.74 986.66<> 53183.41 1089.88> 52854.56 1018.72
kroB200 18 7,11 7,11,14 300 53148.67 1024.49≈> 53229.85 1023.96> 52984.27 1020.04
gr229 12 11,16 11,16,19 600 2840.61 66.71≈> 2842.48 65.43> 2821.13 71.97
rand250 12 11,16 11,16,19 600 214841.28 2983.39≈> 215245.46 3347.49>212409.05 2223.95
rand275 18 11,16 11,16,19 600 219517.82 4488.71<> 220505.76 4672.04>217118.47 3608.25
pr299 18 11,16 11,16,19 600 88667.95 1264.57<> 88920.18 1383.50> 87873.12 1033.80
lin318 18 11,16 11,16,19 600 77173.81 1718.17<≈ 77612.38 1835.81> 77019.39 1264.34
rand350 18 11,16 11,16,19 600 248766.28 5152.62<< 250009.87 5706.74≈ 250113.76 4810.65
rand375 18 11,16 11,16,19 600 259471.79 5313.26<≈ 261068.47 6000.87> 259992.72 5100.66
rand400 18 11,16 11,16,19 900 269699.91 5854.83<≈ 271924.26 6542.30>269349.24 5199.97
gr431 18 11,16 11,16,19 900 3373.65 57.92<< 3401.35 63.94< 3455.16 65.91
pr439 18 11,16 11,16,19 900 201790.51 6992.98<< 204776.11 7414.42< 206108.42 8830.63

Firstly, we observe that by using our new VND approach we are able to improve
the VNS results significantly compared to [8]. The GA without local improve-
ment cannot compete with the VNS except for rand25. Therefore and due to
space limitations, we do not present the results for the GA alone. Of greater
interest is the comparison between the MA and VNS. For all 15 instances with
up to 100 nodes the MA with both crossover operators outperforms the VNS in
terms of solution quality, in ten cases the difference is significant (see columns
pAB). In many cases UX delivers the best results. For instances of this size the
MA can cover a large search space, while the VNS gets stuck in a local optimum
too early. The situation changes for instances with 127–300 nodes, were VNS al-
ways performs significantly better. Here the VNS can show its strength and cover
a larger search space because the application of VND is still fast and many it-
erations are performed. For more nodes the MA, especially with 1PX, performs
again better than the VNS except for lin318 and rand400, where the VNS is
not significantly better, and for rand375, where 1PX is not significantly better.

A Memetic Algorithm for Multi Layer Hierarchical Ring Network Design 841

As already mentioned the application of VND becomes very time consuming for
larger instances and only some iterations for the VNS are possible in the given
time limit. The MA still can compute at least 3000 generations especially with
1PX, which in practice is faster than UX. Therefore, we conclude that especially
for larger instances the MA is the algorithm of choice.

6 Conclusions and Future Work

We presented a memetic algorithm to solve the Multi Layer Hierarchical Ring
Network Design problem. The basic concept is to use the MA to cluster the
nodes of each layer into disjoint subsets, while a decoding procedure computes
a Hamiltonian path through each cluster and finds uplinks to determine a fea-
sible solution. The approach includes a variant of a previously published VNS
with an embedded VND. The VND has been adapted by distinguishing between
neighborhood structures that work on the path level or on the whole solution.
In this way we were able to speedup the VND significantly and also obtained
better results for the VNS alone. The MA outperforms the VNS on instances
with up to 100 and more than 350 nodes. In the future we will focus on de-
composition techniques, e.g., Benders decomposition for solving medium sized
instances exactly, and the design of large neighborhood structures.

References

1. Balakrishnan, A., Magnanti, T.L., Mirchandani, P.: The Multi-level Network Design
Problem. Tech. Rep. 3366-91, Massachusetts Institute of Technology (1991)

2. Carroll, P., McGarraghy, S.: Investigation of the ring spur assignment problem. In:
Bigi, G., Frangioni, A., Scutellà, M. (eds.) Proceedings of the 4th International
Network Optimization Conference (INOC 2009). pp. MB1–3 (2009)

3. Cook, W.J.: Concorde TSP Solver, http://www.math.uwaterloo.ca/tsp/concorde/
(accessed: March 13, 2014)

4. Dreyfus, S., Wagner, R.A.: The Steiner Problem in Graphs. Networks 1, 195–207
(1972)

5. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that em-
ploys genetic algorithm with new representation scheme and multiple objectives. In:
Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp.
219–228. Springer, Heidelberg (2004)

6. Gendreau, M., Labbé, M., Laporte, G.: Efficient heuristics for the design of ring
networks. Telecommunication Systems 4(1), 177–188 (1995)

7. Proestaki, A., Sinclair, M.: Design and dimensioning of dual-homing hierarchical
multi-ring networks. IEE Proceedings Communications 147(2), 96–104 (2000)

8. Schauer, C., Raidl, G.R.: Variable Neighborhood Search and GRASP for Three-
Layer Hierarchical Ring Network Design. In: Coello Coello, C.A., Cutello, V., Deb,
K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491,
pp. 458–467. Springer, Heidelberg (2012)

9. Schwengerer, M., Pirkwieser, S., Raidl, G.R.: A variable neighborhood search ap-
proach for the two-echelon location-routing problem. In: Hao, J.-K., Middendorf,
M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 13–24. Springer, Heidelberg (2012)

http://www.math.uwaterloo.ca/tsp/concorde/

Scheduling the English Football League

with a Multi-objective Evolutionary Algorithm

Lyndon While1,
�
and Graham Kendall2

1 Computer Science & Software Engineering, The University of Western Australia
2 ASAP Research Group, School of Computer Science, University of Nottingham

Malaysia Campus, Malaysia and University of Nottingham, UK
lyndon.while@uwa.edu.au, graham.kendall@nottingham.edu.my

Abstract. We describe a multi-objective evolutionary algorithm that
derives schedules for the English Football League over the busy New
Year period according to seven objectives. The two principal objectives
are to minimise travel distances for teams and supporters, and to min-
imise so-called “pair clashes” where teams which are geographically close
play at home simultaneously, which can cause problems for police, and
other logistical issues. The other five objectives implement various prob-
lem constraints. The schedules derived are often superior both to those
used in the relevant years, and to those previously published in the litera-
ture, especially for the harder problem instances. In addition, the system
returns a set of schedules offering different trade-offs between the main
objectives, any of which might be of interest to the authorities.

Keywords: Sports scheduling, Multi-objective evolutionary algorithms.

1 Introduction

The English Football League is structured around a promotion/relegation sys-
tem where teams can move up or down divisions, depending on their perfor-
mances. At the top of the league structure is the English Premier League (EPL),
which includes famous teams such as Arsenal, Chelsea, Liverpool, and Manch-
ester United. Beneath the EPL there are three other leagues: the Championship,
League 1, and League 21. These four divisions represent the top level of English
football.

The EPL has 20 teams and the other three divisions have 24 teams each,
a total of 92 teams. Each division is a double round robin tournament, where
teams play each other twice, once at each venue. This requires 20 × 19 = 380
matches in the EPL, and 24 × 23 = 552 matches in each of the others. Thus
there are 2, 036 fixtures to be scheduled in any one season, a significant task.

It might be assumed that each division can be scheduled individually, as
no team from one division plays against a team from another division. How-
ever, dependencies exist between the divisions. The main dependency is around
� Corresponding author.
1 The actual names change, depending on sponsorship arrangements.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 842–851, 2014.
c© Springer International Publishing Switzerland 2014

English Football Scheduling with a MOEA 843

pairings. Teams that are paired should (ideally) not play at home on the same
day, to reduce the burden on police and other infrastructure. For example,
Manchester United and Manchester City are paired as the police would pre-
fer them not to both be playing at home on the same day. Pairings exist across
divisions: e.g. Liverpool, Everton, and Tranmere Rovers are all paired.

We focus on scheduling the English Football League over the busy Christmas
and New Year period, when each team plays either two or four matches in a
short time, and the constraints on the schedule are more difficult than usual,
e.g. bad weather, police leave, and clashes with other holiday commitments for
supporters. We try to minimise the distance traveled by supporters, which was
the primary focus of our previous work[1,2,3]. We would also like to minimise
the number of pair clashes where paired teams play at home on the same day.
Minimising pair clashes and minimising travel are conflicting objectives and it
seems appropriate to investigate a multi-objective approach for this problem.
Previous attempts[3] have used multiple runs of a single-objective algorithm.

The principal contribution of this paper is the description and analysis of a
multi-objective evolutionary algorithm that derives schedules over the Christmas
and New Year period. The algorithm minimises the total travel distance (to save
supporters from having long journeys), and it also minimises the number of pair
clashes (to save policing resource). Five constraint objectives are also managed:
these are presented in Section 3, and a more formal problem description is given
in [1]. The schedules presented are superior both to those used by the football
authorities, and also to those previously published in the literature, especially for
the larger problem instances. In addition, the system returns a set of schedules
offering different trade-offs between the two objectives, any of which might be
of interest to the authorities.

The rest of the paper is structured as follows. Section 2 describes relevant
background material and previous work, and Section 3 describes the problem
that we address. Section 4 describes the details of our multi-objective approach,
and Section 5 describes the results achieved. Section 6 concludes the paper.

2 Background

2.1 Multi-objective Approaches to Sports Scheduling

Multi-objective approaches to sports scheduling have received limited attention
in the literature. This is perhaps surprising, given the multi-objective nature of
this sector, e.g. maximise crowd attendance, minimise costs, minimise policing,
maximise sales, minimise travel, maximise the gap between return matches, etc.

Evans[5], as far back as 1988, proposes a decision support system for schedul-
ing umpires in baseball. One objective is to minimise the travel costs of umpires,
with the other objective being concerned with the number of times an umpire
can officiate over a given team.

Duarte and Ribeiro[4] consider a bi-objective referee assignment problem,
where they minimise the difference between the target and assigned games for
each referee, and minimise the idle time between games for each referee.

844 L. While and G. Kendall

Barone et al.[6] investigate the Australian Football League wrt a number
of competing objectives: balancing the number of home games for each team,
balancing the sequence of home/away games (as too many consecutive games
at home (resp. away) is viewed as unfair), balancing the effects of travel in a
large country, maximising profit, and distributing the games across the country
on a given weekend. Their multi-objective evolutionary algorithm was able to
produce good results which offer a range of options to the client.

While and Barone[7] focus on Super 14 rugby. This tournament takes place in
several countries (Australia, New Zealand, and South Africa), distributed over
twelve time zones. They balance the number of home games a team has, whilst
optimising travel requirements and distributing the games in each round evenly
across the three countries, to optimise the use of prime time TV spots. Again
they use a multi-objective evolutionary algorithm, producing results that offer
significant improvements over the fixtures adopted by the organising body.

Craig et al.[8] use a multi-objective evolutionary algorithm to investigate the
National Hockey League. The objectives are minimising travel, providing equity
in rest time between games, and minimising consecutive home/away game se-
quences. The results are superior to the 2008–09 schedules that were used, and
they offer a range of trade-offs due to the nature of the multi-objective algorithm.

Kendall and Westphal[2] use CPLEX in an attempt to solve the problem of
scheduling football matches over the New Year period whilst trying to minimise
the total distance travelled. From a base model they vary the parameters in
order to find solutions more acceptable to the individual clubs, e.g. by limiting
the maximum distance that a single team would travel. A variety of experiments
are presented to demonstrate the effectiveness of this approach.

Kendall et al.[3] again explore the idea of using multiple runs with varying
parameters. They minimise both the distance travelled and the number of pair
clashes in an attempt to find good trade-offs. The current paper tackles the
same problem as [3], but using a multi-objective approach. The aim is to get
better solutions in a single run, both saving time and offering the client superior
solutions.

Survey papers related to sports scheduling are available in [9,10].

2.2 Multi-objective Optimisation

In a multi-objective optimisation problem, potential solutions are assessed ac-
cording to two or more independent quantities. The characteristic of good solu-
tions is that improving in one objective can be achieved only by worsening in at
least one other objective. An algorithm for solving such problems returns a set
of solutions offering different trade-offs between the various objectives.

Consider a problem where the fitness function maps a solution x into a fitness
vector fx. A solution x dominates a solution y iff fx is at least as good as fy
in every objective, and is better in at least one objective. x is non-dominated
wrt a set of solutions X iff there is no solution in X that dominates x. X is a
non-dominated set iff every solution in X is non-dominated wrt X . The set of
fitness vectors corresponding to a non-dominated set is a non-dominated front.

English Football Scheduling with a MOEA 845

A solution x is Pareto optimal iff x is non-dominated wrt the set of all possible
solutions. Such a solution is characterised by the fact that improvement in one
objective comes only at the expense of other objectives. The Pareto optimal set
is the set of all Pareto optimal solutions. Multi-objective optimisation aims to
find (or approximate) this Pareto optimal set.

With multiple objectives there is only a partial order on solutions, which
causes problems for selection in an evolutionary algorithm. The usual solution
is to define a ranking on solutions: one popular scheme[11] defines the rank of
a solution x wrt a set X to be the number of solutions in X that dominate x.
Selection is then based on ranks: a lower rank implies a better solution.

Precise definitions of all these terms can be found in [12].

3 Problem Statement

As stated in Section 1, the top four English divisions contain 92 teams, and
require 2,036 fixtures to be scheduled each season. Over Christmas and New
Year, each team plays either two or four matches. One (resp. two) match has to
be played at home, and the other (resp. two) has to be played at an away venue.
This time of the year is one of the few times when all teams have to play. It
may seem that scheduling part of a season might just create difficulties for other
dates, but in these competitions many games are moved each year for a variety
of reasons, so it is common for the authorities to focus their efforts in this way.

The full problem can be defined as follows. Further details are available in [1].
Given a set of teams allocated to the four divisions in a given year, given the
distance between each pair of teams, and given for each team a set of “pairs”:

1. There are either two or four rounds (this depends on the season, but following
[2] we always generate a two-round fixture and a four-round fixture).

2. Each team plays one game in each round against another team in its division.
3. Each team alternates home and away games.
4. No team can play another team more than once.
5. No team can play against any of its pairs (this constraint is sometimes vio-

lated by the football authorities, but we enforce it).
6. Only six London teams can play at home in any round.
7. Only three London EPL teams can play at home in any round.
8. Only four Greater Manchester teams can play at home in any round.

A schedule is measured against two objectives:

– The total distance travelled by the away teams across all rounds.
– The total number of pair clashes (where paired teams play at home on the

same day) across all rounds. For the first six seasons we study, the minimum
possible clashes for the two-round case is eight2. In 2008–09, Mansfield Town
were demoted from the league, reducing the minimum to seven.

2 Three mutually-clashing teams implies at least one clash/two rounds (six occurrences
of this), four mutually-clashing teams implies at least two clashes/two rounds (one
occurrence of this). Note that the number of pair clashes for four rounds is doubled,
because the home teams in Round k are the same in Round k + 2.

846 L. While and G. Kendall

For each scenario, a target number of clashes is given based on the schedule
actually used in that year[1,2].

4 Methodology

This section describes the details of our algorithm: the genetic representation
and variation operators used, the seven objectives and their quantification, and
details of initialisation, termination, and archiving.

4.1 Representation

Given a problem instance with k rounds, for a division with n teams we have

– a permutation of the teams in that division;
– k − 1 permutations of the numbers 0 . . . n/2− 1.

The translation from genotype to phenotype (i.e. the schedule) is best explained
via a worked example. With four rounds and a single division containing the six
teams A,B,C,D,E,F, the genotype

EDAFBC - 201 - 120 - 021

represents the schedule

Round 1: E vs F, D vs B, A vs C

Round 2: F vs A, B vs E, C vs D

Round 3: E vs B, D vs C, A vs F

Round 4: F vs E, B vs A, C vs D

In Rounds 1 and 3, the teams in the first half of the main permutation (i.e.
E, D, A) play at home: in Rounds 2 and 4, the teams in the second half of the
main permutation (i.e. F, B, C) play at home. In Round 1, the away teams are
allocated directly from the second half of the permutation: in Round j + 1, the
jth list of indices is used to permute the away teams.

Note that the genotype for a particular problem instance will contain one of
these combinations for each division in the league. For representation purposes,
the divisions can be treated entirely separately.

The representation enforces directly the number of rounds scheduled, and the
requirements that each team plays once per round and that teams alternate home
and away games (i.e. 1–3 from Section 3). The variation operators described
in Section 4.2 maintain these requirements. The other requirements (i.e. 4–8
from Section 3) are enforced via so-called “constraint objectives” in the fitness
calculations.

4.2 Variation Operators

Mutation involves randomly selecting either 1 or 2 of the permutations in the
genotype, and in each one separately, swapping two of its entries. This mutation
is guaranteed to maintain feasibility in the genotype.

No crossover is currently used.

English Football Scheduling with a MOEA 847

4.3 Objectives

We implement seven objectives. The first five are constraint objectives where a
value that is too high indicates an infeasible solution[13,14,15].

1. Repeats: Across all rounds, we count the number of games that are repeated
(i.e. where ti plays tj twice): none are allowed.

2. Derbies: Across all rounds, we count the number of games between paired
teams: none are allowed.

3. London EPL: In each round, we count the number of EPL games played
in London: we allow three/round.

4. London: In each round, we count the number of games played in London:
we allow six/round.

5. GMR: In each round, we count the number of games played in Greater
Manchester: we allow four/round.

6. Pair clashes: In each round, we count the number of times that a team and
one of its pairs are both playing at home, and we sum these values for all
rounds: we allow a total that depends on the year, from Table 33 of [2].

7. Distance: Across all rounds, we sum the distances travelled by the away
teams in all games.

Note that the limits set for London EPL, London, and GMR are the minimum
values possible given the number of teams in each region and division.

We have tried various ways of combining the five constraint objectives, but we
have found that maintaining them as separate objectives gives the best diversity
in the population.

4.4 Other Algorithm Details

Selection: We use standard Pareto ranking[11] in selection, and where we need
to break ranks, we favour the constraint objectives over the “real” objectives,
in the order described in Section 4.3. Thus feasible solutions are favoured in
selection, which will tend to increase the proportion of such solutions over time.
Archiving: All non-dominated feasible solutions with distinct fitnesses are
archived and are presented in the results of the algorithm. This approach works
well because of the discrete nature of pair-clash-counts: the archive will contain
only a small part of the population, never more than about twenty solutions.
Initialisation: For the initial set of solutions, we simply choose each permuta-
tion randomly.
Termination: The algorithm runs until the feasible solution with minimum pair
clashes ceases to show improvement. For the experiments described in Section 5,
this typically took 10–20,000 generations.

5 Results

We tested our algorithm on fourteen problem instances. We used the seven sea-
sons 2002–03 to 2008–09 inclusive, and for each season we ran the algorithm to

848 L. While and G. Kendall

Table 1. For the 2- and 4-round cases, we give the lower bounds from [2]; the distances
for [2] and for the current algorithm; the percentage differences between them; and the
run-times. Negative percentages indicate improvements for our proposed algorithm.
Each result is from one run with a population of 1,500, roughly 10–20,000 generations.

Two rounds

bound [2] current improv. minutes
2002–3 4,692 4,801 4,825 0.5% 533
2003–4 5,186 5,209 5,244 0.7% 500
2004–5 5,135 5,161 5,216 1.1% 263
2005–6 5,038 5,038 5,067 0.6% 398
2006–7 5,295 5,308 5,374 1.2% 272
2007–8 5,020 5,034 5,076 0.8% 180
2008–9 5,243 5,244 5,259 0.3% 190

Four rounds

bound [2] current improv. minutes
2002–3 11,377 13,813 13,773 –0.3% 643
2003–4 11,896 13,966 13,870 –0.7% 483
2004–5 12,040 13,605 13,576 –0.2% 298
2005–6 12,221 13,785 13,612 –1.3% 328
2006–7 12,409 14,262 14,076 –1.3% 652
2007–8 11,985 14,089 13,897 –1.4% 440
2008–9 12,283 14,671 14,529 –1.0% 501

produce two and four rounds of fixtures. This is consistent with [2] and enables
us to compare our results directly. We also compare results with [3], but this
paper produced only two rounds of fixtures.

Table 1 summarises the best distance results achieved for results that respect
all of the problem constraints, including the same limits on pair clashes as used
in [2]. Our runtimes are in line with those used in [2], accounting for the dif-
ferent computer configurations and bearing in mind that [2] did many runs for
each instance, whereas our multi-objective approach requires only a single run.
Clearly if this methodology were used in the real world, the run times would be
acceptable given that it is a once-a-year operation and that the schedules are
important from many perspectives, including financial.

It is clear that our multi-objective algorithm performs slightly worse than [2]
on the 2-round fixtures where they get very close to the optima, and slightly
better on the more complex 4-round fixtures. It is fairly typical of evolutionary
approaches to perform (relatively) better on harder problems.

Figure 1 shows the complete results on the 2-round fixtures. The y-axis shows
the difference to the distances reported for [2] in Table 1, and the x-axis shows
the number of pair clashes, relative to the numbers that were used in the fixtures
that were published by the football authorities. That is, a value of zero means
that we have the same number of pair clashes, and a negative (resp. positive)
value means that we have generated a schedule with fewer (resp. more) pair
clashes than the published fixture. Thus the result for [2] sits at (0, 0) for every
line. It is not surprising that, as we allow more pair clashes, we have less distance

English Football Scheduling with a MOEA 849

Fig. 1. For the 2-round case, each line plots the best distance result achieved with
the corresponding number of pair clashes in excess of the [2] limits, for the same runs
as Table 1 plus another set of runs that tried to minimise clashes as far as possible.
Negative values indicate reduced distances travelled. The leftmost point on every line
has the smallest number of clashes possible, usually eight (but seven for 2008–09).

Fig. 2. For the 2-round case, each solid line plots the same data as Figure 1 (in the
relevant range of pair clashes), and each dotted line plots the best results from [3]. The
leftmost point on every solid line has the smallest number of clashes possible.

to travel. In 2002-03, for example, if we allow fifteen extra pair clashes, we can
save almost 3% on the distance travelled.

Figure 2 shows a subset of the data from Figure 1, but compared with the
multi-objective data from [3]. The distinct advantage of the new approach is
clear: it produces results that are uniformly better, often by 5–10%.

850 L. While and G. Kendall

Fig. 3. For the 4-round case, each line plots the best distance result achieved with
the corresponding number of pair clashes in excess of the [2] limits, for the same runs
as Table 1 plus another set of runs that tried to minimise clashes as far as possible.
Negative values indicate reduced distances travelled. The leftmost point on every line
has the smallest number of clashes possible, usually sixteen (but fourteen for 2008–09).

Figure 3 shows the complete results on the 4-round fixtures. The overall pat-
tern is the same: as we allow more pair clashes, we reduce the overall distance
that has to be travelled. It is noticeable that for the same number of pair clashes
(i.e. zero on the graph), the multi-objective approach is able to produce shorter
overall travel distances than [2]: occasionally it can also do this for fewer pair
clashes (i.e. negative on the graph). Given that the multi-objective approach is
also able to offer a set of potential solutions offering varying trade-offs, this is a
major advantage of this methodology.

6 Conclusions

We have described a multi-objective evolutionary algorithm that derives sched-
ules for the busy New Year period in the English Football League. The system
minimises both away teams’ travel and “pair clashes” where teams which are
geographically close play at home on the same day, whilst also managing five con-
straint objectives which restrict the types of games allowed and the numbers of
games allowed in London and in Greater Manchester. The schedules derived are
superior to those previously published, especially for larger problem instances:
also they offer a range of different trade-offs between the main objectives.

Future work will extend the system to incorporate fairness, as defined in [2]:
enforcing a maximum distance for individual teams, additional to the existing
objectives. We will also explore enhanced features such as weighted pairings,
where clashes between “big teams” are viewed as worse than other clashes.

English Football Scheduling with a MOEA 851

References

1. Kendall, G.: Scheduling English Football Fixtures over Holiday Periods.
JORS 59(6), 743–755 (2008)

2. Kendall, G., Westphal, S.: Sports Scheduling: Minimizing Travel for English Foot-
ball Supporters. In: Uyar, A.S., Ozcan, E., Urquhart, N. (eds.) Automated Schedul-
ing and Planning. SCI, vol. 505, pp. 61–90. Springer, Heidelberg (2013)

3. Kendall, G., McCollum, B., Cruz, F.R.B., McMullan, P., While, L.: Scheduling
English Football Fixtures: Consideration of Two Conflicting Objectives. In: Talbi,
E.-G. (ed.) Hybrid Metaheuristics. SCI, vol. 434, pp. 369–385. Springer, Heidelberg
(2013)

4. Duarte, A.R., Ribeiro, C.C.: Referee Assignment in Sports Leagues: Approximate
and Exact Multi-objective Approaches. In: 19th International Conference on Mul-
tiple Criteria Decision Making, Auckland, New Zealand, pp. 58–60 (2008)

5. Evans, J.R.: A Microcomputer-based Decision Support System for Scheduling Um-
pires in the American Baseball League. Interfaces 18(6), 42–51 (1988)

6. Barone, L., While, L., Hughes, P., Hingston, P.: Fixture Scheduling for Australian
Rules Football using a Multi-objective Evolutionary Algorithm. In: IEEE CEC,
Vancouver, Canada, pp. 3377–3384 (2006)

7. While, L., Barone, L.: Super 14 Rugby Fixture Scheduling using a Multi-objective
Evolutionary Algorithm. In: IEEE CI-Scheduling, Honolulu, Hawaii, pp. 35–42
(2007)

8. Craig, S., While, L., Barone, L.: Scheduling for the National Hockey League using
a Multi-objective Evolutionary Algorithm. In: Nicholson, A., Li, X. (eds.) AI 2009.
LNCS, vol. 5866, pp. 381–390. Springer, Heidelberg (2009)

9. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in Sports: an Anno-
tated Bibliography. Computers & Operations Research 37(1), 1–19 (2010)

10. Rasmussen, R.V., Trick, M.A.: Round Robin Scheduling — a Survey. EJOR 188(3),
617–636 (2008)

11. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimiza-
tion: Formulation, Discussion and Generalization. In: ICGA, Urbana-Champaign,
Illinois, pp. 416–423 (1993)

12. Coello Coello, C.A., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for
Solving Multi-objective Problems. Springer (2007)

13. Hingston, P., Barone, L., Huband, S., While, L.: Multi-level Ranking for Con-
strained Multi-objective Evolutionary Optimisation. In: Runarsson, T.P., Beyer,
H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN
2006. LNCS, vol. 4193, pp. 563–572. Springer, Heidelberg (2006)

14. Huband, S., Tuppurainen, D., While, L., Barone, L., Hingston, P., Bearman, R.:
Maximising Overall Value in Plant Design. Minerals Eng. 19(15), 1470–1478 (2006)

15. While, L., Hingston, P.: Usefulness of Infeasible Solutions in Evolutionary Search:
an Empirical and Mathematical Study. In: IEEE CEC, Mexico, pp. 1363–1370
(2013)

Coupling Evolution and Information Theory

for Autonomous Robotic Exploration

Guohua Zhang1,2 and Michèle Sebag2

1 Chengdu Institute of Computer Applications, Chinese Academy of Sciences,
Chengdu 610041, China

2 TAO, CNRS − INRIA − LRI, Université Paris-Sud, 91128 Orsay Cedex, France

Abstract. This paper investigates a hybrid two-phase approach toward
exploratory behavior in robotics. In a first phase, controllers are evolved
to maximize the quantity of information in the sensori-motor datastream
generated by the robot. In a second phase, the data acquired by the
evolved controllers is used to support an information theory-based con-
troller, selecting the most informative action in each time step.
The approach, referred to as EvITE, is shown to outperform both the
evolutionary and the information theory-based approaches standalone, in
terms of actual exploration of the arena. Further, the EvITE controller
features some generality property, being able to efficiently explore other
arenas than the one considered during the first evolutionary phase.

Keywords: Evolutionary robotics, information theory, intrinsic moti-
vation, entropy.

1 Introduction

Quite a few disciplinary fields are concerned with building autonomous robotic
controllers, ranging from optimal control to evolutionary robotics (ER) [14],
machine learning (ML) and specifically reinforcement learning (RL) [19,6] and
artificial intelligence (AI) [16]. For the sake of computational and experimental
conveniency, many approaches rely on simulators; the relevance of the resulting
controllers thus is subject to the so-called reality gap [10,17].

This paper is concerned with building robotic controllers in an in-situ,
simulator-free fashion. Whereas the simulator-free setting sidesteps the reality
gap, it raises the challenge of defining intrinsic criteria (optimization objective or
decision hints respectively supporting the on-board evolution or decision making
process) without any ground truth about the appropriateness of the robot behav-
ior in its environment. This study is primarily motivated by swarm robotics [11],
where simulator-based approaches face a super-linear computational complexity
w.r.t. the number of robots in the swarm.

The proposed approach takes inspiration from the intrinsic motivation crite-
rion [15,2,12] and from information theory-driven evolutionary robotics [3] (more
in section 2), with scalability and generality as main criteria. The presented

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 852–861, 2014.
c© Springer International Publishing Switzerland 2014

Coupling Evolution and Information Theory 853

approach, referred to as EvITE (Evolution and Information Theory-based Ex-
ploratory Robotics) and introduced in section 3, combines machine learning and
evolutionary principles. Formally, in a first phase, evolutionary controllers are
built along the same ideas as in [3]; in a second phase the data acquired by these
controllers is used to support an information theory-based controller. The exper-
imental validation of EvITE shows that it outperforms the evolutionary and the
IT controllers standalone, in terms of exploration and behavioral diversity [7,9]
(section 4). Importantly, EvITE features some generality property, in the sense
that it also achieves good exploratory performance in other arenas than the one
used to train the evolutionary controllers. The paper discusses the complemen-
tarity of evolution and ML approaches and how to best combine them to build
robotic controllers, and concludes with some perspectives for further research.

2 Related Work

This section discusses a few approaches to autonomous robotics, based on evo-
lutionary robotics (ER) or machine learning (ML) or combining both.

ER (with the exception of [7,9,8], see below) considers a fitness function that
independently maps each controller trajectory on IR. A first challenge is to de-
fine an appropriate search space, enabling to describe powerful controllers while
supporting evolutionary optimization [22]. A second challenge is that ER faces a
noisy optimization problem: finding the controller π such that the expectation of
the fitness of the trajectories (where the expectation is taken over all trajectories
generated from π, reflecting e.g. the robot sensor and motor noise), is maximal.
How to deal with this noisy optimization problem, and keep the number of tra-
jectories needed to estimate the expectation within reasonable computational
cost has been studied for instance by [5].

In mainstream ML [18], a fixed instant reward on each (state,action) pair is
defined under the Markovian assumption that the current reward only depends
on the previous state. The learning process then focuses on estimating the value
Q(s, a), defined as the maximal cumulative reward the robot can get after se-
lecting action a in state s. An optimal controller immediately follows from the
optimal value function, by selecting in state s the action a∗ maximizing Q(s, a).
(In practice, the learning process alternates between estimating Q and optimiz-
ing π; the details are left out for simplicity, referring the reader to [6] for a
comprehensive presentation).

Hybrid ML-ER approaches include Genetic-based Machine Learning, and
specifically Learning Classifier Systems variants [20,21], based on the evolution-
ary learning of sets of (condition-action) or (condition-action-effect) rules. While
LCS rules enable in principle to control both the robot and its internal state,
GBML seemingly faces scalability issues compared to Neural Nets and even more
to new NN-based controller representations [22]. Another hybrid approach, based
on the notion of intrinsic motivation, is pioneered by [15,2,12]. Let K be a tra-
jectory, sequence of the (state st, action at) pairs generated by a controller along
time, and let Ki denote the archive of the first i trajectories generated by the

854 G. Zhang and M. Sebag

learning/optimization process. A so-called forward model fi is learned from Ki,
estimating the transition model in the robot environment, that is the next state
s′ of the robot after selecting action a in state s, where S and A respectively
stands for the set of states and set of actions. The key point is that the accu-
racy of fi can be estimated on-board during the next trajectory of the robot,
as the robot observes the state st+1 yielded by selecting action at in state st.
The accuracy Acc(fi) of fi on the next trajectory K thus defines an intrinsic
information, accessible to the robot without any external ground truth.

fi : S ×A �→ S Acc(fi) = Pr(st+1 = fi(st, at)|(st, at, st+1) ∈ K)

Note that the above accuracy defines a misleading fitness, as a motionless con-
troller (st+1 = st) would get a very high fitness. The intrinsic motivation (IM)
fitness FIM therefore associates to a controller the Acc increase:

FIM (π) = Acc(fi+1)−Acc(fi) (1)

The optimization of fitness FIM thus yields controllers which explore new re-
gions of the (state,action) space, providing new samples and thereby ultimately
yielding an optimal forward model. Most interestingly, FIM does not reward the
extra-exploration of noisy regions: if a (state,action) region is noisy − due to
e.g. stochastic noise in the environment − repeated explorations of this region
are useless as they do not improve the forward model accuracy.
A related though simpler approach, based on the so-called curiosity- or discovery-
driven fitness, was proposed in [3]. To each trajectory (st, at)t=1,...T generated
by a controller π is associated the entropic fitness FE

FE(π) = −
∑
s

ps log ps (2)

where s ranges over the states visited in the trajectory and ps is the fraction
of time the trajectory visits s. By construction, an optimal controller according
to FE is one uniformly visiting the state space. Along this line, the entropic
fitness would provide good material in order to build an accurate forward model,
too. Note however that entropic fitness does not require a forward model to be
learned, contrarily to intrinsic motivation. Its limitation compared to IM is that
it might tend to over-explore stochastic regions of the state space, if any.

In summary, ML and ER differ in the way they build a controller and use
the memory of the building process. The result of the ML process is a value
function, and the controller can be explicitly derived from the value function.
ER memorizes the evolution process through the ER controller itself, expressed
as e.g. the weight vector of a neural net, and through the archive of the past
trajectories. This archive makes it feasible to define more sophisticated fitness
functions. For instance, [9,8] characterize and exploit the difference between a
trajectory and the past ones to enforce the robust and creative sampling of
the trajectory space; [7,13] likewise use this diversity, possibly along a multi-
objective framework; [3] further defines a discovery-driven fitness, computing
the conditional entropy of the current trajectory w.r.t. the trajectory archive.

Coupling Evolution and Information Theory 855

3 Ev-ITER Overview

This section presents the new EvITE scheme, inspired from [3,12] and hybridizing
the evolutionary and the learning approaches in order to build an autonomous
exploratory robotic controller. EvITE involves two phases. In the first phase,
controllers are evolved as in [3]. In the second phase, the trajectories generated
by the evolved controllers are used to initialize an entropic state-action value
function. This value function, characterizing the promising state-action pairs, is
used to support an information-driven controller, and the entropic value function
is accordingly updated. A main issue, scalability-wise, is that the discretization
of the state and action space be under the control of the robot, depending on its
memory and computational resources.

3.1 Phase 1. Evolutionary Exploration

For the sake of self-containedness, let us remind the formal background of the
curiosity-driven evolutionary robotics approach [3]. Let K = (st, at)Tt=1 denote
a T -length trajectory, where st (respectively at) denotes the sensor (resp. motor)
value vector at time t (st ∈ IRs, at ∈ IRm). An ε-clustering algorithm is used to
incrementally cluster the sensor and the motor spaces independently1 [4]. To each
cluster c is associated the fraction pc of time spent in this cluster (number of times
st belongs to c, divided by T) and the entropic fitness is defined by Eq. (2).

After a number N of generations, the best controllers in the last population
are retained, and the set K of trajectories they generated is used to initialize the
entropic value function.

3.2 Phase 2: Initializing the Entropic Value Function

EvITE starts by discretizing the state and action space. Mainstream clustering
algorithms, the k-means and ε-clustering algorithms [4] have complementary
strengths and weaknesses: while ε-clusters are imbalanced, k-means clustering
is sensitive to the k hyper-parameter, and might additionally yield unstable
clusters. For this reason, we proceed as follows. Let ns denote the number of ε-
clusters built from the sensor vectors st in the archive K. Setting the number k of
clusters to ns, P independent runs of k-means clustering algorithm are launched
on the set of sensor vectors, and the best clustering after the distortion criterion
is retained, where the distortion is measured from the sum of square distance
between any vector and the center of the cluster it belongs to. Likewise, letting
na denote the number of ε-clusters built from the motor vectors at in the archive
K, na clusters are obtained using the best clustering solution obtained out of P
independent runs of k-means with k = na on the motor vectors in K.

Let i(st) (respectively j(at)) denote the index of the cluster the sensor vector
st (resp. the motor vector at) belongs to. For the sake of notational simplicity,

1 An ε-clustering algorithm iteratively constructs a set of clusters, by defining a new
cluster for each point which is more than ε-far from the center of the previous clusters.

856 G. Zhang and M. Sebag

it is assumed in the following that K involves a single trajectory; the robot is
said to execute action j in state i when i(st) = i and j(at) = j.

To each pair i, j is associated the list Z(i, j) storing all instants t following
the execution of action j in state i (such that i(st−1) = i; j(at−1) = j). Let
S(i, j) denote the multi-set of states for t in Z(i, j), that is the list of all states
that the robot visited just after executing action j in state i. Let Q(i, j) denote
the entropy of S(i, j): the higher Q(i, j), the less one can predict the behavior
of the robot after selecting action j in state i. Z(i, j) and S(i, j) are built and

Fig. 1. Computing the entropic value function from a 8-length trajectory (top), with
ns = na = 4. The 4× 4 matrix S is built, where list S(i, j) is used to compute entropy
Q(i, j) when not empty.

maintained online (Fig. 1). A sliding window is used to comply with the robot
limited memory resources, where only the last λ elements in Z(i, j) and S(i, j)
are retained.

3.3 Phase 2. Information-Driven Navigation

Based on the entropic value function, an information-driven controller is defined
as follows, considering three modes.

In the first mode, referred to as babbling mode and triggered when the
robot is visiting a state i where few actions have been tried (the size of Z(i, j)
is less than λ, for all actions j), the action cluster index is selected uniformly in
1 . . . na.

The second mode is the main mode, referred to as curious mode. In this
mode, the action with optimal score is selected, where

score(j|i) = (1− α)Q(i, j) + α(1− Pr(i|(i, j))) (3)

where the last term Pr(i|(i, j)) is the probability of staying in state i after se-
lecting action j in state i (estimated from the frequency of i(st−1) = i, j(at−1) =
j, i(st) = i for t in Z(i, j)), and α a hyper-parameter controlling the balance
between the former and the latter terms. The intuition is that, everything being
equal, exploration is better enforced by selecting an action that modifies the
robot state.

Coupling Evolution and Information Theory 857

The third mode, referred to as exploratory mode, is meant to prevent the
degenerate behaviors possibly incurred in the curious mode (e.g. dancing in front
of a wall). Here, one simply selects the action less selectedthe last μ times state
i was visited.

In all three modes, letting j denote the index of the selected action cluster at
time t, then the actual motor vector at is selected uniformly in the j-th action
cluster.

Overall, the babbling mode is triggered when arriving in an unknown state.
Otherwise, the curious mode is selected with probability 95% and the exploratory
mode is selected with probability 5%. In each time step, the Z(i, j) and S(i, j)
lists are updated. Formally, after having selected action j in state i at time t,
the last elements in Z(i, j) and S(i, j) are removed if necessary (if |Z(i, j)| > λ)
and indices t+ 1 and k = i(st+1) are respectively added to Z(i, j) and S(i, j).

4 Experimental Validation

This section reports on the experimental validation of EvITE. The primary goal
of the experiments is to assess the performance of the proposed scheme in terms
of the exploration indicators below, comparatively to the evolutionary curiosity-
driven scheme [3] and the intrinsic motivation scheme [12] standalone2. Another
goal is to assess the generality of the resulting controllers, i.e. their ability to
explore new arenas, distinct from the one used in the first phase of EvITE.

