Chapter 9
A Hybrid Scheme for Two-Phase Flow

In this chapter, we investigate a two-phase flow generalization of the Euler
equations. A stochastic two-phase problem in one spatial dimension is investigated
as a first step towards developing an intrusive method for complex multiphysics
problems, such as shock-bubble interactions, high-speed reacting flows with liquid
fuels, and Richtmyer-Meshkov instability, with generic with generic uncertainty
in the input parameters. So et al. [20] investigated a two-dimensional two-phase
problem subject to uncertainty in bubble deformation and contamination of the gas
bubble, based on the experiments in [10]. The eccentricity of the elliptic bubble
and the ratio of air-helium of the bubble were assumed to be random variables, and
quantities of interest were obtained by numerical integration in the stochastic range
(stochastic collocation). Previous work on uncertainty quantification for multiphase
problems include petroleum reservoir simulations with stochastic point collocation
where deterministic flow solvers are evaluated at stochastic collocation points [14]
and Karhunen-Loeve (KL) expansions combined with perturbation methods [3].
This chapter is based on the work in [17].

We assume uncertainty in the location of the material interface, which requires a
stochastic representation of all flow variables. Stochastic quantities are represented
as a generalized chaos series, that could be either global as in the case of
generalized polynomial chaos [24], or localized (see e.g. [5]). For robustness, we
use a generalized chaos expansion with multiwavelets to represent the solution
in the stochastic dimension [18]. Note that this basis is global, so the method
is fully intrusive. However, the basis is hierarchically localized in the sense that
multiwavelets belonging to the same resolution level are grouped into families
with non-overlapping support. These features make it suitable for approximating
discontinuities in the stochastic space without the oscillations that occur in global
polynomial bases.

The stochastic Galerkin method is applied to the stochastic two-phase for-
mulation, resulting in a finite-dimensional deterministic system that shares many
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150 9 A Hybrid Scheme for Two-Phase Flow

properties with the original deterministic problem. The regularity properties of
the stochastic problem are essential in the design of an appropriate numerical
method. Chen et al. studied the steady-state inviscid Burgers’ equation with a
source term [4]. We used a similar approach for the inviscid Burgers’ equation
with uncertain boundary conditions and also analyzed the regularity of low-order
stochastic Galerkin approximations of the problem [16]. Schwab and Tokareva
analyzed regularity of scalar hyperbolic conservation laws and a linearized version
of the Euler equations with uncertain initial profile [19]. In this chapter, we analyze
smoothness of the stochastic two-phase problem.

The stochastic Galerkin problem is hyperbolic. This generalized and extended
two-phase problem is solved with a hybrid method coupling the continuous phase
region with the discontinuous phase region through a numerical interface. The non-
smooth region is solved with the HLL-flux, MUSCL-reconstruction in space, and
fourth-order Runge-Kutta integration in time. The minmod flux limiter is employed
in the experimental results displayed below.

Finite-difference operators in summation-by-parts (SBP) form are used for
the high-order spatial discretization. A symmetrized problem formulation that
generalizes the energy estimates in [8] for the Euler equations is used for the
stochastic Galerkin system. The coupling between the different solution regions is
performed with a weak imposition of the interface conditions through an interface
using a penalty technique [2]. A fourth-order Runge-Kutta method is used for the
integration in time.

9.1 Two-Phase Flow Problem

We assume two phases with volume fractions @ and § = 1 — « on the domain
x € [0, 1], governed by the advection equation

0 +V(x,1) 0 0 9.1)
—u x,t)—a =0, .
TR
where we let V/(x,7) = v(x,t) be the advective velocity obtained from the
y

conservative Euler system below. The Euler equations determine the conservation of
masses o p, and Bpg, momentum pv, and total energy E of the two phases through

3—’; + % =0, 9.2)
where
apy PV
u= ﬁp"vﬂ . f = p\lipf-vp . (9.3)

E (E+ p)v
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We assume that the pressure p is given by the perfect gas equation of state for two
phases

1
o 4 B’
Yo + Yp

p=(V—1)(E—%pv2), y =

where y is the weighted ratio of specific heats. The total density is given by p =
apq+PBpg. Note that the sum of the first and second equations of (9.2) is the standard
mass conservation of the Euler equations. Thus, an equivalent formulation is the
Euler equations supplemented with an extra mass conservation equation for one of
the phases « and .

We investigate the Riemann problem defined by the initial conditions

(1, 1,0, 0, 2.57 X < xo+§&

, 9.4
(0, 0, 0.125, 0, 0.25)7 x > xo + £ 4

(o, apa. Ppg. pv, E) =

where £ is a parametrization of the measured or modeled uncertainty in the initial
membrane location. Despite the seemingly simple nature of the initial condition, the
MW series of the initial condition has an infinite number of nonzero terms. Thus,
stochastic truncation error is an issue already at ¢ = 0.

