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Preface

Uncertainty quantification in computational physics is a broad research field that
has spurred increasing interest in the last two decades, partly due to the growth
of computer power. The objective of this textbook is the analysis and design of
numerical techniques for solving equations representing conservation laws subject
to uncertainty. In particular, the focus is on stochastic Galerkin methods that require
non-trivial development of new numerical solvers for hyperbolic and mixed type
problems. There are already textbooks covering the stochastic Galerkin and other
polynomial chaos methods from a general perspective, cf. [1–3]: this textbook is
more specialized in its scope. To enhance understanding of the material presented,
we provide exercises and code scripts and building blocks that can be extended to
new problem settings.

The interest in stochastic Galerkin methods has burgeoned because of the
availability of ever more powerful computers that can handle the computational
cost inherent to large system implementations. Moreover, these methods have
positive numerical properties that make them attractive for handling complex
situations. Specifically, the mathematical formulation leads to systems of equations
that resemble the original conservation laws, allowing us to make extensive use of
available numerical analysis tools and techniques. At the same time, the stochastic
Galerkin method is an attractive alternative for complex problems involving partial
differential equations and multiple uncertain variables (herein referred to as stochas-
tic dimensions).

Chapters 1–3 introduce and give a brief overview of the basic concepts of
uncertainty quantification and the stochastic Galerkin method. Chapter 4 is devoted
to spatial discretization methods for conservation laws under uncertainty. In par-
ticular, we introduce the so-called SBP-SAT finite difference technique based
on summation-by-parts operators (SBP) and weak boundary conditions using
simultaneous approximation terms (SAT). The SBP-SAT schemes allow for the
design of stable high-order accurate schemes. Summation by parts is the discrete
equivalent of integration by parts and the matrix operators that are presented lead to
energy estimates that, in turn, lead to provable stability in combination with the SAT
terms. The semidiscrete stability follows naturally from the continuous analysis of
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well-posedness which provides the boundary conditions in the SBP-SAT technique.
Chapters 5–9 present in-depth analysis of linear and nonlinear stochastic Galerkin
conservation laws, complemented by exercises and scripts. We provide the reader
with computer codes for solving the advection-diffusion equation and the inviscid
Burgers’ equation with the stochastic Galerkin method. These codes can also be
used as templates for extension to more complex problems.

This textbook is intended for an audience with some prior knowledge of uncer-
tainty quantification. Basic concepts of probability theory, statistics and numerical
analysis are also assumed to be familiar to the reader. For a more general exposition
and further details on the basic concepts, we refer to the existing literature in the
field.

This textbook has benefited from numerous collaborations and discussions with
Alireza Doostan (who co-authored the material contained in Chap. 5), Antony
Jameson, Xiangyu Hu, Rémi Abgrall and Paul Constantine. We would like to
thank Margot Gerritsen for constructive feedback and suggestions for improvement.
Financial support was partially provided by KAUST under the Stanford/KAUST
Academic Excellence Alliance (AEA) collaboration (UDGIA Award 48803). Gian-
luca Iaccarino wishes to thank the Borrister crew for support in completing the final
revision of the text.

Bergen, Norway Mass Per Pettersson
Stanford, USA Gianluca Iaccarino
Linköping, Sweden Jan Nordström
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Chapter 1
Introduction

In many physical problems, knowledge is limited in quality and quantity by
variability, bias in the measurements and limitations in the measurements: these
are all sources of uncertainties. When we attempt to solve the problem numerically,
we must account for those limitations, and in addition, we must identify possible
shortcomings in the numerical techniques employed. Incomplete understanding of
the physical processes involved will add to the sources of possible uncertainty
in the models employed. In a general sense, we distinguish between errors and
uncertainty simply by saying that errors are recognizable deficiencies not due to
lack of knowledge, whereas uncertainties are potential and directly related to lack
of knowledge [1]. This definition clearly identifies errors as deterministic quantities
and uncertainties as stochastic in nature; uncertainty estimation and quantification
are, therefore, typically treated within a probabilistic framework.

Uncertainty quantification is also a fundamental step towards validation and
certification of numerical methods to be used for critical decisions. Fields of
application of uncertainty quantification include, but are not limited to, turbulence,
climatology [18], turbulent combustion [19], flow in porous media [5, 6], fluid
mixing [26] and computational electromagnetics [4].

An example of the need for uncertainty quantification in applications related
to the methods and problems studied here is the investigation of the aerodynamic
stability properties of an airfoil. Uncertainties in physical parameters such as
structural frequency and initial pitch angle affect the limit cycle oscillations. One
approach in particular, the polynomial chaos method, has been used to obtain a
statistical characterization of the stability limits and to calculate the risk for system
failure [2, 25]; this approach will be studied in detail throughout this monograph.

The sources of uncertainty that we consider here are imprecise knowledge of the
input data, e.g., uncertainty due to limited observations or measurement errors. This
imprecision results in numerical models that are subject to uncertainty in boundary
or initial conditions, in model parameter values and even in the geometry of the
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4 1 Introduction

physical domain of the problem (input uncertainty). Uncertainty quantification in
the sense used here is concerned with the propagation of input uncertainty through
the numerical model in order to clearly identify and quantify the uncertainty in the
output quantities of interest.

Without going into detail how to transform a set of data into probability
distributions of the input variables [7], the starting point will be a partial differential
equation formulation where parameters and initial and boundary conditions are
uncertain but determined in terms of probability distributions. Random variables
are used to parametrize the uncertainty in the input data. A spectral series represen-
tation, the generalized chaos series expansion, is then used to represent the solution
to the problem of interest.

The test problems that will be investigated here are evidently subject to modeling
error, were we to use them as representative models of real-world phenomena. For
instance, we disregard viscous forces in many of the flow problems, and focus only
on one-dimensional physical situations. Thus, we do not account for uncertainty
in the physical and mathematical models themselves. In real-world problems, this
omission would be an important point. If the conceptual model is erroneous, for
instance due to an incompressibility assumption for a case of high Mach number
flow, then there is very little use for its solution, no matter the degree of accuracy of
the representation of variability in the input parameters [20].

Of the several approaches to propagate the input uncertainty in numerical
computations, the simplest one is the Monte Carlo method where a vast number
of simulations are performed to compute the output statistics. Conversely, in the
polynomial chaos approach, the solution is expressed as a truncated series and only
one simulation is performed. The dimension of the resulting system of equations
grows with the number of terms retained in the series (the order of the polynomial
chaos expansion) and the dimension of the stochastic input.

An increased number of Monte Carlo simulations implies a solution with better
converged statistics; on the other hand, in the polynomial chaos approach, one
single simulation is sufficient to obtain a complete statistical characterization of
the solution. However, the accuracy of this solution is dependent on the order of
polynomials considered, and therefore on the truncation in the chaos expansion.
Also, for optimal convergence the polynomial chaos solution must be smooth with
respect to the parameters describing the input uncertainty [24].

1.1 Theory for Initial Boundary Value Problems

Throughout this book, the Uncertainty Quantification (UQ) problem at hand is
governed by an Initial-Boundary-Value Problem (IBVP) and the main part of the
general theory will be reviewed in short here. The material covered in this section
can be found in [3, 8, 9, 12–15, 17, 21–23].
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1.1.1 The Continuous Problem

Consider the initial-boundary-value problem

ut CP.x; t; @x/u D F .x; t/; 0 � x � 1; t � 0;

u.x; 0/ D f .x/;

L0.t; @x/u.0; t/ D g0.t/;

L0.t; @x/u.1; t/ D g1.t/; (1.1)

where u D .u1; : : : ; un/T is the solution vector and P is a differential operator
with smooth matrix coefficients. L0 and L1 are differential operators defining the
boundary conditions. The boundary data of the problem are g0.t/;g1.t/, the initial
data are f .x/, and F .x; t/ is a forcing function.

Definition 1.1. The IBVP (1.1) with F D g0 D g1 D 0 is well-posed, if for every
f 2 C1 that vanishes in a neighborhood of x D 0; 1, it has a unique smooth
solution that satisfies the estimate

ku.�; t/k � Ke˛ctkf k; (1.2)

where K;˛c are constants independent of f . The estimate (1.2) must be obtained
by using a minimal number of boundary conditions.

A stronger and more practical, albeit more difficult to prove, version of well-
posedness, including nonzero boundary data and forcing function, is given by

Definition 1.2. The IBVP (1.1) is strongly well-posed, if it is well-posed and

ku.�; t/k2 � K.t/

�
kf k2 C

Z t

0

�kF .�; �/k2 C jg0.�/j2 C jg1.�/j2
�
d�

�
(1.3)

holds. The function K.t/ is bounded for every finite time and is independent of
F ;g0;g1;f .

The boundary and initial data are compatible in the definitions above, as is
necessary in order to ensure a smooth solution. Compatibility means that the initial
condition at the boundaries must be consistent with the boundary conditions at the
initial time. More details on compatibility can be found in [8].

As an example of the relevance of having estimates like (1.3), we consider a
perturbed version of problem (1.1) with data F C ıF ;g0 C ıg0;g1 C ıg1;f C
ıf and solution v. Assuming P in (1.1) to be a linear operator, we obtain a
similar problem for v � u by subtracting the IBVP for u from the IBVP for v.
The corresponding data are the perturbed values ıF ; ıg0; ıg1; ıf . Clearly, the
estimate (1.3) now states that the difference v � u is small for small differences
in data.
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1.1.2 The Semidiscrete Problem

We keep time continuous and discretize (1.1) in space. Semidiscretization results
in a system of ordinary differential functions (ODEs) that is easier to analyze than
the fully discrete problem. Let xj D jh, j D 1; : : : ; m where h D 1=.m � 1/ is
the grid spacing. We define the grid functions f j D f .xj / and F j .t/ D F .xj ; t/

and associate the approximate solution vj .t/ to each grid point. We form vectors

of the grid functions as Ev D .v1; v2; : : : ; vm/T , Ef D .f 1;f 2; : : : ;f m/
T and

EF D .F 1;F 2; : : : ;F m/
T and use the notion smooth grid function to denote a grid

function being the projection of a smooth function. Furthermore, we use k � kh to
denote a discrete L2-equivalent norm.

We approximate (1.1) by

Evt C QP.Ex; t/Ev D EF C ES ; t � 0

Ev.0/ D Ef ; (1.4)

where QP is the discrete approximation of P . ES D ES .g0;g1/ is the so-called
simultaneous approximation term (SAT) which implements the boundary conditions
weakly (see [3]). The SAT term, which is one part of the so-called summation-
by-parts simultaneous approximation term (SBP-SAT) technique (see [23] for a
review), will be discussed extensively later. ES is zero except at a few points close to
the boundaries. The next definition is in analogy with Definition 1.1 above.

Definition 1.3. Consider (1.4) with EF D 0, g0 D g1 D 0. Let Ef be the projection
of a C1 function that vanishes at the boundaries. The approximation is stable if,
for all h � h0;

kEv.t/kh � Ke˛d tk Ef kh (1.5)

holds and K;˛d ; h0 are constants independent of Ef .

The following definition corresponds to Definition 1.2 and allows for nonzero
boundary data and forcing function.

Definition 1.4. The approximation (1.4) is strongly stable if it is stable and

kEv.t/k2h � K.t/

�
k Ef k2h C max

�2Œ0;t � k
EF .�/k2h C max

�2Œ0;t � kg0.�/k
2
h C max

�2Œ0;t � kg1.�/k
2
h

�

(1.6)

holds.K.t/ is bounded for any finite t and is independent of EF ;g0;g1; Ef .

The relevance of having estimates like (1.6) is similar to the relevance of having
the estimate (1.3) that was discussed above in the continuous section. An identical
exercise on a linear perturbed problem shows that the estimate (1.6) guarantees that
the difference between two solutions is small for small differences in data.
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Although the definitions of (strong) well-posedness and (strong) stability are
similar, the bounds in the corresponding estimates need not be the same, (see
[8, 13–15]). In all the above definitions, the schemes are semi-discrete, i.e., time
is left continuous. Clearly, only fully discrete schemes are useful in practice. In
[10], it was shown that semi-discrete stable schemes are, under certain conditions,
stable when discretized in time using Runge-Kutta schemes. Recently it was shown
in [11,16] how to extend the SBP-SAT technique in space to the time-domain, where
fully discrete sharp energy estimates are obtained.

We will later use the notion of energy stability, by which we mean that (i) the
continuous problem has boundary conditions that lead to an energy estimate, and
(ii) the numerical scheme leads to a corresponding discrete energy estimate. The
SAT terms take care of (ii) if (i) is satisfied. The procedure is almost automatic
when SBP-SAT schemes are used (see [23] for details).

Finally, some remarks are offered on well-posedness and stability for non-linear
problems. The status of the theory is not satisfactory. The estimates and bounds
on the solution as shown in the definitions above are clearly valuable, inasmuch as
they prevent blow-up of the solution. However, the existence of the bounds does
not necessarily imply well-posedness since an equation for the difference between
two solutions is non-trivial to obtain. However, this difficulty may in some cases
be purely technical. Also, if one knows that the non-linear solution is reasonably
smooth, one can use the linearization and localization principles formulated in
[9] and arrive at well-posedness. In the rest of this book we will not go into the
uncharted territory of non-linear theory for IBVPs but will rely on the linearization
and localization principles when checking well-posedness and stability.

1.2 Outline

The aim in Chaps. 2 and 3 is to lay a theoretical background for the numerical and
theoretical results to be presented in subsequent chapters. The theory of spectral
expansions of random fields is outlined in Chap. 2, followed by an exposition of
methods for the solution of PDEs with stochastic input in Chap. 3. Numerical
discretization schemes are described in Chap. 4. As motivation for the use of
generalized polynomial chaos methods as well as the numerical methods of our
choice, Chap. 5 introduces an advection-diffusion problem with a smooth solution.
For general nonlinear conservation laws, the solutions are non-smooth in the
deterministic case. In order to find suitable numerical methods and robust stochastic
representations for the corresponding stochastic Galerkin formulations, we analyze
the regularity of conservation laws with stochastic input conditions. In Chap. 6,
we investigate Burgers’ equation with uncertain boundary conditions in terms of
regularity. This chapter illustrates the method of imposition of weak characteristic
boundary conditions employed in all subsequent chapters. Next, we investigate
Burgers’ equation in terms of the effect of incomplete boundary conditions in
Chap. 7. A stochastic Galerkin method for the Euler equations combining robust
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representation of input uncertainty with shock-capturing methods is presented in
Chap. 8. Finally, in Chap. 9, we generalize the analysis of regularity to a two-phase
flow problem. Based on the spatial localization of smooth and non-smooth solution
regions, we then combine high-order methods with shock-capturing methods into a
hybrid scheme.
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Chapter 2
Random Field Representation

Nonlinear conservation laws subject to uncertainty are expected to develop solutions
that are discontinuous in spatial as well as in stochastic dimensions. In order to
allow piecewise continuous solutions to the problems of interest, we follow [7] and
broaden the concept of solutions to the class of functions equivalent to a function
f , denoted Cf , and define a normed space that does not require its elements to
be smooth functions. Let .˝;F ;P/ be a probability space with event space ˝ ,
and probability measure P defined on the �-field F of subsets of ˝ . Let � D
f�j .!/gNjD1 be a set of N independent and identically distributed random variables
for ! 2 ˝ . We consider second-order random fields, i.e., we consider f belonging
to the space

L2.˝;P/ D
�

Cf jf measurable w.r.t.PI
Z
˝

f 2dP.�/ < 1
�
: (2.1)

The inner product between two functionals a.�/ and b.�/ belonging to L2.˝;P/

is defined by

ha.�/b.�/i D
Z
˝

a.�/b.�/dP.�/: (2.2)

This inner product induces the norm kf k2L2.˝;P/ D hf 2i.
Spectral representations of random functionals aim at finding a series expansion

in the form

f .�/ D
1X
kD0

fk k.�.!//;

where f k.�/g1kD0 is the set of basis functions and ffkg1kD0 is the set of coefficients
to be determined.
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The coefficients are defined by the projections

fk D h kf i ; k D 0; 1; : : :

2.1 Karhunen-Loève Expansion

The Karhunen-Loève expansion [10, 14] provides a series representation of a
random field in terms of its spatial correlation (covariance kernel). Any second-order
random field f .x; !/ on a spatial domain˝x can be represented as the Karhunen-
Loève expansion

f .x; !/ D Nf .x/C
1X
kD1

�k.!/
p
�k�

KL

k .x/;

where Nf .x/ is the mean of f .x; !/, the random variables �k are uncorrelated with
mean zero, and �k and �KL

k are the eigenvalues and eigenfunctions of the covariance
kernel, respectively.

The generalized eigenpairs .�k;�
KL

k / can be determined from the solution of the
generalized eigenvalue problem

Z
˝x

C f .x;x
0/�KL

k .x
0/dx0 D �k�

KL

k .x/; k 2 N
C; (2.3)

where the covariance function Cf defines the two-point spatial statistics. The
covariance function Cf does not contain information sufficient to determine
the joint probability distribution of the random variables f�kg. Instead, the joint
probability of these random variables must be determined by data.

The Karhunen-Loève expansion is bi-orthogonal, i.e.,

D
�KL

j .x/;�
KL

k .x/
E
˝x

�
Z
˝x

�
�KL

j .x/
	T
�KL

k .x/dx D ıjk; (2.4)

˝
�j �k

˛
˝

�
Z
˝

�j �kdP D ıjk: (2.5)

For random fields with known covariance structure, the Karhunen-Loève expan-
sion is optimal in the sense that it minimizes the mean-squared error. The covariance
function of the output of a problem is in general not known a priori. However,
Karhunen-Loève representations of the input data can often be combined with
generalized chaos expansions, presented in the next section.
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2.2 Generalized Chaos Expansions

Infinite series expansions in terms of functions that are orthogonal with respect to the
probability measure of some random parametrization are used for representation of
stochastic quantities of interest. The corresponding series expansions of these basis
functions are referred to as generalized chaos expansions. Possible choices include
polynomials and wavelets.

2.2.1 Generalized Polynomial Chaos Expansion

The polynomial chaos (PC) framework based on series expansions of Hermite
polynomials of Gaussian random variables was introduced by Ghanem and Spanos
[9] and builds on the theory of homogeneous chaos introduced by Wiener in 1938
[18]. Any second-order random field can be expanded as a generalized Fourier
series in the set of orthogonal Hermite polynomials, which constitutes a complete
basis in the Hilbert space L2.˝;P/ defined by (2.1). The resulting polynomial
chaos series converges in the L2.˝;P/ sense as a consequence of the Cameron-
Martin theorem [3]. Although not limited to represent functions with Gaussian
distribution, the polynomial chaos expansion achieves the highest convergence
rate for Gaussian functions. Xiu and Karniadakis [20] introduced the generalized
polynomial chaos (gPC) expansion, where random functions are represented by any
set of hypergeometric polynomials from the Askey scheme [2]. Hence, a function
with uniform distribution is optimally represented by Legendre polynomials that
are orthogonal with respect to the uniform measure, and a gamma-distributed input
by Laguerre polynomials that are orthogonal with respect to the gamma measure,
and so on. The optimality of the choice of stochastic expansion pertains to the
representation of the input; the representation of the output of a nonlinear problem
will likely be highly nonlinear as expressed in the basis of the input.

The Cameron-Martin theorem applies also to gPC with non-Gaussian random
variables, but only when the probability measure P.�/ of the stochastic expansion
variable � is uniquely determined by the sequence of moments,

h�ki D
Z
˝

�kdP.�/; k 2 N0:

This is not always the case in situations commonly encountered; for instance, the
lognormal generalized chaos does not satisfy this property. Thus, there are cases
when the gPC expansion does not converge to the true limit of the random variable
under expansion [6]. However, lognormal random variables may be successfully
represented by gPC satisfying the determinacy of moments (cf. [6] for a detailed
exposition on this topic), e.g., Hermite polynomial chaos expansion. This motivates
our choice to use Hermite polynomial chaos expansion to represent lognormal
viscosity in Chap. 5.
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Consider a generalized chaos basis f i.�/g1iD0 spanning the space of second-
order (i.e., finite variance) random processes on this probability space. The basis
functionals are assumed to be orthonormal, i.e., they satisfy

h i j i D ıij : (2.6)

Any second-order random field u.x; t; �/ can be expressed as

u.x; t; �/ D
1X
iD0

ui .x; t/ i .�/; (2.7)

where the coefficients ui .x; t/ are defined by the projections

ui .x; t/ D hu.x; t; �/ i .�/i; i D 0; 1; : : : : (2.8)

For notational convenience, we will not distinguish between u and its generalized
chaos expansion.

Independent of the choice of basis f i g1iD0, we can express the mean and variance
of u.x; t; �/ as

E.u.x; t; �// D u0.x; t/; Var.u.x; t; �// D
1X
iD1

u2i .x; t/;

respectively. Similarly, higher-order statistics, e.g., skewness and kurtosis, can
be derived as functions of the gPC coefficients. For practical purposes, (2.7) is
truncated to a finite orderM , and we set

u.x; t; �/ �
MX
iD0

ui .x; t/ i .�/: (2.9)

The number of basis functions M C 1 is dependent on the number of stochastic
dimensionsN and the order of truncation of the generalized chaos expansion.

In order to construct a multi-dimensional gPC basis, let � D .�1; : : : ; �N /
T 2

R
N be a random vector of input uncertainties defined on the probability space

.˝;F ;P/. Assume that the entries of � are independent and identically distributed
(i.i.d.). For l D 1; : : : ; d , let f kl .�l /g1kD0 be a polynomial basis orthonormal with
respect to the measure of the random variable �l . The multi-dimensional gPC basis
functions may then be obtained by tensorization of the univariate basis functions
f kl .�l /g1kD0, i.e.,

 k.�/ D
NY
lD1

 kl .�l /; (2.10)
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with the multi-index k 2 N
N
0 WD f.k1; � � � ; kN / W kl 2 N [ f0gg. In practice, the

multi-index k has to be truncated in order to generate a finite cardinality basis. This
may be achieved by restricting k to the sets

�p;N WD ˚
k 2 N

N
0 W kkk1 � p



(2.11)

or

	p;N WD ˚
k 2 N

N
0 W kl � p; l D 1; : : : ; N



(2.12)

to achieve the so-called complete polynomial or tensor polynomial basis, respec-
tively. The bases defined by the index sets (2.11) and (2.12) are isotropic in the
N stochastic dimensions. By replacing p with a dimension-dependent integer
pl , l D 1; : : : ; N , anisotropic bases tailored to accuracy requirements for each
stochastic dimension may be obtained. For simplicity of notation, we subsequently
consider a one-to-one relabeling of the form f k.�/gMkD0 for the gPC basis f k.�/g,
k 2 �p;N or 	p;N , where M C 1 is the cardinality of the gPC basis. In particular,
for the complete polynomial basis, the cardinality is given by

M C 1 D .p CN/Š

pŠN Š
;

while for the tensor polynomial basis, the cardinality is

M C 1 D .p C 1/N :

As an example, consider the case of p D 5 and N D 2 stochastic dimensions.
That means 21 and 36 basis functions for the complete polynomial basis and the
tensor polynomial basis, respectively. If we keep p D 5 and include 5 stochastic
dimensions,N D 5, the complete polynomial basis contains 252 basis functions. In
contrast, the corresponding tensor polynomial basis contains as many as 7,776 basis
functions.

An increase in the number of random parameters corresponds to an exponential
increase in the cardinality of the series. This increase quickly leads to infeasible
numerical problems and has spurred broad interest in alternative formulations not
based on the tensorization introduced earlier. Sparse representations and adaptive
techniques [8, 16, 17] are becoming increasingly popular, although their use remains
fairly limited for hyperbolic problems. For this reason, and because the fundamental
issues related to the numerical treatment of the stochastic Galerkin schemes are well
expressed in one-dimensional uncertain problems, we will not discuss this issue
further but rather focus on the N D 1 case.

The basis f i g1iD0 is often a set of orthogonal polynomials. Given the two lowest-
order polynomials, higher-order polynomials can be generated by the recurrence
relation



16 2 Random Field Representation

 n.�/ D .an� C bn/ n�1.�/C cn n�2.�/;

where the coefficients an, bn, cn are specific to the class of polynomials.
The truncated chaos series (2.9) may result in solutions that are unphysical. An

extreme example is when a strictly positive quantity, say density, with uncertainty
within a bounded range is represented by a polynomial expansion with infinite
range, for instance Hermite polynomials of standard Gaussian variables. The
Hermite series expansion converges to the true density with bounded range in the
limit M ! 1, but for a given order of expansion, say M D 1, the representation

 D 
0 C 
1H1.�/ results in negative density with nonzero probability since the
Hermite polynomial H1 takes arbitrarily large negative values. Similar problems
may be encountered also for polynomial representations with bounded support.
Polynomial reconstruction of a discontinuity in stochastic space leads to Gibbs
oscillations that may yield negative values of an approximation of a solution that
is close to zero but strictly positive by definition. Whenever discontinuities are
involved, care is needed with the use of global polynomial representations; this
caveat underlies most of the development in Chap. 8.

Spectral convergence of the generalized polynomial chaos expansion is observed
when the solutions are sufficiently regular and continuous [20], but for general non-
linear conservation laws – such as in fluid dynamics problems – the convergence
is usually less favorable. Spectral expansion representations are still of interest
for these problems because of their potential efficiency with respect to brute force
sampling methods and to gain insights from writing the governing equations for the
stochastic problem. However, special attention must be devoted to the numerical
methodology used. For some problems with steep gradients in the stochastic
dimensions, polynomial chaos expansions completely fail to capture the solution
[13]. Global methods can still give a superior overall performance, for instance
Padé approximation methods based on rational function approximation [4], and
hierarchical wavelet methods that are global methods with localized support of each
resolution level [11]. These methods do not need input such as mesh refinement
parameters, and they are not dependent on the initial discretization of the stochastic
space. An alternative to polynomial expansions for non-smooth and oscillatory
problems is generalized chaos based on a localization or discretization of the
stochastic space [5,15]. Methods based on stochastic discretization such as adaptive
stochastic multi-elements [17] and stochastic simplex collocation [19] will be
described in some more detail in Sect. 3.2.3. The robust properties of discretized
stochastic space can also be obtained by globally defined wavelets, see [11,12]. The
next section outlines piecewise linear Haar wavelet chaos, followed by a description
of piecewise polynomial multiwavelet generalized chaos. These classes of basis
functions are robust to discontinuities.

2.2.2 Haar Wavelet Expansion

Haar wavelets are defined hierarchically on different resolution levels, representing
successively finer features of the solution with increasing resolution. They have
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non-overlapping support within each resolution level, and in this sense they are
localized. Still, the Haar basis is global due to the overlapping support of wavelets
belonging to different resolution levels. Haar wavelets do not exhibit spectral
convergence, but avoid the Gibbs phenomenon.

Consider the mother wavelet function defined by

 W .y/ D
8<
:

1 for 0 � y < 1
2

�1 for 1
2

� y < 1

0 otherwise
: (2.13)

Based on (2.13), we get the wavelet family

 Wj;k.y/ D 2j=2 W .2j y � k/; j D 0; 1; : : : I k D 0; : : : ; 2j�1:

Given the probability measure of the stochastic variable � with cumulative distribu-
tion function F�.�0/ D P.! W �.!/ � �0/, define the basis functions

Wj;k.�/ D  Wj;k.F�.�//:

Adding the basis functionW0.y/ D 1 in y 2 Œ0; 1� and concatenating the indices j
and k into i D 2j C k so that Wi.�/ �  Wn;k.F�.�//, we can represent any random
variable u.x; t; �/ with finite variance as

u.x; t; �/ D
1X
iD0

ui .x; t/Wi .�/;

which is of the form (2.7). Figure 2.1 depicts the first eight basis functions of the
generalized Haar wavelet chaos.

2.2.3 Multiwavelet Expansion

The main idea of multiwavelets (MW) is to combine the localized and hierarchical
structure of Haar wavelets with the convergence properties of orthogonal polynomi-
als. The procedure of constructing these multiwavelets using Legendre polynomials
follows the algorithm in [1] and is outlined in [12]; additional details are included
in Appendix A.

Starting with the space VNp of polynomials of degree at most Np defined on
the interval Œ�1; 1�, the construction of multiwavelets aims at finding a basis of
piecewise polynomials for the orthogonal complement of VNp in the space VNpC1
of polynomials of degree at most Np C 1. Merging the bases of VNp and that of the
orthogonal complement of VNp in VNpC1, we obtain a piecewise polynomial basis
for VNpC1. Continuing the process of finding orthogonal complements in spaces of
increasing degree of piecewise polynomials leads to a basis for L2.Œ�1; 1�/.
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Fig. 2.1 Haar wavelets, resolution levels 0,1,2

We first introduce a smooth polynomial basis on Œ�1; 1�. Let fLei .�/g1iD0 be
the set of Legendre polynomials that are defined on Œ�1; 1� and orthogonal with
respect to the uniform measure. The normalized Legendre polynomials are defined
recursively by

LejC1.�/ D p
2j C 3

�p
2j C 1

j C 1
�Lej .�/ � j

.j C 1/
p
2j � 1

Lej�1.�/
�
;

Le0.�/ D 1; Le1.�/ D p
3�:

The set fLei.�/gNpiD0 is an orthonormal basis for VNp . Double products are readily
computed from (2.6), and higher-order products are precomputed using numerical
integration.

Following the algorithm by Alpert [1] (see Appendix A), we construct a set of
mother wavelets f Wi .�/gNpiD0 defined on the domain � 2 Œ�1; 1�, where

 Wi .�/ D
8<
:
�i .�/ �1 � � < 0

.�1/NpCiC1�i .�/ 0 � � < 1

0 otherwise;
(2.14)

where �i .�/ is an i th-order polynomial. By construction, the set of wavelets
f Wi .�/gNpiD0 are orthogonal to all polynomials of order at most Np , hence the
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wavelets are orthogonal to the set fLei.�/gNpiD0 of Legendre polynomials of order
at most Np . Based on translations and dilations of (2.14), we get the wavelet family

 Wi;j;k.�/D2j=2 Wi .2j ��k/; iD0; : : : ; Np; j D0; 1; : : : ; kD0; : : : ; 2j�1:

Let  m.�/ for m D 0; : : : ; Np be the set of Legendre polynomials up to order Np,
and concatenate the indices i; j; k into m D .Np C 1/.2j C k � 1/ C i so that
 m.�/ �  Wi;j;k.�/ for m > Np. With the MW basis f m.�/g1mD0, we can represent
any random variable u.x; t; �/ with finite variance as

u.x; t; �/ D
1X
mD0

um.x; t/ m.�/;

which is again of the form (2.7). In the computations, we truncate the MW series
both in terms of the piecewise polynomial order Np and the resolution level Nr .
With the index j D 0; : : : ; Nr , we retain P D .Np C 1/2Nr terms of the MW
expansion.

The truncated MW basis is characterized by the piecewise polynomial order Np
and the number of resolution levels Nr , illustrated in Fig. 2.2 for Np D 2 and
Nr D 3. As special cases of the MW basis, we obtain the Legendre polynomial
basis for Nr D 0 (i D j D 0), and the Haar wavelet basis of piecewise constant
functions for Np D 0.
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Fig. 2.2 Multiwavelets for Np D 2, Nr D 3. Resolution level 0 consists of the first Np C 1

Legendre polynomials and their orthogonal complement. Resolution level j > 0 contains
.Np C 1/2j wavelets each. Each basis function is a piecewise polynomial of order Np
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2.2.4 Choice of Basis Functions for Generalized Chaos

The choice of basis functions for the generalized chaos expansion of a given
problem of interest is in general non-trivial. An optimal set of basis functions for
the input parameters may be highly inappropriate for the propagation of uncertainty
to the output. In particular, this is the case for the nonlinear hyperbolic problems that
will be encountered in subsequent chapters. These problems develop discontinuities
in finite time, and a polynomial reconstruction will lead to oscillations. The
consequence is lack of accuracy or even breakdown of the numerical method.

For smooth problems, the situation is not that severe. Transformations between
probability measures allow the use of non-optimal basis functions, e.g., Legendre
polynomials to represent normal distributions. The exponential convergence rate of
PC expansions is in general not maintained when a non-optimal basis is chosen [21].

2.3 Exercises

2.1. PC formulations of UQ problems typically start from infinite series expansions,
ending up with a formulation involving a finite number of PC terms. This truncation
introduces a stochastic truncation error that propagates in subsequent operations on
the PC series. Verify that the finite order expansion of the product of F � G is
different from the product of the expansions of F and G.

2.2. Orthogonal polynomial representations are often used with the hope that a
small number of terms are sufficient to accurately represent a given function. Study
the truncation error of Hermite expansions of the non-linear functions sin.�/, x3.�/,
log.�/, x2.�/=.3��/, assuming that � is a standard normal random variable. Plot the
L2 error as a function of the order M of the expansion (you need to find functions
that can be integrated analytically for the coefficients – or ensure that sufficient
accuracy is achieved by the numerical integration).

2.3. Orthogonal polynomials are frequently used to represent PDE solutions in
UQ. Depending on the PDE, we may have an idea of the kind of solution we can
expect. To accurately represent the PDE solution, it is necessary to know how to
accurately represent a function similar to the solution, i.e., how many gPC terms
to be retained, and whether the chosen gPC basis is suitable. Consider Legendre
polynomial expansion of the sine and Heaviside functions. Consider expansions of
different order and compare the resulting approximations with the true function.
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Chapter 3
Polynomial Chaos Methods

In this chapter we review methods for formulating partial differential equations
based on the random field representations outlined in Chap. 2. These include the
stochastic Galerkin method, which is the predominant choice in this book, as well as
other methods that frequently occur in the literature. We also briefly discuss methods
that are not polynomial chaos methods themselves but are viable alternatives.

3.1 Intrusive Methods

In the context of gPC, problem formulations result in a new set of equations that are
distinctly different from the original set of equations and thus require the design
of new numerical solvers. These solvers are referred to as intrusive methods –
as opposed to non-intrusive stochastic methods that exclusively rely on existing
deterministic codes.

3.1.1 Stochastic Galerkin Methods

The stochastic Galerkin method was introduced by Ghanem and Spanos in order
to solve linear stochastic equations [11]. It relies on a weak problem formulation
where the set of solution basis functions (trial functions) is the same as the space
of stochastic test functions. Consider a general scalar conservation law defined on
a spatial domain ˝x with boundary 	x subject to initial and boundary conditions,
given by

@u.x; t; �/

@t
C @f .u.x; t; �/; �/

@x
D 0; x 2 ˝x; t � 0; (3.1)
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L	 .u; x; t; �/ D g.t; �/; x 2 	x; t � 0; (3.2)

u D h.x; �/; x 2 ˝x; t D 0; (3.3)

where u is the solution and f is a flux function, for example representing a convec-
tion or diffusion process. L	 is a boundary condition operator, g is boundary data,
and h is the initial function. A weak approximation of 3.1 is obtained by substituting
the truncated gPC series of the solution u given by (2.9) into (3.1) and projecting
the resulting expression onto the subspace of L2.˝;P/ spanned by the (truncated)
basis f i.�/gMiD0. The result is the stochastic Galerkin formulation of (3.1),

@uk.x; t/
@t

C @

@x

*
f

 
MX
iD0

ui i .�/; �

!
;  k

+
D0; x 2 ˝x; t�0; (3.4)

hL	 .u; x; t; �/;  kiD hg; ki ; x 2 	x; t�0; (3.5)

hu;  kiD hh; ki ; x 2 ˝x; tD0; (3.6)

for k D 0; : : : ;M , where the inner product h:; :i is defined in (2.2).
The problem (3.4)–(3.6) is essentially a deterministic problem in space and time

with no explicit dependence on the random variable �. Although prevalent in the
literature, there are situations, even for linear problems, when it is essential not to
restrict the gPC approximations of all input quantities (e.g., material parameters)
to the same order M as the gPC representation of the solution. An example is
given in Sect. 5.1.2, where we show that the stochastic Galerkin formulation of
an advection-diffusion equation leads to an ill-posed problem unless an order at
least 2M approximation of the diffusion parameter (assuming a single stochastic
dimension) is used whenever an order M gPC approximation is used to represent
the solution. This is not an argument against stochastic Galerkin methods; it is an
argument for numerical analysis. The stochastic Galerkin method has repeatedly
been demonstrated to be efficient for a wide range of PDEs and offers a rich
framework for analysis.

The stochastic Galerkin formulation (3.4) is an extended deterministic system
of coupled equations. In general, it is obviously more complex than the original
deterministic problem, and needs to be solved using a tailored numerical scheme.
Sometimes, diagonalization of system matrices is possible, resulting in a sequence
of simpler problems. In general, however, this is not possible. In later Chapters, we
present different strategies to find suitable numerical schemes and elaborate on this
topic.

3.1.2 Semi-intrusive Methods

Alternative approaches to generalized polynomial chaos methods have also been
presented in the literature. Abgrall et al. [1, 2] developed a semi-intrusive method
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based on a finite-volume like reconstruction technique in multi-dimensional
elements (cells) that span the physical variables and the uncertain parameters.
A deterministic problem is obtained by taking conditional expectations, followed
by monotonicity-preserving flux reconstructions of an essentially non-oscillatory
(ENO) type. This method makes it particularly suitable for non-smooth probability
distributions, in contrast to gPC, where the convergence requires the solution to be
smooth with respect to the parameters describing the input uncertainty [21]. For
further details on the semi-intrusive method, the reader is referred to [1, 2].

3.2 Non-intrusive Methods

An alternative to the polynomial chaos approach with stochastic Galerkin projection
is to construct empirical probability distributions of the output using multiple
samples of solutions corresponding to realizations of the stochastic inputs. Such
non-intrusive methods do not require modification of existing codes but rely exclu-
sively on repeated runs of the deterministic code, which make them computationally
attractive, in particular for complex problems.

3.2.1 Interpolation and Integration Approaches

Stochastic collocation takes a set of solutions fu.j /g evaluated at a set f�.j /g of
values of random input � and constructs an interpolating polynomial from these
solution realizations [3, 15, 25]. A common choice of interpolation polynomials is
the set of Lagrange polynomials fL .Mint/

j .�/gMint
jD1, defined by Mint points f�.j /gMint

jD1,
for which the polynomial interpolant becomes

I u D
MintX
jD1

u.j /Lj .�/: (3.7)

The distribution of the gridpoints f�.j /gMint
jD1 is implied by the measure P of �. For

instance, we choose f�.j /g to be the set of Gauss-Legendre quadrature points for the
case of uniformly distributed �, and the set of Gauss-Hermite quadrature points for
the case of lognormal �. The integral statistics of interest, such as moments, may
then be approximated by the corresponding quadrature rules. For instance, for some
quantity of interest hS.u/i, we have

hS.u/i �
MintX
jD1

S.u.j //wj ; (3.8)



26 3 Polynomial Chaos Methods

where wj is the weight corresponding to the quadrature point �.j /. The quadrature
points and weights can be computed through the Golub-Welsch algorithm [12].
Note that there is no need to find the Lagrange polynomials of (3.7) explicitly since
.I u/.�.j // D u.j /, and we only need the values of I u at the quadrature points
in (3.8).

This approach is referred to in the literature as a stochastic collocation method
and will be used later for comparison with stochastic Galerkin methods. The same
numerical integration technique can be applied directly to the evaluation of the
polynomial chaos coefficients of u as shown later (this approach is referred to as
pseudospectral projection).

Stochastic collocation is similar to other non-intrusive methods such as pseu-
dospectral projection [18] and stochastic point collocation (stochastic response
surfaces) [5], in that it relies on evaluating deterministic solutions associated with
stochastic quadrature points. The difference is in the postprocessing step where
quantities of interest are reconstructed by different means of numerical quadrature.
Specifically, in stochastic collocation, quantities of interest are computed directly
without representing the solutions as a gPC series. Pseudospectral projection, on
the other hand, involves the computation of the polynomial chaos coefficients of u
through numerical quadrature. Quantities of interest are then calculated as functions
of the polynomial chaos coefficients.

Several investigations of the relative performance of stochastic Galerkin and
stochastic collocation methods have been performed (cf. [4,16,19]). The significant
size of the stochastic Galerkin system may lead to inefficient direct implementations
compared to collocation methods and preconditioned iterative Krylov subspace
methods. However, the use of suitable techniques for large systems, such as
preconditioners, may result in speedup for the solution of stochastic Galerkin
systems compared to multiple collocation runs [19]. For high-dimensional problems
where the collocation methods tend to become prohibitively expensive, sparse grid-
adaptive methods have been suggested to alleviate the computational cost [9].

3.2.2 Spectral Projection

Spectral projection, discrete projection or the pseudospectral approach [18, 23]
comprise a set of gPC-based methods relying on deterministic solutions evaluated
at sampling points of the parameter domain. These are sometimes referred to as a
subgroup of the class of collocation methods [24]. Alternative spectral projection
approaches include weighted least squares formulations for determining the gPC
coefficients (2.8) [13].

The integrals over the stochastic domain of the gPC projections defined by (2.8)
are approximated by sampling or employing numerical quadrature. For multiple
stochastic dimensions, sparse grids are attractive, e.g., Smolyak quadrature [14].
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The class of non-intrusive polynomial chaos methods also includes methods
where the solution is sampled randomly and the statistics are expressed in terms
of spectral expansions. The strength of this class of methods is its applicabil-
ity to situations when the sampling points are not known in parametric form.
These methods are alternatively referred to as random discrete L2 projection,
regression, or point collocation [6].

To appreciate the flavor of the methods briefly described in this Section, let
�.j /, j D 1; : : : ; N be a set of realizations of some random vector � and let xk ,
k D 1; : : : ; m denote spatial discretization points associated with a numerical solver.
Then, the truncated gPC approximations based on the numerical PDE solution
Eujk � u.xk; t; �

.j // for �.j / at xk and time t ,

u.xk; t; �
.j // �

MX
iD0

ui .xk; t/ i .�
.j //; (3.9)

can be assembled in matrix form,

U D  C ; (3.10)

where U 2 R
N�m contains the solution samples ŒU �jk D Eujk ,  2 R

N�M is
the matrix of basis function evaluations, and C 2 R

M�m is the matrix of gPC
coefficients ŒC �j i D  i.�

j /.
The choice of appropriate methods for the solution of (3.10) depends on the size

of N and M . For overdetermined problems N > M , least squares approaches
are applicable and, under certain conditions, yield stable approximations of the
coefficient matrixC [17]. For underdetermined systems, (3.10) can be reformulated
to the compressive sampling framework [8].

An alternative strategy is to compute the gPC coefficients of u.xk; t; �/ through
direct projection onto one of the basis functions 
m. The result is

˝
u.xk; t; �

.j //;  m
˛ D humi (3.11)

by the orthogonality of the basis. Therefore it is possible to compute the mth
coefficient of the gPC expansion simply by integrating the left-hand side using a
quadrature method with Mint integration points. The choice of Mint is not obvious
because the integrand at the left-hand side of (3.11) is not a known function and
not necessarily a polynomial. This non-intrusive approach is referred to as pseudo-
spectral projection.

3.2.3 Stochastic Multi-elements

In multi-element generalized polynomial chaos (ME-gPC), the stochastic domain is
decomposed into subdomains, and generalized polynomial chaos is applied element-
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wise [20, 22]. Local orthogonal polynomial bases can be constructed numerically
using the Stieltjes procedure or the modified Chebyshev algorithm [10]. The
stochastic Galerkin method may be applied element-wise, and in this sense ME-
gPC is an intrusive method.

The multi-element framework allows the combination of refinement of the
number of elements (h-refinement) and increase in the order gPC of each element
(p-refinement) [20].

3.3 Exercises

3.1. We will consider the problem of computing the gPC coefficients of a given
function when analytical expressions are not available. Consider � bounded uni-
formly in Œ� 1; 1�. Compute the coefficients of the gPC expansions of �3 and sin.�/
for order M D 1, M D 3, and M D 5 using the least-squares approach with
different choices of N , i.e., N D 10, N D 100, N D 1;000. Select the realization
�j as a set of points distributed randomly in the interval Œ � 1; 1�.
3.2. Instead of Monte Carlo integration used in Exercise 3.1 for computation of
the gPC coefficients, one may choose the points in random space according to a
numerical integration rule. For the previous problem use pseudospectral projection
with different choices of N , i.e., N D M , N D 1:2M , N D 2M . Select Hermite-
Gauss quadrature.

3.3. Compare the results obtained before with the pseudospectral projection with
the Clenshaw-Curtis quadrature using the same number of integration points. For
the quadrature rule, see Clenshaw and Curtis [7].

3.4. Compute the coefficients of the gPC expansions 1=.1 C 25�2/ for order
M D 1, M D 3, and M D 5 using pseudospectral projection with Hermite-Gauss
quadrature and a set of points distributed uniformly in Œ� 1; 1� for the least-squares
approach.
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Chapter 4
Numerical Solution of Hyperbolic Problems

We introduce the spatial discretization schemes for systems of conservation laws
that we use later. For smooth problems, summation-by-parts (SBP) operators with
weak enforcement of boundary conditions (SAT) are presented. The SBP-SAT
schemes allow for the design of stable high-order accurate schemes. Summation
by parts is the discrete equivalent of integration by parts and the matrix operators
that are presented lead to energy estimates that in turn lead to provable stability.
The semidiscrete stability follows naturally from the continuous analysis of well-
posedness which provides the boundary conditions in the SBP-SAT technique.

Stability and boundary conditions are the main reason for choosing to use SBP
operators. Provable stability means that numerical convergence to the true solution
can be guaranteed. There are many alternative numerical schemes that appear to
converge, but for the stochastic Galerkin formulations of interest here, we want to
be able to prove stability in situations that would otherwise be hard to handle. An
example is a solution with multiple discontinuities crossing the numerical boundary.
That situation requires stability and correct imposition of boundary conditions.

For non-smooth problems, the need to accurately capture multiple solution
discontinuities of hyperbolic stochastic Galerkin systems calls for shock-capturing
methods. We outline how the use of the Monotonic Upstream-Centered Scheme for
Conservation Laws (MUSCL) with flux limiters and the HLL (after Harten, Lax and
van Leer) Riemann solver can be used to treat these cases. We also discuss in brief
how to add artificial dissipation and an issue regarding time-integration.

The problems presented here can all be written as one-dimensional conservation
laws,

ut C f .u/x D 0; x 2 D; t � 0; (4.1)

where u is the solution vector, f is a flux function and D is the spatial domain.
When solving (4.1) on a uniform grid, we will use two different classes of numerical
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32 4 Numerical Solution of Hyperbolic Problems

schemes. For smooth problems, we use high-order finite difference schemes, and for
non-smooth problems, we apply shock-capturing finite volume methods.

SBP operators are used for approximations of spatial derivatives. Their useful-
ness lies in the possibility of expressing energy decay in terms of known boundary
values, exactly as in the continuous case [12, 22]. For smooth problems, one can
often prove that the numerical methods are stable and high-order accurate.

Despite the formal high-order accuracy of SBP operators, solutions with multiple
discontinuities are not well captured. Instead, a more robust and accurate method for
these problems is the MUSCL scheme [30] or the HLL Riemann solver [8] with flux
limiting, to be described in Sect. 4.3.

4.1 Summation-by-Parts Operators

In order to obtain stability of the semidiscretized problem for various orders of
accuracy and non-periodic boundary conditions, we use discrete operators satisfying
a summation-by-parts (SBP) property [9]. Instead of the exact imposition of
boundary conditions, we enforce boundary conditions weakly through penalty
terms, where the penalty parameters are chosen such that the numerical method
becomes stable.

4.1.1 Recipe for Constructing a Scheme

The principles for construction of stable and convergent high-order finite difference
schemes for linear and nonlinear boundary conditions are discussed in the context
of linear wave propagation problems. The first requirement for obtaining a reliable
solution is well-posedness (see [7,19] as well as Chap. 1 above). A well-posed prob-
lem is bounded by the data of the problem and has a unique solution. Uniqueness
for linear problems follows more or less directly from the energy estimate. This
is, however, not the case for nonlinear problems. Existence is motivated by using
a minimal number of boundary conditions. In the rest of this book we assume
that existence is not a problem and will not discuss it further. The crucial point
in obtaining well-posedness is the boundary conditions. These will be chosen such
that an energy estimate is obtained with a minimal number of conditions.

Once we have a well-posed problem, it is meaningful to construct a numerical
approximation. We will use high-order finite differences in SBP form and impose
the boundary conditions weakly using penalty terms. More details on this productive
and well-tested technique are given below. For further reading, see [2, 4, 6, 11, 16–
18, 23–26]. A recipe for constructing a stable and convergent scheme when using
the SBP-SAT technique is to choose the so-called penalty parameters such that an
energy estimate is obtained. For linear problems, this guarantees that the scheme
converges to a reliable solution as the mesh size goes to zero. However, as we shall
see below, this is not always the case for nonlinear boundary conditions.
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4.1.2 The Continuous Problem

As a test problem to illustrate the analysis and design of a stable numerical method,
we consider a model problem governed by a system of deterministic PDEs; this is
directly relevant to the equations deriving from a stochastic Galerkin formulation of
a conservation law under uncertainty.

The model problem is given by

ut D Aux; x � 0; u D
�

v
w

�
; A D

�
0 1

1 0

�
; u.x; 0/ D u0.x/;

(4.2)

which is a linear version of (4.1) with f .u/ D Au. We have both ingoing and
outgoing waves at the boundary x D 0, and we will consider both a linear boundary
condition w D �v with � being a constant, and a highly nonlinear boundary
condition of the general form w D F.v/.

We make the assumption that all solutions decay as x increases, i.e.,
limx!1 u D 0. This assumption simplifies the analysis and enables us to focus
on the interesting boundary x D 0. In the rest of this chapter, all boundary terms
are evaluated at x D 0. The boundary terms for large x are neglected.

4.2 Analysis

Below we outline the standard recipe for constructing a stable scheme for a
linear problem. The nonlinear boundary condition will force us to introduce slight
modifications.

4.2.1 Well-Posedness

The energy method applied to (4.2) yields

2

Z 1
0

uT ut dx D kuk2t D �2vw:

To obtain a bounded solution kuk2 � ku0k2, the linear and nonlinear boundary
conditions must obey

� � 0; vF.v/ � 0; (4.3)

respectively.
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Next we consider uniqueness and start with the linear case. Consider the
difference problem for �u D u1 � u2,

�ut D A�ux; x � 0; �u D
�
�v
�w

�
; �u.x; 0/ D 0; (4.4)

and the boundary condition�w D w1 � w2 D ��v. The energy method yields

k�uk2t D �2�v�w D ���v2; (4.5)

and clearly the first condition in (4.3) that guarantees a bounded energy also
guarantees uniqueness (since we obtain k�uk2 � 0 by integrating (4.5)). We
summarize the result in Theorem 4.1.

Theorem 4.1. The problem (4.2) with the linear boundary condition w D �v is
well-posed in the sense of Definition 1.1 if

� � 0: (4.6)

In the nonlinear case, we have �w D w1 � w2 D F.v1/ � F.v2/. The energy
method applied to the difference equation (4.4) yields

k�uk2t D �2�v�w D �F 0.v/�v2; (4.7)

where the intermediate value theorem has been used and v 2 .v1; v2/. Note that an
additional condition, namely F 0.v/ � 0, must be added onto the second condition
in (4.3) which leads to an energy estimate. We summarize the result in Theorem 4.2.

Theorem 4.2. The problem (4.2) with the nonlinear boundary condition w D F.v/
is well-posed in the sense of Definition 1.1 if

vF.v/ � 0 and F 0.v/ � 0: (4.8)

4.2.2 Stability

We use high-order finite difference techniques in SBP form and impose the
boundary conditions weakly using the simultaneous approximation term (SAT)
technique. The first and second derivative SBP operators were introduced in [9, 22]
and [4,11], respectively. The discretized solution Eu is represented as a grid function
defined in Sect. 1.1.2. For the first derivative, we use the discrete approximation
ux � P�1QEu, where subscript x denotes a partial derivative with respect to x and
Q satisfies

QCQT D diag.�1; 0; : : : ; 0; 1/ � QB: (4.9)
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Additionally, P must be symmetric and positive definite in order to define a
discrete norm. Operators of order 2n, n 2 N, in the interior of the domain, are
combined with boundary closures of order n. It is possible to design operators with
higher-order accuracy at the boundary, but this would require P to have nonzero
off-diagonal entries. We restrict ourselves to diagonal matrices P since the proofs
of stability to be presented in later sections rely on this assumption.

For the approximation of the second derivative, we can either use the first
derivative operator twice, or use Euxx � P�1.�M C QBD/Eu, whereM CMT � 0,
QB is given by (4.9), andD is a first-derivative approximation at the boundaries, i.e.,

D D 1

�x

2
666664

d1 d2 d3 : : :

1
: : :

1

: : : �d3 �d2 �d1

3
777775
; (4.10)

where di , i D 1; 2; 3; : : : , are scalar values leading to a consistent first-derivative
approximation at the boundaries.

The semidiscrete formulation of (4.2) with the weakly enforced boundary
condition is

Eut D �
P�1Q˝A

� Eu CP�1Ee0 ˝˙B
�Eu0� ; (4.11)

where Ee0 D .1; 0; � � � ; 0/T , ˝ is the Kronecker product, ˙ D .˙ 1;˙ 2/ is the
penalty matrix, Eu D �Eu0; Eu1; � � � ; Eum�T , Eui D .vi ;wi /

T and

EBs.Eu0/ D .1; 1/T Œw0 � F.v0/� : (4.12)

We augment (4.11),(4.12) with the initial condition Eu.t D 0/ D Eu0.
Note that we have expressed both the linear and nonlinear standard boundary

condition in the same functional form (w0 D F.v0/). We have used a SBP difference
operatorP�1Q (see [9,22]) and imposed the boundary conditions weakly using the
SAT technique [3]. The SBP difference operators satisfy the relation (4.9) and hence
they mimic integration by parts perfectly. More details on the weak imposition of
boundary and interface conditions using the SAT technique will be given below, and
further details can be found in [4, 11, 16–18, 23–25].

Multiplying (4.11) from the left with EuT .P ˝ I/ and the choice ˙ 1 D 1 and
˙ 2 D 0 leads to

d

dt
kEuk2h D �2v0F.v0/; (4.13)

which is completely similar to the continuous estimates in both the linear and
nonlinear case. We summarize the result below.
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Theorem 4.3. The approximation (4.11) of the problem (4.2) is stable in the sense
of Definition 1.3 for both the linear (4.6) and nonlinear (4.8) boundary condition if
the penalty coefficients˙1 D 1 and ˙2 D 0 are used.

Note that the conditions (4.6) and (4.8) that lead to well-posedness in the
continuous case are necessary for stability.

4.2.3 Convergence for Finite Time

We will derive the error equation and investigate under which requirements the
numerical solution converges to the analytic solution using weak non-characteristic
boundary conditions.

By inserting the analytical solution Euexact (projected onto the mesh) in (4.11) and
subtracting (4.11) we obtain the error equation

Eet D �
P�1Q˝A

� Ee CP�1e0 ˝˙B
�Ee0�C Ete; (4.14)

where Ee D Euexact � Eu; Ee D .e0; e1; � � � ; em/T ; Eei D .�vi ; �wi /
T is the error in the

numerical solution, Ete D EO.�xp/ is the truncation error and

EBs.Ee0/ D .1; 1/T Œ�w0 � .F.Nv0/� F.v0//� : (4.15)

The initial data is zero (we initiate the numerical solution with the exact initial data
projected onto the grid), i.e., Ee.0/ D 0.

We assume that the truncation error Ete D EO.�xp/ is uniform in accuracy,
although, in reality, the accuracy close to the boundaries is lower (see [22]). This is
especially true for the diagonal norm P which is needed in many cases for stability
(see for example [14, 17] and examples in subsequent Chapters of this book).

By multiplying (4.14) from the left with EeT .P ˝ I/, we obtain

d

dt
kEek2h D �2�v0.F.Nv0/ � F.v0//C 2EeT .P ˝ I/Ete; (4.16)

where ˙1 D 1 and ˙2 D 0 have been used. In the linear case, the first term is
negative by the fact that condition (4.6) holds. In the nonlinear case, the intermediate
value theorem in combination with the second condition in (4.8) leads to the same
result.

The negative contribution of the first term in (4.16) and the standard inequality

2.u; v/ � �kuk2 C .1=�/kvk2 (4.17)
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leads to

d

dt
kEek2h � �kEek2h C .1=�/kEtek2h: (4.18)

Time integration of (4.18) leads to the final accuracy result

kEe.T /k2h � e�T

�

Z T

0

e��tkEtek2hdt D EO.�x2p/; (4.19)

which we summarize below.

Theorem 4.4. The solution of the approximation (4.11) converges to the solution
of the problem (4.2) with the linear (4.6) and nonlinear (4.8) boundary conditions
if the penalty coefficients˙1 D 1 and˙2 D 0 are used.

4.2.4 An Error Bound in Time

As a final exercise, we will show that under reasonable assumptions, the error
growth in time is bounded even for long times, see [1] and in particular [15].
Equation (4.16) can be written as

d

dt
kEek2h � �2C0jEe0j2 C 2kEekkEtek; (4.20)

where C0 is an appropriate non-zero constant. By expanding the left-hand side as
d
dt

kEek2h D 2kEekh ddt kEekh, we get

d

dt
kEekh � ��.t/kEekh C kEtek; (4.21)

where �.t/ D C0jEe0j2=kEek2h.
For the sake of argument, we assume that �.t/ D � D const: independent of

time. In that case, we can integrate (4.21) and obtain

kEe.T /kh � e��T
Z T

0

e�tkEte.t/khdt:

The estimate

kEte.t/kh � max
0�t�T kEte.t/kh D .kEtekh/max

leads to the final error bound
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kEe.T /kh � .kEtekh/max
.1 � e��T /

�
: (4.22)

In the case of a time-dependent �.t/, not much is changed as long as �.t/ is non-
negative and monotonically increasing. The conclusion (4.22) still holds (see [15]).
The weakly imposed boundary conditions lead to an error bound in time.