For the sake of reproducibility, the experimental setting uses the Webot sim-
ulator emulating an E-puck robot with 8 infra-red sensors and 2 motors. The
evolutionary curiosity baseline is implemented using same setting as in [3]: the
robot population is evolved for 200 generations. The 1st phase in EvITE uses
the trajectories of the best robots in the 200-th generation of Curiosity to build
the Z(i, j) and S(i, j) data. The intrinsic motivation baseline proceeds using
an empty Z(i, j) and S(i, j), based on the fact that Q(i, j) is a proxy for the
accuracy of the forward model in state i, j (Eq. 1). The hyper-parameter setting
is as follows. Window lengths λ and μ are respectively set to 500 and 60. The
ε parameter used for respectively clustering the sensor and motor vectors is set
to 450 and 3000. Each EvITE and IM run considers a sequence of 2,000 epochs,
where an epoch is a robot starting from the same starting point (lower left cor-
ner in the arenas, Fig. 2) and navigating in the arena for 2,000 time steps (175
time steps are required to cross the arena at average speed). Three arenas are
considered: the easy one is taken from [9,3] (referred to as hard arena in [9], Fig
2.a); a harder one referred to as graph-arena (Fig 2.b); and a maze-like arena
(Fig 2.c). The exploratory performance of Curiosity, IM and EvITE is compar-
atively displayed on the easy (Fig. 2. d), maze (Fig. 2.e) and maze (Fig. 2.f)
arenas, showing the number of squares p1 visited at least once per run (averaged

2 The comparison with other ER approaches, specifically [20,22], faces the difficulty of
defining a fitness function: building a fitness function from the exploration indicators
is inappropriate since computing them requires some ground truth; but the whole
motivation of the approach is to handle cases where the ground truth is not available.

858 G. Zhang and M. Sebag

(a) Easy arena (b) Graph arena (c) Maze arena

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000
Result on the easy arena

The number of generations

A
ve

ra
ge

curiosity
EV−ITER
IM

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000
Result on the graph arena

The number of generations

A
ve

ra
ge

Curiosity
Ev−ITER
IM

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000
Result on the maze arena

The number of generations

A
ve

ra
ge

curiosity
EV−ITER
IM

d,e,f: Comparative performances on easy, graph and maze arenas

Fig. 2. Comparative performances of Curiosity, IM and EvITE on the (a) easy arena,
(b) graph arena and (c) maze arena (respectively 0.6 m ×0.6 m, 0.6 m ×0.6 m, and
0.7 m ×0.7 m). The number of squares visited at least once (each arena involving
10,000 squares for comparison) is reported, averaged out of 15 independent runs. It is
reminded that EvITE entropic value function is initialized from the trajectories on the
Easy arena, and the curiosity-driven controllers are trained on the Easy arena too.

out of 15 independent runs, 10,000 squares for each arena). Furthermore, this
result supports the generality of the EvITE approach, by noting that the EvITE
controller performs well on the graph and maze arenas, even though the entropic
value function is initialized by training on the easy arena. Comparatively, the
curiosity-driven controllers trained on the easy arena do poorly on the other
arenas. The performance of EvITE is significantly higher than for the intrinsic
motivation alone, which itself outperforms the curiosity-driven approach, all the
more so as the complexity of the arena increases. A more detailed account of the
performance indicators p1 and p2 is reported in Table 1, indicating the average
and median number of squares visited once or twice, averaged on 2,000 epochs
and 15 runs. The generality is visually assessed on Fig. 3, showing the actual
robot trajectories after 500 and 2,000 epochs. The top (resp. middle, bottom)
rows display the behavior of Curiosity (resp. EvITE, IM), showing the arena vis-
ited during the first 500 epochs and the area visited during all 2,000 epochs, on
the easy arena (columns 1 and 2), on the graph arena (3rd column) and on the
maze arena (4th column). It is seen that Curiosity is lagging behind the other
two approaches in all cases. On the easy and medium arenas, the performances
of IM are visually a bit behind those of EvITE for 500 epochs (complementary
results omitted due to space restrictions), and they catch up for 2,000 epochs.

Coupling Evolution and Information Theory 859

Table 1. Comparative performances of EvITE, IM and Curiosity on the easy, graph
and maze arenas, reporting the average and median (std.dev.) number of squares visited
out of 15 runs

IM Curiosity Ev-ITER
1 visits 2 visits 1 visits 2 visits 1 visits 2 visits

Easy arena
Median 3760 1898 2884 2106 4105 2514
Average 3796.7 1921.9 2843.1 2104 3999.1 2501.3
(std.dev.) (354.21) (7.5607) (198.9906) (134.8306) (236.0734) (219.4420)

Graph arena
Median 3693 2123 3232 1960 3995 1774
Average 3974.8 2136.4 3510.1 1942.1 4222.6 1825.1
std.dev. (264.81) (0.11499) (186.6) (24.56) (80.479) (43.036)

Maze arena Median 3614 1831 2102 1251 4553 2050
Average 3779 1788.2 2362.5 1279.9 5005.5 2082.4
std.dev. (455.31) (155.96) (192.91) (19.21) (245.86) (158.95)

(a) Curiosity:500 (b) Curiosity: 2000 (c) Curiosity: 2000 (d) Curiosity: 2000

(e) Ev-ITER:500 (f) Ev-ITER: 2000 (g) Ev-ITER: 2000 (h) Ev-ITER: 2000

(i) IM:500 (j) IM: 2000 (k) IM:2000 (l) IM:2000

Fig. 3. Trajectories of the evolutionary curiosity (top row), EvITE (middle row) and
IM (bottom row) on the easy, graph and maze arenas, cumulative over 500 robots and
2,000 robots

On the maze arena finally, the performances of IM are behind those of EvITE
for both 500 and 2,000 epochs (see the middle corridors in the maze).

These results establish the merits of the hybrid EvITE approach. On the one
hand, it significantly improves on the evolutionary curiosity approach alone. On
the other hand, it also improves on the intrinsic motivation approach, as it is
shown to visit more densely the regions far from the starting point. Last but not
least, the EvITE controller features a quite decent generality as it reaches good

860 G. Zhang and M. Sebag

exploratory performances when the 2nd phase is conducted in another arena
than the one considered in the 1st phase. Complementary experiments, omitted
due to the space restrictions, show that the exploratory performance is almost
as good when the 1st phase is conducted in the easy arena, than when it is
conducted in the same arena as the one where the 2nd phase takes place.

5 Discussion and Perspectives

This paper presents a new combination of EC and ML approaches toward au-
tonomous exploration in in-situ robotics. The challenge of defining intrinsic cri-
teria available on-board is addressed by taking inspiration from [3,12]. On the
top of these pioneering works, the EvITE scheme proceeds as a 2-phase process.
The first phase proceeds exactly as in [3].The second phase exploits the data
gathered in the first phase in order to support a learning approach. The impact
of these data is evidenced by comparing the EvITE performances to that of IM.
The experimental results (Fig. 2) suggest that the additional information pro-
vided to the EvITE controller is never compensated for by the IM controller:
the IM performance plateaus well below the EvITE performance.

These results suggest that one strength of the evolutionary approach is to be
able to gather relevant data in a fast and efficient manner; once these data have
been acquired, then deterministic ML might be in better shape to exploit them
thoroughly. The originality of this coupling is to use evolution to provide infor-
mative data to ML, whereas the mainstream hybridation scheme uses evolution
to optimize the ML solution.

It is worth emphasizing the fact that the EvITE controller can yield good per-
formances also in new arenas, thus featuring some generality property, although
admittedly the arenas used in the 2nd phase are not very different from the one
used in the 1st phase.

Still the possibility of using different environments in the 1st and 2nd phases
opens interesting perspectives, particularly in terms of safe robotic training. For
the sake of a safe in-situ robot training, it makes sense indeed to consider a simple
and dangerless arena to acquire the initial data, and to launch the robot in a new
and possibly more hazardous arena, using the data as prior knowledge to prevent
ormitigate the dangers of blind exploration.Another perspective for further study
is to incrementally revise and specialise the sensor and action clusters considered
by EvITE, along the same lines as in [12]. A third perspective is to involve the user
in the loop along an interactive optimization setting [1], with the goal of achieving
other target behaviors on the top of the exploratory behavior.

References

1. Akrour, R., Schoenauer, M., Sebag, M.: Preference-based policy learning. In:
Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD
2011, Part I. LNCS, vol. 6911, pp. 12–27. Springer, Heidelberg (2011)

Coupling Evolution and Information Theory 861

2. Baranès, A., Oudeyer, P.Y.: R-iac: Robust intrinsically motivated exploration and
active learning. IEEE Transactions on Autonomous Mental Development 1(3),
155–169 (2009)

3. Delarboulas, P., Schoenauer, M., Sebag, M.: Open-ended evolutionary robotics: an
information theoretic approach. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 334–343. Springer, Heidelberg (2010)

4. Duda, P.O., Hart, P.E.: Pattern Classification and Scene analysis. John Wiley and
sons (1973)

5. Heidrich-Meisner, V., Igel, C.: Hoeffding and Bernstein races for selecting poli-
cies in evolutionary direct policy search. In: Int. Conf. on Machine Learning, pp.
401–408 (2009)

6. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey.
The Int. Jal of Robotics Research 32(11), 1238–1274 (2013)

7. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: Crossing the
reality gap in evolutionary robotics. IEEE Trans. on Evolutionary Computa-
tion 17(1), 122–145 (2013)

8. Lehman, J., Risi, S., D’Ambrosio, D.B., Stanley, K.O.: Rewarding reactivity
to evolve robust controllers without multiple trials or noise. Artificial Life 13,
379–386 (2012)

9. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through
the search for novelty. Artificial Life 11, 329 (2008)

10. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406(6799), 974–978 (2000)

11. Liu, W., Winfield, A.F.: Modeling and optimization of adaptive foraging in swarm
robotic systems. The Int. Jal of Robotics Research 29(14), 1743–1760 (2010)

12. Lopes, M., Lang, T., Toussaint, M., Oudeyer, P.-Y.: Exploration in Model-based
Reinforcement Learning by Empirically Estimating Learning Progress. In: NIPS,
pp. 206–214 (2012)

13. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation 20(1), 91–133 (2012)

14. Nolfi, S., Floreano, D., Floreano, D.: Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. MIT Press, Cambridge (2000)

15. Oudeyer, P.Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for au-
tonomous mental development. IEEE Trans. on Evolutionary Computation 11(2),
265–286 (2007)

16. Pfeifer, R., Gomez, G.: Interacting with the real world: design principles for intel-
ligent systems. Artificial life and Robotics 9(1), 1–6 (2005)

17. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision.
The Int. Jal of Robotics Research 27(2), 157–173 (2008)

18. Sutton, R., Barto, A.: Reinforcement learning: An introduction. Cambridge Univ.
Press (1998)

19. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
20. Williams, H., Browne, W.N.: Integration of Learning Classifier Systems with si-

multaneous localisation and mapping for autonomous robotics. In: CEC 2012, pp.
1–8 (2012)

21. Hurst, J., Bull, L., Melhuish, C.: TCS learning classifier system controller on a real
robot. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas,
J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 588–597. Springer,
Heidelberg (2002)

22. Koutnk, J., Cuccu, G., Schmidhuber, J.: Evolving large-scale neural networks for
vision-based reinforcement learning. In: GECCO 2013, pp. 1061–1068 (2013)

Local Optima and Weight Distribution

in the Number Partitioning Problem

Khulood Alyahya and Jonathan E. Rowe

School of Computer Science
University of Birmingham, B15 2TT, UK

{kya020,J.E.Rowe}@cs.bham.ac.uk

http://www.cs.bham.ac.uk

Abstract. This paper investigates the relation between the distribution
of the weights and the number of local optima in the Number Partitioning
Problem (NPP). The number of local optima in the 1-bit flip landscape
was found to be strongly and negatively correlated with the coefficient of
variation (CV) of the weights. The average local search cost using the 1-
bit flip operator was also found to be strongly and negatively correlated
with the CV of the weights. A formula based on the CV of the weights for
estimating the average number of local optima in the 1-bit flip landscape
is proposed in the paper. The paper also shows that the CV of the weights
has a potentially useful application in guiding the choice of heuristic
search algorithm.

Keywords: Combinatorial optimisation, phase transition, partitioning
problem, makespan scheduling, fitness landscape.

1 Introduction

The number partitioning problem (NPP) is a classical problem in theoretical
computer science. It is one of Garey and Johnson’s six basic NP-complete prob-
lems [4]. It has many practical applications such as multiprocessor schedul-
ing. The optimisation version of the problem can be defined as: given a set
A = {a1, . . . , an} of positive integers (weights) drawn at random from the set
{1, 2, ..,M}, the goal is to partition A into two disjoint subsets S, S′ such that
the discrepancy between them |∑ai∈S ai−

∑
ai∈S′ ai| is minimised. A partition

is called perfect, if the discrepancy between the two subsets is 0 when the sum
of the original set is even, or 1 when the sum is odd. Equivalently, the problem
can be viewed as minimising the maximum sum over the two subsets:

f(x) = max

{∑
ai∈A

aixi,
∑
ai∈A

ai(1 − xi)

}
, x ∈ {0, 1}n (1)

The NPP has an easy-hard phase transition, with many perfect partitions with
probability tending to 1 in the easy phase, then the number of perfect partitions
drops to zero with probability tending to 1 in the hard phase. The transition is

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 862–871, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.bham.ac.uk

Local Optima and Weight Distribution in the Number Partitioning Problem 863

determined by the control parameter k = log2 M/n, which corresponds to the
number of bits required to encode the numbers in the set divided by the size
of the set. For log2 M and n tending to infinity, the transition occurs at the
critical value of kc = 1 [2,6]. The pairs of weights that are placed in the same
subset or in opposite subsets in all optimal solutions of an NPP instance, form
the backbone of that instance. There is a very sharp increase in the backbone
size of the optimal solutions in the NPP as one approaches the phase transition
boundary, after which the backbone tends to be complete giving a unique optimal
solution [8].

Theoretical analysis of randomized local search shows that it can be a good
approximation algorithm for the NPP [12]. Generally, when using local search
metaheuristics the average local search cost can vary across problem instances of
the same size by many orders of magnitude. A number of models of local search
cost for various NP-complete problems such as the Traveling Salesman Problem
(TSP), the Boolean Satisfiability Problem (SAT), and the Job-Shop Scheduling
Problem (JSP) [7,13,11], have been developed as functions of the problem fitness
landscape features. These models attempt to provide explanations for some or
ideally all of this variability in the search cost. They also aim to give insights
into why one problem instance is more difficult than the other and how the local
search is influenced by the properties of the landscape.

The phase transition in the NPP provides an explanation for the increase in
the local search cost for problem instances in the hard phase [1], agreeing with the
intuition that having fewer optimal solutions usually yield an increase in the local
search cost. However, there is considerable variability in the average local search
cost for instances in the hard phase that the phase transition fails to account for.
The average local search cost was found to vary by many orders of magnitude
for hard instances drawn from different distributions such as uniform, normal,
negatively and positively skewed distributions [1]. Also, it has been shown in
[9] that the number of local optima is not dependent on the easy-hard phase
transition, which suggests that the control parameter k is not necessarily good
for predicting which problem instances will be easy or hard for local search.

In this paper, we investigate the relation between the distributions of the
weights and the fitness landscape features of the NPP. We examine how the
number of local optima and the average cost of local search are influenced by
the distributions of the weights.

2 Weights Coefficient of Variation and NPP Landscape

Most of the existing analyses of the NPP assume that weights are drawn uni-
formly at random from a given range. Paper [1] shows that when different dis-
tributions are used, there can be large changes in local search performance in
hard instances, most noticeable in the 1-bit flip landscape. These changes are
mostly due to the difference in the number of local optima between instances
drawn from the different distributions. The results shown in [1] suggest that the
variability of the weights is what causes the difference in the number of local

864 K. Alyahya and J.E. Rowe

optima between instances of the NPP. To measure the variability of the weights
we use the coefficient of variation (CV) which provides a measure of relative
variability or dispersion. CV is defined as the ratio of the standard deviation σ
to the mean μ:

CV =
σ

μ
(2)

We conducted a series of experiments in order to test the assumption that
variability of the weights results in different number of local optima. In the
experiments, instances from small problem sizes were considered to allow ex-
haustive enumeration of the entire search space, the problem sizes considered
are n = 12, 14, 16, 18, 20. For each problem size, 700 instances from the hard
phase (k = log2M/n > 1) were randomly generated with different values of CV .

The rest of this section gives an analysis of the obtained experimental results,
focusing on the number of local optima and the average local search cost and how
they correlate with the CV . The following definitions will be used throughout
this paper:

Search Space. The search space X is the finite set of all the candidate so-
lutions. Since the fitness function of NPP is a pseudo-Boolean function the
search space size is 2n. The binary representation of NPP creates a symmetry
in the search space, in the sense that a solution and its bitwise complement
have the same fitness value. Thus, the number of unique solutions is 2n−1.

Neighbourhood. A neighbourhood is a mapping N : X → P (X), that as-
sociates each solution with a set of candidate solutions, called neighbours
which can be reached by applying the neighbourhood operator once. The set
of neighbours of x is called N(x), and x /∈ N(x).
We consider two different neighbourhood operators in this paper: The 1 ham-
ming operator (H1), the neighbourhood using this operator is the set of
points that are reached by 1-bit flip mutation of the current solution x,
hence the neighbourhood size is |N(x)| = n. The second operator is the 1+2
hamming operator (H1+2), the neighbourhood here includes the hamming
one neighbours plus the hamming two neighbours of the current solution x
which can be reached by 2-bits flip mutation, the neighbourhood size for this
operator is |N(x)| = n+ (n(n− 1)/2).

Fitness Landscape. The fitness landscape of a combinatorial optimisation
problem is a triple (X,N, f), where f is the objective function f : X → R,
X is the search space and N is the neighbourhood operator function [10].

Local Optima. A point x ∈ X is a local optimum iff ∀y ∈ N(x), f(y) ≥ f(x).
The number of local optima found in the fitness landscape will be referred
to as m.

2.1 Number of Local Optima

We investigate here if the variability of the weights correlates with the number
of local optima in the NPP landscapes induced by the H1 and H1+2 neigh-
bourhood operators. Figure 1 shows that the local optima fraction of the search

Local Optima and Weight Distribution in the Number Partitioning Problem 865

0 0.5 1 1.5
0

0.1

0.2

n=12
lo

ca
l o

pt
im

a
fr

ac
tio

n
of

 th
e

se
ar

ch
 s

pa
ce

r = −0.89

0 0.5 1 1.5
0

0.1

0.2

n=14

r = −0.87

0 0.5 1 1.5
0

0.1

0.2
n=16

r = −0.86

0 0.5 1 1.5
0

0.1

0.2
n=18

r = −0.86

0 0.5 1 1.5
0

0.1

0.2
n=20

CV

r = −0.85

Fig. 1. Local optima as a fraction of the search space in the H1 landscape versus the
coefficient of variation CV for problem sizes n = 12, 14, 16, 18 and 20 and for 700
instances for each problem size. The correlation coefficients (r) between CV and the
the fraction of the local optima are shown for each plot.

0 0.5 1 1.5
0

0.01

0.02
n=12

lo
ca

l o
pt

im
a

fr
ac

tio
n

of
 th

e
se

ar
ch

 s
pa

ce

r = −0.37

0 0.5 1 1.5
0

0.005

0.01

n=14

r = −0.39

0 0.5 1 1.5
0

0.005

0.01

n=16

r = −0.34

0 0.5 1 1.5
0

5

x 10
−3 n=18

r = −0.27

0 0.5 1 1.5
0

5

x 10
−3 n=20

CV

r = −0.29

Fig. 2. Local optima as a fraction of the search space in the H1+2 landscape versus
the coefficient of variation CV for problem sizes n = 12, 14, 16, 18 and 20 and for 700
instances for each problem size. The correlation coefficients (r) between CV and the
the fraction of the local optima are shown for each plot.

space (m/2n) in the H1 landscape is highly and negatively correlated with the
coefficient of variation.

866 K. Alyahya and J.E. Rowe

The intuition behind the strong correlation between the number of local op-
tima in the H1 landscape and the CV is that, for smaller values of CV , the
similarity of the weights provides many ways to arrange the weights such that
moving one of the weights from one subset to the other does not lead to a bet-
ter solution, resulting in a larger number of local optima in the H1 Landscape.
Contrarily, in instances with larger values of CV , the discrepancy of the weights
enables the same application of the 1-bit flip move operator to lead to a better
solution most of the time, which result in fewer local optima.

Figure 2 shows that the fraction of local optima in the H1+2 landscape has
a weak negative correlation with the CV and slightly higher fractions of local
optima for instances with (0.4 < CV < 0.8). In both landscapes, the fraction
of local optima decreases as n gets larger. The correlation coefficients also get
weaker as the problem size grows, with a faster decay in the correlation between
the CV and the number of local optima in the H1+2 landscape. Higher orders
of n would need to be studied to examine if and how the correlation between
the CV and the number of local optima in both landscapes continue to exist in
larger problem sizes.

2.2 Average Number of Local Optima

The number of local optima typically influences the performance of local search
metaheuristics, and for the NPP it has been shown in [1] that the number of local
optima does indeed influence the local search cost. Given that, it is interesting
to be able to estimate the average number of local optima in the landscape of
a given NPP instance. For instances of the NPP with weights drawn from a
uniform distribution, Ferreira and Fontanari [3] derived the following formula,
using statistical mechanics analysis, for the average fraction of local minima in
the H1 landscape.

〈m〉
2n

=

√
24
π

n−3/2 (3)

Here we propose a generalized formula for estimating the average fraction of
local minima in the H1 landscape of the NPP. The formula does not require
the knowledge of the distribution from which the weights are drawn and only
depends on the CV of the weights and the size of the problem. The proposed
formula is based on the data we observed in figure 1 and it is as follows:

〈m〉
2n

= a exp(−b CV) (4)

Where the values of the coefficients a and b depend on the size of the problem.
Figure 3 shows the estimation of the fraction of the local optima using this
formula and with the values of a and b, determined by the least squares fit
method, as shown in figure 4.

Local Optima and Weight Distribution in the Number Partitioning Problem 867

0 0.5 1 1.5
0

0.1

0.2

n=12
lo

ca
l o

pt
im

a
fr

ac
tio

n
of

 th
e

se
ar

ch
 s

pa
ce

0 0.5 1 1.5
0

0.1

0.2

n=14

0 0.5 1 1.5
0

0.1

0.2
n=16

0 0.5 1 1.5
0

0.1

0.2
n=18

0 0.5 1 1.5
0

0.1

0.2
n=20

CV

Fig. 3. The fraction of Local optima versus the coefficient of variation CV for problem
sizes n = 12, 14, 16, 18 and 20 and for 700 instances for each problem size. The least-
squares fit lines were obtained using Eq. (4) with values of a and b as shown in figure 4
and the r2 values for the regression models ≈ 0.97.

10 12 14 16 18 20 22
0.24

0.26

0.28

0.3
a

n

10 12 14 16 18 20 22
2

2.5

3

3.5

b

n

Fig. 4. The values of the a and b coefficients from Eq. (4) for problem sizes n = 12,
14, 16, 18 and 20, estimated using regression models. The r2 values for the regression
models are 0.96, 0.97, 0.97, 0.96, 0.97 respectively.

2.3 Cost of Local Search

To examine how the cost of finding the optimal solution varies for different val-
ues of CV and to investigate if the coefficient of variation can be used to guide
the choice of local search neighbourhood operator, steepest descent with random

868 K. Alyahya and J.E. Rowe

restart (Algorithm 1) was run with two neighbourhood operators, the H1 opera-
tor and the larger neighbourhood operator H1+2. The algorithmwas run for 1000
times for each instance. The cost of finding the global optima is then calculated
using the number of used fitness evaluations.

Algorithm 1. Steepest Descent with Random Restarts
repeat

Chose x ∈ {0, 1}n, uniformly at random
repeat

choose x′ ∈ N(x), such that f(x′) = miny∈N(x)f(y)
replace x with x′ if f(x′) < f(x)

until f(x) ≤ f(x′)
until f(x) is the optimal solution

Figures 5 and 6 show, respectively, the results of the steepest descent runs
with H1 and H1+2 neighbourhoods operators. The figures show that the average
cost of local search using H1 operator and the CV of the weights are strongly
and negatively correlated, while for the H1+2 the correlation is weakly negative.

0 0.5 1 1.5
10

2

10
3

10
4

n=12

r = −0.8
0 0.5 1 1.5

10
2

10
4

n=14

r = −0.81

0 0.5 1 1.5
10

3

10
4

10
5

n=16

r = −0.78

0 0.5 1 1.5
10

2

10
4

10
6

n=18

r = −0.8

0 0.5 1 1.5
10

4

10
6

n=20

r =−0.77

Fig. 5. The cost of steepest descent search with H1 neighbourhood operator for prob-
lem sizes n = 12, 14, 16, 18 and 20 and for the 700 instances for each problem size.
The x-axes represent the coefficient of variation CV and the y-axes represent the av-
erage number of fitness evaluations used to find the global optimum in log scale. Each
data point represents the average of 1000 runs of steepest descent. The correlation
coefficients (r) between CV and the cost of local search are shown for each plot.

Local Optima and Weight Distribution in the Number Partitioning Problem 869

0 0.5 1 1.5
10

2

10
4

n=12

r = −0.33
0 0.5 1 1.5

10
2

10
4

n=14

r = −0.38

0 0.5 1 1.5
10

3

10
4

10
5

n=16

r = −0.27

0 0.5 1 1.5
10

2

10
4

10
6

n=18

r = −0.29

0 0.5 1 1.5
10

4

10
6

n=20

r = −0.28

Fig. 6. The cost of steepest descent search with H1+2 neighbourhood operator for
problem sizes n = 12, 14, 16, 18 and 20 and for the 700 instances for each problem
size. The x-axes represent the coefficient of variation CV and the y-axes represent
the average number of fitness evaluations used to find the global optimum in log scale.
Each data point represents the average of 1000 runs of steepest descent. The correlation
coefficients (r) between CV and the cost of local search are shown for each plot.

The landscape induced by the H1+2 operator has far less number of local op-
tima than the landscape induced by the H1 operator and the difference between
the number of local optima between the two landscapes is very large for smaller
values of CV . Intuitively, a decrease in the number of local optima should yield a
decrease in local search cost but if this decrease is not large (i.e. if the difference
between the number of local optima between the two landscapes is not large)
then it is possible that the advantage of having less local optima be offset by the
number of fitness evaluations needed to explore the much larger neighbourhood
of the H1+2 operator. To identify the values of CV , where such decrease in the
number of local optima would make the use of H1+2 neighbourhood operator
be more effective than the H1 neighbourhood operator, we compared the per-
formance of the two operators. Figure 7 shows the number of instances where
the performance of the algorithm with the H1 operator was significantly better
than the H1+2 performance, the number of instances where the performance
of the algorithm with the H1+2 operator was significantly better than the H1
performance, and the instances where the two performances were not statisti-
cally significantly different. The Wilcoxon rank-sum test was used to determine
the significance of the differences between the performances of the algorithm
(p < 0.05).

The figure shows that instances with small CV values (CV < 0.5), the per-
formance of the H1+2 operator is better than the H1 operator, which is not

870 K. Alyahya and J.E. Rowe

surprising due to the low number of local optima in the H1+2 landscape and the
very big difference between the number of local optima in the H1+2 landscape
compared to the H1 landscape which suggest that the algorithm probably had
to do far less restarts when using the H1+2 operator. For instances with large
values of CV (CV ≥ 0.5), the performance of the H1 operator is better than
H1+2 operator, even though the number of local optima is less in the landscapes
induced by the H1+2 operator. This could be explained by the large number of
fitness evaluations needed to explore the much larger neighbourhood of the H1+2
operator. These results show that the CV of the weights has a potentially useful
application in guiding the selection of the most suitable neighbourhood operator
for a given NPP instance.

0

50

100

CV

n=12

H1 better
H1+2 better
Draw

0

50

100
n=14

0

50

100
n=16

0

50

100

[0
.1

−
.0

3)

[0
.3

−
0.

5)

[0
.5

−
0.

7)

[0
.7

−
0.

9)

[0
.9

−
1.

1)

[1
.1

−
1.

3)

[1
.3

−
1.

6)

n=18

0

50

100

CV

[0
.1

−
.0

3)

[0
.3

−
0.

5)

[0
.5

−
0.

7)

[0
.7

−
0.

9)

[0
.9

−
1.

1)

[1
.1

−
1.

3)

[1
.3

−
1.

6)

n=20

Fig. 7. Coefficient of variation CV against number of instances steepest descent with
H1 neighbourhood preformed significantly better, number of instances steepest descent
with H1+2 neighbourhood preformed significantly better, and instances where the
performance of the two neighbourhood operators was not significantly different. For
each problem instance steepest descent was run for 1000 times. The Wilcoxon rank-
sum test was used to determine the significance of the differences.

3 Conclusions

In this paper, we examined how the variability of the weights influences the NPP
landscape by looking at how the landscape features of the NPP change with the
different values of the coefficient of variation (CV) of the weights. The CV of
the weights can be easily calculated for a given instance of NPP, and does not
require the knowledge of the distribution from which the weights are drawn. We
found that the number of local optima and the average cost of local search in
the H1 landscape are strongly and negatively correlated with the CV . For the
landscapes induced by the H1+2 operator, we found that both the number of

Local Optima and Weight Distribution in the Number Partitioning Problem 871

local optima and the average search cost have a weak negative correlation with
the CV . We also showed what could be a practical use of the CV of the weights
for guiding the choice of the move operators of local search heuristics.

We proposed a formula to estimate the average number of local optima in
the H1 landscape that depends only on the problem size and the CV of the
weights, exploiting the strong correlation between the CV and the number of
local optima in the H1 landscape. We still need as future work to look at larger
problem sizes to be able to predict the relation between the two coefficients (a
and b) in the formula and the size of the problem. For that we are going to use
some sampling techniques to estimate the number of local optima [5].

References

1. Alyahya, K., Rowe, J.E.: Phase transition and landscape properties of the num-
ber partitioning problem. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS,
vol. 8600, pp. 206–217. Springer, Heidelberg (2014)

2. Borgs, C., Chayes, J., Pittel, B.: Phase transition and finite-size scaling for the
integer partitioning problem. Random Structures & Algorithms 19(3-4), 247–288
(2001)

3. Ferreira, F.F., Fontanari, J.F.: Probabilistic analysis of the number partitioning
problem. Journal of Physics A: Mathematical and General 31(15), 3417 (1998)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of books in the mathematical sciences. W. H. Freeman
(1979)

5. Garnier, J., Kallel, L.: How to detect all maxima of a function. In: Theoreti-
cal Aspects of Evolutionary Computing. Natural Computing Series, pp. 343–370.
Springer, Heidelberg (2001)

6. Mertens, S.: A physicist’s approach to number partitioning. Theoretical Computer
Science 265(1-2), 79–108 (2001)

7. Prügel-Bennett, A., Tayarani-Najaran, M.: Maximum satisfiability: Anatomy of
the fitness landscape for a hard combinatorial optimization problem. IEEE Trans-
actions on Evolutionary Computation 16(3), 319 (2012)

8. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: IJCAI,
pp. 254–259 (2001)

9. Stadler, P.F., Hordijk, W., Fontanari, J.F.: Phase transition and landscape statis-
tics of the number partitioning problem. Physical Review E 67(5), 056701 (2003)

10. Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comments on The-
oretical Biology 8(4-5), 389–431 (2002)

11. Watson, J.P., Whitley, L.D., Howe, A.E.: Linking search space structure, run-time
dynamics, and problem difficulty: A step toward demystifying tabu search. J. Artif.
Int. Res. 24(1), 221–261 (2005)

12. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005)

13. Zhang, W.: Configuration landscape analysis and backbone guided local search.:
Part i: Satisfiability and maximum satisfiability. Artificial Intelligence 158(1), 1–26
(2004)

Quasi-Stability of Real Coded Finite Populations

Jarosław Arabas and Rafał Biedrzycki

Institute of Electronic Systems, Warsaw University of Technology, Poland
{jarabas,rbiedrzy}@elka.pw.edu.pl

Abstract. This contribution analyzes dynamics of mean and variance
of real chromosomes in consecutive populations of an Evolutionary Al-
gorithm with selection and mutation. Quasi-stable state is characterized
with an area in which population mean and variance will remain roughly
unchanged for many generations. Size of the area can be indirectly es-
timated from the infinite population analysis and is influenced by the
population size, selection type and parameter, and the mutation vari-
ance. The paper gives formulas that define this influence and illustrates
them with numerical examples.

Keywords: Population diversity, response to selection, quasi-stability.

1 Introduction

Quasi-stability of populations is a state of an Evolutionary Algorithm (EA) when
populations fluctuate in the same area of the search space for many consecutive
generations. In effect, although the actual mean and variance of position of chro-
mosomes are variable, they fluctuate around characteristic values which do not
change. Expected values of population mean and variance have been analyti-
cally derived in [1] assuming that the fitness function is Gaussian (for fitness
proportionate selection) or odd and concave (for other selection schemes).

Dynamics of the EA is usually put in the context of convergence or expected
hitting time. Here another perspective is taken, where more attention is paid to
the population diversity. Several authors have already taken this perspective be-
fore in the area of real coded EAs. For example, Beyer and Deb [2] analyzed the
dynamics of the population mean and variance assuming a “flat fitness” model
(identical selection probabilities) and various crossover schemes, without muta-
tion. They identified a risk for an EA with identical selection probabilities that
the population variance may collapse or blow up if the crossover parameters
are improperly set and they came up with admissible levels of these parame-
ters. They have also performed similar analysis for the Evolution Strategy for
the flat fitness. Works of Arnold have gone in a similar direction. He considered
the dynamics of central moments of the population distribution for the Evolu-
tion Strategy, assuming a random fitness and mixtures of a deterministic fitness
function and noise [3,4].

An important role in the analysis of EA dynamics in real spaces plays the
infinite population model introduced by Qi and Palmieri [5]. They considered the

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 872–881, 2014.
c© Springer International Publishing Switzerland 2014

Quasi-Stability of Real Coded Finite Populations 873

dynamics of populations assuming that they are infinite. This allowed to apply
deterministic equations to transform probability density functions of consecutive
populations. Their results have been adopted by Karcz-Duleba to analyze the
dynamics of populations for functions with a single optimum and with two local
optima [6].

In this paper we use results of the population diversity analysis based on
infinite population model which have been published in [1] for various types of
selection, with and without crossover, with and without elitism. We show that
the quasi-stable behavior of an finite population EA can be well explained by
this model.

2 Subject of Analysis

We consider a simple EA (see Fig. 1) which combines selection and mutation
to maximize a fitness function q : R → R. The algorithm in the t-th genera-
tion is characterized by the base population P t which contains μ individuals.
Each individual P t

i is a real number. In each generation, a population Rt of re-
produced individuals is created by selecting with replacement individuals from
the population P t. Each reproduced individual Rt

i undergoes Gaussian mutation
with variance vm and yields an offspring which becomes the i-th member of the
base population for the next generation. The algorithm is stopped after reaching
a specified number of generations T .

initialize(P 0)
evaluate(P 0)
for t = 1 to T do

for i = 1 to μ do
Rt

i ← P t
j where j ←select(P t)

P t+1
i ← Rt

i +M t
i where M t

i ∼ N(0, vm)
end for
evaluate(P t+1)

end for

Fig. 1. Outline of the EA under consideration

Empirical moments of the population P t, the mean P̄ t and the sample variance
s2(P t), are defined as

P̄ t =
1
μ

μ∑
i=1

P t
i s2(P t) =

1
μ− 1

μ∑
i=1

(P t
i − P̄ t)2 (1)

Population P t can be characterized by its state ut = [P̄ t, s2(P t)] which is defined
as a pair of mean and sample variance of chromosomes contained by P t. Thus a
single EA run generates a trajectory of states ut.

874 J. Arabas and R. Biedrzycki

The infinite population models have been used to analyze expected values of
empirical moments of populations [1,6]. Infinite population size facilitates the
analysis since the transformation state ut to ut+1 is deterministic according to
equations

mt+1
P = mt

R, vt+1
P = vtR + vm (2)

where mt
R and vtR are the expected value and variance of reproduced chromo-

somes

mt
R =
∫ ∞

−∞
xf t

R(x)dx, vtR =
∫ ∞

−∞
(x−mt

R)
2f t

R(x)dx (3)

and f t
R is the p.d.f. of reproduced points provided that P t is infinite and dis-

tributed with expectation mt
P and variance vtP . If the fitness function is unimodal

and even then iteration of equations (2) yields stable values mP and vP which
have been derived in [1] for various types of selection, with and without crossover,
with and without elitism. In general, distribution of f t

P may be different than
normal. Yet, as it has been shown in [1], values of mP and vP can be analytically
derived with a small error assuming normality of f t

P .

3 Finite Populations Generated with Stable Expectation
and Variance

For a considered EA, populations will never settle down in any position, since
state ut+1 relates to ut in a stochastic fashion. Nevertheless, it may be usually
observed that populations will fluctuate for many generations in a certain area.
In effect, mean values of the population mean and variance in consecutive pop-
ulations will agree with values predicted from the infinite population model, as
it has been shown in [1]. On the other hand, if the population size is finite and
variance of chromosomes is bounded, then stabilization of populations will be ob-
served for functions that are not necessarily unimodal — it is only necessary that
fitness function is unimodal in sufficiently large neighborhood of local maximum
which is covered by all possible locations of populations. Size of this neighbor-
hood can be predicted by analyzing the distribution of mean and variance of
finite size populations which are generated by the EA, whose stable expectation
and variance have been predicted with the infinite population model.

The population P t is modeled as a vector of variates of random variables
P1, . . . Pμ which generate chromosomes P t

1 , . . . P
t
μ. Since each chromosome is

generated according to the same procedure, variables P1, . . . Pμ are identically
distributed. A stable state uP = [mP , vP] of an infinite population model is
assumed. This means that all populations are approximated as if they were gen-
erated with the normal distribution with expectation mP and variance vP .

Empirical moments of P t, defined by equation (1), are estimators of theoret-
ical moments. Since the contents of population is random, empirical moments
themselves are random variables. It holds

E[P̄ t] = mP , E[s2(P t)] = vP (4)

Quasi-Stability of Real Coded Finite Populations 875

where E[·] denotes the expected value. Further on, it is assumed that mP = 0
to simplify notation without generality loss. If the chromosomes were indepen-
dent and normally distributed then the population mean would be normally
distributed with variance V [P̄ t] = mP /μ and the population variance would be
chi-square distributed with variance V [s2(P t)] = 2vP /(μ− 1).

Chromosomes contained by the population P t result from selection with re-
placement and mutation of chromosomes from P t−1. For this reason, it is pos-
sible that a pair of chromosomes P t

i , P
t
j ∈ P t was generated by mutation of

the same parent reproduced from the population P t−1. Therefore random vari-
ables P1, . . . Pμ which generate populations are not independent. Variance of the
population mean is then defined as

V [P̄ t] = E

⎡⎣ 1
μ2

μ∑
i=1

μ∑
j=1

P t
i P

t
j

⎤⎦ = E

⎡⎣ 1
μ2

μ∑
i=1

(P t
i)

2 +
2
μ2

μ−1∑
i=1

μ∑
j=i

P t
i P

t
j

⎤⎦
=

1
μ
E[(P t)2] +

μ− 1
μ

E[P t
i P

t
j |i �= j] =

1
μ
vP +

μ− 1
μ

rtP (5)

where E[·|·] is the conditional expected value and rtP is the covariance coefficient
between any pair of variables P t

i , P
t
j .

In a pair of populations P t and P t+1, any point P t+1
i will result from mutation

of a reproduced point, hence P t+1
i = Rt

k + M t
i , where M t

i is the i-th mutation
in generation t which is independent of all other mutations; therefore

rt+1
P = E

[
(Rt

i +M t
i)(R

t
j +M t

j)
]
= E

[
Rt

iR
t
j

]
(6)

To derive value of rt+1
P consider a pair of distinct chromosomes P t+1

i and P t+1
j .