The stochastic Galerkin formulation of the two-phase problem is obtained by
multiplying (9.1) and (9.2) by each one of the basis functions v; (£), and integrating
with respect to the probability measure &2 over the range of . Initial functions are
obtained by projection of (9.4) onto the basis functions v; (). The MW expansion
is truncated to M 4 1 terms and we get the systems for the MW coefficients

9 I
St Y Y g (Vi) =0, k=0...M. (95

i=0 j=0
,Bk:8k0—ak, kZO,...,M, (9.6)
and
(@pa)k S M (pa)ivi (Vi vre)

o | (v dx | oy Mo (ov)ivy (Wi Vi) + pi e
Ex i Z?io(Ei + pi)vi (Yiv; Yi)

Bole |, 0| 2o X5La(Bon)iv (viv; vi)

.7

MW expansions for pressure can be updated from the MW of the conservative
variables, and then be inserted into the fluxes. It is not possible in general to find a
Roe-like variable transformation as was done for the single-phase Euler equations in
Chap. 8. We use a pseudospectral approximation of high-order stochastic products
for the pressure update. In the computation of, for example, the order M product
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72(8) = Zgio 2k Y of three stochastic variables a(€), b(§), c(§), fork =0,.... M
we use the approximation

M M M
% = (@b E)c@E) = <(Z aiy; (s)) > o biv;&) (Z i (s)) vfk@)>
i=0

j=0 1=0

M M M M M M M
=Y 33 (wivivnwn)aibier~y Y (i) ai Yy > (Vi vm)bjc

i=0j=0/=0 i=0m=0 Jj=01=0

(bo)pt

= (a* (b* ), (9.8)

where the pseudospectral product y = a * b of order M is defined by

M M
=(axby =YY (Viv;jv)aib;. k=0.... M (9.9)

i=0 j=0
In matrix notation, we can express (9.9) as
= A(a™)pM, (9.10)

where yM = (yo, ..., yu)T is the vector of MW coefficients of y and

M

[A @) 41a01 = D (Vi ¥ )ai. ©.11)

i=0

By successively applying (9.10), we obtain approximations of a range of stochastic
functions including polynomials, square roots and inverse quantities [6].

For general stochastic basis functions and general choices of the order of
generalized chaos, the stochastic volume fractions & and 8 cannot be guaranteed to
be non-negative. In fact, using first-order Legendre polynomial chaos and projecting
the initial condition results in a(x,f = 0,§) = ap(x,t = 0) + oy (x,t = 0)&, € €
% [—1, 1]. This implies that a(x, , §) < 0 for some values of x, ¢, £, which is clearly
undesirable. However, we only use Legendre polynomials for the convergence test
of a smooth problem using the method of manufactured solutions in Sect.9.4.1.
For the fully discontinuous problem, we use Haar wavelets (piecewise constant
multiwavelets, N, = 0) for which the initial function always is physical, no matter
the order of wavelet expansion. To see this, we rewrite the stochastic advection
system (9.5) in matrix-vector notation,

9 u M I u
— A il -
5" + AW (x,t))a o 0,



9.2 Smoothness Properties of the Solution 153

where A (.) is defined by (9.11). Assuming Haar wavelets, the matrix 4 (" (x, 1))
in the stochastic advection system can be diagonalized with constant eigenvectors
Vi, but space- and time-dependent eigenvalues Ay (x,?), for k = 0,..., M. The
stochastic Galerkin advection problem then decouples to a set of scalar advection
problems,

9 9 .
S0 =0, G =0 =&" (). k=0...M (912
X

where @, = ykT a. The solution of the semilinear advection problem (9.12) is

6{}{"" “(ri(x,1)) where ry is defined by 1 = | i #’Y‘,’”. No matter the exact form of
I, the solution will never attain values beyond the range of &]i”i !, This implies that

the stochastic volume fraction PDE formulation will never yield unphysical values.

9.2 Smoothness Properties of the Solution

9.2.1 Analytical Solution

The exact solutions to (9.1) and (9.2) subject to (9.4) can be determined analytically,
and are discontinuous for all times. The advection problem (9.1) with v independent
of x and ¢ has the solution

alx,t) = op(x —vt),

which is to be interpreted in the weak sense here since it is discontinuous for
all # when ¢ is chosen to be a step function. The conservation law (9.2) is a
straightforward extension of the Sod test case for shock tube problems, and its exact
piecewise smooth solution can be found in [21]. The solution consists of five distinct
smooth regions (denoted uz), U(cxp), U(2), U(1), and u(g)), and the discontinuities
may be found at the interfaces between the different regions. Assume that the
initial interface location is x5 = xo + § as given in (9.4). We can then express
the deterministic solution for any fixed & as a piecewise smooth solution, separated
by the four spatial points

Xi(E) = xo+E— [JyPhe 9.13)
PL
X8 =xo+E+ (Vz — y% t (9.14)
V' o2 )
x3(t,8) = xo+ &+ vot (9.15)
x4(t,8) = xo + &+ M, (9.16)

where M; is the Mach number of the shock.
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0

Fig. 9.1 Schematic representation of the solution of the two-phase problem. Solution regions in
the x — ¢ space for a fixed & (left), and solution regions in & — ¢ space for a fixed x (right)

Any given value of ¢ will determine the location of the different regions of
piecewise continuous solutions, so the true stochastic solution can be expressed as a
function of £ and the variables of the true deterministic solution. In the x-7-£-space,
all solution discontinuities are defined by triplets (x, ¢, £) satisfying (9.13)—(9.16).
The solution regions are depicted in Fig. 9.1 (left) for any fixed value of &.