4.2.5 Artificial Dissipation Operators

An artificial dissipation operator is a discretized even-order derivative which is
added to the system to allow stable and accurate solutions to be obtained in
the presence of solution discontinuities. The artificial dissipation is designed to
transform the global discretization into a one-sided operator close to the shock
location. Depending on the accuracy of the difference scheme, this transformation
requires one or more dissipation operators. All dissipation operators used here are
of the form

A2k D ��xP�1 QDT

kBw QDk; (4.23)

where P�1 is the diagonal norm of the first derivative as before, QD is an
approximation of .�x/k@k=@xk , and Bw is a diagonal positive definite matrix. In
most cases here, Bw is replaced by a single constant ˇw. An appropriate choice
of dissipation constant results in an upwind scheme, suitable for problems where
shocks evolve. For further reading about the design of artificial dissipation operators
we refer to [12]. Here we focus on shock-capturing schemes, such as the MUSCL
scheme in the next section.

4.3 Shock-Capturing Methods

For finite volume methods on structured grids, we partition the computational
domain into cells of equal size �x. Solution values Euj are defined as cell averages
of cell j , and fluxes are defined on the edges of the cells.

4.3.1 MUSCL Scheme

MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) is a finite
volume method suitable for conservation laws with discontinuous solutions that was
introduced in [30]. Let m be the number of spatial grid cells and �x D 1=m, and
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let Eu D .uT1 ;u
T
2 ; : : : ;u

T
m/
T be the spatial discretization of u D .u1; : : : ; un/T . The

semidiscretized form of (4.1) is given by

duj
dt

C f jC1=2 � f j�1=2
�x

D 0; j D 1; : : : ; m: (4.24)

We define the flux function f jC1=2 at the interface between the cells j and j C 1

as defined by the two states uL
jC 1

2

and uR
jC 1

2

, obtained with flux limiters. For the

MUSCL scheme, we use the numerical flux function

f jC 1
2

D 1

2

�
f .uL

jC 1
2

/C f .uR
jC 1

2

/
	

C 1

2
j QJ jC 1

2
j
�

uL
jC 1

2

� uR
jC 1

2

	
; (4.25)

where QJ is an approximation of the flux Jacobian J D @f =@u, from which is
derived the absolute value j QJ jC 1

2
j given by

j QJ jC 1
2
j D X

ˇ̌
ˇ�.ujC 1

2
/
ˇ̌
ˇX�1 D 1

2
X

ˇ̌
ˇ�.uL

jC 1
2

/C�.uR
jC 1

2

/
ˇ̌
ˇX�1; (4.26)

where � is a diagonal matrix with the eigenvalues of QJ and X is the eigenvector
matrix. QJ can be an average of the true Jacobian evaluated at the discretization
points or a Roe average matrix [20].

The left and right solution states are given by

uL
jC 1

2

DujC0:5�.rj /.ujC1�uj / and uR
jC 1

2

DujC1�0:5�.rjC1/.ujC2�ujC1/;

respectively. The vector-vector products are assumed entry-wise above. The flux
limiter �.rj / takes the argument rj D .r1;j ; : : : ; rn;j / with ri;j D .ui;j �
ui;j�1/=.ui;jC1 � ui;j / for i D 1; : : : ; n. As a special case, � D 0 results in
the first-order accurate upwind scheme. Second-order accurate and total variation
diminishing schemes are obtained for � that are restricted to the region

�.r/ D 0; r � 0;

r � �.r/ � 2r; 0 � r � 1;

1 � �.r/ � r; 1 � r � 2;

1 � �.r/ � 2; r � 2;

�.1/ D 1;

as defined in [27]. The minmod, van Leer and superbee limiters that are used here
are all second order and total variation diminishing. For a more detailed description
of the MUSCL scheme (see e.g., [10]).
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4.3.2 HLL Riemann Solver

As a simpler alternative to the MUSCL-Roe solver, we use the HLL (after Harten,
Lax and van Leer) Riemann solver introduced in [8] and further developed in [5].
Instead of computing the Roe average matrix needed for the Roe fluxes (4.25)
and (8.9), only the fastest signal velocities need be estimated for the HLL solver.
These signal velocities SL and SR are the estimated maximum and minimum
eigenvalues of the flux Jacobian J D @f =@u. Note that this simplification is
particularly important when we derive systems of PDEs from the stochastic Galerkin
formulation, in which it is computationally expensive to analytically determine the
Roe matrix.

At the interface between the cells j and j C 1, the HLL flux is defined by

f jC 1
2

D

8̂̂
ˆ̂<
ˆ̂̂̂:

f
�

uL
jC 1

2

	
if SL � 0

SRf

�
uL
jC 1

2

�
�SLf

�
uR
jC 1

2

�
CSLSR

�
uR
jC 1

2

�uL
jC 1

2

�

SR�SL if SL < 0 < SR

f
�

uR
jC 1

2

	
if SR � 0

:

(4.27)

In general, obtaining accurate eigenvalue estimates may be computationally costly.
However, for certain choices of stochastic basis functions in combination with
known eigenvalues of the deterministic system, we derive analytical expressions
for the stochastic Galerkin system eigenvalues (cf. Chap. 8 and Appendix B).

The HLL flux approximates the solution by assuming three states separated by
two waves. In the deterministic case, this approximation is known to fail in capturing
contact discontinuities and material interfaces of solutions to systems with more
than two waves [28]. For the Euler equations, the contact surface can be restored
by using the HLLC (Harten-Lax-van Leer-Contact) solver where three waves are
assumed [29]. The stochastic Galerkin system is a multiwave generalization of the
deterministic case, and similar problems in capturing missing waves are expected.
However, the robustness and simplicity of the HLL solver makes it a potentially
more suitable choice compared to other Riemann solvers that are theoretically more
accurate, but also more sensitive to ill-conditioning of the system matrix.

4.4 Time Integration

Since the stability analysis is based on semidiscretization in space, with time left
continuous, we focus more on the spatial discretization than on the time integration.
However, the choice of time integration procedure is indeed important and affects
the stability properties. In this section we will briefly outline a few important
considerations for time integration.
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All numerical results presented in this book are based on explicit time integration
methods, where the new solution is updated directly from operations applied to the
previous solution only. For the problems presented, it is also possible to use implicit
time integration methods, where one solves a system of equations involving the
new solution and the previous solution. In particular, the steady advection-diffusion
problem of Chap. 5 could benefit from an implicit time integration method, and we
encourage the interested reader to try this by rewriting the Matlab scripts that come
with Chap. 5. For a more detailed exposition on the basics on implicit and explicit
methods and some of their features, we refer to numerical analysis textbooks,
e.g., [13].

We will limit our comments on explicit methods to the additional effects that
occur for stochastic problems. Standard explicit time integration methods, e.g.,
forward Euler and Runge-Kutta methods, are conditionally stable for hyperbolic
problems. The stability region is determined by the eigenvalues in the complex plane
of the total semidiscretized system matrix. This results in a time-step restriction.
The maximum time-step for the equations resulting from the stochastic Galerkin
formulation is typically more severe than that of the corresponding deterministic
problem, but for moderate variance, the difference is not significant. To understand
why this is the case, consider a time-dependent random scalar ODE,

du

dt
D �u;

where � is a known real-valued random variable and negative almost surely. The
corresponding stochastic Galerkin problem of orderM is

du
dt

D Au; u D .u0; : : : ; uM/
T ;

where ŒA�ij D ˝
� i j

˛
. A forward Euler discretization of the stochastic Galerkin

system yields

EunC1 D .I C�tA/Eun;

where n is the time index and �t is the time-step. For a fixed real value, say
the expectation, � D N�, the forward Euler discretization of the corresponding
deterministic ODE is

EunC1 D .1C�t N�/Eun:

For stability, we require �t � 2=j N�j for the deterministic problem, and �t �
2=.maxi j�i j/ for the stochastic Galerkin problem. Here �i , i D 0; : : : ;M are the
eigenvalues ofA. For the random variables and associated orthonormal polynomials
of interest here, the eigenvalues of A will be spread around the mean N� and
the spectral radius of A will increase with the variance in �, cf. [21]. Thus, the
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time-step restriction will be determined by the extreme eigenvalues. Note that for the
example provided, an increase in variance for a given probability distribution leads
to a stronger time-step restriction, but it is possible to construct examples including
large variance without stronger time-step restriction compared to the deterministic
case. The point is that variability typically leads to restrictions since we try to solve
for an entire range of a random space simultaneously, as opposed to solving a
problem for a single parameter value.

4.5 Exercises

In the exercises of this Chapter, we will study three sets of PDEs. As the first task,
consider the coupling of the two scalar advection equations

ut C aux D 0; �1 � x � 0

vt C avx D 0; 0 � x � 1

u.0; t/ D v.0; t/: (4.28)

As the second task, consider the scalar advection-diffusion problem,

ut C aux D .�ux/x; 0 � x � 1

u.0; t/ D g0.t/;

ux.1; t/ D g1.t/;

u.x; 0/ D f .x/; 0 � x � 1: (4.29)

Both a and � are positive, a is constant and � varies in space and time. As the third
task, consider the scalar wave propagation problem,

ut C aux C buy D 0; .x; y/ 2 ˝;
Lu D g.x; y; t/; .x; y/ 2 ı˝

u.x; y; 0/ D f .x; y/; .x; y/ 2 ˝: (4.30)

The wave propagation direction Na D .a; b/ is constant, and both a and b are positive.

4.1. Introduce a mesh and write up the semidiscrete formulation of problem (4.28)
using SBP operators and the SAT-penalty formulation for the boundary and interface
conditions. Repeat for different operators and meshes on the domains.

4.2. Prove stability of the semidiscrete formulation for (4.28) using the energy
method (determine the penalty parameters). This means that both the left boundary
treatment and the interface must be stable.
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4.3. Use the energy method on (4.29) and show that the boundary conditions with
zero data lead to a well-posed problem with an energy estimate.

4.4. Discretize (4.29) using the SBP-SAT technique. Construct penalty terms for
the boundary conditions. For the boundary condition at zero, use a penalty term
of the form �0P

�1DT .Eu0 � 0/Ee0. Prove stability and show that the resulting semi-
discrete energy estimate with zero boundary data is similar to the continuous one
derived in 4.3 above.

4.5. Replace the boundary condition at zero in (4.29) with au��ux D g0.t/. Repeat
the same tasks as in 4.3 and 4.4 (replace the penalty term at zero with a new one)
above but now with nonzero data.

4.6. Let ˝ D Œ0; 1� 	 Œ0; 1� be the unit square. Use the energy method on (4.30) to
determine the boundary operator L and where to impose boundary conditions.

4.7. Discretize (4.30) using high-order finite difference methods (FDM) on SBP
form and use penalty terms for the boundary condition. The approximation will
look like

Eut C a.P�1x Qx ˝ Iy/Eu C b.Ix ˝P�1y Qy/Eu
D .P�1x ˝P�1y /..E 0 ˝˙ x/C .˙ y ˝E 0//.Eu � Eg/:

.E 0/11 is one, the rest of .E 0/ij is zero. Use the energy method and determine˙ x

and˙ y so that the approximation is stable. Assume that Px and Py are diagonal.
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Part II
Scalar Transport Problems



Chapter 5
Linear Transport Under Uncertainty

The aim of this chapter, based on [18], is to present accurate and stable numerical
schemes for the solution of a class of linear diffusive transport problems. The
advection-diffusion equation subject to uncertain viscosity with known statistical
description is represented by a spectral expansion in the stochastic dimension. The
gPC framework and the stochastic Galerkin method are used to obtain an extended
system which is analyzed to find discretization constraints on monotonicity, stiffness
and stability. A comparison of stochastic Galerkin versus methods based on repeated
evaluations of deterministic solutions, such as stochastic collocation, is provided but
this is not our primary focus. However, we do include a few examples on relative
performance and numerical properties with respect to monotonicity requirements
and convergence to steady-state, to encourage the use of stochastic Galerkin
methods.

Special care is exercised to ensure that the stochastic Galerkin projection results
in a system with a positive semidefinite diffusion matrix. The sign of the eigenvalues
of a pure advection problem is not a stumbling block as long as the boundary
conditions are properly adjusted to match the number of ingoing characteristics,
as shown in [7]. Unlike the case of stochastic advection, the sign of the eigenvalues
of the diffusion matrix of the advection-diffusion problem is crucial. A negative
eigenvalue leads to the growth of the solution norm and hence numerical instability.
The source of the growth is in the volume term, and no treatment of the boundary
conditions can eliminate it.

Advection-diffusion problems with uncertainty have been investigated by several
authors. Ghanem and Dham [5] considered a lognormal diffusion coefficient in a
multiphase porous medium problem. Le Maître et al. investigated a set of Navier-
Stokes problems, resulting in coupled sets of advection-diffusion equations with
uncertain diffusion [13]. Wan et al. investigated the advection-diffusion equation in
two dimensions with random transport velocity [27], and the effect of long-term
time integration of flow problems with gPC methods [26]. Xiu and Karniadakis
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studied the Navier-Stokes equations with various stochastic boundary conditions
[29], as well as steady-state problems with random diffusivity [28]. We extend
the work by previous authors through analysis of the numerical method used
for the stochastic Galerkin problem, e.g., investigating monotonicity and stability
requirements and convergence to steady-state.

The stochastic advection-diffusion equation and the stochastic Galerkin formu-
lation are presented in Sect. 5.1. We consider an uncertain diffusion coefficient �
which is replaced by a stochastic Galerkin matrix, whose eigenvalues will determine
the rate of diffusion of the solution. Different basis functions and estimates of the
eigenvalues of the diffusion matrix are given in Sect. 5.2. These eigenvalues and
their relation to the deterministic velocity determine the dynamics of the solution.
They also add restrictions on the numerical solution methods.

We prove well-posedness of the stochastic Galerkin problem in Sect. 5.3. This
proof serves to demonstrate that we have chosen proper boundary conditions.
The impact of the eigenvalues of the stochastic Galerkin diffusion matrix on the
numerical method is demonstrated in Sect. 5.4, where monotonicity requirements
for the numerical solution are discussed. In Sect. 5.5, we investigate the time-step
limitations of the numerical schemes using the von Neumann analysis for a periodic
case. The von Neumann analysis is not applicable for non-periodic solutions,
hence we use summation-by-parts operators to show stability for the non-periodic
case. We consider a spatially constant as well as a spatially varying diffusion to
demonstrate different features of the SBP framework. Section 5.5 also includes
analysis regarding the convergence rate of the steady-state problem. Numerical
results are then presented in Sect. 5.6.

5.1 Problem Definition

Let .˝;F ;P/ be a suitable probability space with the set of elementary events˝
and probability measure P defined on the �-algebra F . Let �.!/, ! 2 ˝ , be a
random variable defined on this space. Consider the following mixed hyperbolic-
parabolic stochastic PDE defined on .0; 1/ 	 Œ0; T � which holds P-almost surely
in ˝ ,

@u

@t
C v

@u

@x
D @

@x

�
�.x; �/

@u

@x

�
;

u.0; t; �/ D g0.t; �/; (5.1)

@u.x; t; �/

@x
jxD1 D g1.t; �/;

u.x; 0; �/ D uini t .x; �/: (5.2)

Here the velocity v > 0 is a deterministic scalar and the diffusion �.x; �/ > �0 > 0
is a finite variance random field. As a special case of (5.1), we consider the case of
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�.�/ being constant in space, i.e., homogeneous and also dependent on the uncertain
parameter �, but with the same initial and boundary conditions.

In what follows, we approximate the stochastic solution u.x; t; �/ using a gPC
expansion in the random space. We use the stochastic Galerkin method and compare
with the stochastic collocation method. Our objective is then to explore the stability,
stiffness and monotonicity requirements associated with the numerical solution of
the resulting coupled system of equations.

5.1.1 Uncertainty and Solution Procedure

We will consider the case where � has a uniform probability distribution and thus
bounded range, and the case where � takes a lognormal distribution, a common
model in geophysics applications such as transport in porous media [3]. For other
distributions, we assume that the diffusion coefficient �.�/ has the cumulative
distribution function F . One may parameterize the uncertainty with a uniform
random variable �, defined on the interval Œ�1; 1� with constant probability density
0.5, denoted � 
 U Œ�1; 1�. Then we get the expression

�.�/ D F�1
�
� C 1

2

�
; (5.3)

which holds for general distributions F when F�1 is defined. For the cases of
interest here, F �1 is a linear function in the case of a uniform �. In the case of
a lognormal�, we will alternatively represent� in terms of the Hermite polynomial
chaos expansion in a Gaussian random variable.

In the context of a stochastic Galerkin solution of (5.1), we expand the solution
u.x; t; �/ with respect to a gPC basis f k.�/g1kD0. Legendre and Hermite orthogonal
polynomials are both used in the numerical experiments. In the computations, we
need to use a basis with finite cardinality, as indicated before. Hence, we truncate
the gPC basis f k.�/g1kD0 to exactly represent polynomials up to orderM ,

uM.x; t; �/ D
MX
kD0

uk.x; t/ k.�/; (5.4)

where f k.�/gMkD0 is the set of gPC basis functions of maximum orderM .

5.1.2 Stochastic Galerkin Projection

The unknown coefficients uk.x; t/ are computed through a Galerkin projection
onto the subspace spanned by the basis f k.�/gMkD0. Specifically, the truncated
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series (5.4) is inserted into (5.1) and multiplied by each one of the basis functions
f k.�/gMkD0. The resulting expression is integrated with respect to the probability
measure P over the stochastic domain. This leads to a coupled linear system of
deterministic PDE’s of the form

@uk
@t

C v
@uk
@x

D
MX
jD0

@

@x

�
h� j ki@uj

@x

�
; k D 0; : : : ;M;

uk.0; t/ D .g0/k; k D 0; : : : ;M;

@uk.x; t/

@x
jxD1 D .g1/k; k D 0; : : : ;M;

uk.x; 0/ D .uini t /k; k D 0; : : : ;M; (5.5)

where the orthogonality of the basis functions f k.�/gMkD0 has been used to cancel
terms. Here, .g0/k , .g1/k and .uini t /k are obtained by the projection of the left
and right boundary data and the initial function on basis polynomial  k.�/, k D
0; : : : ;M . In the sequel we use a compact notation to represent the system (5.5).
Let uM � .u0 u1 : : : uM/T be the vector of gPC coefficients in (5.4). Then, the
system (5.5) can be equivalently written as

@uM

@t
C V

@uM

@x
D @

@x

�
B.x/

@uM

@x

�
; (5.6)

uM.0; t/ D gM0 .t/;

@uM.x; t/
@x

jxD1 D gM1 .t/;

uM.x; 0/ D uMinit .x/; (5.7)

where V D diag.v/ and the matrixB is defined by

ŒB.x/�jk D ˝
�.x; �/ j  k

˛
j; k D 0; : : : ;M: (5.8)

We will frequently refer to the case of spatially independent �.�/. Then, (5.6)
can be simplified to

@uM

@t
C V

@uM

@x
D B

@2uM

@x2
: (5.9)

With the gPC expansion of the diffusion coefficient,�.x;�/D P1
kD0�k.x/ k.�/,

(5.8) can be rewritten as

ŒB�ij D ˝
� i j

˛ D
1X
kD0

�k.x/
˝
 i j k

˛
; i; j D 0; : : : ;M: (5.10)
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For the basis functions that will be used in this chapter, all triple (inner) products˝
 i j k

˛
satisfy

˝
 i j k

˛ D 0; for k > 2M and i; j � M: (5.11)

Explicit formulas for
˝
 i j k

˛
for Hermite and Legendre polynomials can be

found in [1, 25]. Hence, using (5.11), (5.10) may be simplified to

ŒB�ij D
2MX
kD0

�k.x/
˝
 i j k

˛
; i; j D 0; : : : ;M: (5.12)

The entries of B can thus be evaluated as finite sums of triple products that can
be computed exactly. Moreover, since ŒB�ij D ˝

� i j
˛ D ˝

� j i
˛ D ŒB�j i , it

follows that B is symmetric.
It is essential that the matrix B always be positive definite when it is derived

from a well-defined �.�/ > 0. This holds as a consequence of the following propo-
sition. The proof of the proposition follows closely that of the positive (negative)
definiteness of the advection matrix of Theorem 2.1 in [7] and Theorem 3.1 in [30].
However, here we also emphasize the importance of a suitable polynomial chaos
approximation ofB, since in this case negative eigenvalues would lead to instability
of the numerical method.

Proposition 5.1. The diffusion matrix B given by (5.12) derived from any �.�/
satisfying �.�/ � 0P-almost surely in ˝ , has non-negative eigenvalues.

Proof. For any orderM of gPC expansion and any vector uM 2 R
MC1,

.uM/TBuM D
MX
iD0

MX
jD0

uiuj

2MX
kD0

h i j ki�k D
MX
iD0

MX
jD0

uiuj h i j�i D

D
Z
˝

 
MX
iD0

ui i

!2
�.�/dP.�/ � 0: (5.13)

Remark 5.1. The above proposition does not hold for the order M approximation
Q�.�/ D PM

kD0 �k k.�/. The second equality of (5.13) relies on substituting the gPC
expansion of � of order 2M with the full gPC expansion of �. This substitution is
valid following (5.11), but it would not be valid for the orderM gPC approximation
of �. In the latter case, the resulting B may have negative eigenvalues, thus ruining
the stability of the discrete approximation of (5.6). Therefore, the 2M order of gPC
expansion of � is crucial. Figure 5.1 illustrates this for the case of a lognormal
�.�/ D exp.�/ with � 
 N .0; 1/.
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kD0h i j ki�k and ŒB.2M/�ij DP2M

kD0h i j ki�k , respectively, and f k.�/g are the Hermite polynomials

5.1.3 Diagonalization of the Stochastic Galerkin System

In order to reduce the computational cost, it is advantageous to diagonalize the
stochastic Galerkin systems whenever possible. If this is indeed possible, exact
or numerical diagonalization can be done as a preprocessing step, followed by the
numerical solution ofM C1 scalar advection-diffusion problems with different, but
strictly positive, viscosity �..�B/j /, where .�B/j are the eigenvalues of B, j D
0; : : : ;M . The system (5.6) can be diagonalized under certain conditions, which we
elaborate on next. Assuming, for a moment, that B.x/ D W �B.x/W

T , i.e. that
the eigenvectorsW of B.x/ are not spatially dependent, then the system (5.6) can
be diagonalized. Multiplying (5.6) from the left by W T and letting QuM D W T uM ,
we get the diagonalized system

@ QuM
@t

C V
@ QuM
@x

D @

@x

 
�B.x/

@ QuM
@x

!
:

When the stochastic and space-dependent components of �.x; �/ can be factor-
ized or only occur in separate terms of a sum,B.x/ can be diagonalized. That is, for
general nonlinear functions f , g and h, and �.x; �/ D f .x/g.�/ C h.x/, we have

B.x/ D f .x/W �gW
T C h.x/ D W

�
f .x/�g C h.x/I

�
W T D W �B.x/W

T ;

where �B.x/ D f .x/�g C h.x/I , �g is a diagonal matrix, W is the eigenvector
matrix of the eigenvalue decomposition of ŒBg�ij D ˝

g i j
˛
, and I is the identity

matrix. The only requirement on f; g, and h is that the resulting �.x; �/ be positive
for all �, and bounded in the L2.˝;P/ norm.

Notice that the form �.x; �/ D f .x/g.�/ C h.x/ has a given distribution
throughout the domain, but not necessarily with the parameters of the distribution
being constant. For instance, with � D c1.x/C c2.x/ exp.�/ and � 
 N .0; 1/, the
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viscosity is lognormal for all x but with spatially varying statistics and diagonaliza-
tion. However, for the general case �.x; �1; : : : ; �d / D exp.G.x; �1; : : : ; �d //, with
G being a multivariate Gaussian field, diagonalization is not possible.

For the general case of any empirical distribution with simultaneous spatial and
stochastic variation diagonalization is not possible. Then we solve the full stochastic
Galerkin system, analysis of which is described in the following sections. We also
present results on the diagonalizable case, since this allows a very direct comparison
to the stochastic collocation techniques, presented next.

5.2 The Eigenvalues of the Diffusion Matrix B

In the analysis of the mathematical properties and the numerical scheme, e.g.,
well-posedness, monotonicity, stiffness and stability, we need estimates of the
eigenvalues of B. We may express

B D
1X
kD0

�kC k; (5.14)

where �k’s are the polynomial chaos coefficients of �.�/ and ŒC k�ij D h i j ki.

5.2.1 General Bounds on the Eigenvalues of B

Some eigenvalue estimates pertain to all gPC expansions, independent of the actual
choice of stochastic basis functions. For example, in cases where �.�/ is bounded
within an interval of the real line, the eigenvalues of the viscosity matrix B can
essentially be bounded from above and below by the upper and lower interval
boundaries of possible values of �, respectively. More generally, for any countable
basis f k.�/g1kD0 of L2.˝;P/, by Theorem 2 of [22], it follows that there is a
bound on the set f.�B/j gMjD0 of the eigenvalues of B, given by

.�B/j 2 conv.spect.�.�/// D Œ�min; �max�; (5.15)

where conv denotes the convex hull, and the spectrum spect of �.�/ is the essential
range, i.e., the set of all possible values (measurable) � can attain. For a more
general exposition and for cases where � is not confined to a convex region, we
refer the interested reader to [22]. Here, we only consider � in intervals of finite
or infinite length (convex sets), and do not consider degenerate sets or single point
values. Following (5.15), for bounded � such as uniformly distributed viscosity,
the eigenvalues .�B/j will be restricted to an interval for all orders M of gPC
expansion. We expect that the order of polynomial chaos expansion has a limited
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impact on system properties such as monotonicity and stiffness for these cases, as
demonstrated in Sect. 5.5.3. For unbounded � (e.g., lognormal distribution) there is
no upper bound on the eigenvalues of B and the system properties change with the
order of gPC, also shown in Sect. 5.5.3.

5.2.2 Legendre Polynomial Representation

When the viscosity � is given by � D �0 C O��, � 
 U Œ�1; 1� and O� is a
deterministic scaling factor, only the first two Legendre polynomials are needed
to represent � exactly, that is � D �0 0 C O�=p3 1. Then, the stochastic Galerkin
projection yields a matrix B of the form

ŒB�jk D h� j ki D �0I C �1C 1; j; k D 0; : : : ;M;

where the eigenvalues ofC 1 (ŒC1�i;j D ˝
 1 i j

˛
) are given by the Gauss-Legendre

quadrature nodes scaled by
p
3. The scaling factor is due to the normalization

performed to obtain unit-valued inner double products of the Legendre polynomials.
This result follows from the fact that the eigenvalues of the matrix with .i; j / entries
defined by h� i j i are the same as those of the Jacobi matrix corresponding to
the three-term recurrence of the Legendre polynomials. Thus, they are equal to
the Gauss-Legendre quadrature nodes (see e.g. [6, 25] for further details on this
assertion).

The Gauss-Legendre nodes are located in the interval Œ�1; 1�, from which it
follows that .�B/j 2 Œ�0 � O�; �0 C O��. Note that this holds exactly only for a
uniformly distributed �; for non-uniform�, the polynomial expansion would result
in a matrix series representation of B of the form (5.14), where the matrices C k are
nonzero also for k > 1.

5.2.3 Hermite Polynomial Representation

Representing the uncertainty of the input parameters with an orthogonal polynomial
basis whose weight function does not match the probability measure of the input
parameters may lead to poor convergence rates [29]. However, problems where the
inputs are functions of Gaussian variables may be represented by gPC expansions
in the Hermite polynomials with a weight function matching the Gaussian measure.
For instance, lognormal random processes can effectively be represented by Hermite
polynomial chaos expansion (see e.g., [4]). Let

�.�/ D c1 C c2e
� ; c1; c2 � 0; � 
 N .0; 1/: (5.16)
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Then, the Hermite polynomial chaos coefficients of � are given by

�j D c2e
1=2p
j Š
; j � 1: (5.17)

The inner triple products of Hermite polynomials are given by

h i j ki D

8̂
<
:̂

p
i Šj ŠkŠ

.s�i /Š.s�j /Š.s�k/Š s integer, i; j; k � s

0 otherwise;

(5.18)

with s D .i C j C k/=2.
Applying Proposition 5.1 of Sect. 5.1.2 to the lognormal � in (5.16), it follows

that the eigenvalues of B are bounded below by c1. The largest eigenvalue grows
with the order M of gPC expansion. Since the entries of B are non-negative due
to (5.17) and (5.18), by the Gershgorin’s circle theorem, the largest eigenvalue is
bounded by the maximum row (column) sum of B. This gives an estimate of the
stiffness of the problem, where a problem is considered stiff when the time-step
required for stability is much smaller than that required for accuracy [23].

5.3 Boundary Conditions for Well-Posedness

A problem is well-posed if a solution exists, is unique and depends continuously
on the problem data. Boundary conditions that lead to a bounded energy are
necessary for well-posedness. For hyperbolic stochastic Galerkin systems, boundary
conditions have been derived in [7] for the linear wave equation and in [19] for the
nonlinear case of Burgers’ equation. Given the setting of (5.6), we derive the energy
equation by multiplying .uM/T with the first equation in (5.6) and integrating over
the spatial extent of the problem. More specifically,

Z 1

0

.uM/T
@uM

@t
dx C

Z 1

0

.uM/TV
@uM

@x
dx D

Z 1

0

.uM/T
@

@x

�
B.x/

@uM

@x

�
dx;

(5.19)
which can be compactly written as

@kuMk2
@t

C 2

Z 1

0

@.uM/T

@x
B.x/

@uM

@x
dx

D
�
.uM/T V uM � 2.uM/TB.x/

@uM

@x

�
xD0

�
�
.uM/T V uM � 2.uM/TB.x/

@uM

@x

�
xD1

: (5.20)
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Proposition 5.2. The problem (5.6) is well-posed in the sense of Definition 1.1.

Proof. We consider homogeneous boundary conditions, i.e., let gM0 D gM1 D 0

in (5.7). Notice that the right-hand side of (5.20) is negative for the choice of
boundary conditions in (5.7), hence leading to a bounded energy norm of solution
u in time. Uniqueness follows directly from the energy estimate by replacing the
solution by the difference between two solutions uM and vM and noticing that the
norm of the difference is non-increasing with time, thus uM � vM . The problem
is parabolic with full-rank B and the correct number of boundary conditions. This
implies the existence of the solution. Therefore, the problem (5.6) (and also (5.1))
is well-posed.

5.4 Monotonicity of the Solution

In this section we use a normal modal analysis technique [8] to derive the necessary
conditions for the monotonicity of the steady-state solution of the system of (5.9)
with spatially constant, but random, viscosity. We provide these conditions for
second- and fourth-order discretization operators.

5.4.1 Second-Order Operators

With standard second-order central differences and a uniform grid, the semidiscrete
representation of (5.9) for the steady-state limit reads

V
uMiC1 � uMi�1

2�x
D B

uMiC1 � 2uMi C uMi�1
�x2

; (5.21)

where uMi denotes the sub-vector of the vector of the discretized solution Eu at the
grid point i in space. This is a system of difference equations with a solution of the
form

uMi D yM�i ; (5.22)

for some scalar � and vector yM 2 R
MC1 to be determined. By inserting (5.22)

into (5.21) we arrive at the eigen-problem

�
�x.�2 � 1/

2
V � .� � 1/2B

�
yM D 0; (5.23)
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whose non-trivial solution is obtained by requiring

det

�
�x.�2 � 1/

2
V � .� � 1/2B

�
D 0: (5.24)

The spectral decomposition of the symmetric positive definite matrix B, i.e.,
B D W �BW

T , inserted into (5.24) leads to

v�x.�2j � 1/� .�B/j .�j � 1/2 D 0; j D 0; : : : ;M: (5.25)

The solution to (5.25) is

�j D 1 or
2C �j

2 � �j
; j D 0; : : : ;M; (5.26)

where �j D v�x
.�B /j

.

For a monotonic solution Eu, we must have �j � 0; which demands a mesh such
that

Remesh D max
j
�j � 2: (5.27)

In the case of stochastic collocation, each realization will have a different mesh
Reynolds number Remesh based on the value of �.�/. In combination with the
Courant-Friedrichs-Lewy (CFL) restriction on the time-step �t , this allows for
larger time-steps for simulations corresponding to large values of �.�/, but forces
small ones for small �.�/.

The importance of the mesh Reynolds number is illustrated in Fig. 5.2. A step
function initially located at x D 0:2 is transported to the right and is increasingly
smeared by viscosity � 
 U Œ0:05; 0:15�. The mean value is monotonically
decreasing, but this property is clearly not preserved by numerical schemes that
do not satisfy the mesh Reynolds number requirement. It also has the effect of
erroneously predicting the location of the variance peaks.

When B can be diagonalized, the solution statistics are functions of linear
combinations of scalar advection-diffusion solutions with viscosity given by the
eigenvalues .�B/j . Then, there is a local mesh Reynolds number .Remesh/j D �j
for each eigenvalue .�B/j , and a global mesh Reynolds number Remesh defined
by (5.27). Remesh is defined also for cases when B cannot be diagonalized. If the
global mesh Reynolds number for the Galerkin system Remesh > 2, but the local mesh
Reynolds number .Remesh/j < 2 for some instances of the scalar advection-diffusion
equation after diagonalization, the lack of monotonicity may not be obvious in the
statistics, since these are affected by averaging effects from all scalar solutions.
Hence, the lack of monotonicity of the mean solution is more obvious if .Remesh/j >

2 for all j D 0; : : : ;M . This is shown in Fig. 5.3 with � 
 U Œ0:14; 0:16� for
Remesh D 3 (and .Remesh/j > 2, j D 0; : : : ;M ) and Remesh D 1, respectively.
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Fig. 5.2 Solution statistics at t D 0:01 using stochastic Galerkin with M D 4 for diffusion of
a moving step function, u.x; t; �/ D 
0erfc

�
.x � .x0 C v.t C �///=p.4�.�/.t C �//�, �.�/ �

U Œ0:05; 0:15�, 
0 D 0:1, � D 0:005, x0 D 0:2, and v D 1. Here, m denotes the number of spatial
grid points. (a) m D 40, Remesh D 14. (b) m D 40, Remesh D 14. (c) m D 300, Remesh D 1:9. (d)
m D 300, Remesh D 1:9

Remark 5.2. The condition on the mesh Reynolds number is no longer present with
an upwind scheme, expressed as a central scheme with a certain amount of artificial
dissipation. To see this, let the diagonalized scheme with artificial dissipation be
given by

V
uiC1 � ui�1

2�x
��B uiC1 � 2ui C ui�1

�x2
D ˛.uiC1 � 2ui C ui�1/:

The choice ˛ D v=.2�x/ leads to upwinding. With the ansatz (5.22), we get �j D
1 or �j D 1 C v�x=.�B/j for j D 0; : : : : ;M . This shows that the solution is
oscillation free independent of the mesh Reynolds number. However, the upwinding
adversely affects the accuracy of the solution.
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Fig. 5.3 Mean solution at t D 0:001 for diffusion of a moving step function,M D 4. (a) Remesh D
3, m D 70. (b) Remesh D 1, m D 200

5.4.2 Fourth-Order Operators

With fourth-order central differences, the semidiscrete representation of (5.9) for
the steady-state limit is given by

V
�uMiC2 C 8uMiC1 � 8uMi�1 C uMi�2

12�x

D B
�uMiC2 C 16uMiC1 � 30uMi C 16uMi�1 � uMi�2

12�x2
: (5.28)

Following the procedure of monotonicity analysis used for the second-order opera-
tors with the ansatz uMi D yM�i inserted in (5.28), we arrive at the eigen-problem



.��4 C 8�3 � 8� C 1/�xV � .��4 C 16�3 � 30�2 C 16� � 1/B

�
yM D 0:

(5.29)

One may verify that � D 1 is a root of (5.29), just as in the case of second-order
central differences. Using the spectral decomposition ofB and factoring out .��1/,
we obtain the third-order equation

�
1 � �j

�
�3j � �

15 � 7�j
�
�2j C �

15C 7�j
�
�j � �

1C �j
� D 0; (5.30)

for j D 0; : : : ;M . By Descartes’ rule of signs, (5.30) has only positive roots
�j > 0 for 0 < �j < 1. For �j > 1, (5.30) has as at least one negative root. For
�j D 1, (5.30) reduces to a second-order equation with two positive roots. Hence,
the monotonicity condition �j � 0 for the fourth-order operators is equivalent to
the mesh Reynolds number bound
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Fig. 5.4 Mean solution for diffusion of a moving step function after 40 time-steps, M D 4,
� � U Œ0:0095; 0:0195�, m D 61 spatial points and two different Remesh. The undershoot grows
with the order of the operators. (a) Remesh D 0:90. (b) Remesh D 1:90

Remesh D max
j
�j � 1: (5.31)

Remark 5.3. The monotonicity analysis for sixth-order operators can be performed
by following the method used for the fourth-order ones. The mesh Reynolds number
monotonicity condition for sixth-order operators is Remesh � 2

3
.

Figure 5.4 depicts an initial step function after 40 time-steps, solved with
second-, fourth- and sixth-order operators, respectively. The undershoots of the
solutions tend to increase with the order of the scheme, which is inline with the
restriction on Remesh that becomes more severe for higher-order operators.

5.5 Stability of the Semidiscretized Problem

A numerical scheme is stable if the semidiscrete problem with homogeneous
boundary conditions leads to a bounded energy norm. A stable and consistent
scheme converges by the Lax equivalence theorem. Our primary interest is the
general case of non-periodic boundary conditions, but the well-known periodic case
with spatially constant viscosity �.�/ is also included for comparison.

5.5.1 The Initial Value Problem: von Neumann Analysis

We consider the cases of second- and fourth-order accurate periodic versions of the
central finite difference operators in [15], and show that the amplification factors
have negative real parts, describing ellipses in the negative half-plane of the complex
plane. The generalization to higher-order operators is straightforward.
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5.5.1.1 Second-Order Operators

Assuming spatially constant � and diagonalizing (5.9), and using the standard
central difference discretization, we get

@ QuMj
@t

C v
QuMjC1 � QuMj�1

2�x
D �k

QuMjC1 � 2 QuMj C QuMj�1
.�x/2

: (5.32)

We assume periodic boundary conditions and use the Fourier ansatz QuMj D
OuMei˛�xj , where ˛ is the Fourier parameter. Then, with �k D v�x=.2.�B/k/, (5.32)
becomes

@ OuM
@t

D �i v

�x

ei˛�x � e�i˛�x
2i

OuM C �k
ei˛�x � 2C e�i˛�x

.�x/2
OuM

D � v

�x

�
sin.˛�x/i C 2

�k
.1 � cos.˛�x//

�
OuM : (5.33)

The coefficient of OuM in the right-hand side of (5.33) is an expression of the form
f .!/ D c1 cos.!/ C ic2 sin.!/ C c3, i.e., the parametrization of an ellipse in the
complex plane. The real part is always non-positive due to the additive constant, so
the spectrum is an ellipse in the negative half-plane.

5.5.1.2 Fourth-Order Operators

The fourth-order semidiscretization is given by

@ QuMj
@t

C v
�QuMjC2 C 8 QuMjC1 � 8 QuMj�1 C QuMj�1

12�x

D �k
�QuMjC2 C 16 QuMjC1 � 30 QuMj C 16 QuMj�1 � QuMj�2

12.�x/2
: (5.34)

Using the Fourier ansatz, we have

@ OuM
@t

D i
v

6�x

�
ei2˛�x � e�i2˛�x

2i
� 8e

i˛�x � e�i˛�x

2i

�
OuM

C �k

6.�x/2

�
�e

i2˛�x C e�i2˛�x

2
C 16

ei˛�x C e�i˛�x

2
� 15

�
OuM

D
h
i

v

6�x
Œsin.2˛�x/� 8 sin.˛�x/�

� �k

3.�x/2



cos2.2˛�x/C 8.1� cos.˛�x//

�� OuM ; (5.35)
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Fig. 5.5 Eigenvalues for order M D 3 Legendre polynomial chaos with 200 grid points,
�.�/ � U Œ0; 0:1�, v D 1. (a) Second-order operators. (b) Fourth-order operators

which again is an ellipse in the negative half-plane. This is illustrated in Fig. 5.5,
showing the eigenvalues of the second- and fourth-order periodic spatial discretiza-
tion matricesDper . SinceDper is applied to periodic functions, no special boundary
treatment is needed. Therefore, the entries of Dper are completely determined by
the first and second derivative approximations of (5.32) and (5.34), respectively. In
Fig. 5.5, the real part of the eigenvalues is denoted by <, and the complex part by
=. Each of the eigenvalues .�B/k , k D 0; 1; 2; 3, of B corresponds to one of the
ellipses. For uniformly distributed �, the range of the eigenvalues is bounded, and
increasing the order of gPC does not increase the maximal eigenvalue significantly.
Therefore, the order of gPC expansion has a negligible impact on the time-step
restriction in this case.

For numerical stability, it is essential that the eigenvalues all be located in the
negative half-plane. In the next section, we perform stability analysis for the more
general case of an initial boundary value problem (with non-periodic boundary
conditions).

5.5.2 The Initial Boundary Value Problem

In order to obtain stability of the semidiscretized problem for various orders of
accuracy and non-periodic boundary conditions, we use discrete operators satisfying
a summation-by-parts (SBP) property [12]. The SBP operators were introduced in
Sect. 4.2.2, but for clarity we repeat some of the theory below.

Boundary conditions are imposed weakly through penalty terms, where the
penalty parameters are chosen such that the numerical method is stable. Operators of
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order 2n, n 2 N, in the interior of the domain are combined with boundary closures
of order of accuracy n. For the advection-diffusion equation (5.1), this leads to the
global order of accuracy min.n C 2; 2n/. We refer to [24] for a derivation of this
result on accuracy.

As described above the first derivative operator is ux � P�1QEu, where subscript
x denotes partial derivative andQ satisfies (4.9), i.e.,

QCQT D diag.�1; 0; : : : ; 0; 1/ � QB: (5.36)

The matrixP is symmetric and positive definite. For proof of stability of spatially
varying viscosity �.x; �/, P must be diagonal, so we will only use SBP operators
leading to a diagonalP norm.

To approximate the second derivative, we can use either the first derivative
operator twice, or Euxx � P�1.�M C QBD/Eu, where M C M T � 0, QB is given
by (5.36), and D is a first-derivative approximation at the boundaries, with entries
as given in 4.10.

Data on the boundaries are imposed weakly through a Simultaneous Approxi-
mation Term (SAT), introduced in [2]. Let the matrices E 1 D diag.1; 0; : : : ; 0/,
Em D diag.0; : : : ; 0; 1/ be used to position the boundary conditions, and let ˙ I

1 ,
˙ V
1 and ˙ V

m be penalty matrices to be chosen for stability. Let ˝ denote the
Kronecker product of two matrices B and C by

B ˝ C D

2
64
ŒB�11 C : : : ŒB�1nC

:::
: : :

:::

ŒB�m1 C : : : ŒB�mn C

3
75 :

The system (5.6) is discretized in space using SBP operators with the properties
described above. For the general case of spatially varying viscosity �.x; �/, first-
derivative operators will be successively applied to the viscosity term. An alterna-
tive, not considered here, is to use the compact SBP operators for @=@x.b.x/@=@x/
with b.x/ > 0, developed in [14]. These operators have minimal stencil width for
the order of accuracy. First, stability analysis for the general case of spatially varying
viscosity is presented. As a further illustration of the SBP-SAT framework, then in
the special case of spatially constant viscosity using compact second-derivative SBP
operators stability analysis is also presented.

5.5.2.1 Spatially Varying Viscosity

Consider the case of a spatially varying � D �.x; �/, given by (5.6). Since �
depends on x, we cannot write the semidiscretized version of B as a Kronecker
product. Instead, we introduce the block diagonal matrix

OB D diag.B.x1/;B.x2/; : : : ;B.xm//:
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Note that OB and the matrix .P�1 ˝ I/ commute, i.e.,

.P�1 ˝ I/ OB D OB.P�1 ˝ I/: (5.37)

Additionally, OB is symmetric, positive definite, and block diagonal. The matrix
.P�1˝I/ OB is a scaling of each diagonal blockB.xj / of OB with the factorp�1jj > 0.

Thus, .P�1˝I/ OB is symmetric and positive definite. The numerical approximation
of (5.6) using SBP operators is given by

@Eu
@t

C .P�1Q˝ V /Eu D .P�1Q˝ I/ OB.P�1Q˝ I/Eu

C.P�1 ˝ I/.E 1 ˝˙ I
1 /.Eu � 0/C .P�1 ˝ I/.QTP�1 ˝ I/

	.E 1 ˝˙ V
1 /.Eu � 0/C .P�1 ˝ I/.Em ˝˙ V

m/..P
�1Q˝ I/Eu � 0/; (5.38)

where the first line corresponds to the discretization of the PDE, and the second and
third lines enforce the homogeneous boundary conditions weakly, here expressed as
.Eu � 0/. Although the numerical experiments are performed with nonzero boundary
conditions, it is sufficient to consider the homogeneous case in the analysis of
stability.

Proposition 5.3. The scheme in (5.38) with ˙ V
m D �B.xm/, ˙ V

1 D B.x1/, and
˙ I
1 � �V =2 is stable in the sense of Definition 1.3.

Proof. Multiplying (5.38) by EuT .P˝I/ and replacingQ D Em �E 1 �QT in the
first term of the right-hand side, we obtain

EuT .P ˝ I/
@Eu
@t

C
Advection term‚ …„ ƒ

EuT .Q˝ V /Eu D
Viscous terms‚ …„ ƒ

EuT .Em ˝ I/ OB.P�1Q˝ I/Eu

�EuT .E 1 ˝ I/ OB.P�1Q˝ I/Eu � EuT .QT ˝ I/ OB.P�1 ˝ I/.Q˝ I/Eu„ ƒ‚ …
Viscous terms

C EuT .E 1 ˝˙ I
1 /Eu„ ƒ‚ …

Adv. penalty term

C EuT .QTP�1 ˝ I/.E 1 ˝˙ V
1 /Eu„ ƒ‚ …

Left viscous penalty term

C EuT .Em ˝˙ V
m/.P

�1Q˝ I/Eu„ ƒ‚ …
Right viscous penalty term

: (5.39)

The right viscous penalty term and the first viscous term cancel if we set ˙ V
m D

�B.xm/. Adding the transpose of the remaining terms of (5.39) to themselves and
using (5.37), we arrive at the energy equation
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@

@t

��Eu��2
P˝I C

Advection boundary terms‚ …„ ƒ
EuT .Em ˝ V /Eu � EuT .E 1 ˝ V /Eu D

D �EuT .E 1 ˝ I/ OB.P�1Q˝ I/Eu � EuT .QTP�1 ˝ I/ OB.E 1 ˝ I/Eu„ ƒ‚ …
Viscous terms

� 2EuT .QT ˝ I/ OB.P�1 ˝ I/.Q˝ I/Eu C 2EuT .E 1 ˝˙ I
1 /Eu„ ƒ‚ …

Adv. penalty term

C EuT .QTP�1 ˝ I/.E 1 ˝˙ V
1 /Eu C EuT .E 1 ˝˙ V

1 /.P
�1Q˝ I/Eu„ ƒ‚ …

Left viscous penalty terms

: (5.40)

The viscous terms from the PDE and the left viscous penalty terms cancel if we
set ˙ V

1 D B.x1/. Pairing the second advective boundary term with the advective
penalty term for stability and choosing˙ I

1 D �ıV, where ı 2 R, leads to

@

@t

��Eu��2
P˝I D uT1 .1�2ı/vu1�uTmvum�2 
.Q˝ I/Eu�T OB.P�1˝I/ 
.Q˝ I/Eu� :

(5.41)

For ı � 1=2, i.e.,˙ I
1 � �V =2, the energy rate (5.41) shows that the scheme (5.38)

with variable B is stable as defined in Definition 1.3, as the norm of Eu decays with
time.

5.5.2.2 Spatially Constant Viscosity

For the case of spatially constant viscosity �.�/, we use compact second-derivative
SBP operators. We show that the choice of penalty matrices is similar to the case of
spatially varying viscosity �.x; �/ presented in the preceding section. The scheme
is given by

@Eu
@t

C .P�1Q˝ V /Eu D .P�1.�M C QBD/˝B/Eu

C .P�1 ˝ I/.E 1 ˝˙I
1 /.Eu � 0/C .P�1 ˝ I/.DT ˝ I/.E 1 ˝˙ V

1 /.Eu � 0/
C .P�1 ˝ I/.Em ˝˙ V

m/..D ˝ I/Eu � 0/: (5.42)

Proposition 5.4. The scheme in (5.42) with the parameters˙ V
1 D B, ˙ V

m D �B,
and˙ I

1 � �V =2 is stable in the sense of Definition 1.3.

Proof. Multiplying (5.42) by EuT .P ˝ I/ and using QB D �E 1 CEm, we get
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EuT .P ˝ I/
@Eu
@t

C
Advection term‚ …„ ƒ

EuT .Q˝ V /Eu D

D
Viscous terms‚ …„ ƒ

�EuT .M ˝B/Eu � EuT .E 1D ˝B/Eu C EuT .EmD ˝B/Eu C
Inviscid penalty term‚ …„ ƒ
EuT .E 1 ˝˙ I

1 /Eu
C EuT .DT ˝ I/.E 1 ˝˙ V

1 /Eu„ ƒ‚ …
Left viscous penalty term

C EuT .Em ˝˙ V
m/.D ˝ I/Eu„ ƒ‚ …

Right viscous penalty term

: (5.43)

As in the case of variable viscosity, setting ˙ V
1 D B and ˙ V

m D �B cancels the
viscous boundary terms of the ODE. Using the relation

EuT .Q˝ V /Eu D EuT
�
1

2
.QCQT /˝ V

�
Eu C EuT

�
1

2
.Q �QT /˝ V

�
Eu

„ ƒ‚ …
D0

D 1

2
EuT ..�E 1 CEm/˝ V /Eu; (5.44)

we arrive at

EuT .P ˝ I/
@Eu
@t

D �EuT .M ˝B/Eu C EuT .E 1 ˝ .V =2C˙ I
1 //Eu � EuT .Em ˝ V =2/Eu

(5.45)
Finally, setting˙ I

1 D �ıV as in Sect. 5.5.2.1 and adding the transpose of (5.45)
to itself, we get the energy estimate

@

@t

��Eu��2
.P˝I/ D uT1 .1 � 2ı/vu1 � uTmvum � EuT ..M CM T /˝B/Eu: (5.46)

Since M C MT and B are positive definite, the relation (5.46) with ı � 1=2,
i.e., ˙ I

1 � �V =2, proves that the scheme in (5.42) is stable since it satisfies the
conditions of Definition 1.3.

5.5.3 Eigenvalues of the Total System Matrix

The semidiscrete scheme (5.42) is an ODE system of the form

@Eu
@t

D Dtot Eu;

whose properties are determined by the complex-valued eigenvalues of the total
system matrix Dtot . The eigenvalues of Dtot must all have negative real parts for
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stability. The utmost right-lying eigenvalue determines the slowest decay rate, and
thus the speed of convergence to steady-state (see [16,17]). The total spatial operator
defined by the scheme (5.42) with˙ V

1 D B,˙ V
m D �B, and˙ I

1 D �V =2 is given
by the matrix

Dtot D .P�1 ˝ I/
��.QCE 1=2/˝ V C .DTE 1 �E 1D �M /˝B

�
:

(5.47)

The location in the complex plane of the eigenvalues of Dtot depends on the
distribution of �, the spatial step �x, and the ratio between viscosity and advective
speed.

Figure 5.6 depicts the eigenvalues ofDtot for uniform�.�/ 
 U Œ0; 0:04�, v D 1,
different orders of polynomial chaos, and number of spatial grid points. The fourth-
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Fig. 5.6 Eigenvalues of the total operatorD tot (including penalty terms). Comparison of different
orders of gPC (a) and (b), and different grid sizes (a), (c), and (d)
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order SBP operators have been used, and penalty coefficients are chosen according
to the stability analysis above. The eigenvalues all have negative real parts, showing
that the discretizations are indeed stable. Note that for an order of gPC expansion
M , there will be M C 1 eigenvalues for each one eigenvalue of the corresponding
deterministic system matrix. The groups ofM C 1 eigenvalues are clustered around
the corresponding eigenvalue of the deterministic system matrix. When the range of
possible viscosity values (uncertainty) is increased, the spreading of the eigenvalues
within each cluster increases. When the mean of the viscosity is increased,
the eigenvalues with a nonzero complex part will move farther away from the
origin.

The change of location of the eigenvalues with increasing order of gPC expansion
gives an idea how the time-step restriction changes. Figure 5.7 shows the eigenval-
ues of the total system matrix for uniform and lognormal � for first-order (left)
and fourth-order (right) gPC. For the random viscosities to be comparable, the
coefficients are chosen such that the first and second moments of the uniform and
the lognormal � match each other. For low-order polynomial chaos expansions, the
eigenvalues are close to each other and the systems are similar in terms of stiffness.
As the order of gPC expansion is increased, the scattering of the eigenvalues of
B resulting from lognormal � increases (� is unbounded). Hence, the stochastic
Galerkin system becomes stiffer with increasing order of gPC. The time-step
restriction for the uniform viscosity does not change significantly with the order
of gPC. The fourth-order operators are a factor of approximately 1:5 stiffer than the
second-order operators. Here, we calculate stiffness as
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Fig. 5.7 Eigenvalues of the total operator for m D 20 and different orders of gPC. Here the
viscosity � has mean h�i D 0:02 and variance Var.�/ D 3:33 � 10�5, and has uniform and
lognormal distributions. (a) M D 1. (b) M D 4
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stiff D max j�Dtot j
min j�Dtot j

;

where j�Dtot j denotes the absolute values of the complex eigenvalues of the total
spatial operatorDtot .

5.5.4 Convergence to Steady-State

As we let t ! 1, the problem (5.6) with B.x/ > 0 will reach steady-state, i.e.,
it will satisfy @uM=@t D 0. This situation can be formulated as a time-independent
problem with solution QuM , that satisfies

V
@ Qu
@x

D @

@x

�
B.x/

@ Qu
@x

�
;

Qu.x D 0/ D Qg0;
@ Qu.x/
@x

jxD1 D Qg1: (5.48)

By subtracting (5.48) from (5.6), we get the initial boundary value problem for the
deviation e D u � Qu from steady-state,

@e

@t
C V

@e

@x
D @

@x

�
B.x/

@e

@x

�
; (5.49)

e.0; t/ D 0;

@e.x; t/

@x
jxD1 D 0;

e.x; 0/ D uini t .x/ � Qu.x/ D e0.x/; (5.50)

where it has been used that as t ! 1, the boundary data must be independent
of time and vanish. The problem (5.49) can be semidiscretized analogously to the
numerical schemes presented in Sect. 5.5.2. Thus, with Dtot defined in (5.47), the
aim is to solve the initial value problem

@Ee
@t

D Dtot Ee; t > 0; (5.51)

Ee D Ee0.x/; t D 0; (5.52)

with the solution Ee.x; t/ D Ee0.x/ exp.D tot t/. The largest real component of the
eigenvalues of Dtot , denoted by max <.�Dtot /, must be negative; otherwise, the
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solution will not converge to steady-state. The more negative max <.�Dtot
/ is, the

faster the convergence to steady-state.
Although the boundary conditions may be altered in different ways to accelerate

the convergence to steady-state [17], we use the weak imposition of boundary
conditions described in Sect. 5.5.2 and compare the convergence to steady-state for
a diagonalizable stochastic Galerkin system with that of the stochastic collocation
method. The number of iterations to reach convergence to steady-state depends
on the size of the time-step and the exponential decay of the solution, governed
by the rightmost lying eigenvalue of the total system matrix, max <.�Dtot

/. For
each stochastic quadrature point of the advection-diffusion equation, there is a
maximal time-step as well as a maximal eigenvalue of the total system matrix.
For stochastic Galerkin, each scalar instance of the advection-diffusion equation
corresponds to one of the eigenvalues of B, and for stochastic collocation, each
instance corresponds to � evaluated at a stochastic quadrature point.

Explicit time integration together with various convergence acceleration tech-
niques such as residual smoothing, local time-stepping and multigrids are the most
common methods for reaching steady-state in flow calculations [9–11]. In this
simplified case, explicit time integration with the maximum possible time-step
possible illustrates this scenario.

Figure 5.8 depicts the maximum time-step and the maximum eigenvalue ofDtot

for each one instance of an advection-diffusion equation for different approximation
orders of the gPC and stochastic collocation. If diagonalization is possible, and for
sufficiently high orders of stochastic Galerkin, the scalar instances of the contin-
uous advection-diffusion equation with the most negative max <.�Dtot

/ converge
to steady-state faster than the corresponding instances of stochastic collocation.
However, the severe time-step limit of stochastic Galerkin implies that a large
number of time-steps is needed to reach steady-state numerically with explicit time-
stepping. It is not clear from Fig. 5.8 alone whether stochastic Galerkin or stochastic
collocation reaches steady-state numerically in the smaller number of time-steps.
This uncertainty will be investigated in Sect. 5.6.2.

For non-diagonalizable stochastic Galerkin, the local bounds of Fig. 5.8 on time-
steps and maximum eigenvalues no longer apply. Instead, the most severe local time-
step limit and eigenvalue will dominate the entire stochastic Galerkin system, with
deteriorating performance as a consequence. Stochastic collocation is still subject
to local time-step restrictions and local maximum eigenvalues, and is expected to
converge faster to steady-state than stochastic Galerkin.