Observe that two scenarios are possible. In the first scenario, which holds with
probability a, both chromosomes will be mutants of the same reproduced chro-
mosomes Rt

k. In the second scenario, their parents will be distinct:

rt+1
P = aE

[
(Rt)2

]
+ (1− a)E

[
Rt

iR
t
j |i �= j

]
, a =

μ∑
k=1

(ps(k))2 (7)

Symbol ps(k) stands for the selection probability of the k-th chromosome. Value
of E

[
(Rt)2

]
can be computed by observing that each chromosome from Rt

results from sampling with replacement from P t.Hence the variance of points
which are sampled from P t for reproduction can be derived from the weighted
variance formula:

E
[
(Rt)2

]
= E

[
μ∑

k=1

(ps(k))2(P t
k)

2

]
= aE[(P t)2] (8)

876 J. Arabas and R. Biedrzycki

Similar observations can be made for the covariance of points sampled from Rt:

E
[
Rt

iR
t
j |i �= j

]
= E

[
2
μ−1∑
k=1

μ∑
l=k

(ps(k)ps(l)P t
kP

t
l)

]
= bE

[
P t
kP

t
l |k �= l

]
(9)

b = 2
μ−1∑
k=1

μ∑
l=k

ps(k)ps(l) (10)

Values of E[(P t)2] and E[P t
kP

t
l |k �= l] are the weighted sample variance and

covariance values with weights that are equal selection probabilities, hence

E[(P t)2] = (1− a)vtP , E[P t
kP

t
l |k �= l] = (1− a)rtP (11)

where vtP and rtP are the (theoretical) variance and covariance of a random
variable which generates the population P t. Then (7) can be rewritten as

rt+1
P = a2(1 − a)vtP + b(1− a)2rtP (12)

In the stable state it holds rt+1
P = rtP = rP which allows to define rP as

rP =
a2(1− a)

1− b(1− a)2
vP (13)

Equation (5) can be transformed to

V [P̄ t] =
1
μ′ vP , μ′ =

1− b(1− a)2

1− b(1− a)2 + a2(1− a)(μ− 1)
(14)

Value of μ′ will be called the effective population size since it leads to formula for
the variance of the population mean as if the chromosomes were independent.
Then the empirical variance is chi-square distributed with the μ′ degrees of
freedom and its variance equals approximately

V [s2(P t)] ≈ 2(V [X])2

μ′ − 1
(15)

Example. Above considerations are validated with the following experiment for
the fitness function q(x) = exp(−x2) and the EA with binary tournament selec-
tion, population size μ = 100 and Gaussian mutation with variance vm = 1. The
EA was run 100 times, each run took T = 104 generations. Populations were ini-
tialized with standardized normal distribution. For each run, the series of states
ut = [P̄ t, s2(P t)], which describe dynamics of populations, was characterized
with their mean and empirical variance:

ū =
[
P̄ t, s2(P t)

]
, s2(u) =

[
s2(P̄ t), s2(s2(P t))

]
(16)

Quasi-Stability of Real Coded Finite Populations 877

For the binary tournament selection, values of a and b can be computed observing
that ps(i) = (2μ− 2i+ 1)/(μ2) — see [1]:

a =
μ∑

i=1

(
2μ− 2i+ 1

μ2

)2

=
4μ2 − 1
3μ3 , b =

3μ4 − 8μ3 + 11μ− 6
3μ4

which yields the approximate effective population size μ′ = 3
4μ.

Fig. 2 contains box-and-whisker plots of mean and variance of population
empirical moments. Expected values of moments that have been predicted in
previous section are given in corresponding plots. Mean relative error of pre-
diction variance of moments equals 0.97% for V [¯(P t)] and 5.58% for V [s2(P t)].
If independence of chromosomes in populations were assumed then the corre-
sponding error values would equal 24% for V [¯(P t)] and 21% for V [s2(P t)].

−
0.

00
6

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4

m
m

mm=

0.
02

00
0.

02
05

0.
02

10
0.

02
15

vm

vm=

1.
56

5
1.

57
0

1.
57

5
1.

58
0

m
v

mv=

0.
06

0
0.

06
1

0.
06

2
0.

06
3

0.
06

4
0.

06
5

vv

vv=

Fig. 2. Box and whisker plots of mean and variance values of population mean and
variance

4 Quasi-Stability of Finite Populations

For a realistic EA it is impossible to expect its stability in a strict sense since
each state is affected by mutation. For this reason it is impossible to find a
combination of population mean and variance values which will not be changed
in the next generation. The quasi-stability discussed here is defined as follows.

Consider a set of EA states U(u∗, p), which is characterized by a state u∗, and
a p-value p. The set U(u∗, p) is quasi-stable when the condition is satisfied

∀ut ∈ U(u∗, p) E[ut+1] ∈ U(u∗, p) (17)

where E[ut+1] =
[
E[P̄ t+1], E[s2(P t+1)]

]
is the vector of expected values of the

next state. In other words, if the EA population is characterized by the state
ut ∈ U(u∗, p) then the next state should not tend to leave the set U(u∗, p).

878 J. Arabas and R. Biedrzycki

Bounds on Quasi-Stable Population State. Equations (4), (14) and (15)
can be used to define the set U(u∗, p) by defining ranges of values of population
mean and variance where their actual values can be found with certain proba-
bility. If the population distribution is normal then values of P̄ t are normally
distributed and s2(P t) is chi-square distributed with μ′ − 1 degrees of freedom.
For each population state

[
P̄ t, s2(P t)

] ∈ U(u∗, p) it holds

m∗ − α(v∗, μ′, p) ≤ P̄ t ≤ m∗ + α(v∗, μ′, p) (18)

β(v∗, μ′, p) ≤ s2(P t) ≤ γ(v∗, μ′, p) (19)

where p is the probability of observing values of population mean or variance
outside the set U(u∗, p). Values of α, β, γ are defined as upper and lower quantiles
of normal and chi-square distributions for the probability p/2:

α(v, μ, p) =
√

v

μ
·Qn

(
1− 1

2
p

)
(20)

β(v, μ, p) =
v ·Qc

(1
2p, μ− 1

)
μ− 1

(21)

γ(v, μ, p) =
v ·Qc

(
1− 1

2p, μ− 1
)

μ− 1
(22)

where Qn, Qc(·, k) represent the quantile generation functions for the normal
and chi-square distribution with k degrees of freedom, respectively.

Testing Quasi-Stability for Finite Populations. For finite populations,
if the population state ut = [P̄ t, s2(P t)] is known then it is possible to predict
expected values of the next population state, E[ut+1], without knowing the exact
contents of P t. The prediction is based on an assumption that P t+1 contains
points which are generated randomly with expectation P̄ t and variance s2(P t):

E[P̄ t+1] = P̄ t +
√

s2(P t) · φ(ut) (23)

E[s2(P t+1)] = s2(P t) · θ(ut) + vm (24)

Symbol φ(u) is called the Response to Selection in Mean (RSM) and indicates
the expected change of the population mean in effect of selection

φ(u) =
1√
v

∫ ∞

−∞
(x−m)c(x)dx (25)

where c(x) stands for the p.d.f. of chromosomes reproduced from a popula-
tion which is normally distributed with expectation m, variance v and density
gm,v(x). Symbol θ(u) denotes the Response to Selection in Variance (RSV) which
is the degree of the population variance reduction after selection

θ(u) =
1
v

∫ ∞

−∞
(x −m)2c(x)dx (26)

Note that RSM and RSV depend on selection since c(x) depends on it.

Quasi-Stability of Real Coded Finite Populations 879

Response to selection, which has been originally defined as the expected
change in fitness of individuals before and after selection, is a concept which
has been introduced to the evolutionary computation field by Muehlenbein [7]
who adopted it from the breeding science in order to define the Breeder Genetic
Algorithm. Here, instead of analyzing fitness of individuals, we concentrate on
changes of mean and variance of chromosomes processed by the EA to analyze
selection effects on the level of genotypes rather than fitness.

Equations (14), (18) and (19) allow for formulating the test of quasi-stability
of a set of states. An area U(u∗, p) is quasi-stable with mean m∗ and variance v∗

when for each population P characterized by the state u = (P̄ , s2(P)) ∈ U(u∗, p)
it holds

− α(v∗, μ′, p) ≤ P̄ −m∗ + φ(u) · √v ≤ α(v∗, μ′, p) (27)

β(v∗, μ′, p) ≤ θ(u) · s2(P) + vm ≤ γ(v∗, μ′, p)) (28)

Example. Consider a fitness function which is defined as a composition of two
Gaussian hills1— see Fig. 3.

q(x) = 5 exp(−x2/2) + 4 exp(−(x− 9)2/8) (29)

−2 0 2 4 6 8 10

0
1

2
3

4
5

x

q(
x)

Fig. 3. Plot of the Galar function

Consider binary tournament selection. From [1] it follows that c(x) is given by

c(x) =
∫
q(y)<q(x)

gm,v(y)dy · gm,v(x) (30)

which allows to define α, β and γ.
Typical dynamics of the population mean and variance of single run of an EA

with μ = 100 chromosomes which optimizes the Galar functions is illustrated
in Fig. 4 for few characteristic values of the mutation variance vm. In all cases
the population was initialized with clones of the point 0 and the EA was run
for 104 generations. In each plot a point represents state ut of a population P t

and a rectangle is the set U(u∗
P , p) which is a candidate for the quasi-stability

area whose limits have been computed putting the stable variance prediction vP

1 This function was introduced by R.Galar and discussed e.g. in [8].

880 J. Arabas and R. Biedrzycki

yielded by the infinite population model [1] into formulas (27), (28). Value m∗
P

has been determined by solving the equation φ(u) = 0 with respect to m, as-
suming that v = vP .

When vm = 0.01, states of populations stay, except in a few observations, in
the quasi-stability rectangle that relates to the global maximum mP ≈ 0. For
vm = 1.18 the population state mean makes incidental “excursions” from this
quasi-stability area towards states characterized with larger mean and variance,
but then it returns.

When vm = 1.3, the population state remains for a number of generations
in the quasi-stability area around mP ≈ 0. Then the population state shifts
towards the quasi-stability area corresponding to the second local maximum of
the fitness at mP ≈ 9. There it remains stable for the rest of the simulation.
Note that in this case, populations changed their position despite of the fact that
the first quasi-stability area corresponds with the global maximum of the fitness
function. This is an illustration of the “survival of the flattest” effect [9] which
consists in preference to chromosomes whose fitness values are little sensitive to
changes of their position in the chromosomes space.

For vm = 10 a single quasi-stable area exists and then mP ≈ 7. Note that
this value differs significantly from position of any local maximum. Note that al-
though the assumption about unimodality of the fitness function is not satisfied,
the population variance values, which have been predicted in [1], yield correct
stability margins and properly explain quasi-stability of populations.

a)
−0.006 −0.004 −0.002 0.000 0.002 0.004 0.006

0.
00

01
0

0.
00

01
5

0.
00

02
0

0.
00

02
5

m

v

b)
0 1 2 3 4

0
5

10
15

20
25

m

v

c)
0 2 4 6 8 10

5
10

15
20

25

m

v

d)
0 2 4 6 8 10 12

10
0

15
0

20
0

25
0

m

v

Fig. 4. Plots of the states of populations which were started at 0 and were run for
104 generations for the following mutation variance values: a)vm = 0.01, b)vm = 1.18,
c)vm = 1.3, d) vm = 10; rectangles represent quasi-stability areas for p-value p = 10−5

Quasi-Stability of Real Coded Finite Populations 881

5 Closing Remarks

In many engineering applications stability of a system is usually a desired fea-
ture. For the EA, quasi-stability is a mixed blessing. On one hand, quasi-stability
allows for better exploitation of area U(uP , p) which may contain some local op-
timum nearby its middlepoint. On the other hand, if populations are quasi-stable
for a very low p-value in an area that relates to an optimum of the fitness func-
tion, then it is hardly possible for the EA to switch to some other quasi-stability
area that relates to another local optimum. Such quasi-stability is undesired
since the resulting EA will be a poor global optimizer. This suggests that a
method that tracks populations to detect quasi-stability and to break it may be
considered as a yet another adaptation method.

It is interesting how the presented results will generalize in real space with
many dimensions. Intuitively, response to selection functions are equivalents of
derivatives and they may be generalized to a for of a “gradient” by computing
the RSM and RSV values for each dimension separately. Then the quasi-stability
margins would be defined for each dimension separately, provided that a proper
infinite population model to predict the stable variance is developed. These di-
rections of research define the scope of future work.

References

1. Arabas, J.: Approximating the genetic diversity of populations in the quasi-
equilibrium state. IEEE Transactions on Evolutionary Computation 16(5), 632–644
(2012)

2. Beyer, H.G., Deb, K.: On self-adaptive features in real-parameter evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation 5(3), 250–270 (2001)

3. Arnold, D.V., Beyer, H.G.: On the benefits of populations for noisy optimization.
Evolutionary Computation 11(2), 111–127 (2003)

4. Arnold, D.V.: Noisy Optimization with Evolution Strategies. Kluwer Academic Pub-
lishers (2002)

5. Qi, X., Palmieri, F.: Theoretical analysis of evolutionary algorithms with an infi-
nite population size in continuous space part I: Basic properties of selection and
mutation. IEEE Transactions on Neural Networks 5(1), 102–119 (1994)

6. Karcz-Dulęba, I.: Dynamics of infinite populations evolving in a landscape of uni and
bimodal fitness functions. IEEE Transactions on Evolutionary Computation 5(4),
398–409 (2001)

7. Muehlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the Breeder Genetic
Algorithm – I. continuous parameter optimization. Evolutionary Computation 1,
25–49 (1993)

8. Chorazyczewski, A., Galar, R.: Visualization of evolutionary adaptation in Rn. In:
Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 659–668. Springer,
Heidelberg (1998)

9. Wilke, C., et al.: Evolution of digital organisms at high mutation rates leads to
survival of the flattest. Nature 412(6844), 331–333 (2001)

On the Use of Evolution Strategies

for Optimization on Spherical Manifolds

Dirk V. Arnold

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, B3H 4R2, Canada

dirk@cs.dal.ca

Abstract. We study the behaviour of evolution strategies applied to
a simple class of unimodal optimization problems on spherical mani-
folds. The techniques used are the same as those commonly employed
for the analysis of the behaviour of evolution strategies in Euclidean
search spaces. However, we find that there are significant differences in
strategy behaviour unless the vicinity of an optimal solution has been
reached. Experiments with cumulative step size adaptation reveal the
existence of metastable states associated with large step sizes, which can
preclude reaching optimal solutions.

1 Introduction

The vast majority of work on real-valued evolutionary optimization is concerned
with Euclidean search spaces. However, there are important applications where
the search domain is not Euclidean but a more general Riemannian manifold in-
stead. See [6] for an introduction to Riemannian geometry. Qi et al. [10] give two
broad classes of applications for optimization on manifolds: “equality-constrained
optimization problems where the constraints specify a submanifold of RN ; and
problems where the objective function has continuous invariance properties that
we want to eliminate for various reasons”. Our own interest in optimization
on manifolds is motivated by the need to optimize quaternion variables, which
commonly arises in 3D registration tasks where quaternion variables are used to
encode orientation.

Several applications of evolutionary algorithms to optimization on Riemann-
ian manifolds other than Euclidean spaces can be found in the literature. An
early instance is work by Kissinger et al. [9], who propose a variant of evolu-
tionary programming for optimization involving quaternion variables. Arguably
the most sophisticated evolutionary approach to optimization on general Rie-
mannian manifolds is that by Colutto et al. [5], who propose a variant of covari-
ance matrix adaptation evolution strategies (CMA-ES) [7] for optimization on
Riemannian manifolds. Their algorithm uses parallel transport, a tool for trans-
porting geometrical data along smooth curves, to transform search paths and
covariance matrices between iterations. They find that their approach more ef-
fectively solves a two-dimensional multimodal optimization problem than restart

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 882–891, 2014.
c© Springer International Publishing Switzerland 2014

On the Use of Evolution Strategies for Optimization 883

variants of gradient based and Newton-Armijo methods proposed by Yang [12]
for optimization on manifolds. However, they also observe that their strategy
can (infrequently) be observed to fail to locate the optimal solution to a simple
unimodal optimization problem on spherical manifolds.

The aim of this paper is to develop an analytically based understanding of
the behaviour of a simplified variant of the algorithm of Colutto et al. [5] that
adapts its global step size using cumulative step size adaptation, but does not
adapt the full covariance matrix. We derive results characterizing the behaviour
of the algorithm when applied to a class of unimodal optimization problems on
spherical manifolds, both providing an explanation for the observed inability to
converge to the optimal solution in some instances and suggesting how to avoid
this situation.

2 Problem and Algorithm

Let M be a Riemannian manifold with tangent space TpM at point p ∈ M .
We consider the case that M = SN−1 (i.e., the unit (N − 1)-sphere defined by
SN−1 = {x ∈ RN | ‖x‖ = 1}). Note that the universal cover of the 3D rotation
group SO(3) is diffeomorphic to S3, and that problems on spherical manifolds
thus naturally arise in combination with the optimization of orientations in 3D.
We consider the class of optimization problems f : SN−1 → R that possess a
unique optimal solution and where objective function values depend only on the
distance from that solution and vary strictly monotonically with it. By choosing a
coordinate system such that the optimal solution is located at x = (1, 0, . . . , 0)T

and taking into account that evolution strategies perform selection based only
on comparisons of objective function values, we can without loss of generality
consider objective function

f(x) = x1 (1)

where x = (x1, x2, . . . , xN)T ∈ SN−1 and the task is maximization. Effectively
the same problem has been used by Colutto et al. [5] in the experimental evalua-
tion of their algorithm. Arguably, Eq. (1) constitutes the analogue of the “sphere
model” introduced by Rechenberg [11] for the study of the behaviour of evolution
strategies in Euclidean spaces.

The CMA-ES for optimization on Riemannian manifolds proposed by Colutto
et al. [5] generates mutation vectors in the tangent space at the current popu-
lation centroid, and it uses the Riemannian exponential map to map them onto
the manifold. Parallel transport is used as a means for mapping search paths and
the covariance matrix of the mutation distribution from the tangent space at the
current population centroid to that at the next. The algorithm considered here
is in essence the same, with the single major difference that in order to admit
an analytically based investigation, rather than adapting the entire covariance
matrix, only the global step size is adapted. A single iteration of the algorithm
is given in Fig. 1. The population size parameters μ and λ are positive integers
with μ < λ. Cumulation parameter c ∈ (0, 1] and damping parameter D ∈ R+

884 D.V. Arnold

Input: population centroid x ∈ M , mutation strength σ ∈ R+, search path
s ∈ TxM

1. Generate offspring candidate solutions

y(i) = expx

(
σz(i)

)
i = 1, . . . , λ

where the mutation vectors z(i) are standard normally distributed in TxM
and expx(·) denotes the Riemannian exponential map.

2. Compute f(y(i)) for i = 1, . . . , λ. Let (k;λ) denote the index of the offspring
candidate solution with the kth largest objective function value and

z(avg) =
1
μ

μ∑
k=1

z(k;λ).

3. Update the search path according to

s← (1− c)s+
√

μc(2− c)z(avg).

4. Update the population centroid according to

x← expx

(
σz(avg)

)
and use parallel transport to transform the search path from the old popula-
tion centroid to the new one.

5. Update the mutation strength according to

σ ← σ exp
(‖s‖2 −N

2DN

)
.

Fig. 1. Single iteration of the strategy for optimization on Riemannian manifolds

are constants. After initialization (to be discussed below), the algorithm in Fig. 1
is iterated until a stopping condition is met.

Regarding the implementation of the algorithm for the case that M = SN−1,
sampling standard normally distributed mutation vectors in TxS

N−1 can be
accomplished by sampling standard normally distributed mutation vectors w in
RN and projecting them onto the tangent space TxS

N−1 according to

z = w − 〈x,w〉x (2)

where 〈·, ·〉 denotes the inner product. The Riemannian exponential map expx(·) :
TxM → M for the case that M = SN−1 is described by

expx(σz) = x cos(σ‖z‖) + z
sin(σ‖z‖)

‖z‖ . (3)

On the Use of Evolution Strategies for Optimization 885

Finally, Huckemann et al. [8] show that parallel transport on spherical manifolds
is accomplished for x �= ±x′ by

w′ = w− 〈w,v〉 [(1− 〈x,x′〉)v + 〈v,x′〉x] (4)

where
v =

x′ − 〈x,x′〉x
‖x′ − 〈x,x′〉x‖ (5)

and w′ is the parallel transplant of w ∈ TxS
N−1 to Tx′SN−1.

3 Analysis

In order to analyze the behaviour of the algorithm thus described when applied
to the class of problems defined by Eq. (1) we first consider single iterations and
determine the expected step. In analogy to related work in Euclidean spaces [11,
2] we then obtain simpler expressions by making the assumption that the steps
that the strategy takes are small. It will be seen that that assumption is a valid
one to make only if the strategy has reached the vicinity of the optimal solution.
Finally, we consider the multi-iteration behaviour of the algorithm.

3.1 Large-Step Behaviour

Considering a single iteration of the algorithm described in Fig. 1, by choosing
the coordinate system appropriately we can without loss of generality assume
that x = (x1,

√
1− x2

1, 0, . . . , 0)
T. From Eq. (1) with Eq. (3), the objective

function value of offspring candidate solution y = expx(σz) is

f(y) = x1 cos(σ‖z‖) + z1
sin(σ‖z‖)

‖z‖ . (6)

The lengths ‖z‖ of mutation vectors are χN−1-distributed with mean lz =√
2Γ (N/2)/Γ ((N−1)/2), which for large N is well approximated by

√
N , and a

coefficient of variation that goes to zero as N increases. The impact of variations
in ‖z‖ on offspring objective function values thus decreases with increasing di-
mension N . The ordering of the offspring by objective function values in Step 2 of
the algorithm in Fig. 1 will thus increasingly be an ordering by values of z1. From
Eq. (2), z1 = (1 − x2

1)w1 −
√
1− x2

1x1w2, where w1 and w2 are independently
standard normally distributed. Mutation vector component z1 is thus normally
distributed with mean zero and variance 1 − x2

1. The selected z1-components
are the μ largest order statistics of a sample of normally distributed random
variates, and their expected average according to [2] equals

E
[
z
(avg)
1

]
= sgn (sin(σ‖z‖))

√
1− x2

1cμ/μ,λ (7)

where cμ/μ,λ denotes the progress coefficient. Defining the progress rate

ϕ = E
[
f
(
expx

(
σz(avg)

))]
− f(x) (8)

886 D.V. Arnold

as the expected improvement in objective function value in a single iteration, it
follows from Eq. (7) that for large N

ϕ = sgn (sin(σ‖z‖)) sin(σ‖z
(avg)‖)

‖z(avg)‖
√
1− x2

1cμ/μ,λ −
[
1− cos(σ‖z(avg)‖)

]
x1 (9)

approximately holds. As z(avg) is the average of μ vectors N − 2 of the N − 1
components of which are random and uncorrelated, for large N the expected
length of z(avg) can be approximated by lz/

√
μ [2].

The left hand side of Fig. 2 compares predictions from Eq. (9) with ‖z‖
and ‖z(avg)‖ replaced with their expected values with measurements made in
one-iteration experiments of the algorithm for several values of N . Values of
x1 ∈ {−0.5, 0.2, 0.9} have been chosen as representatives of situations where
the search is at a great distance, an intermediate distance, and in relative prox-
imity to the optimal solution and thus of different stages in the optimization
process. Clearly, the accuracy of the predictions improves with increasing N
and decreases with increasing σ. The primary reason for the inaccuracies are
variations in the length of mutation vectors. In low dimensions and for large
mutation strengths, selection is increasingly on the basis of the length of the
mutation vectors. Nonetheless, it is clear from the figure that the dependence
of the progress rate on the mutation strength differs markedly from that for
the Euclidean sphere model, where the progress rate after an initial increase
monotonically decreases to negative infinity [11, 2]. On the spherical manifold,
multiple modes can be observed that result from the Riemannian exponential
map tracing out geodesic paths. Additionally, the curves exhibit discontinuities
that stem from the lengths of the average of the selected mutation vectors being
reduced compared to those of the mutation vectors themselves. Mutation vectors
of a length resulting in the sine function in Eq. (6) being positive may result in
negative values of the sine function in the numerator in Eq. (9) and vice versa.

3.2 Small-Step Behaviour

All of the curves in the graphs on the left hand side of Fig. 1 have in common
that for small mutation strengths they initially increase. More often than never,
the first mode encountered yields optimal or near optimal performance. To inves-
tigate the behaviour of the strategy for small mutation strengths, we replace ‖z‖
and ‖z(avg)‖ in Eq. (9) with

√
N and

√
N/μ, respectively, expand the sine and co-

sine functions into Taylor series at zero and abort after the linear and quadratic
terms, respectively, and for x1 �= ±1 introduce normalized mutation strength
σ∗ = N |x1|σ/

√
1− x2

1 and normalized progress rate ϕ∗ = N |x1|ϕ/(1 − x2
1),

resulting in

ϕ∗ = σ∗cμ/μ,λ − sgn(x1)
σ∗2

2μ
. (10)

Notice that for x1 > 0 Eq. (10) has the same form as the progress rate law for
the Euclidean sphere model [2].

On the Use of Evolution Strategies for Optimization 887

-2.0

-1.0

0.0

1.0

2.0

1.0e-02 1.0e-01 1.0e+00 1.0e+01

pr
og

re
ss

 r
at

e
ϕ

mutation strength σ

N=4

x1=−0.5
x1=0.2
x1=0.9

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e-01 1.0e+00 1.0e+01 1.0e+02

no
rm

al
iz

ed
 p

ro
gr

es
s

ra
te

 ϕ
*

normalized mutation strength σ*

x1=−0.5

N=4
N=40
N=400

-2.0

-1.0

0.0

1.0

2.0

1.0e-02 1.0e-01 1.0e+00 1.0e+01

pr
og

re
ss

 r
at

e
ϕ

mutation strength σ

N=40

x1=−0.5
x1=0.2
x1=0.9

-1.0

0.0

1.0

2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

no
rm

al
iz

ed
 p

ro
gr

es
s

ra
te

 ϕ
*

normalized mutation strength σ*

x1=0.2

N=4
N=40
N=400

-2.0

-1.0

0.0

1.0

2.0

1.0e-02 1.0e-01 1.0e+00 1.0e+01

pr
og

re
ss

 r
at

e
ϕ

mutation strength σ

N=400

x1=−0.5
x1=0.2
x1=0.9

-1.0

0.0

1.0

2.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

no
rm

al
iz

ed
 p

ro
gr

es
s

ra
te

 ϕ
*

normalized mutation strength σ*

x1=0.9

N=4
N=40
N=400

Fig. 2. Left: Progress rate ϕ plotted against mutation strength σ for μ = 3 and λ = 10,
parent locations x1 ∈ {−0.5, 0.2, 0.9}, and, from top to bottom, search space dimensions
N = 4, 40, and 400. Right: Normalized progress rate ϕ∗ plotted against normalized
mutation strength σ∗ for search space dimensions N ∈ {4, 40, 400} and, from top to
bottom, parent locations x1 = −0.5, 0.2, and 0.9. The lines represent predictions from
Eqs. (9) and (10), respectively. The points mark values obtained by averaging over
20,000 one-iteration experiments for each data point shown.

888 D.V. Arnold

The right hand side of Fig. 2 compares predictions from Eq. (10) with mea-
surements made in one-iteration experiments of the algorithm. For x1 = −0.5
Eq. (10) predicts that the normalized progress rate increases indefinitely with in-
creasing normalized mutation strength. This is of course impossible for finite N ,
and the solid curve fails to correctly predict the experimental data if the mu-
tation strength is too large for the truncated Taylor series to well represent
the trigonometric functions. However, as increasing σ results in tracing out a
geodesic path, the hemisphere with x1 > 0 can always be reached in a single
step. For x1 = 0.2 the accuracy of the predictions increases significantly with
increasing N . The truncated Taylor series become poor approximations to the
trigonometric functions for σ‖z‖ ≈ π/2 and thus for σ∗ ≈ π|x1|

√
N/(2

√
1− x2

1),
and the maxima of the experimental data for N = 4 and N = 40 quite closely
correspond to those values. Finally, for x1 = 0.9 the qualitative behaviour of the
algorithm is captured quite well for N as small as 4. If the mutation strength of
the strategy is controlled properly, values of x1 in excess of 0.9 can be reached
in a relatively small number of iterations, and much of the computational effort
will be incurred where the predictions from Eq. (10) are quite accurate.

3.3 Step Size Adaptation

To analyze the performance of cumulative step size adaptation on spherical man-
ifolds, we employ the same approach as in Euclidean spaces [1]. The state of the
strategy is determined by the population centroid x, the mutation strength σ,
and the search path s. The parallel transport in Step 4 of the algorithm Fig. 1
uses vector v, which can be computed from Eq. (5) as z(avg)/‖z(avg)‖. Using
primes to indicate values of a quantity after an iteration of the algorithm, it fol-
lows that 〈x,x′〉 = cos(σ‖z(avg)‖) and 〈v,x′〉 = sin(σ‖z(avg)‖). Omitting terms
that disappear in the limit N → ∞ and using the small-step approximation
from Sect. 3.2, the update of the search path in Steps 3 and 4 of the algorithm
in Fig. 1 is thus described by

s′ = (1− c)s+
√

μc(2 − c)
[
z(avg) cos(σ‖z(avg)‖)− x‖z(avg)‖ sin(σ‖z(avg)‖)

]
(11)

where it is assumed that c = 1/
√
N and D = 1/c.1

Due to the symmetry inherent in the problem at hand, the location of the
population centroid is adequately described by x1, and the search path is char-

acterized by its components s1 and s� =
∑N

i=2 xisi/

√∑N
i=2 x

2
i , along with its

squared length ‖s‖2. Iterating the algorithm in Fig. 1 generates a Markov pro-
cess in a five-dimensional state space with variables x1, σ, s1, s�, and ‖s‖2. We
compute an approximation to the average values characterizing the search path

1 Detailed calculations cannot be reproduced here due to space limitations, but can
be found at http://www.cs.dal.ca/~dirk/PPSN2014addendum.pdf instead.

On the Use of Evolution Strategies for Optimization 889

by requiring that an iteration of the algorithm results in no change in expec-
tation. That is, we require that E[s′1] = s1, E[s′�] = s�, and E[‖s′‖2] = ‖s‖2.
Dropping terms that disappear for large N and solving for ‖s‖2 yields

‖s‖2 = N + 2
μcμ/μ,λ

c

[
cμ/μ,λ − sgn(x1)

σ∗

μ

]
(12)

for the squared length of the search path.
As in [1] we refer to the mutation strength for which no change in step size is

expected as the target mutation strength of the strategy. For x1 > 0, from the
update of the mutation strength in Step 5 of the algorithm in Fig. 1 with Eq. (12),
the target mutation strength is σ∗

target = μcμ/μ,λ, which is optimal according
to Eq. (10). However, the normalized mutation strength actually attained by
the strategy differs from the target mutation strength as the distance from the
optimal solution decreases simultaneously with the step size and adaptation is
not instantaneous. Calculations equivalent to those in [1] yield

σ∗ = μcμ/μ,λ

[(
1− x2

1
)
sgn(x1) +

√
1 + x4

1

]
(13)

for the mutation strength attained by the strategy. That is, normalized mutation
strengths generated by cumulative step size adaptation for x1
 1 exceed optimal
ones by a factor of

√
2, resulting in a 17% loss of performance (compare [3]).

For x1 � 0 Eq. (13) suggests that mutation strengths generated by cumulative
step size adaptation are nearly twice as large as optimal, resulting in near zero
progress and thus stagnation of the strategy. However, as seen above, the small-
step predictions are highly inaccurate for x1 ≈ 0 and the validity of the findings
needs to be confirmed experimentally.

Figure 3 shows partial traces from typical runs of the evolution strategy for
different search space dimensions. For each combination of parameter settings,
99 runs were conducted until either a solution with an objective function value
within 10−6 of optimal was generated or 20,000 iterations were reached. The
runs shown in the figure are those with the median number of iterations until
termination, where ties were broken arbitrarily. Each run was initialized with
x1 = 0 and an initial mutation strength σ0 ∈ {0.1, 1.0, 10.0}. It can be seen that
the behaviour of the algorithm depends qualitatively on the initial mutation
strength. Too large a value of σ0 (where what is “too large” depends onN) results
in the strategy operating past the first mode observed in Fig. 2. Cumulative
step size adaptation in that situation either does not decrease the step size or
decreases it only very slowly. The graphs on the right hand side of Fig. 3 show
that the strategy in this situation jumps about apparently symmetrically about
x1 = 0, without reaching a point in the vicinity of the optimal solution. It can
also be seen that once a point in the vicinity of the optimal solution is reached,
cumulative step size adaptation controls the mutation strength as expected,
and Eq. (13) quite closely predicts the further behaviour of the strategy. The
observed metastable states characterized by relatively large mutation strengths
and expected x1 values of zero are more easily broken out of for small values
of N , where the variance of the observed x1 values is larger.

890 D.V. Arnold

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

0 10 20 30 40

m
ut

at
io

n
st

re
ng

th
 σ

time step t

σ0=10.0

σ0=1.0

σ0=0.1

N=4
1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e-03 1.0e-02 1.0e-01 1.0e+00

no
rm

al
iz

ed
 m

ut
at

io
n

st
re

ng
th

 σ
*

population centroid location 1-x1

N=4

σ0=10.0
σ0=1.0
σ0=0.1

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

0 100 200 300 400

m
ut

at
io

n
st

re
ng

th
 σ

time step t

σ0=10.0

σ0=1.0

σ0=0.1

N=40
1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e-03 1.0e-02 1.0e-01 1.0e+00

no
rm

al
iz

ed
 m

ut
at

io
n

st
re

ng
th

 σ
*

population centroid location 1-x1

N=40

σ0=10.0
σ0=1.0
σ0=0.1

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

0 1000 2000 3000 4000

m
ut

at
io

n
st

re
ng

th
 σ

time step t

σ0=10.0

σ0=1.0

σ0=0.1

N=400
1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e-03 1.0e-02 1.0e-01 1.0e+00

no
rm

al
iz

ed
 m

ut
at

io
n

st
re

ng
th

 σ
*

population centroid location 1-x1

N=400

σ0=10.0
σ0=1.0
σ0=0.1

Fig. 3. Left: Mutation strength σ generated using cumulative step-size adaptation
plotted against iteration number t for typical runs with μ = 3 and λ = 10, initial step
sizes in {0.1, 1.0, 10.0}, and, from top to bottom, search space dimensions N = 4, 40,
and 400. Right: Normalized mutation strength σ∗ from the same runs as shown on the
left plotted against the transformed location 1 − x1 of the population centroid. The
bold solid lines on the right hand side represent predictions from Eq. (13).

On the Use of Evolution Strategies for Optimization 891

4 Discussion

We have presented a small-step approximation to the behaviour of a simplified
variant of the algorithm of Colutto et al. [5] applied to a class of unimodal opti-
mization problems on spherical manifolds. The approximation quite accurately
describes the behaviour of the strategy in the vicinity of the optimal solution,
but it is insufficient as a model in greater distance from that solution. In the
latter case, large mutation strengths can result in the strategy operating in a
metastable state rather than converging to the optimal solution. The analysis
also suggests an approach for avoiding such metastable states: limiting the step
size to at most σ ≈ π/(2

√
N) ensures that the strategy does not operate sig-

nificantly past the first mode in Fig. 2 and effectively prevents the long periods
of stagnation observed in Fig. 3. In future work, we will attempt to derive an
equivalent cap in the case of general Riemannian manifolds and compare the per-
formance of the resulting algorithm with that of the approaches in Manopt [4].

References

[1] Arnold, D.V., Beyer, H.-G.: Performance analysis of evolutionary optimization
with cumulative step length adaptation. IEEE Transactions on Automatic Con-
trol 49(4), 617–622 (2004)

[2] Beyer, H.-G.: The Theory of Evolution Strategies. Springer (2001)
[3] Beyer, H.-G., Arnold, D.V.: Qualms regarding the optimality of cumulative

path length control in CSA/CMA-evolution strategies. Evolutionary Computa-
tion 11(1), 19–28 (2003)

[4] Boumal, N., Mishra, B., Absil, P.-A., Sepulchre, R.: Manopt, a Matlab toolbox for
optimization on manifolds. Journal of Machine Learning Research 15, 1455–1459
(2014)

[5] Colutto, S., Frühauf, F., Fuchs, M., Scherzer, O.: The CMA-ES on Riemannian
manifolds to reconstruct shapes in 3-D voxel images. IEEE Transactions on Evo-
lutionary Computation 14(2), 227–245 (2010)

[6] do Carmo, M.P.: Riemannian Geometry. Birkhäuser (1992)
[7] Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution

strategies. Evolutionary Computation 9(2), 159–195 (2001)
[8] Huckemann, S., Hotz, T., Munk, A.: Intrinsic MANOVA for Riemannian manifolds

with an application to Kendall’s space of planar shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 32(4), 593–603 (2010)

[9] Kissinger, C.R., Gehlhaar, D.K., Fogel, D.B.: Rapid automated molecular replace-
ment by evolutionary search. Acta Crystallographica D55, 484–491 (1999)

[10] Qi, C., Gallivan, K.A., Absil, P.-A.: Riemannian BFGS algorithm with applica-
tions. In: Diehl, M., et al. (eds.) Recent Advances in Optimization and its Appli-
cations in Engineering, pp. 183–192. Springer (2010)

[11] Rechenberg, I.: Evolutionsstrategie — Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann Verlag (1973)

[12] Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds:
Uniform framework for unconstrained and constrained optimization. Journal of
Optimization Theory and Applications 132(2), 245–265 (2007)

Unbiased Black-Box Complexity

of Parallel Search

Golnaz Badkobeh1, Per Kristian Lehre2, and Dirk Sudholt1

1 University of Sheffield, UK
2 University of Nottingham, UK

Abstract. We propose a new black-box complexity model for search
algorithms evaluating λ search points in parallel. The parallel unbiased
black-box complexity gives lower bounds on the number of function eval-
uations every parallel unbiased black-box algorithm needs to optimise a
given problem. It captures the inertia caused by offspring populations
in evolutionary algorithms and the total computational effort in parallel
metaheuristics. Our model applies to all unary variation operators such
as mutation or local search. We present lower bounds for the Leading-
Ones function and general lower bound for all functions with a unique op-
timum that depend on the problem size and the degree of parallelism, λ.
The latter is tight for OneMax; we prove that a (1+λ) EA with adaptive
mutation rates is an optimal parallel unbiased black-box algorithm.

1 Introduction

Black-box optimisation describes a challenging realm of problems where no al-
gebraic model or gradient information is available. The problem is regarded a
black box, and knowledge about the problem in hand can only be obtained by
evaluating candidate solutions. General-purpose metaheuristics like evolutionary
algorithms, simulated annealing, ant colony optimisers, tabu search, and parti-
cle swarm optimisers are well suited for black-box optimisation as they generally
work well without any problem-dependent knowledge.

A lot of research has focussed on designing powerful metaheuristics, yet it is
often unclear which search paradigm works best for a particular problem class,
and whether and how better performance can be obtained by tailoring a search
paradigm to the problem class in hand.

The black-box complexity of search algorithms captures the difficulty of prob-
lem classes in black-box optimisation. It describes the minimum number of func-
tion evaluations that every black-box algorithm needs to make to optimise a
problem from a given class. It provides a rigorous theoretical foundation through
capturing limits to the efficiency of all black-box search algorithms, providing a
baseline for performance comparisons across all known and future metaheuris-
tics as well as tailored black-box algorithms. Also it prevents algorithm designers
from wasting effort on trying to achieve impossible performance.