For any point x, the solution regions can be defined as functions of & and ¢. This
is shown in Fig. 9.1 (right), where the points in the stochastic dimension separating
the different solution regions are given by

£, 1) =x—xo + JyPle 9.17)
PL

E(x,t) =x—x9— (vz— y&)t (9.18)
P2

&(x,t) = x —x9— vt (9.19)

E4(x,t) = x — x9 — Mjyt. (9.20)

The solution can be written

u(x,1,8§) = uw)lig <y + weexp) (x — &) Ligy<e<e)y + U0 Ligs<e<sy)
Fuo Lig<e<ey +uw L, 9.21)

where the indicator function 1y4 of a set A is defined by 1¢4(§) = 1if £ € 4 and
zero otherwise.

Note that if the range of £ is bounded, some solution states may not occur
with nonzero probability for an arbitrary x. The situation shown in Fig.9.1 (right)
requires a sufficiently large range of &, or, equivalently, that x is sufficiently close
to xo. The expression (9.21) is always true, however.
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9.2.2 Stochastic Modes

The solutions of (9.1) and (9.2) for fixed values of £ are discontinuous, but the
stochastic modes (multiwavelet coefficients) are continuous. To see this, we proceed
from the solution (9.21) to derive exact expressions for the stochastic modes. We
assume that the probability measure & has a probability density p. The kth mode
uy, is given by the projection of (9.21) on v (§),

up(x,1) = /Qu(x,l,é)w(é)ﬁ(é)dé =u(L>/E Vi (§) p(§)dé

& ~ & _
N / e (¥ — £V () PEVIE + 1 [g V(&) FENdE

& &
ug) /E Ve PEE + ugr) /_ @O o)

The density p and multiwavelet Y, are at least piecewise continuous functions, so
by (9.22) u; € C°. Now assume that the parametrization £ of the uncertainty in the
location of xy has a probability density p € C*(R) for some degree of regularity
s € N. There exists a set {1, }72,, of polynomials that are orthogonal with respect to
p. With this choice of basis functions, we may differentiate (9.22) with respect to x,

d
Ttk = Tuw V€D PE) Fttexp (x — ED Vi (€D P (E) —terp (¥ —E2) Yk (62) P (£

&
+/§ W) (X = EVUi(§) p(E)AE + uy Yk (82) p(&2) —uy ¥ (§3) p(&3)
Fuy Vi (§3) p(&3) —uway¥i (§4) p(Ea) + u(ry¥i (§4) p(Ea), (9.23)

where we used 0§; /ox = 1,i = 1,2,3,4. In fact, uy(x, ) as given by (9.22) is
s + 1 times differentiable in x or ¢ for# > 0 and u; € C*t1.

Remark 9.1. Note that the smoothness of #; in x and ¢ ultimately depends on the
smoothness of p and the choice of basis functions {y/; }{2,,, which are all functions
of £. In contrast, for any fixed value of &, the solution u(x, ¢, §) is discontinuous in
the spatial and temporal dimensions, no matter the smoothness of p and {v; }$2,,.

9.2.3 The Stochastic Galerkin Solution Modes

We investigated the smoothness properties of the stochastic modes of the original
problems problem (9.5) and (9.2) above, but in all actual computations we solve
the modified stochastic Galerkin approximation (9.5)—(9.7). For low-order MW



156 9 A Hybrid Scheme for Two-Phase Flow

approximations (small M), the smoothness properties are very different from those
derived above. For instance, the M = 0 approximation is the deterministic two-
phase problem with its characteristic discontinuous solution profile. First-order gPC
approximations using a group of orthogonal polynomials and multiwavelets result
in linear combinations of deterministic two-phase problems. In terms of regularity,
these problems are clearly equivalent to the deterministic problem. Higher-order
gPC approximations result in large nonlinear stochastic Galerkin problems that
in general cannot be diagonalized into a set of deterministic two-phase problems.
Due to their nonlinear nature, we expect these problems to develop discontinuities.
However, it is a reasonable assumption that the solution converges to the solution
of (9.2). Hence, we assume that the discontinuities get weaker with the order of
gPC expansion so that high-order MW approximations have regularity properties
that approach the smoothness properties of the analytical stochastic modes.

We have analyzed smoothness of the particular problem of uncertain initial
location of the shock in the Riemann problem (9.4). An essential feature of the
analysis is that for t > 0, the locations of the discontinuities become stochastic.
If this were not the case, the gPC coefficients would not be smooth. Thus, for any
given set of initial conditions, smoothness should be analyzed in order to determine
an appropriate numerical method.

In order to solve (9.5)—(9.7) numerically for arbitrary order M of MW expansion
(that may vary in space depending on the smoothness of the solution), we need
shock-capturing methods that can account for the discontinuities that are expected
due to the stochastic truncation. In regions away from the discontinuities, the
solution is at least as smooth as the corresponding deterministic problem, and high-
order methods in combination with smooth polynomial stochastic basis functions
are more suitable. In the next section, we present a method which combines high-
order and shock-capturing methods for the stochastic Galerkin systems.