A practical algorithm for steady-state calculations should be designed to be as
efficient as possible in terms of computational cost. For instance, one may use an
implicit/explicit scheme as devised in [30] for stochastic diffusion problems. What
we presented above is not an efficient algorithm for steady-state calculations; rather
it is an analysis of the properties of the semidiscrete system leading to convergence
to steady-state.
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Fig. 5.8 Convergence to steady-state depends on the limit on �t and max< ��Dtot

�
. These

quantities are plotted for lognormal viscosity �.�/ D 0:02C0:05 exp.�/, � � N .0; 1/. Stochastic
collocation (left) and stochastic Galerkin (right). (a) max<.�Dtot / for each quadrature point as a
function of the order of stochastic collocation. (b) max<.�Dtot / for the scalar advection-diffusion
equations (one for each eigenvalue .�B/) for different orders of stochastic Galerkin. (c) Time-
step limit for each quadrature point of stochastic collocation. (d) Time-step limit for each scalar
advection diffusion equation (diagonalizable system) of the stochastic Galerkin method

5.6 Numerical Results

In the numerical examples of this Section, we use a fourth-order Runge-Kutta
method for the time integration and the fourth-order accurate SBP-SAT scheme in
space. The matrix operators can be found in [15]. The scalar problem (5.1) with
spatially independent � is solved for the initial function
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u0.x; �/ D 
0p
4��.�/�

exp

�
� .x � .x0 C v�//2

4�.�/�

�
; 
0 > 0; x0 2 Œ0; 1�; � > 0;

for which the analytical solution at time t is given by

u.x; t; �/ D 
0p
4��.�/.t C �/

exp

�
� .x � .x0 C v.t C �///2

4�.�/.t C �/

�
: (5.53)

For the spatially varying �.x; �/, we employ the method of manufactured
solutions [20,21] where we get the same solution as in the case of spatially constant
�.�/ with the aid of an appropriate source function s.x; t; �/ in (5.1). The source
function is given by

s.x; t; �/

D .x � .x0 C v.t C �///.2�.x; �/ � �x.x; �/.x � .x0 C v.t C �////�x.x; �/u

4�2.x; �/.t C �/

C�2x.x; t/

2�.x; t/
u: (5.54)

The stochastic reference solution (5.53) is projected onto the gPC basis functions
using a high-order numerical quadrature. The order N of the quadrature is chosen
sufficiently large so that the difference between two successive reference solutions
of order N � 1 and N are several orders of magnitude smaller than the difference
between the solution from the numerical scheme and the reference solution.

Figure 5.9 illustrates the convergence as the spatial grid is refined for constant
order of gPC, M D 12 and N D 13 collocation points. For this high-order stochas-
tic representation, the theoretical fourth-order convergence rate is attained for the
mean using stochastic Galerkin and stochastic collocation. For the variance, the
stochastic truncation error becomes visible for fine spatial meshes with lognormal�
(see Fig. 5.9b). There is no significant difference in performance between stochastic
collocation and stochastic Galerkin for this test case.

5.6.1 The Inviscid Limit

The theoretical results for the advection-diffusion problem are based on � >

0. When � is arbitrarily close to 0 (but non-negative), the problem becomes
nearly hyperbolic. In the stochastic setting, this happens with nonzero probability
whenever �.�/ 2 Œ0; c�, c > 0. For small � the mesh must be very fine, otherwise
the mesh Reynolds number requirement discussed in Sect. 5.4 will be violated. This
is illustrated in Fig. 5.10 (numerical solution left and error right) for results obtained
with fourth-order SBP operators, v D 1 and � 
 U Œ0:01; 0:19�. Note that the error
is maximal close to the inviscid limit of � D 0:01. The solution (5.53) is a Gaussian



5.6 Numerical Results 73

51 101 201 401
10−8

10−7

10−6

10−5

10−4

10−3

10−8

10−7

10−6

10−5

10−4

10−3

m

a b
Uniform μ

Mean SG
1st coeff SG
Var SG
Mean SC
Var SC
4th order decay

51 101 201 401

m

Lognormal μ

Mean SG
1st coeff SG
Var SG
Mean SC
Var SC
4th order decay

Fig. 5.9 Convergence with respect to the spatial discretization using stochastic Galerkin (SG) and
stochastic collocation (SC). Plotted are norms of the absolute errors in mean, first coefficient and
variance with M D 12 order of generalized Legendre/Hermite chaos, and N D 13 quadrature
points for stochastic collocation. (a) Uniform � 2 .0:05; 0:15/. (b) Lognormal � D 0:05 C
0:05 exp .�/
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Fig. 5.10 Approximate solution withM D 3 order of Legendre chaos. (a) Solution at t D 0:005,
�x D 0:002. (b) Error of the approximate solution

in space for any fixed value of � and t and varies exponentially in x with the inverse
of�. Thus, spatial convergence requires a fine mesh for small�. Deterioration of the
convergence properties for small � is a well-known phenomenon for other problems
with a parabolic term, e.g., the Navier-Stokes equations in the inviscid limit.
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Fig. 5.11 Spatial convergence, lognormal viscosity, � D 0:02 exp.�/. T D 0:001 and � D 0:005.
Local numerical order of convergence indicated in the plots. (a) Stochastic Galerkin withM D 9.
(b) Stochastic collocation with 10 quadrature points

Figure 5.11 shows the convergence in space for � D 0:02 exp.�/, � 
 N .0; 1/,
using the stochastic Galerkin method (left) and the stochastic collocation method
(right). When � approaches zero, the gradients become steeper, which requires
finer resolution. The fourth-order convergence rate is not obtained for these coarse
meshes. As long as the stochastic basis is rich enough to represent the uncertainty,
the choice of stochastic collocation versus stochastic Galerkin has no significant
effect either on the rate of spatial convergence, or on the actual error. However,
the number of stochastic basis functions needed for a certain level of resolution
increases as � goes to zero; therefore, a simultaneous increase in spatial and
stochastic resolution is necessary for convergence in the inviscid limit.

The performance of stochastic Galerkin versus stochastic collocation depends
on the proximity to the inviscid limit. Figure 5.12 shows the convergence in the
order of gPC expansion (stochastic Galerkin) and the number of quadrature points
(stochastic collocation) for a fixed spatial grid. Two cases of shifted lognormal �
are compared; one with �min D 0:2 and the other with �min D 0:01. For these
cases, the stochastic Galerkin system can be diagonalized, so the cost for stochastic
Galerkin with an expansion order M � 1 is equivalent to the cost of stochastic
collocation with M quadrature points. If the problem is diffusion dominated,
stochastic Galerkin is the more efficient method. If the viscosity is close to zero with
some nonzero probability, the difference in performance decreases. Low viscosity
sharpens the solution’s features. The effect of this on the spatial convergence is seen
in the low-viscosity case (�min D 0:01) in Fig. 5.12b, where the spatial truncation
error becomes visible for high-order polynomial chaos expansions. Due to the
fixed number of spatial grid points, the convergence rate decreases for high-order
stochastic representations. With a sufficiently fine mesh, it is possible to show
exponential convergence rate for any given order of stochastic representation.
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Fig. 5.12 Stochastic Galerkin (SG) and stochastic collocation (SC) as a function of the order
of gPC/number of quadrature points. Fixed mesh of 201 spatial points. (a) Lognormal viscosity,
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Fig. 5.13 Minimum and maximum viscosity for different orders of stochastic Galerkin (SG) and
stochastic collocation (SC) for two different distributions of �. This corresponds to the minimum
and maximum �B for SG and to the minimum and maximum �.�/ for SC. (a) Lognormal viscosity,
� D 0:01C 0:2 exp.�/. (b) Lognormal viscosity, � D 0:2C 0:01 exp.�/

Both the stochastic collocation and diagonalizable stochastic Galerkin rely on a
set of scalar advection-diffusion problems, with the difference between the methods
lying in the choice of stochastic viscosity point values and the postprocessing used
to obtain statistics of interest. Figure 5.13 displays the difference in the range of
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the effective values of � for stochastic collocation and stochastic Galerkin (this
corresponds to the range of eigenvalues ofB for stochastic Galerkin). From a purely
numerical point of view, stochastic Galerkin poses an additional challenge compared
to stochastic collocation in that a wider range of scales of diffusion must be handled
simultaneously, as shown in Fig. 5.13. If we were to choose the eigenvalues of
the matrix B as the collocation points, the two methods would differ only in the
postprocessing.

5.6.2 Steady-State Calculations

Let the time of numerical convergence to steady-state be defined as the time Tss
when the discretized residual Ee satisfies

��Ee��
2;�x

D �
�x

Pm
iD1.e.xi ; Tss//2

�1=2
<

tol , where tol is a numerical tolerance to be chosen a priori. When � is sufficiently
large so that diffusion is the dominating feature compared to advection, larger values
of the range of � imply that Tss decreases, and steady-state is reached sooner. The
number of iterations to steady-state (i.e., the number of time-steps Tss=�t for a
uniform �t) is inversely proportional to �t . On the other hand, the limit on �t
decreases with �. Hence, there is a trade-off in the number of iterations to steady-
state between the size of time-step and the eigenvalues or quadrature point values of
�. In Fig. 5.14, this trade-off is explored for a shifted lognormal� D c1C c2 exp.�/
with different choices of c1 and c2.

From the previous analysis and Figs. 5.8 and 5.13, we have observed how the
eigenvalues grow with the order M of gPC. For the most advection-dominated
case, Fig. 5.14a, the number of iterations grows superlinearly with the number
of quadrature points in the stochastic collocation approach. The same growth
also occurs for up to order M D 8 of stochastic Galerkin. For this case, the
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Fig. 5.14 Number of iterations to steady-state for different lognormal viscosity � D c1 C
c2 exp.�/ using stochastic Galerkin and stochastic collocation. Here tol D 10�6. (a) � D
0:02C 0:005 exp.�/. (b) � D 0:1C 0:01 exp.�/. (c) � D 2C 0:2 exp.�/
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fastest convergence to steady-state is obtained for stochastic collocation, where
the range of possible � values is narrower than in the case of stochastic Galerkin
(see Fig. 5.13). In the more diffusive case, i.e., Fig. 5.14b, the relative speed-up
for stochastic collocation versus stochastic Galerkin is less pronounced. In the
most diffusive case considered here, Fig. 5.14c, the number of stochastic Galerkin
iterations required to steady-state is a sublinear function of the order of gPC.
In this case, the largest eigenvalues �B yield advection-diffusion equations that
converge within a relatively short time Tss , which compensates for a severe time-
step restriction. For these diffusive cases, stochastic Galerkin is more efficient than
stochastic collocation. The stochastic Galerkin problem has been diagonalized to
make the computational cost per iteration similar. In summary, Fig. 5.14 shows
that stochastic collocation converges faster than stochastic Galerkin to steady-state
for problems that are advection dominated or moderately diffusive. For diffusion-
dominated flows, stochastic Galerkin converges faster to steady-state than does
stochastic collocation.

5.7 Summary and Conclusions

A stochasic Galerkin formulation of the advection-diffusion equation is a relatively
simple linear problem. It provides a controlled, but sufficiently complex, setting for
demonstration of numerical phenomena that need to be addressed in more complex
linear and nonlinear problems. In this Chapter, summation-by-parts operators and
weak boundary treatment have been applied to a stochastic Galerkin formulation of
the advection-diffusion equation. We have presented conditions for monotonicity
for stochastic, but homogeneous in space, viscosity, and stable schemes for the
more general case of spatially varying and uncertain viscosity. Stochastic Galerkin
projection should preserve well-posedness, as shown for the projection of the
viscosity where we require the viscosity matrix B to be positive semidefinte. If B
has a negative eigenvalue, the problem is ill-posed. A corresponding problem exists
for non-intrusive methods, where the stochastic quadrature or collocation points
must be chosen such that the viscosity remains non-negative for all evaluations of
the PDE.

Violation of the derived upper bound on the mesh Reynolds number may lead
to spurious oscillations, but it may also result in less obviously recognizable errors
that are visible in different ways, e.g., as incorrect predictions of regions of large
variation. The limit on the mesh Reynolds number gets more severe for higher-order
spatial discretization operators. This limit is also a function of the truncation order
of the gPC expansion, becoming more restrictive for more accurate expansions.

In the case of spatially independent viscosity as well as spatially varying
viscosity, the advection-diffusion stochastic Galerkin system can be diagonalized
under some conditions. This diagonalization results in a number of uncoupled
problems, and the numerical cost and performance are very similar to those of non-
intrusive methods such as pseudospectral projection and stochastic collocation.
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For diffusive problems, the stochastic Galerkin formulation leads to better
accuracy than does stochastic collocation. For steady-state calculations, stochastic
collocation is faster for advection-dominated cases and stochastic Galerkin is faster
for diffusive cases. When diagonalization of the viscosity matrix B is possible, the
problem should be solved in a non-intrusive way to reduce the computational cost.

SBP operators are suitable for smooth problems like the advection-diffusion
equation investigated here, but many real-world flow problems contain regions of
sharp gradients or discontinuities. For these problems, one may use hybrid schemes
consisting of shock-capturing methods in regions of strong variation, coupled
through weak interfaces with SBP schemes in smooth regions. Such methods will
be investigated in the context of a two-phase problem in Chap. 9.

5.8 Supplementary Codes

Matlab scripts for the advection-diffusion equation with the stochastic Galerkin
method and summation-by-parts operators can be downloaded from [http://extras.
springer.com]. We encourage the reader to experiment with the scripts as a
complement to the exercises.

To get started with the codes, simply run the script advection_diffusion_
main.m in Matlab. Choose mod=’lege’ to simulate uniformly distributed
viscosity using Hermite polynomials, and set mod=’herm’ to simulate lognormal
viscosity with Legendre polynomials.

To maintain stability, any changes in the problem parameters should follow the
derivations of this chapter. The script SBP_operators.m contains summation-
by-parts operators of orders 2,4,6 and 8 and is a generic implementation that
may be used for other problems of interest. The scripts hermite_chaos.m
and legendre_chaos.m define the inner triple products

˝
 i j k

˛
of univariate

Hermite and Legendre polynomials, respectively. By replacing these scripts with the
corresponding triple products for other basis functions, other classes of polynomial
chaos can be used. Note that initial and boundary conditions are in general specific
to the choice of basis functions.

5.9 Exercises

5.1. Consider the problem (5.1) in which � is deterministic (i.e., � D �.x/ only)
and V is uncertain (i.e. v D v.�/). Derive the equations for the gPC coefficients and
show that the arguments illustrated in Sect. 5.1.2 apply to this case as well. What
are the implications in terms of stability? Is (5.27) still valid (with the appropriate
definitions)?

http://extras.springer.com
http://extras.springer.com
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5.2. Solve numerically the advection-diffusion problem reported in Fig. 5.2 using a
constant value of � D 0:1 and an uncertain convection speed v D U Œ0:95; 1:05�.

5.3. Consider the case in which both the convection speed and the diffusion
coefficient are uncertain but perfectly correlated � D �, v D 0:9 C �. Assume
� D U Œ0:05; 0:15�. Study again the stability characteristics in terms of Remesh.
Solve the problem in the previous exercise and compare the results.

5.4. Extend the stochastic Galerkin framework to multiple stochastic dimensions
by introducing products of single-dimensional polynomials. Do this by generalizing
the computation of inner triple products

˝
 i j k

˛
defined for a single stochastic

dimension in (5.18), to hold for multiple dimensions.
Hint: you can use the provided Matlab script as a starting point, and add a loop

over the single-dimension inner products to account for multiple dimensions.

5.5. The numerical results presented are all obtained by an explicit time integration
scheme (fourth-order Runge-Kutta). For the steady-state problem in Sect. 5.5.4,
formulate an implicit time integration method. Use the supplied Matlab codes for the
advection-diffusion equation as a template and implement the implicit integration
method. How do the implicit and explicit time integration methods compare in
simulation time when advancing towards steady-state?
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Chapter 6
Nonlinear Transport Under Uncertainty

Burgers’ equation is a non-linear model problem from which many results can be
extended to other hyperbolic systems, e.g., the Euler equations. In this chapter, a
detailed uncertainty quantification analysis is performed for the Burgers’ equation;
we employ a spectral representation of the solution in the form of polynomial chaos
expansion. The PDE is stochastic as a result of the uncertainty in the initial and
boundary values. Stochastic Galerkin projection results in a coupled, deterministic
system of nonlinear hyperbolic equations from which statistics of the solution can
be determined.

Previous investigations on the effect of uncertainty on Burgers’ equation focused
on the location of the transition layer of a shock discontinuity arising in simulations
of the Burgers’ equation with nonzero viscosity. Small, one-sided perturbations
imply large variation in the location of the transition layer, so-called supersensitivity
[15], which has been shown to be a problem in deterministic as well as stochastic
simulations. The results from the polynomial chaos approach were accurate and the
method was faster than the Monte Carlo method [14, 15]. Burgers’ equation with a
stochastic forcing term has also been investigated and compared to standard Monte
Carlo methods [6].

In this chapter, based on [12], we perform a fundamental analysis of the Burgers’
equation and develop a numerical framework to study the effect of uncertainty
in the boundary conditions. With the assumption that the uncertainty of the
boundary data has a Gaussian distribution we allow the occurrence of unbounded
solutions. Assuming that the boundary data resemble the Gaussian distribution
but are bounded to a sufficiently large range does not alter the numerical results.
Convergence is proven by a suitable choice of functional space.

In order to ensure stability of the discretized system of equations, SBP operators
and weak imposition of boundary conditions [2, 10, 11] are used to obtain energy
estimates, as demonstrated in Chap. 5. The system is expressed in a split form that
combines the conservative and non-conservative formulation [9]. A particular set of
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artificial dissipation operators [8] and the simultaneous approximation term (SAT)
technique [1] for boundary treatment are used to enhance stability close to the shock.
The discretization method is based on a fourth-order central difference operator in
space and a fourth-order Runge-Kutta method in time. The SBP operators ensure
stable solutions, but the allowed time-step decreases with increasing gPC expansion
as a result of the eigenvalues growing with the order of the polynomial order (i.e.,
the size of the system).

An analytical solution is derived for a discontinuous and uncertain initial
condition: the expectation and variance of the solution are shown to be smooth
functions, whereas the coefficients of truncated polynomial chaos expansions are
discontinuous. Analysis of the characteristics of the truncated system also shows
that the boundary values are time-dependent and suggests a way of imposing
accurate boundary conditions.

In this chapter we also investigate to what extent low-order approximations
can be used when appropriate high-order boundary data (i.e., data with known
high-order moments) are missing. Due to the lack of boundary data as well as to
the computational cost of higher-order polynomial chaos simulations, low-order
approximations with appropriate utilization of available data are a viable option.
Because of the hyperbolic nature of the problem, information is traveling with finite
but unknown speed through the domain and will eventually affect the boundary
solution values.

By the convergence properties of the polynomial chaos series expansion, higher-
order boundary terms are expected to decrease rapidly. On the other hand, although
small, these coefficients have a relatively large impact on the system eigenvalues
and might thus be crucial for accurate boundary treatment. In addition, there
are discontinuities in the stochastic dimension (we assume only one stochastic
dimension), which deteriorates the convergence. The overall effect of the higher-
order boundary coefficients is not clear, which provides the impetus for the
investigation of this chapter.

6.1 Polynomial Chaos Expansion of Burgers’ Equation

Consider the inviscid Burgers’ equation in non-conservative form

@u

@t
C u

@u

@x
D 0; 0 � x � 1: (6.1)

The solution u.x; t; �/ is represented as a polynomial chaos series in the set of
Hermite polynomials f i g1iD0 of a standard Gaussian random variable � 
 N .0; 1/.
The gPC series u.x; t; �/ D P1

iD0 ui i .�/ is inserted into (6.1), which yields
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1X
iD0

@ui
@t
 i .�/C

0
@ 1X
jD0

uj j .�/

1
A
 1X
iD0

@ui
@x
 i .�/

!
D 0: (6.2)

A stochastic Galerkin projection is performed by multiplying (6.2) by  k.�/ for
non-negative integers k and integrating over the probability domain˝ with respect
to the Gaussian measure, i.e., with the weight function Qp.�/ D exp.��2=2/=p2� .
The orthogonality of the basis polynomials then yields a system of deterministic
equations. By truncating the number of polynomial chaos coefficients to a finite
order M , the solution is projected onto a finite dimensional space. The result is a
symmetric system of deterministic equations,

@uk
@t

C
MX
iD0

MX
jD0

ui
@uj
@x

h i j ki D 0 for k D 0; 1; : : : ;M: (6.3)

For simplicity of notation, Eq. (6.3) can be written in matrix form as

uMt CA.uM/uMx D 0 or uMt C 1

2

@

@x
.A.uM /uM/ D 0; (6.4)

where the matrixA.uM/ is defined by ŒA.uM/�jk D PM
iD0h i j kiui .

6.1.1 Entropy and Energy Estimates for theM D 2 Case

As an illustration, the 3 	 3 system given by (6.4) and truncation of the expansion
to M D 2 with a normalized Hermite polynomial basis is

0
@u0

u1
u2

1
A
t
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0
@ u0 u1 u2

u1 u0 C p
2u2
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2u1
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@u0
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1
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x

D 0:

Note that the matrix A.uM/ is symmetric. Let f D 1
2
A.u/u denote the flux

function of the M D 2 system and introduce the entropy flux F D uTf � G,
where

G D 1

6
u30 C 1

2
u0u

2
1 C 1

2
u0u

2
2 C

p
2

2
u21u2 C

p
2

3
u32;

i.e.,
�
@G
@u

�T D f . Then, introducing the convex entropy function h D 1
2
uT u, and

assuming smoothness, we obtain

h.u/t C F.u/x D 0:
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Anticipating the more general time-stability analysis of Sect. 6.4, we now consider
a semidiscretized formulation on an equidistant mesh with cell size �x and
solution uj D u.xj / D .u0.xj ; t/ u1.xj ; t/ u2.xj ; t//T . With the straight-line
parameterization Ouj .�/ D uj C �.ujC1 � uj /, � 2 Œ0; 1�, and flux Of jC1=2 DR 1
0 f . Ouj .�//d� , the semidiscrete formulation is given by

d Ouj
dt

C
OfjC1=2 � Ofj�1=2

�x
D 0:

Multiplication by �x OuTj and summing with respect to the grid index j , gives the
semidiscrete energy estimate

d

dt

0
@1
2
�x

X
j

OuTj Ouj
1
A D �x

X
j

OuTj
d Ouj
dt

D �
X
j

OuTj
� OfjC1=2 � Ofj�1=2

	
D

X
j

� OujC1 � Ouj
�T OfjC1=2 C B:T: D

X
j

GjC1 �Gj C B:T: D B:T:; (6.5)

which is an expression involving the boundary terms (B.T.) only. For the M D 2

case, we define

u2
k;jC 1

2

D u2k;jC1 C uk;juk;jC1 C u2k;j
3

; (6.6)

uk;jC 1
2
ul;jC 1

2
D 2uk;jul;j C uk;jul;jC1 C uk;jC1ul;j C 2uk;jC1ul;jC1

6
; (6.7)

for k; l D 0; 1; 2. Then, the numerical flux function is given by

Of jC 1
2

D

2
664

1
2

�
u2
0;jC 1

2

C u2
1;jC 1

2

C u2
2;jC 1

2

	
u0;jC 1

2
u1;jC 1

2
C p

2u1;jC 1
2
u2;jC 1

2

u0;jC 1
2
u2;jC 1

2
C
p
2
2

u2
1;jC 1

2

C p
2u2

2;jC 1
2

3
775 :

In Sect. 6.4, stability analysis is performed for the case of general order of
expansionM .

6.1.2 Diagonalization of the System Matrix A.uM/

For purposes such as analysis of well-posedness, design of dissipation operators
and analysis of characteristics, the matrix A.uM / is diagonalized. This is possible
for any uM 2 R

MC1 since A.uM/ is always symmetric and thus has real-valued
eigenvalues and eigenvectors.
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For any given u 2 R
MC1, let � denote a diagonal matrix with the eigenvalues

�i of A.u/ on the main diagonal and let V be the matrix where the columns are the
linearly independent eigenvectors. Then A.uM/ D V �V T . Using the eigenvalue
decomposition and momentarily assuming a linearized Burgers’ equation (i.e., the
speed of propagation of the waves is assumed to be constant), we obtain the
diagonalized system

wMt C�wMx D 0;

where wM D V T uM . Assuming nonzero eigenvalues, � can be split according to
the sign of its eigenvalues as � D �C C��. Introducing the split scheme into the
system of equations gives

wMt C�CwMx C��wMx D 0: (6.8)

This form will be used in the following sections.

6.2 A Reference Solution

In order to quantify the accuracy of the numerical methods, we need an analytical
solution to our problem. Consider the stochastic Riemann problem with an initial
shock of uncertain strength located at x0 2 Œ0; 1�

u.x; 0; �/ D
�

uL D aC p.�/ if x < x0
uR D �a C p.�/ if x > x0

u.0; t; �/ D uL; u.1; t; �/ D uR
� 2 N .0; 1/:

(6.9)

As the most intuitive choice of polynomial chaos basis with regard to the
uncertainty in the initial and boundary conditions, the set of Hermite polynomials
will be used. Here we will only consider p.�/ D b� as a first-order stochastic
polynomial and a is a constant. By the Rankine-Hugoniot condition, the shock speed
is given by s D b�, so for any bounded � the shock location xs is

xs D x0 C tb�:

The solution (for any bounded �) is given by

u.x; t; �/ D
�

uL if x < x0 C tb�

uR if x > x0 C tb�:
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Since the analytical solution is known, the coefficients of the complete gPC
expansion (M ! 1) can be calculated for any given i , x and t . We have

ui .x; t/ D
Z 1
�1

u.x; t; �/ i .�/ Qp.�/d� D aıi0 C bıi1 � 2a

Z �s

�1
 i Qp.�/d�;

(6.10)
where we have defined �s D .x � x0/=.bt/ and Qp.�/ D exp.��2=2/=p2� denotes
the Gaussian probability density function. Note that the limit of integration �s.x; t/
is not a random variable itself. Using the recursion relation for normalized Hermite
polynomials

 i.�/ D 1p
i

�
� i�1.�/ �  0i�1.�/

�
;

(6.10) can be written

ui .x; t/ D bıi1 C a

r
2

i�
 i�1.�s/e��

2
s =2; (6.11)

for i � 1. Differentiating (6.11) with respect to x and t results in

@ui
@x

D @ui
@�s

@�s

@x
D �2a i .�s.x; t// Qp.�s.x; t// 1

bt
;

and

@ui
@t

D @ui
@�s

@�s

@t
D 2a i .�s.x; t// Qp.�s.x; t//x � x0

bt2
;

from which it is clear that ui .x; t/ is continuous in x and t for x 2 Œ0; 1� and
t > 0. (The same is true for u0.) With an appropriate choice of initial function, the
coefficients would also be continuous for t D 0. (For treatment of a similar case of
smooth coefficients of a discontinuous solution, see [3]).

The effect of the introduction of a finite series in representing the solution will
be studied next in terms of comparisons to the expected value and the variance of
the analytical solution, given by

E.u/ D a

 
1 � 2

Z �s .x;t/

�1
e��2=2p
2�

d�

!
; (6.12)

and

Var.u/ D b2 C 4ab
e��2s =2p
2�

C 4a2
Z �s

�1
e��2=2p
2�

d� � 4a2
 Z �s

�1
e��2=2p
2�

d�

!2
:

(6.13)
These expressions can be generalized for different boundary conditions and polyno-
mial bases.
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6.2.1 Regularity Determined by the gPC Expansion Order

The solution of (6.1) is obtained through the evaluation of the gPC series with the
coefficients given by (6.10). Figure 6.1 shows the solution obtained by retaining only
(a) the zeroth- and (b) first-order gPC expansion terms. As a contrast to these low-
order approximations, the true solution is discontinuous, as shown in (c). However,
due to the nonlinearities, the finite order M solution of the truncated stochastic
Galerkin system (6.4) is not equal to the order M solution of the original problem
defined by the coefficients (6.10). The exact solutions of the zeroth-, first- and
second-order stochastic Galerkin systems are shown in Fig. 6.2. Unlike the smooth
coefficients of the original problem, the solutions (and coefficients) of the truncated
systems are discontinuous.

The dependence of smoothness on the order of gPC expansion is illustrated in
Fig. 6.3, where the expectation is shown as a function of space for different orders of
gPC expansion and fixed time t D 0:5. For M D 0; 1; 2, there are, respectively, 1,2
or 3 solution discontinuities of the expectations. In Fig. 6.3d, theM D 3 expectation
appears to exhibit an expansion wave.
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Fig. 6.1 Exact solution u of the infinite order system as a function of x and � at t D 0:5 for
different orders of gPC. a D 1, b D 0:2. (a) M D 0. (b) M D 1. (c) M D1
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Fig. 6.2 Exact solution u of the truncated system as a function of x and � at t D 0:5 for different
orders of gPC. a D 1, b D 0:2. (a) M D 0. (b) M D 1. (c) M D 2
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Fig. 6.3 Expectation u0 as a function of x at t D 0:5 for different orders of gPC. a D 1, b D 0:2.
(a) M D 0. (b) M D 1. (c) M D 2. (d) M D 3. (e) M D1

6.3 Well-Posedness

The solution of (6.4) requires initial and boundary data. The data depend on the
expected conditions and the distribution of the uncertainty introduced; the stochastic
Galerkin procedure is again used to determine the polynomial chaos coefficients
for the initial and boundary values. In this section we will show that the truncated
system resulting from a truncated gPC expansion is well-posed if the correct
boundary conditions are given.

In the rest of this section, we assume uM to be sufficiently smooth. Consider the
continuous problem in split form [13]

uMt C ˇ
@

@x

�
A

2
uM
�

C .1 � ˇ/AuMx D 0; 0 � x � 1: (6.14)

Proposition 6.1. The split form of Burgers’ equation (6.14) with the weight ˇ D
2=3 is strongly well-posed in the sense of Definition 1.2

Proof. Multiplication of (6.14) by .uM /T and integration over the spatial domain
˝phys D Œ0; 1� yields

Z 1

0

.uM/T uMt dx C ˇ

Z 1

0

.uM/T
@

@x

�
A

2
uM
�
dx C .1 � ˇ/

Z 1

0

.uM /TAuMx dx D 0:

Integration by parts gives

1

2

@

@t

��uM
��2 D �ˇ

2
Œ.uM/TAuM �xD1xD0 C ˇ

2

Z 1

0

.uMx /
TAuMdx

�.1 � ˇ/
Z 1

0

.uM/TAuMx dx: (6.15)
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We choose ˇ such that

ˇ

2
� .1 � ˇ/ D 0 , ˇ D 2

3
;

which is inserted into (6.15), yielding

@

@t

��uM
��2 D �2

3
Œ.uM/TAuM �xD1xD0

D 2

3

�
.wM0 /

T .�C0 C��0 /wM0 � .wM1 /
T .�C1 C��1 /wM1

�
; (6.16)

where A.uM/ has been diagonalized at the boundaries according to Sect. 6.1.2.
Boundary conditions are imposed on the resulting incoming characteristic variables
which correspond to �C for x D 0 and �� for x D 1. On the left boundary, the
conditions are set such that,

.wM0 /i D .V T uM.x D 0//i D .gML /i if �i > 0

and on the right boundary,

.wM1 /i D .V T u.x D 1//i D .gMR /i if �i < 0:

The boundary norm is defined as

��wM
��2
	phys

D .wM/T�CwM � .wM/T��wM D .wM/T .�C C j��j/wM

D .wM/T j�j wM for x D 0; 1: (6.17)

Inserting the boundary conditions and integrating (6.16) over time gives

��uM
��2
˝phys

C 2

3

Z t

0

��wM0
��2
	phys

C ��wM1
��2
	phys

d� �

� ��uM .t D 0/
��2
˝phys

C 4

3

Z t

0

��gML ��2	phys
C ��gMR ��2	phys

d�: (6.18)

Since
��wM

�� � ��V T
�� ��uM

�� � C
��uM

�� for some C < 1, the estimate (6.18)
is in the form of Eq. (1.3) and the problem is strongly well-posed according to
Definition 1.2.

Remark 6.1. The assumption that uM is smooth is actually true for an infinite
number of terms of the polynomial chaos expansion and t > 0.
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6.3.1 The Importance of Boundary Conditions

We have seen that the imposition of suitable boundary conditions is crucial for
analysis of well-posedness. In fact, we even formulated the problem as one of
finding the correct boundary conditions for a given problem, rather than starting
from given boundary conditions and then trying to prove well-posedness. Whether
we start from a linear or a nonlinear problem, a scalar equation or a system, the
procedure is the same: identify ingoing and outgoing characteristics, then impose
boundary conditions on ingoing waves such that growth terms are controlled. The
situation is analogous for the discrete system. In order to maintain stability – the
discrete analogue of well-posedness, a correct number of boundary conditions must
be imposed.

When nonlinear waves are crossing the boundaries of the spatial domain of
interest, the Jacobian of the flux function may change and lead to an increased
or decreased number of ingoing waves. The result is that the number of boundary
conditions changes. It is therefore important to keep track of the evolution of
the system along the boundaries. In general, one has to evaluate the Jacobian
numerically to keep track of the in- and outgoing waves.

The Jacobian at a boundary point of interest may be positive definite for certain
orders of gPC expansions, but not for others. This phenomenon was investigated in
detail in [5] and also pertains to linear problems since it determines the number of
boundary conditions required for well-posedness.

6.4 Energy Estimates for Stability

In order to ensure stability of the discretized system of equations, SBP operators
and weak imposition of boundary conditions [1, 2, 10, 11] are used to obtain energy
estimates. A particular set of artificial dissipation operators [8] are used to enhance
stability close to the shock. Burgers’ equation has been discretized with a fourth-
order central difference operator in space and a fourth-order Runge-Kutta method
in time. Using the provided scripts, the reader can set the spatial order of accuracy.
For stability, artificial dissipation is added based on the local system eigenvalues.
The order of accuracy is not affected by the addition of artificial dissipation.

The case of interest corresponds to sufficiently low artificial dissipation such that
the dominating error is due to truncation of the polynomial chaos expansion. General
difficulties related to solving hyperbolic problems and nonlinear conservation laws
with spectral methods, to which the gPC methods belong, are discussed in [4].

In the following we use the notation and definitions of the SBP operators
introduced in Chap. 4. To obtain stability, we will use the penalty technique [8] to
impose boundary conditions for the discrete problem [12]. Assume an equidistant
spatial mesh with m mesh points x1 D 0; x2 D �x; : : : ; xm D 1, where
�x D 1=.m � 1/. Let E 1 D .eij / where e11 D 1; eij D 0;8i; j ¤ 1 and
Em D .eij / where emm D 1; eij D 0; i; j ¤ m. Define the block diagonal
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matrix Ag where the diagonal blocks are the symmetric matrices A.uM .xi //,
i D 1; : : : ; m. With penalty matrices ˙L and ˙R corresponding to the left and
right boundaries, respectively, the discretized system can be expressed as

Eut CAg.P
�1Q˝ I/Eu D .P�1 ˝ I/.E 1 ˝˙L/.Eu � EgL/

C.P�1 ˝ I/.Em ˝˙R/.Eu � EgR/: (6.19)

Similarly, the conservative system in (6.4) can be discretized as

Eut C 1

2
.P�1Q˝ I/AgEu D .P�1 ˝ I/.E 1 ˝˙L/.Eu � EgL/

C.P�1 ˝ I/.Em ˝˙R/.Eu � EgR/: (6.20)

Neither of the formulations (6.19) nor (6.20) will lead to an energy estimate.
However, the non-conservative and conservative forms can be combined to get an
energy estimate by using the summation by parts property. The split form is given by

Eut C ˇ
1

2
.P�1Q˝ I/AgEu C .1� ˇ/Ag.P

�1Q˝ I/Eu

D .P�1 ˝ I/


.E 1 ˝˙L/.Eu � EgL/C .Em ˝˙R/.Eu � EgR/

�
: (6.21)

Proposition 6.2. The linear combination of conservative and non-conservative
semidiscretization (6.21) is stable with the weight ˇ D 2=3.

Proof. Multiplication of (6.21) from the left by EuT .P ˝ I/ and then addition of the
transpose of the resulting equation yields

@

@t

��Eu��2
.P˝I/ C ˇ

2
EuT �.Q˝ I/Ag CAg.Q

T ˝ I/
� Eu

C.1 � ˇ/EuT �Ag.Q˝ I/C .QT ˝ I/Ag

� Eu
D 2EuT .E 1 ˝˙L/.Eu � EgL/C 2EuT .Em ˝˙R/.Eu � EgR/: (6.22)

With the choice ˇ D 2=3, the energy methods yields

@

@t

��Eu��2
.P˝I/ D 2

3

�
EuTxD0AEuxD0 � EuTxD1AEuxD1

	
C 2EuTxD0˙L.EuxD0 � EgL/

C2EuTxD1˙R.EuxD1 � EgR/: (6.23)

Restructuring (6.23) yields

@

@t

��Eu��2
.P˝I/ D EuTxD0

�
2

3
A C 2˙L

�
EuxD0 � 2EuTxD0˙L EgL

�EuTxD1
�
2

3
A � 2˙R

�
EuxD1 � 2EuTxD1˙R EgR: (6.24)
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Stability is achieved by a proper choice of the penalty matrices ˙L and ˙R. For
that purpose,A is split according to the sign of its eigenvalues as

A D AC CA� whereAC D V T�CV and A� D V T��V : (6.25)

Choose ˙L and ˙R such that 2
3
AC C 2˙L D � 2

3
AC , ˙L D � 2

3
AC and

2
3
A� � 2˙R D 2

3
A� , ˙R D 2

3
A�. We now get the energy estimate

@

@t

��Eu��2
.P˝I/

D �2
3
.EuxD0 � EgL/TAC.EuxD0 � EgL/C 2

3

h
EuTxD0A�EuxD0 C EgTLAC EgL

i

�2
3

h
EuT.xD1/ACEu.xD1/ C EgTRA� EgR

i
C 2

3
.Eu.xD1/ � EgR/TA�.Eu.xD1/ � EgR/;

(6.26)

which shows that the system is strongly stable according to Definition 1.4.

Remark 6.2. In the numerical calculations we use (6.20) for correct shock speed
(see [7]).

In the analysis of well-posedness and stability above we have assumed that
we have perfect knowledge of boundary data, but in practice this is rarely true.
Limited knowledge forces us to rely on estimates to assign boundary data. We will
investigate the effect of that problem in Sect. 7.1.

6.4.1 Artificial Dissipation for Enhanced Stability

The complete difference approximation (6.20) augmented with artificial dissipation
of the form described in Sect. 4.2.5 is given by

.P ˝ I/Eut C 1

2
.Q˝ I/AgEu � .E 1 ˝˙L/.Eu � EgL/� .Em ˝˙R/.Eu � EgR/ D

D ��x
X
k

. QDT

k ˝B/Bw;k. QDk ˝ I/Eu; (6.27)

whereBw;k is a possibly non-constant weight matrix to be determined and k D 1; 2

for the fourth-order accurate SBP operator.
Determining Bw;k in (6.27) requires estimates of the eigenvalues �j of A for

j D 0; : : : ;M ; the largest eigenvalue is typically sufficient. For the system of
equations generated by polynomial chaos expansion of Burgers’ equation, max j�j is
not always known. Since the only nonzero polynomial coefficients on the boundaries
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are u0 and u1 and since the polynomial chaos expansion converges in the L2.˝;P/

sense, a reasonable approximation of the maximum eigenvalue of A with standard
(i.e., non-normalized) Hermite polynomials is

j�jmax � ju0j CM ju1j ; (6.28)

where M is the order of PC expansion. This estimate is justified by the eigenvalue
analysis performed in the next section, as well as by computational results. For
the dissipation operators to be combined with fourth-order SBP operators in the
simulations, we use

Bw;1 D diag

�
.ju0j CM ju1j/

6�x

�
; Bw;2 D diag

�
.ju0j CM ju1j/

24�x

�
: (6.29)

The second-order dissipation operator is only applied close to discontinuities. Using,
say, sixth-order SBP operators, we would also need to defineBw;3, and analogously
for higher-order operators.

6.5 Time Integration

The increase in simulation cost associated with higher-order systems is attributable
to a number of factors. The size of the system depends on both the number of terms
in the truncated PC expansion and the spatial mesh size.

For the Kronecker productA ˝B the relation

�
i;j

A˝B D �iA�
j

B (6.30)

holds, where the indices i; j denote all the eigenvalues of A and B, respectively.
This enables a separate analysis of the eigenvalues corresponding to the PC
expansion and the eigenvalues of the total spatial difference operatorD. Assuming
constant coefficients, the maximum system eigenvalue is limited by

�max � .max �D/.max �A/: (6.31)

The estimate (6.31) in combination with (6.28) will be used to obtain estimates of
the time-step constraint.

6.6 Eigenvalue Approximation

Analytic eigenvalues for the matrixA can be obtained only for a small number of PC
coefficients and therefore approximations are needed. Even though the eigenvalues
of interest in this chapter can be calculated exactly for every particular case, a
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general estimate is of interest. The approximation of the largest eigenvalue of the
system matrix A is calculated from the solution values on the boundaries, which
are the only values known a priori. For smooth solutions with boundary conditions
where the PC coefficients ui are equal to 0 for i > 1, the higher-order coefficients
tend to remain small compared to lower-order coefficients (strong probabilistic
convergence). For solutions where a shock is developing, higher-order polynomial
chaos coefficients might grow and the approximation of the largest eigenvalue based
on boundary values is likely to be a less accurate estimate.

To obtain estimates of the eigenvalues, the system of equations can be written

uMt C
 

MX
iD0
Aiui

!
uMx D 0; (6.32)

where A.uM/ D PM
iD0Aiui is a linear combination of the PC coefficients. The

eigenvalue approximation used here is given by

max�A D max
v2RMC1

vT .
P
Aiui /v

vT v
�

MX
iD0

max
vi2RMC1

vTi Aivi
vTi vi

jui j

D
X
i

jui j max j�Ai j : (6.33)

Since A0 D I , this approximation coincides with the exact eigenvalues for a
boundary value with ui D 0 for i > 1. This can be seen by observing that if x1 is an
eigenvector with corresponding eigenvalue � for the matrix A1, then A1x1 D �x1
and

.A1u1 CA0u0/x1 D u1�x1 C u0Ix1 D .u1�C u0/x1; (6.34)

so u1� C u0 and x1 are an eigenvalue-eigenvector pair of the matrix A D
A0u0 C A1u1. This shows that (6.28) is an appropriate eigenvalue approximation
for problems where only u0 and u1 are nonzero on the boundaries.

For a given boundary condition, the maximum eigenvalue of A0 corresponding
to the deterministic part of the condition does not change with increasing number of
PC coefficients. However, the largest eigenvalue contribution from A1 grows with
the number of PC coefficients.

The eigenvalue approximation (6.28) is in general of the same order of magnitude
as the largest eigenvalue in the interior of the domain but might have to be adjusted
to remove all oscillations. The exact value is problem specific, and an estimate based
on the interior values requires knowledge about the solution to the problem.
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6.7 Efficiency of the Polynomial Chaos Method

The convergence of the polynomial chaos expansion is investigated by measuring
the discrete Euclidean error norm of the variance and the expected value. For a
discretization with m spatial grid points, we have

���Exp��2 D 1

m � 1

mX
iD1
.EŒu�i � EŒuref �i /2

and

k�Vark2 D 1

m � 1

mX
iD1
.VarŒu�i � VarŒuref �i /

2

where uref denotes the analytical solution. Consider the model problem (6.9); the
problem is solved with the Monte Carlo method and gPC until time t D 0:3.
Accuracy (measured as the norm of the difference between the actual solution and
the analytical solution) and simulation cost are shown in Table 6.1 for the Monte
Carlo method and Table 6.2 for the gPC expansions.

For this highly non-linear and discontinuous problem, the polynomial chaos
method is more efficient than the Monte Carlo method with low accuracy require-
ments. The convergence properties of these solutions are affected by the spatial grid
size and the accuracy of imposed artificial dissipation and no general conclusion of
the relative performances of the two methods will be drawn here. As will be further
illustrated in the section on analysis of characteristics, the solution coefficients of
the truncated system are discontinuous approximations to the analytical coefficients
which are smooth. Even though the gPC results do converge for this problem, the
low-order expansions are qualitatively very different from the analytical solution,
see for instance Fig. 6.4. Also, note that excessive use of artificial dissipation might

Table 6.1 Convergence to (6.12) and (6.13) with the Monte Carlo method, m D 400, t D 0:3

N 10 50 100 400 1,600���Exp�� 0.122 0.0374 0.0344 0.0257 0.0151

k�Vark 0.127 0.0589 0.0426 0.0283 0.0189

T (s) 240 1,180 2,390 9,350 38,460

Table 6.2 Convergence to (6.12) and (6.13) with the polynomial chaos method, m D 400, t D
0:3

M 2 4 6 8���Exp�� 0.113 0.0544 0.0164 0.0150

k�Vark 0.147 0.122 0.0409 0.0630

T (s) 126 636 4,180 10,900



96 6 Nonlinear Transport

Fig. 6.4 The first four gPC coefficients, t D 0:3, M D 5 and M D 3, m D 400

produce an erroneous solution which appears to be closer to the analytical solution
for lower-order expansions. Note that, as expected, spatial grid refinement leads to
convergence to the true solution of the truncated system but does not get any closer
to the analytical solution.

The use of artificial dissipation proportional to the largest eigenvalue makes the
solutions of high-order expansions dissipative and spatial grid refinement is needed
for an accurate solution. This can be seen in Table 6.2, where the accuracy of the
variance decreases with largeM .

6.7.1 Numerical Convergence

The convergence of the computed polynomial chaos coefficients, the expected value,
and the variance of the truncated system are investigated and comparisons to the
analytical solution derived in Sect. 6.2 are presented.
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Fig. 6.5 Dissipative solution on coarse grid (m D 200), computed forM D 3 and non-dissipative
solution for M D 4

Table 6.3 Norms of errors
for dissipative and
non-dissipative solutions

M 3 3 (dissipative) 4���Exp�� 0.0354 0.0173 0.0374

k�Vark 0.0918 0.0370 0.0723

As mentioned earlier, the numerical results obtained for a small number of
expansion terms are expected to be a poor approximation to the analytical solution,
as confirmed by the mesh refinement study reported in Fig. 6.4 for M D 5.
In this particular application, the analytical solution admits continuous (smooth)
coefficients in spite of the discontinuous initial condition; on the other hand, the
coefficients of the truncated system are discontinuous.

Interestingly, the difference between the computed coefficients corresponding to
a finite gPC expansion (ui for i � M ) and the analytical (M D 1) coefficients
indicates that a poorly resolved numerical solution with excessive dissipation might
be qualitatively closer to the analytical solution than a grid-converged solution to
the truncated system. Figure 6.5 and Table 6.3 illustrate this phenomenon of illusory
convergence.

The discrepancy between the truncated solution for M D 3 and the analytical
solution is also illustrated in Fig. 6.6. The coefficients do not converge to the analyt-
ical solution when the spatial grid is refined (Fig. 6.6a, left). Instead, the coefficients
converge numerically to a reference solution corresponding to a numerical solution
obtained with a large number of gridpoints (Fig. 6.6a, right). For the seventh-order
expansion, the solution is sufficiently close to the solution of the analytical problem
to exhibit spatial numerical convergence of the first four coefficients to the values of
the analytical coefficients (Fig. 6.6b).

The variance calculated forM D 7 appears to converge to a function that is close
but not equal to the analytical variance given by (6.13) (see Fig. 6.7).
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Fig. 6.6 Convergence of the first chaos coefficients. Note the different scales in the figures.
(a) M D 3. Norm of the error relative to the analytical solution (left) and error relative to the
finest grid solution, m D 800 (right). (b) M D 7. Norm of the error relative to the analytical
solution (left) and error relative to the finest grid solution, m D 800 (right)

6.8 Theoretical Results and Interpretation

6.8.1 Analysis of Characteristics: Disturbed Cosine Wave

In this section, the characteristics of the stochastic Burgers’ equation with M D 1

(truncated to 2 	 2 system) will be investigated to give a qualitative measure of the
time development of the solution. The system is given by

�
u0
u1

�
t

C
�

u0 u1
u1 u0

��
u0
u1

�
x

D
�
0

0

�
: (6.35)
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Fig. 6.7 M D 7. Convergence of the variance. Norm of the error relative to the analytical variance
(left) and error relative to the finest grid variance, m D 800 (right)

With w1 D u0 C u1 and w2 D u0 � u1, (6.35) can be diagonalized and rewritten

�
w1
w2

�
t

C
�

w1 0
0 w2

��
w1
w2

�
x

D
�
0

0

�
: (6.36)

Equation (6.36) is the original Burgers’ equation for w1, w2 and the shock speeds
are given by

sw1 D Œf .w1/�

Œw1�
D w1R C w1L

2
D Nu0 C Nu1 (6.37)

and

sw2 D Œf .w2/�

Œw2�
D w2R C w2L

2
D Nu0 � Nu1; (6.38)

where we have introduced the mean over the shock, Nui D .uiL C uiR/=2. Square
brackets [ ] denote the jump in a quantity over a discontinuity. Similarly to (6.37)
and (6.38), with the non-diagonalized system in conservation form, the propagation
speeds of discontinuities in u0, u1 are given by

su0 D Œ.u20 C u21/=2�

Œu0�
D Nu0 C Nu1 Œu1�

Œu0�
(6.39)
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and

su1 D Œu0u1�

Œu1�
D Nu0 C Nu1 Œu0�

Œu1�
: (6.40)

The analysis of characteristics w1 and w2 describes the behavior and emergence
of discontinuities in the coefficients u0 and u1 of the truncated system. However,
the coefficients of the solution to the problem given by the infinite gPC expansion
are smooth (except for t D 0 for the Riemann problem). Diagonalization of large
systems is not feasible, but we can obtain expressions for the shock speeds of the
coefficients. For instance, the expression (6.39) for the shock speed in u0 can be
generalized for gPC expansions of orderM as

su0 D
MX
iD0

Nui Œui �
Œu0�

: (6.41)

In the assumption that only one Gaussian variable � is introduced, and the
uncertainty is (linearly) proportional to �, only a limited number of different values
of the correlation coefficient between the left and right states can occur. Since we are
also assuming the same model for the left and right state uncertainties, only a few
combinations of covariance matrices describing their correlation are realizable. With
the assumptions made here, the dependence between the two states is determined by
the correlation coefficient 
LR, which for these cases is either 1 or �1.

Ex 1.1

u.x; 0; �/ D
�

uL D 1C O�� x < x0
uR D �1 � O�� x < x0

u.x; 0/ D cos.�x/.1C O��/

� 
 N .0; 1/


LR D �1:

Ex 1.2

u.x; 0; �/ D
�

uL D 1C O�� x < x0
uR D �1C O�� x < x0

u.x; 0/ D cos.�x/C O��

� 
 N .0; 1/


LR D 1:

The problems are similar in terms of expected value and variance at the boundary,
but the difference in correlation between the left and right states completely changes
the behavior over time. The difference in initial variance in the interior of the domain
has only a limited impact on the time-dependent difference between the solutions;
this has been checked by varying the initial functions. Note that Ex 1.1 is included
to show the importance of the sign of the stochastic variable, but it is a special case
of a more general phenomenon of superimposition of discontinuities exhibited by
Ex 1.2 and further explained and analyzed below. Figure 6.8 shows the two cases at
time t D 0:5 for M D 3. We use O� D 0:1 and x0 D 0:5.
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a

b

Fig. 6.8 Development of variance of the perturbed cosine wave. t D 0:5 for M D 3, m D 400.
(a) Ex 1.1. Symmetric boundary conditions. (b) Ex 1.2. Constant initial variance

To explain the differences between the solutions depicted in Fig. 6.8, we turn to
analysis of the characteristics for the truncated system withM D 1. The polynomial
chaos coefficients of the boundaries are given by

u0 D 1

u1 D 0:1

�
x D 0,

u0 D �1
u1 D �0:1

�
x D 1 (Ex 1.1)

and

u0 D 1

u1 D 0:1

�
x D 0,

u0 D �1
u1 D 0:1

�
x D 1 (Ex 1.2),

respectively.
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Note that with more PC coefficients included, the higher-order coefficients are
zero at the boundaries for sufficiently short times. The expected boundary values as
well as the boundary variance are the same for Ex 1.1 and Ex 1.2. In order to relate
the concepts of characteristics with expected value and variance, we will use the fact
that the expected value at each point is the average of the characteristics,

E.u/ D u0 D w1 C w2
2

; (6.42)

and that the variance depends on the distance between the characteristics,

Var.u/ D u21 D
�w1 � w2

2

	2
: (6.43)

To explain the qualitative differences between the two cases Ex 1.1 and Ex 1.2,
consider the decoupled system (6.36). The boundary values for u0 and u1 are
inserted into the characteristic variables w1 and w2; discontinuities emerge when
the characteristics meet.

For Ex 1.1 we have w1.x D 0/ D �w1.x D 1/ and w2.x D 0/ D �w2.x D 1/.
Inserting these values in (6.37) and (6.38) gives the shock speeds sw1 D sw2 D
0, corresponding to two stationary shocks (of different magnitude) at x D 0:5,
which can be seen in Fig. 6.9a. Inserting the characteristic values (can be evaluated
in Fig. 6.9) into (6.43) results in uniform variance except around the discontinuity,
Fig. 6.10a. Since the characteristic solution is propagating from the boundaries, this
interval shrinks with time and collapses at x D 0:5.

a b

Fig. 6.9 Characteristics of the two perturbed cosine waves (Ex 1.1 and Ex 1.2) for M D 1.
(a) Ex 1.1. The variance is undefined at x D 0:5. (b) Ex 1.2. The variance peaks at x D 0:5. w1 is
left-going and w2 is right-going
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Fig. 6.10 Variance of Ex 1.1 and Ex 1.2 for M D 1, calculated from w1, w2 using (6.43).
(a) Ex 1.1. The variance is constant except around the discontinuity. (b) Ex 1.2. The variance
is maximal at the shock location and spreads towards the boundaries

In Ex 1.2, the characteristics are w1.x D 0/ D 1:1 > �w1.x D 1/ D 0:9 and
w2.x D 0/ D 0:9 < �w2.x D 1/ D 1:1. Evaluating (6.37) and (6.38) when the
characteristics cross yields sw1 D 0:1 and sw2 D �0:1. When the characteristics
meet, the discontinuity will split and propagate as two moving shocks in u0 and u1,
located equidistantly from the midpoint x D 0:5. In w1 and w2 there will still be
a single shock. The shock speeds are given by the expressions (6.37)–(6.40). The
vertical gap between the characteristics at x D 0:5 in Fig. 6.9b corresponds to the
variance peak at this location in Fig. 6.8b.

The system used for analysis of characteristics is truncated to M D 1, but the
conclusions about the qualitative behavior holds for higher-order systems. Including
more polynomial chaos coefficients would result in additional shocks of different
magnitude and speed. Observe the qualitative similarities between the solutions
in Figs. 6.8 and 6.9. Regardless of the truncation of PC coefficients, the variance
approaches 0 at the shock location in Ex 1.1. At the shock location in Ex 1.2, the
variance reaches a maximum that will spread towards the boundaries and cancel
the discontinuity. The observation that the same boundary and initial expected value
and variance can give totally different solutions indicates that knowledge about the
PC coefficients is required to obtain a unique solution.

Further analysis shows that the problem could be partitioned into several phases
of development, depending on the speeds of the characteristics. Consider again the
boundary conditions of Ex 1.1 and Ex 1.2 but now assume u.x; 0/ D 0 for x 2
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a b

Fig. 6.11 Characteristics at t D 0:5, M D 1. (a) Ex 1.1. Boundary conditions: u.0; t / D
.1; 0:1; 0; : : :/; u.1; t / D .�1;�0:1; 0; : : :/. (b) Ex 1.2. Boundary conditions: u.0; t / D
.1; 0:1; 0; : : :/; u.1; t / D .�1; 0:1; 0; : : :/

.0; 1/. The solution forM D 1 before the characteristics meet is shown in Fig. 6.11.
With more PC coefficients, the sharp edges in the solution will disappear. At time
t D 0:5, the solutions to the two problems are still similar, with two variance peaks
at the shocks that are traveling towards the middle of the domain. For comparison,
Fig. 6.12 shows the expected value and variance calculated from the characteristics
in Fig. 6.11.

Asymptotically in time, the symmetric problem (Ex 1.1) will result in a stationary
shock. The variance will equal the initial boundary variance except for a peak at the
very location of the shock. The boundary conditions are independent of time. This
property is illustrated in Fig. 6.13a, where the solution has reached steady-state.

The time development of the solution of Ex 1.2 is not consistent with the
stationary boundary conditions stated in the problem formulation. The charac-
teristics are transported from one boundary to the other (see Fig. 6.13b), thus
changing the boundary data. The boundary conditions of Ex 1.2 must therefore
be time-dependent (and can be calculated exactly from (6.10) for this example).
Unlike the continuously varying boundary conditions of the full PC expansion
problem, the boundary conditions for the truncated system of Fig. 6.13b will change
discontinuously from the initial boundary condition to zero at the moment the
characteristics reach the boundaries. In a general hyperbolic problem, the imposition
of correct time-dependent boundary conditions might become one of the more
significant problems with the gPC method. A detailed investigation is necessary to
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a

b

Fig. 6.12 Expected value and variance at t D 0:5, M D 1. (a) Ex 1.1. Symmetric boundary
conditions: u.0; t / D .1; 0:1; 0; : : :/; u.1; t / D .�1;�0:1; 0; : : :/. (b) Ex 1.2. Boundary
conditions: u.0; t / D .1; 0:1; 0; : : :/; u.1; t / D .�1; 0:1; 0; : : :/

identify an approach to specify time-dependent stochastic boundary data, especially
for the higher-order moments. Special non-reflecting boundary conditions will be
required. In the case studied here, analytical boundary conditions have been derived
and can be correctly imposed for any time and any order of PC expansion.
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a b

Fig. 6.13 Characteristics at t D 4 for M D 1. (a) Ex 1.1. Characteristics have reached steady-
state. (b) Ex 1.2. w1 is right-going, w2 left-going

6.9 Summary and Conclusions

The stochastic Galerkin method has been presented for Burgers’ equation with
uncertain boundary conditions. Stable difference schemes are obtained by the use of
artificial dissipation, difference operators satisfying the summation by parts property
and a weak imposition of characteristic boundary conditions.

A number of mathematical properties of the deterministic Burgers’ equation
hold for the hyperbolic problem that results from the Galerkin projection of the
truncated PC expansions. The system is symmetric, and a split form combining
conservative and non-conservative formulations is used to obtain an energy estimate.
The truncated linearized problem is shown to be well-posed. The system eigenvalues
vary over time and this makes the choice of the time-step difficult; moreover, this
affects the accuracy of the methods since the dissipation operators are eigenvalue
dependent. An eigenvalue estimate is provided.

To devise a suitable numerical method, we need to know whether the solution
we seek is smooth or discontinuous. Even though the solution to the Burgers’
equation is discontinuous for a particular value of the uncertain (stochastic) variable,
the PC coefficient functions are in general continuous for the Riemann problems
investigated. The solution coefficients of the truncated system are discontinuous and
can be treated as a superimposition of a finite number of discontinuous characteristic
variables. This has been shown explicitly for the 2 	 2-case. The discontinuous
coefficients converge with the number of PC coefficients to continuous functions.