The first black-box complexity model by Droste et al. [6] makes no restric-
tion on the black-box algorithm. This leads to some unrealistic results, such

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 892–901, 2014.
c© Springer International Publishing Switzerland 2014

Unbiased Black-Box Complexity of Parallel Search 893

as polynomial black-box complexities of NP-hard problems [6]. Subsequent re-
search introduced refined models that restrict the power of black-box algorithms,
leading to more realistic results [4–6, 18]. Lehre and Witt introduced the unbi-
ased black-box model [13] where black-box algorithms may only use operators
without a search bias (see Section 2). This model initially considered unary oper-
ators (such as mutation) and was later extended to higher arity operators (such
as crossover) [3] and more general search spaces [17]. It also led to the discovery
of more efficient EA variants [2].

A shortcoming of the above models is that they do not capture the implicit or
explicit parallelism at the heart of many common search algorithms. Evolution-
ary algorithms (EAs) such as (μ+λ) EAs or (μ,λ) EAs generate λ offspring in
parallel. Using a large offspring population in many cases can decrease the num-
ber of generations needed to find an optimal solution1. However, the number of
function evaluations may increase as evolution can only act on information from
the previous generation. A large offspring population can lead to inertia that
slows down the optimisation process. Existing black-box models are unable to
capture this inertia as they assume all search points being created in sequence.

The same goes for parallel metaheuristics such as island models evolving multi-
ple populations in parallel (see, e. g. [14]). Parallelisation can decrease the num-
ber of generations, or parallel time. But the overall computational effort, the
number of function evaluations across all islands, may increase. Lässig and Sud-
holt [11] used the following notion. Let Tλ be the random number of generations
an island model with λ islands (each creating one offspring) needed to find a
global optimum for a given problem. If using λ islands can decrease the parallel
time by a factor of order λ, compared to just one island, λ ·E (Tλ) = O(E (T1)),
this is called a linear speedup (with regards to the parallel time, the number of
generations). A linear speedups means that the total number of function evalu-
ations, λ · E (Tλ), does not increase beyond a constant factor.

Recent work [11,12,15] considered illustrative problems from pseudo-Boolean
optimisation and combinatorial optimisation, showing sufficient conditions for
linear speedups. However, the absence of matching lower bounds makes it impos-
sible to determine exactly for which parameters λ linear speedups are achieved.

We provide a parallel black-box model that captures and quantifies the inertia
caused by offspring populations of size λ and parallel EAs evaluating λ search
points in parallel. We present lower bounds on the black-box complexity for the
well known Lo problem and for the general class of functions with a unique
optimum, revealing how the number of function evaluations increases with the
problem size n and the degree of parallelism, λ. The results complement existing
upper bounds [11], allowing us to characterise the realm of linear speedups,
where parallelisation is effective.

Our lower bound for functions with a unique optimum is asymptotically tight:
we show that for the OneMax problem, a (1+λ) EA with an adaptive mutation
rate is an optimal parallel unbiased black-box algorithm. Adaptive mutation

1 This does not hold for all problems; De Jong, Jansen, and Wegener constructed prob-
lems where offspring populations drastically increase the number of generations [9].

894 G. Badkobeh, P.K. Lehre, and D. Sudholt

rates decrease the expected running time by a factor of ln lnλ, compared to the
(1+λ) EA with the standard mutation rate 1/n (see He, Chen, and Yao [7]).

2 A Parallel Black-Box Model

Following Lehre and Witt [13], we only use unary unbiased variation operators,
i. e., operators creating a new search point out of one search point. This includes
local search, mutation in evolutionary algorithms, but it does not include recom-
bination. Unbiasedness means that there is no bias towards particular regions
of the search space; in brief, for {0, 1}n, unbiased operators must treat all bit
values 0, 1 and all bit positions 1, . . . , n symmetrically (see [13, 17] for details).
This is the case for many common operators such as standard bit mutation.

Unbiased black-box algorithms query new search points based on the past
history of function values, using unbiased variation operators. We define a λ-
parallel unbiased black-box algorithm in the same way, with the restriction that
in each round λ queries are made in parallel (see Algorithm 1). These λ queries
only have access to the history of evaluations from previous rounds; they cannot
access information from queries made in the same round. We refer to these λ
search points as offspring to indicate search points created in the same round.

Algorithm 1. λ-parallel unbiased black-box algorithm
1. Let t := 0. Choose x1(0), . . . , xλ(0) uniformly at random, compute

f(x1(0)), . . . , f(xλ(0)), and let I(0) := {f(x1(0)), . . . , f(xλ(0))}.
2. repeat
3. for 1 ≤ i ≤ λ do
4. Choose an index 0 ≤ j ≤ t according to I(t).
5. Choose an unbiased variation operator pv(· | x(j)) according to I(t).
6. Generate xi(t+ 1) according to pv.
7. end for
8. for 1 ≤ i ≤ λ do
9. Compute f(xi(t)) and let I(t) := I(t) ∪ {f(xi(t))}.
10. end for
11. Let t := t+ 1.
12. until termination condition met

This black-box model includes offspring populations in evolutionary algo-
rithms, for example (μ+λ) EAs or (μ,λ) EAs (modulo minor differences in the
initialisation). It can further model parallel evolutionary algorithms such as cel-
lular EAs with λ cells, or island models with λ islands, each of which generates
one offspring in each generation.

The unbiased black-box complexity (uBBC) of a function class F is the min-
imum worst-case runtime among all unbiased black-box algorithms [13] (equiv-
alent to Algorithm 1 with λ = 1). The unbiased λ-parallel black-box complexity
(λ-upBBC) of a function class F is defined as the minimum worst-case number

Unbiased Black-Box Complexity of Parallel Search 895

of function evaluations among all unbiased λ-parallel algorithms satisfying the
framework of Algorithm 1.

With increasing λ access to previous queries becomes more and more re-
stricted. It is therefore not surprising that the black-box complexity is non-
decreasing with growing λ. For every family of function classes Fn and all λ ∈ N,

uBBC(Fn) = 1-upBBC(Fn) ≤ 2-upBBC(Fn) ≤ 3-upBBC(Fn) . . . (1)
and uBBC(Fn) ≤ λ-upBBC(Fn) ≤ λ · uBBC(Fn) (2)

as any unbiased algorithm can be simulated by a λ-parallel unbiased black-box
algorithm using one query in each round. Due to (1), there is a cut-off point

λ∗ := sup{λ | ∃c > 0, n0 ∀n ≥ n0 : λ-upBBC(Fn) ≤ c · uBBC(Fn)}
such that c is a constant and for all λ ≤ λ∗ the λ-parallel unbiased black-
box complexity of F is asymptotically equal to the regular unbiased black-box
complexity. In this realm, parallelisation is most effective as the number of func-
tion evaluations does not increase (beyond constant factors). The number of
rounds for an optimal black-box algorithm, uBBC(Fn)/λ, corresponds to the
parallel time if all λ evaluations are performed on parallel processors. By (2)
uBBC(Fn)/λ is non-increasing with λ, and for λ ≤ λ∗ it decreases by a factor
of Θ(λ). Such speedups were called linear speedups in [11].

The (1+λ) EA maintains the current best search point x and creates λ off-
spring by flipping each bit in x independently with probability p (with default
p = 1/n). The best offspring replaces its parent if it has fitness at least f(x).

3 Parallel Black-Box Complexity of LeadingOnes

We consider the function Lo(x) :=
∑n

i=1
∏i

j=1 xj , counting the number of lead-
ing ones in x. Similarly, Lz(x) counts the number of leading zeros in x. We first
provide a tool for estimating the progress made by λ trials, which may or may
not be independent. It is based on moment-generating functions (mgf).

Lemma 1. Given X1, . . . , Xλ ∈ N, where Xis are random variables, not nec-
essarily independent. Define X(λ) := maxi∈[λ] Xi, if there exists η,D ≥ 0, such

that for all i ∈ [λ], it holds E
(
eηXi
) ≤ D, then E

(
X(λ)
) ≤ (ln(Dλ) + 1)/η.

Proof. Note first that for any i ∈ [λ] and j ∈ N, it follows from Markov’s
inequality that Pr(Xi ≥ j) = Pr(eηXi ≥ eηj) ≤ e−ηjE

(
eηXi
) ≤ e−ηjD. Now, let

k := ln(Dλ)/η. It then follows by a union bound that

E
(
X(λ)
)
=

∞∑
i=1

Pr(X(λ) ≥ i) ≤ k +
∞∑
i=1

Pr(X(λ) ≥ k + i)

≤ k +
∞∑
i=1

λ∑
j=1

Pr(Xj ≥ k + i) ≤ k +
∞∑
i=1

λe−η(k+i)D

= k + e−ηk Dλ

eη − 1
≤ k + e−ηkDλ/η = (ln(Dλ) + 1)/η.

896 G. Badkobeh, P.K. Lehre, and D. Sudholt

For the Lo function, the λ-parallel black-box complexity is as follows.

Theorem 1. The λ-parallel unbiased black-box complexity of Lo is

Ω

(
λn

ln(λ/n)
+ n2

)
and O

(
λn+ n2).

The cut-off point is λ∗
Lo

= n. The corresponding parallel time for an optimal

algorithm is Ω
(

n
ln(λ/n) +

n2

λ

)
and O

(
n+ n2

λ

)
.

This result solves an open problem from [11], confirming that the analysis of the
realm of linear speedups for Lo from [11] is tight.

Proof (of Theorem 1). The upper bound follows from Lässig and Sudholt [12,
Theorem 1] for a (1+λ) EA, as within the context of this bound the (1+λ) EA
is equivalent to an island model with complete communication topology.

A lower bound Ω(n2) follows from [13], hence the statement holds for the
case λ = O(n). In case that λ = ω(n), we proceed by drift analysis. Let the
“potential” of a search point x be max0≤j≤t,1≤i≤λ{Lo(xi(j)),Lz(xi(j)), n/2},
and define the potential of the algorithm, Pt at time t to be the largest potential
among all search points produced until time t.

Assume that the potential in generation t is Pt = k. In any generation t, let
Xi for i ∈ [λ] be the indicator variable for the event that all of the first k+1 bit-
positions in individual i are 1-bits (or 0-bits). Furthermore, let Yi be the number
of consecutive 1-bits (respectively 0-bits) from position k + 2 and onwards, ie.,
the number of “free riders”.

Following the same arguments as in [13], the probability that Xi = 1 is no
more than 1/(k + 1) = O(1/n). Defining M :=

∑λ
i=1 Xi, we therefore have

E (M) = O(λ/n). Each random variable Yi, i ∈ [λ], is stochastically dominated
by a geometric random variable Zi with parameter 1/2. The expected progress
in potential is therefore

E
(
Δ(λ)
)
= E
(
max
i∈[λ]

XiYi

)
≤ E
(
max
i∈[M]

Zi

)
.

The mgf of the geometric random variable Zi is MZi(η) = 1/(2− eη). The tower
property of the expectation and Lemma 1 with η := ln(3/2) and D := 2 give

E
(
Δ(λ)
) ≤ E

(
E
(
max
i∈[M]

Zi | M
))

≤ E ((log(DM) + 1)/η) ≤ (log(E (DM)) + 1)/η = O(log(λ/n)),

where the last inequality follows from Jensen’s inequality and the last equality
follows from log(λ/n) = Ω(1). With overwhelmingly high probability, the initial
potential is at least n/2. Hence, by classical additive drift theorems [8], the
expected number of rounds to reach the optimum is Ω(n/ log(λ/n)). Multiplying
by λ gives the number of function evaluations.

Unbiased Black-Box Complexity of Parallel Search 897

4 Parallel Black-Box Complexity of Functions with
Unique Optimum

De Jong, Jansen, and Wegener [9] considered the (1+λ) EA and established a
cut-off point for λ where the running time increases from Θ(n logn) to ω(n logn):

λ∗
(1+λ) EA on OneMax

= Θ((lnn)(ln lnn)/(ln ln lnn)) (3)

Recently, He, Chen, and Yao [7] presented the following tight bound for all λ:

Theorem 2 (He, Chen, Yao [7]). The expected optimisation time of the
(1+λ) EA on OneMax for λ ≥ 3 is

Θ

(
n · λ ln lnλ

lnλ
+ n logn

)
.

We show that the parallel black-box complexity is lower than the bound from
Theorem 2 for large λ by a factor of ln lnλ.

Theorem 3. For any λ ≤ e
√
n the λ-parallel unbiased unary black-box complex-

ity for any function with a unique optimum is at least

Ω

(
λn

lnλ
+ n logn

)
.

This bound is tight for OneMax, where the cut-off point is

λ∗
OneMax

= Θ(log(n) · log logn).
The corresponding parallel time for an optimal algorithm is Ω

(
n

lnλ + n logn
λ

)
.

Note that the cut-off point is higher than the cut-off point for the (1+λ) EA
with the standard mutation rate p = 1/n from (3) and [9].

For the proof we consider the progress made during a round of λ variations.
Let the 0-“potential” of a search point x be min{|x|0, n/(8e)}, where |x|0 is the
number of 0-bits in x. Similarly, define the 1-“potential” of a search point x as
min{|x|1, n/(8e)}. Let s be the minimum 0-potential among all search points
queried in past rounds. Let r be the number of flipped bits during a varia-
tion, then for any search point with m number of zeros, denote the progress by
Δ(s,m, r). The progress is the difference between s and the potential of the new
generated point, there is no progress if this difference is negative. Let Z be the
number of 0-bits that flipped to 1, then there are r − Z new 0-bits that were
originally 1. Therefore, the number of 0-bits in the new generated search point
is m−Z +(r−Z) where Z can be described by the hypergeometric distribution
with parameters n,m and r. We only make progress if the number of 0-bits in
the new search point is less than s. Hence the progress (decrease in potential) is

Δ(s,m, r) = max{Z − (r − Z) + (s−m), 0} = max{2Z − r + s−m, 0}.
We show a tail inequality for hypergeometric variables that is more precise than
Chvátal’s bound [1] and use this to derive a progress bound. A proof of the
former is omitted due to space restrictions.

898 G. Badkobeh, P.K. Lehre, and D. Sudholt

Lemma 2. Let Z be a hypergeometrically distributed random variable with pa-
rameters n (number of balls), m (number of red balls), and r (number of balls
drawn). If m < n/(2e) then for any z ≥ r/2, Pr (Z = z) ≤ (2em/n)z.

Lemma 3. Let Δ(λ) = Δ(λ)(s,mi, ri) be the maximum of λ random variables
Δ(s,mi, ri) for arbitrary s ≤ mi ≤ n/2 and ri, 1 ≤ i ≤ λ. For s ≤ n/(8e) we
have E

(
Δ(λ)
)
= O(log(λ)).

Proof. If n
4e < mi ≤ n/2 then we use Chvátal’s tail bound [1]: Pr (Z≥E (Z)+rδ)

≤ exp(−2δ2r), where E (Z) = rm
n , then:

Pr (Δ(s,mi, ri) > 0) = Pr
(
Z ≥ ri +mi − s

2

)
= Pr

(
Z ≥ rimi

n
+ ri ·

(
ri +mi − s

2ri
− mi

n

))
≤ Pr

(
Z ≥ E (Z) + ri · n

8eri

)
≤ exp

(
− n2

32e2ri

)
This means that the probability of making any progress is exponentially small,
for any ri. Thus we assume that mi ≤ n

4e for all i in the following. Applying
Lemma 2 to a hypergeometric random variable Zi with parameters mi and ri
we have, for all z ∈ N0,

Pr (Δ(s,mi, ri) = z)

= Pr
(
Zi =

z + ri +mi − s

2

)
≤
(
2emi

n

)(z+ri+mi−s)/2

≤
(
1
2

)z/2

hence E
(
eηZi
) ≤ D for η := ln(4/3) and D := 9 + 6

√
2. Applying Lemma 1

proves E
(
Δ(λ)
)
= O(logλ).

Proof (of Theorem 3). The upper bound for OneMax will be shown later in
Theorem 4. The lower bound Ω(n logn) follows from unbiased unary black-box
complexity [13]. Hence, it suffices to prove the lower bound Ω(λn/ lnλ).

Without loss of generality, we assume that the search point 1n is the optimum.
Following [13], we assume a “mirrored” sampling process, where every time a bit
string x is queried (including in the initial generation), the algorithm queries the
complement bit string x for “free”. Hence, the 1-potential and the 0-potential (as
defined above) are the same after each generation, and we apply drift analysis
with respect to this potential. Variation of a search point with m 1-bits is sym-
metric to a variation of a search point with n−m 1-bits, hence we can assume
m ≤ n/2. By a Chernoff bound, the initial potential is n/(8e) with overwhelm-
ingly high probability. Let Δ0 be the progress due to reduction of the 0-potential,
and Δ1 be the progress due to reduction of the 1-potential. By Lemma 3, the ex-
pected change in potential per round is no more than max{Δ0, Δ1} = O(log λ).
Hence, by the additive drift theorem [8], the expected number of rounds until
one of the search points 0n or 1n is obtained is Ω(n/ logλ). Multiplying by λ
proves the claim.

Unbiased Black-Box Complexity of Parallel Search 899

5 An Optimal Parallel Black-Box Algorithm for OneMax

The following theorem shows that the lower bound on the black-box complexity
from Theorem 3 is tight. We show that the (1+λ) EA has a better optimisation
time if the mutation rate is chosen adaptively, according to the current best
fitness. This is similar to common ideas from artificial immune systems, par-
ticularly the clonal selection algorithm. Adaptive mutation rates for OneMax

have been studied by Zarges [19], however the standard parameters for the clonal
selection algorithm were too drastic to even obtain polynomial running times.
Better results were obtained when using a population-based adaptation [20].

The following result reveals an optimal choice for the mutation rate of the
(1+λ) EA, depending on n and λ.

Theorem 4. On OneMax, the expected number of function evaluations of the
(1+λ) EA with an adaptive mutation rate p = max{ln(λ)/(n ln(en/i)), 1/n},
where i is the number of zeros in the current search point, for any λ ≤ e

√
n, is

at most

O

(
λn

lnλ
+ n logn

)
.

The parallel time (number of generations) is O
(

n
lnλ + n logn

λ

)
.

Proof. Let i be the current number of zeros and p be the mutation rate. The
probability of decreasing the number of zeros by any k ∈ N with k ≤ i is at least

Pr (Δ ≥ k) ≥
(
i

k

)
· pk · (1− p)n−k

≥ ik

kk
· pk · (1− p)n−k = (1− p)n−k ·

(
ip

k

)k

.

Then the probability that one of λ offspring will decrease the number of zeros by
at least k is at least, using 1−(1−p)λ ≥ 1−e−pλ ≥ 1−1/(1+pλ) = pλ/(1+pλ),

Pr
(
Δ(λ) ≥ k

) ≥ 1− (1− Pr (Δ ≥ k))λ ≥ λ(1 − p)n−k · (ip/k)k
1 + λ(1− p)n−k · (ip/k)k .

Hence for any k ≤ i the expected drift is at least

E
(
Δ(λ)
) ≥ k · λ(1− p)n−k · (ip/k)k

1 + λ(1 − p)n−k · (ip/k)k .

For i > en/ lnλ, which implies pn > 1, we set k := pn = ln(λ)/ ln(en/i). We
have k ≤ i since k ≤ ln(λ) ≤ √

n ≤ en/ lnλ. We use k := 1 for i ≤ en/ lnλ, the
realm where p = 1/n. This results in the following drift function h:

h(i) :=

{
λ(1−1/n)n−1·i/n

1+λ(1−1/n)n−1·i/n if i ≤ en/ lnλ

pn · λ(1−p)n−pn·(i/n)pn
1+λ(1−p)n−pn·(i/n)pn otherwise

900 G. Badkobeh, P.K. Lehre, and D. Sudholt

We estimate the number of function evaluations by multiplying the number of
generations by λ. The number of generations is estimated using Johannsen’s
variable drift theorem [10] in the variant from [16], with the above function h.
This gives an upper bound of

λ

h(1)
+
∫ n

1

λ

h(i)
di =

1 + λ(1 − 1/n)n−1 · 1/n
(1− 1/n)n−1 · 1/n + λ

∫ n

1

1
h(i)

di

≤ λ+ en+ λ

∫ en/ lnλ

1

1
h(i)

di+ λ

∫ n

en/ lnλ

1
h(i)

di.

The first terms are at most

λ+ en+ λ

∫ en/ lnλ

1

1 + λ(1 − 1/n)n−1 · i/n
λ(1 − 1/n)n−1 · i/n di

≤ λen

lnλ
+ en

(
1 +
∫ en/ lnλ

1

1
i
di

)
≤ λen

lnλ
+ en · (2 + lnn).

The second integral is bounded as∫ n

en/ lnλ

1 + λ(1− p)n−pn · (i/n)pn
pn · (1− p)n−pn · (i/n)pn di

≤
∫ n

0

λ ln(en/i)
lnλ

di+
1

lnλ

∫ n

en/ lnλ

ln(en/i)
e−pn · (i/n)pn di

=
2λn
lnλ

+
1

lnλ

∫ n

en/ lnλ

ln(en/i) · (en/i)pn di

=
2λn
lnλ

+
1

lnλ

∫ n

en/ lnλ

ln(en/i) · λ di ≤ 3λn
lnλ

.

Together, we get an upper bound of (3 + e)λn/ ln(λ) + en · (2 + lnn).

6 Conclusions

We have introduced the parallel unbiased black-box complexity to quantify the
limits on the performance of parallel search heuristics, including offspring popu-
lations. We proved that every λ-parallel unbiased black-box algorithm needs at
least Ω(λn/ log(λ)+n log n) function evaluations on every function with unique
optimum, and at least Ω(λn/(log(λ/n)) + n2) function evaluations on Lo. Cor-
responding parallel times are by a factor of λ smaller. For Lo and OneMax we
identified the cut-off point for λ, above which the asymptotic number of function
evaluations increases, compared to non-parallel algorithms (λ = 1). All smaller λ
allow for linear speedups with regard to the parallel time. For OneMax this cut-
off point is higher than that for the standard (1+λ) EA; optimal performance
for all λ is achieved by a (1+λ) EA with an adaptive mutation rate.

Unbiased Black-Box Complexity of Parallel Search 901

References

1. Chvátal, V.: The tail of the hypergeometric distribution. Discrete Math. 25(3),
285–287 (1979)

2. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based
genetic algorithms. In: Proc. of GECCO 2013, pp. 781–788. ACM (2013)

3. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster
black-box algorithms through higher arity operators. In: Proc. of FOGA 2011, pp.
163–172. ACM (2011)

4. Doerr, B., Winzen, C.: Towards a complexity theory of randomized search heuris-
tics: Ranking-based black-box complexity. In: Kulikov, A., Vereshchagin, N. (eds.)
CSR 2011. LNCS, vol. 6651, pp. 15–28. Springer, Heidelberg (2011)

5. Doerr, B., Winzen, C.: Playing Mastermind with Constant-Size Memory. Theory
of Computing Systems (2012)

6. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory of Computing Systems 39(4), 525–544
(2006)

7. He, J., Chen, T., Yao, X.: Average drift analysis and its application. CoRR,
abs/1308.3080 (2013)

8. He, J., Yao, X.: A Study of Drift Analysis for Estimating Computation Time of
Evolutionary Algorithms. Natural Computing 3(1), 21–35 (2004)

9. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population
size in evolutionary algorithms. Evolutionary Computation 13, 413–440 (2005)

10. Johannsen, D.: Random Combinatorial Structures and Randomized Search Heuris-
tics. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany and the Max-
Planck-Institut für Informatik (2010)

11. Lässig, J., Sudholt, D.: General upper bounds on the running time
of parallel evolutionary algorithms. Evolutionary Computation (in press),
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00114

12. Lässig, J., Sudholt, D.: Analysis of speedups in parallel evolutionary algorithms for
combinatorial optimization. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe,
O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 405–414. Springer, Heidelberg (2011)

13. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

14. Luque, G., Alba, E.: Parallel Genetic Algorithms–Theory and Real World Appli-
cations. Springer (2011)

15. Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models
for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20.
Springer, Heidelberg (2012)

16. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1,λ) EA.
In: Proc. of GECCO 2012, pp. 1349–1356 (2012)

17. Rowe, J.E., Vose, M.D.: Unbiased black box search algorithms. In: Proc. of GECCO
2011, p. 2035. ACM, New York (2011)

18. Teytaud, O., Gelly, S.: General lower bounds for evolutionary algorithms. In:
Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 21–31. Springer, Heidelberg (2006)

19. Zarges, C.: Rigorous runtime analysis of inversely fitness proportional mutation
rates. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 112–122. Springer, Heidelberg (2008)

20. Zarges, C.: On the utility of the population size for inversely fitness proportional
mutation rates. In: Proc. of FOGA 2009, pp. 39–46. ACM (2009)

http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00114

A Generalized Markov-Chain Modelling

Approach to (1, λ)-ES Linear Optimization

Alexandre Chotard1 and Martin Holeňa2

1 INRIA Saclay-Ile-de-France, LRI, University Paris-Sud, France
alexandre.chotard@lri.fr

2 Institute of Computer Science, Academy of Sciences, Pod vodárenskou věž́ı 2,
Prague, Czech Republic

martin@cs.cas.cz

Abstract. Several recent publications investigated Markov-chain mod-
elling of linear optimization by a (1, λ)-ES, considering both uncon-
strained and linearly constrained optimization, and both constant and
varying step size. All of them assume normality of the involved random
steps, and while this is consistent with a black-box scenario, information
on the function to be optimized (e.g. separability) may be exploited by
the use of another distribution. The objective of our contribution is to
complement previous studies realized with normal steps, and to give suf-
ficient conditions on the distribution of the random steps for the success
of a constant step-size (1, λ)-ES on the simple problem of a linear func-
tion with a linear constraint. The decomposition of a multidimensional
distribution into its marginals and the copula combining them is applied
to the new distributional assumptions, particular attention being paid
to distributions with Archimedean copulas.

Keywords: Evolution strategies, continuous optimization, linear opti-
mization, linear constraint, linear function, Markov chain models,
Archimedean copulas.

1 Introduction

Evolution Strategies (ES) are Derivative Free Optimization (DFO) methods,
and as such are suited for the optimization of numerical problems in a black-box
context, where the algorithm has no information on the function f it optimizes
(e.g. existence of gradient) and can only query the function’s values. In such a
context, it is natural to assume normality of the random steps, as the normal
distribution has maximum entropy for given mean and variance, meaning that
it is the most general assumption one can make without the use of additional
information on f . However such additional information may be available, and
then using normal steps may not be optimal. Cases where different distributions
have been studied include so-called Fast Evolution Strategies [1] or SNES [2,3]
which exploits the separability of f , or heavy-tail distributions on multimodal
problems [4,3].

In several recent publications [5,6,7,8], attention has been paid to Markov-
chain modelling of linear optimization by a (1, λ)-ES, i.e. by an evolution strategy

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 902–911, 2014.
c© Springer International Publishing Switzerland 2014

A Generalized Markov-Chain Modelling 903

in which λ children are generated from a single parent X ∈ Rn by adding
normally distributed n-dimensional random steps M ,

X ← X + σC
1
2 M , where M ∼ N (0, In). (1)

Here, σ is called step size, C is a covariance matrix, and N (0, In) denotes the n-
dimensional standard normal distribution with zero mean and covariance matrix
identity. The best among the λ children, i.e. the one with the highest fitness,
becomes the parent of the next generation, and the step-size σ and the covariance
matrix C may then be adapted to increase the probability of sampling better
children. In this paper we relax the normality assumption of the movement M
to a more general distribution H .

The linear function models a situation where the step-size is relatively small
compared to the distance towards a local optimum. This is a simple problem that
must be solved by any effective evolution strategy by diverging with positive
increments of ∇f.M . This unconstrained case was studied in [7] for normal
steps with cumulative step-size adaptation (the step-size adaptation mechanism
in CMA-ES [9]).

Linear constraints naturally arise in real-world problems (e.g. need for positive
values, box constraints) and also model a step-size relatively small compared
to the curvature of the constraint. Many techniques to handle constraints in
randomised algorithms have been proposed (see [10]). In this paper we focus on
the resampling method, which consists in resampling any unfeasible candidate
until a feasible one is sampled. We chose this method as it makes the algorithm
easier to study, and is consistent with the previous studies assuming normal steps
[11,5,6,8], studying constant step-size, self adaptation and cumulative step-size
adaptation mechanisms (with fixed covariance matrix).

Our aim is to study the (1, λ)-ES with constant step-size, constant covari-
ance matrix and random steps with a general absolutely continuous distribution
H optimizing a linear function under a linear constraint handled through re-
sampling. We want to extend the results obtained in [5,8] using the theory of
Markov chains. It is our hope that such results will help in designing new algo-
rithms using information on the objective function to make non-normal steps.
We pay a special attention to distributions with Archimedean copulas, which
are a particularly well transparent alternative to the normal distribution. Such
distributions have been recently considered in the Estimation of Distribution
Algorithms [12,13], continuing the trend of using copulas in that kind of evolu-
tionary optimization algorithms [14].

In the next section, the basic setting for modelling the considered evolutionary
optimization task is formally defined. In Section 3, the distributions of the fea-
sible steps and of the selected steps are linked to the distribution of the random
steps, and another way to sample them is provided. In Section 4, it is shown that,
under some conditions on the distribution of the random steps, the normalized
distance to the constraint defined in (5) is a ergodic Markov chain, and a law of
large numbers for Markov chains is applied. Finally, Section 5 gives properties
on the distribution of the random steps under which some of the aforementioned
conditions are verified.

904 A. Chotard and M. Holeňa

Due to a lack of space proofs were not included in this paper, and can instead
be found at http://hal.inria.fr/docs/01/00/30/15/PDF/ppsn2014TRlinear
constraintgeneraldistributions.pdf.

Notations

For (a, b) ∈ N2 with a < b, [a..b] denotes the set of integers i such that a ≤ i ≤ b.

For X and Y two random vectors, X
(d)
= Y denotes that these variables are

equal in distribution, X
a.s.→ Y and X

P→ Y denote, respectively, almost sure
convergence and convergence in probability. For (x,y) ∈ Rn, x.y denotes the
scalar product between the vectors x and y, and for i ∈ [1..n], [x]i denotes the
ith coordinate of x. For A a subset of Rn, �A denotes the indicator function of
A. For X a topological set, B(X) denotes the Borel algebra on X .

2 Problem Setting and Algorithm Definition

Throughout this paper, we study a (1, λ)-ES optimizing a linear function f :
Rn → R where λ ≥ 2 and n ≥ 2, with a linear constraint g : Rn → R, han-
dling the constraint by resampling unfeasible solutions until a feasible solution
is sampled.

Take (ek)k∈[1..n] a orthonormal basis of Rn. We may assume ∇f to be normal-
ized as the behaviour of an ES is invariant to the composition of the objective
function by a strictly increasing function (e.g. h : x �→ x/‖∇f‖), and the same
holds for∇g since our constraint handling method depends only on the inequality
g(x) ≤ 0 which is invariant to the composition of g by a homothetic transforma-
tion. Hence w.l.o.g. we assume that ∇f = e1 and ∇g = cos θe1 + sin θe2 with
the set of feasible solutions Xfeasible := {x ∈ Rn|g(x) ≤ 0}. We restrict our study
to θ ∈ (0, π/2). Overall the problem reads

maximize f(x) = [x]1 subject to
g(x) = [x]1 cos θ + [x]2 sin θ ≤ 0 .

(2)

At iteration t ∈ N, from a so-called parent point Xt ∈ Xfeasible and with
step-size σt ∈ R∗

+ we sample new candidate solutions by adding to Xt a random
vector σtM

i,j
t where M i,j

t is called a random step and (M i,j
t)i∈[1..λ],j∈N,t∈N is

a i.i.d. sequence of random vectors with distribution H . The i index stands for
the λ new samples to be generated, and the j index stands for the unbounded
number of samples used by the resampling. We denote M i

t a feasible step, that
is the first element of (M i,j

t)j∈N such that Xt +σtM
i
t ∈ Xfeasible (random steps

are sampled until a suitable candidate is found). The ith feasible solution Y i
t is

then
Y i

t := Xt + σtM
i
t . (3)

Then we denote & := argmaxi∈[1..λ] f(Y
i
t) the index of the feasible solution

maximizing the function f , and update the parent point

Xt+1 := Y �
t = Xt + σtM

�
t , (4)

A Generalized Markov-Chain Modelling 905

Fig. 1. Linear function with a linear constraint, in the plane spanned by ∇f and ∇g,
with the angle from ∇f to ∇g equal to θ ∈ (0, π/2). The point x is at distance g(x)
from the constraint hyperplan g(x) = 0.

where M�
t is called the selected step. Then the step-size σt, the distribution of

the random steps H or other internal parameters may be adapted.
Following [5,6,11,8] we define δt as

δt := −g(Xt)
σt

. (5)

3 Distribution of the Feasible and Selected Steps

In this section we link the distributions of the random vectors M i
t and M�

t to
the distribution of the random steps M i,j

t , and give another way to sample M i
t

and M�
t not requiring an unbounded number of samples.

Lemma 1. Let a (1, λ)-ES optimize the problem defined in (2) handling con-
straint through resampling. Take H the distribution of the random step M i,j

t ,
and for δ ∈ R∗

+ denote Lδ := {x ∈ Rn|g(x) ≤ δ}. Providing that H is absolutely

continuous and that H(Lδ) > 0 for all δ ∈ R+, the distribution H̃δ of the feasi-
ble step and H̃�

δ the distribution of the selected step when δt = δ are absolutely

continuous, and denoting h, h̃δ and h̃�
δ the probability density functions of, re-

spectively, the random step, the feasible step M i
t and the selected step M�

t when
δt = δ

h̃δ(x) =
h(x)�Lδ

(x)
H(Lδ)

, (6)

and

h̃�
δ(x) = λh̃δ(x)H̃δ((−∞, [x]1)× Rn−1)λ−1

= λ
h(x)�Lδ

(x)H((−∞, [x]1)× Rn−1 ∩ Lδ)λ−1

H(Lδ)λ
. (7)

The vectors (M i
t)i∈[1..λ] andM�

t are functions of the vectors (M
i,j
t)i∈[1..λ],j∈N

and of δt. In the following Lemma an equivalent way to sample M i
t and M�

t

906 A. Chotard and M. Holeňa

is given which uses a finite number of samples. This method is useful if one
wants to avoid dealing with the infinite dimension space implied by the sequence
(M i,j

t)i∈[1..λ,j∈N.

Lemma 2. Let a (1, λ)-ES optimize problem (2), handling the constraint through
resampling, and take δt as defined in (5). Let H denote the distribution of M i,j

t

that we assume absolutely continuous, ∇g⊥ := − sin θe1 + cos θe2, Q the ro-
tation matrix of angle θ changing (e1, e2, . . . , en) into (∇g,∇g⊥, . . . , en). Take
F1,δ(x) := Pr(M i

t.∇g ≤ x|δt = δ), F2,δ(x) := Pr(M i
t.∇g⊥ ≤ x|δt = δ) and

Fk,δ(x) := Pr([M i
t]k ≤ x|δt = δ) for k ∈ [3..n], the marginal cumulative distribu-

tion functions when δt = δ, and Cδ the copula of (M i
t.∇g,M i

t.∇g⊥, . . . ,M i
t.en).

We define

G : (δ, (ui)i∈[1..n]) ∈ R+ × [0, 1]n �→ Q

⎛⎜⎝F−1
1,δ (u1)

...
F−1
n,δ (un)

⎞⎟⎠ , (8)

G� : (δ, (vi)i∈[1..λ]) ∈ R+ × [0, 1]nλ �→ argmax
G∈{G(δ,vi)|i∈[1..λ]}

f(G) . (9)

Then, if the copula Cδ is constant in regard to δ, for Wt = (V i,t)i∈[1..λ] a i.i.d.
sequence with V i,t ∼ Cδ

G(δt,V i,t)
(d)
= M i

t , (10)

G�(δt,Wt)
(d)
= M�

t . (11)

We may now use these results to show the divergence of the algorithm when
the step-size is constant, using the theory of Markov chains [15].

4 Divergence of the (1, λ)-ES with Constant Step-Size

Following the first part of [8], we restrict our attention to the constant step size
in the remainder of the paper, that is for all t ∈ N we take σt = σ ∈ R∗

+.
From Eq. (4), by recurrence and dividing by t, we see that

[Xt −X0]1
t

=
σ

t

t−1∑
i=0

M�
i . (12)

The latter term suggests the use of a Law of Large Numbers to show the con-
vergence of the left hand side to a constant that we call the divergence rate. The
random vectors (M�

t)t∈N are not i.i.d. so in order to apply a Law of Large Num-
bers on the right hand side of the previous equation we use Markov chain theory,
more precisely the fact that (M�

t)t∈N is a function of a (δt, (M
i,j
t)i∈[1..λ],j∈N)t∈N

which is a geometrically ergodic Markov chain. As (M i,j
t)i∈[1..λ],j∈N,t∈N is a i.i.d.

sequence, it is a Markov chain, and the sequence (δt)t∈N is also a Markov chain
as stated in the following proposition.

A Generalized Markov-Chain Modelling 907

Proposition 1. Let a (1, λ)-ES with constant step-size optimize problem (2),
handling the constraint through resampling, and take δt as defined in (5). Then
no matter what distribution the i.i.d. sequence (M i,j

t)i∈[1..λ],(j,t)∈N2 have, (δt)t∈N

is a homogeneous Markov chain and

δt+1 = δt − g(M�
t) = δt − cos θ[M �

t]1 − sin θ[M�
t]2 . (13)

We now show ergodicity of the Markov chain (δt)t∈N, which implies that the
t-steps transition kernel (the function A �→ Pr(δt ∈ A|δ0 = δ) for A ∈ B(R+))
converges towards a stationary measure π, generalizing Propositions 3 and 4 of
[8].

Proposition 2. Let a (1, λ)-ES with constant step-size optimize problem (2),
handling the constraint through resampling. We assume that the distribution of
M i,j

t is absolutely continuous with probability density function h, and that h
is continuous and strictly positive on Rn. Denote μ+ the Lebesgue measure on
(R+,B(R+)), and for α > 0 take the functions V : δ �→ δ, Vα : δ �→ exp(αδ) and
r1 : δ �→ 1. Then (δt)t∈N is μ+-irreducible, aperiodic and compact sets are small
sets for the Markov chain.

If the following two additional conditions are fulfilled

E(|g(M i,j
t)| | δt = δ) < ∞ for all δ ∈ R+ , and (14)

lim
δ→+∞

E(g(M�
t)|δt = δ) ∈ R∗

+ , (15)

then (δt)t∈N is r1-ergodic and positive Harris recurrent with some invariant mea-
sure π.

Furthermore, if

E(exp(g(M i,j
t))|δt = δ) < ∞ for all δ ∈ R+ , (16)

then for α > 0 small enough, (δt)t∈N is also Vα−geometrically ergodic.

We now use a law of large numbers ([15] Theorem 17.0.1) on the Markov chain
(δt, (M

i,j
t)i∈[1..λ],j∈N)t∈N to obtain an almost sure divergence of the algorithm.

Proposition 3. Let a (1, λ)-ES optimize problem (2), handling the constraint
through resampling. Assume that the distribution H of the random step M i,j

t is
absolutely continuous with continuous and strictly positive density h, that condi-
tions (16) and (15) of Proposition 2 hold, and denote π and μM the stationary
distribution of respectively (δt)t∈N and (M i,j

t)i∈[1..λ],(j,t)∈N2 . Then

[Xt −X0]1
t

a.s.−→
t→+∞ σEπ×μM ([M�

t]1) . (17)

Furthermore if E([M�
t]2) < 0, then the right hand side of Eq. (17) is strictly

positive.

908 A. Chotard and M. Holeňa

5 Application to More Specific Distributions

Throughout this section we give cases where the assumptions on the distribution
of the random steps H used in Proposition 2 or Proposition 3 are verified.

The following lemma shows an equivalence between a non-identity covariance
matrix for H and a different norm and constraint angle θ.