9.3 Numerical Method

The computational domain is divided into regions of smooth behavior of the
solution, and regions of sharp variation. At this stage, these regions are assumed
to be known a priori and do not change with time. Thus there is no need to use a
detection algorithm to locate the regions of sharp variation apart from flux limiters
that are applied for smoothing. However, the methodology may be extended to time-
dependent regions (see [7]). A fourth-order Runge-Kutta method is used for the time
integration.

9.3.1 Summation-by-Parts Operators

The smooth regions are discretized using a high-order finite difference method based
on SBP operators. Boundary conditions are imposed weakly through penalty terms,
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where the penalty parameters are chosen such that the numerical method is stable.
Operators of order 2n, n € N, in the interior of the domain are combined with
boundary closures of order of accuracy n.

The first derivative SBP operator was introduced in [13,22]. Let # denote the
uniform spatial discretization of u. For the first derivative, we use the approximation
u, ~ P~ Qu, where subscript x denotes partial derivative and Q satisfies

0 + 07 = diag(—1,0,...,0,1) = B. (9.24)

The property (9.24) is the almost skew-symmetry property introduced in (4.9).
For more details about the SBP framework and use of penalty techniques, see
Sect.4.2.2. As held consistently throughout this book, P must be symmetric and
positive definite in order to define a discrete norm. For proof of stability, P must be
diagonal.

9.3.2 HLL Riemann Solver

In the non-smooth regions, MUSCL-type flux limiting [23] is used for recon-
struction of the left and right states of the conservative fluxes and advection of
the volume fractions. For the conservative problem (9.2), we employ the HLL
Riemann solver introduced by Harten et al. [12], defined in (4.27). The fastest
signal velocities are given by the maximum and minimum eigenvalues of the
Jacobian of the flux. In the deterministic case, the eigenvalues of the Jacobian
are known analytically, so the method is inexpensive. For the stochastic Galerkin
system, analytical expressions are not available, and numerical approximations
of the eigenvalues are used instead. In general, obtaining accurate eigenvalue
estimates may be computationally costly. However, for the piecewise constant
and piecewise linear multiwavelet expansion, we have explicit expressions for the
system eigenvalues due to the constant eigenvectors of the inner triple product
matrices A given by (9.10), see Appendix B.2.

The HLL-flux and MUSCL reconstruction are applied to solve the conservative
problem (9.7). The (standard) MUSCL scheme is used to solve the advection
problem (9.5) in the regions where the solution is expected to be non-smooth.
In combination with a suitable Runge-Kutta method, the MUSCL scheme is total
variation diminshing (TVD) [9]. For the deterministic solution, this would be
a sufficient condition for « to attain physically relevant values only. For the
stochastic Galerkin system, we need to ensure that the effect of the artificial
dissipation from the flux limiters on the different solution modes does not cause
the solution o (linear combination of the modes) to become unphysical. By the
TVD property, the expectation mode is restricted to [0, 1], so unphysical values
can occur only if the high-order modes are less dissipated than the expectation
mode. Artificial dissipation affects highly oscillating functions more than slowly
oscillating functions. Since the peaks of the initial functions get sharper with the
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order of wavelet chaos, the higher-order modes are increasingly dissipated by the
scheme compared to the lower-order modes and the expectation. Thus, most likely
the numerical volume fraction always remains restricted to physically relevant
values as time is evolved. This evolution is confirmed by the numerical experiments
reported later.

9.3.3 Hpybrid Scheme

Numerical interfaces can be designed for stable coupling of problems solved
separately using SBP operators. The MUSCL scheme can be rewritten in SBP
operator form with an artificial dissipation term [1] and can therefore be coupled
with other schemes using SBP operators [7]. The coupling requires the artificial
dissipation to be zero at the interface in order to enable energy estimates.

The computational domain is divided into a left smooth solution region and a
right non-smooth solution region that are weakly coupled with an interface. The
leftmost lying part of the right region is a transition region where a second-order
one-sided SBP scheme is applied that transitions into the HLL-MUSCL scheme.
In this way, there is a stable coupling between the high-order SBP scheme of the
left domain and the second-order SBP scheme of the transition region. Numerical
dissipation within the order of the scheme is added to the regions where SBP
operators are used. Figure 9.2 schematically depicts the hybrid scheme, applied to
two spatial grids and coupled with an interface.

9.3.3.1 An Energy Estimate for the Continuous Problem

We will analyze stability for two solution regions coupled by an interface. However,
we start with the continuous problem on a single domain. In order to do this, we
symmetrize the two-phase problem. We assume the existence of a convex entropy
function S(u), i.., the Hessian 9*S/0uM auﬁ’[ is positive definite. (Note that
convexity as defined here does not allow for zero eigenvalues of the Hessian.)
Then, by [11], there exists a variable transformation w™ ™) = 95 /0u™ such
that f(wM) = f@™)and

HwY + J,wM =0,

f«—— SBP high order ——

t«—SBP 2nd order —»f t«—— HLL-MUSCL —»

Fig. 9.2 Solution regions on the spatial mesh
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where w™ denotes the vector of MW coefficients of the order M approximation
of the transformed variables, and the inverse Hessian H = ouM JowM =
(232.9/3111?"[811§!’[)_1 and Jacobian J,, = Jf/ow are symmetric matrices. Due to

convexity, His positive definite and thus defines a norm. As in the case of the Euler
equations, the two-phase equations are homogeneous of degree t, which implies