Examples have shown the need to provide time-dependent boundary conditions
that might include higher-order moments. Stochastic time-dependent boundary
conditions have been derived for the Burgers’ equation.
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An increasing number of polynomial chaos modes and use of extra boundary
data give solutions that are qualitatively different from the cruder approximation.
However useful for a qualitative description of the dynamics of the hyperbolic
system, the approximation error due to truncation of the infinite polynomial chaos
series is dominating the total error.

As shown in Table 6.3, excessive use of artificial dissipation can give a numerical
solution that more closely resembles the solution to the original problem compared
to a solution where a small amount of dissipation (within the order of accuracy) is
used to preserve the discontinuities of the truncated solution. Clearly, only the latter
method could be justified from a theoretical point of view.

In general, excessively dissipative schemes should be avoided and, if possible,
mesh refinement studies should be performed to ensure numerical convergence. In
addition to the problems associated with non-converged deterministic solutions, a
non-converged stochastic solution is likely to misrepresent the variance and other
higher-order statistics.

6.10 Supplementary Codes

Matlab scripts for the Burgers’ equation with the stochastic Galerkin method and
SBP operators are provided at [http://extras.springer.com]. The reader is encouraged
to experiment with the scripts and use them as a complement to the exercises.

To get started with the codes, simply run the main script burgers_main.m in
Matlab. The scheme is not conditionally stable, so changes may lead to numerical
instability unless the parameters follow the derivations of this chapter. The script
SBP_operators.m contains SBP operators of orders 2,4,6 and 8 and is a generic
implementation that may be used for other problems of interest. Note that in
the context of hyperbolic problems, the artificial dissipation operators should be
adjusted to the order of SBP operators.

For the problem of interest, the analytical solution of the original problem (the
gPC coefficients of the infinite order expansion) is known, as is the exact solution
of the truncated M D 1 problem. Depending on the order of truncation, one
may compare the numerical solution to the infinite order case, or to the first-order
expansion.

6.11 Exercises

6.1. Consider stochastic Galerkin projection of the Riemann problem (6.9) of
some finite order M using normalized Hermite polynomials. As you vary b

(standard deviation) in relation to a (expectation), how does the number of boundary
conditions change?

6.2. Consider the Riemann problem introduced in Sect. 6.2 but with an inverted
initial condition

http://extras.springer.com
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u.x; 0; �/ D
�

uL D �aC p.�/ if x < x0
uR D a C p.�/ if x > x0

u.0; t; �/ D uL; u.1; t; �/ D uR
� 2 N .0; 1/:

(6.44)

Compare the solution (in terms of gPC modes) of the truncated vs. full expansion
system at t=0.1 and t=0.5.

6.3. In Sect. 6.8.1, two examples are introduced to show the effect of boundary
conditions. Repeat the analysis using the following inverted initial conditions:

Ex 1.1, modified

u.x; 0; �/ D
�

uL D �1C O�� x < x0
uR D 1 � O�� x < x0

u.x; 0/ D cos.�x/.�1C O��/

� 
 N .0; 1/


LR D �1:

Ex 1.2, modified

u.x; 0; �/ D
�

uL D �1C O�� x < x0
uR D 1C O�� x < x0

u.x; 0/ D �cos.�x/C O��

� 
 N .0; 1/


LR D 1:

6.4. Consider the initial condition u.x; 0; �/ D ˛ tanh x�0:5
0:06

C3:0� exp
�
� .x�0:5/2

0:045

	
with � a normal random variable with zero mean and unit variance in the domain
x 2 Œ�3 W 3�. Study the convergence of the Galerkin expansion for ˛ D ˙1.

6.5. Consider the same problem for a slightly different initial condition u.x; 0; �/ D
˛ tanh x�0:5

0:06
C 3:0� exp

�
� .x�0:5/2

0:045

	
sin.5:3�x/.
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Chapter 7
Boundary Conditions and Data

In this chapter, based on the work in [1], we continue analysis of Burgers’ equation
with a focus on the effect of data for the boundary conditions. To facilitate
understanding, we deal only with the truncated representation u.x; t; �/ D u0 0 C
u1 1. This means that all the stochastic variation is accounted for by the single
gPC coefficient u1, and the standard deviation of the solution is simply ju1j.
With this simplified setup, we obtain a few combinations of general situations for
the boundary data: known expectation but unknown standard deviation, unknown
expectation and standard deviation, and so on.

7.1 Dependence on Available Data

ForM D 1, the system (6.4) can be diagonalized with constant eigenvectors and we
get an exact solution to the truncated problem. The solution has two characteristics,
moving in directions determined by u0 and u1. With a and b as in the problem setup
(Sect. 6.2), the analytical solution for the 2 	 2-system .x 2 Œ0; 1�/ is given by

�
u0
u1

�
D

8̂
<̂
ˆ̂:

.a; b/T if x < x0 � bt

.0; aC b/T if x0 � bt < x < x0 C bt

.�a; b/T if x > x0 C bt

9=
; for 0 � t < x0

b

.0; aC b/T for t > x0
b

: (7.1)

We expect different numerical solutions depending on the amount of available
boundary data. We will assume that the boundary data are known on the boundary
x D 1 and investigate three different cases for the left boundary x D 0

corresponding to a complete set of data, partial information about boundary data and
no data available, respectively. For all cases, we will solve the M D 1 stochastic
Galerkin system of the form

© Springer International Publishing Switzerland 2015
M.P. Pettersson et al., Polynomial Chaos Methods for Hyperbolic
Partial Differential Equations, Mathematical Engineering,
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�
u0
u1

�
t

C 1

2

��
u0 u1
u1 u0

��
u0
u1

��
x

D 0 (7.2)

with boundary data
�

u0
u1

�
xD0

D
�
g0.t/

g1.t/

�
;

�
u0
u1

�
xD1

D
�
h0.t/

h1.t/

�
:

7.1.1 Complete Set of Data

The boundary conditions are

u.0; t/ D
�
.a; b/T 0 � t < x0

b

.0; aC b/T t > x
b

: (7.3)

Consider a D 1, b D 0:2. Both u0 and u1 are known at x D 0 and the two ingoing
characteristics are assigned the analytical values. The system satisfies the energy
estimate (6.26). Observe that when a full set of data is available, the problem is
both strongly well-posed according to (6.18) and strongly stable according to (6.26).
Figures 7.1–7.3 show the solution at time t D 1, t D 2 and t D 3, respectively.

7.1.2 Incomplete Set of Boundary Data

Without a complete set of boundary data, the time-dependent behavior of the
solution will be hard to predict. Here we assume that the boundary conditions at
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Fig. 7.1 u0 (left) and u1 (right), numerical solution (solid red) and exact solution (dashed blue).
t D 1. Complete set of data
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Fig. 7.2 u0 (left) and u1 (right), numerical solution (solid red) and exact solution (dashed blue).
t D 2. Complete set of data
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Fig. 7.3 u0 (left) and u1 (right), numerical solution (solid red) and exact solution (dashed blue).
t D 3. Complete set of data

x D 1 is u D .�1; 0:2/T as before (7.3) and consider different ways of dealing
with unknown data at x D 0. Note that with a lack of data, we have different cases
depending on how we deal with the situation. The initial function is the same as in
the analytical problem above, i.e.,

.u0.x; 0/; u1.x; 0//
T D

�
.a; b/T if x < x0
.�a; b/T if x > x0

:
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7.1.2.1 Unknown u1 at x D 0, Guess u1

When we guess the value of u1, the continuous problem is strongly well-posed
(energy estimate (6.18)) and the semidiscrete problem is strongly stable (energy
estimate (6.26)). However, the accuracy of the solution will depend on the guess.
First, assume that u0 is known and u1 is unknown and put u1 D 0:2 at the boundary
for all time. There are two ingoing characteristics at t D 0. The value of u0 at x D 0

changes with the boundary conditions of the analytical solution as given by (7.3).
The time development of the numerical solution closely follows the analytical
solution at first (Fig. 7.4), but eventually becomes inconsistent with the boundary
conditions (Figs. 7.5 and 7.6)
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Fig. 7.4 u1 kept fixed at 0.2, numerical solution (solid red) and exact solution (dashed blue). t D 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
Mean

x
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Standard deviation

x

u 1u 0

Fig. 7.5 u1 kept fixed at 0.2, numerical solution (solid red) and exact solution (dashed blue). t D 3
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Fig. 7.6 u1 kept fixed at 0.2, numerical solution (solid red) and exact solution (dashed blue). t D 5
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Fig. 7.7 u1 extrapolated from the interior, numerical solution (solid red) and exact solution
(dashed blue). t D 2

7.1.2.2 Unknown u1 at x D 0, Extrapolate u1

Now, consider the situation where the extrapolation g1 D .u1/xD1 is used to assign
boundary data to the presumably unknown coefficient u1. When extrapolation is
used, we do not impose any data, and the problem is neither well-posed nor stable.
The numerical solution does not blow up, but the result is inaccurate. As long as the
analytical boundary conditions do not change, the numerical solution will follow
the analytical solution as before, see Fig. 7.7. After t D 2:5, the characteristics have
reached the opposite boundaries and the error grows (Fig. 7.8) before reaching the
steady-state solution (Fig. 7.9).
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Fig. 7.8 u1 extrapolated from the interior, numerical solution (solid red) and exact solution
(dashed blue). t D 3
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Fig. 7.9 u1 extrapolated from the interior. t D 5, numerical solution (solid red) and exact solution
(dashed blue). The error is of the order 10�15

7.1.2.3 Unknown u0 at x D 0, Guess u0

Next we assume that the boundary data for u0 are unknown. With a guessed value of
data, the problem is strongly well posed according to the energy estimate (6.18) and
strongly stable according to (6.26). However, depending on the guess, the solution
can be more or less accurate. The same analysis as was done for u1 in the preceding
section is now carried out for u0. First, u0 at x D 0 is held fixed for all times.
Figures 7.10 and 7.11 show the solution before and after the true characteristics
reach the boundaries. Note that the numerical solution after a long time is not
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Fig. 7.10 u0 is held fixed. Numerical solution (solid red) and exact solution (dashed blue), t D 2
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Fig. 7.11 u0 is held fixed. Numerical solution (solid red) and exact solution (dashed blue), t D 3

coincident with the analytical solution and that the true boundary conditions are
not satisfied (Fig. 7.12).

7.1.2.4 Unknown u0 at x D 0, Extrapolate u0

The data for u0 can alternatively be extrapolated from the interior of the domain. The
extrapolationg0 D .u0/xD1 is used (see Figs. 7.13–7.15). We do not impose any data
when extrapolation from the interior is used, and the problem is neither well-posed
nor stable. In this case no explosion occurs, and the result is accurate. Note that the
solution after a long time is very close to the analytical solution (Fig. 7.15).
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Fig. 7.12 u0 is held fixed. Numerical solution (solid red) and exact solution (dashed blue), t D 5
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Fig. 7.13 u0 extrapolated from the interior. Numerical solution (solid red) and exact solution
(dashed blue), t D 2

7.1.3 Discussion of the Results with Incomplete Set of Data

The results in the preceding section are interesting and surprising. First, excellent
results at steady-state (for long time) are obtained using the extrapolation technique,
probably due to the fact that only one boundary condition is needed at the left
boundary for t > 2:5.

By guessing data of the mean value and the variance, poor results are obtained.
The impact of the error in the variance term (u1) suggests that in a stochastic
Galerkin system of order M > 1, the higher-order modes may be very important.
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Fig. 7.14 u0 extrapolated from the interior. Numerical solution (solid red) and exact solution
(dashed blue), t D 3
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Fig. 7.15 u0 extrapolated from the interior. Numerical solution (solid red) and exact solution
(dashed blue), t D 5

The order of the error obtained here indicates that appropriate approximation of the
higher-order terms is as important as guessing the expectation to get accurate results.

In many problems, sufficient data are not available to specify the correct number
of variables. Unknown boundary values can then be constructed by extrapolation
from the interior or by simply guessing the boundary data. We have investigated
these two possible cases and for this specific problem, the extrapolation technique
was superior.
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It was also found that missing data for the expectation were not more serious
than the lack of data for the higher mode (approximating the variance). This finding
casts new light on the data requirement for higher-order expansions.

7.2 Summary and Conclusions

Uncertainty in data on inflow boundaries will propagate into the domain of interest
and affect the solution. We have analyzed the stochastic Burgers’ equation with
a focus on the availability of data for the boundary conditions. To facilitate
understanding, we deal only with the truncated representation u.x; t; �/ D u0 0 C
u1 1. This means that all the stochastic variation is accounted for by the single
gPC coefficient u1, and the standard deviation of the solution is simply ju1j.
With this simplified setup, we obtain a few combinations of general situations for
the boundary data: known expectation but unknown standard deviation, unknown
expectation and standard deviation, etc. In the cases where we did not have available
data, we remedy the situation by (i) guessing the data (expectation and/or standard
deviation) or (ii) using extrapolation. The implications in all these situations on
well-posedness, stability and accuracy are discussed.

In a general hyperbolic problem, the imposition of correct time-dependent
boundary conditions will probably prove to be one of the more significant problems
with the stochastic Galerkin method. A detailed investigation is necessary to find
ways around the lack of time-dependent stochastic boundary data, especially for the
higher moments. Most likely, special non-reflecting boundary conditions must be
developed.

7.3 Exercises

Problem 7.1. Assume that you are given statistics in terms of mean value and
standard deviation for the stochastic Galerkin Burgers’ equation. You have reason
to believe that higher-order coefficients are non-negligible. For a given value of
standard deviation at the boundaries, what is the effect over time on the standard
deviation over the interior domain? Use the supplied Matlab scripts for Burgers’
equation, use second-order polynomial chaos (three terms), and try u1 D b; u2 D 0.
Then try u1 D 0; u2 D b. Note that the standard deviation at the boundaries is
identical for the two cases. Use the same initial values for u0 for both cases. What
do you observe for the interior domain standard deviation?

Problem 7.2. Analyze the problem illustrated in Sect. 7.1 by varying b (the
standard deviation). Consider the case of b D 0:05 and b D 0:5.
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Chapter 8
gPC for the Euler Equations

In many nonlinear applications of the stochastic Galerkin method, truncation of
the generalized chaos expansion leads to non-unique formulations of the systems
of equations. For instance, cubic products between stochastic quantities a, b and
c are represented as products of truncated approximations Qa, Qb and Qc, but the
pseudospectral multiplication operator � (to be explicitly defined in a later section),
is not associative, i.e., . Qa � Qb/ � Qc ¤ Qa � . Qb � Qc/. Similar problems are investigated
in more detail in [2]. It is common practice to introduce these pseudospectral
approximations since they imply a reduced numerical cost. Examples in the context
of polynomial chaos for fluid flow include [13, 14].

The need to introduce stochastic expansions of inverse quantities, or square-roots
of stochastic quantities of interest, adds to the number of different ways possible to
approximate the original stochastic problem. This approximation leads to ambiguity
of the problem formulation. We present a method where this ambiguity is avoided.
Our formulation relies on a variable transformation where the square root of the
density is computed, a computation that can be performed in a robust way in a small
number of operations.

Poëtte et al. [7] used a nonlinear projection method to bound the oscillations close
to stochastic discontinuities by PC expansion of the entropy variables obtained from
a transformation of the conservative variables. Each time-step is complemented
by a functional minimization to obtain the entropy variables needed to update the
solution vector. The method we will present here may appear similar at first sight,
but it relies on a different kind of variable transformation and not on kinetic theory
considerations. We do not suggest a variable transformation for general conservation
laws, but rather a formulation that specifically targets the solution of the Euler
equations with uncertainty in the variables. It is less complicated than a direct gPC
expansion of the conservative variables.

In the method presented, the system of equations is reformulated using Roe
variables so that only quadratic terms occur. This is attractive since no fourth-order

© Springer International Publishing Switzerland 2015
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tensors need be approximated or calculated, resulting in increased accuracy and
reduced computational cost. Moreover, there is no need to compute additional
generalized chaos expansions for inverse quantities. The Roe variable expansion
provides a simple and unambiguous formulation of the Euler equations. For brevity
of notation, we will refer to this expansion method as the Roe expansion, and
the method based on expansion of the conservative variables as the conservative
expansion.

We consider the Sod test case subject to uncertainty in the density, and uncertain
diaphragm location, respectively. The uncertainty is represented with a multiwavelet
(MW) expansion in the stochastic dimension, following the framework outlined
earlier in [3]. Multiwavelets are suitable for this problem since we need to represent
discontinuities (localized support of basis functions) and still want high-order
resolution in regions away from the discontinuities. Special cases of the MW
basis include the Legendre polynomials and the piecewise constant Haar wavelets.
The stochastic Galerkin system is obtained by projection of the stochastic Euler
equations onto the MW basis functions.

Stochastic hyperbolic problems in general require a large number of stochastic
basis functions for accurate representation. In particular, this problem becomes
severe at large times [16]. One remedy is to use an adaptive stochastic basis that
evolves in space and time to save computational cost. In the context of stochastic
Galerkin methods for hyperbolic problems, Tryoen et al. introduced an adaptive
method where the resolution was determined locally based on numerical estimates
of the smoothness of the solution [12]. We will restrict ourselves to a non-adaptive
stochastic basis and focus on the numerical solver rather than on the stochastic
representation. This chapter is based on the work in [6].

8.1 Euler Equations with Input Uncertainty

Consider the 1D Euler equations, in non-dimensional form given by

ut C f .u/x D 0; 0 � x � 1; t > 0; (8.1)

where the solution and flux vector are given by

u D
2
4 



v
E

3
5 ; f D

2
4 
v

v2 C p

.E C p/v

3
5 ;

where 
 is density, v velocity,E total energy, and p pressure. A perfect gas equation
of state is assumed, and energy and pressure are related by
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E D p

� � 1
C 1

2

v2;

where � is the ratio of the specific heats. For the numerical method, we need the
flux Jacobian, given by

@f

@u
D
2
4 0 1 0

1
2
.� � 3/v2 .3 � �/v � � 1

1
2
.� � 1/v3 � vH H � .� � 1/v2 �v

3
5 ;

with the total enthalpyH D .E C p/=
.
We scale the physical variables to get the dimensionless variables 
 D 
0=
0ref ,

E D E 0=.�p0ref /, p D p0=.�p0ref / and v D v0=a0ref , where a0 D .�p0=
0/1=2 and
the subscript ref denotes a reference state.

8.1.1 Formulation in Roe Variables

For the purpose of the design of an efficient numerical method, Roe [10] introduced
the variables

w D
2
4w1

w2
w3

3
5 D

2
4 
1=2


1=2v

1=2H

3
5 :

The flux and the conservative variables are given by

Of .w/ D

2
64

w1w2
��1
�

w1w3 C �C1
2�

w22
w2w3

3
75 ; u D Og.w/ D

2
64

w21
w1w2

w1w3
�

C ��1
2�

w22

3
75 :

Then, the Euler equations in Roe’s variables,

Og.w/t C Of x.w/ D 0 (8.2)

is equivalent to (8.1). The flux Jacobian in the Roe variables is given by

@ Of
@w

D

2
64

w2 w1 0
��1
�

w3
�C1
�

w2
��1
�

w1
0 w3 w2

3
75 :
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8.1.2 Stochastic Galerkin Formulation of the Euler Equations

In order to simplify the notation henceforth, we let the index of the MW series
expansion start from 1. Define the pseudospectral product u � v of order M D
M.Np;Nr/ by

.u � v/k D
MX
iD1

MX
jD1

uivj h i j ki; k D 1; : : : ;M;

where

h i j ki D
Z
˝

 i .�/ j .�/ k.�/dP :

Alternatively, using matrix notation as in the previous chapters, we can write the
vector of coefficients of the spectral product u � v as A.u/v, where

ŒA.u/�jk D
MX
iD1

uih i j ki: (8.3)

We will need the pseudospectral inverse q��, defined as the solution of q�q�� D 1,
and the pseudospectral square root, defined as the solution q�=2 of q�=2 � q�=2 D q,
where the spectral expansion of the quantity of interest q is assumed to be known.
For more details, see [1].

Let uM denote the vector of coefficients of the MW expansion of u of order
M D M.Np;Nr/.M may take the same value for two distinct pairs of .Np;Nr/, but
this ambiguity in notation will not matter in the derivation of the numerical method,
for brevity we use only M in the superscripts. The Euler equations represented by
the conservative formulation (8.1) can be written as an augmented system, after
stochastic Galerkin projection,

uMt C f M.uM/x D 0; (8.4)

where

uM D
2
4uM1

uM2
uM3

3
5 D

2
4 Œ.u1/1; : : : ; .u1/M �

T

Œ.u2/1; : : : ; .u2/M �
T

Œ.u3/1; : : : ; .u3/M �
T

3
5 ;

f M.uM/ D
2
4 uM2
.uM1 /

�� � uM2 � uM2 C pM

.uM3 C pM / � uM2 � .uM1 /��

3
5 ;
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with pM D .� � 1/.uM3 � .uM1 /
�� � uM2 � uM2 =2/. The cubic products of (8.4) are

approximated by the application of two third-order tensors instead of one fourth-
order tensor. That is, we replace .a � b � c/l D P

ijkh i j k l iaibj ck by the
approximation .a � b � c/l � ..a � b/ � c/l . This approximation introduces an
error in addition to the error from truncation of the gPC series to a finite number
of terms. The effect of the error introduced by the approximation of higher-order
tensors with successive application of third-order tensors was studied in [1], where
it was found that the error is negligible if sufficiently high-order gPC expansions
are used. We use this approximation with the conservative variables to make a fair
comparison of the computational cost with the method we propose based on Roe
variables.

For the Roe variable formulation, the stochastic Galerkin projection of (8.2) gives
the system

OgM.wM /t C Of M
.wM/x D 0; (8.5)

where

OgM.wM/ D

2
64

wM1 � wM1
wM1 � wM2

wM1 �wM3
�

C ��1
2�

wM2 � wM2

3
75 ;

Of M
.wM/ D

2
64

wM1 � wM2
��1
�

wM1 � wM3 C �C1
2�

wM2 � wM2
wM2 � wM3

3
75 :

The flux Jacobian for the stochastic Galerkin system in the Roe variables is given by

@ Of M

@wM
D

2
64

A.wM2 / A.wM1 / 0M�M
��1
�
A.wM3 /

�C1
�
A.wM2 /

��1
�
A.wM1 /

0M�M A.wM3 / A.wM2 /

3
75 : (8.6)

As M ! 1, the formulations (8.4) and (8.5), as well as any other consistent
formulation, are equivalent. However, M is assumed to be small (<20), and
truncation and conditioning of the system matrices will play an important role in
the accuracy of the solution.

We assume that � is a deterministic constant in the formulation of the numer-
ical schemes. Although it would imply additional pseudospectral multiplications,
accounting for a random � is a straightforward extension of the presented frame-
work. This amounts to forming A.��1/, which can be precomputed and stored for
use in the updates of the numerical fluxes.
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8.2 Numerical Method

We use MUSCL (Monotone Upstream-centered Schemes for Conservation Laws),
introduced in [15]. For clarity of comparison of the numerical results, the MUSCL
scheme is used for both the conservative variable formulation and the Roe variable
formulation.

8.2.1 Expansion of Conservative Variables

Letm be the number of spatial cells and the uniform step length�x D 1=m and let
EuM be the spatial discretization of uM . The semidiscretized form of (8.4) is given
by

duMj
dt

C FM
jC1=2 � FM

j�1=2
�x

D 0; j D 1; : : : ; m; (8.7)

where FM
jC1=2 denotes the numerical flux function evaluated at the interface

between cells j and j C 1.
For the MUSCL scheme with slope limited states EuL and EuR, we take the

numerical flux

FM

jC 1
2

D 1

2

�
f M.uL

jC 1
2

/C f M.uR
jC 1

2

/
	

C 1

2
j. QJMc /jC 1

2
j
�

uL
jC 1

2

� uR
jC 1

2

	
;

(8.8)
where the Roe average QJMc is the pseudospectral generalization of the standard Roe
average of the deterministic Euler equations, i.e.,

QJMc .v;H/

D
2
4 0M�M IM�M 0M�M

1
2
.� � 3/A.v/2 .3 � �/A.v/ .� � 1/IM�M

1
2
.� � 1/A.v/3 �A.v/A.H / A.H / � .� � 1/A.v/2 �A.v/

3
5 ;

where

v D .

��=2
L C 


��=2
R / � .
�=2L � vL C 


�=2
R � vR/;

and

H D .

�=2
L �HL C 


�=2
R �HR/ � .
��=2L C 


��=2
R /:

The computation of v and H requires the spectral square root 
�=2 and its inverse,
that are computed solving a nonlinear and a linear system, respectively.
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Further details about the formulation of the Roe average matrix are given in [13].
The scheme is a direct generalization of the deterministic MUSCL scheme. Flux
limiters are applied componentwise to all MW coefficients in sharp regions. For a
more detailed description of the MUSCL scheme and flux limiters, see e.g. [4], and
for application to the stochastic Burgers’ equation, see [5].

8.2.2 Expansion of Roe’s Variables

Let EwM D ..wM1 /
T ; .wM2 /

T ; : : : ; .wMm /
T /T denote the spatial discretization of wM .

The semidiscretized form of (8.5) is given by

@ OgM.EwMj /
@t

C
OFM

jC1=2 � OFM

j�1=2
�x

D 0; j D 1; : : : ; m;

with the numerical flux function

OF jC 1
2

D 1

2

� Of M
.wL

jC 1
2

/C Of M
.wR

jC 1
2

/
	

C 1

2
j QJMjC 1

2
j
�

wL
jC 1

2

� wR
jC 1

2

	
; (8.9)

where QJM D QJM .wM/ is the Roe matrix for the stochastic Galerkin formulation of
the Euler equations in Roe’s variables, to be derived below.

Each time-step provides the update of the solution vector OgMj D OgM.wMj /, j D
1; : : : ; m, from which we can solve for EwM to be used in the update of the numerical
flux. This involves solving the nonlinear systems

A.wM1;j /w
M
1;j D OgM1;j ; j D 1; : : : ; m (8.10)

for wM1;j , and then using wM1;j to solve the linear M 	M -systems

A.wM1;j /w
M
2;j D OgM2;j ; j D 1; : : : ; m

for wM2;j , and

A.wM1;j /W
M
3;j D � OgM3;j � � � 1

2
A.wM2;j /w

M
2;j ; j D 1; : : : ; m

for wM3;j .
The system (8.10) is solved iteratively with a trust-region-dogleg algorithm.1

Starting with the value of the previous time-step as the initial guess, few iterations
are required (typically 2–3). The same method is used to solve for spectral square
roots in the conservative variable formulation.

1This is the default algorithm for fsolve in Matlab. For more details, see [8].
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8.2.3 Stochastic Galerkin Roe Average Matrix for Roe
Variables

The Roe average matrix QJM is given as a function of the Roe variables wM D
..wM1 /

T .wM2 /
T .wM3 /

T /T , where each wMi (i D 1; 2; 3) is a vector of generalized
chaos coefficients. It is designed to satisfy the following properties:

(i) QJM.wL;wR/ ! @ OfM
@w

ˇ̌
ˇ̌
wDw0

as wL;wR ! w0.

(ii) QJM.wL;wR/ 	 .wL � wR/ D Of M
.wL/� Of M

.wR/, 8wL;wR.

(iii) QJM is diagonalizable with real eigenvalues and linearly independent eigenvec-
tors.

In the standard approach introduced by Roe and commonly used for deterministic
calculations, the conservative variables are mapped to the w variables, which are
then averaged.

In the deterministic case, we have

Of L � Of R D QJ .wL;wR/ 	 .wL � wR/; (8.11)

where

QJ .wL;wR/ D

2
64

w2 w1 0
��1
�

w3
�C1
�

w2
��1
�

w1
0 w3 w2

3
75 :

Overbars denote arithmetic averages of assumed left and right values of a variable,
i.e.,

wj D wLj C wRj
2

; j D 1; 2; 3:

It is a straightforward extension of the analysis by Roe in [10] to show properties
(i) and (ii) for the Roe variables, without mapping to the conservative variables. To
prove (iii) we note that there exists an eigenvalue decomposition

QJ D V DV �1; (8.12)

where

V D

2
64

w1
w3

w1
w3

� w1
w3

w2�
p

w22C8w1w3�.��1/
2�w3

w2C
p

w22C8w1w3�.��1/
2�w3

0

1 1 1

3
75 ; (8.13)
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D D

2
664

w2.1C2�/�
p
8w1w3�.��1/Cw22
2�

0 0

0
w2.1C2�/C

p
8w1w3�.��1/Cw22
2�

0

0 0 w2

3
775 : (8.14)

The eigenvalues of QJ are real and distinct, so property (iii) is also satisfied.
Now consider the stochastic Galerkin formulation, i.e., assume that the wi ’s

are vectors of generalized chaos coefficients. The stochastic Galerkin Roe average

matrix QJM for the Roe variables formulation is a generalization of the map-
ping (8.11), i.e., of the matrix QJ . We define

QJM.wL;wR/ D QJM .w/ D

2
64

A.w2/ A.w1/ 0M�M
��1
�
A.w3/

�C1
�
A.w2/

��1
�
A.w1/

0M�M A.w3/ A.w2/

3
75 ; (8.15)

where the submatrixA.wj / is given by (8.3) and w D .wL C wR/=2.

Proposition 8.1. Property (i) is satisfied by (8.15).

Proof. With wL D wR D w0, QJM.wL;wR/ D QJM.w0;w0/ D @ Of M
@wM

ˇ̌̌
ˇ
wDw0

by (8.6).

Proposition 8.2. Property (ii) is satisfied by (8.15).

Proof.

QJM.wL;wR/ 	 .wL � wR/ D 1

2

� QJM.wL/C QJM.wR/
	
.wL � wR/

D 1

2
QJM.wL/wL � 1

2
QJM .wR/wR D Of M

.wL/ � Of M
.wR/; (8.16)

where the last equality follows from the fact that the stochastic Galerkin generaliza-
tions of the Euler equations are homogeneous of degree 1.

To prove (iii), we will need the following proposition.

Lemma 8.1. Let A.wj / (j D 1; 2; 3) be defined by (8.3) and A.wj / D Q�jQ
T

be an eigenvalue decomposition with constant eigenvector matrix Q and assume
that �1 and �3 are non-singular. Then the stochastic Galerkin Roe average matrix
QJM has an eigenvalue decomposition QJM D X Q�M

X�1 with a complete set of
eigenvectors.

Proof. We will use the Kronecker product ˝, defined for two matrices B (of size
m 	 n) and C by

B ˝ C D

2
64
b11C : : : b1nC
:::

: : :
:::

bm1C : : : bmnC

3
75 :
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The eigenvalue decompositions of each M 	 M matrix block of (8.15) have the
same eigenvector matrixQ, hence we can write

QJM D .I3�3 ˝Q/ OJ .I3�3 ˝QT /; (8.17)

where

OJ D

2
64

�2 �1 0M�M
��1
�
�3

�C1
�
�2

��1
�
�1

0M�M �3 �2

3
75 :

By assumption, I3�3 ˝ Q is non-singular, and it remains to be shown that OJ has
distinct eigenvectors. Let

S D diag.�1�
�1
3 ;

p
.� � 1/=��

1=2
1 �

�1=2
3 ; IM�M /:

By assumption,�1 and�3 are invertible, so S and S�1 exist. We have

J S � S�1 OJS D

2
66664

�2

h
��1
�
�1�3

i1=2
0M�Mh

��1
�
�1�3

i1=2
��1
�
�2

h
��1
�
�1�3

i1=2
0M�M

h
��1
�
�1�3

i1=2
�2

3
77775 :

(8.18)

Clearly, J S is symmetric and has the same eigenvalues as OJ and QJM . Hence, J S

has an eigenvalue decomposition J S D Y Q�M
Y T . Then,

OJ D SY Q�MY TS�1 D SY Q�M .SY /�1: (8.19)

Combining (8.17) and (8.19), we get

QJM D Œ.I3�3 ˝Q/SY � Q�M
Œ.I3�3 ˝Q/SY ��1:

Setting X D .I3�3 ˝ Q/SY , we get the eigenvalue decomposition QJM D
X Q�MX�1. By assumption, S and Y are non-singular, and we have

det .X/ D det ..I3�3 ˝Q/SY / ¤ 0;

which proves that X is non-singular, and thus QJM has a complete set of
eigenvectors.
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Proposition 8.3. Property (iii) is satisfied by (8.15).

Proof. Lemma 8.1 shows that since the eigenvalue matrix Q�M is also the eigenvalue
matrix of the symmetric matrix J S defined in (8.18), the eigenvalues are all real.
Lemma 8.1 also shows that the eigenvectors are distinct.

The conditions in Lemma 8.1 are true for certain basis functions assuming
moderate stochastic variation, but the same can not be guaranteed for every case, and
certainly does not hold for pathological cases with negative density, for example.
The requirement of non-singularity of�1;�3 is not very restrictive since it amounts
to excluding unphysical behavior, for instance naturally positive quantities taking
negative values with nonzero probability. The assumption of constant eigenvectors
of the matrix A holds for Haar wavelets (i.e., multiwavelets with Np D 0), for all
ordersM D 2Nr , with Nr 2 N. See Sect. B.1 for a proof sketch. Expressions for the
first constant eigenvalue decompositions are included in Sect. B.2 for Haar wavelets
and piecewise linear multiwavelets. The eigenvectors of A for M D 1; 2; 4; 8 are
shown to be constant, but we do not give a proof that this is true for piecewise linear
multiwavelets of any orderM .

Remark 8.1. The Roe variable scheme has been outlined under the implicit assump-
tion of uncertainty introduced in the initial and/or boundary conditions. However,
situations such as uncertainty in the adiabatic coefficient � may be treated in a
similar way, although such treatment would result in additional pseudospectral
products. Pseudospectral approximations of .� � 1/=� and .� C 1/=� could then be
precomputed to sufficient accuracy.

Remark 8.2. For both the conservative variable formulation and the Roe variable
formulation, we need to find the eigenvalue decomposition of QJMc ( or QJM ) at
each time-step and each spatial point. For the cases of piecewise constant or
piecewise linear MW, we can find this analytically and thus at low computational
cost. For higher-order polynomial MW, we may rely on iterative methods for the
eigenvalue decomposition of these 3M 	 3M subsystems. To this end, one may, for
example, use the approximate low-order polynomial method that was introduced
and successfully applied in [13] for very similar problems.

8.3 Numerical Results

We use the method of manufactured solutions to verify the second-order conver-
gence in space of a smooth problem using the MUSCL scheme with Roe variables.
We then introduce two test cases for the non-smooth problem; case 1 with an initial
function that can be exactly represented by two Legendre polynomials, and case 2
with slow initial decay of the MW coefficients in both Np and Nr . The errors in
computed quantities of interest (here variances) as functions of the order of MW
are investigated. Qualitative results are then presented to indicate the behavior we
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can expect for the convergence of two special cases of MW, namely the Legendre
polynomials and Haar wavelet basis, respectively. Robustness with respect to more
extreme cases (density close to zero leading to high Mach number) is demonstrated
for the Roe variable formulation for a supersonic case where the conservative
variable method breaks down. Finally, we perform a comparative study of the
computational time for the formulation in conservative variables and the formulation
in Roe variables.

8.3.1 Spatial Convergence

The MUSCL scheme with appropriate flux limiters is second-order accurate for
smooth solutions. Since the Euler solution in general becomes discontinuous in
finite time, the method of manufactured solutions [9, 11] is used to solve the Euler
equations with source terms for a known smooth solution. The smooth solution is
inserted into the Euler equations (8.1) and results in a nonzero right-hand side that is
used as a source function. In order to test the capabilities of the method, we choose
a solution that varies in space, time and in the stochastic dimension, and with time-
dependent boundary conditions. It is designed to resemble a physical solution with
non-negative density and pressure. The solution is given by

2
4 
v
p

3
5 D

2
4 
0 C 
1 tanh.s.x0 � x C t C ��//

tanh.s.x0 C v0 � x C t C ��//C tanh.�s.x0 � v0 � x C t C ��//

p0 C p1 tanh.s.x0 � x C t C ��//

3
5 :

The parameters are set to 
0 D p0 D 0:75, 
1 D p1 D x0 D 0:25, v0 D 0:05,
s D 10, � D 0:1 and � 2 U Œ�1; 1�. The solution is shown in Fig. 8.1.
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Fig. 8.1 Manufactured smooth solution as a function of x and �, t D 0:15. (a) Density. (b)
Velocity. (c) Energy
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We measure the error in the computed Eu.x; t; �/ in the L2.˝;P/ norm and the
discrete `2 norm,

���EuM � Eu
���
2;2

�
���EuM � Eu

���
`2;L2.˝;P/

D
 
�x

mX
iD1

��uM.xi ; t; �/ � u.xi ; t; �/
��2
L2.˝;P/

!1=2

D
 
�x

mX
iD1

Z
˝

.uM.xi ; t; �/ � u.xi ; t; �//2dP.�/

!1=2

�
0
@�x

mX
iD1

qX
jD1

.uM.xi ; t; �.j /q /� u.xi ; t; �.j /q //2w.j /q

1
A
1=2

; (8.20)

where a q-point quadrature rule with points f�.j /q gqjD1 and weights fw.j /q gqjD1 was
used in the last line to approximate the integral in �. The Gauss-Legendre quadrature
is used here since the solution is smooth in the stochastic dimension.

Figure 8.2 depicts the spatial convergence in the k:k2;2 norm of the error in
density, velocity and energy. An order .Np;Nr/ D .10; 0/ basis is used to represent
the uncertainty. The solution dynamics is initially concentrated in the left part of the
spatial domain. By the time of t D 0:4, it has moved to the right and has begun to
exit the spatial domain, so the time snapshots of Fig. 8.2 summarize the temporal
history of the spatial error decay. The theoretical optimal convergence rate for the
MUSCL scheme with the van Leer flux limiter is obtained for all times and all
quantities.

8.3.2 Initial Conditions and Discontinuous Solutions

We consider (8.1) with two different initial functions on the domain Œ0; 1�. Since
the analytical solution of Sod’s test case is known for any fixed value of the input
parameters, the exact stochastic solution can be formulated as a function of the
stochastic input �. Exact statistics can be computed by numerical integration over
�. As case number 1, assume that the density is subject to uncertainty, and all other
quantities are deterministic at t D 0. The initial condition for (8.1) is given by

u.x; t D 0; �/ D
�

uL D .1C ��; 0; 2:5=�/T x < 0:5

uR D .0:125.1C ��/; 0; 0:25=�/T x > 0:5
;

where we assume � 2 U Œ�1; 1�, � D 1:4 and the scaling parameter � D 0:5. This
is a simple initial condition in the sense that the first two Legendre polynomials
are sufficient to represent the initial function exactly. As case number 2, we
consider (8.1) subject to uncertainty in the initial shock location. Let
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Fig. 8.2 Convergence in space using the method of manufactured solutions, Np D 10, Nr D 0

(Legendre polynomials). Superscript P denotes the numerical pseudospectral solution. (a) t D
0:05. (b) t D 0:1. (c) t D 0:2. (d) t D 0:4

u.x; t D 0; �/ D
�

uL D .1; 0; 2:5=�/T x < 0:5C ��

uR D .0:125; 0; 0:25=�/T x > 0:5C ��
;

where we assume � D 1:4 and the scaling parameter � D 0:05. Here, � takes
a triangular distribution, which we parameterize as a nonlinear function in � 2
U Œ�1; 1�, i.e.,

�.�/ D .�1C
p
� C 1/1f�1���0g.�/C .1 �

p
1 � �/1f0<��1g.�/;

where the indicator function 1fAg of a set A is defined by 1fAg.�/ D 1 if � 2 A

and zero otherwise. For case 2, exact representation of the initial function requires
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Fig. 8.3 Schematic representation of the initial setup for case 1 (left) and case 2 (right)

0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(w1)0

(w1)1

(w1)2

(w1)3

(w1)4

(w1)5

(w1)6

(w1)7

0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(w1)0

(w1)1

(w1)2

(w1)3

(w1)4

(w1)5

(w1)6

(w1)7

a b

Fig. 8.4 Initial w1 modes for case 2, first 8 basis functions. (a) Legendre polynomials. (b) Haar
wavelets

an infinite number of expansion terms in the MW basis. Figure 8.3 depicts the
shock tube setup for the two cases, with dashed lines denoting uncertain parameters.
We will also investigate another version of case 2, where the right state density is
significantly reduced to obtain a strong shock.

8.3.3 Spatial and Stochastic Resolution Requirements

For case 2, note that although the initial shock position can be exactly described
by the first two terms of the Legendre polynomial chaos expansion, this is not the
case for the initial state variables. In fact, for the polynomial chaos expansions of
the density, momentum and energy, the error decays only slowly with the number
of expansion terms. Thus, unless a reasonably large number of expansion terms is
retained, the stochastic Galerkin solution of case 2 will not be accurate even for
small times.

The Legendre coefficients at small times display an oscillating behavior that
becomes sharper with the order of the coefficients. The wavelet coefficients exhibit
peaks that get sharper with the resolution level, and require a fine mesh. Figure 8.4
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shows the initial Legendre coefficients and the initial Haar wavelets for case 2.
The numerical method has a tendency to smear the chaos coefficients, resulting
in underprediction of the variance. The increasing cost of using a larger number
of basis functions is further increased by the need for a finer mesh to resolve the
solution modes.

Figure 8.5 shows the temporal evolution of the mean and variance of the density
of case 2 as a function of space on a fine mesh of 500 spatial points and 32
piecewise linear multiwavelets. The mean and the variance are both reasonably well
captured for this case. Figure 8.6 depicts case 2 for a similar setup, but with 32 Haar
wavelets. The mean is well captured, but the variance is not fully captured. The
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Fig. 8.5 Temporal evolution of the mean and variance of the density for case 1, using Roe
variables, 500 spatial points and 32 piecewise linear multiwavelets. (a) Mean density. (b) Variance
of density
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variables, 500 spatial points and 32 Haar wavelets. (a) Mean density. (b) Variance of density
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three variance peaks correspond to the rarefaction wave, contact discontinuity and
the shock, respectively. As time progresses, the variance peaks will propagate out of
the computational domain.

8.3.4 Convergence of Multiwavelet Expansions

For moderate simulation times, the numerical solution on a sufficiently fine
spatial mesh converges as the order of MW expansion increases by increasing the
polynomial degree Np or the resolution level Nr . Figure 8.7 shows the decay in the
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Fig. 8.7 Decay in variance of velocity and energy as a function of the order of expan-
sion, polynomial order Np and resolution level Nr . Case 1, t D 0:05, 280 spatial points
restricted to x 2 Œ0:4; 0:65�. Solution obtained with the Roe variable scheme. (a) Case 1,��Var.vM /� Var.v/��
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error of the variance of velocity and energy as a function of Np and Nr . For well-
behaved cases like these, one may freely choose between increasing Np and Nr , in
order to increase the accuracy of the solution of the quantity of interest.

For longer simulation times or more extreme cases, e.g., supersonic flow, high-
order polynomial representation (increasingNp) may not lead to increased accuracy,
but rather to breakdown of the numerical method. Next, we study the qualitative
properties of the MW representation of case 1 and case 2 for two extreme cases
of MW parameters: Legendre polynomials (Nr D 0) and piecewise constant Haar
wavelets (Np D 0).

Figure 8.8 shows the density surface in the x � �-plane of case 1 and case 2
at t D 0:15 based on exact solution evaluations, and computed with Legendre
polynomials and Haar wavelets. The computed solution with Legendre polynomial
reconstruction captures essential features of the exact solution, but the use of global
polynomials causes oscillations downstream of the shock.

With Haar wavelets, there are no oscillations downstream, unlike the Legendre
polynomials case. However, the eight ‘plateaus’ seen in Fig. 8.8e correspond to the
eight basis functions. When the order of wavelet chaos expansion increases, the
number of plateaus increases, and the solution converges to the exact solution.

From Fig. 8.8, it is clear that the effect of the choice of multiwavelet basis
depends to some extent on the problem at hand. Haar wavelets yield numerical
solutions that are free of oscillations but converge only slowly. Oscillations around
discontinuities in stochastic space should be expected when a polynomial basis is
used and may lead to severe problems when variables attain unphysical values,
e.g., when the oscillations downstream of the shock lead to negative density. Thus,
more robust multiwavelets are required for problems with stronger shocks, as we
demonstrate below.

8.3.5 Robustness

Complex supersonic test cases have already been successfully treated with a
stochastic Galerkin method based on the conservative formulation, see for instance
[14]. In general, the stochastic Galerkin method applied to the Roe variables gives a
more robust method than the conservative variables formulation. The conservative
formulation is more prone to ill-conditioning of the pseudospectral operations in the
computation of the numerical flux. However, for cases where the matrix A in (8.3)
has an eigenvalue decomposition with constant eigenvectors, the pseudospectral
systems simplify to a series of scalar operations, thus avoiding ill-conditioned
systems. An example is given in Sect. 8.3.6.

Figure 8.9 shows the relative errors of the solution in the 2; 2 norm (defined in
(8.20)) for modified versions of case 2 with stronger shocks, obtained by increasing
the difference between 
L and 
R. We fix 
L D 1, and let 
R take a range of different
values, 
R D 2�k , k D 3; : : : ; 8 for 8 basis wavelets. This corresponds to Mach
numbers up to Ma D 2:0. Figure 8.9 also includes the relative error of the Mach
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Fig. 8.8 Density as a function of x and � at t D 0:15. (a) Exact solution, case 1. (b) Exact
solution, case 2. (c) Legendre polynomials .Np; Nr/ D .8; 0/, case 1. (d) Legendre polynomials
.Np; Nr/ D .8; 0/, case 2. (e) Haar wavelets .Np; Nr/ D .0; 3/, case 1. (f) Haar wavelets
.Np; Nr/ D .0; 3/, case 2

number to verify that the cases solved for were reasonably close to the supersonic
range they model. For this problem, the conservative variable formulation was
unstable due to ill-conditioning of the pseudospectral operations except for the
original subsonic case 2 (
R D 0:125). Note that this numerical breakdown
should not be confused with time instability – using analytical decomposition
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Fig. 8.9 Relative error in density, velocity, energy and Mach number at t D 0:15 for different
shock strengths. m D 300 spatial points, 8 Haar wavelets (Np D 0, Nr D 3)

of the eigenvectors of A defined in (8.3), we can also handle supersonic cases
with conservative variables. We have not observed any significant variation in the
stability properties depending on the order M of the stochastic basis when using
constant eigenvector decompositions. Thus, the Roe variable formulation seems
more suitable for problems where robustness is an issue, unless the eigenvectors
of A are constant.

Legendre polynomials are not suitable for this problem. As seen in Fig. 8.8c,
d, the solution is oscillatory in the right state close to the shock. If the right state
density is small, as in this supersonic case, such oscillations cause the density to
be very close to zero, or even negative. This leads to an unphysical solution and
breakdown of the numerical method.

8.3.6 Computational Cost

For stochastic basis functions that admit an eigenvalue decomposition of the matrix
A in (8.3) with constant eigenvectors, the computational cost is greatly reduced
compared to the general case of non-constant eigenvectors. The Roe average
matrices are computed by a series of matrix-vector multiplications only, both for
the Roe variables and the conservative variables. The nonlinear pseudospectral
operations are also simplified. For instance, the pseudospectral inverse used with
the conservative variables can be computed by a series of scalar inverses and
matrix-vector multiplications. LetQ be the matrix of constant eigenvectors ofA.:/.
Starting from the gPC expansion 
M of the density, put 
�� D Q
��EV , where the
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vector 
��EV is defined by .
��EV /j D 1=.
p
MQT 
/j for j D 1; : : : ;M . To see that

this holds, note that �M

 D p

Mdiag.QT 
M /. (Superscript M denotes an index,
not a power.) Then, with 1M D .1; : : : ; 1/T and e1 D .1; 0; : : : ; 0/T ,

A.
M /
�� D Q�M

 Q

TQ
��EV D Q�M

 

��
EV D Q1M D e1;

so 
�� has the desired properties of the pseudospectral inverse.
For two stochastic Galerkin systems of orderM D .NpC1/2Nr andM 0 D .N 0pC

1/2N
0
r where M D M 0 but Np ¤ N 0p, N 0r ¤ Nr , the size of the problem and the

computational cost are the same. Although the different bases could possibly result
in properties that make them very different in the number of iterations required to
solve the nonlinear matrix problems, no such tendency was observed. The numerical
experiments yield very similar computational costs for the cases tested.

In order to compare the computational cost of the Roe variable expansion with
that of the conservative expansion, a similar experimental setup is used for both
methods. Sufficiently small test cases are run in order not to exceed the cache limit,
which would slow down the simulation time for fine meshes and bias the result. We
used test case 1 for short simulation times. Results are shown for both the numerical
methods where we use knowledge of the constant eigenvectors of the eigenvalue
decomposition ofA, and the methods designed for the more general case of varying
eigenvectors where we have to rely on methods for nonlinear systems.

In the experiments, the same time-step has been used for the different variable
expansions, although a larger time-step could be used for the Roe variables.
Table 8.1 displays the relative simulation time of the two different variable expan-
sions for an increasing number of Haar wavelets (M D 2Nr ,Np D 0). One time unit
is defined as the time for the numerical simulation of a single deterministic problem
using the same numerical method with similar input conditions, discretization and
time-step. In the general setup, the higher computational cost for the conservative
variable formulation is due to the need to compute inverse quantities and cubic
spectral products. The Roe variable formulation only requires solution of the
nonlinear system for the square root of the density and quadratic flux function
evaluations. The relative benefit of the Roe variable expansion decreases with the

Table 8.1 Relative simulation time using conservative variables and Roe variables, respectively.
One time unit is defined as the simulation time of a single deterministic problem with the
same time-step as for the MW cases. Results are included for the codes designed for constant
eigenvectors and for the same problem with the more general code which does not rely on the
assumption of constant eigenvectors

Order of MW M D 2 M D 4 M D 8 M D 16

Time Roe variables, general 29 32 44 107

Time conservative variables, general 267 280 388 60

Time Roe variables, constant eigenvectors 6 7 12 29

Time conservative variables, constant eigenvectors 6 8 13 29
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order of wavelet expansion. This is due to the increasing cost of forming spectral
products that dominates the total cost for high-order expansions. Note that the
difference in computational cost is too large to be due only to the fact that additional
pseudospectral operations are required for the conservative variables. The difference
is attributed to the fact that the ill-conditioned pseudo-spectral operations may need
a large number of iterations.

Using the constant eigenvectors of the eigenvalue decomposition of A, we see
in Table 8.1 that the two formulations are essentially equivalent since they both
reduce to a comparable number of matrix-vector products instead of the solution
of nonlinear and possibly ill-conditioned systems. Note that we have not taken into
account that the Roe variables permit a time-step larger than that of the conservative
variables.

8.4 Summary and Conclusions

A qualitative difference between stochastic Galerkin formulations and non-intrusive
formulations is that the numerical analysis of the latter is essentially equivalent to
that of deterministic problems, whereas numerical analysis of the former is very
different. For the Euler equations, different choice of variables results in different
numerical properties of the discretized problem. The stochastic Galerkin counterpart
of a simple scalar division in the deterministic or non-intrusive setting may be a
potentially ill-conditioned system of equations. However, with careful analysis and
suitable solution techniques, the single solution of the more complex stochastic
Galerkin problem may be faster than the repeated solutions using a non-intrusive
method. The message here is that there is more than one possible stochastic Galerkin
formulation, and the increased complexity compared to non-intrusive methods leads
to a wider span of numerical performance depending on the choice of numerical
solver. In this Chapter, we have compared two formulations of the Euler equations
that would not differ in the non-intrusive setting, but behave very differently in the
stochastic Galerkin setting.

In computational fluid dynamics, Roe average matrices are used to define aver-
ages between neighboring grid cells. The classical example is for the deterministic
Euler equations, but for general systems, Roe average matrices are difficult to find.
In this Chapter, a Roe average matrix for the standard MUSCL-Roe scheme with
Roe variables is derived, and we prove that it satisfies the conditions stated by Roe.

Efficient representation of the input parameters should not be the primary focus
in the choice of stochastic basis for hyperbolic problems. Robustness properties over
time are far more important, as demonstrated by the test cases of this Chapter. The
Legendre polynomial basis exactly represents the input uncertainty in our first test
case, but it leads to oscillations around the discontinuity in stochastic space. On the
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other hand, the Haar wavelets of low-order do not represent the input uncertainty
exactly in either test case, but are more robust to discontinuities. Since the optimal
stochastic representation is unknown and varies over time, the polynomial chaos
framework may be complemented by adaptive methods that adds and removes basis
functions over time. These methods will not be further discussed here, but are a
natural next step for readers who wish to tackle more complex problems.

The Roe variable formulation is robust for supersonic problems where the
conservative variable formulation fails, but only for localized basis functions
of the generalized chaos representation. For global Legendre polynomials, the
discontinuities in stochastic space lead to oscillations and unphysical behavior
of the solution and numerical breakdown. Haar wavelets are more robust in this
respect, and do not yield oscillations around discontinuities in stochastic space.
The robustness properties can be significantly improved with a stochastic basis that
admits an eigenvalue decomposition with constant eigenvectors of the inner triple
product matrix that occurs frequently in the evaluation of pseudospectral operations.
When this is the case, the Roe variables and conservative variables are similar in
performance using the same time-step.

For the general case where we do not assume an eigenvalue decomposition with
constant eigenvectors, the Roe variable formulation leads to speedup compared to
the conservative variable formulation. The relative speedup decreases with the order
of generalized chaos since the total computational cost for high-order expansions is
no longer dominated by spectral inversion and square root calculations. Instead, the
main cost lies in the formation of spectral product matrices. However, for low-order
multiwavelet expansions, the speedup is significant. The difference in computational
time is mainly due to the pseudospectral operations of the numerical flux functions,
especially if these are ill-conditioned.

We demonstrate the need for robust flux functions by presenting cases where
the standard MUSCL-Roe flux fails to capture the solution. The design of a
robust numerical method is also highly dependent on the choice of the stochastic
basis. The Haar wavelets are not only more robust than Legendre polynomials for
representation of discontinuities in stochastic space, but also admit the proof of
existence of a Roe matrix and, more specifically, the hyperbolicity of the stochastic
Galerkin formulation. This implies that the truncated problem mimics the original
problem – a desirable feature.

If the representation of the initial function has not converged, the solution at
future times cannot be accurate. The test case with uncertain initial shock location
(case 2 in Sect. 8.3.2) illustrates the need to find a representation of uncertainty with
fast decay of the coefficients of the generalized chaos expansion. An alternative to
more accurate representation of the input uncertainty is to combine the intrusive Roe
variable formulation presented here with multielement methods, for instance in the
manner presented in [13] or using adaptive methods [12].
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Chapter 9
A Hybrid Scheme for Two-Phase Flow

In this chapter, we investigate a two-phase flow generalization of the Euler
equations. A stochastic two-phase problem in one spatial dimension is investigated
as a first step towards developing an intrusive method for complex multiphysics
problems, such as shock-bubble interactions, high-speed reacting flows with liquid
fuels, and Richtmyer-Meshkov instability, with generic with generic uncertainty
in the input parameters. So et al. [20] investigated a two-dimensional two-phase
problem subject to uncertainty in bubble deformation and contamination of the gas
bubble, based on the experiments in [10]. The eccentricity of the elliptic bubble
and the ratio of air-helium of the bubble were assumed to be random variables, and
quantities of interest were obtained by numerical integration in the stochastic range
(stochastic collocation). Previous work on uncertainty quantification for multiphase
problems include petroleum reservoir simulations with stochastic point collocation
where deterministic flow solvers are evaluated at stochastic collocation points [14]
and Karhunen-Loève (KL) expansions combined with perturbation methods [3].
This chapter is based on the work in [17].

We assume uncertainty in the location of the material interface, which requires a
stochastic representation of all flow variables. Stochastic quantities are represented
as a generalized chaos series, that could be either global as in the case of
generalized polynomial chaos [24], or localized (see e.g. [5]). For robustness, we
use a generalized chaos expansion with multiwavelets to represent the solution
in the stochastic dimension [18]. Note that this basis is global, so the method
is fully intrusive. However, the basis is hierarchically localized in the sense that
multiwavelets belonging to the same resolution level are grouped into families
with non-overlapping support. These features make it suitable for approximating
discontinuities in the stochastic space without the oscillations that occur in global
polynomial bases.

The stochastic Galerkin method is applied to the stochastic two-phase for-
mulation, resulting in a finite-dimensional deterministic system that shares many
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properties with the original deterministic problem. The regularity properties of
the stochastic problem are essential in the design of an appropriate numerical
method. Chen et al. studied the steady-state inviscid Burgers’ equation with a
source term [4]. We used a similar approach for the inviscid Burgers’ equation
with uncertain boundary conditions and also analyzed the regularity of low-order
stochastic Galerkin approximations of the problem [16]. Schwab and Tokareva
analyzed regularity of scalar hyperbolic conservation laws and a linearized version
of the Euler equations with uncertain initial profile [19]. In this chapter, we analyze
smoothness of the stochastic two-phase problem.

The stochastic Galerkin problem is hyperbolic. This generalized and extended
two-phase problem is solved with a hybrid method coupling the continuous phase
region with the discontinuous phase region through a numerical interface. The non-
smooth region is solved with the HLL-flux, MUSCL-reconstruction in space, and
fourth-order Runge-Kutta integration in time. The minmod flux limiter is employed
in the experimental results displayed below.

Finite-difference operators in summation-by-parts (SBP) form are used for
the high-order spatial discretization. A symmetrized problem formulation that
generalizes the energy estimates in [8] for the Euler equations is used for the
stochastic Galerkin system. The coupling between the different solution regions is
performed with a weak imposition of the interface conditions through an interface
using a penalty technique [2]. A fourth-order Runge-Kutta method is used for the
integration in time.

