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Abstract. Time series prediction is mostly based on computing future
values by the time set past behavior. If the prediction like this is met
with a reality, we can say that the time set has a memory, otherwise
the new values of time set are not affected by its past values. In the
second case we can say, there is no memory in the time set and it is
pure randomness. In a faith of ”market memory”, the stock prices are
often studied, analyzed and forecasted by a statistic, an econometric, a
computer science... In this article the econometric ARIMAmodel is taken
for previously mentioned purpose and its constructing and estimation is
modified by evolution algorithms. The algorithms are genetic algorithm
(GA) and particle swarm optimization PSO.
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1 Introduction

Nowadays, there is quite often used the econometric ARIMA model [1] proposed
by Box and Jenkins for an analysis and a forecast of time series because of its
complexity and variability. The main part of the model is the combination of
auto-regression (AR) and moving-average (MA) polynomials into one complex
polynomial:

yt = μ+

p∑

i=1

(γiyt−i) +

q∑

i=1

(θiεt−i) + εt (1)

This model is based on statistic analysis of a time set. At first, it has to be
fulfilled the condition of a stationarity of a time set. A time set is stationary if
it does not contain any trends or seasonal behavior and its mean and variance
does not change over time. The condition of stationary behavior is crucial for
input time set.

The next step in ARIMA modeling is an estimating the model [4–9]. It means
to estimate p and q parameters for AR and MA polynomials and the level of
differentiation.

An auto-regression is the polynomial that contains variables of the time set
moved q-periods back in time and multiplied by AR coefficients γ. This sum is
later increased by model parameter μ and white noise ε.
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yt = μ+

p∑

i=1

(γiyt−i) + εt (2)

MA polynomial does not contain any variable from a time set and it has
nothing to do with familiar known moving-average function. MA contains its
own set of MA coefficients multiplied by model residuals and at the end the
whole sum is increased by model parameter and white noise.

yt = μ+

q∑

i=1

(θiεt−i) + εt (3)

The letter ”I” in ARIMA model stands for ”integrated”, which means the
level of differentiation of the time set.

The values of p and q parameters for AR and MA part can be obtained from
the behavior of auto-correlation (ACF) and partial auto-correlation (PACF)
function in the nth level of differentiation [1, 9]. There are alternative meth-
ods, that use patterns evaluation by symbols ”X” and ”O” in a matrix, like
SCAN [6], ESACF [7] to determine p and q values.

By all this tasks we can say that the finding of the suitable ARIMA model can
be harder and not very solid job and it could be the point of other improvements.

This opportunity is taken in this article. We will try to use an evolution
algorithm approach [10] to find the suitable model for the time set. This approach
requires to have some clear evaluation function to know if the reproduced model
is good enough. The evaluation can be made of AIC [4] and BIC [5] criteria.
Both of them are designed like a likelihood penalization criteria

[2logL+ kp] (4)

where L stands for the maximal value of the likelihood function of the model,
p is count of model parameters, k has for AIC the value of 2 and for BIC the
value is log(n).

The next step it to estimate AR and MA coefficients for our previously ob-
tained model. This coefficients are normally gained from maximum likelihood
function [2] that is based on maximization of searched parameters’ probability:

L(Θ, x) = fΘ(x) = f(x2|x1) ∗ f(x3|x2)... ∗ f(xn|xn−1) (5)

This maximum likelihood function can be replaced by other approaches too.
For this experiment there is used the particle swarm optimization algorithm [13].

With estimated coefficients we will be able to create forecasting and evaluate
it to find out if it is good enough or what can be improved.

2 Experiment Design

In this experiment, as it was mentioned before, the main idea was to work with
ARIMA model. The first part of the experiment is to create ARIMA(p,d,q)
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model by the genetic algorithm [10]. For the GA we will use Java framework
ECJ [15], that is known solution for evolutionary based computing methods.
The creating of the model by individuals’ genotype and its evaluation by AIC
and BIC criteria is provided by Matlab econometric toolbox.

This evolved model will have the AR and MA coefficients computed by MLE
method, so in the next step we will try to breed the new parameters by PSO
algorithm. As an evaluation function for this process will be the quality of the
forecasting of the time set evaluated by MSE.