Hw" = tu™  and J M = rfM. (9.25)
We will use the canonical splittings
T | ~M T M 1
M= ! + HW{VI’ fx fx + Ww)]y

uM = u =
! 1+7 ! 1+t 1+ 1+t

To obtain an energy estimate for the continuous and stability for the semidiscrete
problem, the stochastic Galerkin formulation of the two-phase problem must be
homogeneous. To show that this holds under the assumption that the correspond-
ing deterministic problem is homogeneous and some additional assumptions, we
consider a deterministic problem that is homogeneous of degree . Let

Jwu =t f(u), (9.26)

with solution u € R”, Jacobian J € R™ and flux f € R”" for a system of n
equations. Now assume that the problem satisfying (9.26) is subject to uncertainty
in the parameters or in the input conditions. Let J;; denote the (7, j) entry of J
which can be expressed as a truncated MW expansion J;; = Z/jcv[:o(Jij )k ¥k The
stochastic Galerkin Jacobian _# M corresponding to J consists of 7 xn submatrices,
each of size (M +1)x (M +1). Let %ﬁ” be the (i, j) submatrixof ™ defined by

M

[/ij'v[]/m = (ViV¥m Jij) = Z(Jij)k(ww;wm), i,j=1,....n, ILm=0,...,M.
k=0

(9.27)

The stochastic Galerkin flux vector of MW coefficients ¥ = ((fi)o....,

(fOus--os(fi)os-- .. (fi)m)T is anonlinear function, and for an arbitrary order M

basis of multiwavelets, it is not uniquely defined. To see this, with the pseudospectral
product * defined in (9.9), in general

(axb)xcF#ax(b=*c)

for MW approximations of stochastic functions a(£€), b(§), ¢(§), each one truncated
to some order M. This implies that the definition of the stochastic Galerkin flux
f™M depends on the order in which pseudospectral operations are performed when
evaluating f™. Hence, it is not uniquely defined. We may now either restrict
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ourselves to MW bases where the order of pseudospectral operations does not matter
e.g., Haar wavelets, or we may restrict the order in which pseudospectral operations
are performed so as to make sure that mathematical properties of interest, such
as, homogeneity, are satisfied. We take the latter approach and define the order M
approximation of f through its MW coefficients by

1 n
e = — Jii Ve, i=1,....,n, k=0,...,M, 9.28
(fi)k r; JoRu)g, i n (9.28)

which is consistent with the deterministic homogeneous problem. Note that rela-
tion (9.28) is essentially just a restriction on the order of pseudospectral operations
in the calculation of f. It stipulates that f must be defined in terms of the
approximation of J. Clearly, the approximation of J should also be as close to
the true (i.e., infinite order MW expansion) J as possible. However, for the energy
estimates that require homogeneity of the stochastic Galerkin formulation, we only
need to satisfy (9.28).

Proposition 9.1. Assume that the deterministic problem (9.26) holds, and for a
consistent pseudospectral approximation 7 M of J, let the stochastic Galerkin
flux f™ be given by the MW coefficients as defined in (9.28). Then the stochastic
Galerkin formulation of order M is also homogeneous of degree t, i.e., it satisfies

IM @™ = fM@), (9.29)

where uM = ((u1)os ..., ). Un)os. ... () y)T € REMAD gpg M —

((f)os - (fOMs oo (fdos oo Udu) T € RIIFD,

Proof. Using the notation (9.10) for the pseudospectral product *, by (9.27) the
(i, j) submatrix of ¢ M can be written

g =a(a), ij=1...n

where Jf;[ = ((Jij)o,-- -, (Jij)M)T. Thus, we have

AJMY .. oAgY
g = S
AWMy ..oAUuM

By the relation (9.28), any subvector flM = ((f)o,...,(f)m)T of the total flux
vector of MW coefficients £ can be written

I ¢ .
f{"f:;ZA(Jéf’)u?l, i=1,...,n.

j=1
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Then, considering the i th row of submatrices, we have
n n
M, M M, M My, M M .
LMy = sia =A@l =cf M. i=1...n,
j=1 j=1

which is equal to (9.29).

Remark 9.2. The original (deterministic) Jacobian entries J;; are nonlinear func-
tions of u, and the stochastic Galerkin counterpart _# M is a nonlinear function of
the gPC coefficients of u. Since the approximation of a nonlinear stochastic function
by means of pseudospectral operations depends on the order in which the operations
are performed, the matrix ¢ M is not uniquely defined unless we specify the order.
However, for proof of Proposition 9.1, it is sufficient to define f* as a function of
B M but there is no need to specify I M in terms of the order of pseudospectral
operations.

We will now derive an energy estimate for the continuous symmetrized formula-
tion of the stochastic Galerkin Euler equations in split form,

Ty I -~ u T M 1
H —J,w, =0. 9.30
l—l—ru’ +1+r Wi +1—|—rfx+l+t Y ( )

Under the conditions of Proposition 9.1, multiply (9.30) by (1 + 7)(w™)T and
integrate over the physical domain. We get

1 1 1
MNT M MNT 3, M MN\T 7M
t/o(w)utdx+/0(w)Hwtdx—i—r/O(w)fxdx
1 1
+/ (wM)Twai"dxzf ((wM)T(ﬁwM)t+(wM)Tﬁw£”)dx
0 0
1
b [T G+ T T
0

- % W[ 5 + (0™ T w4 = o, 9.31)

where the first equality follows from (9.25). The generalized energy estimate (9.31)
is a straightforward stochastic Galerkin generalization of that given for the deter-
ministic problem in [8].