9.1 Two-Phase Flow Problem

We assume two phases with volume fractions ˛ and ˇ D 1 � ˛ on the domain
x 2 Œ0; 1�, governed by the advection equation

@

@t
˛ C v0.x; t/

@

@x
˛ D 0; (9.1)

where we let v0.x; t/ D v.x; t/ be the advective velocity obtained from the
conservative Euler system below. The Euler equations determine the conservation of
masses ˛
˛ and ˇ
ˇ , momentum 
v, and total energy E of the two phases through

@u
@t

C @f

@x
D 0; (9.2)

where

u D

2
664
˛
˛

ˇ
ˇ

v
E

3
775 ; f D

2
664

˛
˛v
ˇ
ˇv

v2 C p

.E C p/v

3
775 : (9.3)
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We assume that the pressure p is given by the perfect gas equation of state for two
phases

p D .� � 1/

�
E � 1

2

v2
�
; � D 1

˛
�˛

C ˇ

�ˇ

;

where � is the weighted ratio of specific heats. The total density is given by 
 D
˛
˛Cˇ
ˇ . Note that the sum of the first and second equations of (9.2) is the standard
mass conservation of the Euler equations. Thus, an equivalent formulation is the
Euler equations supplemented with an extra mass conservation equation for one of
the phases ˛ and ˇ.

We investigate the Riemann problem defined by the initial conditions

.˛; ˛
˛; ˇ
ˇ; 
v; E/T D
�
.1; 1; 0; 0; 2:5/T x < x0 C �

.0; 0; 0:125; 0; 0:25/T x > x0 C �
; (9.4)

where � is a parametrization of the measured or modeled uncertainty in the initial
membrane location. Despite the seemingly simple nature of the initial condition, the
MW series of the initial condition has an infinite number of nonzero terms. Thus,
stochastic truncation error is an issue already at t D 0.

The stochastic Galerkin formulation of the two-phase problem is obtained by
multiplying (9.1) and (9.2) by each one of the basis functions i .�/, and integrating
with respect to the probability measure P over the range of �. Initial functions are
obtained by projection of (9.4) onto the basis functions  i.�/. The MW expansion
is truncated to M C 1 terms and we get the systems for the MW coefficients

@

@t
˛k C

MX
iD0

MX
jD0

vi
@

@x
˛j h i j ki D 0; k D 0; : : : ;M; (9.5)

ˇk D ık0 � ˛k; k D 0; : : : ;M; (9.6)

and

@

@t

2
664
.˛
˛/k

.ˇ
ˇ/k
.
v/k
Ek

3
775C @

@x

2
6664

PM
iD0

PM
jD0.˛
˛/ivj h i j kiPM

iD0
PM

jD0.ˇ
ˇ/ivj h i j kiPM
iD0

PM
jD0.
v/ivj h i j ki C pkPM

iD0
PM

jD0.Ei C pi/vj h i j ki

3
7775 D 0; k D 0; : : : ;M:

(9.7)

MW expansions for pressure can be updated from the MW of the conservative
variables, and then be inserted into the fluxes. It is not possible in general to find a
Roe-like variable transformation as was done for the single-phase Euler equations in
Chap. 8. We use a pseudospectral approximation of high-order stochastic products
for the pressure update. In the computation of, for example, the order M product
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z.�/ D PM
kD0 zk k of three stochastic variables a.�/, b.�/, c.�/, for k D 0; : : : ;M ,

we use the approximation

zk D .a.�/b.�/c.�//k D
* 

MX
iD0

ai i .�/

!0
@ MX
jD0

bj j .�/

1
A
 

MX
lD0

cl l .�/

!
 k.�/

+

D
MX
iD0

MX
jD0

MX
lD0

˝
 i j k l

˛
aibj cl �

MX
iD0

MX
mD0

h i m ki ai
MX
jD0

MX
lD0

˝
 j l m

˛
bj cl

„ ƒ‚ …
.bc/Mm

� .a � .b � c//k; (9.8)

where the pseudospectral product y D a � b of orderM is defined by

yMk D .a � b/k D
MX
iD0

MX
jD0

h i j kiaibj ; k D 0; : : : ;M: (9.9)

In matrix notation, we can express (9.9) as

yM D A.aM/bM ; (9.10)

where yM D .y0; : : : ; yM /
T is the vector of MW coefficients of y and

ŒA.aM /�jC1;kC1 D
MX
iD0

h i j kiai : (9.11)

By successively applying (9.10), we obtain approximations of a range of stochastic
functions including polynomials, square roots and inverse quantities [6].

For general stochastic basis functions and general choices of the order of
generalized chaos, the stochastic volume fractions ˛ and ˇ cannot be guaranteed to
be non-negative. In fact, using first-order Legendre polynomial chaos and projecting
the initial condition results in ˛.x; t D 0; �/ D ˛0.x; t D 0/C ˛1.x; t D 0/�, � 2
U Œ�1; 1�. This implies that ˛.x; t; �/ < 0 for some values of x; t; �, which is clearly
undesirable. However, we only use Legendre polynomials for the convergence test
of a smooth problem using the method of manufactured solutions in Sect. 9.4.1.
For the fully discontinuous problem, we use Haar wavelets (piecewise constant
multiwavelets, Np D 0) for which the initial function always is physical, no matter
the order of wavelet expansion. To see this, we rewrite the stochastic advection
system (9.5) in matrix-vector notation,

@

@t
˛M CA.vM.x; t//

@

@x
˛M D 0;
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where A.:/ is defined by (9.11). Assuming Haar wavelets, the matrix A.vM .x; t//
in the stochastic advection system can be diagonalized with constant eigenvectors
yk , but space- and time-dependent eigenvalues �k.x; t/, for k D 0; : : : ;M . The
stochastic Galerkin advection problem then decouples to a set of scalar advection
problems,

@

@t
Q̨kC�k.x; t/ @

@x
Q̨k D 0; Q̨ .x; t D 0/ D Q̨ ini tk .x/; k D 0; : : : ;M; (9.12)

where Q̨k D yTk ˛. The solution of the semilinear advection problem (9.12) is
Q̨ ini tk .rk.x; t// where rk is defined by t D R x

rk

dx0

�k.x0;t /
. No matter the exact form of

rk, the solution will never attain values beyond the range of Q̨ ini tk . This implies that
the stochastic volume fraction PDE formulation will never yield unphysical values.

9.2 Smoothness Properties of the Solution

9.2.1 Analytical Solution

The exact solutions to (9.1) and (9.2) subject to (9.4) can be determined analytically,
and are discontinuous for all times. The advection problem (9.1) with v independent
of x and t has the solution

˛.x; t/ D ˛0.x � vt/;

which is to be interpreted in the weak sense here since it is discontinuous for
all t when ˛0 is chosen to be a step function. The conservation law (9.2) is a
straightforward extension of the Sod test case for shock tube problems, and its exact
piecewise smooth solution can be found in [21]. The solution consists of five distinct
smooth regions (denoted u.L/, u.exp/, u.2/, u.1/, and u.R/), and the discontinuities
may be found at the interfaces between the different regions. Assume that the
initial interface location is xs0 D x0 C � as given in (9.4). We can then express
the deterministic solution for any fixed � as a piecewise smooth solution, separated
by the four spatial points

x1.t; �/ D x0 C � �
r
�
pL


L
t (9.13)

x2.t; �/ D x0 C � C
�

v2 �
r
�
p2


2

�
t (9.14)

x3.t; �/ D x0 C � C v2t (9.15)

x4.t; �/ D x0 C � CMst; (9.16)

whereMs is the Mach number of the shock.
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Fig. 9.1 Schematic representation of the solution of the two-phase problem. Solution regions in
the x � t space for a fixed � (left), and solution regions in � � t space for a fixed x (right)

Any given value of � will determine the location of the different regions of
piecewise continuous solutions, so the true stochastic solution can be expressed as a
function of � and the variables of the true deterministic solution. In the x-t-�-space,
all solution discontinuities are defined by triplets .x; t; �/ satisfying (9.13)–(9.16).
The solution regions are depicted in Fig. 9.1 (left) for any fixed value of �.

For any point x, the solution regions can be defined as functions of � and t . This
is shown in Fig. 9.1 (right), where the points in the stochastic dimension separating
the different solution regions are given by

�1.x; t/ D x � x0 C
r
�
pL


L
t (9.17)

�2.x; t/ D x � x0 �
�

v2 �
r
�
p2


2

�
t (9.18)

�3.x; t/ D x � x0 � v2t (9.19)

�4.x; t/ D x � x0 �Mst: (9.20)

The solution can be written

u.x; t; �/ D u.L/1f�1<�g C u.exp/.x � �/1f�2<���1g C u.2/1f�3<���2g
Cu.1/1f�4<���3g C u.R/1f����4 g; (9.21)

where the indicator function 1fAg of a set A is defined by 1fAg.�/ D 1 if � 2 A and
zero otherwise.

Note that if the range of � is bounded, some solution states may not occur
with nonzero probability for an arbitrary x. The situation shown in Fig. 9.1 (right)
requires a sufficiently large range of �, or, equivalently, that x is sufficiently close
to x0. The expression (9.21) is always true, however.
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9.2.2 Stochastic Modes

The solutions of (9.1) and (9.2) for fixed values of � are discontinuous, but the
stochastic modes (multiwavelet coefficients) are continuous. To see this, we proceed
from the solution (9.21) to derive exact expressions for the stochastic modes. We
assume that the probability measure P has a probability density Qp. The kth mode
uk is given by the projection of (9.21) on  k.�/,

uk.x; t/ D
Z
˝

u.x; t; �/ k.�/ Qp.�/d� D u.L/

Z 1
�1

 k.�/ Qp.�/d�

C
Z �1

�2

u.exp/.x � �/ k.�/ Qp.�/d� C u.2/

Z �2

�3

 k.�/ Qp.�/d�

Cu.1/

Z �3

�4

 k.�/ Qp.�/d� C u.R/

Z �4

�1
 k.�/ Qp.�/d�: (9.22)

The density Qp and multiwavelet  k are at least piecewise continuous functions, so
by (9.22) uk 2 C0. Now assume that the parametrization � of the uncertainty in the
location of x0 has a probability density Qp 2 C s.R/ for some degree of regularity
s 2 N. There exists a set f i g1iD0 of polynomials that are orthogonal with respect to
Qp. With this choice of basis functions, we may differentiate (9.22) with respect to x,

@

@x
uk D �u.L/ k.�1/ Qp.�1/Cuexp.x � �1/ k.�1/ Qp.�1/�uexp.x��2/ k.�2/ Qp.�2/

C
Z �1

�2

u0.exp/.x � �/ k.�/ Qp.�/d� C u.2/ k.�2/ Qp.�2/ � u.2/ k.�3/ Qp.�3/

Cu.1/ k.�3/ Qp.�3/� u.1/ k.�4/ Qp.�4/C u.R/ k.�4/ Qp.�4/; (9.23)

where we used @�i=@x D 1, i D 1; 2; 3; 4. In fact, uk.x; t/ as given by (9.22) is
s C 1 times differentiable in x or t for t > 0 and uk 2 C sC1.

Remark 9.1. Note that the smoothness of uk in x and t ultimately depends on the
smoothness of Qp and the choice of basis functions f i g1iD0, which are all functions
of �. In contrast, for any fixed value of �, the solution u.x; t; �/ is discontinuous in
the spatial and temporal dimensions, no matter the smoothness of Qp and f i g1iD0.

9.2.3 The Stochastic Galerkin Solution Modes

We investigated the smoothness properties of the stochastic modes of the original
problems problem (9.5) and (9.2) above, but in all actual computations we solve
the modified stochastic Galerkin approximation (9.5)–(9.7). For low-order MW
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approximations (smallM ), the smoothness properties are very different from those
derived above. For instance, the M D 0 approximation is the deterministic two-
phase problem with its characteristic discontinuous solution profile. First-order gPC
approximations using a group of orthogonal polynomials and multiwavelets result
in linear combinations of deterministic two-phase problems. In terms of regularity,
these problems are clearly equivalent to the deterministic problem. Higher-order
gPC approximations result in large nonlinear stochastic Galerkin problems that
in general cannot be diagonalized into a set of deterministic two-phase problems.
Due to their nonlinear nature, we expect these problems to develop discontinuities.
However, it is a reasonable assumption that the solution converges to the solution
of (9.2). Hence, we assume that the discontinuities get weaker with the order of
gPC expansion so that high-order MW approximations have regularity properties
that approach the smoothness properties of the analytical stochastic modes.

We have analyzed smoothness of the particular problem of uncertain initial
location of the shock in the Riemann problem (9.4). An essential feature of the
analysis is that for t > 0, the locations of the discontinuities become stochastic.
If this were not the case, the gPC coefficients would not be smooth. Thus, for any
given set of initial conditions, smoothness should be analyzed in order to determine
an appropriate numerical method.

In order to solve (9.5)–(9.7) numerically for arbitrary orderM of MW expansion
(that may vary in space depending on the smoothness of the solution), we need
shock-capturing methods that can account for the discontinuities that are expected
due to the stochastic truncation. In regions away from the discontinuities, the
solution is at least as smooth as the corresponding deterministic problem, and high-
order methods in combination with smooth polynomial stochastic basis functions
are more suitable. In the next section, we present a method which combines high-
order and shock-capturing methods for the stochastic Galerkin systems.

9.3 Numerical Method

The computational domain is divided into regions of smooth behavior of the
solution, and regions of sharp variation. At this stage, these regions are assumed
to be known a priori and do not change with time. Thus there is no need to use a
detection algorithm to locate the regions of sharp variation apart from flux limiters
that are applied for smoothing. However, the methodology may be extended to time-
dependent regions (see [7]). A fourth-order Runge-Kutta method is used for the time
integration.

9.3.1 Summation-by-Parts Operators

The smooth regions are discretized using a high-order finite difference method based
on SBP operators. Boundary conditions are imposed weakly through penalty terms,
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where the penalty parameters are chosen such that the numerical method is stable.
Operators of order 2n, n 2 N, in the interior of the domain are combined with
boundary closures of order of accuracy n.

The first derivative SBP operator was introduced in [13, 22]. Let Eu denote the
uniform spatial discretization of u. For the first derivative, we use the approximation
ux � P�1QEu, where subscript x denotes partial derivative andQ satisfies

QCQT D diag.�1; 0; : : : ; 0; 1/ � QB: (9.24)

The property (9.24) is the almost skew-symmetry property introduced in (4.9).
For more details about the SBP framework and use of penalty techniques, see
Sect. 4.2.2. As held consistently throughout this book, P must be symmetric and
positive definite in order to define a discrete norm. For proof of stability, P must be
diagonal.

9.3.2 HLL Riemann Solver

In the non-smooth regions, MUSCL-type flux limiting [23] is used for recon-
struction of the left and right states of the conservative fluxes and advection of
the volume fractions. For the conservative problem (9.2), we employ the HLL
Riemann solver introduced by Harten et al. [12], defined in (4.27). The fastest
signal velocities are given by the maximum and minimum eigenvalues of the
Jacobian of the flux. In the deterministic case, the eigenvalues of the Jacobian
are known analytically, so the method is inexpensive. For the stochastic Galerkin
system, analytical expressions are not available, and numerical approximations
of the eigenvalues are used instead. In general, obtaining accurate eigenvalue
estimates may be computationally costly. However, for the piecewise constant
and piecewise linear multiwavelet expansion, we have explicit expressions for the
system eigenvalues due to the constant eigenvectors of the inner triple product
matrices A given by (9.10), see Appendix B.2.

The HLL-flux and MUSCL reconstruction are applied to solve the conservative
problem (9.7). The (standard) MUSCL scheme is used to solve the advection
problem (9.5) in the regions where the solution is expected to be non-smooth.
In combination with a suitable Runge-Kutta method, the MUSCL scheme is total
variation diminshing (TVD) [9]. For the deterministic solution, this would be
a sufficient condition for ˛ to attain physically relevant values only. For the
stochastic Galerkin system, we need to ensure that the effect of the artificial
dissipation from the flux limiters on the different solution modes does not cause
the solution ˛ (linear combination of the modes) to become unphysical. By the
TVD property, the expectation mode is restricted to Œ0; 1�, so unphysical values
can occur only if the high-order modes are less dissipated than the expectation
mode. Artificial dissipation affects highly oscillating functions more than slowly
oscillating functions. Since the peaks of the initial functions get sharper with the
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order of wavelet chaos, the higher-order modes are increasingly dissipated by the
scheme compared to the lower-order modes and the expectation. Thus, most likely
the numerical volume fraction always remains restricted to physically relevant
values as time is evolved. This evolution is confirmed by the numerical experiments
reported later.

9.3.3 Hybrid Scheme

Numerical interfaces can be designed for stable coupling of problems solved
separately using SBP operators. The MUSCL scheme can be rewritten in SBP
operator form with an artificial dissipation term [1] and can therefore be coupled
with other schemes using SBP operators [7]. The coupling requires the artificial
dissipation to be zero at the interface in order to enable energy estimates.

The computational domain is divided into a left smooth solution region and a
right non-smooth solution region that are weakly coupled with an interface. The
leftmost lying part of the right region is a transition region where a second-order
one-sided SBP scheme is applied that transitions into the HLL-MUSCL scheme.
In this way, there is a stable coupling between the high-order SBP scheme of the
left domain and the second-order SBP scheme of the transition region. Numerical
dissipation within the order of the scheme is added to the regions where SBP
operators are used. Figure 9.2 schematically depicts the hybrid scheme, applied to
two spatial grids and coupled with an interface.

9.3.3.1 An Energy Estimate for the Continuous Problem

We will analyze stability for two solution regions coupled by an interface. However,
we start with the continuous problem on a single domain. In order to do this, we
symmetrize the two-phase problem. We assume the existence of a convex entropy
function S.uM/, i.e., the Hessian @2S=@uMi @uMj is positive definite. (Note that
convexity as defined here does not allow for zero eigenvalues of the Hessian.)
Then, by [11], there exists a variable transformation wM.uM/ D @S=@uM such
that Qf .wM/ D f .uM / and

QHwMt C JwwMx D 0;

× × × × × ×
SBP high order� �

× × × × × × × × × × × ×
SBP 2nd order� � HLL-MUSCL� �

Fig. 9.2 Solution regions on the spatial mesh
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where wM denotes the vector of MW coefficients of the order M approximation
of the transformed variables, and the inverse Hessian QH D @uM=@wM D
.@2S=@uMi @uMj /

�1 and Jacobian Jw D @ Qf =@w are symmetric matrices. Due to

convexity, QH is positive definite and thus defines a norm. As in the case of the Euler
equations, the two-phase equations are homogeneous of degree � , which implies

QHwM D �uM and JwwM D � Qf M
: (9.25)

We will use the canonical splittings

uMt D �

1C �
uMt C 1

1C �
QHwMt ; Qf M

x D �

1C �
Qf M

x C 1

1C �
J wwMx :

To obtain an energy estimate for the continuous and stability for the semidiscrete
problem, the stochastic Galerkin formulation of the two-phase problem must be
homogeneous. To show that this holds under the assumption that the correspond-
ing deterministic problem is homogeneous and some additional assumptions, we
consider a deterministic problem that is homogeneous of degree � . Let

J .u/u D �f .u/; (9.26)

with solution u 2 R
n, Jacobian J 2 R

n�n and flux f 2 R
n for a system of n

equations. Now assume that the problem satisfying (9.26) is subject to uncertainty
in the parameters or in the input conditions. Let Jij denote the .i; j / entry of J
which can be expressed as a truncated MW expansion Jij D PM

kD0.Jij /k k . The
stochastic Galerkin Jacobian JM corresponding to J consists of n	n submatrices,
each of size .MC1/	.MC1/: Let JM

ij be the .i; j / submatrix of JM , defined by

ŒJM
ij �lm D h l mJiji D

MX
kD0

.Jij /kh k l mi; i; j D 1; : : : ; n; l;m D 0; : : : ;M:

(9.27)

The stochastic Galerkin flux vector of MW coefficients f M D ..f1/0; : : :,
.f1/M ; : : : ; .fn/0; : : : ; .fn/M /

T is a nonlinear function, and for an arbitrary orderM
basis of multiwavelets, it is not uniquely defined. To see this, with the pseudospectral
product � defined in (9.9), in general

.a � b/ � c ¤ a � .b � c/

for MW approximations of stochastic functions a.�/, b.�/, c.�/, each one truncated
to some order M . This implies that the definition of the stochastic Galerkin flux
f M depends on the order in which pseudospectral operations are performed when
evaluating f M . Hence, it is not uniquely defined. We may now either restrict
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ourselves to MW bases where the order of pseudospectral operations does not matter
e.g., Haar wavelets, or we may restrict the order in which pseudospectral operations
are performed so as to make sure that mathematical properties of interest, such
as, homogeneity, are satisfied. We take the latter approach and define the order M
approximation of f through its MW coefficients by

.fi /k � 1

�

nX
jD1

.Jij � uj /k; i D 1; : : : ; n; k D 0; : : : ;M; (9.28)

which is consistent with the deterministic homogeneous problem. Note that rela-
tion (9.28) is essentially just a restriction on the order of pseudospectral operations
in the calculation of f . It stipulates that f must be defined in terms of the
approximation of J . Clearly, the approximation of J should also be as close to
the true (i.e., infinite order MW expansion) J as possible. However, for the energy
estimates that require homogeneity of the stochastic Galerkin formulation, we only
need to satisfy (9.28).

Proposition 9.1. Assume that the deterministic problem (9.26) holds, and for a
consistent pseudospectral approximation JM of J , let the stochastic Galerkin
flux f M be given by the MW coefficients as defined in (9.28). Then the stochastic
Galerkin formulation of orderM is also homogeneous of degree � , i.e., it satisfies

JM .uM/uM D �f M .uM/; (9.29)

where uM D ..u1/0; : : : ; .u1/M ; : : : ; .un/0; : : : ; .un/M /T 2 R
n.MC1/ and f M D

..f1/0; : : : ; .f1/M ; : : : ; .fn/0; : : : ; .fn/M /
T 2 R

n.MC1/.

Proof. Using the notation (9.10) for the pseudospectral product �, by (9.27) the
.i; j / submatrix of JM can be written

JM
ij D A

�
JMij

	
; i; j D 1; : : : ; n;

where JMij D ..Jij /0; : : : ; .Jij /M /
T . Thus, we have

JM D

2
64
A.JM11/ : : : A.JM1n/

:::
: : :

:::

A.JMn1/ : : : A.JMnn/

3
75 :

By the relation (9.28), any subvector f M
i D ..fi /0; : : : ; .fi /M /

T of the total flux
vector of MW coefficients f M can be written

f M
i D 1

�

nX
jD1

A.JMij /u
M
j ; i D 1; : : : ; n:
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Then, considering the i th row of submatrices, we have

ŒJ MuM �i D
nX

jD1
J M

ij uMj D
nX

jD1
A.JMij /u

M
j D �f M

i ; i D 1; : : : ; n;

which is equal to (9.29).

Remark 9.2. The original (deterministic) Jacobian entries Jij are nonlinear func-
tions of u, and the stochastic Galerkin counterpart JM is a nonlinear function of
the gPC coefficients of u. Since the approximation of a nonlinear stochastic function
by means of pseudospectral operations depends on the order in which the operations
are performed, the matrix JM is not uniquely defined unless we specify the order.
However, for proof of Proposition 9.1, it is sufficient to define f M as a function of
JM , but there is no need to specify JM in terms of the order of pseudospectral
operations.

We will now derive an energy estimate for the continuous symmetrized formula-
tion of the stochastic Galerkin Euler equations in split form,

�

1C �
uMt C 1

1C �
QHwMt C �

1C �
Qf M

x C 1

1C �
Jwwx D 0: (9.30)

Under the conditions of Proposition 9.1, multiply (9.30) by .1 C �/.wM/T and
integrate over the physical domain. We get

�

Z 1

0

.wM/T uMt dx C
Z 1

0

.wM/T QHwMt dx C �

Z 1

0

.wM /T Qf M

x dx

C
Z 1

0

.wM/TJ wwMx dx D
Z 1

0

�
.wM/T . QHwM/t C .wM /T QHwMt

	
dx

C
Z 1

0

�
.wM /T .JwwM/x C .wM/T JwwMx

�
dx

D d

dt

��wM
�� QH C Œ.wM /TJwwM �10 D 0; (9.31)

where the first equality follows from (9.25). The generalized energy estimate (9.31)
is a straightforward stochastic Galerkin generalization of that given for the deter-
ministic problem in [8].

9.3.3.2 Stability in a Single Domain

Next we consider the semidiscrete problem and start with a single domain. The
stability analysis is a direct generalization of the stability of the symmetrized Euler
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equations in [8]. We define the flux and the Jacobian under the conditions of
Proposition 9.1 which implies that the stochastic Galerkin system is homogeneous.
Let EuM and EwMdenote the spatial discretizations of uM and wM , respectively, on
a mesh consisting of m equidistant gridpoints. Let E 1 D diag.1; 0; : : : ; 0/ and
Em D diag.0; : : : ; 0; 1/. The semidiscretized scheme is

�

1C �
EuMt C 1

1C �
OH EwMt C �

1C �
.P�1Q˝ I/ Qf M.EwM/

C 1

1C �
OJw.P

�1Q˝ I/EwM

D .P�1E 1 ˝˙ w
1 /.EwM � Eg1/C .P�1Em ˝˙ w

m/.EwM � Egm/; (9.32)

where OH is block diagonal with each diagonal block equal to QH evaluated at the
spatial points. ˙ w

1 and ˙w
m are penalty matrices to be determined, and Eg1 and Egm

are vectors where only the entries corresponding to the left and right boundaries are
allowed nonzero values. We assume a diagonal normP , so .P˝I/ OH D OH .P˝I/.
Also, OJw commutes with .P ˝ I/. In order to show stability, we may assume
homogeneous boundary conditions Eg1 D Egm D 0. Multiplying (9.32) from the
left by .1 C �/.EwM/T .P ˝ I/ and using the homogeneity properties of (9.25)
yields

d

dt
kEwM k2

.P˝I/ OH C .EwM/T
�
.Q˝ I/ OJw C OJw.Q˝ I/

	
EwM

D .1C �/.EwM/T1˙ w
1 EwM1 C .1C �/EwTm˙w

m EwMm : (9.33)

Add the transpose of (9.33) to itself and use the SBP relation (9.24)

d

dt

���EwM
���2
.P˝I/ OH

D EwT1
�
Jw.EwM1 /C .1C �/˙ w

1

	
EwM1

C.EwMm /T
�
�Jw.EwMm /C .1C �/˙ w

m

	
EwMm : (9.34)

The scheme is stable in the sense of Definition 1.3 with the penalties

˙w
1 D �ı1JCw .EwM1 /; ˙w

m D ımJ
�
w .EwMm /; ı1; ım � 1

1C �
:

Remark 9.3. The stability analysis above follows that in [8]; for the case M D 0

the analysis is in fact identical. We show here that the analysis in [8] generalizes
to the stochastic Galerkin formulation of orderM of multiwavelet expansion under
the conditions of Proposition 9.1.
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9.3.3.3 Stability at the Interface

Now consider a problem with two domains connected by an interface. A grid point
at the interface will be assigned two solution values, one from each of the stencils
that meet at the interface. The difference between the solutions at the interface are
penalized analogously to the treatment of the (outer) boundary conditions we have
seen in the single domain stability analysis. By ignoring the imposition of boundary
conditions, the semidiscrete systems of the left and right domains are given by

�

1C �
.EuML /t C 1

1C �
OH .EwML /t C �

1C �
.P�1L QL ˝ I/ Qf M

.EwML /

C 1

1C �
QJw.P

�1
L QL ˝ I/EwML D .P�1L Em ˝˙w

L/.EwMm;L � EwM1;R/; (9.35)

and

�

1C �
.EuMR /t C 1

1C �
QJ u.EwMR /t C �

1C �
.P�1R QR ˝ I/ Qf M

.EwMR /

C 1

1C �
QJw.P

�1
R QR ˝ I/EwMR D .P�1R E 1 ˝˙ w

R/.EwM1;R � EwMm;L/; (9.36)

respectively. We follow the procedure of Sect. 9.3.3.2. Multiplying (9.35) from the
left by .1C �/.EwML /T .PL ˝ I/ and using the homogeneity identity (9.25), we have

d

dt

���EwML
���2
.PL˝I/ OH

C .EwML /T .QL ˝ I/ QJw EwML C .EwML /T QJw.QL ˝ I/EwML
D .1C �/EwMm;L˙ w

L.EwMm;L � EwM1;R/: (9.37)

Adding the transpose of (9.37) to itself, neglecting the outer boundaries and
performing similar operations on (9.36), we get

d

dt

����EwML
���2
.PL˝I/ OH

C
���EwMR

���2
.PR˝I/ OH

�
C .EwMm;L/TJ w.EwMm;L/EwMm;L

�.EwM1;R/TJ w.EwM1;R/EwM1;R D .1C �/.EwMm;L/T˙w
L.EwMm;L � EwM1;R/

C.1C �/.EwM1;R/T˙ w
R.EwM1;R � EwMm;L/: (9.38)

Assuming symmetric˙w
L and ˙ w

R, we get the stability condition

"
EwMm;L
EwM1;R

#T "�Jw.EwMm;L/C .1C �/˙ w
L � 1C�

2
.˙ w

L C˙ w
R/

� 1C�
2
.˙ w

L C˙ w
R/ Jw.EwM1;R/C .1C �/˙ w

R

#"
EwMm;L
EwM1;R

#
� 0:

(9.39)
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Being in the smooth domain, we assume Jw.EwMm;L/ D Jw.EwM1;R/ D J and obtain
stability with

˙ w
L D 1

1C �
J � �; ˙ w

R D � 1

1C �
J � �;

where � is a positive semidefinite matrix. This is completely analogous to the
penalties derived in the constant advection problem presented in [7].

The penalties derived in the stability analysis apply to the entropy variables w, but
in the numerical experiments we use a conservative formulation for correct shock
speed and employ the conservative variables u. Therefore we need to transform the
penalties to the conservative variables. Assuming that the solution is smooth and
QH .EwMm;L/ D QH .EwM1;R/, we rewrite the interface terms

˙ w
L.EwMm;L � EwM1;R/ D 1

1C �
J .EwMm;L � EwM1;R/� �.EwMm;L � EwM1;R/

D 1

1C �

� Qf M
.EwMm;L/� Qf M

.EwM1;R/
	

���
� QH �1.EwMm;L/EuMm;L � QH �1.EwM1;R/EuM1;R

	

D 1

1C �

�
f M.EuMm;L/ � f M .EuM1;R/

	
� O�

�
EuMm;L � EuM1;R

	

D
�

1

1C �
J u � O�

��
EuMm;L � EuM1;R

	
D ˙ u

L

�
EuMm;L � EuM1;R

	
; (9.40)

where

J u D @f M

@uM

ˇ̌
ˇ̌
ˇ
xDxint

;

and

˙ u
L D 1

1C �
J u � O�; (9.41)

and O� D �� QH�1 is a positive semidefinite matrix for � > 0 since QH is positive
definite and � is positive semidefinite. Similarly, we get the right penalty matrix

˙ u
R D � 1

1C �
J u � O�: (9.42)

With the penalty matrices (9.41) and (9.42), we obtain stability, as defined in
Definition 1.3.
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9.3.3.4 Conservation at the Interface

In order to show conservation over the interface, we mimic the continuous case
where we multiply the conservative formulation by a smooth function �, integrate
by parts to get

Z xint

0

�utdxC
Z 1

xint

�utdx D
Z xint

0

�xf .u/dxC
Z 1

xint

�xf .u/dxCB:T:; (9.43)

where B:T: denotes outer boundary terms. In (9.43) no interface terms are present.
Consider the semidiscrete scheme

.EuML /t C .P�1L QL ˝ I/f M.EuML / D .P�1L Em ˝˙ u
L/.EuMm;L � EuM1;R/ (9.44)

.EuMR /t C .P�1R QR ˝ I/f M.EuMR / D .P�1R E 1 ˝˙ u
R/.EuM1;R � EuMm;L/: (9.45)

Multiplying from the left by E�TL.PL ˝I/ and E�TR.PR ˝I/, respectively, where E�L
and E�L are discretized smooth functions satisfying E�m;L D E�1;R D E�I , we get

E�TL.PL ˝ I/.EuML /t C E�TR.PR ˝ I/.EuMR /t D .DL
E�L/T .PL ˝ I/f M.EuML /

C .DR
E�R/T .PR ˝ I/f M.EuMR /C B:T:

C E�TI
h
.EuMm;L � EuM1;R/.˙ u

L �˙ u
R/ � f M.EuMm;L/C f M .EuM1;R/

i
: (9.46)

The semidiscrete formulation (9.46) mimics the continuous expression (9.43) if we
choose˙ u

L and ˙ u
R such that

.EuMm;L � EuM1;R/.˙ u
L �˙ u

R/ � f M.EuMm;L/C f M .EuM1;R/ D 0:

We assume Jw.EwMm;L/ D Jw.EwM1;R/ D J . Then, the interface terms cancel with the
choice˙ u

L �˙ u
R D J , which is consistent with the condition for stability given by

the penalties (9.41) and (9.42) and � D 1.

9.4 Numerical Results

The exact solution of the test problem is known analytically for any given value of
the stochastic variable �. Thus, we can obtain the exact statistics to arbitrary accu-
racy by averaging the exact Riemann solutions over a large number of realizations
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of �. In the numerical experiments, we will assume � 
 U Œ�0:05; 0:05�, where U
denotes the uniform distribution. For the numerical solutions, we use SBP operators
that can be found in [15].

9.4.1 Convergence of Smooth Solutions

The method of manufactured solutions is used to impose a smooth timedependent
solution of the two-phase problem through a source term. We consider the manu-
factured solution defined by

˛ D ˛0 C ˛1 tanh.s.x0 � x C t C �//

ˇ D ˇ0 C ˇ1 tanh.�s.x0 � x C t C �//

v D tanh.s.v0 C x0 � x C t C �//C tanh.�s.�v0 C x0 � x C t C �//

p D p0 C p1 tanh.s.x0 � x C t C �//;

with s D 15, v0 D 0:03, ˛0 D ˛1 D ˇ0 D ˇ1 D 0:5, p0 D 0:75, p1 D 0:25. We
take 
˛ D 1 and 
ˇ D 0:125. We measure the error in the L2.˝;P/ norm and the
discrete `2 norm,

���EuM � Eu
���
2;2

�
���EuM � Eu

���
`2;L2.˝;P/

D
 
�x

mX
iD1

���EuM.xi ; t; �/ � Eu.xi ; t; �/
���2
L2.˝;P/

!1=2

D
 
�x

mX
iD1

Z
˝

.EuM.xi ; t; �/ � Eu.xi ; t; �//2dP.�/

!1=2

�
0
@�x

mX
iD1

qX
jD1

.EuM.xi ; t; �.j /q /� Eu.xi ; t; �.j /q //2w.j /q

1
A
1=2

;

(9.47)

where a q-point quadrature rule with points f�.j /q gqjD1 and weights fw.j /q gqjD1 was
used in the last line to approximate the integral in �. The Gauss-Legendre quadrature
is used here since the solution is smooth in the stochastic dimension.

Figure 9.3a shows the spatial convergence when the proportion of low-order and
high-order points remains constant. The low-order scheme dominates the error, so
the overall convergence rate is second-order. In regions of fourth-order operators,
the error levels are lower and therefore the local accuracy higher compared to
the regions of second-order operators, see Fig. 9.3b. This is further illustrated in
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Fig. 9.3 SBP 4-2-4, fixed proportion of SBP 2 points. Np D 8, Nr D 0 order of multiwavelets
(Legendre polynomials). (a) 2,2 norm of errors for smooth solution, t D 0:05. (b) Error in mean
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Fig. 9.4 Comparison of 2,2
norm of errors, three solution
regions SBP 2-4-2 versus a
single region solved with
SBP 2, t D 0:1. The
proportion of fourth-order
points remains constant
during mesh refinement.
Np D 8, Nr D 0 order of
multiwavelets (Legendre
polynomials)
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Fig. 9.4, where a similar problem with sharp gradients in the middle of the domain
is solved with a hybrid scheme where fourth-order operators are used for the region
of large gradients and second-order operators are used for the regions next to the
boundaries. With a constant proportion of high-order points under mesh refinement,
the convergence is second-order. Comparison with the solution with second-order
operators throughout the computational domain, also included in Fig. 9.4, shows
that the error of the hybrid scheme is smaller.

Figure 9.5a shows the spatial convergence employing three computational
domains separated by two interfaces. The middle domain is solved with second-
order SBP and the left and right domains with fourth-order SBP. The number of
points in the second-order region remains constant (20), as the high-order domains
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Fig. 9.5 Spatial convergence with three regions and two interfaces. t D 0:05, Np D 8, Nr D 0

order of multiwavelets (Legendre polynomials). Superscript P denotes the numerical gPC solution.
(a) SBP4-SBP2-SBP4, fixed number of SBP2 points. (b) Three SBP4 schemes coupled by two
interfaces

are refined. Figure 9.5b depicts the spatial convergence with three domains, all
solved with fourth-order SBP. The proportion of points in each region remains the
same, so the interface locations do not change when the grids are refined.

9.4.2 Non-smooth Riemann Problem

With the hybrid scheme as depicted schematically in Fig. 9.2, we solve the
problems (9.5)–(9.7) with the boundary conditions in (9.4) and assuming � 

U Œ�0:05; 0:05�. Figure 9.6 shows the variances of density, velocity, energy, and
pressure at t D 0:05. The error from the interface is not significant compared to the
error due to the stochastic truncation and spatial resolution. A relatively fine mesh
and high-order MW expansion is required to capture the variance of the solution.
Especially high-order MW coefficients exhibit sharp spatial variation. Thus, to attain
a given level of accuracy, more spatial gridpoints are required for the stochastic
Galerkin problem compared to the deterministic problem.

Figure 9.7 depicts the convergence of pressure statistics with increasing order of
MW on a fixed spatial grid of 400 points. In the analysis of regularity in Sect. 9.2,
we anticipated the solution to develop a larger number of weaker discontinuities as
the order of MW expansion increases. This behavior can be observed in Fig. 9.7. All
(visible) discontinuities are located in the right domain where the shock-capturing
method is used.
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9.5 Summary and Conclusions

In order to efficiently solve fluid flow problems, a feasible strategy is to locally
adapt the numerical method to the smoothness of the solution whenever these
properties are known or can be estimated. Stochastic Galerkin formulation of a
stochastic hyperbolic problem typically leads to a problem that develops multiple
discontinuities in finite time. If these discontinuities are all contained within a
known spatial region in a time interval of interest, a shock-capturing method should
be used for the corresponding grid points. For the regions of smooth solution,
high-order methods should be used. The different methods must be coupled to
maintain stability and propagate information accurately over the interfaces between
the domains. Note that the solution is unknown in the interior, so one cannot treat the
interfaces like boundaries with known boundary conditions. A two-phase Riemann
problem with uncertain initial discontinuity location has been investigated with
respect to the smoothness properties of the MW coefficients of the solution. Whereas
the corresponding deterministic problem has a discontinuous solution profile, the
stochastic modes of the gPC expansion of the true solution are smooth.

A symmetrization and combination of conservative and non-conservative formu-
lation leads to a generalized energy estimate for the stochastic Galerkin system,
just as for the case of the deterministic Euler equations. Under certain smoothness
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Fig. 9.7 Convergence of the mean and variance of pressure with the order of MW chaos, different
orders of piecewise constant MW. t D 0:05, m D 400. Fourth-order SBP (left domain) and HLL-
MUSCL (right domain). (a) Mean pressure. (b) Mean pressure in the proximity of the deterministic
shock. (c) Variance of pressure. (d) Variance of pressure in the proximity of the deterministic shock

assumptions, stability at the interfaces can be obtained for the symmetrized system.
The derived penalty matrices are transformed back to the conservative variable
formulation that is used in the numerical experiments.

The numerical results show that the convergence rate for the smooth problem
(smoothness enforced by the method of manufactured solutions) is second-order
when fourth-order and second-order operators are combined and the proportion of
second-order points remains constant during mesh refinement. However, the error
is smaller in this case compared to the case of a single domain solved with second-
order operators.

The two-phase non-smooth Riemann problem is reasonably well resolved with
the hybrid scheme combining high-order SBP operators in the smooth regions
with the HLL solver and MUSCL reconstruction in the spatial region containing
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discontinuities. A relatively large number of multiwavelets is needed to accurately
represent the stochastic solution. This in turn requires a fine spatial mesh for
accurate resolution.

The framework presented here can be extended to time-dependent interfaces
that are adapted to the evolving regions of non-smooth solutions. A moving mesh
based on interfaces and SBP-operators has already been designed for deterministic
problems in [7], and this technique could be used for stochastic Galerkin systems.
Depending on the problem, different MW bases can be used in the different
spatial regions for efficient representation of the local uncertainty. Alternative
techniques include adaptive stochastic bases that evolve in space and time for
optimal representation of localized phenomena.

In the case of a moving interface, several detection strategies can be used relying
either on the physical solution, e.g., ˛ D 0:5, or on the overall variance which would
provide a measure of the oscillations. Further investigations are required to identify
the most effective detection algorithm.
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Appendix A
Generation of Multiwavelets

Algorithm 1 Generation of multiwavelets (mother-wavelets (2.14))

Start with the set of functions ff 1
k gNpkD0 , defined by

f 1
k .�/ D

8<
:
�k ; � 2 Œ�1; 0�;
��k ; � 2 Œ0; 1�;
0; otherwise:

STEP 1: Orthogonalize w.r.t. the monomials 1; : : : ; �Np (Gram-Schmidt) to obtain ff 2
k gNpkD0 .

STEP 2:
for i  0 to Np � 1 do

Make sure hf iC1
i �NpCi i ¤ 0 (otherwise reorder).

for j D i C 1 to N0 do

w D hf
iC2
j �NpCi i

hf
iC2
i �NpCi i

f
iC3
j  f

iC2
j � wf iC2

i

end for
end for

STEP 3: Orthogonalize ff iC2
i gNpiD0 using G-S.

for i  Np to 0 do
 W
i .�/ Apply Gram-Schmidt to f iC2

i .
end for
Output f W

i .�/gNpiD0 .
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Appendix B
Proof of Constant Eigenvectors of Low-Order
MW Triple Product Matrices

B.1 Proof of Constant Eigenvectors ofA

Proposition B.1. The matrix A defined by (8.3) for Haar wavelets f j gMjD0 has
constant eigenvectors for allM C 1 D 2Nr , Nr 2 N.

Proof (Sketch of proof). We will use induction on the order M of wavelet chaos
to show that the matrix A has constant eigenvectors for all orders M . In order
to do this, we will need certain features of the structure of A. To facilitate the
notation, denote QM D M C 1. We can express A2 QM in terms of the matrix A QM .
Two properties of the triple product h i j ki will be used to prove that A does
indeed have the matrix structure presented.

Property 1. Let i 2 f0; : : : ; QM � 1g, j D k 2 f QM; : : : ; 2 QM � 1g and let j 0 and j 00
be the progenies of j . Then

h i 2j i D h i 2j 0i D h i 2j 00i:

Property 2. Consider the indices i 2 f QM; : : : ; 2 QM �1g, j D k 2 f2 QM; : : : ; 4 QM �
1g. Then

h i 2j i D
8<
:

QM1=2 if j first progeny of i
� QM1=2 if j second progeny of i:
0 otherwise
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As an induction hypothesis, we assume that givenA QM for some QM D 2Nr , Nr 2 N,
the next order of triple product matrixA2 QM can be written

A2 QM D
"

A QM Q QMD QM
D QMQ

T
QM �

#
;

where Q QM is the matrix of constant eigenvectors of A QM satisfying
��Q QM

��2
2

D QM ,
D QM D diag.w QM ; : : : ;w2 QM�1/ and � is diagonal and contains the eigenvalues of
A QM . Then, we have that

"
A QM Q QMD QM

D QMQ
T
QM �

#�
Q QM

˙ QM1=2I

�
D
�
Q QM�˙ QM1=2QD QMQMD QM ˙ QM1=2�

�
D
�

Q QM
˙ QM1=2I

�

.�˙ QM1=2D QM/;

so the eigenvalues and eigenvectors of A2 QM are given by � ˙ QM1=2D QM and
ŒQ QM ;˙ QM1=2I �T , respectively. For the next order of expansion, 4 QM , we have

A4 QM D

2
6664

"
A QM Q QMD QM

D QMQ
T
QM �

# �
Q QM ˝ Œ1; 1�

QM1=2I ˝ Œ1;�1�
�
D2 QM

D2 QM
�

Q QM ˝ Œ1; 1�
QM1=2I ˝ Œ1;�1�

�T
�˝ I2 C QM1=2D QM ˝

�
1 0

0 �1
�

3
7775 :

(B.1)

To see that this is indeed the structure of A4 QM , note that any nonzero matrix entry
not already present in A2 QM , can be deduced using properties 1 and 2, and scaling
the rows/columns by multiplication by the diagonal matrix D2 QM . The structure of
A4 QM follows from the construction of the Haar wavelet basis, but we do not give a
proof here.

One can verify that A4 QM given by (B.1) has the eigenvectors and eigenvalues

Q4 QM D
2
4
�

Q QM ˝ Œ1; 1�
QM1=2I QM ˝ Œ1;�1�

�

˙.2 QM/1=2I2 QM

3
5 ;

�4 QM D �˝ I2 C QM1=2D QM ˝
�
1 0

0 �1
�

˙ .2 QM/1=2D2 QM ;

so the eigenvectors are constant (but the eigenvalues are variable in the coefficients
.wi /j through M QM and M2 QM ). The base cases QM D 1, QM D 2, can easily be
verified, so by inductionA QM has constant eigenvectors for all QM D 2Nr , Nr 2 N.
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B.2 Eigenvalue Decompositions of A

B.2.1 Piecewise Constant Multiwavelets (Haar Wavelets)

B.2.1.1 Nr D 2

Q D 1

4

2
664
1 1 1 1

1 1 �1 �1p
2 �p

2 0 0

0 0
p
2 �p

2

3
775 ; � D diag

2
664

u0 C u1 C p
2u2

u0 C u1 � p
2u2

u0 � u1 C p
2u3

u0 � u1 � p
2u3

3
775

B.2.1.2 Nr D 3

Q D 1p
8

2
666666666664

1 1 1 1 1 1 1 1

1 1 1 1 �1 �1 �1 �1p
2

p
2 �p

2 �p
2 0 0 0 0

0 0 0 0
p
2

p
2 �p

2 �p
2

2 �2 0 0 0 0 0 0

0 0 2 �2 0 0 0 0

0 0 0 0 2 �2 0 0

0 0 0 0 0 0 2 �2

3
777777777775

� D diag

2
666666666664

u0 C u1 C p
2u2 C 2u4

u0 C u1 C p
2u2 � 2u4

u0 C u1 � p
2u2 C 2u5

u0 C u1 � p
2u2 � 2u5

u0 � u1 C p
2u3 C 2u6

u0 � u1 C p
2u3 � 2u6

u0 � u1 � p
2u3 C 2u7

u0 � u1 � p
2u3 � 2u7

3
777777777775

B.2.2 Piecewise Linear Multiwavelets

B.2.2.1 Nr D 1

QD

2
6664

1
2

1
2

1
2

1
2

�
p
3C1
4

p
3�1
4

p
3C1
4

�
p
3�1
4

� 1
2

1
2

� 1
2

1
2

�
p
3�1
4

�
p
3C1
4

p
3�1
4

�
p
3C1
4

3
7775 ; �Ddiag

2
66664

u0 �
p
3C1
2

u1 � u2 �
p
3�1
2

u3
u0 C

p
3�1
2

u1 C u2 �
p
3C1
2

u3
u0 C

p
3C1
2

u1 � u2 C
p
3�1
2

u3
u0 �

p
3�1
2

u1 C u2 �
p
3C1
2

u3

3
77775



178 B Eigenvectors of MW Matrices

B.2.2.2 Nr D 2

QD

2
666666666666664

1p
8

1p
8

1p
8

1p
8

1p
8

1p
8

1p
8

1p
8p

14C3
p
3

8 �

p
14C3

p
3

8 �

p
14�3

p
3

8

p
14�3

p
3

8

p
3C1

8
p
2

�

p
3C1

8
p
2

�

p
3�1

8
p
2

p
3�1

8
p
2

�

p
3C1

4
p
2

�

p
3C1

4
p
2

�

p
3�1

4
p
2

�

p
3�1

4
p
2

p
3�1

4
p
2

p
3�1

4
p
2

p
3C1

4
p
2

p
3C1

4
p
2

p
3C1

8
p
2

�

p
3C1

8
p
2

p
3�1

8
p
2

�

p
3�1

8
p
2

�

p
14�5

p
3

8

p
14�5

p
3

8

p
14C5

p
3

8 �

p
14C5

p
3

8

0 � 1
2

1
2 0 0 1

2 � 1
2 0

0 �

p
3�1
4

p
3C1
4 0 0 �

p
3C1
4

p
3�1
4 0

� 1
2 0 0 1

2
1
2 0 0 � 1

2
p
3�1
4 0 0 �

p
3C1
4

p
3C1
4 0 0 �

p
3�1
4

3
777777777777775

� D diag

2
666666666666666666664

u0 C
q

14C3p3
8

u1 �
p
3C1
2

u2 C
p
3C1
4

u3 � p
2u6 C

p
3�1p
2

u7

u0 �
q

14C3p3
8

u1 �
p
3C1
2

u2 �
p
3C1
4

u3 � p
2u4 �

p
3�1p
2

u5

u0 �
q

14�3p3
8

u1 �
p
3�1
2

u2 C
p
3�1
4

u3 C p
2u4 C

p
3C1p
2

u5

u0 C
q

14�3p3
8

u1 �
p
3�1
2

u2 �
p
3�1
4

u3 C p
2u6 �

p
3C1p
2

u7

u0 C
p
3C1
4

u1 C
p
3�1
2

u2 �
q

14�5p3
8

u3 C p
2u6 C

p
3C1p
2

u7

u0 �
p
3C1
4

u1 C
p
3�1
2

u2 C
q

14�5p3
8

u3 C p
2u4 �

p
3C1p
2

u5

u0 �
p
3�1
4

u1 C
p
3C1
2

u2 C
q

14C5p3
8

u3 � p
2u4 C

p
3�1p
2

u5

u0 C
p
3�1
4

u1 C
p
3C1
2

u2 �
q

14C5p3
8

u3 � p
2u6 �

p
3�1p
2

u7

3
777777777777777777775



Appendix C
Matlab Codes

The reference codes used to generate the results presented in Chaps. 5 and 6 are
reported here. They can also be downloaded from the website http://extras.springer.
com/2015/

C.1 Linear Transport

C.1.1 Main Code

C.1.1.1 advection_diffusion_main.m

1 % Ad v ect i o n�d i f f u s i o n wi t h s t o c h a s t i c v i s c o s i t y c o e f f i c i e n t , SBP�SAT
2 % i m p l e m e n t a t i o n
3 % Time i n t e g r a t i o n wi t h 4 t h o r d e r Runge�Ku t t a
4
5 c l e a r a l l ;
6
7 % Choose mod == ' herm ' f o r Hermi t e p o l y n o m i a l s r e p r e s e n t i n g mu w. l o g n o rmal
8 % d i s t r i b u t i o n , o r ch o o se mod == ' l eg e ' f o r Leg en d r e p o l y n o m i a l s and
9 % u n i f o r m d i s t r i b u t i o n o f mu.