In the end we will compare gained results by forecasting made by classic
approach with PSO and we will see whether it is worth.

2.1 Data Set

For this experiment historical data of a stock market title as Microsoft(MSFT)
were used. This historical data consist of records known as candles, that contains
information of some period of time, in this case the period of time was one day.
Each candle contains information about the highest price of the period (HIGH),
the lowest price of the period (LOW), the first price of the period (OPEN),
the last price (CLOSE), the quantity of traded instruments (VOLUME) and of
course the time stamp of the period. There are more than ten years of obser-
vations but in this experiment, there was not used more than four years of its
length, mostly because of longer execution time of all the algorithms. All the
historical data were taken from yahoo finance [https://finance.yahoo.com].

3 Analysis of Historical Data

As it was said before, at first we analyze our time set for stationarity, auto-
correlation and we create the suitable ARIMA model by ACF and PACF ap-
proach.

Because we worked with the time set of the stock prices, we can be sure,
that this time set will contain up-trends or down-trends, which indicates its
non-stationarity. Proceeded Dickey-Fuller test [16] rejected our hypothesis about
stationary behavior by resulted value γ∗ = 0 as well.

Afterwards, we compute the first differentiation and draw the process of ACF
and PACF function. It is expected the ”tailing” of the ACF, that will indicate
the value of q parameter and ”cutting off” of the PACF, that will indicate the
value of p parameter.

The chart of ACF shows, that there is no confirmed correlation between time
set variables and it indicates stationary behavior of the time set. We check it by
new Dickey-Fuller test and the result γ∗ = 1 confirms the hypothesis that the
differentiated time set is no more non-stationary.

These charts’ progresses show some possible combinations of the future ARIMA
models. The p and q values will be lower by this method, because there was no
present of correlations between variables.
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Fig. 1. Progress of ACF and PACF function after first differentiation

4 Genetic Algorithm Approach for Model Building

The suitable ARIMA model for later testing is evolved by the genetic algorithm.
The Genetic algorithm (GA) belongs to evolution algorithms [10]. This set of
algorithms works like an imitation of the evolution theory described by Darwin.
The GA purpose is to evolve the best combination of variables from the scanning
set.

As a first step of the GA there is a population of random individuals. Each
of the individuals is represented by the binary vector with the length of 12. The
transfer from genotype to phenotype is made by the splitting of whole vector
into three parts by four bits and each part belongs to some ARIMA variable like
ARIMA(p = 1011,d = 0010,q = 1100).

There is a fitness function for an evaluation of individuals. By the theory
of evolution, the fitness function simulates the natural selection. It has a pur-
pose that better individuals according to the fitness will live longer and create
the new generation by its crossover. The one-point crossover [12] was used for
crossbreeding in this experiment.

The breeded individuals are effected by an added mutation. It means that in
the random time, there can be changed one bit of an individual genotype. This
process brings to this algorithm some added randomness.

The fitness function of this GA covers the requirement of the minimal value
of AIC and BIC and some added advantage for individuals with greater values
of p and q parameters. This advantage is added because the longer ARIMA
polynomial we will have as result, the more we can optimize by the PSO.



Evolutionary Based ARIMA Models for Stock Price Forecasting 243

fitness = (105/AIC +BIC) + p+ q (6)

The GA runs in this case by this steps:

1. Initialization - creating the first generation from one prototype individual
2. Repeat in limited count of cycles

(a) Evaluate individuals:
i. Create the ARIMA model by the binary vector
ii. Estimate parameters by the default MLE function
iii. Return AIC and BIC by the minimal likelihood function value

(b) Proceed crossover on the selected individuals to create new generation
(c) Add random mutation

3. End of loop
4. Return the best individual

The GA returned in this experiment the ARIMA model with parameters
p = 12, d = 2 and q = 8. This result was compared to the previously chosen
models.

Table 1. ARIMA models evaluation

BIC AIC

ARIMA(12,2,8) 485.6266 400.4396
ARIMA(1,1,0) 415.0880 403.9767
ARIMA(0,1,1) 415.0647 403.9534
ARIMA(2,1,1) 423.6821 405.1632
ARIMA(1,1,2) 428.7655 406.5429
ARIMA(2,1,3) 434.0470 408.1205

The model from the GA has softly greater BIC value but because of lower
AIC and much greater count of coefficients, is was chosen as the model for the
later PSO optimization and prediction.