Lemma 3. Let a (1, λ)-ES optimize problem (2), handling the constraint with
resampling. Assume that the distribution H of the random step M i,j

t has pos-
itive definite covariance matrix C with eigenvalues (α2

i)i∈[1..n] and take B =
(bi,j)(i,j)∈[1..n]2 such that BCB−1 is diagonal. Denote AH,g,X0 the sequence of
parent points (Xt)t∈N of the algorithm with distribution H for the random steps
M i,j

t , constraint angle θ and initial parent X0. Then for all k ∈ [1..n]

βk [AH,θ,X0]k
(d)
=
[
AC−1/2H,θ′,X′

0

]
k

, (18)

where βk =
√∑n

j=1
b2j,i
α2

i
, θ′ = arccos(β1cosθ

βg
) with βg =

√
β2
1 cos2 θ + β2

2 sin
2 θ,

and [X ′
0]k = βk[X0]k for all k ∈ [1..n].

Although Eq. (17) shows divergence of the algorithm, it is important that
it diverges in the right direction, i.e. that the right hand side of Eq. (17) has
a positive sign. This is achieved when the distribution of the random steps is
isotropic, as stated in the following proposition.

Proposition 4. Let a (1, λ)-ES optimize problem (2) with constant step-size,
handling the constraint with resampling. Suppose that the Markov chain (δt)t∈N

is positive Harris, that the distribution H of the random step M i,j
t is absolutely

continuous with strictly positive density h, and take C its covariance matrix. If
the distribution C−1/2H is isotropic then Eπ×μM ([M�

t]1) > 0.

Lemma 3 and Proposition 4 imply the following result to hold for multivariate
normal distributions.

Proposition 5. Let a (1, λ)-ES optimize problem (2) with constant step-size,
handling the constraint with resampling. If H is a multivariate normal distribu-
tion with mean 0, then (δt)t∈N is a geometrically ergodic positive Harris Markov
chain, Eq. (17) holds and its right hand side is strictly positive.

To obtain sufficient conditions for the density of the random steps to be strictly
positive, it is advantageous to decompose that distribution into its marginals
and the copula combining them. We pay a particular attention to Archimedean
copulas, i.e., copulas defined

(∀u ∈ [0, 1]n) Cψ(u) = ψ(ψ−1([u]1) + · · ·+ ψ−1([u]n)), (19)

A Generalized Markov-Chain Modelling 909

where ψ : [0,+∞] → [0, 1] is an Archimedean generator, i.e., ψ(0) = 1, ψ(+∞) =
limt→+∞ ψ(t) = 0, ψ is continuous and strictly decreasing on [0, inf{t : ψ(t) =
0}), and ψ−1 denotes the generalized inverse of ψ,

(∀u ∈ [0, 1]) ψ−1(u) = inf{t ∈ [0,+∞] : ψ(t) = u}. (20)

The reason for our interest is that Archimedean copulas are invariant with re-
spect to permutations of variables, i.e.,

(∀u ∈ [0, 1]n) Cψ(Qu) = Cψ(u). (21)

holds for any permutation matrix Q ∈ Rn,n. This can be seen as a weak form of
isotropy because in the case of isotropy, (19) holds for any rotation matrix, and
a permutation matrix is a specific rotation matrix.

Proposition 6. Let H be the distribution of the two first dimensions of the
random step M i,j

t , H1 and H2 be its marginals, and C be the copula relating H
to H1 and H2. Then the following holds:

1. Sufficient for H to have a continuous strictly positive density is the simul-
taneous validity of the following two conditions.
(i) H1 and H2 have continuous strictly positive densities h1 and h2, respec-

tively.
(ii) C has a continuous strictly positive density c.
Moreover, if (i) and (ii) are valid, then

(∀x ∈ R2) h(x) = c(H1([x]1), H2([x]2))h1([x]1)h2([x]2). (22)

2. If C is Archimedean with generator ψ, then it is sufficient to replace (ii) with
(ii’) ψ is at least 4-monotone, i.e., ψ is continuous on [0,+∞], ψ′′ is decreas-

ing and convex on R+, and (∀t ∈ R+) (−1)kψ(k)(t) ≥ 0, k = 0, 1, 2.
In this case, if (i) and (ii’) are valid, then

(∀x ∈ R2) h(x) =
ψ′′(ψ−1(H1([x]1)) + ψ−1(H2([x]2)))
ψ′(ψ−1(H1([x]1)) + ψ−1(H2([x]2)))

h1([x]1)h2([x]2).

(23)

6 Discussion

The paper presents a generalization of recent results of the first author [8] con-
cerning linear optimization by a (1, λ)-ES in the constant step size case. The
generalization consists in replacing the assumption of normality of random steps
involved in the evolution strategy by substantially more general distributional
assumptions. This generalization shows that isotropic distributions solve the
linear problem. Also, although the conditions for the ergodicity of the studied
Markov chain accept some heavy-tail distributions, an exponentially vanishing
tail allow for geometric ergodicity, which imply a faster convergence to its sta-
tionary distribution, and faster convergence of Monte Carlo simulations. In our

910 A. Chotard and M. Holeňa

opinion, these conditions increase the insight into the role that different kinds
of distributions play in evolutionary computation, and enlarges the spectrum of
possibilities for designing evolutionary algorithms with solid theoretical funda-
mentals. At the same time, applying the decomposition of a multidimensional
distribution into its marginals and the copula combining them, the paper at-
tempts to bring a small contribution to the research into applicability of copulas
in evolutionary computation, complementing the more common application of
copulas to the Estimation of Distribution Algorithms [12,14,13].

Needless to say, more realistic than the constant step size case, but also more
difficult to investigate, is the varying step size case. The most important re-
sults in [8] actually concern that case. A generalization of those results for non-
Gaussian distributions of random steps for cumulative step-size adaptation ([9])
is especially difficult as the evolution path is tailored for Gaussian steps, and
some careful tweaking would have to be applied. The σ self-adaptation evolu-
tion strategy ([16]), studied in [6] for the same problem, appears easier, and
would be our direction for future research.

Acknowledgment. The research reported in this paper has been supported
by grant ANR-2010-COSI-002 (SIMINOLE) of the French National Research
Agency, and Czech Science Foundation (GAČR) grant 13-17187S.

References

1. Yao, X., Liu, Y.: Fast evolution strategies. In: Angeline, P.J., McDonnell, J.R.,
Reynolds, R.G., Eberhart, R. (eds.) EP 1997. LNCS, vol. 1213, pp. 149–161.
Springer, Heidelberg (1997)

2. Schaul, T.: Benchmarking Separable Natural Evolution Strategies on the Noiseless
and Noisy Black-box Optimization Testbeds. In: Black-box Optimization Bench-
marking Workshop, Genetic and Evolutionary Computation Conference, Philadel-
phia, PA (2012)

3. Schaul, T., Glasmachers, T., Schmidhuber, J.: High dimensions and heavy tails for
natural evolution strategies. In: Genetic and Evolutionary Computation Conference
(GECCO) (2011)

4. Hansen, N., Gemperle, F., Auger, A., Koumoutsakos, P.: When do heavy-tail distri-
butions help? In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J.,
Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 62–71. Springer,
Heidelberg (2006)

5. Arnold, D.: On the behaviour of the (1,λ)-ES for a simple constrained problem.
In: Foundations of Genetic Algorithms - FOGA 2011, pp. 15–24. ACM (2011)

6. Arnold, D.V.: On the behaviour of the (1,λ)-σSA-ES for a constrained linear prob-
lem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 82–91. Springer, Heidelberg (2012)

7. Chotard, A., Auger, A., Hansen, N.: Cumulative step-size adaptation on linear
functions. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 72–81. Springer, Heidelberg
(2012)

A Generalized Markov-Chain Modelling 911

8. Chotard, A., Auger, A., Hansen, N.: Markov chain analysis of evolution strategies
on a linear constraint optimization problem. In: 2014 IEEE Congress on Evolu-
tionary Computation (CEC) (2014)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

10. Coello Coello, C.A.: Constraint-handling techniques used with evolutionary algo-
rithms. In: Proceedings of the 2008 GECCO Conference Companion on Genetic
and Evolutionary Computation, GECCO 2008, pp. 2445–2466. ACM, New York
(2008)

11. Arnold, D.V., Brauer, D.: On the behaviour of the (1+1)-ES for a simple con-
strained problem. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 1–10. Springer, Heidelberg (2008)

12. Cuesta-Infante, A., Santana, R., Hidalgo, J., Bielza, C., Larrañaga, P.: Bivariate
empirical and n-variate archimedean copulas in estimation of distribution algo-
rithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2010)

13. Wang, L., Guo, X., Zeng, J., Hong, Y.: Copula estimation of distribution algorithms
based on exchangeable archimedean copula. International Journal of Computer
Applications in Technology 43, 13–20 (2012)

14. Salinas-Gutiérrez, R., Hernández-Aguirre, A., Villa-Diharce, E.R.: Using copulas
in estimation of distribution algorithms. In: Aguirre, A.H., Borja, R.M., Garciá,
C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 658–668. Springer, Heidelberg
(2009)

15. Meyn, S.P., Tweedie, R.L.: Markov chains and stochastic stability, 2nd edn.
Cambridge University Press (1993)

16. Beyer, H.-G.: Toward a theory of evolution strategies: Self-adaptation. Evolution-
ary Computation 3(3), 311–347 (1995)

Level-Based Analysis of Genetic Algorithms

and Other Search Processes

Dogan Corus1, Duc-Cuong Dang1, Anton V. Eremeev2, and Per Kristian Lehre1

1 University of Nottingham, United Kingdom
2 Omsk Branch of Sobolev Institute of Mathematics, Russia

Abstract. The fitness-level technique is a simple and old way to derive
upper bounds for the expected runtime of simple elitist evolutionary al-
gorithms (EAs). Recently, the technique has been adapted to deduce the
runtime of algorithms with non-elitist populations and unary variation
operators [2,8]. In this paper, we show that the restriction to unary vari-
ation operators can be removed. This gives rise to a much more general
analytical tool which is applicable to a wide range of search processes.
As introductory examples, we provide simple runtime analyses of many
variants of the Genetic Algorithm on well-known benchmark functions,
such as OneMax, LeadingOnes, and the sorting problem.

1 Introduction

The theoretical understanding of Evolutionary Algorithms (EAs) has advanced
significantly. A contributing factor for this success may have been the strategy
to analyse simple settings before proceeding to more complex scenarios, while
at the same time developing appropriate analytical techniques.

The fitness-level technique is one of the oldest techniques for deriving upper
bounds on the expected runtime of EAs. In this technique, the solution space is
partitioned into disjoint subsets called fitness-levels according to ascending val-
ues of the fitness function. The expected runtime can be deduced from bounds
on the probabilities of escaping the fitness levels. Applications of the technique
is widely known in the literature for classical elitist EAs [18]. Eremeev used a
fitness-level technique to obtain bounds on the expected proportion of the popu-
lation of a non-elitist EA above above a certain fitness level [5]. By generalising
results in [11], the first adaptation of the fitness-level technique to run-time anal-
ysis of non-elitist population-based EAs was made in [8], and refined in [2]. One
limitation of the approaches in [2,8] is that the partition must be fitness-based
and only unary variation operators are allowed, e.g. Genetic Algorithms (GAs)
are excluded. Runtime analysis of GAs has been subjected to increasing interest
in the recent years (e.g. see [3,10,12,13,15]).

We show that the above limitations can be removed from [2]. This gives rise
to a much more general tool which is applicable to a wide range of search pro-
cesses involving non-elitist populations. As introductory examples, we analyse
the runtime of variants of the Genetic Algorithm (GA) with different selection
mechanisms and crossover operators on well-known functions, such as OneMax

and LeadingOnes, and on the sorting problem.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 912–921, 2014.
c© Springer International Publishing Switzerland 2014

Level-Based Analysis of Genetic Algorithms 913

2 Algorithmic Scheme

We consider population-based algorithms at a very abstract level in which fitness
evaluations, selection and variation operations, which depending on the current
population P of size λ, are represented by a distribution D(P) over a finite
set X . More precisely, D is a mapping from Xλ into the space of probability
distributions over X . The next generation is obtained by sampling each new
individual independently from D(P). This scheme is summarised below.

Algorithm 1. Population-based algorithm with independent sampling
Require:

Finite state space X , and population size λ ∈ N,
Mapping D from X λ to the space of probability distributions over X .

1. P0 ∼ Unif(X λ)
2. for t = 0, 1, 2, . . . until termination condition met do
3. Sample Pt+1(i) ∼ D(Pt) independently for each i ∈ [λ]
4. end for

A similar scheme was studied in [17], where it was called Random Heuris-
tic Search with an admissible transition rule (see [17]). Some examples of such
algorithms are Simulated Annealing (more generally any algorithm with the
population composed of a single individual), Stochastic Beam Search [17], Esti-
mation of Distribution Algorithms such as the Univariate Marginal Distribution
Algorithm [1] and the Genetic Algorithm (GA) [6]. The previous studies of the
framework were often limited to some restricted settings [12] or mainly focused
on infinite populations [17]. In this paper, we are interested in finite populations
and develop a general method to deduce the expected runtime of the search
processes defined in terms of number of evaluations. We illustrate our methods
with runtime analysis of GAs under various settings (which are different to [12]).

The term Genetic Algorithm is often applied to EAs that use recombina-
tion operators. The GA is Algorithm 1 where the sampling y ∼ D(Pt) is the
following: (i) u ∼ psel(Pt), v ∼ psel(Pt) (selection); (ii) {x′, x′′} ∼ pxor(u, v),
x ∼ Unif({x′, x′′}) (crossover); (iii) y ∼ pmut(x) (mutation). The additional part
x ∼ Unif({x1, x2}) at crossover is to match Algorithm 1 that produces only one
resulting bitstring. We call this operator the one-offspring version of the stan-
dard crossover. In the rest of this paper, the two operations of the one-offspring
version will be denoted simply by x ∼ pxor(x, y). Here the standard operators of
GA are formally represented by transition matrices:

– psel : [λ] → [0, 1] represents a selection operator, where psel(i|Pt) is the
probability of selecting the i-th individual from population Pt.

– pmut : X ×X → [0, 1], where pmut(y|x) is the probability of mutating x ∈ X
into y ∈ X .

– pxor : X ×X 2 → [0, 1], where pxor(x|u, v) is the probability of obtaining x as
a result of crossover (or recombination) between u, v ∈ X

914 D. Corus et al.

3 Main Theorem

This section states a general technique for obtaining upper bounds on the ex-
pected runtime of any process that can be described in the form of Algo-
rithm 1. We use the following notation. For any positive integer n, define [n] :=
{1, 2, ..., n}. The natural logarithm is denoted by ln(·). The complement of an
event E is denoted by Ē . Suppose that for some m there is an ordered parti-
tion of X into subsets (A1, . . . , Am+1) called levels. For j ∈ [m] we denote by
A+

j := ∪m+1
i=j+1Ai, the union of all levels above level j. An example of partition

is the canonical partition, where each level regroups solutions having the same
fitness value (see e.g. [8]). This partition is classified as fitness-based, our main
theorem is not limited to this particular type of partition.

Lemma 1 (Lemma 5 and 6 in [2]). Let X ∼ Bin(λ, p) with p ≥ (i/λ)(1+ δ),
it holds that E

[
e−κX

] ≤ e−κi for any κ ∈ (0, δ). For i ≥ 1, it also holds that
E [ln ((1 + cX)/(1 + ci))] ≥ cε where ε = min{1/2, δ/2} and c = ε4/24.

Theorem 1. Given a partition (A1, . . . , Am+1) of X , define T := min{tλ |
|Pt ∩ Am+1| > 0} to be the first point in time that elements of Am+1 appear
in Pt of Algorithm 1. If there exist parameters z1, . . . , zm, z∗ ∈ (0, 1], δ > 0, a
constant γ0 ∈ (0, 1) and a function z0 : (0, γ0) → R such that for all j ∈ [m],
P ∈ X λ, y ∼ D(P) and γ ∈ (0, γ0) we have

(G1) Pr
(
y ∈ A+

j | |P ∩ A+
j−1| ≥ γ0λ

) ≥ zj ≥ z∗
(G2) Pr

(
y ∈ A+

j | |P ∩ A+
j−1| ≥ γ0λ, |P ∩ A+

j | ≥ γλ
) ≥ z0(γ) ≥ (1 + δ)γ

(G3) λ ≥ 2
a
ln
(

16m
acεz∗

)
with a =

δ2γ0
2(1 + δ)

, ε = min{δ/2, 1/2} and c = ε4/24

then E [T] ≤ 2
cε

(
mλ(1 + ln(1 + cλ)) +

∑m
j=1

1
zj

)
Informally, the two first conditions require a relationship between P and the

distribution D(P): (G1) demands a certain probability zj of creating an individ-
ual at level j + 1 when some fixed portion of the population is already at level
j (or higher); (G2) requires that in the fixed portion, the number of individuals
at levels strictly higher than j (if those exist) tends to increase, e.g. by a mul-
tiplicative factor of 1 + δ. Finally, (G3) requires a sufficiently large population
size. The proof follows the same ideas as those in [2].

Proof. We use the following notation. The number of individuals in Aj ∪A+
j at

generation t is denoted by Xj
t . The current level of the population at generation

t is denoted by Zt, where Zt := 	 iff X�
t ≥ �γ0λ� and X�+1

t < γ0λ. Note that Zt

is uniquely defined, as it is the level of the γ0-ranked individual at generation
t. We also use qj to denote the probability to generate at least one individual
at a level strictly greater than j in the next generation, knowing that there are
at least �γ0λ� individuals of the population at level j or higher in the current
generation. Because of (G1), we have qj ≥ 1− (1 − zj)λ ≥ zjλ/(zjλ+ 1).

Level-Based Analysis of Genetic Algorithms 915

The theorem can now be proved using the additive drift theorem with respect
to the potential function g(t) := g1(t) + g2(t), where

g1(t) := (m− Zt) ln(1 + cλ)− ln(1 + cXZt+1
t)

and g2(t) :=
1

qZte
κX

Zt+1
t

+
m−1∑

j=Zt+1

1
qj

with κ ∈ (0, δ)

The above components originated from the drift analysis of [8], then later im-
proved by [2]. Function g is bounded from above by, g(t) ≤ m ln(1 + cλ) +∑m

j=1
1
qj

≤ m(1+ln(1+cλ))+ 1
λ

∑m
j=1

1
zj
. At generation t, we use R = Zt+1−Zt

to denote the random variable describing the next progress in terms of lev-
els. To simplify further writing, let us put 	 = Zt, i = X�

t , X = X�
t+1, then

Δ = g(t)− g(t+ 1) = Δ1 +Δ2 with

Δ1 := g1(t)− g1(t+ 1) = R ln(1 + cλ) + ln

(
1 +X�+R+1

t+1

1 + ci

)

Δ2 := g2(t)− g2(t+ 1) =
1

q�eκi
− 1

q�+ReκX
�+R+1
t+1

+
l+R∑

j=�+1

1
qj

Let us denote by Et the event that the population in the next generation does
not fall down to a lower level, Et : Zt+1 ≥ Zt. We first compute the conditional
forward drift E [Δ|Ft, Et], here Ft is the filtration induced by Pt. Under Et, R
is a non-negative random variable and Δ is a random variable indexed by R,
noted as Δ = YR. We can show that Yr≥1 ≥ Y0 for fixed indexes.

Y0 = ln
(
1 + cX

1 + ci

)
+

1
q�eκi

− 1
q�eκX

≤ ln
(
1 + cλ

1 + ci

)
+

1
q�eκi

Yr≥1 = r ln(1 + cλ) + ln

(
1 +X�+r+1

t+1

1 + ci

)
+

1
q�eκi

− 1

q�+re
κX�+r+1

t+1

+
�+r∑

j=�+1

1
qj

≥ ln(1 + cλ) + ln
(

1
1 + ci

)
+

1
q�eκi

− 1
q�+r

+
�+r∑

j=�+1

1
qj

= ln
(
1 + cλ

1 + ci

)
+

1
q�eκi

+
�+r−1∑
j=�+1

1
qj

≥ ln
(
1 + cλ

1 + ci

)
+

1
q�eκi

≥ Y0

It is then clear (or see Lemma 7 in [2]) that E [Δ|Ft, Et] = E [YR|Ft, Et] ≥
E [Y0|Ft, Et], so we only focus on r = 0 to lower bound the drift. We separate two
cases, i = 0, the event is denoted by Zt, and i ≥ 1 (event Z̄t). Recall that each
individual is generated independently from each other, so during Z̄t we have that
X ∼ Bin(λ, p) where p ≥ z0(i/λ). From (G2), we also get z0(i/λ) ≥ (i/λ)(1+ δ).
Hence p ≥ (i/λ)(1 + δ) and by Lemma 1, it holds for i ≥ 1 (event Z̄t) that

E
[
Δ1|Ft, Et, Z̄t

] ≥ E

[
ln
(
1 + cX

1 + ci

)
|Ft, Et, Z̄t

]
≥ cε

916 D. Corus et al.

E
[
Δ2|Ft, Et, Z̄t

] ≥ 1
q�
(e−κi − E

[
e−κX |Ft, Et, Z̄t

]
) ≥ 0

For i = 0, we get E [Δ1|Ft, Et,Zt] ≥ E [ln(1)|Ft, Et,Zt] = 0 because X ≥ 0.
Recall that q� = Pr (X ≥ 1|Ft, Et,Zt), so

E [Δ2|Ft, Et,Zt] ≥ Pr (X ≥ 1|Ft, Et,Zt)E
[

1
q�eκi

− 1
q�eκX

|Ft, Et,Zt, X ≥ 1
]

≥ q�(1/q�)(e−κ·0 − e−κ·1) = 1− e−κ

So the conditional forward drift is E [Δ|Ft, Et] ≥ min{cε, 1 − e−κ}. Further-
more, κ can be picked in the non-empty interval (− ln(1−cε), δ) ⊂ (0, δ), so that
1− e−κ > cε and E [Δ|Ft, Et] ≥ cε. Next, we compute the conditional backward
drift, which can be done for the worst case.

E
[
Δ|Ft, Ēt

] ≥ −(m− 1) ln(1 + cλ)− ln(1 + cλ)−
m∑
j=1

1/qj ≥ −m (cλ+ 2/z∗)

The probability that event Et does not occur is computed as follows. Recall
that X�

t ≥ �γ0λ� and X�
t+1 is binomially distributed random variable with proba-

bility at least z0(γ0) ≥ (1+δ)γ0 by condition (G2), so E
[
X�

t+1|Ft

] ≥ (1+δ)γ0λ.
The event Ēt happens when the number of individuals at level 	 is strictly less
than �γ0λ� in the next generation. By a Chernoff bound (see [4]), we have

Pr
(Ēt|Ft

)
= Pr

(
X�

t+1 < �γ0λ�|Ft

) ≤ Pr
(
X�

t+1 ≤ γ0λ|Ft

)
= Pr

(
X�

t+1 ≤ (1− δ/(1 + δ)) (1 + δ)γ0λ|Ft

)
≤ Pr

(
X�

t+1 ≤ (1− δ/(1 + δ))E
[
X�

t+1|Ft

] |Ft

)
≤ exp

(
−δ2E

[
X�

t+1|Ft

]
2(1 + δ)2

)
≤ exp

(
−δ2(1 + δ)γ0λ

2(1 + δ)2

)
= e−aλ

Recall condition (G3) that λ ≥ (2/a) ln ((16m)/(acεz∗)). This implies that
(8m)/(acεz∗) ≤ e

aλ
2 /2 ≤ eaλ/(aλ), or e−aλ ≤ cεz∗/(8mλ). The drift is therefore

E [Δ|Ft] = (1− Pr
(Ēt|Ft

)
)E [Δ|Ft, Et] + Pr

(Ēt|Ft

)
E
[
Δ|Ft, Ēt

]
= E [Δ|Ft, Et]− Pr

(Ēt|Ft

)
(E [Δ|Ft, Et]− E

[
Δ|Ft, Ēt

]
)

≥ cε− cεz∗
8mλ

(
cε+m

(
cλ+

2
z∗

))
≥ cε− cε

8

(
cεz∗
λm

+ z∗c+
2
λ

)
≥ cε− 4cε

8
=

cε

2

By additive drift [7], E [T] ≤ 2
cε

(
mλ(1 + ln(1 + cλ)) +

∑m
j=1

1
zj

)
. +,

In the special case of unary variation operators Theorem 1 becomes analogous
to the main results of [2,8]. It is an open problem whether the upper bound in
Theorem 1 is tight. The lack of general tools make this problem hard. The
family tree technique [19], the population drift theorem [9], and the fitness level
technique in [16], provide lower bounds for population-based algorithms, however
only for less general settings than Algorithm 1.

Level-Based Analysis of Genetic Algorithms 917

4 Runtime Analysis of Genetic Algorithms

This section provides a version of Theorem 1 tailored to the GAs described
in Section 2. The selective pressure of a selection mechanism psel is defined
as follows. For any γ ∈ (0, 1) and population P of size λ, let β(γ, P) be the
probability of selecting an individual from P that is at least as good as the
individual with rank �γλ� (see [2] or [8] for a formal definition). We assume that
psel is monotone with respect to fitness values [8], ie for all P ∈ X λ and pairs
i, j ∈ [λ], psel(i | P) ≥ psel(j | P) if and only if f(P (i)) ≥ f(P (j)).

Corollary 1. Given a function f : X → R and a partition (A1, . . . , Am+1)
of X , let T := min{tλ | |Pt ∩ Am+1| > 0} be the runtime of the non-elitist
Genetic Algorithm, as described in Section 2, on f . If there exist parameters
s1, . . . , sm, s∗, p0, ε1 ∈ (0, 1], δ > 0, and a constant γ0 ∈ (0, 1) such that for all
j ∈ [m], P ∈ Xλ, and γ ∈ (0, γ0)

(C1) pmut(y ∈ A+
j | x ∈ A+

j−1) ≥ sj ≥ s∗
(C2) pmut(y ∈ A+

j | x ∈ A+
j) ≥ p0

(C3) pxor(x ∈ A+
j | u ∈ A+

j−1, v ∈ A+
j) ≥ ε1

(C4) β(γ, P) ≥ γ
√

1+δ
p0ε1γ0

(C5) λ ≥ 2
a
ln
(

32mp0
(δγ0)2cs∗ψ

)
with a :=

δ2γ0
2(1 + δ)

, ψ := min{ δ
2 ,

1
2} and c := ψ4

24

then E [T] ≤ 2
cψ

(
mλ(1 + ln(1 + cλ)) + p0

(1+δ)γ0

∑m
j=1

1
sj

)
.

Proof. We show that conditions (C1-5) imply conditions (G1-3) in Theorem 1.
We first show that condition (G1) is satisfied for zj = γ0(1 + δ)sj/p0. Assume
that |P ∩ A+

j−1| ≥ γ0λ. Remark that (C3) written for one level below, which is
pxor(x ∈ A+

j−1 | u ∈ A+
j−2, v ∈ A+

j−1) ≥ ε1, implies pxor(x ∈ A+
j−1 | u ∈ A+

j−1, v ∈
A+

j−1) ≥ ε1. To sample an individual in A+
j , it suffices that the selection operator

picks two individuals u and v from A+
j−1, that the crossover operator produces

an individual x in A+
j−1 from u and v, and the mutation operator produces an

individual y in A+
j from x. By conditions (C4), (C3) as the remark, and (C1),

the probability of this event is at least β(γ0)β(γ0)ε1sj ≥ γ0(1 + δ)sj/p0 = zj.
We then show that condition (G2) is satisfied. Assume that |P ∩A+

j−1| ≥ γ0λ

and |P ∩ A+
j | ≥ γλ. To produce an individual y in A+

j , it suffices that the
selection operator picks an individual u in A+

j−1 and an individual v in A+
j , that

the crossover operator produces an individual x in A+
j from u and v, and the

mutation operator produces an individual y in A+
j from x. By conditions (C4),

(C3), and (C2), the probability of this event is at least β(γ0)β(γ)ε1p0 ≥ (1+δ)γ.
Finally, to see that condition (G3) is satisfied, it suffices to note that az∗ =

(δγ0)2s∗/(2p0). Hence, the statement now follows from Theorem 1. +,

918 D. Corus et al.

4.1 Runtime of GAs on Simple pseudo-Boolean Functions

We apply Corollary 1 to bound the expected runtime of the non-elitist GA on
the functions OneMax(x) :=

∑n
i=1 xi (also written shortly as |x|1 or Om) and

LeadingOnes(x) :=
∑n

i=1
∏i

j=1 xj (shortly as Lo).
We first show how to parameterise three standard selection mechanisms such

that condition (C4) is satisfied. In k-tournament selection, k individuals are
sampled uniformly at random with replacement from the population, and the
fittest of these individuals is returned. In (μ, λ)-selection, parents are sampled
uniformly at random among the fittest μ individuals in the population. A func-
tion α : R → R is a ranking function [6] if α(x) ≥ 0 for all x ∈ [0, 1], and∫ 1
0 α(x)dx = 1. In ranking selection with ranking function α, the probability
of selecting individuals ranked γ or better is

∫ γ
0 α(x)dx. We define exponential

ranking parameterised by η > 0 as α(γ) := ηeη(1−γ)/(eη − 1). 1

Lemma 2. For any constant δ > 0, there exists a constant γ0 ∈ (0, 1) such that

1. k-tournament selection with k ≥ 4(1 + δ)/(ε1p0) satisfies (C4)
2. (μ, λ)-selection with λ/μ ≥ (1 + δ)/(ε1p0) satisfies (C4)
3. exponential ranking selection with η ≥ 4(1 + δ)/(ε1p0), satisfies (C4).

Lemma 3 shows that two standard crossover operators satisfy (C3) for ε1 = 1
2 .

Lemma 3. If x ∼ pxor(u, v), where pxor is one-point or uniform crossover, then

1. If Lo(u) = Lo(v) = j, then Pr (Lo(x) ≥ j) = 1.
2. If Lo(u) �= Lo(v), then Pr (Lo(x) > min{Lo(u),Lo(v)}) ≥ 1/2.
3. Pr (Om(x) ≥ �(Om(u) +Om(v))/2�) ≥ 1/2.

Theorem 2. Assume that the GA with one-point or uniform crossover, bitwise
mutation with mutation rate χ/n for a constant χ > 0, and either k-tournament
selection with k ≥ 8(1 + δ)eχ, or (μ, λ) selection with λ/μ ≥ 2(1 + δ)eχ or the
exponential ranking selection with η ≥ 8(1 + δ)eχ, for a constant δ > 0. Then
there exists a constant c > 0, such that the GA with population size λ ≥ c lnn,
has expected runtime O(nλ ln λ + n2) on LeadingOnes, and expected runtime
O(nλ ln λ) on OneMax.

Proof. Let f be either Om or Lo. We apply Corollary 1 with the canonical
partition of the search space into n + 1 levels Aj := {x | f(x) = j − 1}, for
j ∈ [n + 1]. We use p0 := (1 − χ/n)n the probability of not flipping any bit
position by mutation, and for all j ∈ [n], define

sj :=

{
(χ/n)(1− χ/n)n−1 if f = Lo, and
(n− j + 1)(χ/n)(1− χ/n)n−1p0 if f = Om.

Considering condition (C1), when x ∈ Aj it suffices to upgrade x to a higher
level, the probability of such an event is at least sj for Lo and sj/p0 > sj for Om.

1 The proofs of Lemmas 2 and 3 are omitted due to space restrictions.

Level-Based Analysis of Genetic Algorithms 919

When x ∈ A+
j , it suffices to not modify x, the probability of such an event is

at least p0 ≥ sj with sufficiently large n for Lo and p0 > (n − j + 1)(χ/n)(1 −
χ/n)n−1p0 = sj for Om. So, condition (C1) is satisfied for both functions with
the given sj . In addition, condition (C2) is trivially satisfied for the given p0 and
condition (C3) is satisfied for the parameter ε1 := 1/2 by Lemma 3.

We now look at condition (C4), and remark that p0 = (1 − χ/n)(n/χ−1)χ(1 −
χ/n)χ ≥ e−χ(1−χ/n)χ. So eχ ≥ (1−χ/n)χ/p0 and with the given condition for k-
tournament, we get k ≥ 8(1+δ)eχ = 4(1+δ)eχ/(1/2) ≥ 4(1+δ)(1−χ/n)χ/(ε1p0).
Then for any constant δ′ ∈ (0, δ) and sufficiently large n, literally n ≥ χ/(1−((1+
δ′)/(1 + δ))1/χ), it holds that k ≥ 4(1 + δ′)/(ε1p0). So condition (C4) is satisfied
with the constant δ′ for k-tournament by Lemma 2. The same reasoning can be
applied so that (C4) is also satisfied for the other selection mechanisms.

Finally, s∗ := minj∈[n] sj = Ω(1/n). So assuming λ ≥ c lnn for a sufficiently
large constant c, condition (C5) is satisfied as well. Note that the p0 part in
sj of Lo only removes the p0 from p0/(1 + δ)γ0 in the runtime of Corollary 1.
Therefore, the upper bounds O(nλ ln λ + n2) and O(nλ ln λ) on the expected
runtime are proven for Om and Lo respectively. +,

Note that the upper bounds in Theorem 2 match the upper bounds obtained
in [2] for EAs without crossover.

4.2 Runtime of GAs on the Sorting Problem

Given n distinct elements from a totally ordered set, we consider the problem of
finding an ordering of them so that some measure of sortedness is maximised.
Scharnow et al. [14] considered several sortedness measures in the context of
analysing the (1+1) EA. One of those is INV (π) which is defined to be the
number of pairs (i, j) such that 1 ≤ i < j ≤ n, π(i) < π(j) (i.e. pairs in correct
order). We show that with the methods introduced in this paper, analysing GAs
on INV (π) is not much harder than analysing the (1+1) EA.

As mutation operator, we consider the Exchange(π) operator, which consec-
utively applies N pairwise exchanges between uniformly selected pairs of indices,
where N is a random number drawn from a Poisson distribution with parameter
1. We consider a crossover operator, denoted by pxor(pc), which returns one of the
parents unchanged with probability 1−pc. For example, pxor(pc) is built up from
any standard crossover operator so that with probability pc the standard opera-
tor is applied and the offspring is returned, otherwise with probability 1−pc one
of the parents is returned in place of the offspring. This construction corresponds
to a typical setting (see [6]) where there is some crossover probability pc of ap-
plying the crossover before the mutation. As selection mechanism, we consider
k-tournament selection, (μ, λ)-selection, and exponential ranking selection.

Theorem 3. If the GA uses a pxor(pc) crossover operator with pc being any con-
stant in [0, 1), the Exchange mutation operator where the number of exchanges N
is drawn from a Poisson distribution with parameter 1, k-tournament selection
with k ≥ 8e(1 + δ)/(1 − pc), or (μ, λ)-selection with λ/μ ≥ 2e(1 + δ)/(1 − pc),

920 D. Corus et al.

or exponential ranking selection with η ≥ 8e(1 + δ)/(1− pc), then there exists a
constant c > 0 such that if the population size is λ ≥ c lnn, the expected time to
obtain the optimum of INV is O(n2λ logλ).

Proof. Define m :=
(
n
2

)
. We apply Corollary 1 with the canonical partition,

Aj := {π | INV (π) = j} for j ∈ [m]. The probability that the exchange operator
exchanges 0 pairs is 1/e. Hence, condition (C2) is trivially satisfied for p0 := 1/e.

To show that condition (C1) is satisfied, define first sj := (m− j)p0/(em). In
the case that x ∈ Aj , then the probability that the exchange operator exchanges
exactly one pair is 1/e, and the probability that this pair is incorrectly ordered in
x, is (m− j)/m. In the other case that, x ∈ A+

j , it is sufficient that the exchange
operator exchanges 0 pairs, which by condition (C2) occurs with probability at
least p0 ≥ sj . Hence, in both cases, y ∈ A+

j with probability at least sj , and
condition (C1) is satisfied.

Condition (C3) is trivially satisfied for ε1 := (1−pc)/2, because the crossover
operator returns one of the parents unchanged with probability 1− pc, and with
probability 1/2, this parent is v. Condition (C4) is satisfied for some constant
γ0 ∈ (0, 1) by Lemma 2. Finally, since γ0, δ, and p0 are constants, there exists a
constant c > 0 such that condition (C5) is satisfied for any λ ≥ c ln(n).

It therefore follows that the expected runtime of the GA on INV is upper
bounded by O(n2λ log λ). +,

5 Conclusion

Most results in runtime analysis of evolutionary algorithms concern relatively
simple algorithms, e.g. the (1+1) EA, which do not employ populations and
higher-arity variation operators, such as crossover. This paper introduces a new
tool, akin to the fitness-level technique, that easily yields upper bounds on the ex-
pected runtime of complex, non-elitist search processes. The tool is illustrated on
Genetic Algorithms. Given an appropriate balance between selection and varia-
tion operators, we have shown that GAs optimise standard benchmark functions,
as well as combinatorial optimisation problems, efficiently. Future applications of
the theorem might consider the impact of the crossover operator more in detail,
e.g. by a more precise analysis of the population diversity.

Acknowledgements. This research received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no
618091 (SAGE), from EPSRC grant no EP/F033214/1 (LANCS), and from
Russian Foundation for Basic Research grant 12-01-00122. Early ideas where
discussed at Dagstuhl Seminar 13271 Theory of Evolutionary Algorithms.

References

1. Chen, T., Lehre, P., Tang, K., Yao, X.: When is an estimation of distribution al-
gorithm better than an evolutionary algorithm? In: Proceedings of IEEE Congress
on Evolutionary Computation (CEC 2009), pp. 1470–1477 (2009)

Level-Based Analysis of Genetic Algorithms 921

2. Dang, D.C., Lehre, P.K.: Refined upper bounds on the expected runtime of non-
elitist populations from fitness levels. In: Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2014) (to appear, 2014)

3. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: Fast crossover-based
genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2013), pp. 781–788 (2013)

4. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, NY (2009)

5. Eremeev, A.V.: Modeling and analysis of genetic algorithm with tournament se-
lection. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.)
AE 1999. LNCS, vol. 1829, pp. 84–95. Springer, Heidelberg (2000)

6. Goldberg, D.E.: Genetic Algorithms in search, optimization and machine learning.
Addison-Wesley, MA (1989)

7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algo-
rithms. Artificial Intelligence 127(1), 57–85 (2001)

8. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of Genetic
and Evolutionary Computation Conference (GECCO 2011), pp. 2075–2082 (2011)

9. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg
(2010)

10. Lehre, P.K., Yao, X.: Crossover can be constructive when computing unique input-
output sequences. Soft Computing 15(9), 1675–1687 (2011)

11. Lehre, P.K., Yao, X.: On the impact of mutation-selection balance on the runtime of
evolutionary algorithms. IEEE Transactions on Evolutionary Computation 16(2),
225–241 (2012)

12. Oliveto, P.S., Witt, C.: Improved runtime analysis of the simple genetic algo-
rithm. In: Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2013), pp. 1621–1628 (2013)

13. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective
evolutionary optimization. Artificial Intelligence 204, 99–119 (2013)

14. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and
Algorithms 3(4), 349–366 (2004)

15. Sudholt, D.: Crossover speeds up building-block assembly. In: Proceedings of Ge-
netic and Evolutionary Computation Conference (GECCO 2012), pp. 689–702
(2012)

16. Sudholt, D.: A new method for lower bounds on the running time of evolution-
ary algorithms. IEEE Transactions on Evolutionary Computation 17(3), 418–435
(2013)

17. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press,
Cambridge (1999)

18. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. Evolutionary Optimization 48, 349–369 (2002)

19. Witt, C.: Runtime analysis of the (μ+1) EA on simple pseudo-boolean functions.
Evolutionary Computation 14(1), 65–86 (2006)

Maximizing Submodular Functions

under Matroid Constraints
by Multi-objective Evolutionary Algorithms

Tobias Friedrich1 and Frank Neumann2

1 Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
2 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, SA 5005, Australia

Abstract. Many combinatorial optimization problems have underlying
goal functions that are submodular. The classical goal is to find a good so-
lution for a given submodular function f under a given set of constraints.
In this paper, we investigate the runtime of a multi-objective evolution-
ary algorithm called GSEMO until it has obtained a good approximation
for submodular functions. For the case of monotone submodular func-
tions and uniform cardinality constraints we show that GSEMO achieves
a (1 − 1/e)-approximation in expected time O(n2 (log n + k)), where k
is the value of the given constraint. For the case of non-monotone sub-
modular functions with k matroid intersection constraints, we show that
GSEMO achieves a 1/(k + 2+ 1/k + ε)-approximation in expected time
O(nk+5 log(n)/ε).