10
11 mod = ' l e g e ' ;
12
13 % S p a t i a l i n t e r v a l end p o i n t s
14 l e f t = 0 . 4 ;
15 r i g h t = 0 . 6 ;
16
17 % Problem i n p u t p a r a m e t e r s
18 v = 2 ;
19 M = 1 ;
20 r h o _ 0 = 0 . 5 ;
21
22 c1= 0 . 0 2 ;
23 c2= 0 . 0 1 ;
24
25 t = 0 ;
26 t 0 = 0 .0 0 5 ;
27 x0 = 0 . 5 ;
28
29
30 p = 4 ; % Number o f gPC c o e f f i c i e n t s
31 m = 5 0 ; % Number o f d i s c r e t i z a t i o n p o i n t s i n sp ace
32 T = 0 .0 0 1 ; % End t i me
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33 o r d e r = 6 ; % Ord er o f a c c u r a c y o f SBP o p e r a t o r s , s h o u l d be 2 , 4 o r 6 .
34
35 % Set u p p a r a m e t e r s d e t e r m i n e d as f u n c t i o n s o f o t h e r p a r a m e t e r s
36 dx = ( r i g h t�l e f t ) / ( m�1) ; % S p a t i a l s t e p l e n g t h
37 d t = 0 . 2�dx ^ 2 / v ; % Time s t ep , h e r e d ep en d en t on ( D e l t a x ) ^2 b u t ch an g es wi t h r a t i o v i s c o s i t y / v e l o c i t y
38 V = v�eye (m�p ) ; % Ad v ect i v e v e l o c i t y , h e r e assumed s p a t i a l l y u n i fo rm
39 x = l i n s p a c e ( l e f t , r i g h t ,m) ;
40
41
42 I_ p= eye ( p ) ;
43 I_m= eye (m) ;
44
45 o l d = 1 ;
46 new = 2 ;
47
48 u = z e r o s ( p�m, 2 ) ;
49 %Compute i n n e r t r i p l e p r o d u c t s o f t h e ch o sen b a s i s f u n c t i o n s
50 i f mod == ' l e g e '
51 C = Leg en d re_ ch ao s ( p�1) ;
52 end
53 i f mod == ' herm '
54 C = Her mi t e_ ch ao s ( p�1) ;
55 end
56
57 %D i f f e r e n c e o p e r a t o r s Dx=P^(�1)Q
58
59 [D1 , D2 ,BD, D, Pnorm ] = SB P_ o p er a t o r s (m, dx , o r d e r ) ;
60 P_ i n v = i n v ( Pnorm ) ;
61 D1 = k ro n (D1 , eye ( p ) ) ;
62 D2 = k ro n (D2 , eye ( p ) ) ;
63
64
65 %I n i t i a l i z a t i o n and f o r c i n g t erms
66 u _ i n i t = z e r o s (m�p , 1 ) ;
67 i f t0 >0
68 i f mod == ' herm '
69 u ( : , o l d ) = i n i t _ H e r m i t e ( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, p ) ;
70 end
71 i f mod == ' l e g e '
72 u ( : , o l d ) = i n i t _ L e g e n d r e ( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, p ) ;
73 end
74 end
75
76 % Th i s i s a f i r s t o r d e r a p p r o x i m a t i o n o f t h e d e l t a f u n c t i o n
77 i f t 0 == 0
78 u ( (m�1)/2�p +1 , o l d ) = rh o _ 0 / ( dx ) ;
79 end
80
81
82 i f mod == ' herm '
83 B1 = mu_SG_lognormal ( c1 , c2 , p ) ;
84 end
85 i f mod == ' l e g e '
86 i f p>1
87 B1 = C ( : , : , 1 )�c1+C ( : , : , 2 )�c2 / s q r t ( 3 ) ;
88 end
89 i f p==1
90 B1 = C ( : , : , 1 )�c1 ;
91 end
92 end
93
94 % Compute f o r c e t e rms
95 E_0 = s p a r s e ( z e r o s (m) ) ;
96 E_0 ( 1 , 1 ) = 1 ;
97 E_M = s p a r s e ( z e r o s (m) ) ;
98 E_M(m,m) = 1 ;
99 Si g _ I _ L = �v /2� eye ( p ) ;

100 Sig_V_L = B1 ;
101 Sig_V_R = �B1 ;
102 f o r c e _ l e f t _ 1 = s p a r s e ( k ro n ( P_inv , I_ p )�k r o n ( E_0 , S i g _ I _ L ) ) ;
103 f o r c e _ l e f t _ 2 = k ro n ( P_ i n v�D' , I_ p )�k ro n ( E_0 , Sig_V_L ) ;
104 f o r c e _ r i g h t = s p a r s e ( k ro n ( P_inv , I_ p )�k ro n (E_M, Sig_V_R ) ) ;
105
106 g0 = z e r o s (m�p , 1 ) ;
107 g1 = z e r o s (m�p , 1 ) ;
108
109
110 B = k r o n ( I_m , B1 ) ;
111
112 %I t e r a t e o v er t i me wi t h f o u r t h o r d e r Runge�Ku t t a u n t i l t i me T i s r e a c h e d
113
114 wh i l e ( t <T)
115 i f T�t < d t
116 d t = T�t ;
117 end
118 t = t + d t ;
119 i f mod == ' herm '
120 [ g0 g1 ] = b d y _ co n d _ Hermi te( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, p ) ;
121 end
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122 i f mod == ' l e g e '
123 [ g0 g1 ] = b d y _ co n d _ Leg endre( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, p ) ;
124 end
125
126 % F o u r t h o r d e r Runge�Ku t t a i n t i me
127 k1 = d t�((�V�D1+B�D2 )�u ( : , o l d ) + f o r c e _ l e f t _ 1 �(u ( : , o l d )�g0 ) + f o r c e _ l e f t _ 2 �(u ( : , o l d )�g0 ) + f o r c e _ r i g h t �( k ro n (D,

I _ p )�u ( : , o l d )�g1 ) ) ;
128 k2 = d t�((�V�D1+B�D2 ) �(u ( : , o l d ) +k1 / 2 ) + f o r c e _ l e f t _ 1 �(u ( : , o l d ) +k1/2�g0 ) + f o r c e _ l e f t _ 2 � ( ( u ( : , o l d ) +k1 / 2 )�g0 ) +

f o r c e _ r i g h t �( k r o n (D, I _ p ) �(u ( : , o l d ) +k1 / 2 )�g1 ) ) ;
129 k3 = d t�((�V�D1+B�D2 ) �(u ( : , o l d ) +k2 / 2 ) + f o r c e _ l e f t _ 1 �(u ( : , o l d ) +k2/2�g0 ) + f o r c e _ l e f t _ 2 � ( ( u ( : , o l d ) +k2 / 2 )�g0 ) +

f o r c e _ r i g h t �( k r o n (D, I _ p ) �(u ( : , o l d ) +k2 / 2 )�g1 ) ) ;
130 k4 = d t�((�V�D1+B�D2 ) �(u ( : , o l d ) +k3 ) + f o r c e _ l e f t _ 1 �(u ( : , o l d ) +k3�g0 ) + f o r c e _ l e f t _ 2 � ( ( u ( : , o l d ) +k3 )�g0 ) +

f o r c e _ r i g h t �( k r o n (D, I _ p ) �(u ( : , o l d ) +k3 )�g1 ) ) ;
131
132 % Update t h e s o l u t i o n v e c t o r
133 u ( : , new ) =u ( : , o l d ) +1/6� ( k1+2�k2+2�k3+k4 ) ;
134 u ( : , o l d ) =u ( : , new ) ;
135
136
137 % P l o t t h e s o l u t i o n
138 f o r k =1 : p
139 u _ p l o t ( : , k ) = u ( k : p : end , new ) ;
140 end
141 p l o t ( x , u _ p l o t , '�� ' ) ;
142 t i t l e ( [ ' gPC c o e f f i c i e n t s , t = ' n u m2 s t r ( t , '%. 4 f ' ) ] )
143 l e g _ s t r s = { } ;
144 f o r k =1 : p
145 l e g s t r s {k } = [ ' gPC c o e . ' n u m2 s t r ( k�1) ] ;
146 end
147
148 l e g e n d ( l e g s t r s ) ;
149 drawnow ;
150 end
151
152 u = u ( : , new ) ;
153
154 % S t a t i s t i c s a r e r e a d i l y o b t a i n e d from t h e gPC c o e f f i c i e n t s
155 u_num_exp = u ( 1 : p : p�(m�1)+1) ;
156 u_num_var = z e r o s (m, 1 ) ;
157
158 f o r i =1 :m
159 u_num_var( i , 1 ) = sum ( u ( ( i �1)�p +2 : i�p ) . ^2 ) ;
160 end
161
162 % Compute r e f e r e n c e s t a t i s t i c s b ased on n u m e r i c a l q u a d r a t u r e o f t h e e x a c t
163 % s o l u t i o n
164 i f mod == ' herm '
165 [ u_exp u _ v ar ] = s t a t i s t i c s _ a d v _ d i f f _ l o g n o r m (m, t , x , x0 , c1 , c2 , rho_0 , t0 , v ) ;
166 end
167 i f mod == ' l e g e '
168 [ u_exp u _ v ar ] = s t a t i s t i c s _ a d v _ d i f f _ u n i f o r m _ m u (m, t , x , x0 , c1 , c2 , rho_0 , t0 , v ) ;
169 end
170
171 % P l o t t h e computed and r e f e r e n c e e x p e c t a t i o n and v a r i a n c e as a f u n c t i o n o f
172 % sp ace ( a t t i me T )
173
174 f i g u r e ;
175 p l o t ( x , u_num_exp , '�r ' , x , u_exp , '��k ' , ' LineWidth ' ,1 . 5 ) ;
176 h _ l eg en d = l e g e n d ( 'Num ' , ' Ref ' ) ; ;
177 s e t ( h _ l eg en d , ' F o n t S i z e ' , 1 2 ) ;
178 t i t l e ( ' Mean ' , ' F o n t S i z e ' , 1 6 ) ;
179
180 f i g u r e ;
181 p l o t ( x , u_num_var , '�r ' , x , u_var , '��k ' , ' LineWidth ' ,1 . 5 ) ;
182 h _ l eg en d = l e g e n d ( 'Num ' , ' Ref ' ) ; ;
183 s e t ( h _ l eg en d , ' F o n t S i z e ' , 1 2 ) ;
184 t i t l e ( ' Var i an ce ' , ' F o n t S i z e ' , 1 6 ) ;
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C.1.1.2 Legendre_chaos.m

1
2 f u n c t i o n [C] = l e g e n d r e _ c h a o s ( n )
3
4 % Compute Leg en d r e ch ao s p a r a m e t e r s
5
6 % I n d a t a :
7 % n � Ord er o f gPC
8
9 % Ou t d at a :

10 % C � Th ree t erm i n n e r p r o d u c t s C( i , j , k ) = E [ P h i _ i P h i _ j Ph i _ k ]
11
12
13 C = z e r o s ( n +1 , n +1 , n +1) ;
14 f o r i = 0 : n
15 f o r j = 0 : n
16 f o r k = 0 : n
17 s = ( i +k+ j ) / 2 ;
18 i f rem ( i +k+j , 2 ) == 1 | | ab s ( i�j ) > k | | k > i + j
19 C( i +1 , j +1 , k +1) = 0 ;
20 e l s e
21 C( i +1 , j +1 , k +1) = s q r t ( (2� i +1)�(2� j +1) �(2�k +1) ) / ( i + j +k +1)�A _ f o r _ l eg e ( s�i )�A _ f o r _ l eg e ( s�j )�

A _ f o r _ l eg e ( s�k ) / A_ f o r _ l eg e ( s ) ;
22 end
23 end
24 end
25 end
26 r e t u r n

C.1.1.3 Hermite_chaos.m

1
2 f u n c t i o n [C] = Her mi t e_ ch ao s ( n )
3
4 % Compute h e r m i t e ch ao s p a r a m e t e r s
5
6 % I n d a t a :
7 % n � Ord er o f gPC
8
9 % Ou t d at a :

10 % C � Th ree t erm i n n e r p r o d u c t s C( i , j , k ) = E [ P h i _ i P h i _ j Ph i _ k ]
11
12
13 C = z e r o s ( n +1 , n +1 , n +1) ;
14 f o r i = 0 : n
15 f o r j = 0 : n
16 f o r k = 0 : n
17 s = ( i +k+ j ) / 2 ;
18 i f rem ( i +k+j , 2 ) == 1 | | i > s | | j > s | | k > s
19 C( i +1 , j +1 , k +1) = 0 ;
20 e l s e
21 C( i +1 , j +1 , k +1) = f a c t o r i a l ( i ) � f a c t o r i a l ( j ) . . .
22 � f a c t o r i a l ( k ) / ( ( f a c t o r i a l ( s�i ) � f a c t o r i a l ( s�j ) � f a c t o r i a l ( s�k ) ) � s q r t ( f a c t o r i a l ( i ) ) �

s q r t ( f a c t o r i a l ( j ) ) � s q r t ( f a c t o r i a l ( k ) ) ) ;
23 end
24 end
25 end
26 end
27 r e t u r n

C.1.1.4 A_for_lege.m

1
2 f u n c t i o n [A] = A _ f o r _ l eg e ( n )
3
4 % A u x i l i a r y f u n c t i o n f o r t r i p l e p r o d u c t m a t r i x o f Leg en d re p o l y n o m i a l s
5
6 i f n==0
7 A = 1 ;
8 end
9 i f n < 0

10 A = 0 ;
11 end
12 i f n >= 1
13 A = 1 ;
14 f o r j =1 : n
15 A = A�(2� j �1) ;
16 end
17 A = A/ f a c t o r i a l ( n ) ;
18 end
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C.1.2 Discretization Operators

C.1.2.1 SBP_operators.m

1
2 f u n c t i o n [ D1 D2 , BS , S ,H] = SB P_ o p er a t o r s ( n , dx , o r d e r )
3
4 % SBP o p e r a t o r s o f o r d e r s 2 , 4 , 6 and 8 f o r t h e f i r s t and seco n d d e r i v a t i v e .
5
6 % I n d a t a :
7 % n � Number o f s p a t i a l g r i d p t s
8 % dx � St ep s i z e
9 % o r d e r � Ord er o f a c c u r a c y ( o n l y f o r 2 , 4 , 6 , 8 )

10
11 % Ou t d at a :
12 % D1 � F i r s t d e r i v a t i v e o p e r a t o r
13 % D2 � Second d e r i v a t i v e o p e r a t o r (D = P^{�1}M)
14 % S � F i r s t d e r i v a t i v e o p e r a t o r on b o u n d a r i e s
15 % BS � The b o u n d ar y e l e m e n t s i n t h e en er g y e s t i m a t e
16 % H � The norm o p e r a t o r ( d en o t ed P i n some p a p e r s )
17
18
19 e = o n es ( n , 1 ) ;
20
21 i f o r d e r ==2
22
23 D1 = 1 / dx�s p d i a g s ([�1/2�e 0�e 1/2� e ] , �1:1 , n , n ) ;
24 D1 ( 1 , 1 ) = �1/dx ;
25 D1 ( 1 , 2 ) = 1 / dx ;
26 D1 ( 1 , 3 ) = 0 ;
27 D1 ( n , n ) = 1 / dx ;
28 D1 ( n , n�1) = �1/dx ;
29 D1 ( n , n�2) = 0 ;
30
31 %%%%%%
32 D2 = 1 / ( dx ^2 )�s p d i a g s ([1� e �2�e 1�e ] , �1:1 , n , n ) ;
33 D2 ( 1 , 1 ) = 1 / ( dx ^2 ) ;
34 D2 ( 1 , 2 ) = �2/( dx ^2 ) ;
35 D2 ( 1 , 3 ) = 1 / ( dx ^2 ) ;
36 D2 ( n , n ) = 1 / ( dx ^2 ) ;
37 D2 ( n , n�1) = �2/( dx ^2 ) ;
38 D2 ( n , n�2) = 1 / ( dx ^2 ) ;
39
40
41 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
42 H( 1 , 1 ) = dx �1 / 2 ;
43 H( n , n ) = dx �1 / 2 ;
44
45 BS = ( 1 / dx )�s p d i a g s ( z e r o s ( s i z e ( e ) ) , 0 , n , n ) ;
46 BS ( 1 , 1 ) = 3 / 2 / dx ;
47 BS ( 1 , 2 ) = �2/dx ;
48 BS ( 1 , 3 ) = 1 / 2 / dx ;
49 BS( n , n ) = 3 / 2 / dx ;
50 BS( n , n�1) = �2/dx ;
51 BS( n , n�2) = 1 / 2 / dx ;
52
53 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
54 S ( 1 , 1 ) = �3/2/ dx ;
55 S ( 1 , 2 ) = 2 / dx ;
56 S ( 1 , 3 ) = �1/2/ dx ;
57
58 S ( n , n ) = 3 / 2 / dx ;
59 S ( n , n�1) = �2/dx ;
60 S ( n , n�2) = 1 / 2 / dx ;
61
62 e l s e i f o r d e r ==4
63
64 D1 = 1 / dx�s p d i a g s ( [1 / 1 2� e �2/3�e 0�e 2/3� e �1/12�e ] , �2:2 , n , n ) ;
65 D1 ( 1 , 1 ) = �24/17/ dx ;
66 D1 ( 1 , 2 ) = 5 9 / 3 4 / dx ;
67 D1 ( 1 , 3 ) = �4/17/ dx ;
68 D1 ( 1 , 4 ) = �3/34/ dx ;
69 D1 ( 1 , 5 ) = 0 ;
70 D1 ( 1 , 6 ) = 0 ;
71 D1 ( 2 , 1 ) = �1/2/ dx ;
72 D1 ( 2 , 2 ) = 0 ;
73 D1 ( 2 , 3 ) = 1 / 2 / dx ;
74 D1 ( 2 , 4 : 6 ) = 0 ;
75 D1 ( 3 , 1 ) = 4 / 4 3 / dx ;
76 D1 ( 3 , 2 ) = �59/86/ dx ;
77 D1 ( 3 , 3 ) = 0 ;
78 D1 ( 3 , 4 ) = 5 9 / 8 6 / dx ;
79 D1 ( 3 , 5 ) = �4/43/ dx ;
80 D1 ( 3 , 6 ) = 0 ;
81 D1 ( 4 , 1 ) = 3 / 9 8 / dx ;
82 D1 ( 4 , 2 ) = 0 ;



184 C Matlab Codes

83 D1 ( 4 , 3 ) = �59/98/ dx ;
84 D1 ( 4 , 4 ) = 0 ;
85 D1 ( 4 , 5 ) = 3 2 / 4 9 / dx ;
86 D1 ( 4 , 6 ) = �4/49/ dx ;
87 D1 ( 4 , 7 ) = 0 ;
88 D1 ( n , n ) = �D1 ( 1 , 1 ) ;
89 D1 ( n , n�1) = �D1 ( 1 , 2 ) ;
90 D1 ( n , n�2) = �D1 ( 1 , 3 ) ;
91 D1 ( n , n�3) = �D1 ( 1 , 4 ) ;
92 D1 ( n , n�4) = �D1 ( 1 , 5 ) ;
93 D1 ( n , n�5) = �D1 ( 1 , 6 ) ;
94 D1 ( n�1,n ) = �D1 ( 2 , 1 ) ;
95 D1 ( n�1,n�1) = �D1 ( 2 , 2 ) ;
96 D1 ( n�1,n�2) = �D1 ( 2 , 3 ) ;
97 D1 ( n�1,n�3) = �D1 ( 2 , 4 ) ;
98 D1 ( n�1,n�4) = �D1 ( 2 , 5 ) ;
99 D1 ( n�1,n�5) = �D1 ( 2 , 6 ) ;

100 D1 ( n�2,n ) = �D1 ( 3 , 1 ) ;
101 D1 ( n�2,n�1) = �D1 ( 3 , 2 ) ;
102 D1 ( n�2,n�2) = �D1 ( 3 , 3 ) ;
103 D1 ( n�2,n�3) = �D1 ( 3 , 4 ) ;
104 D1 ( n�2,n�4) = �D1 ( 3 , 5 ) ;
105 D1 ( n�2,n�5) = �D1 ( 3 , 6 ) ;
106 D1 ( n�3,n ) = �D1 ( 4 , 1 ) ;
107 D1 ( n�3,n�1) = �D1 ( 4 , 2 ) ;
108 D1 ( n�3,n�2) = �D1 ( 4 , 3 ) ;
109 D1 ( n�3,n�3) = �D1 ( 4 , 4 ) ;
110 D1 ( n�3,n�4) = �D1 ( 4 , 5 ) ;
111 D1 ( n�3,n�5) = �D1 ( 4 , 6 ) ;
112
113
114 %%%%%%
115 D2 = 1 / ( dx ^2 )�s p d i a g s ([ �1/12�e 4/3�e �5/2�e 4/3�e �1/12�e ] , �2:2 , n , n ) ;
116 D2 ( 1 , 1 ) = 2 / ( dx ^2 ) ;
117 D2 ( 1 , 2 ) = �5/( dx ^2 ) ;
118 D2 ( 1 , 3 ) = 4 / ( dx ^2 ) ;
119 D2 ( 1 , 4 ) = �1/( dx ^2 ) ;
120 D2 ( 2 , 1 ) = 1 / ( dx ^2 ) ;
121 D2 ( 2 , 2 ) = �2/( dx ^2 ) ;
122 D2 ( 2 , 3 ) = 1 / ( dx ^2 ) ;
123 D2 ( 2 , 4 ) = 0 ;
124 D2 ( 3 , 1 ) = �4/43/ ( dx ^2 ) ;
125 D2 ( 3 , 2 ) = 5 9 / 4 3 / ( dx ^2 ) ;
126 D2 ( 3 , 3 ) = �110/43/ (dx ^2 ) ;
127 D2 ( 3 , 4 ) = 5 9 / 4 3 / ( dx ^2 ) ;
128 D2 ( 3 , 5 ) = �4/43/ ( dx ^2 ) ;
129 D2 ( 4 , 1 ) = �1/49/ ( dx ^2 ) ;
130 D2 ( 4 , 2 ) = 0 ;
131 D2 ( 4 , 3 ) = 5 9 / 4 9 / ( dx ^2 ) ;
132 D2 ( 4 , 4 ) = �118/49/ (dx ^2 ) ;
133 D2 ( 4 , 5 ) = 6 4 / 4 9 / ( dx ^2 ) ;
134 D2 ( 4 , 6 ) = �4/49/ ( dx ^2 ) ;
135 D2 ( n , n ) = D2 ( 1 , 1 ) ;
136 D2 ( n , n�1) = D2 ( 1 , 2 ) ;
137 D2 ( n , n�2) = D2 ( 1 , 3 ) ;
138 D2 ( n , n�3) = D2 ( 1 , 4 ) ;
139 D2 ( n�1,n ) = D2 ( 2 , 1 ) ;
140 D2 ( n�1,n�1) = D2 ( 2 , 2 ) ;
141 D2 ( n�1,n�2) = D2 ( 2 , 3 ) ;
142 D2 ( n�1,n�3) = D2 ( 2 , 4 ) ;
143 D2 ( n�2,n ) = D2 ( 3 , 1 ) ;
144 D2 ( n�2,n�1) = D2 ( 3 , 2 ) ;
145 D2 ( n�2,n�2) = D2 ( 3 , 3 ) ;
146 D2 ( n�2,n�3) = D2 ( 3 , 4 ) ;
147 D2 ( n�2,n�4) = D2 ( 3 , 5 ) ;
148 D2 ( n�3,n ) = D2 ( 4 , 1 ) ;
149 D2 ( n�3,n�1) = D2 ( 4 , 2 ) ;
150 D2 ( n�3,n�2) = D2 ( 4 , 3 ) ;
151 D2 ( n�3,n�3) = D2 ( 4 , 4 ) ;
152 D2 ( n�3,n�4) = D2 ( 4 , 5 ) ;
153 D2 ( n�3,n�5) = D2 ( 4 , 6 ) ;
154
155 H = dx�s p d i a g s ( e , 0 , n , n ) ;
156 H( 1 , 1 ) = dx �1 7 / 4 8 ;
157 H( 2 , 2 ) = dx �5 9 / 4 8 ;
158 H( 3 , 3 ) = dx �4 3 / 4 8 ;
159 H( 4 , 4 ) = dx �4 9 / 4 8 ;
160 H( n , n ) = H( 1 , 1 ) ;
161 H( n�1,n�1) = H( 2 , 2 ) ;
162 H( n�2,n�2) = H( 3 , 3 ) ;
163 H( n�3,n�3) = H( 4 , 4 ) ;
164
165 S = ( 1 / dx )�s p d i a g s ( e , 0 , n , n ) ;
166 S ( 1 , 1 ) = �11/6/ dx ;
167 S ( 1 , 2 ) = 3 / dx ;
168 S ( 1 , 3 ) = �3/2/ dx ;
169 S ( 1 , 4 ) = 1 / 3 / dx ;
170 S ( n , n ) = 1 1 / 6 / dx ;
171 S ( n , n�1) = �3/dx ;
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172 S ( n , n�2) = 3 / 2 / dx ;
173 S ( n , n�3) = �1/3/ dx ;
174
175 BS = ( 1 / dx )�s p d i a g s ( z e r o s ( s i z e ( e ) ) , 0 , n , n ) ;
176 BS ( 1 , 1 ) = 1 1 / 6 / dx ;
177 BS ( 1 , 2 ) = �3/dx ;
178 BS ( 1 , 3 ) = 3 / 2 / dx ;
179 BS ( 1 , 4 ) = �1/3/ dx ;
180 BS( n , n ) = 1 1 / 6 / dx ;
181 BS( n , n�1) = �3/dx ;
182 BS( n , n�2) = 3 / 2 / dx ;
183 BS( n , n�3) = �1/3/ dx ;
184
185 e l s e i f o r d e r ==6
186 e = o n es ( n , 1 ) ;
187 %%%%
188 D1 = ( 1 / ( dx ) )�s p d i a g s ([ �1/60�e 3/20� e �3/4�e 0�e 3/4� e �3/20�e 1/60� e ] , �3:3 , n , n ) ;
189
190 D1 ( 1 , 1 ) = �21600/13649/dx ;
191 D1 ( 1 , 2 ) = 1 0 4 0 0 9 / 5 4 5 9 6 / dx ;
192 D1 ( 1 , 3 ) = 3 0 4 4 3 / 8 1 8 9 4 / dx ;
193 D1 ( 1 , 4 ) = �33311/27298/dx ;
194 D1 ( 1 , 5 ) = 1 6 8 6 3 / 2 7 2 9 8 / dx ;
195 D1 ( 1 , 6 ) = �15025/163788/dx ;
196 D1 ( 1 , 7 ) = 0 ;
197 D1 ( 1 , 8 ) = 0 ;
198 D1 ( 2 , 1 ) = �104009/240260/dx ;
199 D1 ( 2 , 2 ) = 0 ;
200 D1 ( 2 , 3 ) = �311/72078/ dx ;
201 D1 ( 2 , 4 ) = 2 0 2 2 9 / 2 4 0 2 6 / dx ;
202 D1 ( 2 , 5 ) = �24337/48052/dx ;
203 D1 ( 2 , 6 ) = 3 6 6 6 1 / 3 6 0 3 9 0 / dx ;
204 D1 ( 2 , 7 ) = 0 ;
205 D1 ( 2 , 8 ) = 0 ;
206 D1 ( 3 , 1 ) = �30443/162660/dx ;
207 D1 ( 3 , 2 ) = 3 1 1 / 3 2 5 3 2 / dx ;
208 D1 ( 3 , 3 ) = 0 ;
209 D1 ( 3 , 4 ) = �11155/16266/dx ;
210 D1 ( 3 , 5 ) = 4 1 2 8 7 / 3 2 5 3 2 / dx ;
211 D1 ( 3 , 6 ) = �21999/54220/dx ;
212 D1 ( 3 , 7 ) = 0 ;
213 D1 ( 3 , 8 ) = 0 ;
214 D1 ( 4 , 1 ) = 3 3 3 1 1 / 1 0 7 1 8 0 / dx ;
215 D1 ( 4 , 2 ) = �20229/21436/dx ;
216 D1 ( 4 , 3 ) = 4 8 5 / 1 3 9 8 /dx ;
217 D1 ( 4 , 4 ) = 0 ;
218 D1 ( 4 , 5 ) = 4 1 4 7 / 2 1 4 3 6 / dx ;
219 D1 ( 4 , 6 ) = 2 5 4 2 7 / 3 2 1 5 4 0 / dx ;
220 D1 ( 4 , 7 ) = 7 2 / 5 3 5 9 / dx ;
221 D1 ( 4 , 8 ) = 0 ;
222 D1 ( 5 , 1 ) = �16863/78770/dx ;
223 D1 ( 5 , 2 ) = 2 4 3 3 7 / 3 1 5 0 8 / dx ;
224 D1 ( 5 , 3 ) = �41287/47262/dx ;
225 D1 ( 5 , 4 ) = �4147/15754/dx ;
226 D1 ( 5 , 5 ) = 0 ;
227 D1 ( 5 , 6 ) = 3 4 2 5 2 3 / 4 7 2 6 2 0 / dx ;
228 D1 ( 5 , 7 ) = �1296/7877/ dx ;
229 D1 ( 5 , 8 ) = 1 4 4 / 7 8 7 7 /dx ;
230 D1 ( 5 , 9 ) = 0 ;
231 D1 ( 6 , 1 ) = 1 5 0 2 5 / 5 2 5 6 1 2 / dx ;
232 D1 ( 6 , 2 ) = �36661/262806/dx ;
233 D1 ( 6 , 3 ) = 2 1 9 9 9 / 8 7 6 0 2 / dx ;
234 D1 ( 6 , 4 ) = �25427/262806/dx ;
235 D1 ( 6 , 5 ) = �342523/525612/dx ;
236 D1 ( 6 , 6 ) = 0 ;
237 D1 ( 6 , 7 ) = 3 2 4 0 0 / 4 3 8 0 1 / dx ;
238 D1 ( 6 , 8 ) = �6480/43801/dx ;
239 D1 ( 6 , 9 ) = 7 2 0 / 4 3 8 0 1 / dx ;
240 D1 ( 6 , 1 0 ) = 0 ;
241 D1 ( n , n ) = �D1 ( 1 , 1 ) ;
242 D1 ( n , n�1) = �D1 ( 1 , 2 ) ;
243 D1 ( n , n�2) = �D1 ( 1 , 3 ) ;
244 D1 ( n , n�3) = �D1 ( 1 , 4 ) ;
245 D1 ( n , n�4) = �D1 ( 1 , 5 ) ;
246 D1 ( n , n�5) = �D1 ( 1 , 6 ) ;
247 D1 ( n , n�6) = �D1 ( 1 , 7 ) ;
248 D1 ( n , n�7) = �D1 ( 1 , 8 ) ;
249 D1 ( n�1,n ) = �D1 ( 2 , 1 ) ;
250 D1 ( n�1,n�1) = �D1 ( 2 , 2 ) ;
251 D1 ( n�1,n�2) = �D1 ( 2 , 3 ) ;
252 D1 ( n�1,n�3) = �D1 ( 2 , 4 ) ;
253 D1 ( n�1,n�4) = �D1 ( 2 , 5 ) ;
254 D1 ( n�1,n�5) = �D1 ( 2 , 6 ) ;
255 D1 ( n�1,n�6) = �D1 ( 2 , 7 ) ;
256 D1 ( n�1,n�7) = �D1 ( 2 , 8 ) ;
257 D1 ( n�2,n ) = �D1 ( 3 , 1 ) ;
258 D1 ( n�2,n�1) = �D1 ( 3 , 2 ) ;
259 D1 ( n�2,n�2) = �D1 ( 3 , 3 ) ;
260 D1 ( n�2,n�3) = �D1 ( 3 , 4 ) ;
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261 D1 ( n�2,n�4) = �D1 ( 3 , 5 ) ;
262 D1 ( n�2,n�5) = �D1 ( 3 , 6 ) ;
263 D1 ( n�2,n�6) = �D1 ( 3 , 7 ) ;
264 D1 ( n�2,n�7) = �D1 ( 3 , 8 ) ;
265 D1 ( n�3,n ) = �D1 ( 4 , 1 ) ;
266 D1 ( n�3,n�1) = �D1 ( 4 , 2 ) ;
267 D1 ( n�3,n�2) = �D1 ( 4 , 3 ) ;
268 D1 ( n�3,n�3) = �D1 ( 4 , 4 ) ;
269 D1 ( n�3,n�4) = �D1 ( 4 , 5 ) ;
270 D1 ( n�3,n�5) = �D1 ( 4 , 6 ) ;
271 D1 ( n�3,n�6) = �D1 ( 4 , 7 ) ;
272 D1 ( n�3,n�7) = �D1 ( 4 , 8 ) ;
273 D1 ( n�4,n ) = �D1 ( 5 , 1 ) ;
274 D1 ( n�4,n�1) = �D1 ( 5 , 2 ) ;
275 D1 ( n�4,n�2) = �D1 ( 5 , 3 ) ;
276 D1 ( n�4,n�3) = �D1 ( 5 , 4 ) ;
277 D1 ( n�4,n�4) = �D1 ( 5 , 5 ) ;
278 D1 ( n�4,n�5) = �D1 ( 5 , 6 ) ;
279 D1 ( n�4,n�6) = �D1 ( 5 , 7 ) ;
280 D1 ( n�4,n�7) = �D1 ( 5 , 8 ) ;
281 D1 ( n�4,n�8) = �D1 ( 5 , 9 ) ;
282 D1 ( n�5,n ) = �D1 ( 6 , 1 ) ;
283 D1 ( n�5,n�1) = �D1 ( 6 , 2 ) ;
284 D1 ( n�5,n�2) = �D1 ( 6 , 3 ) ;
285 D1 ( n�5,n�3) = �D1 ( 6 , 4 ) ;
286 D1 ( n�5,n�4) = �D1 ( 6 , 5 ) ;
287 D1 ( n�5,n�5) = �D1 ( 6 , 6 ) ;
288 D1 ( n�5,n�6) = �D1 ( 6 , 7 ) ;
289 D1 ( n�5,n�7) = �D1 ( 6 , 8 ) ;
290 D1 ( n�5,n�8) = �D1 ( 6 , 9 ) ;
291 D1 ( n�5,n�9) = �D1 ( 6 , 1 0 ) ;
292
293 %%%%
294 D2 = ( 1 / ( dx ^2 ) )�s p d i a g s ( [1 / 9 0� e �3/20�e 3/2� e �49/18�e 3/2�e �3/20�e 1/90� e ] , �3:3 , n , n ) ;
295
296 D2 ( 1 , 1 ) = 1 1 4 1 7 0 / 4 0 9 4 7 / (dx ^2 ) ;
297 D2 ( 1 , 2 ) = �438107/54596/(dx ^2 ) ;
298 D2 ( 1 , 3 ) = 3 3 6 4 0 9 / 4 0 9 4 7 / (dx ^2 ) ;
299 D2 ( 1 , 4 ) = �276997/81894/(dx ^2 ) ;
300 D2 ( 1 , 5 ) = 3 7 4 7 / 1 3 6 4 9 / (dx ^2 ) ;
301 D2 ( 1 , 6 ) = 2 1 0 3 5 / 1 6 3 7 8 8 / (dx ^2 ) ;
302 D2 ( 1 , 7 ) = 0 ;
303 D2 ( 1 , 8 ) = 0 ;
304 D2 ( 2 , 1 ) = 6 1 7 3 / 5 8 6 0 / (dx ^2 ) ;
305 D2 ( 2 , 2 ) = �2066/879/ (dx ^2 ) ;
306 D2 ( 2 , 3 ) = 3 2 8 3 / 1 7 5 8 / (dx ^2 ) ;
307 D2 ( 2 , 4 ) = �303/293/ (dx ^2 ) ;
308 D2 ( 2 , 5 ) = 2 1 1 1 / 3 5 1 6 / (dx ^2 ) ;
309 D2 ( 2 , 6 ) = �601/4395/(dx ^2 ) ;
310 D2 ( 2 , 7 ) = 0 ;
311 D2 ( 2 , 8 ) = 0 ;
312 D2 ( 3 , 1 ) = �52391/81330/(dx ^2 ) ;
313 D2 ( 3 , 2 ) = 1 3 4 6 0 3 / 3 2 5 3 2 / (dx ^2 ) ;
314 D2 ( 3 , 3 ) = �21982/2711/(dx ^2 ) ;
315 D2 ( 3 , 4 ) = 1 1 2 9 1 5 / 1 6 2 6 6 / (dx ^2 ) ;
316 D2 ( 3 , 5 ) = �46969/16266/(dx ^2 ) ;
317 D2 ( 3 , 6 ) = 3 0 4 0 9 / 5 4 2 2 0 / (dx ^2 ) ;
318 D2 ( 3 , 7 ) = 0 ;
319 D2 ( 3 , 8 ) = 0 ;
320 D2 ( 4 , 1 ) = 6 8 6 0 3 / 3 2 1 5 4 0 / (dx ^2 ) ;
321 D2 ( 4 , 2 ) = �12423/10718/(dx ^2 ) ;
322 D2 ( 4 , 3 ) = 1 1 2 9 1 5 / 3 2 1 5 4 / (dx ^2 ) ;
323 D2 ( 4 , 4 ) = �75934/16077/(dx ^2 ) ;
324 D2 ( 4 , 5 ) = 5 3 3 6 9 / 2 1 4 3 6 / (dx ^2 ) ;
325 D2 ( 4 , 6 ) = �54899/160770/(dx ^2 ) ;
326 D2 ( 4 , 7 ) = 4 8 / 5 3 5 9 / ( dx ^2 ) ;
327 D2 ( 4 , 8 ) = 0 ;
328 D2 ( 5 , 1 ) = �7053/39385/(dx ^2 ) ;
329 D2 ( 5 , 2 ) = 8 6 5 5 1 / 9 4 5 2 4 / (dx ^2 ) ;
330 D2 ( 5 , 3 ) = �46969/23631/(dx ^2 ) ;
331 D2 ( 5 , 4 ) = 5 3 3 6 9 / 1 5 7 5 4 / (dx ^2 ) ;
332 D2 ( 5 , 5 ) = �87904/23631/(dx ^2 ) ;
333 D2 ( 5 , 6 ) = 8 2 0 2 7 1 / 4 7 2 6 2 0 / ( dx ^2 ) ;
334 D2 ( 5 , 7 ) = �1296/7877/(dx ^2 ) ;
335 D2 ( 5 , 8 ) = 9 6 / 7 8 7 7 / ( dx ^2 ) ;
336 D2 ( 5 , 9 ) = 0 ;
337 D2 ( 6 , 1 ) = 2 1 0 3 5 / 5 2 5 6 1 2 / (dx ^2 ) ;
338 D2 ( 6 , 2 ) = �24641/131403/(dx ^2 ) ;
339 D2 ( 6 , 3 ) = 3 0 4 0 9 / 8 7 6 0 2 / (dx ^2 ) ;
340 D2 ( 6 , 4 ) = �54899/131403/(dx ^2 ) ;
341 D2 ( 6 , 5 ) = 8 2 0 2 7 1 / 5 2 5 6 1 2 / ( dx ^2 ) ;
342 D2 ( 6 , 6 ) = �117600/43801/(dx ^2 ) ;
343 D2 ( 6 , 7 ) = 6 4 8 0 0 / 4 3 8 0 1 / (dx ^2 ) ;
344 D2 ( 6 , 8 ) = �6480/43801/(dx ^2 ) ;
345 D2 ( 6 , 9 ) = 4 8 0 / 4 3 8 0 1 / (dx ^2 ) ;
346 D2 ( 6 , 1 0 ) = 0 ;
347 D2 ( n , n ) = D2 ( 1 , 1 ) ;
348 D2 ( n , n�1) = D2 ( 1 , 2 ) ;
349 D2 ( n , n�2) = D2 ( 1 , 3 ) ;
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350 D2 ( n , n�3) = D2 ( 1 , 4 ) ;
351 D2 ( n , n�4) = D2 ( 1 , 5 ) ;
352 D2 ( n , n�5) = D2 ( 1 , 6 ) ;
353 D2 ( n , n�6) = D2 ( 1 , 7 ) ;
354 D2 ( n , n�7) = D2 ( 1 , 8 ) ;
355 D2 ( n�1,n ) = D2 ( 2 , 1 ) ;
356 D2 ( n�1,n�1) = D2 ( 2 , 2 ) ;
357 D2 ( n�1,n�2) = D2 ( 2 , 3 ) ;
358 D2 ( n�1,n�3) = D2 ( 2 , 4 ) ;
359 D2 ( n�1,n�4) = D2 ( 2 , 5 ) ;
360 D2 ( n�1,n�5) = D2 ( 2 , 6 ) ;
361 D2 ( n�1,n�6) = D2 ( 2 , 7 ) ;
362 D2 ( n�1,n�7) = D2 ( 2 , 8 ) ;
363 D2 ( n�2,n ) = D2 ( 3 , 1 ) ;
364 D2 ( n�2,n�1) = D2 ( 3 , 2 ) ;
365 D2 ( n�2,n�2) = D2 ( 3 , 3 ) ;
366 D2 ( n�2,n�3) = D2 ( 3 , 4 ) ;
367 D2 ( n�2,n�4) = D2 ( 3 , 5 ) ;
368 D2 ( n�2,n�5) = D2 ( 3 , 6 ) ;
369 D2 ( n�2,n�6) = D2 ( 3 , 7 ) ;
370 D2 ( n�2,n�7) = D2 ( 3 , 8 ) ;
371 D2 ( n�3,n ) = D2 ( 4 , 1 ) ;
372 D2 ( n�3,n�1) = D2 ( 4 , 2 ) ;
373 D2 ( n�3,n�2) = D2 ( 4 , 3 ) ;
374 D2 ( n�3,n�3) = D2 ( 4 , 4 ) ;
375 D2 ( n�3,n�4) = D2 ( 4 , 5 ) ;
376 D2 ( n�3,n�5) = D2 ( 4 , 6 ) ;
377 D2 ( n�3,n�6) = D2 ( 4 , 7 ) ;
378 D2 ( n�3,n�7) = D2 ( 4 , 8 ) ;
379 D2 ( n�4,n ) = D2 ( 5 , 1 ) ;
380 D2 ( n�4,n�1) = D2 ( 5 , 2 ) ;
381 D2 ( n�4,n�2) = D2 ( 5 , 3 ) ;
382 D2 ( n�4,n�3) = D2 ( 5 , 4 ) ;
383 D2 ( n�4,n�4) = D2 ( 5 , 5 ) ;
384 D2 ( n�4,n�5) = D2 ( 5 , 6 ) ;
385 D2 ( n�4,n�6) = D2 ( 5 , 7 ) ;
386 D2 ( n�4,n�7) = D2 ( 5 , 8 ) ;
387 D2 ( n�4,n�8) = D2 ( 5 , 9 ) ;
388 D2 ( n�5,n ) = D2 ( 6 , 1 ) ;
389 D2 ( n�5,n�1) = D2 ( 6 , 2 ) ;
390 D2 ( n�5,n�2) = D2 ( 6 , 3 ) ;
391 D2 ( n�5,n�3) = D2 ( 6 , 4 ) ;
392 D2 ( n�5,n�4) = D2 ( 6 , 5 ) ;
393 D2 ( n�5,n�5) = D2 ( 6 , 6 ) ;
394 D2 ( n�5,n�6) = D2 ( 6 , 7 ) ;
395 D2 ( n�5,n�7) = D2 ( 6 , 8 ) ;
396 D2 ( n�5,n�8) = D2 ( 6 , 9 ) ;
397 D2 ( n�5,n�9) = D2 ( 6 , 1 0 ) ;
398
399 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
400
401 H( 1 , 1 ) = dx �13649/43200;
402 H( 2 , 2 ) = dx �12013/8640;
403 H( 3 , 3 ) = dx �2 7 1 1 / 4 3 20;
404 H( 4 , 4 ) = dx �5 3 5 9 / 4 3 20;
405 H( 5 , 5 ) = dx �7 8 7 7 / 8 6 40;
406 H( 6 , 6 ) = dx �43801/43200;
407 H( n , n ) = H( 1 , 1 ) ;
408 H( n�1,n�1) = H( 2 , 2 ) ;
409 H( n�2,n�2) = H( 3 , 3 ) ;
410 H( n�3,n�3) = H( 4 , 4 ) ;
411 H( n�4,n�4) = H( 5 , 5 ) ;
412 H( n�5,n�5) = H( 6 , 6 ) ;
413
414 BS = ( 1 / dx )�s p d i a g s ( [ z e r o s ( s i z e ( e ) ) ] , 0 , n , n ) ;
415
416 BS ( 1 , 1 ) = 2 5 / 1 2 / dx ;
417 BS ( 1 , 2 ) = �4/dx ;
418 BS ( 1 , 3 ) = 3 / dx ;
419 BS ( 1 , 4 ) = �4/3/ dx ;
420 BS ( 1 , 5 ) = 1 / 4 / dx ;
421 BS( n , n ) = BS ( 1 , 1 ) ;
422 BS( n , n�1) = BS ( 1 , 2 ) ;
423 BS( n , n�2) = BS ( 1 , 3 ) ;
424 BS( n , n�3) = BS ( 1 , 4 ) ;
425 BS( n , n�4) = BS ( 1 , 5 ) ;
426
427 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
428
429 S ( 1 , 1 ) = �25/12/ dx ;
430 S ( 1 , 2 ) = 4 / dx ;
431 S ( 1 , 3 ) = �3/dx ;
432 S ( 1 , 4 ) = 4 / 3 / dx ;
433 S ( 1 , 5 ) = �1/4/ dx ;
434 S ( n , n ) = BS ( 1 , 1 ) ;
435 S ( n , n�1) = BS ( 1 , 2 ) ;
436 S ( n , n�2) = BS ( 1 , 3 ) ;
437 S ( n , n�3) = BS ( 1 , 4 ) ;
438 S ( n , n�4) = BS ( 1 , 5 ) ;
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439 e l s e i f o r d e r ==8
440 e = o n es ( n , 1 ) ;
441
442 D = ( 1 / ( dx ^2 ) )�s p d i a g s ([ �1/560�e 8/315� e �1/5�e 8/5� e �205/72� e 8/5�e �1/5�e 8/315� e �1/560�e ] , �4:4 , n , n ) ;
443 % e i g h t h o r d e r s t a n d a r d c e n t r a l s t e n c i l
444
445 D( 1 , 1 ) = 4 8 7 0 3 8 2 9 9 4 7 9 9 / 1 3 5 89 7 68 68 2 90 /(dx ^2 ) ;
446 D( 1 , 2 ) = �893640087518/75498714905/(dx ^2 ) ;
447 D( 1 , 3 ) = 9 2 6 5 9 4 8 2 5 1 1 9 / 6 0 3 9 8 97 1 9 24 /(dx ^2 ) ;
448 D( 1 , 4 ) = �1315109406200/135897686829/(dx ^2 ) ;
449 D( 1 , 5 ) = 3 9 1 2 6 9 8 3 2 7 2 / 1 5 0 9 9 7 4 2 9 81 /(dx ^2 ) ;
450 D( 1 , 6 ) = 1 2 3 4 4 4 9 1 3 4 2 / 7 5 4 9 8 7 1 4 9 05 /(dx ^2 ) ;
451 D( 1 , 7 ) = �451560522577/2717953736580/(dx ^2 ) ;
452 D( 1 , 8 ) = 0 ;
453 D( 1 , 9 ) = 0 ;
454 D( 1 , 1 0 ) = 0 ;
455 D( 1 , 1 1 ) = 0 ;
456 D( 1 , 1 2 ) = 0 ;
457 D( 2 , 1 ) = 3 3 3 8 0 6 0 1 2 1 9 4 / 3 9 0 6 19 1 53 8 55 /(dx ^2 ) ;
458 D( 2 , 2 ) = �154646272029/111605472530/(dx ^2 ) ;
459 D( 2 , 3 ) = 1 1 6 8 3 3 8 0 4 0 / 3 3 4 8 1 6 4 1 7 5 9 / (dx ^2 ) ;
460 D( 2 , 4 ) = 8 2 6 9 9 1 1 2 5 0 1 / 1 3 3 9 2 6 56 7 0 36 /(dx ^2 ) ;
461 D( 2 , 5 ) = �171562838/11160547253/(dx ^2 ) ;
462 D( 2 , 6 ) = �28244698346/167408208795/(dx ^2 ) ;
463 D( 2 , 7 ) = 1 1 9 0 4 1 2 2 5 7 6 / 1 6 7 4 0 8 20 8 7 95 /(dx ^2 ) ;
464 D( 2 , 8 ) = �2598164715/312495323084/(dx ^2 ) ;
465 D( 2 , 9 ) = 0 ;
466 D( 2 , 1 0 ) = 0 ;
467 D( 2 , 1 1 ) = 0 ;
468 D( 2 , 1 2 ) = 0 ;
469 D( 3 , 1 ) = 7 8 3 8 9 8 4 0 9 5 / 5 2 7 3 1 0 2 9 9 8 8 / (dx ^2 ) ;
470 D( 3 , 2 ) = 1 1 6 8 3 3 8 0 4 0 / 5 6 4 9 7 5 3 2 1 3 / (dx ^2 ) ;
471 D( 3 , 3 ) = �88747895/144865467/(dx ^2 ) ;
472 D( 3 , 4 ) = 4 2 3 5 8 7 2 3 1 / 6 2 7 7 5 0 3 5 7 / (dx ^2 ) ;
473 D( 3 , 5 ) = �43205598281/22599012852/(dx ^2 ) ;
474 D( 3 , 6 ) = 4 8 7 6 3 7 8 5 6 2 / 1 8 8 3 2 5 1 0 7 1 / (dx ^2 ) ;
475 D( 3 , 7 ) = �5124426509/3766502142/(dx ^2 ) ;
476 D( 3 , 8 ) = 1 0 4 9 6 9 0 0 9 6 5 / 3 9 5 4 8 2 7 2 4 91 /(dx ^2 ) ;
477 D( 3 , 9 ) = 0 ;
478 D( 3 , 1 0 ) = 0 ;
479 D( 3 , 1 1 ) = 0 ;
480 D( 3 , 1 2 ) = 0 ;
481 D( 4 , 1 ) = �94978241528/828644350023/(dx ^2 ) ;
482 D( 4 , 2 ) = 8 2 6 9 9 1 1 2 5 0 1 / 1 5 7 8 3 7 01 9 0 52 /(dx ^2 ) ;
483 D( 4 , 3 ) = 1 2 7 0 7 6 1 6 9 3 / 1 3 1 5 3 0 8 4 9 2 1 / (dx ^2 ) ;
484 D( 4 , 4 ) = �167389605005/118377764289/(dx ^2 ) ;
485 D( 4 , 5 ) = 4 8 2 4 2 5 6 0 2 1 4 / 3 9 4 5 9 2 5 4 7 63 /(dx ^2 ) ;
486 D( 4 , 6 ) = �31673996013/52612339684/(dx ^2 ) ;
487 D( 4 , 7 ) = 4 3 5 5 6 3 1 9 2 4 1 / 1 1 8 3 7 7 76 4 2 89 /(dx ^2 ) ;
488 D( 4 , 8 ) = �44430275135/552429566682/(dx ^2 ) ;
489 D( 4 , 9 ) = 0 ;
490 D( 4 , 1 0 ) = 0 ;
491 D( 4 , 1 1 ) = 0 ;
492 D( 4 , 1 2 ) = 0 ;
493 D( 5 , 1 ) = 1 4 5 5 0 6 7 8 1 6 / 2 1 1 3 2 5 2 8 4 3 1 / (dx ^2 ) ;
494 D( 5 , 2 ) = �171562838/3018932633/(dx ^2 ) ;
495 D( 5 , 3 ) = �43205598281/36227191596/(dx ^2 ) ;
496 D( 5 , 4 ) = 4 8 2 4 2 5 6 0 2 1 4 / 9 0 5 6 7 9 7 8 9 9 / (dx ^2 ) ;
497 D( 5 , 5 ) = �52276055645/6037865266/(dx ^2 ) ;
498 D( 5 , 6 ) = 5 7 5 2 1 5 8 7 2 3 8 / 9 0 5 6 7 9 7 8 9 9 / (dx ^2 ) ;
499 D( 5 , 7 ) = �80321706377/36227191596/(dx ^2 ) ;
500 D( 5 , 8 ) = 8 0 7 8 0 8 7 1 5 8 / 2 1 1 3 2 5 2 8 4 3 1 / (dx ^2 ) ;
501 D( 5 , 9 ) = �1296/299527/(dx ^2 ) ;
502 D( 5 , 1 0 ) = 0 ;
503 D( 5 , 1 1 ) = 0 ;
504 D( 5 , 1 2 ) = 0 ;
505 D( 6 , 1 ) = 1 0 8 8 1 5 0 4 3 3 4 / 3 2 7 3 2 1 11 8 8 45 /(dx ^2 ) ;
506 D( 6 , 2 ) = �28244698346/140280479505/(dx ^2 ) ;
507 D( 6 , 3 ) = 4 8 7 6 3 7 8 5 6 2 / 9 3 5 2 0 3 1 9 6 7 / (dx ^2 ) ;
508 D( 6 , 4 ) = �10557998671/12469375956/(dx ^2 ) ;
509 D( 6 , 5 ) = 5 7 5 2 1 5 8 7 2 3 8 / 2 8 0 5 6 0 9 5 9 01 /(dx ^2 ) ;
510 D( 6 , 6 ) = �278531401019/93520319670/(dx ^2 ) ;
511 D( 6 , 7 ) = 7 3 7 9 0 1 3 0 0 0 2 / 4 6 7 6 0 1 5 9 8 35 /(dx ^2 ) ;
512 D( 6 , 8 ) = �137529995233/785570685228/(dx ^2 ) ;
513 D( 6 , 9 ) = 2 0 4 8 / 1 0 3 0 9 7 / (dx ^2 ) ;
514 D( 6 , 1 0 ) = �144/103097/(dx ^2 ) ;
515 D( 6 , 1 1 ) = 0 ;
516 D( 6 , 1 2 ) = 0 ;
517 D( 7 , 1 ) = �135555328849/8509847458140/(dx ^2 ) ;
518 D( 7 , 2 ) = 1 1 9 0 4 1 2 2 5 7 6 / 1 0 1 3 0 7 70 7 8 35 /(dx ^2 ) ;
519 D( 7 , 3 ) = �5124426509/13507694378/(dx ^2 ) ;
520 D( 7 , 4 ) = 4 3 5 5 6 3 1 9 2 4 1 / 6 0 7 8 4 6 2 4 7 01 /(dx ^2 ) ;
521 D( 7 , 5 ) = �80321706377/81046166268/(dx ^2 ) ;
522 D( 7 , 6 ) = 7 3 7 9 0 1 3 0 0 0 2 / 3 3 7 6 9 2 3 5 9 45 /(dx ^2 ) ;
523 D( 7 , 7 ) = �950494905688/303923123505/(dx ^2 ) ;
524 D( 7 , 8 ) = 2 3 9 0 7 3 0 1 8 6 7 3 / 1 4 1 8 30 7 90 9 69 /(dx ^2 ) ;
525 D( 7 , 9 ) = �145152/670091/(dx ^2 ) ;
526 D( 7 , 1 0 ) = 1 8 4 3 2 / 6 7 0 0 9 1 / (dx ^2 ) ;
527 D( 7 , 1 1 ) = �1296/670091/(dx ^2 ) ;
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528 D( 7 , 1 2 ) = 0 ;
529 D( 8 , 1 ) = 0 ;
530 D( 8 , 2 ) = �2598164715/206729925524/(dx ^2 ) ;
531 D( 8 , 3 ) = 1 0 4 9 6 9 0 0 9 6 5 / 1 5 5 0 4 7 44 4 1 43 /(dx ^2 ) ;
532 D( 8 , 4 ) = �44430275135/310094888286/(dx ^2 ) ;
533 D( 8 , 5 ) = 4 2 5 1 6 2 4 8 2 / 2 7 2 0 1 3 0 5 9 9 / (dx ^2 ) ;
534 D( 8 , 6 ) = �137529995233/620189776572/(dx ^2 ) ;
535 D( 8 , 7 ) = 2 3 9 0 7 3 0 1 8 6 7 3 / 1 5 5 0 47 4 44 1 43 /(dx ^2 ) ;
536 D( 8 , 8 ) = �144648000000/51682481381/(dx ^2 ) ;
537 D( 8 , 9 ) = 8 1 2 8 5 1 2 / 5 1 2 7 7 3 9 / ( dx ^2 ) ;
538 D( 8 , 1 0 ) = �1016064/5127739/(dx ^2 ) ;
539 D( 8 , 1 1 ) = 1 2 9 0 2 4 / 5 1 2 7 7 3 9 / ( dx ^2 ) ;
540 D( 8 , 1 2 ) = �9072/5127739/(dx ^2 ) ;
541
542 D( n , n ) = D( 1 , 1 ) ;
543 D( n , n�1) = D( 1 , 2 ) ;
544 D( n , n�2) = D( 1 , 3 ) ;
545 D( n , n�3) = D( 1 , 4 ) ;
546 D( n , n�4) = D( 1 , 5 ) ;
547 D( n , n�5) = D( 1 , 6 ) ;
548 D( n , n�6) = D( 1 , 7 ) ;
549 D( n , n�7) = D( 1 , 8 ) ;
550 D( n , n�8) = D( 1 , 9 ) ;
551 D( n , n�9) = D( 1 , 1 0 ) ;
552 D( n , n�10) = D( 1 , 1 1 ) ;
553 D( n , n�11) = D( 1 , 1 2 ) ;
554 D( n�1,n ) = D( 2 , 1 ) ;
555 D( n�1,n�1) = D( 2 , 2 ) ;
556 D( n�1,n�2) = D( 2 , 3 ) ;
557 D( n�1,n�3) = D( 2 , 4 ) ;
558 D( n�1,n�4) = D( 2 , 5 ) ;
559 D( n�1,n�5) = D( 2 , 6 ) ;
560 D( n�1,n�6) = D( 2 , 7 ) ;
561 D( n�1,n�7) = D( 2 , 8 ) ;
562 D( n�1,n�8) = D( 2 , 9 ) ;
563 D( n�1,n�9) = D( 2 , 1 0 ) ;
564 D( n�1,n�10) = D( 2 , 1 1 ) ;
565 D( n�1,n�11) = D( 2 , 1 2 ) ;
566 D( n�2,n ) = D( 3 , 1 ) ;
567 D( n�2,n�1) = D( 3 , 2 ) ;
568 D( n�2,n�2) = D( 3 , 3 ) ;
569 D( n�2,n�3) = D( 3 , 4 ) ;
570 D( n�2,n�4) = D( 3 , 5 ) ;
571 D( n�2,n�5) = D( 3 , 6 ) ;
572 D( n�2,n�6) = D( 3 , 7 ) ;
573 D( n�2,n�7) = D( 3 , 8 ) ;
574 D( n�2,n�8) = D( 3 , 9 ) ;
575 D( n�2,n�9) = D( 3 , 1 0 ) ;
576 D( n�2,n�10) = D( 3 , 1 1 ) ;
577 D( n�2,n�11) = D( 3 , 1 2 ) ;
578 D( n�3,n ) = D( 4 , 1 ) ;
579 D( n�3,n�1) = D( 4 , 2 ) ;
580 D( n�3,n�2) = D( 4 , 3 ) ;
581 D( n�3,n�3) = D( 4 , 4 ) ;
582 D( n�3,n�4) = D( 4 , 5 ) ;
583 D( n�3,n�5) = D( 4 , 6 ) ;
584 D( n�3,n�6) = D( 4 , 7 ) ;
585 D( n�3,n�7) = D( 4 , 8 ) ;
586 D( n�3,n�8) = D( 4 , 9 ) ;
587 D( n�3,n�9) = D( 4 , 1 0 ) ;
588 D( n�3,n�10) = D( 4 , 1 1 ) ;
589 D( n�3,n�11) = D( 4 , 1 2 ) ;
590 D( n�4,n ) = D( 5 , 1 ) ;
591 D( n�4,n�1) = D( 5 , 2 ) ;
592 D( n�4,n�2) = D( 5 , 3 ) ;
593 D( n�4,n�3) = D( 5 , 4 ) ;
594 D( n�4,n�4) = D( 5 , 5 ) ;
595 D( n�4,n�5) = D( 5 , 6 ) ;
596 D( n�4,n�6) = D( 5 , 7 ) ;
597 D( n�4,n�7) = D( 5 , 8 ) ;
598 D( n�4,n�8) = D( 5 , 9 ) ;
599 D( n�4,n�9) = D( 5 , 1 0 ) ;
600 D( n�4,n�10) = D( 5 , 1 1 ) ;
601 D( n�4,n�11) = D( 5 , 1 2 ) ;
602 D( n�5,n ) = D( 6 , 1 ) ;
603 D( n�5,n�1) = D( 6 , 2 ) ;
604 D( n�5,n�2) = D( 6 , 3 ) ;
605 D( n�5,n�3) = D( 6 , 4 ) ;
606 D( n�5,n�4) = D( 6 , 5 ) ;
607 D( n�5,n�5) = D( 6 , 6 ) ;
608 D( n�5,n�6) = D( 6 , 7 ) ;
609 D( n�5,n�7) = D( 6 , 8 ) ;
610 D( n�5,n�8) = D( 6 , 9 ) ;
611 D( n�5,n�9) = D( 6 , 1 0 ) ;
612 D( n�5,n�10) = D( 6 , 1 1 ) ;
613 D( n�5,n�11) = D( 6 , 1 2 ) ;
614 D( n�6,n ) = D( 7 , 1 ) ;
615 D( n�6,n�1) = D( 7 , 2 ) ;
616 D( n�6,n�2) = D( 7 , 3 ) ;



190 C Matlab Codes

617 D( n�6,n�3) = D( 7 , 4 ) ;
618 D( n�6,n�4) = D( 7 , 5 ) ;
619 D( n�6,n�5) = D( 7 , 6 ) ;
620 D( n�6,n�6) = D( 7 , 7 ) ;
621 D( n�6,n�7) = D( 7 , 8 ) ;
622 D( n�6,n�8) = D( 7 , 9 ) ;
623 D( n�6,n�9) = D( 7 , 1 0 ) ;
624 D( n�6,n�10) = D( 7 , 1 1 ) ;
625 D( n�6,n�11) = D( 7 , 1 2 ) ;
626 D( n�7,n ) = D( 8 , 1 ) ;
627 D( n�7,n�1) = D( 8 , 2 ) ;
628 D( n�7,n�2) = D( 8 , 3 ) ;
629 D( n�7,n�3) = D( 8 , 4 ) ;
630 D( n�7,n�4) = D( 8 , 5 ) ;
631 D( n�7,n�5) = D( 8 , 6 ) ;
632 D( n�7,n�6) = D( 8 , 7 ) ;
633 D( n�7,n�7) = D( 8 , 8 ) ;
634 D( n�7,n�8) = D( 8 , 9 ) ;
635 D( n�7,n�9) = D( 8 , 1 0 ) ;
636 D( n�7,n�10) = D( 8 , 1 1 ) ;
637 D( n�7,n�11) = D( 8 , 1 2 ) ;
638
639
640 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
641
642 H( 1 , 1 ) = dx �1498139/5080320;
643 H( 2 , 2 ) = dx �1107307/725760;
644 H( 3 , 3 ) = dx �20761/80640;
645 H( 4 , 4 ) = dx �1304999/725760;
646 H( 5 , 5 ) = dx �299527/725760;
647 H( 6 , 6 ) = dx �103097/80640;
648 H( 7 , 7 ) = dx �670091/725760;
649 H( 8 , 8 ) = dx �5127739/5080320;
650 H( n , n ) = H( 1 , 1 ) ;
651 H( n�1,n�1) = H( 2 , 2 ) ;
652 H( n�2,n�2) = H( 3 , 3 ) ;
653 H( n�3,n�3) = H( 4 , 4 ) ;
654 H( n�4,n�4) = H( 5 , 5 ) ;
655 H( n�5,n�5) = H( 6 , 6 ) ;
656 H( n�6,n�6) = H( 7 , 7 ) ;
657 H( n�7,n�7) = H( 8 , 8 ) ;
658
659 BS = ( 1 / dx )�s p d i a g s ( [ z e r o s ( s i z e ( e ) ) ] , 0 , n , n ) ;
660
661 BS ( 1 , 1 ) = 4 7 2 3 / 2 1 0 0 / dx ;
662 BS ( 1 , 2 ) = �839/175/ dx ;
663 BS ( 1 , 3 ) = 1 5 7 / 3 5 / dx ;
664 BS ( 1 , 4 ) = �278/105/ dx ;
665 BS ( 1 , 5 ) = 1 0 3 / 1 4 0 / dx ;
666 BS ( 1 , 6 ) = 1 / 1 7 5 / dx ;
667 BS ( 1 , 7 ) = �6/175/ dx ;
668 BS( n , n ) = BS ( 1 , 1 ) ;
669 BS( n , n�1) = BS ( 1 , 2 ) ;
670 BS( n , n�2) = BS ( 1 , 3 ) ;
671 BS( n , n�3) = BS ( 1 , 4 ) ;
672 BS( n , n�4) = BS ( 1 , 5 ) ;
673 BS( n , n�5) = BS ( 1 , 6 ) ;
674 BS( n , n�6) = BS ( 1 , 7 ) ;
675
676
677 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
678
679 S ( 1 , 1 ) = �4723/2100/ dx ;
680 S ( 1 , 2 ) = 8 3 9 / 1 7 5 / dx ;
681 S ( 1 , 3 ) = �157/35/ dx ;
682 S ( 1 , 4 ) = 2 7 8 / 1 0 5 / dx ;
683 S ( 1 , 5 ) = �103/140/ dx ;
684 S ( 1 , 6 ) = �1/175/ dx ;
685 S ( 1 , 7 ) = 6 / 1 7 5 / dx ;
686 S ( n , n ) = BS ( 1 , 1 ) ;
687 S ( n , n�1) = BS ( 1 , 2 ) ;
688 S ( n , n�2) = BS ( 1 , 3 ) ;
689 S ( n , n�3) = BS ( 1 , 4 ) ;
690 S ( n , n�4) = BS ( 1 , 5 ) ;
691 S ( n , n�5) = BS ( 1 , 6 ) ;
692 S ( n , n�6) = BS ( 1 , 7 ) ;
693
694 e l s e
695 d i s p ( ' Only o r d e r 2 , 4 , 6 o r 8 i mp l emen t ed h e r e . ' )
696 end
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C.1.2.2 mu_SG_lognormal.m

1
2 f u n c t i o n [B] = mu_SG_lognormal ( c1 , c2 , P )
3
4 % Compute t h e s t o c h a s t i c G a l e r k i n v i s c o s i t y m a t r i x B wi t h n o r m a l i z e d Hermi t e
5 % p o l y n o m i a l s
6
7 % I n d a t a :
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f s h i f t e d l o g n o r mal d i s t r i b u t i o n
9 % P � Number o f gPC t erms t o be r e t a i n e d

10
11 % Ou t d at a :
12 % B � V i s c o s i t y mat r i x , [B] _{ i j } = sum_{k }^{2 P}< p s i _ i p s i _ j p s i _ k > mu_k
13
14 % For t h e 1D case , u se t w i c e as many b a s i s f u n c t i o n s as f o r t h e v a r i a b l e s
15 % ( see P r o p o s i t i o n 1 i n C h ap t er 5 )
16
17 P2 = 2�P ;
18 C = h e r m i t e _ c h a o s ( P2�1) ;
19
20 t o l = 3 0 ;
21
22 % R e c u r s i v e l y g e n e r a t e Hermi t e p o l y n o m i a l s
23 b a s i s _ f u n = c e l l ( 1 , P2 ) ;
24 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
25 b a s i s _ f u n {2} = @( x i ) x i ;
26 f o r k =3 : P2
27 b a s i s _ f u n{k} = @( x i ) 1 / s q r t ( k�1)�x i .�b a s i s _ f u n{k�1}( x i )�s q r t ( ( k�2) / ( k�1) )�b a s i s _ f u n{k�2}( x i ) ;
28 end
29
30 v i s c _ f u n = @( x ) c1+c2�exp ( x ) ;
31
32 B = z e r o s ( P2 ) ;
33
34 f o r k =1 : P2
35 i n t e g = @( x ) 1 / s q r t (2� p i ) .�exp(� x . ^ 2 / 2 ) .�b a s i s _ f u n{k }( x ) .�v i s c _ f u n ( x ) ;
36 v i s c _ h c ( k , 1 ) = quadgk ( i n t e g ,� t o l , t o l ) ;
37 B = B+C ( : , : , k )�v i s c _ h c ( k , 1 ) ;
38 end
39
40 B = B ( 1 : P , 1 : P ) ;

C.1.3 Boundary Treatment

C.1.3.1 bdy_cond_Dirichlet.m

1
2 f u n c t i o n [ g0 ] = b d y _ c o n d _ D i r i c h l e t ( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, P )
3
4 % Gen era t e l e f t b o u n d ar y d a t a f o r Leg en d r e p o l y n o m i a l s and u n i fo rm v i s c o s i t y
5
6 % I n d a t a :
7 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f u n i fo rm v i s c o s i t y
9 % v � Ad v ect i v e v e l o c i t y

10 % t � Time
11 % t 0 � I n i t i a l t i me
12 % x � Vect o r o f s p a t i a l g r i d p o i n t s
13 % x0 � I n i t i a l p u l s e l o c a t i o n
14 % m � Number o f s p a t i a l g r i d p o i n t s
15 % P � Number o f gPC c o e f f i c i e n t s t o be computed
16
17 % Ou t d at a :
18 % g0 � D i r i c h l e t d a t a , l e f t b o u n d ar y
19
20
21
22 u _ i n i t = z e r o s (m�P , 1 ) ;
23
24 %Gen era t e n o r m a l i z e d Leg en d re p o l y n o m i a l s r e c u r s i v e l y
25
26 b a s i s _ f u n = c e l l ( 1 , P ) ;
27 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
28 b a s i s _ f u n {2} = @( x i ) s q r t ( 3 )�x i ;
29 f o r k =3 : P
30 b a s i s _ f u n{k} = @( x i ) ( s q r t (2�k�3) / ( k�1)�x i . �b a s i s _ f u n{k�1}( x i )�(k�2) / ( ( k�1)�s q r t (2�k�5) )�b a s i s _ f u n{k�2}( x i

) )�s q r t (2�k�1) ;
31 end
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32
33 mu_fun = @( x i ) c1+c2�x i ;
34
35 g0 = z e r o s (m�P , 1 ) ;
36
37 f o r k =1 : P
38 i n t e g = @( x i ) 0 . 5 . �b a s i s _ f u n{k }( x i ) .�r h o _ 0 .�(1� e r f ( ( x ( 1 )�(x0+v�( t + t 0 ) ) ) . / s q r t (4�mu_fun ( x i ) �( t + t 0 ) ) ) ) ;
39 g0 ( k , 1 ) = quad ( i n t e g , �1 ,1) ;
40 end

C.1.3.2 bdy_cond_Legendre.m

1 f u n c t i o n [ g0 g1 ] = b d y _ co n d _ Legen dre( rho_0 , c1 , c2 , v , t , t0 , x , x0 , m, P )
2
3 % Compute D i r i c h l e t d a t a f o r t h e l e f t b o u n d ary and Neumann d a t a f o r t h e
4 % r i g h t boundary , assu mi n g Leg en d re p o l y n o m i a l s r e p r e s e n t a t i o n
5
6 % I n d a t a :
7 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f u n i fo rm v i s c o s i t y
9 % v � Ad v ect i v e v e l o c i t y

10 % t � Time
11 % t 0 � I n i t i a l t i me
12 % x � Vect o r o f s p a t i a l g r i d p o i n t s
13 % x0 � I n i t i a l p u l s e l o c a t i o n
14 % m � Number o f s p a t i a l g r i d p o i n t s
15 % P � Number o f gPC c o e f f i c i e n t s t o be computed
16
17 % Ou t d at a :
18 % g0 � D i r i c h l e t d a t a , l e f t b o u n d ar y
19 % g1 � Neumann d at a , r i g h t b o u n d ar y
20
21
22 u _ i n i t = z e r o s (m�P , 1 ) ;
23
24 %Leg en d re p o l y n o m i a l s
25
26 b a s i s _ f u n = c e l l ( 1 , P ) ;
27 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
28 b a s i s _ f u n {2} = @( x i ) s q r t ( 3 )�x i ;
29 f o r k =3 : P
30 b a s i s _ f u n{k} = @( x i ) ( s q r t (2�k�3) / ( k�1)�x i . �b a s i s _ f u n{k�1}( x i )�(k�2) / ( ( k�1)�s q r t (2�k�5) )�b a s i s _ f u n{k�2}( x i

) )�s q r t (2�k�1) ;
31 end
32
33 mu_fun = @( x i ) c1+c2�x i ;
34
35 g0 = z e r o s (m�P , 1 ) ;
36 g1 = z e r o s (m�P , 1 ) ;
37
38 f o r k =1 : P
39 i n t e g _ 0 = @( x i ) 0 . 5�b a s i s _ f u n{k }( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp (�(x ( 1 )�(x0+v�( t + t 0 ) ) ) . ^2 .