9.3.3.2 Stability in a Single Domain

Next we consider the semidiscrete problem and start with a single domain. The
stability analysis is a direct generalization of the stability of the symmetrized Euler
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equations in [8]. We define the flux and the Jacobian under the conditions of
Proposition 9.1 which implies that the stochastic Galerkin system is homogeneous.
Let " and w" denote the spatial discretizations of u™ and w", respectively, on
a mesh consisting of m equidistant gridpoints. Let E; = diag(1,0,...,0) and
E,, =diag(0,...,0,1). The semidiscretized scheme is

T .M I ~_m T —1 MM
——H — (P 1
l—i-l’ut +1+‘L’ w, +1+‘C( o) f"(w™)

I M
—J, (P! 1
+1+r (PQ®Hw

=P 'E 02w —-g)+ (P 'E, @ X)W —g,). (932

where H is block diagonal with each diagonal block equal to H evaluated at the
spatial points. X'} and X% are penalty matrices to be determined, and g, and g,
are vectors where only the entries corresponding to the left and right boundaries are
allowed nonzero values. We assume a diagonal norm P,so (P ®1 )ﬁ =H (PRI).
Also, J w commutes with (P ® I). In order to show stability, we may assume
homogeneous boundary conditions g, = g,, = 0. Multiplying (9.32) from the
left by (1 + r)(ﬁ/M)T(P ® I) and using the homogeneity properties of (9.25)
yields

d
dt
=(1+0@"TE%) + A+ Zv . (9.33)

mwm

15" 12,5 + @7 (@ @ DI+ Ju(@ @ D) #"

Add the transpose of (9.33) to itself and use the SBP relation (9.24)

2
- M > T - M ->M
w =w, (J,(w; )+ (1 + Zw)w
H(P na 1 ( w( 1 )+ ( T) 1 1

4
dt

+wpHT (—Jw(?vf,‘f) +(1+ r)xm) wh o (9.34)

The scheme is stable in the sense of Definition 1.3 with the penalties

Y= S IR, B =8, I, Sibe = — .
1+
Remark 9.3. The stability analysis above follows that in [8]; for the case M = 0
the analysis is in fact identical. We show here that the analysis in [8] generalizes
to the stochastic Galerkin formulation of order M of multiwavelet expansion under
the conditions of Proposition 9.1.
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9.3.3.3 Stability at the Interface

Now consider a problem with two domains connected by an interface. A grid point
at the interface will be assigned two solution values, one from each of the stencils
that meet at the interface. The difference between the solutions at the interface are
penalized analogously to the treatment of the (outer) boundary conditions we have
seen in the single domain stability analysis. By ignoring the imposition of boundary
conditions, the semidiscrete systems of the left and right domains are given by

R 1 A~ T _ ~M
(ujLw)r + H——tH(wﬁl)t + m(PLlQL I f (Wﬁl)

T
14+
1 - R _ . R
+ mJW(PLlQL @)Wy = (P En® Z%)h, —Wwi'z),  (9.35)

and

T
1+

- I - T _ M
@)+ o Tu D (PR Qe ® D)

1 - . _ . .
+ H_—TJW(PR‘QR ® Dy = (PR E1® Z%) W — Wi ). (9.36)

respectively. We follow the procedure of Sect.9.3.3.2. Multiplying (9.35) from the
left by (1 + r)(ﬁ/ﬁ/[)T(P 1 ® I') and using the homogeneity identity (9.25), we have

2

d

o + )@ @ DIy + 1) Tw(QL @ DY

w|
Lllpena

= (L+ Dby  ZY o, — W1 ). (9.37)

Adding the transpose of (9.37) to itself, neglecting the outer boundaries and
performing similar operations on (9.36), we get

4
dt

2 2

e+ [5

M \T gy =M =M
w Jo(w w
(PLODA (PR®I)ﬁ) + ) W )W,
M M oM - M =M
_(wl,R)TJW(wl,R)wl,R =1+ T)(wm,L)TZZ(wm,L —Wig)

+(A+ D0 Z @~ ). (9.38)

Assuming symmetric X'7 and X%, we get the stability condition

i’ B YmL | <,
T _Hr v En) L)+ (L + 0% | |k

T
[fviif,L] [—Jw(fv%uﬂlﬂ)zz _Lrpr 43 vai‘h

(9.39)
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Being in the smooth domain, we assume J w(ﬁ/% ) =4J w(ﬁ/i‘tIR) = J and obtain
stability with
1 1

= J—-0, Xi=—-J-90,
1+ 1+

2

where 6 is a positive semidefinite matrix. This is completely analogous to the
penalties derived in the constant advection problem presented in [7].