1 Introduction

Evolutionary algorithms can efficiently find the minima of convex functions.
While this is known and well studied in the continuous domain, it is not obvious
how an equivalent statement for discrete optimization looks like. Let us recall
that a differentiable fitness function f : R → R is called convex if its deriva-
tive d

dxf(x) is non-decreasing in x. The bitstring analogue of this is a fitness
function f : {0, 1}n → R whose discrete derivative ∂if(x) = f(x + ei) − f(x)
is non-decreasing in x for all 1 ≤ i ≤ n with ei being the i-th unit vector. A
discrete function satisfying the aforementioned condition is called submodular.
Submodularity is the counterpart of convexity in discrete settings [25].

For understanding the properties of continuous optimizers it is central to
study their performance for minimizing convex functions. This has been done
in detail for continuous evolutionary algorithms [2, 17]. On the other hand, it is
rather surprising that there appears to be not a single published study regarding
the performance of discrete evolutionary algorithms for optimizing submodular
functions. We want to fill this gap and present several approximation results for
simple evolutionary algorithms and submodular functions.

Analogous to the situation for convex functions, there is a significant differ-
ence between minimization and maximization of submodular functions. Submod-
ular functions can be minimized with a (non-trivial) combinatorial algorithm in

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 922–931, 2014.
c© Springer International Publishing Switzerland 2014

Maximizing Submodular Functions under Matroid Constraints 923

polynomial time [19]. On the other hand, submodular function maximization is
NP-hard as it generalizes many NP-hard combinatorial optimization problems,
like maximum cut [10, 15], maximum directed cut [16], maximum facility loca-
tion [1, 7], and several restricted satisfiability problems [10, 18]. As evolutionary
algorithms are especially useful for hard problems, we focus on the maximization
of submodular functions.

More formally, we consider the optimization problem max{f(S) : S ∈ I},
where X is an arbitrary ground set, f : 2X → R is a fitness function, and I ⊆ 2X

a collection of independent sets describing the feasible region of the problem. As
usual, we assume value oracle access to the fitness function; i.e., for a given
set S, an algorithm can query an oracle to find its value f(S). We also always
assume that the fitness function is normalized, i.e., f(∅) = 0, and non-negative,
i.e., f(A) ≥ 0 for all A ⊆ X . We will study the following variants of f and I:
• Submodular functions: A function f is submodular iff f(A∪B)+f(A∩B) ≤

f(A) + f(B) for all A,B ⊆ X .
• Monotone functions: A function is monotone iff f(A) ≤ f(B) for all A ⊆ B.
• Matroid: A matroid is a pair (X, I) composed of a ground set X and a non-
empty collection I of subsets of X satisfying (1) If A ∈ I and B ⊆ A then
B ∈ I and (2) If A,B ∈ I and |A| > |B| then B+x ∈ I for some x ∈ A \B.
The sets in I are called independent, the rank of a matroid is the size of any
maximal independent set.

• Uniform matroid: A uniform matroid (X, I) of rank k ∈ N contains all
subsets of size at most k, i.e., I = {A ⊆ X : |A| ≤ k}.

• Partition matroid: A partition matroid is a matroid formed from a direct
sum of uniform matroids, i.e., if the universe X is partitioned into k parts
X1, . . . , Xk, then in a partition matroid a set is independent if it contains at
most one element from each part.

• Intersection of k matroids: Given k matroids M1 = (X, I1) , M=(X, I2), . . . ,
Mk = (X, Ik) on the same ground set X , the intersection of these matroids is
the matroid (X, I) with I = {A ⊆ X | A ∈ Ii, 1 ≤ i ≤ k}. A simple example
for k = 2 is the family of matchings in a bipartite graph; or in general the
family of hypergraph matchings in a k-partite hypergraph.

Maximizing submodular functions is not only NP-hard, but also NP-hard to
approximate. We therefore also have to formalize the notion of an approximation
algorithm. We say an algorithm achieves an α-approximation if for all instances
of the considered maximization problem, the output returned by the algorithm
is at least α times the optimal value.

Our results. Optimizing single objective optimization problems by multi-
objective approaches such as the global simple evolutionary multiobjective opti-
mizer (GSEMO) has already been shown to be beneficial for many combinatorial
optimization problems [11, 21, 28]. We study GSEMO and prove the following
statements.

• Based on the seminal work of Nemhauser, Wolsey, and Fisher [26], we show
that GSEMO achieves in polynomial time a 1−1/e-approximation for maxi-
mizing monotone submodular functions under a uniform matroid constraint.

924 T. Friedrich and F. Neumann

This approximation factor is optimal in the general setting [27], and it is
optimal even for the special case of Max-k-cover, unless P = NP [9].

• Based on the more recent work of Lee, Mirrokni, Nagarajan, and Sviridenko
[23], we show that GSEMO achieves in polynomial time a 1/(k+2+1/k+ε)-
approximation for maximizing submodular functions over k matroid con-
straints. Note that this result even holds for non-monotone functions.

Outline. The paper is organized as follows. In Section 2, we describe the setting
for submodular functions and introduce the algorithm that is subject to our
investigations. We analyze the algorithm on monotone submodular functions
with a uniform constraint in Section 3 and consider the case of non-monotane
submodular functions under matroid constraints in Section 4. Finally, we finish
with a discussion on open problems in Section 5.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of atten-
tion in the classical (non-evolutionary) optimization community. For a detailed
exposition, we refer to the textbooks of Schrijver [30] and Korte and Vygen [20].

Submodular Functions. When optimizing a submodular function f : 2X →
R, we will often consider the incremental value of adding a single element. For
this, we denote by FA(i) = f(A+ i)− f(A) the marginal value of i with respect
to A. Nemhauser et al. [26, Proposition 2.1] give seven equivalent definitions for
submodular functions. Additionally to the definition stated in the introduction
we will also use that a function f is submodular iff Fi(A) ≥ Fi(B) for all A ⊆
B ⊆ X and i ∈ X \B.

Many common pseudo-Boolean and combinatorial fitness functions are sub-
modular. As we are not aware of any general results for the optimization of
submodular function by evolutionary algorithms, we list a few examples of well-
known submodular functions:

• Linear functions: All linear functions f : 2X → R with f(A) =
∑

i∈A wi for
some weights w : X → R are submodular. If wi ≥ 0 for all i ∈ X , then f is
also monotone.

• Cut: Given a graph G = (V,E) with nonnegative edge weights w : E → R≥0.
Let δ(S) be the set of all edges that contain both a vertex in S and V \ S.
The cut function w(δ(S)) is submodular but not monotone.

• Coverage: Let the ground set be X = {1, 2, . . . , n}. Given a universe U with
n subsets Ai ⊆ U for i ∈ X , and a non-negative weight function w : U →
R≥0. The coverage function f : 2X → R with f(S) = |⋃i∈S Ai| and the
weighted coverage function f ′ with f ′(S) = w(

⋃
i∈S Ai) =

∑
u∈⋃

i∈S Ai
w(u)

are monotone submodular.
• Rank of a matroid: The rank function r(A) = max{|S| : S ⊆ A,S ∈ I} of a
matroid (X, I) is monotone submodular.

Maximizing Submodular Functions under Matroid Constraints 925

• Hypervolume Indicator: Given a set of points in Rd in the objective space
of a multi-objective optimization problem, measure the volume of the space
dominated by these points relative to some fixed reference point. The hy-
pervolume is a well-known quality measure in evolutionary multi-objective
optimization and is known to be monotone submodular [31].

Matroids. We defined the most important matroids already in the intro-
duction. Matroid theory provides a framework in which many problems from
combinatorial optimization can be studied from a unified perspective. Matroids
are a special class of so-called independence systems that are given by a finite
set X and a family of subsets I ⊆ X such that I is closed under subsets. Being
a matroid is considered to be the property of an independence system which
makes greedy algorithms work well. Within evolutionary computation, matroid
constraints have been studied only for linear functions [29].

Fitness function. We assume a finite ground set X = {x1, x2, . . . , xn} and
identify each subset S ⊆ X with a bitstring x ∈ {0, 1}n such that the i-th bit
of x is 1 iff xi ∈ S. Let f : {0, 1}n → R≥0 be the given (normalized and non-
negative) submodular function and F ⊆ {0, 1}n be the set of feasible solutions.
Note, that f is defined on every element of {0, 1}n. We set z(x) = f(x) iff x ∈ F
and z(x) = −1 iff x �∈ F and consider the multi-objective problem

g(x) := (z(x), |x|0),
where |x|0 =

∑n
i=1(1 − xi) denotes the number of 0-bits in the given bitstring

x. We write g(x) ≥ g(y) iff ((z(x) ≥ z(y)) ∧ (|x|0 ≥ |y|0)) holds. If g(x) ≥ g(y)
holds, we say that y is dominated by x. The solution y is strictly dominated by
solution x iff g(x) ≥ g(y) and g(x) �= g(y).

Algorithms. The theoretical runtime analysis of evolutionary algorithms of-
ten considers randomized local search (RLS) and the (1 + 1) evolutionary al-
gorithm (EA). The multi-objective counterpart of RLS and (1+1) EA are the
simple evolutionary multi-objective optimizer (SEMO) [22] and global SEMO
(GSEMO) [12]. Both algorithms have been studied in detail, see [6, 8, 11–13].
We consider the GSEMO given in Algorithm 1.

In the end, we focus on the solution x∗ = argmaxx∈P z(x) and study the
quality of this solution. We study the expected number of iterations (of the repeat
loop) of GSEMO until x∗ is an α-approximation of an optimal solution Opt, i.e.
f(x∗)/Opt ≥ α holds. Here α denotes the investigated approximation ratio for
the considered problem. We call the expected number of iterations to reach an
α-approximation, the expected (run)time to achieve an α-approximation.

3 Monotone Submodular Functions with a Uniform
Constraint

In this section, we investigate submodular functions with one uniform constraint.
In the case of one uniform constraint of size k, a solution x ∈ X is feasible if it
has at most k elements. Hence, we have F = {x | x ∈ X ∧ |x|1 ≤ k}.

926 T. Friedrich and F. Neumann

Algorithm 1. GSEMO Algorithm
1 choose x ∈ {0, 1}n uniformly at random
2 determine g(x)
3 P ← {x}
4 repeat
5 choose x ∈ P uniformly at random
6 create x′ by flipping each bit xi of x with probability 1/n
7 determine g(x′)
8 if x′ is not strictly dominated by any other search point in P then
9 include x′ into P

10 delete all other solutions z ∈ P with g(z) ≤ g(x′) from P

11 until stop

Theorem 1. The expected time until GSEMO has obtained a (1 − 1
e)-

approximation for a monotone submodular function f under a uniform constraint
of size k is O(n2 (logn+ k)).

Proof. We first study the expected time until GSEMO has produced the solu-
tion 0n for the first time. This solution is Pareto optimal and will therefore stay
in the population after it has been produced for the first time. Furthermore, the
population size is upper bounded by n+1 as it contains for each i, 0 ≤ i ≤ n at
most one solution having exactly i 1-bits. The solution 0n is feasible and has the
maximum number of 0-bits. This implies that the population will not include
any infeasible solution to the submodular function f after having included 0n.

For this step, we consider in each iteration the individual y that has the
minimum number of 1-bit among all individuals in the population and denote
	 = |y|1 the number of 1-bits in this individual. Note, that 	 can not increase
during the run of the algorithm. For 1 < 	 ≤ n a solution y′ with |y′|1 = 	− 1 is
produced with probability at least 	/(en2) as y′ can be produced by selecting y
for mutation and flipping one of the 	 1-bits. The expected waiting time to
include the solution 0n for the first time into the population is therefore upper
bounded by

∑n
�=1

(
�

en2

)−1
= O(n2 logn).

For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. [26]. We show that GSEMO produces in expected
time O(n2k) for each 0 ≤ j ≤ k a solution Xj with

f(Xj) ≥
(
1−
(
1− 1

k

)j
)
· f(Opt), (1)

where f(Opt) denotes the value of a feasible optimal solution. Note, that a
solution is feasible iff it has at most k 1-bits. After having including the solution
0n into the population this is true for j = 0. The proof is done by induction.
Assume that GSEMO has already obtained a solution fulfilling Equation 1 for
each j, 0 ≤ j ≤ i < k. We claim that choosing the solution x ∈ P with |x|1 = i
for mutation and inserting the element corresponding to the largest possible

Maximizing Submodular Functions under Matroid Constraints 927

increase of f increases the value of f by at least δi+1 ≥ 1
k · (f(Opt) − f(Xi)).

Let δi+1 be the increase in f that we obtain when choosing the solution x ∈ P
with |x|1 = i for mutation and inserting the element corresponding to the largest
possible increase.

Due to monotonicity and submodularity, we have f(Opt) ≤ f(Xi ∪Opt) ≤
f(Xi)+kδi+1 which implies δi+1 ≥ 1

k ·(f(Opt−f(Xi)). This leads to f(Xi+1) ≥
f(Xi) + 1

k (f(Opt)− f(Xi)) ≥
(
1− (1− 1

k

)i+1
)
· f(Opt).

For i = k, we get
(
1− (1− 1

k

)k) ·f(Opt) ≥
(
1− 1

e

)
f(Opt). The probability

for such a step going from i to i + 1 is lower bounded by 1
en2 and hence the

expected time until a
(
1− 1

e

)
-approximation has been obtained is at most

O(n2 logn) +
k∑

i=0

(
1

en2

)−1

= O(n2 (log n+ k)).

Max-k-Cover. Let us demonstrate the applicability of Theorem 1 by two
examples. First, reconsider the maximum coverage problem introduced in Sec-
tion 2. Given a universe U with subsetsA1, A2, . . . , An ⊆ U , we want to maximize
a coverage function f(S) = |⋃i∈S Ai| such that |S| ≤ k. Theorem 1 immediately
implies:

Corollary 1. The expected time until the GSEMO has obtained a (1 − 1/e)-
approximation for the Max-k-Cover problem is O(n2 (logn + k)). The achieved
approximation factor is optimal, unless P = NP [9].

Hypervolume indicator. As a second example, we consider a problem from
evolutionary multiobjective optimization. As discussed in Section 2, the hyper-
volume indicator is a monotone submodular function. The hypervolume subset
selection problem (HYP-SSP), where we are given n points in Rd and want to
select a subset of size k with maximal hypervolume [4, 5, 14], therefore aims at
maximizing a monotone submodular function f : {0, 1}n → R≥0 under a uniform
matroid constraint of rank k. Theorem 1 implies therefore:

Corollary 2. The expected time until the GSEMO has obtained a (1 − 1/e)-
approximation for HYP-SSP is O(n2 (logn+ k)).

For dimensions d > 2 this is significantly faster than the best known exact
algorithm with runtime O(nk) [3]. Note that HYP-SSP can be solved in time
O(n (k + logn)) for d = 2 [4, 5].

4 Non-monotone Submodular Functions under Matroid
Constraints

We now turn to submodular functions that are not necessarily monotone. The
constraints are given by k matroids. Given k arbitrary matroids M1, . . . ,Mk

defined on a ground set X together with their independent systems I1, . . . , Ik.

928 T. Friedrich and F. Neumann

We consider the problem max
{
f(x) | x ∈ F :=

⋂k
j=1 Ij

}
, where f is a non-

negative submodular function defined on the ground set X . Note that this setting
is much more general than the one investigated in the previous section.

For our analysis, we make use of the following lemma in [23].

Lemma 1. Let x be a solution such that no solution with fitness at least(
1 + ε

n4

) · f(x) can be achieved by deleting one element or by inserting k ele-

ments and deleting one element. Then x is a
(

1
k+2+ 1

k+ε

)
-approximation.

Lemma 1 states that there is always the possibility to achieve a certain
progress if no good approximation has been obtained. We use this to show the
following results for GSEMO.

Theorem 2. The expected time until the GSEMO has obtained a
(

1
k+2+ 1

k+ε

)
-

approximation for any (non necessarily) non-monotone submodular function un-
der k matroid constraints is O(1εn

k+5 logn).

Proof. Following previous investigations, GSEMO introduces the solution 0n in
the population after an expected number of O(n2 logn) steps. This solution is
Pareto optimal and will from that point on stay in the population. Furthermore,
0n is a feasible solution and has the largest possible number of 0-bits. Hence,
from the time 0n has been included in the population, the population will never
include infeasible solutions.

Selecting 0n for mutation and inserting the element that leads to the largest
increase in the f -value produces a solution y with f(y) ≥ Opt/n. The reason
for this is that the number of elements is limited by n and that f is submodular.
Having obtained a solution of fitness at leastOpt/n, we focus in each iteration on
the individual having the largest f -value in P . Due to the selection mechanism of
GSEMO a solution with the maximal f -value will always stay in the population
and the value will not decrease during the run of the algorithm.

As long as the algorithm has not obtained a solution of the desired quality, it
can produce from its current solution x a feasible offspring y such that f(y) ≥(
1 + ε

n4

) · f(x). The expected waiting time for this event is O(nk+1) as at most
k + 1 specific bits have to be flipped.

Starting with a solution of quality at least Opt/n the number of such steps
in order to achieve an optimal solution is upper bounded by log1+ ε

n4

Opt

Opt/n =

O(1ε n4 logn
)
. Hence, the expected time to achieve a

(
1

k+2+ 1
k+ε

)
-approximation

is O(1εn
k+5 logn).

As an example, let us consider again the NP-complete Maximum Cut prob-
lem, where for a given graph G = (V,E) with n vertices and nonnegative
edge weights w : E → R≥0, we want to maximize the cut function δ(S) over
all S ⊆ V as defined in Section 2. It is known that the greedy algorithm
achieves a 0.5-approximation while the best known algorithms achieve a 0.87856-
approximation [15]. Theorem 2 immediately implies the following.

Maximizing Submodular Functions under Matroid Constraints 929

Corollary 3. The expected time until the GSEMO has obtained a 1/(4 + ε)-
approximation for the Maximum Cut problem is O(1εn

6 logn).

Note that this result is presumably not tight. We conjecture that a less general
analysis can show that GSEMO achieves a 1/2-approximation.

5 Discussion and Open Problems

Maximizing submodular functions under matroid constraints is a very general
optimization problem which contains many classical combinatorial optimization
problems like maximum cut [10, 15], maximum directed cut [16], maximum facil-
ity location [1, 7], and others. We presented a number of positive results for the
approximation behavior of the GSEMO algorithm in the framework. To the best
of our knowledge, this is the first paper on the analysis of evolutionary algorithms
optimizing submodular functions. The only result on the performance of evolu-
tionary algorithms under matroid constraints is by Reichel and Skutella [29].
They showed that a (1+1)-EA achieves in polynomial time a 1/k-approximation
for maximizing a linear function subject to k matroid constraints.

This paper gives a first set of results, but also leaves many questions open.
We briefly name a few:

• We only study the SEMO algorithm, but similar results might be possible
for population-based algorithms with appropriate diversity measures.

• Our runtime upper bounds might not be tight. It would be interesting to
show matching lower bounds, especially for comparing different algorithms
and function classes.

• The proven approximation guarantees for SEMO hold for very general prob-
lem classes. Much tighter results should be possible for specific problems like
Maximum Cut.

• For RLS and (1+1)-EA we conjecture an exponential runtime lower bound to
obtain the same approximation ratio for maximizing (monotone) submodular
function if the (1 + 1)-EA starts at a random (feasible) solution.

• Minimizing submodular functions is in general simpler than maximizing sub-
modular functions. However, it is not obvious what this implies for evolu-
tionary algorithms minimizing submodular functions.

• Our proofs strongly rely on the greedy-like behavior of SEMO. It might either
be possible (i) to prove a general relationship between SEMO and greedy
algorithms or (ii) to give an example where SEMO strictly outperforms a
greedy strategy.

• We assume value oracle access to the fitness function f . It might be worth
studying the black box complexity of submodular functions in the sense of
Lehre and Witt [24].

Acknowledgments. The research leading to these results has received fund-
ing from the Australian Research Council (ARC) under grant agreement
DP140103400 and from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no 618091 (SAGE).

930 T. Friedrich and F. Neumann

References

[1] Ageev, A.A., Sviridenko, M.: An 0.828-approximation algorithm for the uncapac-
itated facility location problem. Discrete Applied Mathematics 93(2-3), 149–156
(1999)

[2] Beyer, H.-G., Schwefel, H.-P.: Evolution strategies – a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

[3] Bringmann, K., Friedrich, T.: An efficient algorithm for computing hypervolume
contributions. Evolutionary Computation 18(3), 383–402 (2010)

[4] Bringmann, K., Friedrich, T., Klitzke, P.: Generic postprocessing via subset selec-
tion for hypervolume and epsilon-indicator. In: Bartz-Beielstein, T., et al. (eds.)
PPSN XIII 2014. LNCS, vol. 8672, pp. 518–527. Springer, Heidelberg (2014)

[5] Bringmann, K., Friedrich, T., Klitzke, P.: Two-dimensional subset selection for
hypervolume and epsilon-indicator. In: Annual Conference on Genetic and Evolu-
tionary Computation (GECCO). ACM Press (2014b)

[6] Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.:
On the effects of adding objectives to plateau functions. IEEE Transactions on
Evolutionary Computation 13(3), 591–603 (2009)

[7] Cornuejols, G., Fisher, M., Nemhauser, G.L.: On the uncapacitated location prob-
lem. In: Studies in Integer Programming. Annals of Discrete Mathematics, vol. 1,
pp. 163–177. Elsevier (1977)

[8] Doerr, B., Kodric, B., Voigt, M.: Lower bounds for the runtime of a global multi-
objective evolutionary algorithm. In: IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 432–439 (2013)

[9] Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652
(1998)

[10] Feige, U., Goemans, M.X.: Approximating the value of two power proof systems,
with applications to MAX 2SAT and MAX DICUT. In: 3rd Israel Symposium on
Theory and Computing Systems (ISTCS), pp. 182–189 (1995)

[11] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4), 617–633 (2010)

[12] Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm.
In: IEEE Congress on Evolutionary Computation (CEC), pp. 1918–1925 (2003)

[13] Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective
optimisation. Evolutionary Computation 18(3), 335–356 (2010)

[14] Glasmachers, T.: Optimized approximation sets of low-dimensional benchmark
pareto fronts. In: Bartz-Beielstein, T., et al. (eds.) PPSN XIII 2014. LNCS,
vol. 8672, pp. 569–578. Springer, Heidelberg (2014)

[15] Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

[16] Halperin, E., Zwick, U.: Combinatorial approximation algorithms for the maxi-
mum directed cut problem. In: Twelfth Annual Symposium on Discrete Algorithms
(SODA), pp. 1–7 (2001)

[17] Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. Advances in estimation of distribution algorithms, pp. 75–102. Springer
(2006)

[18] H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

Maximizing Submodular Functions under Matroid Constraints 931

[19] Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

[20] Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th
edn. Springer (2007)

[21] Kratsch, S., Neumann, F.: Fixed-parameter evolutionary algorithms and the ver-
tex cover problem. Algorithmica 65(4), 754–771 (2013)

[22] Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., Deb, K.: Running time analysis
of multi-objective evolutionary algorithms on a simple discrete optimization prob-
lem. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas,
J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 44–53. Springer,
Heidelberg (2002)

[23] Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular
maximization under matroid and knapsack constraints. In: Forty-First Annual
ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009)

[24] Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64(4),
623–642 (2012)

[25] Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B.,
Grötschel, M. (eds.) Mathematical Programming: The State of the Art. Springer
(1983)

[26] Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for max-
imizing submodular set functions I. Mathematical Programming 14(1), 265–294
(1978)

[27] Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Mathematics of Operations Research 3(3), 177–188
(1978)

[28] Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-
objective optimization. Natural Computing 5(3), 305–319 (2006)

[29] Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization prob-
lems. Algorithmica 57(1), 187–206 (2010)

[30] Schrijver, A.: Combinatorial Optimization – Polyhedra and Efficiency. Springer
(2003)

[31] Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (μ + λ)-
archiving algorithms. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS,
vol. 7219, pp. 235–249. Springer, Heidelberg (2012)

On the Runtime Analysis

of Fitness Sharing Mechanisms�

Pietro S. Oliveto1, Dirk Sudholt1, and Christine Zarges2

1 University of Sheffield, Sheffield, UK
2 University of Birmingham, Birmingham, UK

Abstract. Fitness sharing is a popular diversity mechanism implement-
ing the idea that similar individuals in the population have to share re-
sources and thus, share their fitnesses. Previous runtime analyses of fit-
ness sharing studied a variant where selection was based on populations
instead of individuals. We use runtime analysis to highlight the benefits
and dangers of the original fitness sharing mechanism on the well-known
test problem TwoMax, where diversity is crucial for finding both op-
tima. In contrast to population-based sharing, a (2+1) EA in the original
setting does not guarantee finding both optima in polynomial time; how-
ever, a (μ+1) EA with μ ≥ 3 always succeeds in expected polynomial
time. We further show theoretically and empirically that large offspring
populations in (μ+λ) EAs can be detrimental as overpopulation can
make clusters of search points go extinct.

Keywords: Evolutionary computation, diversity mechanisms, fitness
sharing, runtime analysis.

1 Introduction

Diversity mechanisms are used in evolutionary computation to tackle multimodal
optimisation problems [7]. The main idea is to maintain dissimilar individuals
in the population such that different niches explore different peaks of the fitness
landscape. A popular diversity mechanism is fitness sharing [1,6]. In this scheme
niche formation is induced by using a sharing function that derates the fitness of
an individual by an amount related to its similarity to the rest of the population.
Different fitness sharing functions are obtained according to how the distance
between individuals is defined [7]. Genotypic sharing uses Hamming distance
and is generally employed when no phenotypic knowledge is available [7]. In
phenotypic sharing the distance is defined using problem specific knowledge.

Previous theoretical work on diversity mechanisms has concentrated on a
somewhat unusual implementation of the sharing mechanism. Let P denote the
union of parents and offspring. Rather than selecting individuals based on their

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 618091
(SAGE).

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 932–941, 2014.
c© Springer International Publishing Switzerland 2014

On the Runtime Analysis of Fitness Sharing Mechanisms 933

shared fitness f(x, P), selection was done on a level of populations, creating
a population that maximises the overall shared fitness of the population (i. e.,
creating P ∗ = argmax{∑x∈P ′ f(x, P ′) | P ′ ⊂ P, |P ′| = μ} [3,4,10,11]). The
drawback of this approach is that all the possible subsets of P of size μ need to
be examined. For large μ and λ, this is prohibitive.

In this paper we analyse the performance of the original fitness sharing ap-
proach used in many practical applications [5]. We consider a standard (μ+λ) EA
(see Algorithm 1) using the shared fitness values within the selection for re-
placement. We analyse the algorithm on the same TwoMax function used in
the literature for the analysis of the effectiveness of the previous approach for
multimodal optimisation [4].

TwoMax(x) := max {∑n
i=1 xi, n−∑n

i=1 xi} is a simple bimodal function
consisting of two different symmetric branches (i. e., OneMax and ZeroMax)
and we have defined both 0n and 1n to be global optima. Since we aim at
analysing the global exploration capabilities of the population-based EA, we call
a run successful if it manages to find both optima (i. e., a population is reached
that contains both 0n and 1n) efficiently. The expected number of generations for
this to happen is called expected running time. Apart from TwoMax being the
ideal benchmark function for the analysis (i. e., the simplest bimodal function),
its choice also allows comparisons with the previous approaches.

A (μ+1) EA using the unconventional approach (i. e., maximising the pheno-
typic shared fitness of the population) can efficiently optimise TwoMax for any
population size μ ≥ 2 [4]. The reason is that, in any population, the individuals
with the smallest and the largest number of ones are always accepted for the next
generation. Our analysis shows that using the conventional (phenotypic) sharing
approach leads to considerably different behaviours of evolutionary algorithms.
We illustrate this by using the analytical framework presented in Sect. 2.

We first concentrate on the effects of the parent population in Sect. 3. A
population of size μ = 2 is not sufficient to guarantee that the (μ+1) EA finds
both optima in polynomial time. If the two individuals are initialised on the same
branch, then there is a high probability that they will both find the same local
optimum. Furthermore, there is a chance that the algorithm fails also when the
two individuals are initialised on opposite branches. This leads to a worse failure
probability than that of a simple crowding algorithm or that of a (1+1) EA that
is restarted twice. On the other hand Sect. 4 shows that for μ ≥ 3, once the
population is close enough to one optimum, individuals descending the branch
heading towards the other optimum are accepted. This threshold, that allows
successful runs with probability 1, lies further away from the local optimum as
the population size increases.

Concerning the effects of the offspring population, in Sect. 5 we show that
large values of λ can be detrimental. We rigorously prove that increasing the
offspring population of a (μ+1) EA to a (μ+λ) EA, with μ = 2 and λ ≥ 2 a
constant, results in an overcrowding that can make a (sub-)population go extinct.
For the special case of λ = 2 we also prove an increased failure probability.

934 P.S. Oliveto, D. Sudholt, and C. Zarges

Algorithm 1. (μ+λ) EA with fitness sharing
1. Choose μ individuals uniformly at random from {0, 1}n.
2. repeat
3. for each 1 ≤ i ≤ λ do
4. Select a parent x uniformly at random from the population.
5. Let xi := x. Flip each bit in xi independently with probability 1/n.
6. end for
7. Create a new population by selecting the μ best individuals according to their

shared fitness, breaking ties towards favouring offspring over parents, breaking
remaining ties uniformly at random.

8. until stopping criterion met

We complement this result with an empirical analysis that suggests that the
(μ+1) EA is successful if λ < �μ/2� and that it almost always fails for λ ≥ μ.

In this extended abstract, some proofs are omitted due to space limitations.

2 Analytical Framework

Throughout this work, |x| denotes the number of 1-bits in x. The shared fitness
of an individual x in population P is f(x, P) := f(x)∑

y∈P sh(x,y) and the sharing
function is sh(x, y) := max{0, 1− (d(x, y)/σ)α}. Here, d is the distance between
the two individuals, σ is the sharing distance beyond which individuals do not
share fitness and α is a constant, typically set to 1, that regulates the shape
of the sharing function. We consider fitness sharing with phenotypic sharing as
in [4], where the distance between individuals is based on the number of ones.
We use σ = n/2 (as in [4]) and the standard value α = 1 and obtain

f(x, P) :=
f(x)∑

y∈P max
{
0, 1− ||x|−|y||

n/2

} .
Let P := {x1, x2, . . . , xs} denote the extended population of current search

points and the new offspring, labelled such that |x1| ≤ |x2| ≤ · · · ≤ |xs|. Let
Dj :=

∑s
i=1 min{||xj |− |xi||, n/2} denote the sum of phenotypic distances to all

other members of the extended population. Individual distances are capped at
the sharing distance n/2 so that the shared fitness can be written as

f(xi, P) =
f(xi)

s− 2Di/n
.

Phenotypic fitness sharing, along with the shape of the TwoMax function,
implies that a unique best individual will always survive, as it has a better
fitness than the individual with the closest number of ones, and it has a larger
phenotypic distance to other individuals. This means that in a (μ+1) EA the
current best fitness never decreases; this also holds if multiple individuals have
the same current best fitness, as only one individual is removed by selection.

On the Runtime Analysis of Fitness Sharing Mechanisms 935

Lemma 1. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. If f(x1) > f(x2) then
f(x1, P) > f(x2, P). Likewise, if f(xs−1) < f(xs) then f(xs−1, P) < f(xs, P).

As a result, the (μ+1) EA never decreases its current best fitness and finds
at least one optimum in expected time O(μn logn).

The time bound follows from standard arguments, as used in [4]. The symmetry
between f(x1, P) vs. f(x2, P) and f(xs−1, P) vs. f(xs, P) follows from swapping
the meaning of zeros and ones. This also applies to further statements, where
for simplicity we omit symmetric statements.

The following Main Lemma gives sufficient and necessary conditions on when
the shared fitness of one individual is better than another.

Lemma 2 (Main Lemma). Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs| and
fix 1 ≤ i ≤ s− 1. If f(xi)− f(xi+1) = |xi+1| − |xi| > 0 and |xs| − |x1| ≤ n/2,

f(xi+1, P) ≥ f(xi, P) ⇔ f(xi) · (2i− s) +Di ≥ s · n/2
⇔ f(xi+1) · (2i− s) +Di+1 ≥ s · n/2.

The same holds if all inequalities “≥” are replaced by strict inequalities “>”.
Moreover, for i = s− 1

f(xs, P) > f(xs−1, P) ⇔ |xs| >
s−1∑
i=1

|xi| − n/2 · (s− 4).

Proof. Note that |xs| − |x1| ≤ n/2 implies that all pairs of individuals do share
fitness. Comparing Di and Di+1, for the latter the distance to x1, . . . , xi−1 is
higher by |xi+1| − |xi|, and the distance to xi+2, . . . , xs is lower by |xi+1| − |xi|:

Di+1 = Di + (i− 1) · (|xi+1| − |xi|) + (s− i− 1) · (|xi| − |xi+1|)
= Di + (2i− s) · (|xi+1| − |xi|).

Using the shorthand h := |xi+1| − |xi|,

f(xi+1, P) =
f(xi+1)

s− Di+1

n/2

=
f(xi)− h

s− Di+(2i−s)h
n/2

.

Now f(xi+1, P) ≥ f(xi, P) is equivalent to

f(xi)− h

s− Di+(2i−s)h
n/2

≥ f(xi)
s− Di

n/2

⇔ (f(xi)− h) · (sn/2−Di) ≥ f(xi) · (sn/2−Di − (2i− s)h)
⇔ f(xi) · (2i− s)h+ h ·Di ≥ h · sn/2

⇔ f(xi) · (2i− s) +Di ≥ sn/2.

In the last step we used h > 0. The same calculations hold if “≥” is replaced by
“>” throughout. The second equivalence from the statement follows from

f(xi) · (2i− s) +Di = (f(xi+1) + h) · (2i− s) +Di+1 − h(2i− s)
= f(xi+1) · (2i− s) +Di+1.

The last statement follows from simple manipulations. +,

936 P.S. Oliveto, D. Sudholt, and C. Zarges

The Main Lemma gives a condition for the individual of lowest raw fitness
(i. e., xs) to be accepted by selection. Concerning the (μ+1) EA, the condition
clearly shows that for μ = 2 at least n/2 bits have to flip (i. e., |x3|−|x2| ≥ n/2).
On the other hand, for μ ≥ 3 offspring with lower fitness values are accepted once
the population is close enough to the optimum 0n. This threshold is further away
from the optimum as the population size increases. If mutation was only allowed
to flip one bit and μ = 3, then it is necessary that both x1 and x2 reach the local
optimum before decreasing moves are accepted (i. e., |x1|+ |x2| = 0). For μ = 4
the sum of 1-bits in the first 4 individuals can be up to |x1|+|x2|+|x3|+|x4| ≤ n/2
for any decreasing move to be accepted by the (μ+1) EA.

In general, the conditions from Lemma 2 are true for xs−1 and xs if |xs−1| <
n/2 and two individuals are in the optimum 0n as then

f(xs−1)(s− 2) +Ds−1 ≥ (n− |xs−1|)(s− 2) + (s− 2)|xs−1| −
s−2∑
i=1

|xi|

> n(s− 2)− (s− 4)n/2 = sn/2.

Lemma 3. If P = {x1, . . . xs}, |x1| ≤ · · · ≤ |xs|, with |xs−1| < n/2 and |x1| =
|x2| = 0 then f(xs−1, P)(s− 2) +Ds−1 > sn/2.

3 Population Size μ = 2 Is Not Enough

We first investigate the (2+1) EA, showing that a population size of μ = 2 is
not sufficient to guarantee finding both optima.

The following lemma gives sufficient and necessary conditions for a single
individual on a branch to survive. For |x3| = |x2| the statement implies that x1
survives if the distance from n/2 to x2 is less than around 3/2 the distance from
n/2 to x1. The condition for survival sharpens when |x3| > |x2|; however, as x2
and x3 result from a mutation of one another, |x3| − |x2| is bounded from above
by the number of bits flipped in that mutation.

Lemma 4. Let μ = 2 and P = {x1, x2, x3} with |x1| < n/2 < |x2| ≤ |x3| and
|x3| − |x1| ≤ n/2. Let d1 := n/2− |x1| and d2 := |x2| − n/2, then

f(x1, P) > f(x2, P) ⇔

d2 <

(
3
2
+

7d1
n+ 6|x1|

)
· d1 +

(|x3| + |x2|)(f(x2)− f(x1))
n/2 + 3|x1| .

The following theorem states that with a probability greater than 1/2, the
(2+1) EA will end up with both individuals in the same optimum, leading to
an exponential running time from there. This performance is worse than having
two independent runs of a (1+1) EA, as in deterministic crowding, for which the
probability of finding both optima is exactly 1/2 [4].

Theorem 1. The (2+1) EA with fitness sharing with probability 1/2 + Ω(1)
will reach a population with both members in the same optimum, and then the
expected time for finding both optima from there is Ω(nn/2).

On the Runtime Analysis of Fitness Sharing Mechanisms 937

Proof. Using that 2−n
(
n
i

) ≤ 2−n
(

n
n/2

)
= Θ(1/

√
n) for any 0 ≤ i ≤ n, it is easy

to show that with probability 1−O(n1/3/
√
n) = 1− o(1) for both initial search

points x1, x2 we have |x1|, |x2| /∈ [n/2 − n1/3, n/2 + n1/3]. By symmetry, with
probability 1/2 − o(1), x1 and x2 are on the same branch. The probability of
a mutation jumping from one branch to the other is then at most 1/(n1/3!) =
2−Ω(n1/3 logn), and the probability of this happening in expected polynomial
time is still of the same order. This implies that w. o. p. no individuals on the
opposite branch will be created in polynomial time as long as no offspring of
decreasing fitness are ever accepted on the branch. In the following we prove by
contradiction that such offspring are always rejected.

Assuming both search points and the offspring are all on the same branch,
w. l. o. g. the left branch, by Lemma 2

f(x3, P) ≥ f(x2, P) ⇔ f(x2) +D2 ≥ 3 · n
2

(1)

where D2 = (|x2| − |x1|) + (|x3| − |x2|) = |x3| − |x1|. Then f(x2) + D2 =
n − |x2| + |x3| − |x1| ≤ n + |x3| − |x2|. This implies that (1) only holds if
|x3| − |x2| ≥ n/2, which is a contradiction since there are no points on the left
branch differing in more than n/2 one-bits. Hence, the claim that no offspring
on the left branch of worse fitness than x2 are ever accepted, is proved. By
Lemma 1, 0n will be reached in expected time O(n log n). In a further expected
2 · (1− 1/n)n = O(1) generations, the extended population will contain a clone
of 0n, and from then on any offspring x3 with 0 < |x3| ≤ n/2 will be rejected.
Then the expected time to create an individual on the other branch is Ω(nn/2)
since at least n/2 bits need to flip.

The claimed probability 1/2 + Ω(1) follows from considering the following
additional event, which is disjoint from the above. The algorithm also fails if,
using the notation from Lemma 4, 3

√
n/4 ≤ d2 ≤ √

n (probability at least 0.02)
and

√
n/3 ≥ d1 ≥ 0 (probability at least 0.21). If then in the first generation a

clone of x2 is generated (probability at least 1/2 · (1− 1/n)n > 1/8), we have(
3
2
+

7d1
n+ 6|x1|

)
·d1 +

(x3 + x2)(f(x2)− f(x1))
n/2 + 3x1

≤
√
n

3
· 3
2
+O(1) <

3
√
n

4
≤ d2

if n is large enough. Now Lemma 4 implies f(x1, P) < f(x2, P) = f(x3, P),
hence x1 will be removed. Then we are in the same situation as when initialising
two individuals on the same branch. +,

However, there is still a constant probability that the (2+1) EA finds both
optima in polynomial expected time. This holds if the EA is initialised with its
two search points on different branches, and if these two search points maintain
similar fitness values throughout the run.