5 PSO Approach for Parameters Estimation

The evolutionary algorithm used for the breeding of the model coefficients is the
particle swarm optimization [13].

The PSO is known, very powerful algorithm inspired by swarm intelligence.
Each individual is described by its position, velocity and memory of the latest
best position. This algorithm is not divided into generations, because individuals
are not dying and creating again, they are just moving during iterations in N-
dimensional space. Their moves are affected by its previous best position or the
best position in its neighborhood [14]. The quality of the position is evaluated
by the objective function, and during every iteration, all the current positions
of all individuals are confronted with its best positions.
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Obviously the count of dimensions of the searched space influences the count
of individuals, which are adjusted. In this case we have 22 dimensional space,
We need to breed the AR coefficients, which are the vector of size 12. Than we
need to breed MA coefficients, which are the another vector of size 8 and two
added variables - one for model constant μ and another for variance.

In the case of PSO, it was used the item of neighborhood [14] which means
that individual is not affected by the best position of all individuals, but only
by the best position of smaller amount of closer individuals, its neighbors. The
neighborhood is not defined by the distance between individuals, but randomly.
The present of the neighborhood brings to this system the opportunity find the
best global maximum from more observed local maximums.

The objective function in our case is to decrease the value of MSE of forecasted
values to minimum.

The algorithm for parameters breeding:

1. Initialization - place all particles in n-dimensional hyper space and adjust to
them the velocity and the neighborhood

2. Repeat in limited count of cycles

(a) Evaluate the position of individual:

i. Create the ARIMA model from obtained parameters
ii. Create the forecasting for next n values
iii. Compare the forecasting values to real values and compute MSE

(b) Actualize particles position
(c) Actualize the previous best position

3. End of the loop
4. Return the particle with the best position

Concretely, each particles’ evaluation consists of the creating of the ARIMA
model and splitting time set. Time set has to be split into two parts. At first there
is the input time set for ARIMA model and the second part will be compared
to this ARIMA model prediction. The predicted values are compared to the real
values (second part of the time set) and the best fit is saved as the best position.

The best position will do the forecast of next n values and this will be com-
pared to forecast of the same ARIMA model but with coefficients made by the
MLE. Arima model has to be estimated and it was provided in Matlab. The
same subset from time set was used in case of ”estimate” Matlab command and
also in the PSO approach.

6 Conclusions

This article covers the simple idea of working with ARIMA models by the ap-
proach of evolution algorithms. In the section of modeling, there was described
very simple kind of obtaining quite suitable ARIMA model without knowledge
of stationarity, ACF or PACF. The resulted model had sufficient low values of
likelihood penalization criteria like AIC and BIC.
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In the second part, there was a task to estimate AR and MA coefficients in
”training part” of time set by the PSO algorithm and the best set of coeffi-
cients (PSO particle) was used to create prediction compared to classic ARIMA
prediction.

There were created two tests for this conclusion. Their difference is the size of
time set, adjusted for ”training phase”. The first has ”training phase” of size of
ten and the second has this size increased to twenty. The count of particles and
iterations was in both test adjusted to same values (particles = 100, iterations
= 40).

There are some charts to provide our results.

Fig. 2. Chart of prediction when size of the ”learning phase” was 10

This chart describes the value of MSE between forecasting and real values of
time set.

As we can see, these tests do not prove that the estimation of the coefficient
by PSO has significantly improved the ARIMA results, but we can say that this
combination is at least comparable to standard ARIMA computing.

There are some areas for improvement of this approach. One of the weaknesses
of these tests was very low number of PSO iterations. PSO can obtain better
results in parallel computing, where it can provide more iterations in a shorter
time.

The other improvement can be gained by adjusting bigger time set for learning
phase and to work with bigger values of p and q of ARIMA model. Both of these
tasks require more computing resources.
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Fig. 3. Chart of prediction when size of the ”learning phase” was 20

Fig. 4. Chart of the MSE on five predicted values during both tests

Finally, there are many other evolutionary algorithms like symbolic regression,
differential evolution, neural networks to try to combine them with ARIMA.
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