/ ( 4�mu_fun ( x i ) �( t + t 0 ) ) ) ;
40 g0 ( k , 1 ) = quad ( i n t e g _ 0 , �1 ,1) ;
41 i n t e g _ 1 = @( x i ) 0 . 5�b a s i s _ f u n{k }( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp (�(x ( end )�(x0+v�( t + t 0 ) ) ) . ^2 .

/ ( 4�mu_fun ( x i ) �( t + t 0 ) ) ) . �(�(x ( end )�(x0+v�( t + t 0 ) ) ) . / ( 2�mu_fun ( x i ) �( t + t 0 ) ) ) ;
42 g1 ( (m�1)�P+k , 1 ) = quad ( i n t e g _ 1 , �1 ,1) ;
43 end

C.1.3.3 bdy_cond_Hermite.m

1
2 f u n c t i o n [ g0 g1 ] = b d y _ co n d _ Hermit e( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, P )
3
4 % Gen era t e b o u n d ar y d a t a f o r Hermi t e p o l y n o m i a l s and s h i f t e d l o g n o rmal v i s c o s i t y
5
6 % I n d a t a :
7 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f s h i f t e d l o g n o r mal v i s c o s i t y
9 % v � Ad v ect i v e v e l o c i t y

10 % t � Time
11 % t 0 � I n i t i a l t i me
12 % x � Vect o r o f s p a t i a l g r i d p o i n t s
13 % x0 � I n i t i a l p u l s e l o c a t i o n
14 % m � Number o f s p a t i a l g r i d p o i n t s
15 % P � Number o f gPC c o e f f i c i e n t s t o be computed
16
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17 % Ou t d at a :
18 % g0 � D i r i c h l e t d a t a , l e f t b o u n d ar y
19 % g1 � Neumann d at a , r i g h t b o u n d ar y
20
21
22 t o l = 1 5 ; % R ep l ace i n f i n i t e i n t e g r a t i o n l i m i t by s u f f i c i e n t l y l a r g e r e a l number
23
24 g0 = z e r o s (m�P , 1 ) ;
25 g1 = z e r o s (m�P , 1 ) ;
26
27 % R e c u r s i v e l y g e n e r a t e Hermi t e p o l y n o m i a l s
28 b a s i s _ f u n = c e l l ( 1 , P ) ;
29 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
30 b a s i s _ f u n {2} = @( x i ) x i ;
31 f o r k =3 : P
32 b a s i s _ f u n{k} = @( x i ) 1 / s q r t ( k�1)�x i .�b a s i s _ f u n{k�1}( x i )�s q r t ( ( k�2) / ( k�1) )�b a s i s _ f u n{k�2}( x i ) ;
33 end
34
35 mu_fun = @( x i ) c1+c2�exp ( x i ) ;
36
37 % Compute t h e gPC c o e f f i c i e n t s wi t h n u m e r i c a l i n t e g r a t i o n
38 f o r k =1 : P
39 i n t e g = @( x i ) 1 / s q r t (2� p i ) .�exp(� x i . ^ 2 / 2 ) .�b a s i s _ f u n{k }( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp (�(x

( 1 )�(x0+v�( t + t 0 ) ) ) . ^2 . / ( 4�mu_fun ( x i ) . �( t + t 0 ) ) ) ;
40 g0 ( k , 1 ) = quad ( i n t e g ,� t o l , t o l ) ;
41
42 i n t e g = @( x i ) �((x ( end )�(x0+v�( t + t 0 ) ) ) . / ( 2�mu_fun ( x i ) �( t + t 0 ) ) ) . � ( 1 / s q r t (2� p i ) .�exp(� x i . ^ 2 / 2 ) .�b a s i s _ f u n{k

}( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp (�(x ( end )�(x0+v�( t + t 0 ) ) ) . ^2 . / ( 4�mu_fun ( x i ) . �( t + t 0 ) ) ) ) ;
43 g1 ( (m�1)�P+k , 1 ) = quad ( i n t e g ,� t o l , t o l ) ;
44 end

C.1.4 Reference Solution

C.1.4.1 init_Hermite.m

1
2 f u n c t i o n [ u _ i n i t ] = i n i t _ H e r m i t e ( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, P )
3
4 % Gen era t e i n i t i a l f u n c t i o n f o r Hermi t e p o l y n o m i a l s and l o g n o rmal v i s c o s i t y
5
6 % I n d a t a :
7 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f l o g n o rmal v i s c o s i t y
9 % v � Ad v ect i v e v e l o c i t y

10 % t � Time
11 % t 0 � I n i t i a l t i me
12 % x � Vect o r o f s p a t i a l g r i d p o i n t s
13 % x0 � I n i t i a l sh o ck l o c a t i o n
14 % m � Number o f s p a t i a l g r i d p o i n t s
15 % P � Number o f gPC c o e f f i c i e n t s t o be computed
16
17 % Ou t d at a :
18 % u _ i n i t � gPC c o e f f i c i e n t s o f t h e i n i t i a l f u n c t i o n e v a l u a t e d a t t h e s p a t i a l g r i d p o i n t s
19
20
21 u _ i n i t = z e r o s (m�P , 1 ) ;
22 t o l = 2 0 ; % R ep l ace i n t e g r a t i o n l i m i t s o f i n f i n i t y by some s u f f i c i e n t l y l a r g e number
23
24 % Gen era t e n o r m a l i z e d Hermi t e p o l y n o m i a l s r e c u r s i v e l y
25
26 b a s i s _ f u n = c e l l ( 1 , P ) ;
27 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
28 b a s i s _ f u n {2} = @( x i ) x i ;
29 f o r k =3 : P
30 b a s i s _ f u n{k} = @( x i ) 1 / s q r t ( k�1)�x i .�b a s i s _ f u n{k�1}( x i )�s q r t ( ( k�2) / ( k�1) )�b a s i s _ f u n{k�2}( x i ) ;
31 end
32
33 % V i s c o c i t y wi t h s h i f t e d l o g n o r mal d i s t r i b u t i o n
34 mu_fun = @( x i ) c1+c2�exp ( x i ) ;
35
36 f o r k =1 : P
37 f o r j =1 :m
38 i n t e g = @( x i ) 1 / s q r t (2� p i ) .�exp(� x i . ^ 2 / 2 ) .�b a s i s _ f u n{k }( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp

(�(x ( j )�(x0+v�( t + t 0 ) ) ) . ^2 . / ( 4�mu_fun ( x i ) . �( t + t 0 ) ) ) ;
39 u _ i n i t ( ( j �1)�P+k , 1 ) = quadgk ( i n t e g ,� t o l , t o l ) ; % I n t e g r a t i o n o v er t h e r e a l l i n e r e p l a c e d wi t h f i n i t e

i n t e r v a l
40 end
41 end
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C.1.4.2 init_Legendre.m

1
2 f u n c t i o n [ u _ i n i t ] = i n i t _ L e g e n d r e ( rho_0 , c1 , c2 , v , t , t0 , x , x0 ,m, P )
3
4 % Gen era t e i n i t i a l f u n c t i o n f o r Hermi t e p o l y n o m i a l s and u n i f o r m l y d i s t r i b u t e d v i s c o s i t y
5
6 % I n d a t a :
7 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
8 % c1 , c2 � S c a l i n g p a r a m e t e r s o f u n i f o r m l y d i s t r i b u t e d v i s c o s i t y
9 % v � Ad v ect i v e v e l o c i t y

10 % t � Time
11 % t 0 � I n i t i a l t i me
12 % x � Vect o r o f s p a t i a l g r i d p o i n t s
13 % x0 � I n i t i a l p u l s e l o c a t i o n
14 % m � Number o f s p a t i a l g r i d p o i n t s
15 % P � Number o f gPC c o e f f i c i e n t s t o be computed
16
17 % Ou t d at a :
18 % u _ i n i t � gPC c o e f f i c i e n t s o f t h e i n i t i a l f u n c t i o n e v a l u a t e d a t t h e s p a t i a l g r i d p o i n t s
19
20
21 u _ i n i t = z e r o s (m�P , 1 ) ;
22
23 %Gen era t e n o r m a l i z e d Leg en d re p o l y n o m i a l s r e c u r s i v e l y
24
25 b a s i s _ f u n = c e l l ( 1 , P ) ;
26 b a s i s _ f u n {1} = @( x i ) x i . ^ 0 ;
27 b a s i s _ f u n {2} = @( x i ) s q r t ( 3 )�x i ;
28 f o r k =3 : P
29 b a s i s _ f u n{k} = @( x i ) ( s q r t (2�k�3) / ( k�1)�x i . �b a s i s _ f u n{k�1}( x i )�(k�2) / ( ( k�1)�s q r t (2�k�5) )�b a s i s _ f u n{k�2}( x i

) )�s q r t (2�k�1) ;
30 end
31
32
33 mu_fun = @( x i ) c1+c2�x i ;
34
35 f o r k =1 : P
36 f o r j =1 :m
37 i n t e g = @( x i ) 0 . 5 .�b a s i s _ f u n{k }( x i ) .�r h o _ 0 . / s q r t (4� p i�mu_fun ( x i ) �( t + t 0 ) ) .�exp(�(x ( j )�(x0+v�( t + t 0 ) ) ) .

^2 . / ( 4�mu_fun ( x i ) . �( t + t 0 ) ) ) ;
38 u _ i n i t ( ( j �1)�P+k , 1 ) = quad ( i n t e g , �1 ,1) ;
39 end
40 end

C.1.4.3 statistics_adv_diff_lognorm.m

1
2 f u n c t i o n [ u_mean u _ v ar ] = s t a t i s t i c s _ a d v _ d i f f _ l o g n o r m (m, t , x , x0 , c1 , c2 , rho_0 , t0 , v )
3
4 % Compute mean and v a r i a n c e f o r t h e s o l u t i o n assu mi n g l o g n o rmal v i s c o s i t y
5
6 % I n d a t a :
7 % m � Number o f s p a t i a l g r i d p o i n t s
8 % t � Time
9 % x � Vect o r o f s p a t i a l g r i d p o i n t s

10 % x0 � I n i t i a l p u l s e l o c a t i o n
11 % c1 , c2 � S c a l i n g p a r a m e t e r s o f l o g n o r mal v i s c o s i t y
12 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
13 % t 0 � I n i t i a l t i me
14 % v � Ad v ect i v e v e l o c i t y
15
16 % Ou t d at a :
17 % u_mean � Mean s o l u t i o n e v a l u a t e d on t h e s p a t i a l g r i d
18 % u _ v ar � Var i an ce o f t h e s o l u t i o n e v a l u a t e d on t h e s p a t i a l g r i d
19
20
21 mu0 = @( x i ) c1+c2�exp ( x i ) ; % S h i f t e d l o g n o rmal model f o r t h e v i s c o s i t y ( x i s t a n d a r d Gau ss i an )
22 t o l = 2 0 ; % T h r e s h o l d f o r r e p l a c e m e n t o f i n f i n i t e i n t e g r a t i o n l i m i t s
23
24 % For each s p a t i a l g r i d p o i n t , compute mean and v a r i a n c e
25 f o r j =1 :m
26 u = @( x i ) r h o _ 0 . / ( 4� p i�mu0 ( x i ) �( t + t 0 ) ) . ^0 . 5 . �exp (�(x ( j )�(x0+v�( t + t 0 ) ) ) . ^2 . / ( 4�mu0 ( x i ) �( t + t 0 ) ) ) ;
27 u_mean ( j , 1 ) = quad (@( x i ) exp(� x i . ^ 2 / 2 ) / s q r t (2� p i ) .�u ( x i ) ,� t o l , t o l ) ;
28 u _ v ar ( j , 1 ) = quad (@( x i ) exp(� x i . ^ 2 / 2 ) / s q r t (2� p i ) . �(u ( x i ) . ^2�u_mean ( j , 1 ) . ^2 ) ,� t o l , t o l ) ;
29 end
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C.1.4.4 statistics_adv_diff_uniform_mu.m

1
2 f u n c t i o n [ u_mean u _ v ar ] = s t a t i s t i c s _ a d v _ d i f f _ u n i f o r m _ m u (m, t , x , x0 , c1 , c2 , rho_0 , t0 , v )
3
4 % Compute mean and v a r i a n c e f o r t h e s o l u t i o n assu mi n g u n i f o r m l y d i s t r i b u t e d v i s c o s i t y
5
6 % I n d a t a :
7 % m � Number o f s p a t i a l g r i d p o i n t s
8 % t � Time
9 % x � Vect o r o f s p a t i a l g r i d p o i n t s

10 % x0 � I n i t i a l p u l s e l o c a t i o n
11 % c1 , c2 � S c a l i n g p a r a m e t e r s o f u n i f o r m l y d i s t r i b u t e d v i s c o s i t y
12 % rh o _ 0 � S o l u t i o n s c a l i n g p a r a m e t e r ( assumed d e t e r m i n i s t i c )
13 % t 0 � I n i t i a l t i me
14 % v � Ad v ect i v e v e l o c i t y
15
16 % Ou t d at a :
17 % u_mean � Mean s o l u t i o n e v a l u a t e d on t h e s p a t i a l g r i d
18 % u _ v ar � Var i an ce o f t h e s o l u t i o n e v a l u a t e d on t h e s p a t i a l g r i d
19
20
21 mu0 = @( x i ) c1+c2�x i ;
22
23 % For each s p a t i a l g r i d p o i n t , compute mean and v a r i a n c e
24 f o r j =1 :m
25 u = @( x i ) r h o _ 0 . / ( 4� p i�mu0 ( x i ) �( t + t 0 ) ) . ^0 . 5 . �exp (�(x ( j )�(x0+v�( t + t 0 ) ) ) . ^2 . / ( 4�mu0 ( x i ) �( t + t 0 ) ) ) ;
26 u_mean ( j , 1 ) = quad (@( x i ) 0 . 5�u ( x i ) , �1 ,1) ;
27 u _ v ar ( j , 1 ) = quad (@( x i ) 0 . 5 �(u ( x i ) . ^2�u_mean ( j , 1 ) . ^2 ) , �1 ,1) ;
28 end

C.2 Non-linear Transport

C.2.1 Main Code

C.2.1.1 burgers_main.m

1
2
3 % S t o c h a s t i c G a l e r k i n f o r m u l a t i o n o f B u rg er s ' e q u a t i o n , one s p a t i a l d i men s i o n
4 % F i n i t e d i f f e r e n c e d i s c r e t i z a t i o n i n sp ace ( summat ion by p a r t s + SAT) f o r SG
5 % Weak i m p o s i t i o n o f b o u n d ar y c o n d i t i o n s
6 % Runge�Ku t t a (4 t h o r d e r a c c u r a t e ) i n t i me
7 % The a s s i g n e d f o u r t h and seco n d o r d e r d i s s i p a t i o n o p e r a t o r s => one�s i d e d d i f f . o p .
8
9

10 c l e a r a l l ;
11
12 l e f t = 0 ; r i g h t = 1 ; % S p a t i a l end p o i n t s
13 p = 4 ;% Number o f p o l y n o mi a l ch ao s t e r ms ( o r d e r +1)
14 m = 1 0 0 ; % D i s c r e t i z a t i o n p o i n t s i n sp ace
15 T = 0 . 7 ; % End t i me o f s i m u l a t i o n
16 % S o l u t i o n p a r a m e t e r s
17 m e a n _ l e f t = 0 . 9 ;
18 mean _ r i g h t = �1 . 1 ;
19 s i g _ h _ l e f t = 0 . 3 ; % Assumed t o be p o s i t i v e f o r c o r r e c t a n a l y t i c a l s o l u t i o n
20 % Assume same s t a n d a r d d e v i a t i o n ev ery wh ere f o r co mp ar i so n wi t h a n a l y t i c a l
21 % s o l u t i o n
22 x0 = 0 . 5 ; % I n i t i a l l o c a t i o n o f shock , x0 i n [ l e f t , r i g h t ]
23
24
25 dx = ( r i g h t�l e f t ) / ( m�1) ;
26 d t = 0 . 0 5�dx ;
27
28 s i g _ h _ r i g h t = s i g _ h _ l e f t ;
29 s i g _ h = s i g _ h _ l e f t ;
30
31 x = l i n s p a c e ( l e f t , r i g h t ,m) ;
32
33 % A n a l y t i c a l s o l u t i o n o f t h e t r u n c a t e d problem f o r p =1 ,2 , e l s e t h e e x a c t
34 % c o e f f i c i e n t s o f t h e i n f i n t e e x p a n s i o n problem
35 i f p == 1
36 u _ r e f = e x a c t _ s o l u t i o n _ d e t e r m ( mean _ l ef t , mean _ r i g h t , T ,m, l e f t , r i g h t , x0 , x ) ;
37 e l s e i f p == 2
38 u _ r e f = e x a c t _ s o l u t i o n _ 2 x 2 ( mean _ l ef t , mean _ r i g h t , s i g _ h , T ,m, l e f t , r i g h t , x0 , x ) ;
39 e l s e
40 u _ r e f = e x a c t _ s o l u t i o n _ p _ i n f ( mean _ l ef t , mean _ r i g h t , s i g _ h , T , m, l e f t , r i g h t , x0 , x , p ) ;
41 end
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42
43
44
45 I_ p = eye ( p ) ;
46 I_m = eye (m) ;
47 o l d = 1 ;
48 new = 2 ;
49 u = z e r o s ( p�m, 2 ) ;
50 o r d e r = 4 ; % Ord er o f a c c u r a c y o f SBP o p e r a t o r s � SHOULD MATCH DISSIPATION OPERATORS
51
52 %Compute i n n e r t r i p l e p r o d u c t s
53 % Here we assume Gau ss i an d i s t r i b u t i o n o f t h e s t a t e s , which c a u s e s no
54 % problem i n t erms o f n u m e r i c a l s t a b i l i t y
55 [C] = Her mi t e_ ch ao s ( p�1) ;
56
57 %D i f f e r e n c e o p e r a t o r s (D1 1 s t d e r i v a t i v e )
58 [D1 D2 , BS , S , P ] = SB P_ o p er a t o r s (m, dx , o r d e r ) ;
59
60 % I n v e r t t h e norm m a t r i x P ( assu mi n g i t i s d i a g o n a l )
61 f o r j =1 :m
62 P_temp ( j , j ) = 1 / P ( j , j ) ;
63 end
64 P_ i n v= s p a r s e ( P_temp ) ;
65
66 kron_Dx = k ro n (D1 , I_ p ) ;
67
68 %I n i t i a l i z a t i o n
69 u ( : , o l d ) = i n i t i a l _ c o n d i t i o n s (m, p , C , x0 , mean _ l ef t , s i g _ h _ l e f t , mean _ r i g h t , s i g _ h _ r i g h t , l e f t , r i g h t ) ;
70
71 %Compute f o r c e t e rms
72 E_1 = s p a r s e ( z e r o s (m) ) ;
73 E_1 ( 1 , 1 ) = 1 ;
74 E_m = s p a r s e ( z e r o s (m) ) ;
75 E_m(m,m) =1 ;
76 [ S i g _ l e f t , S i g _ r i g h t ] = p e n a l t y ( p , u ( 1 : p , 1 ) , u ( p�(m�1)+1 : p�m, 1 ) ,C) ;
77 f o r c e _ l e f t = k ro n ( I_m , I_ p )�k r o n ( P_inv , I_ p )�k r o n ( E_1 , S i g _ l e f t ) ;
78 f o r c e _ r i g h t = k r o n ( I_m , I_ p )�k r o n ( P_inv , I_ p )�k ro n (E_m , S i g _ r i g h t ) ;
79
80 % Time d ep en d en t b o u n d ar y c o n d i t i o n s
81 t _ t o l = 1e �5; % T o l e r a n c e t o av o i d d i v i s i o n wi t h z e r o a t t =0
82 i f p == 1
83 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ d et er m ( mean _ l ef t , mean _ r i g h t , t _ t o l , x0 , l e f t , r i g h t ,m) ;
84 e l s e i f p == 2
85 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co nd _2x 2( mean _ l ef t , mean _ r i g h t , s i g _ h , t _ t o l , x0 , l e f t , r i g h t ,m) ;
86 e l s e
87 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ p _ i n f ( mean _ l ef t , mean _ r i g h t , s i g _ h , t _ t o l , x0 , l e f t , r i g h t , p ,m) ;
88 end
89
90 %I t e r a t e o v er t i me wi t h f o u r t h o r d e r Runge�Ku t t a
91 t =0 ;
92 wh i l e t <T
93 i f T�t < d t
94 d t = T�t ; % Make s u r e we end a t t =T
95 end
96 t = t + d t ;% Update t h e t i me
97
98 % Compute sy s t em e i g e n v a l u e s f o r d i s s i p a t i o n . May be r e p l a c e d by t h e
99 % a p p r o x i m a t e e x p r e s s i o n i n C h ap t er 6 .

100
101 max_ev = 0 ;
102 f o r i =0 : l e n g t h ( u ) / p�1
103 u _ p a r t = u ( p� i +1 : p�( i +1) , 1 ) ;
104 ei g _ t emp = max ( ab s ( e i g ( I_ p�A_matr ix ( u _ p ar t , p , C) ) ) ) ;
105 i f eig_temp >max_ev
106 max_ev = ei g _ t emp ;
107 end
108 end
109
110 % These d i s s i p a t i o n o p e r a t o r s a r e ch o sen f o r t h e 4 t h o r d e r o p e r a t o r s �

111 % need t o be a d a p t e d f o r d i f f e r e n t o r d e r o f a c c u r a c y
112
113 d i s s _ 2 n d _ o r d = d i s s i p a t i o n _ 2 n d _ d e r (m, p , P_inv , I_p ,2� max_ev / (6�dx ) , dx ) ;
114 d i s s _ 4 t h _ o r d = d i s s i p a t i o n _ 4 t h _ d e r (m, p , P_inv , I_p ,2� max_ev / (2 4�dx ) , dx ) ;
115
116 % Time�s t e p p i n g by 4 t h o r d e r Runge�Ku t t a
117
118 F1 = f l u x _ f u n c ( u ( : , o l d ) , p , C) ;
119 k1 = d t�(�kron_Dx�F1 +( d i s s _ 4 t h _ o r d + d i s s _ 2 n d _ o r d+ f o r c e _ l e f t + f o r c e _ r i g h t )�u ( : , o l d )�f o r c e _ l e f t�g _ l e f t�

f o r c e _ r i g h t�g _ r i g h t ) ;
120
121 F2 = f l u x _ f u n c ( u ( : , o l d ) +k1 / 2 , p , C) ;
122 k2 = d t�(�kron_Dx�F2 +( d i s s _ 4 t h _ o r d + d i s s _ 2 n d _ o r d+ f o r c e _ l e f t + f o r c e _ r i g h t ) �(u ( : , o l d ) +k1 / 2 )�f o r c e _ l e f t�g _ l e f t�

f o r c e _ r i g h t�g _ r i g h t ) ;
123
124 F3 = f l u x _ f u n c ( u ( : , o l d ) +k2 / 2 , p , C) ;
125 k3 = d t�(�kron_Dx�F3 +( d i s s _ 4 t h _ o r d + d i s s _ 2 n d _ o r d+ f o r c e _ l e f t + f o r c e _ r i g h t ) �(u ( : , o l d ) +k2 / 2 )�f o r c e _ l e f t�g _ l e f t�

f o r c e _ r i g h t�g _ r i g h t ) ;
126
127 F4 = f l u x _ f u n c ( u ( : , o l d ) +k3 , p , C) ;
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128 k4 = d t�(�kron_Dx�F4 +( d i s s _ 4 t h _ o r d + d i s s _ 2 n d _ o r d+ f o r c e _ l e f t + f o r c e _ r i g h t ) �(u ( : , o l d ) +k3 )�f o r c e _ l e f t�g _ l e f t�
f o r c e _ r i g h t�g _ r i g h t ) ;

129
130 u ( : , new ) = u ( : , o l d ) +1/6� ( k1+2�k2+2�k3+k4 ) ;
131 u ( : , o l d ) = u ( : , new ) ;
132
133 % Update p e n a l t i e s f o r i m p o s i t i o n o f b o u n d ar y c o n d i t i o n s
134 [ S i g _ l e f t , S i g _ r i g h t ] = p e n a l t y ( p , u ( 1 : p , 1 ) , u ( p�(m�1)+1 : p�m, 1 ) ,C) ;
135 f o r c e _ l e f t = k ro n ( I_m , I_ p )�k r o n ( P_inv , I_ p )�k r o n ( E_1 , S i g _ l e f t ) ;
136 f o r c e _ r i g h t = k ro n ( I_m , I_ p )�k r o n ( P_inv , I_ p )�k r o n (E_m , S i g _ r i g h t ) ;
137
138 % Update t h e t i me d ep en d en t b o u n d ar y c o n d i t i o n s
139
140 i f p == 1
141 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ d et er m ( mean _ l ef t , mean _ r i g h t , t , x0 , l e f t , r i g h t ,m) ;
142 e l s e i f p == 2
143 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co nd_ 2x2( mean _ l ef t , mean _ r i g h t , s i g _ h , t , x0 , l e f t , r i g h t ,m) ;
144 e l s e
145 [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ p _ i n f ( mean _ l ef t , mean _ r i g h t , s i g _ h , t , x0 , l e f t , r i g h t , p ,m) ;
146 end
147
148 % P l o t t h e c o e f f i c i e n t s
149
150 f o r k =1 : p
151 u _ p l o t ( : , k ) = u ( k : p : end , new ) ;
152 end
153 p l o t ( x , u _ p l o t , '�� ' ) ;
154 t i t l e ( [ ' gPC c o e f f i c i e n t s , t = ' n u m2 s t r ( t , '%. 2 f ' ) ] )
155 l e g _ s t r s = { } ;
156 f o r k =1 : p
157 l e g s t r s {k } = [ ' gPC c o e . ' n u m2 s t r ( k�1) ] ;
158 end
159 l e g e n d ( l e g s t r s ) ;
160 drawnow ;
161 end
162
163 u=u ( : , new ) ;
164
165 f o r i =1 :m
166 u _ v ar ( i , 1 ) = sum ( u ( ( i �1)�p +2 : i�p , o l d ) . ^2 ) ;
167 end
168
169
170 % P l o t t h e n u m e r i c a l and a n a l y t i c a l s o l u t i o n f o r t h e t r u n c a t e d 2 x2 problem
171
172 i f p == 2
173 s u b p l o t ( 1 , 2 , 1 ) ;
174 p l o t ( x , u ( 1 : p : end ) , '� ' , ' LineWidth ' , 2 , ' C o l o r ' , ' r ' ) ;
175 h o l d on ;
176 p l o t ( x , u _ r e f ( : , 1 ) , '�� ' , ' LineWidth ' , 2 , ' C o l o r ' , ' b ' )
177 l e g e n d ( ' Nu mer i ca l ' , ' A n a l y t i c a l , 2 x2 ' ) ;
178 t i t l e ( ' u_0 ' , ' f o n t s i z e ' ,1 4 , ' f o n t w e i g h t ' , ' b ' ) ;
179
180 s u b p l o t ( 1 , 2 , 2 ) ;
181 p l o t ( x , u ( 2 : p : ( m�1)�p +2) , '� ' , ' LineWidth ' , 2 , ' C o l o r ' , ' r ' ) ;
182 h o l d on ;
183 p l o t ( x , u _ r e f ( : , 2 ) , '�� ' , ' LineWidth ' , 2 , ' C o l o r ' , ' b ' )
184 l e g e n d ( ' Nu mer i ca l ' , ' A n a l y t i c a l , 2 x2 ' ) ;
185 t i t l e ( ' u_1 ' , ' f o n t s i z e ' ,1 4 , ' f o n t w e i g h t ' , ' b ' ) ;
186 end
187
188 % P l o t t h e n u m e r i c a l a p p r o x i m a t i o n o f o r d e r p and t h e a n a l y t i c a l
189 % c o e f f i c i e n t s
190
191 i f p ~= 2
192 f o r k =1 : p
193 f i g u r e ;
194 p l o t ( x , u ( k : p : end ) , '�r ' , x , u _ r e f ( : , k ) , '��b ' , ' LineWidth ' , 2 )
195 l e g e n d ( ' Nu mer i ca l ' , ' A n a l y t i c a l ' ) ;% , ' A n a l y t i c a l e x p e c t e d v al u e ' ) ;
196 t i t l e ( [ ' S o l u t i o n gPC c o e f f i c i e n t ' n u m2 s t r ( k�1) ] , ' f o n t s i z e ' ,1 4 , ' f o n t w e i g h t ' , ' b ' ) ;
197 end
198 end

C.2.1.2 Hermite_chaos.m

1
2 f u n c t i o n [C] = Her mi t e_ ch ao s ( n )
3
4 % Compute h e r m i t e ch ao s p a r a m e t e r s
5
6 % I n d a t a :
7 % n � Ord er o f gPC
8
9 % Ou t d at a :

10 % C � Th ree t erm i n n e r p r o d u c t s C( i , j , k ) = E [ P h i _ i P h i _ j Ph i _ k ]
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11
12
13 C = z e r o s ( n +1 , n +1 , n +1) ;
14 f o r i = 0 : n
15 f o r j = 0 : n
16 f o r k = 0 : n
17 s = ( i +k+ j ) / 2 ;
18 i f rem ( i +k+j , 2 ) == 1 | | i > s | | j > s | | k > s
19 C( i +1 , j +1 , k +1) = 0 ;
20 e l s e
21 C( i +1 , j +1 , k +1) = f a c t o r i a l ( i ) � f a c t o r i a l ( j ) . . .
22 � f a c t o r i a l ( k ) / ( ( f a c t o r i a l ( s�i ) � f a c t o r i a l ( s�j ) � f a c t o r i a l ( s�k ) ) � s q r t ( f a c t o r i a l ( i ) ) �

s q r t ( f a c t o r i a l ( j ) ) � s q r t ( f a c t o r i a l ( k ) ) ) ;
23 end
24 end
25 end
26 end
27 r e t u r n

C.2.1.3 A_matrix.m

1
2 f u n c t i o n [A] = A_matr ix ( u _ l o c , p , C)
3
4 % Compute t h e m a t r i x A( u ) o f t r i p l e i n n e r p r o d u c t s ,
5 % where A_{ i , j } = sum_{k =0}^{p} i n t u_k p s i _ i p s i _ j p s i _ k dP
6
7 % I n d a t a :
8 % u _ l o c � Vect o r o f gPC c o e f f i c i e n t s o f t h e arg u men t u
9 % p � Number o f gPC b a s i s f u n c t i o n s

10 % C � Preco mp u t ed i n n e r t r i p l e p r o d u c t s o f t h e b a s i s f u n c t i o n s p s i
11
12 % Ou t d at a :
13 % A � m a t r i x o f sums o f i n n e r p r o d u c t s
14
15
16 A = z e r o s ( p ) ;
17
18 f o r j =1 : p
19 A = A + C ( : , : , j )�u _ l o c ( j ) ;
20 end

C.2.2 Discretization Operators

C.2.2.1 SBP_operators.m

1
2 f u n c t i o n [ D1 D2 , BS , S ,H] = SB P_ o p er a t o r s ( n , dx , o r d e r )
3
4 % SBP o p e r a t o r s o f o r d e r s 2 , 4 , 6 and 8 f o r t h e f i r s t and seco n d d e r i v a t i v e .
5
6 % I n d a t a :
7 % n � Number o f s p a t i a l g r i d p t s
8 % dx � St ep s i z e
9 % o r d e r � Ord er o f a c c u r a c y ( o n l y f o r 2 , 4 , 6 , 8 )

10
11 % Ou t d at a :
12 % D1 � F i r s t d e r i v a t i v e o p e r a t o r
13 % D2 � Second d e r i v a t i v e o p e r a t o r (D = P^{�1}M)
14 % S � F i r s t d e r i v a t i v e o p e r a t o r on b o u n d a r i e s
15 % BS � The b o u n d ar y e l e m e n t s i n t h e en er g y e s t i m a t e
16 % H � The norm o p e r a t o r ( d en o t ed P i n some p a p e r s )
17
18
19 e = o n es ( n , 1 ) ;
20
21 i f o r d e r ==2
22
23 D1 = 1 / dx�s p d i a g s ([�1/2�e 0�e 1/2� e ] , �1:1 , n , n ) ;
24 D1 ( 1 , 1 ) = �1/dx ;
25 D1 ( 1 , 2 ) = 1 / dx ;
26 D1 ( 1 , 3 ) = 0 ;
27 D1 ( n , n ) = 1 / dx ;
28 D1 ( n , n�1) = �1/dx ;
29 D1 ( n , n�2) = 0 ;
30
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31 %%%%%%
32 D2 = 1 / ( dx ^2 )�s p d i a g s ([1� e �2�e 1�e ] , �1:1 , n , n ) ;
33 D2 ( 1 , 1 ) = 1 / ( dx ^2 ) ;
34 D2 ( 1 , 2 ) = �2/( dx ^2 ) ;
35 D2 ( 1 , 3 ) = 1 / ( dx ^2 ) ;
36 D2 ( n , n ) = 1 / ( dx ^2 ) ;
37 D2 ( n , n�1) = �2/( dx ^2 ) ;
38 D2 ( n , n�2) = 1 / ( dx ^2 ) ;
39
40
41 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
42 H( 1 , 1 ) = dx �1 / 2 ;
43 H( n , n ) = dx �1 / 2 ;
44
45 BS = ( 1 / dx )�s p d i a g s ( z e r o s ( s i z e ( e ) ) , 0 , n , n ) ;
46 BS ( 1 , 1 ) = 3 / 2 / dx ;
47 BS ( 1 , 2 ) = �2/dx ;
48 BS ( 1 , 3 ) = 1 / 2 / dx ;
49 BS( n , n ) = 3 / 2 / dx ;
50 BS( n , n�1) = �2/dx ;
51 BS( n , n�2) = 1 / 2 / dx ;
52
53 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
54 S ( 1 , 1 ) = �3/2/ dx ;
55 S ( 1 , 2 ) = 2 / dx ;
56 S ( 1 , 3 ) = �1/2/ dx ;
57
58 S ( n , n ) = 3 / 2 / dx ;
59 S ( n , n�1) = �2/dx ;
60 S ( n , n�2) = 1 / 2 / dx ;
61
62 e l s e i f o r d e r ==4
63
64 D1 = 1 / dx�s p d i a g s ( [1 / 1 2� e �2/3�e 0�e 2/3� e �1/12�e ] , �2:2 , n , n ) ;
65 D1 ( 1 , 1 ) = �24/17/ dx ;
66 D1 ( 1 , 2 ) = 5 9 / 3 4 / dx ;
67 D1 ( 1 , 3 ) = �4/17/ dx ;
68 D1 ( 1 , 4 ) = �3/34/ dx ;
69 D1 ( 1 , 5 ) = 0 ;
70 D1 ( 1 , 6 ) = 0 ;
71 D1 ( 2 , 1 ) = �1/2/ dx ;
72 D1 ( 2 , 2 ) = 0 ;
73 D1 ( 2 , 3 ) = 1 / 2 / dx ;
74 D1 ( 2 , 4 : 6 ) = 0 ;
75 D1 ( 3 , 1 ) = 4 / 4 3 / dx ;
76 D1 ( 3 , 2 ) = �59/86/ dx ;
77 D1 ( 3 , 3 ) = 0 ;
78 D1 ( 3 , 4 ) = 5 9 / 8 6 / dx ;
79 D1 ( 3 , 5 ) = �4/43/ dx ;
80 D1 ( 3 , 6 ) = 0 ;
81 D1 ( 4 , 1 ) = 3 / 9 8 / dx ;
82 D1 ( 4 , 2 ) = 0 ;
83 D1 ( 4 , 3 ) = �59/98/ dx ;
84 D1 ( 4 , 4 ) = 0 ;
85 D1 ( 4 , 5 ) = 3 2 / 4 9 / dx ;
86 D1 ( 4 , 6 ) = �4/49/ dx ;
87 D1 ( 4 , 7 ) = 0 ;
88 D1 ( n , n ) = �D1 ( 1 , 1 ) ;
89 D1 ( n , n�1) = �D1 ( 1 , 2 ) ;
90 D1 ( n , n�2) = �D1 ( 1 , 3 ) ;
91 D1 ( n , n�3) = �D1 ( 1 , 4 ) ;
92 D1 ( n , n�4) = �D1 ( 1 , 5 ) ;
93 D1 ( n , n�5) = �D1 ( 1 , 6 ) ;
94 D1 ( n�1,n ) = �D1 ( 2 , 1 ) ;
95 D1 ( n�1,n�1) = �D1 ( 2 , 2 ) ;
96 D1 ( n�1,n�2) = �D1 ( 2 , 3 ) ;
97 D1 ( n�1,n�3) = �D1 ( 2 , 4 ) ;
98 D1 ( n�1,n�4) = �D1 ( 2 , 5 ) ;
99 D1 ( n�1,n�5) = �D1 ( 2 , 6 ) ;

100 D1 ( n�2,n ) = �D1 ( 3 , 1 ) ;
101 D1 ( n�2,n�1) = �D1 ( 3 , 2 ) ;
102 D1 ( n�2,n�2) = �D1 ( 3 , 3 ) ;
103 D1 ( n�2,n�3) = �D1 ( 3 , 4 ) ;
104 D1 ( n�2,n�4) = �D1 ( 3 , 5 ) ;
105 D1 ( n�2,n�5) = �D1 ( 3 , 6 ) ;
106 D1 ( n�3,n ) = �D1 ( 4 , 1 ) ;
107 D1 ( n�3,n�1) = �D1 ( 4 , 2 ) ;
108 D1 ( n�3,n�2) = �D1 ( 4 , 3 ) ;
109 D1 ( n�3,n�3) = �D1 ( 4 , 4 ) ;
110 D1 ( n�3,n�4) = �D1 ( 4 , 5 ) ;
111 D1 ( n�3,n�5) = �D1 ( 4 , 6 ) ;
112
113
114 %%%%%%
115 D2 = 1 / ( dx ^2 )�s p d i a g s ([ �1/12�e 4/3�e �5/2�e 4/3�e �1/12�e ] , �2:2 , n , n ) ;
116 D2 ( 1 , 1 ) = 2 / ( dx ^2 ) ;
117 D2 ( 1 , 2 ) = �5/( dx ^2 ) ;
118 D2 ( 1 , 3 ) = 4 / ( dx ^2 ) ;
119 D2 ( 1 , 4 ) = �1/( dx ^2 ) ;