Theorem 2. The (2+1) EA with fitness sharing with probability Ω(1) will find
both optima in time O(n logn).

Due to space restrictions, we only sketch the proof. Let x1, x2 be the two initial
search points and d1 := n/2− |x1| and d2 := |x2| − n/2. With probability Ω(1),
x1 and x2 are on opposite branches and have similar fitness: 3

4
√
n ≤ d1, d2 ≤ √

n.

938 P.S. Oliveto, D. Sudholt, and C. Zarges

Now, assume w. l. o. g. that when a new offspring is created and the population
contains x1, x2, x3 in order of their numbers of ones, that x2 and x3 are on the
same branch. If f(x1) > f(x2), Lemma 1 implies that f(x1, P) > f(x2, P) and
f(x2, P) < f(x3, P) if |x3| > |x2|. Then x1 is guaranteed to survive.

Now assume f(x1) ≤ f(x2). It is easy to derive from Lemma 4 and further
arguments for |x3|−|x1| > n/2 that f(x1, P) > f(x2, P) follows if d1 ≥ (2/3)·d2.

For a current population P = {x1, x2} define a potential g(P) := min{d1, d2}
−(2/3) ·max{d1, d2}. Intuitively, the potential indicates a distance to a popula-
tion where the lower-fitness individual is at risk of dying. For d1 ≤ d2 we have,
using Lemma 4,

g(P) ≥
√
n

24
⇔ d1 ≥ 2

3
· d2 ⇒ f(x1, P) > f(x2, P).

For the initial population P0 we have g(P0) ≥ 3/4 · √n− 2/3 · √n ≥ √
n/12. If

d1 ≤ d2 − k for some k ∈ N, the potential increases by k if d1 increases by k.
However, the potential only decreases by 2/3 · k if d2 increases by k. Moreover,
increasing d1 is easier than increasing d2 as the former contains more “incorrect”
bits (cf. Lemma 13 in [2]). This shows that, whenever the potential changes, it
increases in expectation by 1/3.

A straightforward application of the simplified drift theorem [8,9] shows that
with probability 2−Ω(

√
n) the potential never decreases below

√
n/24 in 2Ω(

√
n)

steps. So, with overwhelming probability x1 survives until both optima are
reached.

4 Population Size μ ≥ 3 Succeeds

A population of size μ = 2 may fail, but we show that a (μ+1) EA with μ ≥ 3
always finds both optima in expected time O(μn logn).

The following lemma is an extension of the Main Lemma to the case where an
individual xμ+1 is on the other branch compared to the rest of the population.
In particular, a stronger condition is given such that xμ+1 will survive selection
when f(xμ) > f(xμ+1). The proof is similar to the one for the Main Lemma.

Lemma 5. Let |xμ| < n/2, |xμ+1| > n/2 and f(xμ) > f(xμ+1). Also let hμ :=
n/2− |xμ| and hμ+1 := |xμ+1| − n/2. Then

f(xμ) · (μ− 1) · hμ

hμ − hμ+1
+Dμ ≥ (μ+ 1) · n/2 ⇒ f(xμ+1, P) ≥ f(xμ, P).

The following lemma states that if there is a bounded number r of individuals
in one optimum then they will have better shared fitness than the next sub-
optimal individual. This implies that r such individuals survive in the (μ+1) EA;
the same holds if there are more than r such individuals in the extended popu-
lation as only one individual is being removed.

Lemma 6. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. Assume |x1| = · · · =
|xr| = 0 < |xr+1| and |xs| < n. If r ≤ 2 or if both |xr+1| ≥ n/2 and r ≤ s/2,

On the Runtime Analysis of Fitness Sharing Mechanisms 939

then for all 1 ≤ i ≤ r we have f(xi, P) > f(xr+1, P). In particular, if the
current population of the (μ+1) EA contains at least two individuals 0n, two
such individuals always survive.

With these lemmas we are ready to prove the main result of this section.

Theorem 3. Let μ ≥ 3. The (μ+1) EA with fitness sharing will find both optima
of TwoMax with probability 1 in expected time O(μn log n).

Proof. By Lemma 1, in expected time O(μn log n) one of the two optima is
found. W. l. o. g. we assume the 0n optimum is found. In expected time O(μ)
a clone of 0n is created (i. e., |x2| = 0) and by Lemma 6 x1 and x2 (or clones
thereof) will survive for the rest of the run.

We show that then the individual with the largest number of ones, xμ+1
(or a clone thereof), will always survive. If |xμ| = |xμ+1| then xμ+1 or a clone
survive. If n/2 ≤ |xμ| < |xμ+1| then f(xμ+1) > f(xμ) and the claim follows from
Lemma 1. If |xμ| < n/2 then Lemma 3 implies f(xs−1)(s − 2) + Ds−1 > sn/2
(where s = μ + 1). If |xμ+1| ≤ n/2, by the Main Lemma this condition is
equivalent to f(xμ+1, P) > f(xμ, P). Otherwise, the same conclusion follows
from Lemma 5 as hμ/(hμ − hμ+1) > 1. So, in all cases xμ+1 survives. The
expected time for xμ+1 reaching 1n is again O(μn log n) as in [4]. +,

Our analysis has revealed two very different behaviours. It is possible that
the whole population climbs up one branch. But once a sufficiently large overall
fitness value has been obtained – at the latest when two individuals have found an
optimum – then the population expands towards lower fitness values as then the
individuals with the smallest and the largest numbers of 1-bits always survive.

5 Too Large Offspring Population Sizes

Fitness sharing works for the (μ+1) EA, but for larger offspring populations it
can have undesirable effects: if a cluster of individuals creates too many offspring,
sharing decreases the shared fitness of all individuals in the cluster, and the
cluster may go extinct. We consider this problem of overpopulation for μ = 2
and λ ≥ μ with λ = O(1). In this setting we cannot guarantee convergence to
populations with both optima any more, i. e., depending on λ we can lose one
or even both optima.

Assume that all individuals are in the same optimum. With probability Ω(1),
we create λ − 1 copies and one point with distance 1 to the optimum. Then,
f(x1, P) = . . . = f(xλ+1, P) = n/((λ+2)−2/n) and f(xλ+2, P) = (n−1)/((λ+
2)− (λ + 1) · 2/n). We see that f(xi, P) < f(xλ+2, P) for all i ∈ {1, . . . , λ + 1}
and λ ≥ 2. Thus, selection picks xλ+2 and one of the optimal points. Follow-
ing the same argumentation, we lose both optima if λ ≥ 6: If mutation creates
λ − 2 copies and two points with distance 1 to the optimum (also with prob-
ability Ω(1)), we have f(x1, P) = . . . = f(xλ, P) = n/((λ + 2) − 2 · 2/n) <
(n− 1)/((λ+ 2)− λ · 2/n) = f(xλ+1, P) = f(xλ+2, P) for λ ≥ 6. In exactly the
same way we show that both optima are lost with probability Ω(1) if λ ≥ 6 even

940 P.S. Oliveto, D. Sudholt, and C. Zarges

if they are on different branches, i. e., we create �λ/2� offspring on the left branch
and �λ/2� on the right branch where exactly one offspring on each branch has
distance 1 to the optimum and the remaining offspring are copies.

Offspring populations can also decrease diversity in the following way.

Lemma 7. With probability 1− o(1) the (2 +λ) EA with fitness sharing, λ ≥ 2
and λ = O(1) will, at some point of time before an optimum is reached, obtain
a population with both members on the same branch.

Proof (Proof sketch). The proof mainly uses that in a single iteration with prob-
ability Ω(1) only copies of x1 and x2 are created. We show that if f(x1) �= f(x2)
and if we have a surplus of offspring on the branch with smaller fitness (also
probability Ω(1)), this branch goes extinct. If f(x1) = f(x2) in iteration t we
have f(x1) �= f(x2) in iteration t+1 with probability Ω(1) and if f(x1) �= f(x2)
in iteration t we still have f(x1) �= f(x2) in iteration t+1 with probability Ω(1).
Thus, with probability 1− 2−Ω(n) there are Ω(n) iterations with f(x1) �= f(x2)
before an optimum is reached and consequently, with probability 1−2−Ω(n), one
branch will take over the whole population before an optimum is reached. +,

In order to show that the (2 + λ) EA also reaches a population with both
members in the same optimum we additionally need to show that the population
will not be stuck somewhere on the branch and that individuals cannot traverse
back to the other branch. We consider this for the special case of λ = 2.

Theorem 4. With probability 1−o(1) the (2+2) EA with fitness sharing will, at
some point of time, reach a population with both members in the same optimum.
The expected time for finding both optima from there is Ω

(
nn/2
)
.

Proof (Proof sketch). Due to Lemma 7 both individuals are on the same branch
with probability 1− o(1) before an optimum is reached.

We show that a current best individual is never lost. Due to Lemma 1 f(x1, P) >
f(x2, P) holds. We apply Lemma 2 and have f(x3, P) ≥ f(x2, P) ⇔ D2 ≥ 2n
where D2 = d2,1 + d2,3 + d2,4 since d2,2 = 0. Since all individuals are on the same
branch di,j ≤ n/2. This implies that D2 ≤ 3n/2 and thus, f(x3, P) < f(x2, P) <
f(x1, P). Thus, a single best individual will always survive. Moreover, in case of 2
best individuals at least one of them will be selected for the next iteration. Since
μ = 2we are guaranteed to select at least one of the best individuals if there are 3 or
4 best. Following the same argumentation, we see that a single improved offspring
of a best individual will always be accepted. Thus, we will reach a population with
both members in the same optimum. The claim about the expected time to find
both optima follows as in Theorem 1. +,

6 Experiments

Our final contribution is a set of experiments, shown in Table 1, where we ran
(μ+λ) EAs for n = 100 bits and varying values of 2 ≤ μ ≤ 12 and 1 ≤ λ ≤ 12.
We recorded the success rate as the number of runs where both optima were

On the Runtime Analysis of Fitness Sharing Mechanisms 941

Table 1. Success rates of the (μ+λ) EA with fitness sharing on TwoMax in 1000
runs, stopped after 100000 generations, and once both optima were found

μ λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12
2 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.277 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1.0 0.602 0.32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 1.0 0.793 0.644 0.025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 1.0 1.0 0.824 0.687 0.261 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 1.0 1.0 0.936 0.861 0.768 0.156 0.0 0.0 0.0 0.0 0.0 0.0
8 1.0 1.0 1.0 0.926 0.874 0.816 0.064 0.0 0.0 0.0 0.0 0.0
9 1.0 1.0 1.0 0.996 0.957 0.894 0.828 0.039 0.0 0.0 0.0 0.0
10 1.0 1.0 1.0 1.0 0.972 0.957 0.918 0.843 0.032 0.0 0.0 0.0
11 1.0 1.0 1.0 1.0 1.0 0.98 0.945 0.929 0.805 0.02 0.001 0.0
12 1.0 1.0 1.0 1.0 1.0 0.99 0.978 0.972 0.945 0.738 0.029 0.0

found within 100000 generations. The table shows a clear distinction between
efficient and inefficient behaviour: for λ < �μ/2� runs were always successful,
whereas runs for λ ≥ μ always failed (except for one run with λ = μ = 11).

References

1. Cioppa, A.D., Stefano, C.D., Marcelli, A.: On the role of population size and niche
radius in fitness sharing. IEEE Trans. Evol. Comput. 8(6), 580–592 (2004)

2. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorith-
mica 64, 673–697 (2012)

3. Fischer, S., Wegener, I.: The one-dimensional Ising model: Mutation versus recom-
bination. Theor. Comput. Sci. 344(2–3), 208–225 (2005)

4. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving
mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

5. Goldberg, D.E.: Genetic Algorithms for Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

6. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal-
function optimization. In: Proc. of ICGA, pp. 41–49. Lawrence Erlbaum Associates
(1987)

7. Mahfoud, S.W.: Niching methods. In: Bäck, T., Fogel, D.B., Michalewicz, Z., (eds.)
Handbook of Evolutionary Computation, pp. C6.1:1–C6.1:4. IOP Publishing and
Oxford University Press (1997)

8. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evo-
lutionary computation. Algorithmica 59(3), 369–386 (2011)

9. Oliveto, P.S., Witt, C.: Erratum: Simplified Drift Analysis for Proving Lower
Bounds in Evolutionary Computation. ArXiv e-prints (2012)

10. Oliveto, P.S., Zarges, C.: Analysis of diversity mechanisms for optimisation in dy-
namic environments with low frequencies of change. In: Proc. of GECCO, pp.
837–844. ACM (2013)

11. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proc.
of GECCO, pp. 1161–1167. ACM Press (2005)

Runtime Analysis of Evolutionary Algorithms

on Randomly Constructed High-Density
Satisfiable 3-CNF Formulas

Andrew M. Sutton1 and Frank Neumann2

1 Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
2 Optimisation and Logistics, School of Computer Science,
The University of Adelaide, Adelaide, SA, 5005, Australia

Abstract. We show that simple mutation-only evolutionary algorithms
find a satisfying assignment on two similar models of random planted
3-CNF Boolean formulas in polynomial time with high probability in
the high constraint density regime. We extend the analysis to random
formulas conditioned on satisfiability (i.e., the so-called filtered distribu-
tion) and conclude that most high-density satisfiable formulas are easy
for simple evolutionary algorithms. With this paper, we contribute the
first rigorous study of randomized search heuristics from the evolutionary
computation community on well-studied distributions of random satisfi-
ability problems.

1 Introduction

Boolean satisfiability is an archetypical NP-complete problem with extensive
theoretical and practical relevance. Randomized search heuristics such as evo-
lutionary algorithms [6] and randomized local search techniques [10] are often
successfully applied to quickly identify satisfiable Boolean formula. Modern high-
performance heuristics can handle problems with millions of variables [13], but
the relationship between problem structure and computational cost is still poorly
understood from a rigorous perspective.

In the field of Boolean satisfiability, a significant amount of research has been
carried out on the runtime of algorithms over randomly generated formulas.
Theoretical and empirical work on uniform random satisfiability suggests that,
despite the hardness of the problem of determining whether or not a Boolean
formula has a satisfying assignment, a vast fraction of formulas are easy to
solve on average. Understanding the behavior of evolutionary algorithms with
respect to their runtime for this central problem pushes forward the theoretical
understanding of these algorithms on an NP-hard problem in the context of
randomly generated instances.

Extensive progress has already been made in runtime analysis of evolutionary
algorithms from a worst-case perspective [1,12]. However, still very little is known
about typical behavior on randomly generated instances of NP-hard problems.
The only study that we are aware of is the one of Witt [16] for makespan schedul-
ing. In this paper we study the behavior of simple evolutionary algorithms over

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 942–951, 2014.
c© Springer International Publishing Switzerland 2014

Runtime Analysis of Evolutionary Algorithms 943

uniform distributions of satisfiable 3-CNF formulas. We prove that the runtime
of the (1+1) EA is O(n2 logn) with high probability on almost all satisfiable
3-CNF formulas (except for a fraction that vanishes exponentially fast), as long
as their constraint density is Ω(n). Though this distribution is previously known
to be easy for classical algorithms [9], to our knowledge this constitutes the first
rigorous analysis of evolutionary algorithms on random satisfiability models.

1.1 3-CNF Distributions

A k-CNF formula F over a set of n Boolean variables {x1, x2, . . . , xn} is a con-
junction of exactly m clauses F = C1 ∧ C2 ∧ . . . ∧ Cm, where each clause is the
disjunction of exactly k literals, Ci = 	i1 ∨ · · · ∨ 	ik , and each literal 	ij is either
an occurrence of a variable x or its negation x̄. A k-CNF formula is satisfiable
if and only if there is an assignment of variables to truth values so that every
clause contains at least one true literal. The constraint density of a formula is the
ratio of clauses to variables m/n. The constraint density quantifies the average
number of constraints (disjunctive clauses) in which a variable occurs.

The set of all assignments to a set of n Boolean variables is isomorphic to
{0, 1}n by interpreting each position of the string as the state of exactly one
Boolean variable xi (i.e., a 1 corresponds to xi = true; a 0 corresponds to
xi = false). Given a 3-CNF formula F with n variables, we represent candidate
solutions as length-n bitstrings and define the function f : {0, 1}n → N where
f(x) counts the clauses of F that are satisfied under the assignment correspond-
ing to x ∈ {0, 1}n. If F is satisfiable, the task of finding a satisfying assignment
is reduced to the task of optimizing a pseudo-Boolean function.

Uniform distributions of random Boolean formulas are similar to the Erdős-
Rényi model of random graphs. In the Un,m model, exactly m random clauses
are selected independently and uniformly with replacement1 from all possible
3-CNF clauses over n variables. In the Un,p model, each 3-CNF clause over n
variables is chosen for inclusion independently with probability p.

Stochastic search algorithms such as evolutionary algorithms and randomized
local search are generally incapable of proving a formula unsatisfiable, but are
often applied as incomplete heuristics and can be treated as Monte Carlo algo-
rithms when their runtime is fixed. Because of this, one is often interested in
their performance on satisfiable formulas.

One way to generate random satisfiable formulas is to condition the distri-
bution Un,m on satisfiability. This results in the filtered uniform model USAT

n,m .
The filtered uniform model is difficult to analyze, and potentially hard to sample
from (since it requires solving an NP-hard problem to check whether a formula is
satisfiable). To circumvent this, uniform planted models attempt to “hide” a sat-
isfiable assignment in an instance. In this model, a planted assignment x� is first
selected uniformly at random from {0, 1}n, and clauses are selected uniformly
from the set of all clauses that are satisfied by x�. In the Pn,m model, exactly

1 Generating the clause set with replacement is easier in practice, and facilitates our
analysis later in the paper.

944 A.M. Sutton and F. Neumann

m random clauses are selected independently and uniformly with replacement
from the set of clauses satisfied by x�. Similarly, in the Pn,p model, each 3-CNF
clause over n variables that is satisfied by the planted assignment is selected in-
dependently with probability p. Other conditional distributions have also been
studied, for example see Krivelevich et al. [8].

1.2 Background

The (1+1) EA has been the subject of the first analyses of worst-case expected
runtime for pseudo-Boolean functions. Droste et al. [5] showed that the expected
runtime of the (1+1) EA is bounded above by O(nn) steps over all pseudo-
Boolean functions. Moreover, they showed that linear pseudo-Boolean polyno-
mials are optimized in O(n log n) steps in expectation by the (1+1) EA. More
recently, Witt [17] has derived an en lnn+O(n) bound for the (1+1) EA opti-
mizing linear functions, which is tight up to lower order terms.

The case of general functions over {0, 1}n is currently less clear. The class
of pseudo-Boolean polynomial functions of degree at most k ≥ 2 is already
NP-hard since it contains maximum k-satisfiability. Some theoretical analyses
have been carried out to investigate large-scale search space properties for k-
satisfiability [14,15]. To our knowledge, no results connecting the k-satisfiability
search space to EA runtime analysis have yet been carried out.

In this paper, we reduce the problem of finding a satisfying assignment to a 3-
CNF formula to finding the maximum of a degree-3 pseudo-Boolean polynomial.
Koutsoupias and Papadimitriou [7] showed that the Pn,p distribution has desir-
able search space properties for a greedy algorithm. Using similar techniques, we
extend this analysis to the Pn,m distribution, and prove that the (1+1) EA can
also exploit these properties to solve high-density formulas efficiently. For each
distribution Pn,m, Pn,p, and USAT

n,m in the high density regime, we prove that the
(1+1) EA can find a satisfying assignment in polynomial time with probability
1 − o(1) on every formula, except for a set of measure vanishing exponentially
fast in n. We also give a corresponding lower bound that suggests our upper
bounds are tight up to a factor of O(n) and conjecture that our upper bounds
can be improved by a linear factor.

2 Preliminaries

A sequence of events {En} is said to hold with high probability if limn→∞ Pr(En) =
1. We will often make use of the following theorem. A proof can be found, for
example, in the text by Motwani and Raghavan [11].

Theorem 1 (Chernoff Bounds). Let X1, X2, . . . Xn be independent Poisson
trials such that for 1 ≤ i ≤ n, Pr(Xi = 1) = pi, where 0 < pi < 1. Let X =∑n

i=1 Xi, μ = E(X) =
∑n

i=1 pi. Then for 0 < δ ≤ 1, Pr(X ≥ (1+δ)μ) ≤ e−μδ2/3

and Pr(X ≤ (1 − δ)μ) ≤ e−μδ2/2.

Runtime Analysis of Evolutionary Algorithms 945

Chernoff bounds provide sharp bounds for tail probabilities in situations where
we can estimate the expected number of successes from a series of independent
trials. We will need the following two definitions.

Definition 1. For any arbitrary x ∈ {0, 1}n, we define a pair of sets Sx and Ux

that partition the set of all possible 3-CNF clauses on n variables as follows. Sx

is the set of all 3-CNF clauses on n variables that are satisfied by x. Similarly,
Ux is the set of all 3-CNF clauses on n variables that are not satisfied by x.

Definition 2. The hypercube graph of order n is the undirected graph G =
(V,E) where V = {0, 1}n and {x, y} ∈ E ⇐⇒ |{i : xi �= yi}| = 1.

Let F be a satisfiable 3-CNF formula on n variables. Denote as x� ∈ {0, 1}n an
assignment (possibly unique) that satisfies F . We define the potential function
ϕ(x) = |{i : xi �= x�

i }|. F induces an orientation and an edge labeling on G in
the following way. Let GF,x� be the directed, edge-labeled graph such that the
directed edge (x, y) appears in E(GF,x�) if and only if x and y are neighbors in
G and ϕ(y) < ϕ(x). Furthermore, (x, y) is labeled deceptive if x satisfies at least
as many clauses in F as y.

3 Random Planted Formulas

In this section, we study the distribution of graphs GF,x� where F is a formula
constructed by a random planted model and x� is the planted assignment. We
will rely on these results to apply multiplicative drift theorems that bound the
runtime of the (1+1) EA for all but a vanishing fraction of high-density formula.

Definition 3. An assignment x is bad if, for any constant ε > 0, ϕ(x) >
(1/2 + ε)n. An assignment x is good if it is not bad.

Definition 4. The directed graph G′
F,x� is the subgraph of GF,x� induced by the

set of all good assignments.

For a particular 3-CNF distribution, we want to derive the probability of
deceptive edges appearing in the hypercube graph induced by formulas drawn
from that distribution. If a region of the search space contains no deceptive edges,
then the local gradient is consistent with the distance to a solution since every
strictly improving Hamming neighbor of a solution in that region is also strictly
closer to x�. This is obviously a nice property to have in the search space, and
we call formulas well-structured that have this property.

Definition 5. A planted 3-CNF formula F is said to be well-structured if there
are no deceptive edges in G′

F,x� where x� is the planted assignment.

Koutsoupias and Papadimitriou [7] studied the Pn,p distribution, and the next
theorem follows from their work.

946 A.M. Sutton and F. Neumann

Theorem 2 (Koutsoupias and Papadimitriou [7]). Suppose F is a 3-CNF
formula constructed by the Pn,p model. The probability that F is well-structured

is bounded below by 1− e−cpn2+Θ(n) for some constant c > 0.

We extend this analysis to the Pn,m distribution. In this model, we first choose
an assignment x� uniformly at random, then choose exactly m clauses with
replacement from the set of (23 − 1)

(
n
3

)
clauses that satisfy x�.

Lemma 1. Suppose (x, y) is a directed edge in G′
F,x�. Then,

|Sx� ∩ (Ux ∩ Sy)| =
(
n− 1
2

)
, and, |Sx� ∩ (Sx ∩ Uy)| ≤ γ(n)

(
n− 1
2

)
where γ(n) = (1 + o(1))(3/4 + ε− ε2) for any constant ε > 0.

Proof. Without loss of generality, suppose x� = (1, 1, . . . , 1). In this case, Sx�

is the set of all clauses with at least one positive literal. Since x and y are
Hamming neighbors, they differ by exactly one bit i which is set to zero in x
and set to 1 in y. Thus Sx� ∩ (Ux ∩Sy) contains clauses where (1) xi appears as
a positive literal, and (2) the polarity of the remaining two literals in the clause
are uniquely determined by their state in x. There are

(
n−1
2

)
ways to choose

these remaining two literals. Similarly, Sx� ∩ (Sx ∩ Uy) contains clauses in which
the literal x̄i appears and the polarity of the remaining two literals again are
uniquely determined. However, we cannot choose all

(
n−1
2

)
such literals, because

some of these correspond to clauses where all three literals are negative (and
hence do not belong to Sx�). These literals correspond to the elements in x that
are set to 1 since all such literals must be negative if they appear in any clause
not satisfied by y. There are n − ϕ(x) such elements. By subtracting out the(
n−ϕ(x)

2

)
ways to choose two negative literals, we obtain

|Sx� ∩ (Sx ∩ Uy)| =
(
n− 1
2

)
−
(
n− ϕ(x)

2

)
≤
(
n− 1
2

)
−
(
n(1/2− ε)

2

)
.

The final inequality holds since x is good, so ϕ(x) ≤ n(1/2 + ε). Setting

γ(n) = 1−
(
n(1/2− ε)

2

)
/

(
n− 1
2

)
completes the proof since limn→∞ γ(n) = 3/4 + ε− ε2. +,
Theorem 3. Suppose F is a 3-CNF formula constructed by the Pn,m model.
The probability that F is well-structured is bounded below by 1 − e−cm/n+Θ(n)

for some constant c > 0.

Proof. Let (x, y) be an arbitrary edge in G′
F,x� . We define the following random

variables that count clauses in F .

Z1 = |{clauses C in F : C ∈ (Sx� ∩ (Ux ∩ Sy))}| ,
Z2 = |{clauses C in F : C ∈ (Sx� ∩ (Sx ∩ Uy))}| .

Runtime Analysis of Evolutionary Algorithms 947

Since the m clauses are chosen independently with replacement, the probability
of choosing a clause from (Sx� ∩ (Ux ∩ Sy)) is, by Lemma 1,

(
n−1
2

)
/
(
7
(
n
3

))
=

3/(7n). Similarly, the probability of choosing a clause from (Sx� ∩ (Sx ∩ Uy)) is
at most 3γ(n)/(7n). Hence Z1 and Z2 are binomially distributed independent
random variables, both with m trials, and their expected values are E(Z1) =
3m/(7n) and E(Z2) ≤ γ(n)3m/(7n).

The event that (x, y) is labeled deceptive under F is equivalent to the event
Z1 ≤ Z2, and thus the probability that (x, y) is labeled deceptive is Pr(Z1 ≤
Z2) ≤ Pr(Z1 ≤ t) + Pr(Z2 ≥ t) for any t > 0. Appealing to Theorem 1, this is
at most

exp
(
− (t− E(Z1))2

2E(Z1)

)
+ exp

(
− (t− E(Z2))2

3E(Z2)

)
≤ exp

(
− (t− E(Z1))2

3E(Z1)

)
+ exp

(
− (t− E(Z2))2

3E(Z2)

)
.

Setting t =
√
E(Z1)E(Z2), the probability is at most

2 exp

⎛⎜⎝−
(√

E(Z1)−
√
E(Z2)

)2
3

⎞⎟⎠ ≤ 2 exp

⎛⎜⎝−m
(
1−√γ(n)

)2
7n

⎞⎟⎠ < 2e−cm/n,

by substituting the value bounds on the expectations of Z1 and Z2 from above.

Here 0 < c <
(
1−√γ(n)

)2
/7 is a positive constant following from the asymp-

totic bound on γ(n).
Finally, by applying the union bound, the probability that any edge in G′

F,x�

is deceptive is at most |E|2e−cm/n. The claim then follows from the fact that
the number of edges in G′

F,x� is at most n2n−1. +,
The uniform filtered 3-CNF distribution USAT

n,m is the conditional distribution
generated by conditioning Un,m on satisfiability. For dense enough formulas, the
uniform filtered distribution is statistically close to the planted distribution.

Theorem 4 (Ben-Sasson et al. [2]). The 3-CNF distributions Pn,m and USAT
n,m

coincide in the regime m/n = Ω(log n) in the following sense.
There exists a constant c > 0 such that when m ≥ cn lnn, then with high

probability, a formula constructed by the Pn,m or the USAT
n,m model has exactly

one satisfying assignment. Moreover, if F is an arbitrary formula with m clauses
and n variables, such that F has a unique satisfying assignment, the probability
of constructing F from Pn,m is equal to the probability of constructing F from
USAT
n,m .

Hence for m/n = Ω(log n), except for a set of measure that tends to zero,
formulas constructed by the planted model or the filtered model have the same
probability. It follows that the claim of Theorem 3 also applies to USAT

n,m in the
high-density regime (m/n ≥ cn for a constant c > 0 sufficiently large).

948 A.M. Sutton and F. Neumann

4 Runtime Analysis

The runtime analysis of randomized search heuristics on randomly constructed
instances involves two sources of randomness. We must deal with random inputs,
in this case, the random formula, and also with the random decisions of the
algorithm at the same time. To handle this, we assume the formula has the well-
structured property and derive tail bounds on the runtime conditioned on that
property. We then use the results of the previous section to bound the probability
that the formula is well-structured in a given density regime.

We analyze the runtime of the standard (1+1) EA (Algorithm 1) searching for
a satisfying assignment to a formula F by optimizing the corresponding pseudo-
Boolean function f that counts the satisfied clauses in F .

Algorithm 1. The (1+1) EA

choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x;
flip each bit of y independently with prob. 1/n;
if f(y) ≥ f(x) then x ← y

Following the typical approach to runtime analysis, we view each run of the
(1+1) EA as an infinite stochastic process (x(1), x(2), . . . , x(t), . . .), where x(t) ∈
{0, 1}n denotes the assignment generated in iteration t of the algorithm. The run-
time T of an algorithm is the random variable T = inf{t ∈ N : x(t) satisfies F}.
The main result of this section is stated in the following theorem.

Theorem 5. Suppose F is a well-structured formula. Then with probability 1−
o(1), the time until the (1+1) EA finds a satisfying assignment for F is bounded
by O(n2 logn).

To prove Theorem 5, we will rely on the favorable search space properties
of well-structured formulas. In particular, we will show that, as long as the
(1+1) EA remains in the good region, its drift towards the planted assignment
can be bounded below by a positive term.

Lemma 2. Suppose F is a well-structured formula and that ϕ(x(t)) ≤ (1/2 +
ε/2)n. Then the probability that x(t+1) is a bad assignment is at most e−Ω(n logn).

Moreover, if ϕ(x(1)) ≤ (1/2 + ε/2)n, then with probability 1 − o(1), after
t ≤ p(n) iterations, where p is a polynomial in n, the (1+1) EA never generates
a bad assignment.

Proof. In each step, the probability that at least k bits are changed is at most(
n

k

)(
1
n

)k

≤ 1
k!

≤
(e
k

)k
= e−Ω(k log k).

The assignment x(t) is at Hamming distance at least nε/2 from any bad assign-
ment. Thus, for x(t+1) to be bad, mutation must change at least k = nε/2 bits.

Runtime Analysis of Evolutionary Algorithms 949

The second part of the claim follows from the fact that the probability of no bad
assignment generated in p(n) iterations is at least(

1− e−Ω(n logn)
)p(n)

≥ 1− p(n) · e−Ω(n logn) = 1− o(1),

where we have applied Bernoulli’s inequality. We remark here that even after any
polynomial number of steps, the probability that the (1+1) EA never generates
a bad assignment is going to one exponentially fast. +,
Lemma 3. We consider the execution of the (1+1) EA on a well-structured
formula F . Define the sequence of random variables {Xt : t > 0} as Xt = ϕ(x(t)).
We bound the drift of the stochastic process described by this sequence from below.
Suppose that ϕ(x(t)) ≤ (1/2+ ε/2)n, then E (Xt −Xt+1 | Xt) ≥ cXt/n

2 where c
is a positive constant.

Proof. Without loss of generality, let x� = (1, 1, . . . , 1). We consider the contri-
bution to the drift from different events. Let y be the intermediate offspring pro-
duced by mutating x(t). Note that by the dynamics of the (1+1) EA, x(t+1) = y
if and only if f(y) ≥ f(x(t)).

Let A denote the event that ϕ(y) > (1/2 + ε)n. In this event, the drift can
be negative if f(y) is no worse than f(x(t)). By the law of total expectation, the
drift can be written as

E(Xt −Xt+1 | Xt ∩ ¬A)(1 − Pr(A)) + E(Xt −Xt+1 | Xt ∩A) Pr(A).

Moreover, we have assumed that ϕ(x(t)) ≤ (1/2+ε/2)n so Pr(A) can be bounded
by Lemma 2, and we thus have

E(Xt −Xt+1 | Xt) ≥ (1 − o(1))E(Xt −Xt+1 | Xt ∩ ¬A)− ne−Ω(n logn). (1)

For the remaining cases of the proof, we assume that the event ¬A has oc-
curred. This is equivalent to the assumption that y lies in the good region. Let
B be the event that at least one of the ϕ(x(t)) zero-bits flip. Since we assume
that both x(t) and y are in the good region, we now argue that if the event
¬B occurs, then either y = x(t), or f(y) < f(x(t)). Under this event, if none of
the n − ϕ(x(t)) one-bits flip to zero, then obviously y and x(t) are equivalent.
On the other hand, if some one-bits flip, by transitivity of non-deceptive edges
in GF,x� , y must satisfy strictly fewer clauses than x(t). In either case, after
selection x(t) = x(t+1). By the law of total probability we have

E(Xt −Xt+1 | Xt ∩ ¬A) = Pr(B)E(Xt −Xt+1 | Xt ∩ ¬A ∩B)

since the drift is zero under the event ¬B. Since each one-bit flips with probability
1/n, by linearity of expectation,

E(Xt −Xt+1 | Xt ∩ ¬A ∩B) ≥
(
1− n− ϕ(x(t))

n

)
=

Xt

n
.

Finally, since ϕ(x(t)) ≥ 1 (otherwise, a satisfying assignment has been found)
Pr(B) ≥ 1/n. The claim is then proved by applying Equation (1) and choosing
a sufficiently small constant c. +,

950 A.M. Sutton and F. Neumann

Proof of Theorem 5. By Theorem 1, with high probability ϕ(x(1)) ≤ (1/2+ε/2)n.
Lemma 3 ensures that the drift of the stochastic process defined by the potential
function is multiplicative by a factor bounded by Ω(1/n2). Applying the well-
known Multiplicative Drift Theorem [4], as long as the (1+1) EA never jumps
out of the good region, it has reduced the potential to zero in O(n2 log n) steps.
Furthermore, this bound holds with probability 1− o(1) over the run [3].

Appealing to Lemma 2, after O(n2 logn) iterations, the (1+1) EA generates
any bad assignment only with probability o(1) (and this term is even vanishing
exponentially fast), hence the claim is proved. +,
Corollary 1. There exist positive constants c1 and c2 such that if F is a 3-
CNF formula constructed from (1) the Pn,p model with p ≥ c1/n, or (2) the
Pn,m model (and, due to Theorem 4, the USAT

n,m model) with m ≥ c2n
2, then the

(1+1) EA has found a satisfying assignment in O(n2 logn) steps with probability
1− o(1).

As we have already seen in the claim of Theorem 4, high density satisfiable
random formulas are likely to have exactly one satisfying assignment. In such
a case, it is straightforward to derive a lower bound on the expected runtime
of the (1+1) EA. In particular, with probability 1/2, the randomly generated
initial solution differs from the unique assignment in at least half the bits. Each
such bit must flip at least once during the run until the satisfying assignment
is found, and the expected number of steps before this event occurs is bounded
below by Ω(n log n). This bound is derived in Lemma 10 of the paper by Droste
et al. [5] and immediately proves the following theorem.

Theorem 6. If F is a random planted 3-CNF formula constructed as in Corol-
lary 1, then with high probability F has exactly one satisfying assignment. In this
case, the expected runtime of the (1+1) EA on F is bounded below by Ω(n logn).

5 Conclusion

In this paper, we have proved that all but a vanishing fraction of high-density
random planted 3-CNF formulas can be solved efficiently by the (1+1) EA.
We have shown that in the high-density regime, constraints impose favorable
structure on the search space explored by such algorithms so that they run in
polynomial time. In particular, we proved that the (1+1) EA finds a satisfying
assignment in O(n2 logn) iterations with probability 1− o(1) on the Pn,p model
when p ≥ c1/n and on the Pn,m model when m/n ≥ c2n for sufficiently large
positive constants c1 and c2. Since, at high densities, the Pn,m distribution is
statistically close to the uniform filtered USAT

n,m distribution, our results carry over
to this case as well.

Additionally, we have presented a rigorous argument that the (1+1) EA takes
at least Ω(n logn) steps in expectation to solve all but a o(1) fraction of random
satisfiable 3-CNF formulas at high densities. We conjecture that the upper bound
can be tightened to match this lower bound, and leave this as an open problem.

Runtime Analysis of Evolutionary Algorithms 951

Acknowledgments. The research leading to these results has received funding
fromtheAustralianResearchCouncil (ARC)under grantagreementDP140103400
and from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 618091 (SAGE).