The penalties derived in the stability analysis apply to the entropy variables w, but
in the numerical experiments we use a conservative formulation for correct shock
speed and employ the conservative variables u. Therefore we need to transform the
penalties to the conservative variables. Assuming that the solution is smooth and
H (W,]Z{ ) =H (ﬁ)flR), we rewrite the interface terms

1
w =M - M - M M - M M
2wy —Wig) = mJ(wm,L —wig)— 0w, —wig)

1 r =3 r e
o (A =7 a)

~—1 N ~—1 N
—0c (A Gy iy, — B G9p)iit"e)

— 1 MM MM A(-M -M
- 141 (f (um,L) - f (ul,R)) -0 (um,L _ul,R)
_1 0 - M -M -M -M
_ (1 - 0) (um,L -~ uLR) =3 (um’L - uLR) : (9.40)
where
a M
Ju, = f_ ,
ouM
X=Xint
and X
X = Ju,—8. 9.41
Errs ™" ©41)

A LA .. . . . . oo ..
and @ = @ H is a positive semidefinite matrix for t > 0 since H is positive
definite and @ is positive semidefinite. Similarly, we get the right penalty matrix

1 A

X =— J.—0. 9.42
R 14+ ( )

With the penalty matrices (9.41) and (9.42), we obtain stability, as defined in
Definition 1.3.
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9.3.3.4 Conservation at the Interface

In order to show conservation over the interface, we mimic the continuous case
where we multiply the conservative formulation by a smooth function ¢, integrate
by parts to get

Xint 1 Xint

1
pudx+ | pudx = o fdx+ | ¢ f()dx+B.T.,  (9.43)

0 Xint 0 Xint

where B.T. denotes outer boundary terms. In (9.43) no interface terms are present.
Consider the semidiscrete scheme

@)+ (P Qe DM@y = (PLEn® X%y, —diyg) (944
)+ (PR Qr@ D fMY) = (PRE1 ® Z%) iy —iiy ). (9.45)

=T -7 -
Multiplying from the left by ¢, (P, ® I) and ¢ x(P g ® I), respectively, where ¢ ;
and 43 1, are discretized smooth functions satisfying qﬂ)m’ L= 431, R= q3 1, we get
-T . =T - - -
¢, (PL® Dy )+ p(Pr® D) = (D19 (PL oD fM@y)
+ (Drép)" (Pr® DY (iy) + B.T.
->T N N N N
+ 61 [ — i) (B = Bl — M) + M) ©46)

The semidiscrete formulation (9.46) mimics the continuous expression (9.43) if we
choose 27 and X' such that

(g | — ity ) (B — X% — MGy )+ M@y =0.

We assume J w(ﬁznﬂf ) =J W(WTR) = J. Then, the interface terms cancel with the
choice X — X% = J, which is consistent with the condition for stability given by
the penalties (9.41) and (9.42)and 7 = 1.

9.4 Numerical Results

The exact solution of the test problem is known analytically for any given value of
the stochastic variable &. Thus, we can obtain the exact statistics to arbitrary accu-
racy by averaging the exact Riemann solutions over a large number of realizations
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of £. In the numerical experiments, we will assume & ~ %/[—0.05, 0.05], where %
denotes the uniform distribution. For the numerical solutions, we use SBP operators
that can be found in [15].

9.4.1 Convergence of Smooth Solutions

The method of manufactured solutions is used to impose a smooth timedependent
solution of the two-phase problem through a source term. We consider the manu-
factured solution defined by

o = ap + o) tanh(s(xo —x + ¢ + §))
B = Bo + Bitanh(=s(xo — x + 1 +§))
v = tanh(s(vo + xo — x + ¢ + &§)) + tanh(—s(—vp + xo — x + ¢t + £))
P = po+ pitanh(s(xo — x + 1 +§)),
with s = 15, Vo = 003, Q) = o] = ,30 = ,31 = ()5, Po = ()75, pL = 0.25. We

take p, = 1 and pg = 0.125. We measure the error in the L,(£2, &) norm and the
discrete £, norm,

M o
u

M -
—u u

22 05.L5(22,P)

. 1/2
- (sz i (xp1,8) e 1.6) | )

Ly(22,2)

i=

m 1/2
(AXZ/Q(I?M()C,-,Z,S) —ﬁ(x,-,t,é))zdgz(g))

i=1

1/2
m q
Ny A . A :
~ AxZZ(u (x,-,t,élgf))—u(x,-,t,é,ﬁ’)))zwf/) )
i=1j=1
(9.47)
where a g-point quadrature rule with points {Eéj ) }j’=1 and weights {wf,j ) }j’=1 was

used in the last line to approximate the integral in £. The Gauss-Legendre quadrature
is used here since the solution is smooth in the stochastic dimension.

Figure 9.3a shows the spatial convergence when the proportion of low-order and
high-order points remains constant. The low-order scheme dominates the error, so
the overall convergence rate is second-order. In regions of fourth-order operators,
the error levels are lower and therefore the local accuracy higher compared to
the regions of second-order operators, see Fig.9.3b. This is further illustrated in
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Fig. 9.4, where a similar problem with sharp gradients in the middle of the domain
is solved with a hybrid scheme where fourth-order operators are used for the region
of large gradients and second-order operators are used for the regions next to the
boundaries. With a constant proportion of high-order points under mesh refinement,
the convergence is second-order. Comparison with the solution with second-order
operators throughout the computational domain, also included in Fig. 9.4, shows
that the error of the hybrid scheme is smaller.