References

1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific Publishing Company (2011)

2. Ben-Sasson, E., Bilu, Y., Gutfreund, D.: Finding a randomly planted assignment
in a random 3-CNF (2002) (manuscript)

3. Doerr, B., Goldberg, L.A.: Drift analysis with tail bounds. In: Schaefer, R., Cotta,
C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 174–183.
Springer, Heidelberg (2010)

4. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorith-
mica 64(4), 673–697 (2012)

5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

6. Gottlieb, J., Marchiori, E., Rossi, C.: Evolutionary algorithms for the satisfiability
problem. Evolutionary Computation 10(1), 35–50 (2002)

7. Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for satisfiability.
Information Processing Letters 43(1), 53–55 (1992)

8. Krivelevich, M., Sudakov, B., Vilenchik, D.: On the random satisfiability process.
Combinatorics, Probability and Computing 18, 775–801 (2009)

9. Krivelevich, M., Vilenchik, D.: Solving random satisfiable 3CNF formulas in ex-
pected polynomial time. In: SODA, pp. 454–463 (2006)

10. Kroc, L., Sabharwal, A., Selman, B.: An empirical study of optimal noise and
runtime distributions in local search. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 346–351. Springer, Heidelberg (2010)

11. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
New York (1995)

12. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer (2010)

13. Seitz, S., Orponen, P.: An efficient local search method for random 3-satisfiability.
Electronic Notes in Discrete Mathematics 16, 71–79 (2003)

14. Sutton, A.M., Howe, A.E., Whitley, L.D.: A theoretical analysis of the k-
satisfiability search space. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS
2009. LNCS, vol. 5752, pp. 46–60. Springer, Heidelberg (2009)

15. Sutton, A.M., Whitley, L.D., Howe, A.E.: A polynomial time computation of the
exact correlation structure of k-satisfiability landscapes. In: GECCO (2009)

16. Witt, C.: Worst-case and average-case approximations by simple randomized search
heuristics. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp.
44–56. Springer, Heidelberg (2005)

17. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability and Computing 22(2), 294–318
(2013)

Author Index

Aguirre, Arturo Hernández 352
Aguirre, Hernán 487, 682
Akimoto, Youhei 252
Alexander, Brad 384
Allmendinger, Richard 498, 741
Alyahya, Khulood 862
Amelio, Alessia 222
Arabas, Jaros�law 761, 872
Arnold, Dirk V. 882
Atamna, Asma 60
Auger, Anne 60
Azad, R. Muhammad Atif 444

Bäck, Thomas 11
Badkobeh, Golnaz 892
Baioletti, Marco 161
Banzhaf, Wolfgang 424
Bartoli, Alberto 394
Bartz-Beielstein, Thomas 373
Batina, Lejla 812, 822
Baudǐs, Petr 40
Bertasius, Gediminas 211
Bezerra, Leonardo C.T. 508
Bhalla, Navneet 751
Biedrzycki, Rafa�l 761, 872
Bosman, Peter A.N. 342
Bringmann, Karl 518
Brockhoff, Dimo 548
Buzdalov, Maxim 528

Chotard, Alexandre 902
Christensen, Anders Lyhne 233
Chuang, Chung-Yao 312
Clachar, Sophine 771
Clegg, Kester Dean 692
Coello Coello, Carlos A. 652, 682
Corus, Dogan 912
Costa, Lino 538
Cotta, Carlos 50, 322, 731
Cox, Chris R. 404
Cumar, Simone 394

Dang, Duc-Cuong 912
De Lorenzo, Andrea 394
Denysiuk, Roman 538

Derbel, Bilel 548, 641
Desell, Travis 771
de Waard, Maarten 589
Domı́nguez, Ignacio Segovia 352
Dorigo, Marco 181, 751
Dorscheid, Marita 80
Drugan, Mădălina M. 559
Dvorak, Vaclav 414

Eiben, Agoston Endre 24, 110
Emmerich, Michael T.M. 11, 672
Eremeev, Anton V. 912
Esṕırito Santo, Isabel 538

Farid, Suzanne S. 498, 741
Fernandes, Carlos M. 50
Fernández-de-Vega, Francisco 702
Floreano, Dario 272
Fonseca, Carlos M. 672
Friedrich, Tobias 518, 922
Fucik, Otto 802
Fukunaga, Alex 201

Garćıa-Valdez, Mario 702
Gerontas, Spyridon 741
Glasmachers, Tobias 569, 579
Goldingay, Harry 171
Gomes, Jorge 233
Guerreiro, Andreia P. 672

Ha, Myoung Hoon 151
Haasdijk, Evert 110
Hamann, Heiko 181
Hansen, Nikolaus 60, 70
Harding, Simon L. 721
Hart, Emma 282
Héritier, Aurélie 262
Higgins, James 771
Holeňa, Martin 902
Hrbacek, Radek 414
Hu, Bin 792
Hu, Ting 424

Inja, Maarten 589
Ipparthi, Dhananjay 751

954 Author Index

Ishibuchi, Hisao 600
Izzo, Dario 110, 262, 662, 711

Jakobovic, Domagoj 812, 822
Jasik, Agata 761
Jin, Yaochu 302
Joshi, Ayush 243

Kendall, Graham 842
Khaluf, Yara 181
Klemp, Eric 751
Klitzke, Patrick 518
Kloimüllner, Christian 792
Koch, Patrick 292
Konen, Wolfgang 292
Kooijman, Chiel 589
Kovacs, Tim 191
Krawiec, Krzysztof 434, 611

Labroquère, Jérémie 262
Lane, Fergal 444
Laredo, Juan L.J. 50
Lehre, Per Kristian 892, 912
Lenarčič, Jadran 1
Lewis, Peter R. 171
Li, Rui 11
Liefooghe, Arnaud 487, 548, 621, 641
Liskowski, Pawe�l 611
López-Ibáñez, Manuel 508, 621
Loshchilov, Ilya 70
Lykkebø, Odd Rune 721

Maesani, Andrea 272
Mambrini, Andrea 711
Marceau-Caron, Gaetan 631
Marchiori, Elena 822
Mariano, Pedro 233
Marquet, Gauvain 641
Märtens, Marcus 662
Massey, Kieran 692
Massey, Mark K. 721
Masuda, Hiroyuki 600
Mauser, Ingo 80
McCall, John 332
McKay, Robert Ian 151
Medvet, Eric 394
Menchaca-Mendez, Adriana 652
Merelo, Juan Julian 50
Merelo-Guérvos, Juan Julián 702
Milani, Alfredo 161

Miller, Julian Francis 476, 692, 721
Mohid, Maktuba 721
Montero, Elizabeth 90
Moore, Jason H. 211, 424

Nagata, Yuichi 782
Nakata, Masaya 191
Nallaperuma, Samadhi 100
Naujoks, Boris 579
Neumann, Frank 100, 922, 942
Nogueras, Rafael 50, 322, 731
Nojima, Yusuke 600
Nowak, Krzysztof 662

Oliveto, Pietro S. 932
Ono, Isao 782

Papazek, Petrina 792
Pawlak, Tomasz P. 454
Petrlik, Jiri 802
Petty, Michael C. 721
Petty, Mike 692
Picek, Stjepan 812, 822
Pizzuti, Clara 222
Poš́ık, Petr 40
Preuss, Mike 141

Qian, Chao 302

Raidl, Günther R. 792, 832
Regnier-Coudert, Olivier 332
Riccardi, Annalisa 262
Riff, Maŕıa-Cristina 90
Roijers, Diederik M. 589
Rosa, Agostinho C. 50
Rothlauf, Franz 465
Rowe, Jonathan E. 243, 862
Rudolph, Günter 579
Ryan, Conor 444

Sadowski, Krzysztof L. 342
Santucci, Valentino 161
Schauer, Christian 832
Schmeck, Hartmut 80
Schoenauer, Marc 70, 631
Sebag, Michèle 70, 852
Sekanina, Lukas 802
Shalyto, Anatoly 528
Shirakawa, Shinichi 252
Sim, Kevin 282

Author Index 955

Simões, Lúıs F. 110
Smith, Jim 120
Smith, Stephen F. 312
Solar-Lezama, Armando 434
Sosa Hernández, Vı́ctor A. 682
Stich, Sebastian Urban 130
Stork, Jörg 373
Stützle, Thomas 508
Sudholt, Dirk 892, 932
Sutton, Andrew M. 942
Szymański, Micha�l 761

Takadama, Keiki 191
Talbi, El-Ghazali 641
Tanabe, Ryoji 201
Tanaka, Kiyoshi 487, 682
Tanigaki, Yuki 600
Thierens, Dirk 342
Thorhauer, Ann 465
Titchener-Hooker, Nigel J. 741
Trautmann, Heike 141
Trujillo, Leonardo 702
Tufte, Gunnar 721
Turner, Andrew James 476

Urbanowicz, Ryan J. 211
Ursem, Rasmus K. 362

Valdez, S. Ivvan 352
Valentini, Gabriele 181
Verel, Sébastien 487, 548, 621

Wagner, Markus 100
Wang, Ji 11
Wasylczyk, Piotr 761
Watson, Richard A. 404
Wessing, Simon 141
While, Lyndon 842
Whiteson, Shimon 589
Wild, Brandon 771
Wnuk, Pawe�l 761
Wójcik-Jedlińska, Anna 761

Yang, Kaifeng 11
Yevseyeva, Iryna 672
Yu, Yang 302
Yun, Hansang 151

Zacher, Brad 384
Zaefferer, Martin 373
Zapotecas Mart́ınez, Saúl 682
Zarges, Christine 243, 932
Zhang, Guohua 852
Zhou, Zhi-Hua 302

	Preface
	Organization
	Table of Contents
	Keynote Papers
	Some Computational Aspectsof Robot Kinematic Redundancy
	1 Introduction
	2 Basic Problems in Robot Kinematics
	2.1 Direct Kinematics
	2.2 Inverse Kinematics

	3 Kinematic Redundancy
	3.1 Task Priority Approach
	3.2 Measure for Kinematic Redundancy

	4 Kinematic Singularity and Manipulability
	5 Robot Workspaces
	6 Parallel Mechanisms
	7 Example of Bio-Inspired Robot Mechanism
	8 Conclusions
	References

	Power Distribution Network Reconfigurationby Evolutionary Integer Programming
	1 Introduction
	2 Problem Description
	2.1 Objective Function
	2.2 Feasible Constraint on Network Topology

	3 Power Loss Minimization Algorithms
	3.1 Encoding Strategy
	3.2 Hybrid Particle Swarm/Clonal Genetic Algorithm
	3.3 CGA Shift and Mutate Operator

	4 Integer Programming Evolutionary Strategy
	5 Single-objective Optimization Result
	6 Multiobjective Optimization
	7 Conclusions
	References

	In Vivo Veritas: Towards the Evolution of Things
	1 Introduction
	2 Robots?
	2.1 Evolutionary Robotics Version 1: Off-line Evolution
	2.2 Evolutionary Robotics Version 2: On-line Evolution of Controllers
	2.3 Evolutionary Robotics Version 3: On-line Evolution of Morphologies (and Corresponding Controllers)

	3 The Evolution of Things: Why
	4 The Evolution of Things: How
	5 Special Algorithmic Challenges
	6 In Vivo Veritas
	7 Concluding Remarks
	References

	Adaptation, Self-Adaptation and Parameter Tuning
	Online Black-Box Algorithm Portfoliosfor Continuous Optimization
	1 Introduction
	2 Algorithm Selection as Multi-armed Bandit Problem
	2.1 Multi-armed Bandit Problem
	2.2 Action Rewards versus Optimization Performance
	2.3 Raw Values and the UCB1 Policy

	3 Algorithm Selection Strategies
	4 Experiments and Results
	5 Discussion and Conclusion
	5.1 Future Work

	References

	Shuffle and Mate: A Dynamic Model for Spatially Structured Evolutionary Algorithms
	1 Introduction
	2 Background Review
	3 Dynamic Topology
	4 Results and Discussion
	5 Conclusions and Future Work
	References

	How to Assess Step-Size Adaptation Mechanisms in Randomised Search
	1 Introduction
	2 Step-Size Evaluation Methodology
	3 Considered Step-Size Adaptation Methods
	4 A Case Study
	5 Discussion and Summary
	References

	Maximum Likelihood-Based Online Adaptationof Hyper-Parameters in CMA-ES
	1 Introduction
	2 Covariance Matrix Adaptation Evolution Strategy
	3 The Self-CMA-ES
	4 Experimental Validation
	4.1 Results
	4.2 Discussion

	5 Conclusion and Perspectives
	References

	Run-Time Parameter Selection and Tuningfor Energy Optimization Algorithms
	1 Introduction
	2 Energy Management Scenario
	3 Parameter Selection and Tuning
	3.1 Calibration Engine: Architecture
	3.2 Parameter Adaptor and Process of Parameter Tuning
	3.3 Distributed Evaluation

	4 Experimental Setup
	4.1 Test scenarios
	4.2 Experiments

	5 Results and Discussion
	6 Summary and Outlook
	References

	Towards a Method for Automatic AlgorithmConfiguration: A Design Evaluation Using Tuners
	1 Introduction
	2 Related Work
	3 The Problem When Designing Metaheuristics
	4 Strategy to Use Tuners for Designing Metaheuristics
	4.1 How to Use Tuners during the Design Process

	5 Experiments
	5.1 Experiments with NK-GA
	5.2 Experiments with MOAIS-HV

	6 Conclusions and Future Work
	References

	Parameter Prediction Based on Features of Evolved Instances for Ant Colony Optimization and the Traveling Salesperson Problem
	1 Introduction
	2 Preliminaries
	3 Features of Hard and Easy Instances
	3.1 Feature Analysis
	3.2 Comparison of Parameter Settings

	4 Parameter Prediction
	4.1 Prediction Model
	4.2 Prediction Results

	5 Conclusions
	Bibliography

	Self-Adaptive Genotype-Phenotype Maps:Neural Networks as a Meta-Representation
	1 Introduction
	2 Related Work
	3 Neural Networks as Genotype-Phenotype Maps
	4 Expressiveness
	4.1 Map Characterization

	5 Learnability
	5.1 Experimental Evaluation

	6 Conclusion
	References

	The Baldwin Effect Hinders Self-Adaptation
	1 Introduction
	2 Background
	3 Experimental Methodology
	3.1 Algorithm
	3.2 Test Functions
	3.3 Methods for Analysis

	4 Results
	4.1 Benchmarking Self-Adaptation
	4.2 Analysis of Evolved Behaviours on Different Functions

	5 Discussion
	6 Conclusions
	References

	On Low Complexity Acceleration Techniquesfor Randomized Optimization
	1 Introduction
	2 Algorithms
	3 Empirical Study
	4 Discussion and Conclusions
	References

	Stopping Criteria for Multimodal Optimization
	1 Introduction
	2 MMO Performance Indicators and Model Algorithms
	3 Initial Investigations
	4 Stopping Criteria
	5 Experimental Evaluation of SMMO
	6 Conclusions and Outlook
	References

	VLR: A Memory-Based Optimization Heuristic
	1 Introduction
	2 Background
	2.1 Search Methods
	2.2 The Max-Cut Problem

	3 Method
	3.1 Exploration
	3.2 Visited-Local-Hill (VLH)
	3.3 Visited-Local-Region(VLR)

	4 Experiments
	5 Result and Discussion
	6 Conclusion
	References

	Classifier Systems, Differential Evolution and Swarm Intelligence
	A Differential Evolution Algorithmfor the Permutation Flowshop SchedulingProblem with Total Flow Time Criterion
	1 Introduction and Related Works
	2 Differential Mutation in the Permutations Space
	3 Differential Evolution for Permutations
	4 Experiments
	5 Conclusions and Future Works
	References

	A Taxonomy of Heterogeneity and Dynamicsin Particle Swarm Optimisation
	1 Introduction
	2 Forms of Heterogeneity and Dynamics in PSO
	3 Experimental Analysis of Heterogeneity in PSO
	3.1 Exemplar Strategies
	3.2 Experimental Set Up
	3.3 Experimental Results

	4 Conclusions
	References

	Derivation of a Micro-Macro Link for Collective Decision-Making Systems
	1 Introduction
	2 Model and Derivation of a Micro-Macro Link
	3 Simulation of a Locust Alignment Behavior
	4 Validation of the Model
	4.1 Gillespie Simulations
	4.2 Locust Simulations

	5 Discussion and Conclusion
	References

	Messy Coding in the XCS Classifier Systemfor Sequence Labeling
	1 Introduction
	2 Messy Coding in Sequence Labeling
	2.1 Sequence Labeling
	2.2 Messy Coding vs. Original Interval Coding

	3 XCS-SL Classifier System
	4 Messy Coding in the XCS-SL Classifier System
	5 Experiment on Benchmark Problem
	5.1 Results

	6 Experiment on ADL Recognition
	7 Conclusion
	References

	Reevaluating Exponential Crossoverin Differential Evolution
	1 Introduction
	2 Adjacent Functions: A Common But Unnatural Class of Benchmarks
	2.1 Exponential Crossover on Adjacent/Distributed Functions

	3 Shuffled Exponential Crossover
	4 Is Exponential Crossover Overrated?
	5 Conclusion
	References

	An Extended Michigan-Style Learning ClassifierSystem for Flexible Supervised Learning,Classification, and Data Mining
	1 Introduction
	2 ExSTraCS
	3 Results and Discussion
	4 Conclusions
	References

	Coevolution and Artificial Immune Systems
	A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks
	1 Introduction
	2 Multilayer Networks
	3 Method Description
	4 Experimental Results
	5 Conclusions
	References

	Novelty Search in Competitive Coevolution
	1 Introduction
	2 Related Work
	2.1 Premature Convergence in Competitive Coevolution
	2.2 Novelty Search

	3 Approach
	4 Experimental Setup
	4.1 Predator-Prey Pursuit
	4.2 Coevolutionary Algorithm

	5 Results
	5.1 Quality of the Solutions
	5.2 Behaviour Space Exploration
	5.3 Diversity of Effective Solutions

	6 Conclusions
	References

	An Immune-Inspired Algorithmfor the Set Cover Problem
	1 Introduction
	2 Preliminaries
	3 The GC-AIS Algorithm
	4 Experimental Results
	5 Discussion and Conclusion
	References

	Constraint Handling
	Natural Gradient Approach for Linearly Constrained Continuous Optimization
	1 Introduction
	2 IGO Framework and the Rank-μ Update CMA
	3 Natural Gradient for Truncated Gaussian Distributions
	4 Study on a Linearly Constrained Spherical Problem
	5 Summary and Discussion
	References

	Evolutionary Constrained Optimizationfor a Jupiter Capture
	1 Introduction
	2 Jupiter Capture Trajectory
	3 Constrained Evolutionary Optimization
	3.1 Constraint Handling Techniques

	4 Experiments
	4.1 Problems Definition
	4.2 Results

	5 Conclusion and Prospects
	References

	Viability Principles for ConstrainedOptimization Using a (1+1)-CMA-ES
	1 Introduction
	2 Related Work
	2.1 (1+1)-CMA-ES with Active Covariance Matrix Adaptation

	3 Introducing Viability in CMA-ES
	4 Results
	5 Discussion and Future Work
	References

	Dynamic and Uncertain Environments
	On the Life-Long Learning Capabilitiesof a NELLI*:A Hyper-Heuristic Optimisation System
	1 Introduction
	2 Background
	3 NELLI* Algorithm
	4 NELLI* as a Life-Long-Learning System
	5 Results
	5.1 Generalisation Capabilities
	5.2 Memory and Learning

	6 Conclusions and Future Work
	References

	Adaptation in Nonlinear Learning Modelsfor Nonstationary Tasks
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 The Benchmark: A Nonlinear Nonstationary Task
	2.2 Nonlinear Least Mean Squares (NLMS)
	2.3 Incremental Delta Bar Delta (IDBD)
	2.4 Generalizing IDBD to Nonlinear Output Units
	2.5 Controlling the Activation

	3 Results
	3.1 Does Weight Decay Help?
	3.2 Does Nonlinear IDBD Find the Optimal αi?

	4 Conclusion
	References

	On the Effectiveness of Sampling for Evolutionary Optimization in Noisy Environments
	1 Introduction
	2 Preliminaries
	2.1 Sampling and Optimization in the Presence of Noise
	2.2 Evolutionary Algorithms by Markov Chain Analysis

	3 Theorem on Sampling Effectiveness
	4 Case Studies
	4.1 (1+1)-EA on Noisy OneMax
	4.2 (1+1)-EA on Noisy Trap
	4.3 Empirical Verification

	5 Conclusion
	References

	Estimation of Distribution Algorithms and Metamodelling
	Evolving Mixtures of n-gram Modelsfor Sequencing and Schedule Optimization
	1 Introduction
	2 Modeling Sequence Properties with n-gram Statistics
	3 An EDA Frameworkwithn-gram Models
	4 Combining Multiple Models with Linear Interpolation
	5 Incorporating Other Heuristics
	6 Discussion
	7 Summary and Future Works
	References

	A Study on Multimemetic Estimationof Distribution Algorithms
	1 Introduction
	2 Multimemetic EDAs
	2.1 Meme Representation and Application
	2.2 EDA Approaches

	3 Experimental Analysis
	3.1 Benchmark and Settings
	3.2 Experimental Results

	4 Conclusions
	References

	Factoradic Representationfor Permutation Optimisation
	1 Introduction
	2 Factoradic Representation
	3 Factoradic Algorithms
	4 Experiments
	4.1 Test Problems
	4.2 Experimental Settings

	5 Results and Discussion
	6 Conclusions
	References

	Combining Model-Based EAs for Mixed-Integer Problems
	1 Introduction
	2 Background
	2.1 LTGA
	2.2 iAMaLGaM

	3 Integrated Algorithm
	4 Experimental Results
	4.1 Benchmark Problems
	4.2 Results on Domain Independent Problems
	4.3 Results on the Dependent Problem

	5 Discussion and Conclusions
	References

	A New EDA by a Gradient-Driven Density
	1 Introduction
	2 The Gradient Estimation
	3 The Gradient-Driven Density
	4 The Gradient-Driven Density in EDAs
	5 Experiment
	6 Conclusion
	References

	From Expected Improvement to InvestmentPortfolio Improvement: Spreading the Riskin Kriging-Based Optimization
	1 Introduction
	2 Kriging-Based Prescreening Optimization
	2.1 Differential Evolution
	2.2 Kriging
	2.3 Prescreening Procedures
	2.4 Investment Portfolio Improvement Prescreening

	3 Experimental Setup
	4 Results and Discussion
	5 Conclusions
	References

	Distance Measures for Permutationsin Combinatorial Efficient Global Optimization
	1 Introduction
	2 Previous Research
	3 Methods
	3.1 Distance Measures
	3.2 Kriging for Combinatorial Optimization
	3.3 Choosing a Distance Measure in Kriging
	3.4 Efficient Global Optimization

	4 Experimental Setup
	4.1 Correlation between Distances
	4.2 Matrix Condition
	4.3 Benchmark Problems
	4.4 Local Fitness Distance Correlation
	4.5 Optimization Performance

	5 Observations and Discussion
	5.1 Correlation and LFDC
	5.2 Matrix Condition
	5.3 Optimization Performance

	6 Summary and Outlook
	References

	Genetic Programming
	Boosting Search for Recursive FunctionsUsing Partial Call-Trees
	1 Introduction
	1.1 Call Trees
	1.2 Contributions

	2 Related Work
	3 CTGGP
	3.1 Phase One Search

	4 Experimental Setup
	5 Results and Discussion
	6 Conclusions and Future Work
	References

	Compressing Regular Expression Setsfor Deep Packet Inspection
	1 Introduction
	2 Our Approach
	2.1 Problem Statement
	2.2 Representation
	2.3 Set Equivalence by Sample Strings
	2.4 Evolution Phase
	2.5 Selection Phase

	3 Experimental Evaluation
	3.1 Datasets
	3.2 Results and Discussion

	4 Concluding Remarks
	References

	Inferring and Exploiting Problem Structurewith Schema Grammar
	1 Introduction
	2 Compression Evolutionary Algorithms
	3 Schema Grammar
	4 Grammar Inference
	5 Inferring and Exploiting Problem Structure
	6 Conclusions
	References

	Bent Function Synthesisby Means of Cartesian Genetic Programming
	1 Introduction
	2 Bent Boolean Functions
	3 Cartesian Genetic Programming
	4 Bent Function Synthesis by Means of CGP
	5 Experimental Results
	6 Conclusions
	References

	Population Exploration on Genotype Networksin Genetic Programming
	1 Introduction
	2 Methods
	2.1 Problem Instance
	2.2 Genotype, Phenotype, and Genotype Networks
	2.3 Population Evolution

	3 Results and Discussion
	3.1 Properties of Genotype Networks
	3.2 Population Diffusion on Genotype Networks

	4 Concluding Remarks
	References

	Improving Genetic Programmingwith Behavioral Consistency Measure
	1 Introduction
	2 Information Consistency
	3 Experiment
	4 Summary
	References

	On Effective and Inexpensive Local SearchTechniques in Genetic Programming Regression
	1 Introduction
	2 Related Work
	2.1 Local Search in Genetic Programming
	2.2 Chameleon
	2.3 Chameleon’s Parsimony Reward Scheme

	3 Experimental Setup
	4 Node Tuning Strategies
	4.1 Cost-Oriented Parsimony Measures
	4.2 More Tuning Earlier in Runs

	5 Combining Tuning Strategies
	6 Conclusions
	6.1 Future Research Directions

	References

	Combining Semantically-Effective and Geometric Crossover Operators for Genetic Programming
	1 Introduction
	2 Taxonomy of Semantic Crossover Operators
	3 Semantically-Effective Geometric Crossover Operator
	4 The Experiment
	5 Conclusions
	References

	On the Locality of Standard Search Operatorsin Grammatical Evolution
	1 Introduction
	2 Locality of Search Operators
	2.1 Locality in Genetic Programming
	2.2 Locality in Grammatical Evolution

	3 Experiments and Results
	3.1 Experimental Design
	3.2 Results

	4 Conclusions
	References

	Recurrent Cartesian Genetic Programming
	1 Introduction
	2 Cartesian Genetic Programming
	3 Recurrent Cartesian Genetic Programming
	3.1 Recurrent Cartesian Genetic Programming Implementation
	3.2 Implications of Recurrent Connections

	4 Experiments
	5 Benchmarks
	5.1 Artificial Ant
	5.2 Sunspots

	6 Results
	7 Discussion
	8 Conclusion
	References

	Multi-objective Optimisation
	An Analysis on Selectionfor High-Resolution Approximationsin Many-Objective Optimization
	1 Introduction
	2 Methodology
	3 Algorithms
	3.1 NSGA-II
	3.2 IBEA (Indicator-Based Evolutionary Algorithm)
	3.3 The AεSεH

	4 Experimental Results and Discussion
	4.1 Operators of Variation and Parameters
	4.2 Accumulated Number of Pareto Optimal Solutions Found
	4.3 Generational Search Assessment Indices

	5 Conclusions
	References

	A Multiobjective Evolutionary Optimization Framework for Protein Purification Process Design
	1 Introduction
	2 Constrained Multiobjective Purification Process Design
	3 Experimental Setup
	4 Experimental Study
	5 Summary and Conclusion
	References

	Automatic Design of Evolutionary Algorithmsfor Multi-Objective Combinatorial Optimization
	1 Introduction
	2 A Framework for Instantiating MOEAs
	3 Experimental Setup
	4 Results and Discussion
	5 Conclusions
	References

	Generic Postprocessing via Subset Selectionfor Hypervolume and Epsilon-Indicator
	1 Introduction
	2 Preliminaries
	3 Postprocessing
	4 Experimental Setup
	5 Experimental Results
	6 Conclusion
	References

	A Provably Asymptotically Fast Versionof the Generalized Jensen Algorithmfor Non-dominated Sorting
	1 Introduction
	2 Algorithm Description
	2.1 Splitting into Three Parts, NDHelperA
	2.2 Splitting into Three Parts, NDHelperB
	2.3 The Choice of Pivot

	3 Running Time Estimation
	3.1 Running Time of NDHelperB
	3.2 Running Time of NDHelperA

	4 Discussion
	4.1 The Worst-Case Bound for the Original Algorithm
	4.2 Applicability of the Proof to the Original Algorithm

	5 Conclusion
	References

	Clustering-Based Selection for EvolutionaryMany-Objective Optimization
	1 Introduction
	2 Algorithm
	3 Performance Assessment
	3.1 Performance Indicators and Statistical Comparison
	3.2 Experimental Setup
	3.3 Performance Comparison
	3.4 Selection on Different Shapes

	4 Conclusions
	References

	On the Impact of Multiobjective Scalarizing Functions
	1 Introduction
	2 Scalarizing Functions
	3 Experimental Design
	4 Single Search Behavior
	4.1 Diversity: Final Angle
	4.2 Convergence: Relative Deviation to Best
	4.3 Understanding the Impact of the Opening Angle

	5 Global Search Behavior
	6 Open(ing) (Re)search Lines
	References

	Multi-objective Quadratic Assignment Problem Instances Generator with a Known Optimum Solution
	1 Introduction
	2 Composite Multi-objective QAP Instances Generator
	2.1 Aggregate Component mQAP Instances
	2.2 Filling up the Composite mQAP Instances

	3 Designing Composite mQAPs with Known Optimum Solution
	3.1 Setting Up Bounds for the Generating Distributions

	4 A Practical Composite mQAP Instance Generator
	4.1 An Example

	5 Difficulty of mQAP Instances
	6 Conclusion
	References

	Optimized Approximation Setsfor Low-Dimensional Benchmark Pareto Fronts
	1 Introduction
	2 Multi-objective Optimization
	2.1 Dominance Order and Dominated Hypervolume
	2.2 Benchmark Problems and Existing Results

	3 Hypervolume Calculation
	3.1 Gradient of Dominated Hypervolume
	3.2 Decomposition into Cuboids

	4 Hypervolume Optimization
	4.1 Gradient-Based Optimization
	4.2 Dealing with Multi-modality
	4.3 Implementation

	5 Optimized Sets for the ZDT and DTLZ Problems
	5.1 The Bi-objective Case
	5.2 The Tri-objective Case

	6 Conclusion
	References

	Start Small, Grow Big?Saving Multi-objective Function Evaluations
	1 Introduction
	2 Multi-Criteria Optimization
	3 Schedules
	3.1 Fixed Schedules
	3.2 Adaptive Schedules

	4 Experimental Evaluation
	5 Conclusion and Outlook
	References

	Queued Pareto Local Searchfor Multi-Objective Optimization
	1 Introduction
	2 Background
	2.1 Non-PLS Methods
	2.2 PLS Methods

	3 QPLS
	4 Genetic QPLS
	5 Experiments
	5.1 Parameter Optimization
	5.2 Approximation of the Pareto Front
	5.3 A Large MO-CoG

	6 Discussion and Conclusion
	References

	Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems
	1 Introduction
	2 Multi-Objective and Many-Objective Knapsack Problems
	3 Two Performance Improvement Schemes
	4 Experimental Results
	5 Further Discussions Using Distance-Based Crossover
	6 Conclusions
	References

	Discovery of Implicit Objectives by Compression of Interaction Matrix in Test-Based Problems
	1 Introduction
	2 Background
	3 Objective Compression Algorithm
	4 Experimental Verification
	5 Conclusions
	References

	Local Optimal Sets and Bounded Archivingon Multi-objective NK-Landscapeswith Correlated Objectives
	1 Introduction
	2 Background
	3 Experimental Setup
	4 Experimental Analysis
	4.1 Cardinality of Pareto Local Optimal Sets
	4.2 Quality of Local Optimal Sets
	4.3 Difficulty of Identifying Local Optimal Sets

	5 Conclusions
	References

	Racing Multi-objective Selection Probabilities
	1 Introduction
	2 Uncertainty Handling in Multi-objective Evolutionary Optimization
	2.1 Previous Work
	2.2 Discussion, and Rationale for RSP

	3 Racing Selection Probability
	4 Experimental Results
	4.1 Experimental Conditions
	4.2 Results
	4.3 Discussion

	5 Conclusion and Perspective
	References

	Shake Them All!
	1 Introduction
	2 Background
	3 Rethinking Selection and Replacement in MOEA/D
	4 Experimental Setup
	5 Experimental Analysis
	6 Conclusions and Perspectives
	References

	MH-MOEA: A New Multi-ObjectiveEvolutionary Algorithm Based on the MaximinFitness Function and the Hypervolume Indicator
	1 Introduction
	2 Problem Statement
	3 Maximin Fitness Function
	4 Hypervolume Indicator
	5 Our Proposed Approach
	6 Experimental Results
	6.1 Performance Indicators
	6.2 Discussion of Results

	7 Conclusions and Future Work
	References

	Empirical Performance of the Approximationof the Least Hypervolume Contributor
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Datasets
	3.2 Reference Point
	3.3 Selecting the Exact Algorithms and Experiment Design

	4 Results
	5 Conclusions
	References

	A Portfolio Optimization Approach to Selectionin Multiobjective Evolutionary Algorithms
	1 Introduction
	2 Background
	2.1 Portfolio Selection
	2.2 Fitness Assignment as a Portfolio Selection Problem

	3 A New Approach to Multiobjective Selection
	3.1 Fitness Assignment
	3.2 Environmental Selection and Archiving

	4 Experimental Results
	5 Conclusions
	References

	Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem
	1 Introduction
	2 Basic Concepts
	2.1 Multi-objective Optimization
	2.2 Δp Indicator

	3 The Reference Indicator-Based EMOA
	3.1 General Framework
	3.2 Reduction Procedure

	4 Reference Set Construction
	4.1 Pareto Front Families
	4.2 Weights Set
	4.3 Reference Surface Construction

	5 Experimental Study
	6 Conclusions and Future Work
	References

	Parallel Algorithms and Hardware Implementations
	Travelling Salesman Problem Solved ‘in materio’by Evolved Carbon Nanotube Device
	1 Introduction
	2 Hardware and Material Description
	3 Problem and Method
	4 Results
	5 Conclusion
	References

	Randomized Parameter Settings for Heterogeneous Workers in a Pool-Based Evolutionary Algorithm
	1 Introduction
	2 Related Work
	3 EvoSpace
	4 Problem Statement and Experimental Work
	4.1 Benchmark
	4.2 Experimental Set-up and Results

	5 Conclusions and Further Work
	References

	PaDe: A Parallel Algorithm Based on theMOEA/D Framework and the Island Model
	1 Introduction
	2 Algorithm Definition
	2.1 Comparison to a Traditional MOEA/D Implementation

	3 Experiments
	3.1 Performance Measures
	3.2 Sequential Experiments
	3.3 Parallel Experiments

	4 Conclusions
	References

	Evolution-In-Materio: Solving Machine LearningClassification Problems Using Materials
	1 Introduction
	2 Conceptual Overview Of Evolution-In-Materio
	3 Mecobo Hardware Platform
	4 Physical Computational Material
	5 Machine Learning: Classification Problems
	6 Classifying Data Using Evolution-In-Materio
	6.1 Methodology
	6.2 Genotype Representation
	6.3 Input Mapping
	6.4 Output Mapping
	6.5 Fitness Score

	7 Experiments
	7.1 Using CGP For Classification
	7.2 Results and Discussion

	8 Conclusions and Future Outlook
	References

	An Analysis of Migration Strategiesin Island-Based Multimemetic Algorithms
	1 Introduction
	2 Island-Based Multimemetic Model
	2.1 Basic Algorithmic Model
	2.2 Migration Strategies Considered

	3 Experimental Analysis
	3.1 Benchmark and Settings
	3.2 Experimental Results

	4 Conclusions
	References

	Real-World Applications
	Tuning Evolutionary Multiobjective Optimization for Closed-Loop Estimation of Chromatographic Operating Conditions
	1 Introduction
	2 Problem Definition
	3 Experimental Setup
	3.1 Case Study
	3.2 Tuning Evolutionary Search for the MOCOC Problem
	3.3 Algorithm Parameter Settings

	4 Experimental Analysis
	5 Conclusion and Future Work
	References

	A Geometrical Approach to the IncompatibleSubstructure Problem in Parallel Self-Assembly
	1 Introduction
	2 Background
	2.1 Incompatible Substructure Problem
	2.2 Directed Self-Assembly

	3 Geometrical Approach
	4 Experiment
	5 Results
	6 Future Work
	7 Conclusions
	References

	Application of Evolutionary Methods toSemiconductor Double-Chirped Mirrors Design
	1 Introduction
	2 Designing Mirrors for Ultrafast Lasers
	3 SDCM Design Problem Formulation
	4 Optimization of the SCDM Design
	5 Implementation and Tests of the Designed Mirror
	6 Conclusions
	References

	Evolving Neural Network Weights for Time-Series Prediction of General Aviation Flight Data
	1 Motivation
	2 Time-Series Prediction
	2.1 Neural Network Design
	2.2 Objective Function
	2.3 Neural Network Bounds and Data Cleansing

	3 Parallel Evolutionary Algorithms
	4 Results
	4.1 Runtime Environment
	4.2 Evaluation Metrics
	4.3 Infeasibility of Backpropagation
	4.4 Neural Network Optimization
	4.5 Cross Validation

	5 Conclusions and Future Work
	References

	Random Partial Neighborhood Searchfor University Course Timetabling Problem
	1 Introduction
	2 The University Course Timetabling Problem
	3 Solution Method
	3.1 Random Partial Neighborhood Search
	3.2 Construction of an Initial Feasible Timetable

	4 Computational Experiments
	4.1 Experimental Settings
	4.2 Results
	4.3 Analysis
	4.4 Comparisons with Other Algorithms

	5 Conclusion and Future Work
	References

	Balancing Bicycle Sharing Systems:An Analysis of Path Relinking andRecombination within a GRASP Hybrid
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Metaheuristics Approaches
	5 Path Relinking and Recombination in GRASP
	5.1 PR and Recombination Variants
	5.2 Embedding in GRASP

	6 Computational Analysis
	7 Conclusions and Future Work
	References

	Multiobjective Selection of Input Sensorsfor SVR Applied to Road Traffic Prediction
	1 Introduction
	2 Road Traffic Forecasting Using SVR
	3 Multiobjective Genetic Algorithms
	4 Method
	5 Experimental Results
	5.1 Data Sets
	5.2 SVR Parameters Setting
	5.3 Evaluation of NSGA-II
	5.4 Comparison with a Single Objective GA

	6 Conclusions
	References

	Evolving DPA-Resistant Boolean Functions
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Side-Channel Analysis
	2.2 Boolean Functions

	3 Evolving Boolean Functions
	3.1 Fitness Functions
	3.2 Algorithms, Representations and Parameters

	4 Results and Discussion
	5 Conclusions and Future Work
	References

	Combining Evolutionary Computationand Algebraic Constructions to FindCryptography-Relevant Boolean Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Representations and Properties
	2.2 Theoretical Background

	3 Approach and Methods
	3.1 Algorithms, Representations, and Fitness Functions

	4 Experimental Setup and Results
	4.1 Results

	5 Conclusions and Future Work
	References

	A Memetic Algorithm for Multi LayerHierarchical Ring Network Design
	1 Introduction
	2 Related Work
	3 Multi Layer Hierarchical Ring Network Design
	4 A Memetic Algorithm for MLHRND
	4.1 Representation and Decoding Procedures
	4.2 Initial Population
	4.3 Recombination and Mutation
	4.4 Local Improvement by Variable Neighborhood Search

	5 Results
	6 Conclusions and Future Work
	References

	Scheduling the English Football Leaguewith a Multi-objective Evolutionary Algorithm
	1 Introduction
	2 Background
	2.1 Multi-objective Approaches to Sports Scheduling
	2.2 Multi-objective Optimisation

	3 Problem Statement
	4 Methodology
	4.1 Representation
	4.2 Variation Operators
	4.3 Objectives
	4.4 Other Algorithm Details

	5 Results
	6 Conclusions
	References

	Coupling Evolution and Information Theoryfor Autonomous Robotic Exploration
	1 Introduction
	2 Related Work
	3 Ev-ITER Overview
	3.1 Phase 1. Evolutionary Exploration
	3.2 Phase 2: Initializing the Entropic Value Function
	3.3 Phase 2. Information-Driven Navigation

	4 Experimental Validation
	5 Discussion and Perspectives
	References

	Theory
	Local Optima and Weight Distributionin the Number Partitioning Problem
	1 Introduction
	2 Weights Coefficient of Variation and NPP Landscape
	2.1 Number of Local Optima
	2.2 Average Number of Local Optima
	2.3 Cost of Local Search

	3 Conclusions
	References

	Quasi-Stability of Real Coded Finite Populations
	1 Introduction
	2 Subject of Analysis
	3 Finite Populations Generated with Stable Expectation and Variance
	4 Quasi-Stability of Finite Populations
	5 Closing Remarks
	References

	On the Use of Evolution Strategiesfor Optimization on Spherical Manifolds
	1 Introduction
	2 Problem and Algorithm
	3 Analysis
	3.1 Large-Step Behaviour
	3.2 Small-Step Behaviour
	3.3 Step Size Adaptation

	4 Discussion
	References

	Unbiased Black-Box Complexityof Parallel Search
	1 Introduction
	2 A Parallel Black-Box Model
	3 Parallel Black-Box Complexity of LeadingOnes
	4 Parallel Black-Box Complexity of Functions with Unique Optimum
	5 An Optimal Parallel Black-Box Algorithm for OneMax
	6 Conclusions
	References

	A Generalized Markov-Chain ModellingApproach to (1, λ)-ES Linear Optimization
	1 Introduction
	2 Problem Setting and Algorithm Definition
	3 Distribution of the Feasible and Selected Steps
	4 Divergence of the (1, λ)-ES with Constant Step-Size
	5 Application to More Specific Distributions
	6 Discussion
	References

	Level-Based Analysis of Genetic Algorithmsand Other Search Processes
	1 Introduction
	2 Algorithmic Scheme
	3 Main Theorem
	4 Runtime Analysis of Genetic Algorithms
	4.1 Runtime of GAs on Simple pseudo-Boolean Functions
	4.2 Runtime of GAs on the Sorting Problem

	5 Conclusion
	References

	Maximizing Submodular Functionsunder Matroid Constraintsby Multi-objective Evolutionary Algorithms
	1 Introduction
	2 Preliminaries
	3 Monotone Submodular Functions with a Uniform Constraint
	4 Non-monotone Submodular Functions under Matroid Constraints
	5 Discussion and Open Problems
	References

	On the Runtime Analysisof Fitness Sharing Mechanisms
	1 Introduction
	2 Analytical Framework
	3 Population Size μ = 2 Is Not Enough
	4 Population Size μ ≥ 3 Succeeds
	5 Too Large Offspring Population Sizes
	6 Experiments
	References

	Runtime Analysis of Evolutionary Algorithmson Randomly Constructed High-DensitySatisfiable 3-CNF Formulas
	1 Introduction
	1.1 3-CNF Distributions
	1.2 Background

	2 Preliminaries
	3 Random Planted Formulas
	4 Runtime Analysis
	5 Conclusion
	References

	Author Index