Figure 9.5a shows the spatial convergence employing three computational
domains separated by two interfaces. The middle domain is solved with second-
order SBP and the left and right domains with fourth-order SBP. The number of
points in the second-order region remains constant (20), as the high-order domains
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Fig. 9.5 Spatial convergence with three regions and two interfaces. 1 = 0.05, N, = 8, N, =0
order of multiwavelets (Legendre polynomials). Superscript P denotes the numerical gPC solution.
(a) SBP4-SBP2-SBP4, fixed number of SBP2 points. (b) Three SBP4 schemes coupled by two
interfaces

are refined. Figure 9.5b depicts the spatial convergence with three domains, all
solved with fourth-order SBP. The proportion of points in each region remains the
same, so the interface locations do not change when the grids are refined.

9.4.2 Non-smooth Riemann Problem

With the hybrid scheme as depicted schematically in Fig.9.2, we solve the
problems (9.5)—(9.7) with the boundary conditions in (9.4) and assuming & ~
% [—0.05,0.05]. Figure 9.6 shows the variances of density, velocity, energy, and
pressure at t = 0.05. The error from the interface is not significant compared to the
error due to the stochastic truncation and spatial resolution. A relatively fine mesh
and high-order MW expansion is required to capture the variance of the solution.
Especially high-order MW coefficients exhibit sharp spatial variation. Thus, to attain
a given level of accuracy, more spatial gridpoints are required for the stochastic
Galerkin problem compared to the deterministic problem.

Figure 9.7 depicts the convergence of pressure statistics with increasing order of
MW on a fixed spatial grid of 400 points. In the analysis of regularity in Sect. 9.2,
we anticipated the solution to develop a larger number of weaker discontinuities as
the order of MW expansion increases. This behavior can be observed in Fig. 9.7. All
(visible) discontinuities are located in the right domain where the shock-capturing
method is used.
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Fig. 9.6 Variances at t = 0.05, m = 400, fourth order SBP (left region) single interface (dashed
blue line) and HLL-MUSCL (right region), (N,, N,) = (0, 5) (Haar wavelets)

9.5 Summary and Conclusions

In order to efficiently solve fluid flow problems, a feasible strategy is to locally
adapt the numerical method to the smoothness of the solution whenever these
properties are known or can be estimated. Stochastic Galerkin formulation of a
stochastic hyperbolic problem typically leads to a problem that develops multiple
discontinuities in finite time. If these discontinuities are all contained within a
known spatial region in a time interval of interest, a shock-capturing method should
be used for the corresponding grid points. For the regions of smooth solution,
high-order methods should be used. The different methods must be coupled to
maintain stability and propagate information accurately over the interfaces between
the domains. Note that the solution is unknown in the interior, so one cannot treat the
interfaces like boundaries with known boundary conditions. A two-phase Riemann
problem with uncertain initial discontinuity location has been investigated with
respect to the smoothness properties of the MW coefficients of the solution. Whereas
the corresponding deterministic problem has a discontinuous solution profile, the
stochastic modes of the gPC expansion of the true solution are smooth.

A symmetrization and combination of conservative and non-conservative formu-
lation leads to a generalized energy estimate for the stochastic Galerkin system,
just as for the case of the deterministic Euler equations. Under certain smoothness
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Fig. 9.7 Convergence of the mean and variance of pressure with the order of MW chaos, different
orders of piecewise constant MW. ¢ = 0.05, m = 400. Fourth-order SBP (left domain) and HLL-
MUSCL (right domain). (a) Mean pressure. (b) Mean pressure in the proximity of the deterministic
shock. (¢) Variance of pressure. (d) Variance of pressure in the proximity of the deterministic shock

assumptions, stability at the interfaces can be obtained for the symmetrized system.
The derived penalty matrices are transformed back to the conservative variable
formulation that is used in the numerical experiments.

The numerical results show that the convergence rate for the smooth problem
(smoothness enforced by the method of manufactured solutions) is second-order
when fourth-order and second-order operators are combined and the proportion of
second-order points remains constant during mesh refinement. However, the error
is smaller in this case compared to the case of a single domain solved with second-
order operators.

The two-phase non-smooth Riemann problem is reasonably well resolved with
the hybrid scheme combining high-order SBP operators in the smooth regions
with the HLL solver and MUSCL reconstruction in the spatial region containing
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discontinuities. A relatively large number of multiwavelets is needed to accurately
represent the stochastic solution. This in turn requires a fine spatial mesh for
accurate resolution.

The framework presented here can be extended to time-dependent interfaces
that are adapted to the evolving regions of non-smooth solutions. A moving mesh
based on interfaces and SBP-operators has already been designed for deterministic
problems in [7], and this technique could be used for stochastic Galerkin systems.
Depending on the problem, different MW bases can be used in the different
spatial regions for efficient representation of the local uncertainty. Alternative
techniques include adaptive stochastic bases that evolve in space and time for
optimal representation of localized phenomena.

In the case of a moving interface, several detection strategies can be used relying
either on the physical solution, e.g., « = 0.5, or on the overall variance which would
provide a measure of the oscillations. Further investigations are required to identify
the most effective detection algorithm.
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