200 C Matlab Codes

120 D2 ( 2 , 1 ) = 1 / ( dx ^2 ) ;
121 D2 ( 2 , 2 ) = �2/( dx ^2 ) ;
122 D2 ( 2 , 3 ) = 1 / ( dx ^2 ) ;
123 D2 ( 2 , 4 ) = 0 ;
124 D2 ( 3 , 1 ) = �4/43/ ( dx ^2 ) ;
125 D2 ( 3 , 2 ) = 5 9 / 4 3 / ( dx ^2 ) ;
126 D2 ( 3 , 3 ) = �110/43/ (dx ^2 ) ;
127 D2 ( 3 , 4 ) = 5 9 / 4 3 / ( dx ^2 ) ;
128 D2 ( 3 , 5 ) = �4/43/ ( dx ^2 ) ;
129 D2 ( 4 , 1 ) = �1/49/ ( dx ^2 ) ;
130 D2 ( 4 , 2 ) = 0 ;
131 D2 ( 4 , 3 ) = 5 9 / 4 9 / ( dx ^2 ) ;
132 D2 ( 4 , 4 ) = �118/49/ (dx ^2 ) ;
133 D2 ( 4 , 5 ) = 6 4 / 4 9 / ( dx ^2 ) ;
134 D2 ( 4 , 6 ) = �4/49/ ( dx ^2 ) ;
135 D2 ( n , n ) = D2 ( 1 , 1 ) ;
136 D2 ( n , n�1) = D2 ( 1 , 2 ) ;
137 D2 ( n , n�2) = D2 ( 1 , 3 ) ;
138 D2 ( n , n�3) = D2 ( 1 , 4 ) ;
139 D2 ( n�1,n ) = D2 ( 2 , 1 ) ;
140 D2 ( n�1,n�1) = D2 ( 2 , 2 ) ;
141 D2 ( n�1,n�2) = D2 ( 2 , 3 ) ;
142 D2 ( n�1,n�3) = D2 ( 2 , 4 ) ;
143 D2 ( n�2,n ) = D2 ( 3 , 1 ) ;
144 D2 ( n�2,n�1) = D2 ( 3 , 2 ) ;
145 D2 ( n�2,n�2) = D2 ( 3 , 3 ) ;
146 D2 ( n�2,n�3) = D2 ( 3 , 4 ) ;
147 D2 ( n�2,n�4) = D2 ( 3 , 5 ) ;
148 D2 ( n�3,n ) = D2 ( 4 , 1 ) ;
149 D2 ( n�3,n�1) = D2 ( 4 , 2 ) ;
150 D2 ( n�3,n�2) = D2 ( 4 , 3 ) ;
151 D2 ( n�3,n�3) = D2 ( 4 , 4 ) ;
152 D2 ( n�3,n�4) = D2 ( 4 , 5 ) ;
153 D2 ( n�3,n�5) = D2 ( 4 , 6 ) ;
154
155 H = dx�s p d i a g s ( e , 0 , n , n ) ;
156 H( 1 , 1 ) = dx �1 7 / 4 8 ;
157 H( 2 , 2 ) = dx �5 9 / 4 8 ;
158 H( 3 , 3 ) = dx �4 3 / 4 8 ;
159 H( 4 , 4 ) = dx �4 9 / 4 8 ;
160 H( n , n ) = H( 1 , 1 ) ;
161 H( n�1,n�1) = H( 2 , 2 ) ;
162 H( n�2,n�2) = H( 3 , 3 ) ;
163 H( n�3,n�3) = H( 4 , 4 ) ;
164
165 S = ( 1 / dx )�s p d i a g s ( e , 0 , n , n ) ;
166 S ( 1 , 1 ) = �11/6/ dx ;
167 S ( 1 , 2 ) = 3 / dx ;
168 S ( 1 , 3 ) = �3/2/ dx ;
169 S ( 1 , 4 ) = 1 / 3 / dx ;
170 S ( n , n ) = 1 1 / 6 / dx ;
171 S ( n , n�1) = �3/dx ;
172 S ( n , n�2) = 3 / 2 / dx ;
173 S ( n , n�3) = �1/3/ dx ;
174
175 BS = ( 1 / dx )�s p d i a g s ( z e r o s ( s i z e ( e ) ) , 0 , n , n ) ;
176 BS ( 1 , 1 ) = 1 1 / 6 / dx ;
177 BS ( 1 , 2 ) = �3/dx ;
178 BS ( 1 , 3 ) = 3 / 2 / dx ;
179 BS ( 1 , 4 ) = �1/3/ dx ;
180 BS( n , n ) = 1 1 / 6 / dx ;
181 BS( n , n�1) = �3/dx ;
182 BS( n , n�2) = 3 / 2 / dx ;
183 BS( n , n�3) = �1/3/ dx ;
184
185 e l s e i f o r d e r ==6
186 e = o n es ( n , 1 ) ;
187 %%%%
188 D1 = ( 1 / ( dx ) )�s p d i a g s ([ �1/60�e 3/20� e �3/4�e 0�e 3/4� e �3/20�e 1/60� e ] , �3:3 , n , n ) ;
189
190 D1 ( 1 , 1 ) = �21600/13649/dx ;
191 D1 ( 1 , 2 ) = 1 0 4 0 0 9 / 5 4 5 9 6 / dx ;
192 D1 ( 1 , 3 ) = 3 0 4 4 3 / 8 1 8 9 4 / dx ;
193 D1 ( 1 , 4 ) = �33311/27298/dx ;
194 D1 ( 1 , 5 ) = 1 6 8 6 3 / 2 7 2 9 8 / dx ;
195 D1 ( 1 , 6 ) = �15025/163788/dx ;
196 D1 ( 1 , 7 ) = 0 ;
197 D1 ( 1 , 8 ) = 0 ;
198 D1 ( 2 , 1 ) = �104009/240260/dx ;
199 D1 ( 2 , 2 ) = 0 ;
200 D1 ( 2 , 3 ) = �311/72078/ dx ;
201 D1 ( 2 , 4 ) = 2 0 2 2 9 / 2 4 0 2 6 / dx ;
202 D1 ( 2 , 5 ) = �24337/48052/dx ;
203 D1 ( 2 , 6 ) = 3 6 6 6 1 / 3 6 0 3 9 0 / dx ;
204 D1 ( 2 , 7 ) = 0 ;
205 D1 ( 2 , 8 ) = 0 ;
206 D1 ( 3 , 1 ) = �30443/162660/dx ;
207 D1 ( 3 , 2 ) = 3 1 1 / 3 2 5 3 2 / dx ;
208 D1 ( 3 , 3 ) = 0 ;
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209 D1 ( 3 , 4 ) = �11155/16266/dx ;
210 D1 ( 3 , 5 ) = 4 1 2 8 7 / 3 2 5 3 2 / dx ;
211 D1 ( 3 , 6 ) = �21999/54220/dx ;
212 D1 ( 3 , 7 ) = 0 ;
213 D1 ( 3 , 8 ) = 0 ;
214 D1 ( 4 , 1 ) = 3 3 3 1 1 / 1 0 7 1 8 0 / dx ;
215 D1 ( 4 , 2 ) = �20229/21436/dx ;
216 D1 ( 4 , 3 ) = 4 8 5 / 1 3 9 8 /dx ;
217 D1 ( 4 , 4 ) = 0 ;
218 D1 ( 4 , 5 ) = 4 1 4 7 / 2 1 4 3 6 / dx ;
219 D1 ( 4 , 6 ) = 2 5 4 2 7 / 3 2 1 5 4 0 / dx ;
220 D1 ( 4 , 7 ) = 7 2 / 5 3 5 9 / dx ;
221 D1 ( 4 , 8 ) = 0 ;
222 D1 ( 5 , 1 ) = �16863/78770/dx ;
223 D1 ( 5 , 2 ) = 2 4 3 3 7 / 3 1 5 0 8 / dx ;
224 D1 ( 5 , 3 ) = �41287/47262/dx ;
225 D1 ( 5 , 4 ) = �4147/15754/dx ;
226 D1 ( 5 , 5 ) = 0 ;
227 D1 ( 5 , 6 ) = 3 4 2 5 2 3 / 4 7 2 6 2 0 / dx ;
228 D1 ( 5 , 7 ) = �1296/7877/ dx ;
229 D1 ( 5 , 8 ) = 1 4 4 / 7 8 7 7 /dx ;
230 D1 ( 5 , 9 ) = 0 ;
231 D1 ( 6 , 1 ) = 1 5 0 2 5 / 5 2 5 6 1 2 / dx ;
232 D1 ( 6 , 2 ) = �36661/262806/dx ;
233 D1 ( 6 , 3 ) = 2 1 9 9 9 / 8 7 6 0 2 / dx ;
234 D1 ( 6 , 4 ) = �25427/262806/dx ;
235 D1 ( 6 , 5 ) = �342523/525612/dx ;
236 D1 ( 6 , 6 ) = 0 ;
237 D1 ( 6 , 7 ) = 3 2 4 0 0 / 4 3 8 0 1 / dx ;
238 D1 ( 6 , 8 ) = �6480/43801/dx ;
239 D1 ( 6 , 9 ) = 7 2 0 / 4 3 8 0 1 / dx ;
240 D1 ( 6 , 1 0 ) = 0 ;
241 D1 ( n , n ) = �D1 ( 1 , 1 ) ;
242 D1 ( n , n�1) = �D1 ( 1 , 2 ) ;
243 D1 ( n , n�2) = �D1 ( 1 , 3 ) ;
244 D1 ( n , n�3) = �D1 ( 1 , 4 ) ;
245 D1 ( n , n�4) = �D1 ( 1 , 5 ) ;
246 D1 ( n , n�5) = �D1 ( 1 , 6 ) ;
247 D1 ( n , n�6) = �D1 ( 1 , 7 ) ;
248 D1 ( n , n�7) = �D1 ( 1 , 8 ) ;
249 D1 ( n�1,n ) = �D1 ( 2 , 1 ) ;
250 D1 ( n�1,n�1) = �D1 ( 2 , 2 ) ;
251 D1 ( n�1,n�2) = �D1 ( 2 , 3 ) ;
252 D1 ( n�1,n�3) = �D1 ( 2 , 4 ) ;
253 D1 ( n�1,n�4) = �D1 ( 2 , 5 ) ;
254 D1 ( n�1,n�5) = �D1 ( 2 , 6 ) ;
255 D1 ( n�1,n�6) = �D1 ( 2 , 7 ) ;
256 D1 ( n�1,n�7) = �D1 ( 2 , 8 ) ;
257 D1 ( n�2,n ) = �D1 ( 3 , 1 ) ;
258 D1 ( n�2,n�1) = �D1 ( 3 , 2 ) ;
259 D1 ( n�2,n�2) = �D1 ( 3 , 3 ) ;
260 D1 ( n�2,n�3) = �D1 ( 3 , 4 ) ;
261 D1 ( n�2,n�4) = �D1 ( 3 , 5 ) ;
262 D1 ( n�2,n�5) = �D1 ( 3 , 6 ) ;
263 D1 ( n�2,n�6) = �D1 ( 3 , 7 ) ;
264 D1 ( n�2,n�7) = �D1 ( 3 , 8 ) ;
265 D1 ( n�3,n ) = �D1 ( 4 , 1 ) ;
266 D1 ( n�3,n�1) = �D1 ( 4 , 2 ) ;
267 D1 ( n�3,n�2) = �D1 ( 4 , 3 ) ;
268 D1 ( n�3,n�3) = �D1 ( 4 , 4 ) ;
269 D1 ( n�3,n�4) = �D1 ( 4 , 5 ) ;
270 D1 ( n�3,n�5) = �D1 ( 4 , 6 ) ;
271 D1 ( n�3,n�6) = �D1 ( 4 , 7 ) ;
272 D1 ( n�3,n�7) = �D1 ( 4 , 8 ) ;
273 D1 ( n�4,n ) = �D1 ( 5 , 1 ) ;
274 D1 ( n�4,n�1) = �D1 ( 5 , 2 ) ;
275 D1 ( n�4,n�2) = �D1 ( 5 , 3 ) ;
276 D1 ( n�4,n�3) = �D1 ( 5 , 4 ) ;
277 D1 ( n�4,n�4) = �D1 ( 5 , 5 ) ;
278 D1 ( n�4,n�5) = �D1 ( 5 , 6 ) ;
279 D1 ( n�4,n�6) = �D1 ( 5 , 7 ) ;
280 D1 ( n�4,n�7) = �D1 ( 5 , 8 ) ;
281 D1 ( n�4,n�8) = �D1 ( 5 , 9 ) ;
282 D1 ( n�5,n ) = �D1 ( 6 , 1 ) ;
283 D1 ( n�5,n�1) = �D1 ( 6 , 2 ) ;
284 D1 ( n�5,n�2) = �D1 ( 6 , 3 ) ;
285 D1 ( n�5,n�3) = �D1 ( 6 , 4 ) ;
286 D1 ( n�5,n�4) = �D1 ( 6 , 5 ) ;
287 D1 ( n�5,n�5) = �D1 ( 6 , 6 ) ;
288 D1 ( n�5,n�6) = �D1 ( 6 , 7 ) ;
289 D1 ( n�5,n�7) = �D1 ( 6 , 8 ) ;
290 D1 ( n�5,n�8) = �D1 ( 6 , 9 ) ;
291 D1 ( n�5,n�9) = �D1 ( 6 , 1 0 ) ;
292
293 %%%%
294 D2 = ( 1 / ( dx ^2 ) )�s p d i a g s ( [1 / 9 0� e �3/20�e 3/2� e �49/18�e 3/2�e �3/20�e 1/90� e ] , �3:3 , n , n ) ;
295
296 D2 ( 1 , 1 ) = 1 1 4 1 7 0 / 4 0 9 4 7 / (dx ^2 ) ;
297 D2 ( 1 , 2 ) = �438107/54596/(dx ^2 ) ;
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298 D2 ( 1 , 3 ) = 3 3 6 4 0 9 / 4 0 9 4 7 / (dx ^2 ) ;
299 D2 ( 1 , 4 ) = �276997/81894/(dx ^2 ) ;
300 D2 ( 1 , 5 ) = 3 7 4 7 / 1 3 6 4 9 / (dx ^2 ) ;
301 D2 ( 1 , 6 ) = 2 1 0 3 5 / 1 6 3 7 8 8 / (dx ^2 ) ;
302 D2 ( 1 , 7 ) = 0 ;
303 D2 ( 1 , 8 ) = 0 ;
304 D2 ( 2 , 1 ) = 6 1 7 3 / 5 8 6 0 / (dx ^2 ) ;
305 D2 ( 2 , 2 ) = �2066/879/ (dx ^2 ) ;
306 D2 ( 2 , 3 ) = 3 2 8 3 / 1 7 5 8 / (dx ^2 ) ;
307 D2 ( 2 , 4 ) = �303/293/ (dx ^2 ) ;
308 D2 ( 2 , 5 ) = 2 1 1 1 / 3 5 1 6 / (dx ^2 ) ;
309 D2 ( 2 , 6 ) = �601/4395/(dx ^2 ) ;
310 D2 ( 2 , 7 ) = 0 ;
311 D2 ( 2 , 8 ) = 0 ;
312 D2 ( 3 , 1 ) = �52391/81330/(dx ^2 ) ;
313 D2 ( 3 , 2 ) = 1 3 4 6 0 3 / 3 2 5 3 2 / (dx ^2 ) ;
314 D2 ( 3 , 3 ) = �21982/2711/(dx ^2 ) ;
315 D2 ( 3 , 4 ) = 1 1 2 9 1 5 / 1 6 2 6 6 / (dx ^2 ) ;
316 D2 ( 3 , 5 ) = �46969/16266/(dx ^2 ) ;
317 D2 ( 3 , 6 ) = 3 0 4 0 9 / 5 4 2 2 0 / (dx ^2 ) ;
318 D2 ( 3 , 7 ) = 0 ;
319 D2 ( 3 , 8 ) = 0 ;
320 D2 ( 4 , 1 ) = 6 8 6 0 3 / 3 2 1 5 4 0 / (dx ^2 ) ;
321 D2 ( 4 , 2 ) = �12423/10718/(dx ^2 ) ;
322 D2 ( 4 , 3 ) = 1 1 2 9 1 5 / 3 2 1 5 4 / (dx ^2 ) ;
323 D2 ( 4 , 4 ) = �75934/16077/(dx ^2 ) ;
324 D2 ( 4 , 5 ) = 5 3 3 6 9 / 2 1 4 3 6 / (dx ^2 ) ;
325 D2 ( 4 , 6 ) = �54899/160770/(dx ^2 ) ;
326 D2 ( 4 , 7 ) = 4 8 / 5 3 5 9 / ( dx ^2 ) ;
327 D2 ( 4 , 8 ) = 0 ;
328 D2 ( 5 , 1 ) = �7053/39385/(dx ^2 ) ;
329 D2 ( 5 , 2 ) = 8 6 5 5 1 / 9 4 5 2 4 / (dx ^2 ) ;
330 D2 ( 5 , 3 ) = �46969/23631/(dx ^2 ) ;
331 D2 ( 5 , 4 ) = 5 3 3 6 9 / 1 5 7 5 4 / (dx ^2 ) ;
332 D2 ( 5 , 5 ) = �87904/23631/(dx ^2 ) ;
333 D2 ( 5 , 6 ) = 8 2 0 2 7 1 / 4 7 2 6 2 0 / ( dx ^2 ) ;
334 D2 ( 5 , 7 ) = �1296/7877/(dx ^2 ) ;
335 D2 ( 5 , 8 ) = 9 6 / 7 8 7 7 / ( dx ^2 ) ;
336 D2 ( 5 , 9 ) = 0 ;
337 D2 ( 6 , 1 ) = 2 1 0 3 5 / 5 2 5 6 1 2 / (dx ^2 ) ;
338 D2 ( 6 , 2 ) = �24641/131403/(dx ^2 ) ;
339 D2 ( 6 , 3 ) = 3 0 4 0 9 / 8 7 6 0 2 / (dx ^2 ) ;
340 D2 ( 6 , 4 ) = �54899/131403/(dx ^2 ) ;
341 D2 ( 6 , 5 ) = 8 2 0 2 7 1 / 5 2 5 6 1 2 / ( dx ^2 ) ;
342 D2 ( 6 , 6 ) = �117600/43801/(dx ^2 ) ;
343 D2 ( 6 , 7 ) = 6 4 8 0 0 / 4 3 8 0 1 / (dx ^2 ) ;
344 D2 ( 6 , 8 ) = �6480/43801/(dx ^2 ) ;
345 D2 ( 6 , 9 ) = 4 8 0 / 4 3 8 0 1 / (dx ^2 ) ;
346 D2 ( 6 , 1 0 ) = 0 ;
347 D2 ( n , n ) = D2 ( 1 , 1 ) ;
348 D2 ( n , n�1) = D2 ( 1 , 2 ) ;
349 D2 ( n , n�2) = D2 ( 1 , 3 ) ;
350 D2 ( n , n�3) = D2 ( 1 , 4 ) ;
351 D2 ( n , n�4) = D2 ( 1 , 5 ) ;
352 D2 ( n , n�5) = D2 ( 1 , 6 ) ;
353 D2 ( n , n�6) = D2 ( 1 , 7 ) ;
354 D2 ( n , n�7) = D2 ( 1 , 8 ) ;
355 D2 ( n�1,n ) = D2 ( 2 , 1 ) ;
356 D2 ( n�1,n�1) = D2 ( 2 , 2 ) ;
357 D2 ( n�1,n�2) = D2 ( 2 , 3 ) ;
358 D2 ( n�1,n�3) = D2 ( 2 , 4 ) ;
359 D2 ( n�1,n�4) = D2 ( 2 , 5 ) ;
360 D2 ( n�1,n�5) = D2 ( 2 , 6 ) ;
361 D2 ( n�1,n�6) = D2 ( 2 , 7 ) ;
362 D2 ( n�1,n�7) = D2 ( 2 , 8 ) ;
363 D2 ( n�2,n ) = D2 ( 3 , 1 ) ;
364 D2 ( n�2,n�1) = D2 ( 3 , 2 ) ;
365 D2 ( n�2,n�2) = D2 ( 3 , 3 ) ;
366 D2 ( n�2,n�3) = D2 ( 3 , 4 ) ;
367 D2 ( n�2,n�4) = D2 ( 3 , 5 ) ;
368 D2 ( n�2,n�5) = D2 ( 3 , 6 ) ;
369 D2 ( n�2,n�6) = D2 ( 3 , 7 ) ;
370 D2 ( n�2,n�7) = D2 ( 3 , 8 ) ;
371 D2 ( n�3,n ) = D2 ( 4 , 1 ) ;
372 D2 ( n�3,n�1) = D2 ( 4 , 2 ) ;
373 D2 ( n�3,n�2) = D2 ( 4 , 3 ) ;
374 D2 ( n�3,n�3) = D2 ( 4 , 4 ) ;
375 D2 ( n�3,n�4) = D2 ( 4 , 5 ) ;
376 D2 ( n�3,n�5) = D2 ( 4 , 6 ) ;
377 D2 ( n�3,n�6) = D2 ( 4 , 7 ) ;
378 D2 ( n�3,n�7) = D2 ( 4 , 8 ) ;
379 D2 ( n�4,n ) = D2 ( 5 , 1 ) ;
380 D2 ( n�4,n�1) = D2 ( 5 , 2 ) ;
381 D2 ( n�4,n�2) = D2 ( 5 , 3 ) ;
382 D2 ( n�4,n�3) = D2 ( 5 , 4 ) ;
383 D2 ( n�4,n�4) = D2 ( 5 , 5 ) ;
384 D2 ( n�4,n�5) = D2 ( 5 , 6 ) ;
385 D2 ( n�4,n�6) = D2 ( 5 , 7 ) ;
386 D2 ( n�4,n�7) = D2 ( 5 , 8 ) ;
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387 D2 ( n�4,n�8) = D2 ( 5 , 9 ) ;
388 D2 ( n�5,n ) = D2 ( 6 , 1 ) ;
389 D2 ( n�5,n�1) = D2 ( 6 , 2 ) ;
390 D2 ( n�5,n�2) = D2 ( 6 , 3 ) ;
391 D2 ( n�5,n�3) = D2 ( 6 , 4 ) ;
392 D2 ( n�5,n�4) = D2 ( 6 , 5 ) ;
393 D2 ( n�5,n�5) = D2 ( 6 , 6 ) ;
394 D2 ( n�5,n�6) = D2 ( 6 , 7 ) ;
395 D2 ( n�5,n�7) = D2 ( 6 , 8 ) ;
396 D2 ( n�5,n�8) = D2 ( 6 , 9 ) ;
397 D2 ( n�5,n�9) = D2 ( 6 , 1 0 ) ;
398
399 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
400
401 H( 1 , 1 ) = dx �13649/43200;
402 H( 2 , 2 ) = dx �12013/8640;
403 H( 3 , 3 ) = dx �2 7 1 1 / 4 3 20;
404 H( 4 , 4 ) = dx �5 3 5 9 / 4 3 20;
405 H( 5 , 5 ) = dx �7 8 7 7 / 8 6 40;
406 H( 6 , 6 ) = dx �43801/43200;
407 H( n , n ) = H( 1 , 1 ) ;
408 H( n�1,n�1) = H( 2 , 2 ) ;
409 H( n�2,n�2) = H( 3 , 3 ) ;
410 H( n�3,n�3) = H( 4 , 4 ) ;
411 H( n�4,n�4) = H( 5 , 5 ) ;
412 H( n�5,n�5) = H( 6 , 6 ) ;
413
414 BS = ( 1 / dx )�s p d i a g s ( [ z e r o s ( s i z e ( e ) ) ] , 0 , n , n ) ;
415
416 BS ( 1 , 1 ) = 2 5 / 1 2 / dx ;
417 BS ( 1 , 2 ) = �4/dx ;
418 BS ( 1 , 3 ) = 3 / dx ;
419 BS ( 1 , 4 ) = �4/3/ dx ;
420 BS ( 1 , 5 ) = 1 / 4 / dx ;
421 BS( n , n ) = BS ( 1 , 1 ) ;
422 BS( n , n�1) = BS ( 1 , 2 ) ;
423 BS( n , n�2) = BS ( 1 , 3 ) ;
424 BS( n , n�3) = BS ( 1 , 4 ) ;
425 BS( n , n�4) = BS ( 1 , 5 ) ;
426
427 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
428
429 S ( 1 , 1 ) = �25/12/ dx ;
430 S ( 1 , 2 ) = 4 / dx ;
431 S ( 1 , 3 ) = �3/dx ;
432 S ( 1 , 4 ) = 4 / 3 / dx ;
433 S ( 1 , 5 ) = �1/4/ dx ;
434 S ( n , n ) = BS ( 1 , 1 ) ;
435 S ( n , n�1) = BS ( 1 , 2 ) ;
436 S ( n , n�2) = BS ( 1 , 3 ) ;
437 S ( n , n�3) = BS ( 1 , 4 ) ;
438 S ( n , n�4) = BS ( 1 , 5 ) ;
439 e l s e i f o r d e r ==8
440 e = o n es ( n , 1 ) ;
441
442 D = ( 1 / ( dx ^2 ) )�s p d i a g s ([ �1/560�e 8/315� e �1/5�e 8/5� e �205/72� e 8/5�e �1/5�e 8/315� e �1/560�e ] , �4:4 , n , n ) ;
443 % e i g h t h o r d e r s t a n d a r d c e n t r a l s t e n c i l
444
445 D( 1 , 1 ) = 4 8 7 0 3 8 2 9 9 4 7 9 9 / 1 3 5 89 7 68 68 2 90 /(dx ^2 ) ;
446 D( 1 , 2 ) = �893640087518/75498714905/(dx ^2 ) ;
447 D( 1 , 3 ) = 9 2 6 5 9 4 8 2 5 1 1 9 / 6 0 3 9 8 97 1 9 24 /(dx ^2 ) ;
448 D( 1 , 4 ) = �1315109406200/135897686829/(dx ^2 ) ;
449 D( 1 , 5 ) = 3 9 1 2 6 9 8 3 2 7 2 / 1 5 0 9 9 7 4 2 9 81 /(dx ^2 ) ;
450 D( 1 , 6 ) = 1 2 3 4 4 4 9 1 3 4 2 / 7 5 4 9 8 7 1 4 9 05 /(dx ^2 ) ;
451 D( 1 , 7 ) = �451560522577/2717953736580/(dx ^2 ) ;
452 D( 1 , 8 ) = 0 ;
453 D( 1 , 9 ) = 0 ;
454 D( 1 , 1 0 ) = 0 ;
455 D( 1 , 1 1 ) = 0 ;
456 D( 1 , 1 2 ) = 0 ;
457 D( 2 , 1 ) = 3 3 3 8 0 6 0 1 2 1 9 4 / 3 9 0 6 19 1 53 8 55 /(dx ^2 ) ;
458 D( 2 , 2 ) = �154646272029/111605472530/(dx ^2 ) ;
459 D( 2 , 3 ) = 1 1 6 8 3 3 8 0 4 0 / 3 3 4 8 1 6 4 1 7 5 9 / (dx ^2 ) ;
460 D( 2 , 4 ) = 8 2 6 9 9 1 1 2 5 0 1 / 1 3 3 9 2 6 56 7 0 36 /(dx ^2 ) ;
461 D( 2 , 5 ) = �171562838/11160547253/(dx ^2 ) ;
462 D( 2 , 6 ) = �28244698346/167408208795/(dx ^2 ) ;
463 D( 2 , 7 ) = 1 1 9 0 4 1 2 2 5 7 6 / 1 6 7 4 0 8 20 8 7 95 /(dx ^2 ) ;
464 D( 2 , 8 ) = �2598164715/312495323084/(dx ^2 ) ;
465 D( 2 , 9 ) = 0 ;
466 D( 2 , 1 0 ) = 0 ;
467 D( 2 , 1 1 ) = 0 ;
468 D( 2 , 1 2 ) = 0 ;
469 D( 3 , 1 ) = 7 8 3 8 9 8 4 0 9 5 / 5 2 7 3 1 0 2 9 9 8 8 / (dx ^2 ) ;
470 D( 3 , 2 ) = 1 1 6 8 3 3 8 0 4 0 / 5 6 4 9 7 5 3 2 1 3 / (dx ^2 ) ;
471 D( 3 , 3 ) = �88747895/144865467/(dx ^2 ) ;
472 D( 3 , 4 ) = 4 2 3 5 8 7 2 3 1 / 6 2 7 7 5 0 3 5 7 / (dx ^2 ) ;
473 D( 3 , 5 ) = �43205598281/22599012852/(dx ^2 ) ;
474 D( 3 , 6 ) = 4 8 7 6 3 7 8 5 6 2 / 1 8 8 3 2 5 1 0 7 1 / (dx ^2 ) ;
475 D( 3 , 7 ) = �5124426509/3766502142/(dx ^2 ) ;
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476 D( 3 , 8 ) = 1 0 4 9 6 9 0 0 9 6 5 / 3 9 5 4 8 2 7 2 4 91 /(dx ^2 ) ;
477 D( 3 , 9 ) = 0 ;
478 D( 3 , 1 0 ) = 0 ;
479 D( 3 , 1 1 ) = 0 ;
480 D( 3 , 1 2 ) = 0 ;
481 D( 4 , 1 ) = �94978241528/828644350023/(dx ^2 ) ;
482 D( 4 , 2 ) = 8 2 6 9 9 1 1 2 5 0 1 / 1 5 7 8 3 7 01 9 0 52 /(dx ^2 ) ;
483 D( 4 , 3 ) = 1 2 7 0 7 6 1 6 9 3 / 1 3 1 5 3 0 8 4 9 2 1 / (dx ^2 ) ;
484 D( 4 , 4 ) = �167389605005/118377764289/(dx ^2 ) ;
485 D( 4 , 5 ) = 4 8 2 4 2 5 6 0 2 1 4 / 3 9 4 5 9 2 5 4 7 63 /(dx ^2 ) ;
486 D( 4 , 6 ) = �31673996013/52612339684/(dx ^2 ) ;
487 D( 4 , 7 ) = 4 3 5 5 6 3 1 9 2 4 1 / 1 1 8 3 7 7 76 4 2 89 /(dx ^2 ) ;
488 D( 4 , 8 ) = �44430275135/552429566682/(dx ^2 ) ;
489 D( 4 , 9 ) = 0 ;
490 D( 4 , 1 0 ) = 0 ;
491 D( 4 , 1 1 ) = 0 ;
492 D( 4 , 1 2 ) = 0 ;
493 D( 5 , 1 ) = 1 4 5 5 0 6 7 8 1 6 / 2 1 1 3 2 5 2 8 4 3 1 / (dx ^2 ) ;
494 D( 5 , 2 ) = �171562838/3018932633/(dx ^2 ) ;
495 D( 5 , 3 ) = �43205598281/36227191596/(dx ^2 ) ;
496 D( 5 , 4 ) = 4 8 2 4 2 5 6 0 2 1 4 / 9 0 5 6 7 9 7 8 9 9 / (dx ^2 ) ;
497 D( 5 , 5 ) = �52276055645/6037865266/(dx ^2 ) ;
498 D( 5 , 6 ) = 5 7 5 2 1 5 8 7 2 3 8 / 9 0 5 6 7 9 7 8 9 9 / (dx ^2 ) ;
499 D( 5 , 7 ) = �80321706377/36227191596/(dx ^2 ) ;
500 D( 5 , 8 ) = 8 0 7 8 0 8 7 1 5 8 / 2 1 1 3 2 5 2 8 4 3 1 / (dx ^2 ) ;
501 D( 5 , 9 ) = �1296/299527/(dx ^2 ) ;
502 D( 5 , 1 0 ) = 0 ;
503 D( 5 , 1 1 ) = 0 ;
504 D( 5 , 1 2 ) = 0 ;
505 D( 6 , 1 ) = 1 0 8 8 1 5 0 4 3 3 4 / 3 2 7 3 2 1 11 8 8 45 /(dx ^2 ) ;
506 D( 6 , 2 ) = �28244698346/140280479505/(dx ^2 ) ;
507 D( 6 , 3 ) = 4 8 7 6 3 7 8 5 6 2 / 9 3 5 2 0 3 1 9 6 7 / (dx ^2 ) ;
508 D( 6 , 4 ) = �10557998671/12469375956/(dx ^2 ) ;
509 D( 6 , 5 ) = 5 7 5 2 1 5 8 7 2 3 8 / 2 8 0 5 6 0 9 5 9 01 /(dx ^2 ) ;
510 D( 6 , 6 ) = �278531401019/93520319670/(dx ^2 ) ;
511 D( 6 , 7 ) = 7 3 7 9 0 1 3 0 0 0 2 / 4 6 7 6 0 1 5 9 8 35 /(dx ^2 ) ;
512 D( 6 , 8 ) = �137529995233/785570685228/(dx ^2 ) ;
513 D( 6 , 9 ) = 2 0 4 8 / 1 0 3 0 9 7 / (dx ^2 ) ;
514 D( 6 , 1 0 ) = �144/103097/(dx ^2 ) ;
515 D( 6 , 1 1 ) = 0 ;
516 D( 6 , 1 2 ) = 0 ;
517 D( 7 , 1 ) = �135555328849/8509847458140/(dx ^2 ) ;
518 D( 7 , 2 ) = 1 1 9 0 4 1 2 2 5 7 6 / 1 0 1 3 0 7 70 7 8 35 /(dx ^2 ) ;
519 D( 7 , 3 ) = �5124426509/13507694378/(dx ^2 ) ;
520 D( 7 , 4 ) = 4 3 5 5 6 3 1 9 2 4 1 / 6 0 7 8 4 6 2 4 7 01 /(dx ^2 ) ;
521 D( 7 , 5 ) = �80321706377/81046166268/(dx ^2 ) ;
522 D( 7 , 6 ) = 7 3 7 9 0 1 3 0 0 0 2 / 3 3 7 6 9 2 3 5 9 45 /(dx ^2 ) ;
523 D( 7 , 7 ) = �950494905688/303923123505/(dx ^2 ) ;
524 D( 7 , 8 ) = 2 3 9 0 7 3 0 1 8 6 7 3 / 1 4 1 8 30 7 90 9 69 /(dx ^2 ) ;
525 D( 7 , 9 ) = �145152/670091/(dx ^2 ) ;
526 D( 7 , 1 0 ) = 1 8 4 3 2 / 6 7 0 0 9 1 / (dx ^2 ) ;
527 D( 7 , 1 1 ) = �1296/670091/(dx ^2 ) ;
528 D( 7 , 1 2 ) = 0 ;
529 D( 8 , 1 ) = 0 ;
530 D( 8 , 2 ) = �2598164715/206729925524/(dx ^2 ) ;
531 D( 8 , 3 ) = 1 0 4 9 6 9 0 0 9 6 5 / 1 5 5 0 4 7 44 4 1 43 /(dx ^2 ) ;
532 D( 8 , 4 ) = �44430275135/310094888286/(dx ^2 ) ;
533 D( 8 , 5 ) = 4 2 5 1 6 2 4 8 2 / 2 7 2 0 1 3 0 5 9 9 / (dx ^2 ) ;
534 D( 8 , 6 ) = �137529995233/620189776572/(dx ^2 ) ;
535 D( 8 , 7 ) = 2 3 9 0 7 3 0 1 8 6 7 3 / 1 5 5 0 47 4 44 1 43 /(dx ^2 ) ;
536 D( 8 , 8 ) = �144648000000/51682481381/(dx ^2 ) ;
537 D( 8 , 9 ) = 8 1 2 8 5 1 2 / 5 1 2 7 7 3 9 / ( dx ^2 ) ;
538 D( 8 , 1 0 ) = �1016064/5127739/(dx ^2 ) ;
539 D( 8 , 1 1 ) = 1 2 9 0 2 4 / 5 1 2 7 7 3 9 / ( dx ^2 ) ;
540 D( 8 , 1 2 ) = �9072/5127739/(dx ^2 ) ;
541
542 D( n , n ) = D( 1 , 1 ) ;
543 D( n , n�1) = D( 1 , 2 ) ;
544 D( n , n�2) = D( 1 , 3 ) ;
545 D( n , n�3) = D( 1 , 4 ) ;
546 D( n , n�4) = D( 1 , 5 ) ;
547 D( n , n�5) = D( 1 , 6 ) ;
548 D( n , n�6) = D( 1 , 7 ) ;
549 D( n , n�7) = D( 1 , 8 ) ;
550 D( n , n�8) = D( 1 , 9 ) ;
551 D( n , n�9) = D( 1 , 1 0 ) ;
552 D( n , n�10) = D( 1 , 1 1 ) ;
553 D( n , n�11) = D( 1 , 1 2 ) ;
554 D( n�1,n ) = D( 2 , 1 ) ;
555 D( n�1,n�1) = D( 2 , 2 ) ;
556 D( n�1,n�2) = D( 2 , 3 ) ;
557 D( n�1,n�3) = D( 2 , 4 ) ;
558 D( n�1,n�4) = D( 2 , 5 ) ;
559 D( n�1,n�5) = D( 2 , 6 ) ;
560 D( n�1,n�6) = D( 2 , 7 ) ;
561 D( n�1,n�7) = D( 2 , 8 ) ;
562 D( n�1,n�8) = D( 2 , 9 ) ;
563 D( n�1,n�9) = D( 2 , 1 0 ) ;
564 D( n�1,n�10) = D( 2 , 1 1 ) ;
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565 D( n�1,n�11) = D( 2 , 1 2 ) ;
566 D( n�2,n ) = D( 3 , 1 ) ;
567 D( n�2,n�1) = D( 3 , 2 ) ;
568 D( n�2,n�2) = D( 3 , 3 ) ;
569 D( n�2,n�3) = D( 3 , 4 ) ;
570 D( n�2,n�4) = D( 3 , 5 ) ;
571 D( n�2,n�5) = D( 3 , 6 ) ;
572 D( n�2,n�6) = D( 3 , 7 ) ;
573 D( n�2,n�7) = D( 3 , 8 ) ;
574 D( n�2,n�8) = D( 3 , 9 ) ;
575 D( n�2,n�9) = D( 3 , 1 0 ) ;
576 D( n�2,n�10) = D( 3 , 1 1 ) ;
577 D( n�2,n�11) = D( 3 , 1 2 ) ;
578 D( n�3,n ) = D( 4 , 1 ) ;
579 D( n�3,n�1) = D( 4 , 2 ) ;
580 D( n�3,n�2) = D( 4 , 3 ) ;
581 D( n�3,n�3) = D( 4 , 4 ) ;
582 D( n�3,n�4) = D( 4 , 5 ) ;
583 D( n�3,n�5) = D( 4 , 6 ) ;
584 D( n�3,n�6) = D( 4 , 7 ) ;
585 D( n�3,n�7) = D( 4 , 8 ) ;
586 D( n�3,n�8) = D( 4 , 9 ) ;
587 D( n�3,n�9) = D( 4 , 1 0 ) ;
588 D( n�3,n�10) = D( 4 , 1 1 ) ;
589 D( n�3,n�11) = D( 4 , 1 2 ) ;
590 D( n�4,n ) = D( 5 , 1 ) ;
591 D( n�4,n�1) = D( 5 , 2 ) ;
592 D( n�4,n�2) = D( 5 , 3 ) ;
593 D( n�4,n�3) = D( 5 , 4 ) ;
594 D( n�4,n�4) = D( 5 , 5 ) ;
595 D( n�4,n�5) = D( 5 , 6 ) ;
596 D( n�4,n�6) = D( 5 , 7 ) ;
597 D( n�4,n�7) = D( 5 , 8 ) ;
598 D( n�4,n�8) = D( 5 , 9 ) ;
599 D( n�4,n�9) = D( 5 , 1 0 ) ;
600 D( n�4,n�10) = D( 5 , 1 1 ) ;
601 D( n�4,n�11) = D( 5 , 1 2 ) ;
602 D( n�5,n ) = D( 6 , 1 ) ;
603 D( n�5,n�1) = D( 6 , 2 ) ;
604 D( n�5,n�2) = D( 6 , 3 ) ;
605 D( n�5,n�3) = D( 6 , 4 ) ;
606 D( n�5,n�4) = D( 6 , 5 ) ;
607 D( n�5,n�5) = D( 6 , 6 ) ;
608 D( n�5,n�6) = D( 6 , 7 ) ;
609 D( n�5,n�7) = D( 6 , 8 ) ;
610 D( n�5,n�8) = D( 6 , 9 ) ;
611 D( n�5,n�9) = D( 6 , 1 0 ) ;
612 D( n�5,n�10) = D( 6 , 1 1 ) ;
613 D( n�5,n�11) = D( 6 , 1 2 ) ;
614 D( n�6,n ) = D( 7 , 1 ) ;
615 D( n�6,n�1) = D( 7 , 2 ) ;
616 D( n�6,n�2) = D( 7 , 3 ) ;
617 D( n�6,n�3) = D( 7 , 4 ) ;
618 D( n�6,n�4) = D( 7 , 5 ) ;
619 D( n�6,n�5) = D( 7 , 6 ) ;
620 D( n�6,n�6) = D( 7 , 7 ) ;
621 D( n�6,n�7) = D( 7 , 8 ) ;
622 D( n�6,n�8) = D( 7 , 9 ) ;
623 D( n�6,n�9) = D( 7 , 1 0 ) ;
624 D( n�6,n�10) = D( 7 , 1 1 ) ;
625 D( n�6,n�11) = D( 7 , 1 2 ) ;
626 D( n�7,n ) = D( 8 , 1 ) ;
627 D( n�7,n�1) = D( 8 , 2 ) ;
628 D( n�7,n�2) = D( 8 , 3 ) ;
629 D( n�7,n�3) = D( 8 , 4 ) ;
630 D( n�7,n�4) = D( 8 , 5 ) ;
631 D( n�7,n�5) = D( 8 , 6 ) ;
632 D( n�7,n�6) = D( 8 , 7 ) ;
633 D( n�7,n�7) = D( 8 , 8 ) ;
634 D( n�7,n�8) = D( 8 , 9 ) ;
635 D( n�7,n�9) = D( 8 , 1 0 ) ;
636 D( n�7,n�10) = D( 8 , 1 1 ) ;
637 D( n�7,n�11) = D( 8 , 1 2 ) ;
638
639
640 H = dx�s p d i a g s ( [ e ] , 0 , n , n ) ;
641
642 H( 1 , 1 ) = dx �1498139/5080320;
643 H( 2 , 2 ) = dx �1107307/725760;
644 H( 3 , 3 ) = dx �20761/80640;
645 H( 4 , 4 ) = dx �1304999/725760;
646 H( 5 , 5 ) = dx �299527/725760;
647 H( 6 , 6 ) = dx �103097/80640;
648 H( 7 , 7 ) = dx �670091/725760;
649 H( 8 , 8 ) = dx �5127739/5080320;
650 H( n , n ) = H( 1 , 1 ) ;
651 H( n�1,n�1) = H( 2 , 2 ) ;
652 H( n�2,n�2) = H( 3 , 3 ) ;
653 H( n�3,n�3) = H( 4 , 4 ) ;
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654 H( n�4,n�4) = H( 5 , 5 ) ;
655 H( n�5,n�5) = H( 6 , 6 ) ;
656 H( n�6,n�6) = H( 7 , 7 ) ;
657 H( n�7,n�7) = H( 8 , 8 ) ;
658
659 BS = ( 1 / dx )�s p d i a g s ( [ z e r o s ( s i z e ( e ) ) ] , 0 , n , n ) ;
660
661 BS ( 1 , 1 ) = 4 7 2 3 / 2 1 0 0 / dx ;
662 BS ( 1 , 2 ) = �839/175/ dx ;
663 BS ( 1 , 3 ) = 1 5 7 / 3 5 / dx ;
664 BS ( 1 , 4 ) = �278/105/ dx ;
665 BS ( 1 , 5 ) = 1 0 3 / 1 4 0 / dx ;
666 BS ( 1 , 6 ) = 1 / 1 7 5 / dx ;
667 BS ( 1 , 7 ) = �6/175/ dx ;
668 BS( n , n ) = BS ( 1 , 1 ) ;
669 BS( n , n�1) = BS ( 1 , 2 ) ;
670 BS( n , n�2) = BS ( 1 , 3 ) ;
671 BS( n , n�3) = BS ( 1 , 4 ) ;
672 BS( n , n�4) = BS ( 1 , 5 ) ;
673 BS( n , n�5) = BS ( 1 , 6 ) ;
674 BS( n , n�6) = BS ( 1 , 7 ) ;
675
676
677 S = ( 1 / dx )�s p d i a g s ( [ e ] , 0 , n , n ) ;
678
679 S ( 1 , 1 ) = �4723/2100/ dx ;
680 S ( 1 , 2 ) = 8 3 9 / 1 7 5 / dx ;
681 S ( 1 , 3 ) = �157/35/ dx ;
682 S ( 1 , 4 ) = 2 7 8 / 1 0 5 / dx ;
683 S ( 1 , 5 ) = �103/140/ dx ;
684 S ( 1 , 6 ) = �1/175/ dx ;
685 S ( 1 , 7 ) = 6 / 1 7 5 / dx ;
686 S ( n , n ) = BS ( 1 , 1 ) ;
687 S ( n , n�1) = BS ( 1 , 2 ) ;
688 S ( n , n�2) = BS ( 1 , 3 ) ;
689 S ( n , n�3) = BS ( 1 , 4 ) ;
690 S ( n , n�4) = BS ( 1 , 5 ) ;
691 S ( n , n�5) = BS ( 1 , 6 ) ;
692 S ( n , n�6) = BS ( 1 , 7 ) ;
693
694 e l s e
695 d i s p ( ' Only o r d e r 2 , 4 , 6 o r 8 i mp l emen t ed h e r e . ' )
696 end

C.2.2.2 flux_func.m

1
2 f u n c t i o n [ f l u x ] = f l u x _ f u n c ( u , p , C)
3
4 % Fl u x f u n c t i o n , y i e l d s t h e s t o c h a s t i c G a l e r k i n f l u x f = 0 . 5�A( u ) u
5
6 % I n d a t a :
7 % u � Vect o r o f s o l u t i o n v a r i a b l e s (gPC c o e f f i c i e n t s )
8 % p � Number o f gPC b a s i s f u n c t i o n s
9 % C � T r i p l e p r o d u c t m a t r i x

10
11 % Ou t d at a :
12 % f l u x � S t o c h a s t i c G a l e r k i n f l u x f u n c t i o n
13
14
15 f l u x = z e r o s ( l e n g t h ( u ) , 1 ) ;
16
17 f o r i =0 : l e n g t h ( u ) / p�1 % Loop o v er t h e s p a t i a l g r i d p o i n t s
18 u _ p a r t =u ( p�i +1 : p�( i +1) , 1 ) ;
19 f l u x ( i�p + 1 : ( i +1)�p , 1 ) = 0 . 5�A_matr ix ( u _ p ar t , p , C)�u _ p a r t ;
20 end

C.2.2.3 dissipation_2nd_der.m

1
2 f u n c t i o n [ d i s s _ o p ] = d i s s i p a t i o n _ 2 n d _ d e r (m, p , P_inv , H_inv , co n s t , dx )
3
4 % D i s s i p a t i o n o p e r a t o r c o r r e s p o n d i n g t o seco n d d e r i v a t i v e t o a sy s t em o f s i z e m�p ( sp ace � PCE�c o e f f . )
5 % Gl o b al d i s s i p a t i o n c o n s t a n t
6
7 % I n d a t a :
8 % m � Number o f s p a t i a l g r i d p o i n t s
9 % p � Number o f gPC c o e f f i c i e n t s
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10 % P_ i n v � I n v e r s e o f SBP norm m a t r i x P
11 % H_inv � I n v e r s e o f SG mass m a t r i x ( i n o u r i m p l e m e n t a t i o n i t i s a l way s t h e i d e n t i t y m a t r i x )
12 % c o n s t � D i s s i p a t i o n c o n s t a n t
13 % dx � S p a t i a l g r i d s i z e
14
15 % Ou t d at a :
16 % d i s s _ o p � D i s c r e t e d i s s i p a t i o n m a t r i x
17
18 D = z e r o s (m) + d i a g ( o n es (m, 1 ) )�d i a g ( o n es (m�1 ,1) ,�1) ;
19 D( 1 , 1 ) = �1;
20 D( 1 , 2 ) = 1 ;
21 D = s p a r s e (D) ;
22
23 B = c o n s t�eye (m�p ) ;
24 B( 1 , 1 ) = 0 ;
25 d i s s _ o p=�dx�k r o n ( P_ i n v�D' , eye ( p ) )�B�k r o n (D, H_inv ) ;

C.2.2.4 dissipation_4th_der.m

1
2 f u n c t i o n [ d i s s _ o p ] = d i s s i p a t i o n _ 4 t h _ d e r (m, p , P2_inv , H_inv , co n s t , dx )
3
4 % D i s s i p a t i o n o p e r a t o r c o r r e s p o n d i n g t o f o u r t h o r d e r d e r i v a t i v e t o a sy s t em o f s i z e m�p ( sp ace � PCE�c o e f f . )
5 % Gl o b al d i s s i p a t i o n c o n s t a n t
6
7 % I n d a t a :
8 % m � Number o f s p a t i a l g r i d p o i n t s
9 % p � Number o f gPC c o e f f i c i e n t s

10 % P2 _ i n v � I n v e r s e o f SBP norm m a t r i x P2
11 % H_inv � I n v e r s e o f SG mass m a t r i x ( i n o u r i m p l e m e n t a t i o n i t i s a l way s t h e i d e n t i t y m a t r i x )
12 % c o n s t � D i s s i p a t i o n c o n s t a n t
13 % dx � S p a t i a l g r i d s i z e
14
15 % Ou t d at a :
16 % d i s s _ o p � D i s c r e t e d i s s i p a t i o n m a t r i x
17
18 d i a =[1 �2 1 ] ;
19 D2= s p d i a g s ( o n es (m, 1 )�d i a , [ �1 : 1 ] ,m,m) ;
20 D2 ( 1 , 1 : 3 ) = d i a ;
21 D2(m,m�2:m) = d i a ;
22
23 B2 = c o n s t�eye (m) ;
24 B2 ( 1 , 1 ) = 0 ;
25
26 d i s s _ o p = k ro n(�dx�P2 _ i n v�D2'�B2�D2 , H_inv ) ;

C.2.3 Boundary Treatment

C.2.3.1 penalty.m

1
2 f u n c t i o n [ S i g _ l e f t , S i g _ r i g h t ]= p e n a l t y ( p , u _ b c_ l , u_bc_r , C)
3
4 % Ass i g n p e n a l t y m a t r i x f o r c o n s e r v a t i v e sy s t em
5
6 % I n d a t a :
7 % p � Number o f gPC c o e f f i c i e n t s ( p=M�1)
8 % u _ b c_ l , u _ b c_ r � L e f t and r i g h t b o u n d ary v a l u e s
9 % C � M a t r i c e s o f i n n e r t r i p l e p r o d u c t s o f gPC b a s i s f u n c t i o n s

10
11 % Ou t d at a :
12 % S i g _ l e f t , S i g _ r i g h t � L e f t and r i g h t p e n a l t y m a t r i c e s (SAT)
13
14 i f p>1
15 A_l = (C ( : , : , 1 )�u _ b c_ l ( 1 ) +C ( : , : , 2 )�u _ b c_ l ( 2 ) ) ;
16 A_r = (C ( : , : , 1 )�u _ b c_ r ( 1 ) +C ( : , : , 2 )�u _ b c_ r ( 2 ) ) ;
17 %Deco mp o s i t i o n o f t h e sy s t em m a t r i x a c c o r d i n g t o t h e s i g n s o f t h e
18 %e i g e n v a l u e s
19 [ X_l , D_l ] = e i g ( A_l ) ;
20 [ X_r , D_r ] = e i g ( A_r ) ;
21 f o r i =1 : p
22 i f D_l ( i , i ) <0
23 D_l ( i , i ) = 0 ;
24 end
25 i f D_r ( i , i ) >0
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26 D_r ( i , i ) = 0 ;
27 end
28 end
29 A_l = X_l�D_l�X_l ' ;
30 A_r = X_r�D_r�X_r ' ;
31
32 %S c a l i n g wi t h 0 . 5 f o r c o n s e r v a t i v e sy s t ems
33 S i g _ l e f t = �1/2�A_l ;
34 S i g _ r i g h t = 1/2�A_r ;
35
36 end
37 i f p==1
38 S i g _ l e f t = �1/2�u _ b c_ l ( 1 ) ;
39 S i g _ r i g h t = 1/2� u _ b c_ r ( 1 ) ;
40 end

C.2.3.2 boundary_cond_determ.m

1
2 f u n c t i o n [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ d et er m ( mean _ l ef t , mean _ r i g h t , t , x0 , l e f t , r i g h t ,m)
3
4 % Compute b o u n d ar y c o n d i t i o n s f o r t h e d e t e r m i n i s t i c B u rg er s ' e q u a t i o n
5
6 % I n d a t a :
7 % mean _ l ef t , mean _ r i g h t � L e f t and r i g h t s t a t e s
8 % t � Time
9 % x0 � I n i t i a l sh o ck l o c a t i o n

10 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
11 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
12 % m � Number o f s p a t i a l g r i d p o i n t s
13
14 % Ou t d at a :
15 % g _ l e f t � L e f t b o u n d ar y D i r i c h l e t d a t a
16 % g _ r i g h t � R i g h t b o u n d ar y D i r i c h l e t d a t a
17
18
19 g _ l e f t = z e r o s (m, 1 ) ;
20 g _ r i g h t = z e r o s (m, 1 ) ;
21
22 % Shock sp eed
23 s = ( m e a n _ l e f t + mean _ r i g h t ) / 2 ;
24
25 i f x0+ s� t < l e f t
26 g _ l e f t ( 1 ) = mean _ r i g h t ;
27 g _ r i g h t ( end ) = mean _ r i g h t ;
28 end
29
30 i f x0+ s� t >= l e f t && x0+ s�t <= r i g h t
31 g _ l e f t ( 1 ) = m e a n _ l e f t ;
32 g _ r i g h t ( end ) = mean _ r i g h t ;
33 end
34
35 i f x0+ s� t > r i g h t
36 g _ l e f t ( 1 ) = m e a n _ l e f t ;
37 g _ r i g h t ( end ) = m e a n _ l e f t ;
38 end

C.2.3.3 boundary_cond_2x2.m

1
2 f u n c t i o n [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co nd_ 2x2( mean _ l ef t , mean _ r i g h t , s i g _ h , t , x0 , l e f t , r i g h t ,m)
3
4 % Compute t h e b o u n d ar y c o n d i t i o n s o f t h e 2 x2 s t o c h a s t i c G a l e r k i n form o f
5 % B u rg er s ' e q u a t i o n f o r t h e Riemann problem
6
7 % I n d a t a :
8 % mean _ l ef t , mean _ r i g h t � Mean ( u_0 ) o f t h e l e f t and r i g h t s t a t e s
9 % s i g _ h � S t a n d a r d d e v i a t i o n ( u_1 ) , assumed u n i fo rm o v er t h e s p a t i a l domain

10 % t � Time
11 % x0 � I n i t i a l sh o ck l o c a t i o n
12 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
13 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
14 % m � Number o f s p a t i a l g r i d p o i n t s
15
16 % Ou t d at a :
17 % g _ l e f t � D i r i c h l e t c o n d i t i o n f o r l e f t b o u n d ar y
18 % g _ r i g h t � D i r i c h l e t c o n d i t i o n f o r r i g h t b o u n d ar y
19
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20
21 % Ex act s o l u t i o n f o r t h e 2 x 2 c a s e
22
23 s1 = ( m e a n _ l e f t + mean _ r i g h t ) /2� s i g _ h ; % Shock sp eed 1
24 s2 = ( m e a n _ l e f t + mean _ r i g h t ) / 2 + s i g _ h ; % Shock sp eed 2
25
26 g _ l e f t = z e r o s (2�m, 1 ) ;
27 g _ r i g h t = z e r o s (2�m, 1 ) ;
28 g _ l e f t ( 1 ) = m e a n _ l e f t ;
29 g _ l e f t ( 2 ) = s i g _ h ;
30 g _ r i g h t (2� (m�1)+1) = mean _ r i g h t ;
31 g _ r i g h t (2� (m�1)+2) = s i g _ h ;
32
33 % One wave p r o p a g a t i n g t o t h e l e f t , t h e o t h e r t o t h e r i g h t
34 i f s1 <=0 && s2 >=0
35 i f t >( l e f t �x0 ) / s1
36 g _ l e f t ( 1 ) =( m e a n _ l e f t + mean _ r i g h t ) / 2
37 g _ l e f t ( 2 ) = ( mean _ l ef t �mean _ r i g h t ) / 2 + s i g _ h ;
38
39 end
40 i f t >( r i g h t�x0 ) / s2
41 g _ r i g h t (2� (m�1)+1) = ( m e a n _ l e f t + mean _ r i g h t ) / 2 ;
42 g _ r i g h t (2� (m�1)+2) = ( mean _ l ef t �mean _ r i g h t ) / 2 + s i g _ h ;
43 end
44 end
45
46 % Both waves p r o p a g a t i n g t o t h e l e f t
47 i f s1 <=0 && s2 <=0
48 i f t >( l e f t �x0 ) / s1 && t <( l e f t �x0 ) / s2
49 g _ l e f t ( 1 ) =( m e a n _ l e f t + mean _ r i g h t ) / 2 ;
50 g _ l e f t ( 2 ) = ( mean _ l ef t �mean _ r i g h t ) / 2 + s i g _ h ;
51
52 end
53 i f t >( l e f t �x0 ) / s2
54 g _ l e f t ( 1 ) = mean _ r i g h t ;
55 g _ l e f t ( 2 ) = s i g _ h ;
56 end
57 end
58
59 % Both waves p r o p a g a t i n g t o t h e r i g h t
60 i f s1 >=0 && s2 >=0
61 i f t >( r i g h t�x0 ) / s2 && t < ( r i g h t�x0 ) / s1
62 g _ r i g h t (2� (m�1)+1) = ( m e a n _ l e f t + mean _ r i g h t ) / 2 ;
63 g _ r i g h t (2� (m�1)+2) = ( mean _ l ef t �mean _ r i g h t ) / 2 + s i g _ h ;
64 end
65 i f t > ( r i g h t�x0 ) / s1
66 g _ r i g h t (2� (m�1)+1) = m e a n _ l e f t ;
67 g _ r i g h t (2� (m�1)+2) = s i g _ h ;
68 end
69 end

C.2.3.4 boundary_cond_p_inf.m

1
2 f u n c t i o n [ g _ l e f t g _ r i g h t ] = b o u n d ar y _ co n d _ p _ i n f ( mean _ l ef t , mean _ r i g h t , s i g _ h , t , x0 , l e f t , r i g h t , p ,m)
3
4 % C a l c u l a t e t i me d ep en d en t b o u n d ar y c o n d i t i o n s f o r t h e f i r s t p c o e f f i c i e n t s o f t h e i n f i n i t e o r d e r e x p a n s i o n
5
6 % I n d a t a :
7 % mean _ l ef t , mean _ r i g h t � L e f t and r i g h t s t a t e s
8 % s i g _ h � S t a n d a r d d e v i a t i o n ( u n i fo rm i n sp ace )
9 % t � Time

10 % x0 � I n i t i a l sh o ck l o c a t i o n
11 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
12 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
13 % p � Number o f gPC c o e f f i c i e n t s t o be computed
14 % m � Number o f s p a t i a l g r i d p o i n t s
15
16 % Ou t d at a :
17 % g _ l e f t � L e f t b o u n d ar y D i r i c h l e t d a t a f o r t h e v e c t o r o f gPC c o e f f i c i e n t s
18 % g _ r i g h t � R i g h t b o u n d ar y D i r i c h l e t d a t a f o r t h e v e c t o r o f gPC c o e f f i c i e n t s
19
20
21 g _ l e f t = z e r o s ( p�m, 1 ) ;
22 g _ r i g h t = z e r o s ( p�m, 1 ) ;
23
24 x i _ l = ( l e f t �x0 ) . / ( s i g _ h�t )�( m e a n _ l e f t + mean _ r i g h t ) / ( 2� s i g _ h ) ;
25 x i _ r = ( r i g h t�x0 ) . / ( s i g _ h�t )�(m e a n _ l e f t + mean _ r i g h t ) / ( 2� s i g _ h ) ;
26 g _ l e f t ( 1 ) = m e a n _ l e f t + ( mean _ r i g h t�m e a n _ l e f t )�normcdf ( x i _ l , 0 , 1 ) ;
27 g _ r i g h t ( (m�1)�p +1) = m e a n _ l e f t + ( mean _ r i g h t�m e a n _ l e f t )�normcdf ( x i _ r , 0 , 1 ) ;
28
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29 g _ l e f t ( 2 ) = s i g _ h + ( mean _ l ef t �mean _ r i g h t )�exp(� x i _ l ^ 2 / 2 ) / s q r t (2� p i ) ;
30 g _ r i g h t ( (m�1)�p +2) = s i g _ h + ( mean _ l ef t �mean _ r i g h t )�exp(� x i _ r ^ 2 / 2 ) / s q r t (2� p i ) ;
31 P s i _ l ( 1 : 2 ) = [1 x i _ l ] ;
32 P s i _ r ( 1 : 2 ) = [1 x i _ r ] ;
33
34 f o r k =3 : p
35 P s i _ l ( k ) = x i _ l . �s q r t ( f a c t o r i a l ( k�2) / f a c t o r i a l ( k�1) )�P s i _ l ( k�1) � ( k�2)�s q r t ( f a c t o r i a l ( k�3) / f a c t o r i a l ( k�1)

) .�P s i _ l ( k�2) ;
36 P s i _ r ( k ) = x i _ r .�s q r t ( f a c t o r i a l ( k�2) / f a c t o r i a l ( k�1) )�P s i _ r ( k�1) � ( k�2)�s q r t ( f a c t o r i a l ( k�3) / f a c t o r i a l ( k�1)

) .�P s i _ r ( k�2) ;
37
38 g _ l e f t ( k ) = ( mean _ l ef t�mean _ r i g h t ) / s q r t ( k�1)�exp(� x i _ l ^ 2 / 2 ) / s q r t (2� p i ) .�P s i _ l ( k�1) ;
39 g _ r i g h t ( (m�1)�p+k ) = ( mean _ l ef t�mean _ r i g h t ) / s q r t ( k�1)�exp(� x i _ r ^ 2 / 2 ) / s q r t (2� p i ) .�P s i _ r ( k�1) ;
40 end

C.2.4 Reference Solution

C.2.4.1 initial_conditions.m

1
2 f u n c t i o n [ u _ i n i t ] = i n i t i a l _ c o n d i t i o n s (m, p , C , x0 , mean _ l ef t , s t d _ l e f t , mean _ r i g h t , s t d _ r i g h t , l e f t , r i g h t )
3
4 % Compute i n i t i a l c o n d i t i o n s ( gPC c o e f f i c i e n t s ) f o r t h e Riemann problem
5
6 % I n d a t a :
7 % m � Number o f s p a t i a l g r i d p o i n t s
8 % p � Number o f gPC c o e f f i c i e n t s t o be computed
9 % C � I n n e r t r i p l e p r o d u c t m a t r i c e s

10 % x0 � I n i t i a l sh o ck l o c a t i o n
11 % m e a n _ l e f t � L e f t mean s t a t e
12 % s t d _ l e f t � S t a n d a r d d e v i a t i o n l e f t s t a t e
13 % mean _ r i g h t � R i g h t mean s t a t e
14 % s t d _ r i g h t � S t a n d a r d d e v i a t i o n r i g h t s t a t e
15 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
16 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
17
18 % Ou t p u t :
19 % u _ i n i t � Vect o r o f i n i t i a l gPC c o e f f i c i e n t s
20
21 u _ i n i t = z e r o s (m�p , 1 ) ;
22
23 f o r i =1 : p : p�( c e i l (m�(x0�l e f t ) / ( r i g h t�l e f t ) ) �1)+1
24 u _ i n i t ( i ) = m e a n _ l e f t ;
25 i f p>1
26 u _ i n i t ( i +1) = s t d _ l e f t ;
27 end
28 end
29 f o r ( i = c e i l (m�(x0�l e f t ) / ( r i g h t�l e f t ) )�p +1 : p : p�(m�1)+1)
30 u _ i n i t ( i ) = mean _ r i g h t ;
31 i f p>1
32 u _ i n i t ( i +1) = s t d _ r i g h t ;
33 end
34 end

C.2.4.2 exact_solution_2x2.m

1
2 f u n c t i o n [ u _ r e f ] = e x a c t _ s o l u t i o n _ 2 x 2 ( mean _ l ef t , mean _ r i g h t , s i g _ h , T ,m, l e f t , r i g h t , x0 , x )
3
4 % Compute t h e a n a l y t i c a l s o l u t i o n o f t h e 2 x2 s t o c h a s t i c G a l e r k i n B u rg er s '
5 % e q u a t i o n
6
7 % I n d a t a :
8 % mean _ l ef t , mean _ r i g h t � Mean ( u_0 ) o f t h e l e f t and r i g h t s t a t e s
9 % s i g _ h � S t a n d a r d d e v i a t i o n ( u_1 ) , assumed u n i fo rm o v er t h e s p a t i a l domain

10 % T � Time
11 % m � Number o f s p a t i a l g r i d p o i n t s
12 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
13 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
14 % x0 � I n i t i a l sh o ck l o c a t i o n
15 % x � Vect o r o f s p a t i a l g r i d p o i n t s
16
17 % Ou t d at a :
18 % u _ r e f � A n a l y s i c a l s o l u t i o n
19
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20
21 s1 = ( m e a n _ l e f t + mean _ r i g h t ) /2� s i g _ h ; % Shock sp eed 1
22 s2 = ( m e a n _ l e f t + mean _ r i g h t ) / 2 + s i g _ h ; % Shock sp eed 2
23
24 u _ r e f = z e r o s (m, 2 ) ;
25
26 f o r j =1 :m
27 i f x ( j ) < x0+ s1�T
28 u _ r e f ( j , 1 ) = m e a n _ l e f t ;
29 u _ r e f ( j , 2 ) = s i g _ h ;
30 end
31 i f x ( j ) >= x0+ s1�T && x ( j ) < x0+ s2�T
32 u _ r e f ( j , 1 ) = ( m e a n _ l e f t + mean _ r i g h t ) / 2 ;
33 u _ r e f ( j , 2 ) = ( mean _ l ef t �mean _ r i g h t ) / 2 + s i g _ h ;
34 end
35 i f x ( j ) > x0+ s2�T
36 u _ r e f ( j , 1 ) = mean _ r i g h t ;
37 u _ r e f ( j , 2 ) = s i g _ h ;
38 end
39 end

C.2.4.3 exact_solution_determ.m

1
2 f u n c t i o n [ u _ r e f ] = e x a c t _ s o l u t i o n _ d e t e r m ( mean _ l ef t , mean _ r i g h t , T ,m, l e f t , r i g h t , x0 , x )
3
4 % Compute t h e e x a c t s o l u t i o n o f t h e d e t e r m i n i s t i c B u rg er s ' e q u a t i o n
5
6 % I n d a t a :
7 % mean _ l ef t , mean _ r i g h t � L e f t and r i g h t s t a t e s
8 % T � Time
9 % m � Number o f s p a t i a l g r i d p o i n t s

10 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
11 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
12 % x0 � I n i t i a l sh o ck l o c a t i o n
13 % x � Vect o r o f s p a t i a l g r i d p o i n t s
14
15 % Ou t d at a :
16 % u _ r e f � A n a l y t i c a l s o l u t i o n
17
18
19 s = ( m e a n _ l e f t + mean _ r i g h t ) / 2 ; % Shock sp eed
20 u _ r e f = z e r o s (m, 1 ) ;
21
22 f o r j =1 :m
23 i f x ( j ) < x0+ s�T
24 u _ r e f ( j , 1 ) = m e a n _ l e f t ;
25 end
26
27 i f x ( j ) >= x0+ s�T
28 u _ r e f ( j , 1 ) = mean _ r i g h t ;
29 end
30 end

C.2.4.4 exact_solution_p_inf.m

1
2 f u n c t i o n [ u _ r e f ] = e x a c t _ s o l u t i o n _ p _ i n f ( mean _ l ef t , mean _ r i g h t , s i g _ h , T ,m, l e f t , r i g h t , x0 , x , p )
3
4 % Compute t h e a n a l y t i c a l s o l u t i o n o f t h e s t o c h a s t i c B u rg er s ' e q u a t i o n wi t h
5 % Hermi t e p o l y n o m i a l s
6
7
8 % I n d a t a :
9 % mean _ l ef t , mean _ r i g h t � Mean ( u_0 ) o f t h e l e f t and r i g h t s t a t e s

10 % s i g _ h � S t a n d a r d d e v i a t i o n ( u_1 ) , assumed u n i f o r m o v er t h e s p a t i a l domain
11 % T � Time
12 % m � Number o f s p a t i a l g r i d p o i n t s
13 % l e f t � Lower l i m i t o f s p a t i a l i n t e r v a l
14 % r i g h t � Upper l i m i t o f s p a t i a l i n t e r v a l
15 % x0 � I n i t i a l sh o ck l o c a t i o n
16 % x � Vect o r o f s p a t i a l g r i d p o i n t s
17 % p � Number o f gPC c o e f f i c i e n t s t o be computed
18
19 % Ou t d at a :
20 % u _ r e f � A n a l y t i c a l s o l u t i o n
21
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22
23 y = z e r o s (m, 1 ) ;
24 y ( : , 1 ) =( x�x0 ) . / ( s i g _ h�T)�( m e a n _ l e f t + mean _ r i g h t ) / ( 2� s i g _ h ) ;
25
26 P s i _ s = z e r o s (m, p ) ;
27 P s i _ s ( : , 1 ) = 1 ;
28 P s i _ s ( : , 2 ) = y ;
29
30
31 u _ r e f = z e r o s (m, p ) ;
32 u _ r e f ( : , 1 ) = m e a n _ l e f t � ( mean _ l ef t�mean _ r i g h t )�normcdf ( y , 0 , 1 ) ;
33
34 i f p>2
35 u _ r e f ( : , 2 ) = s i g _ h + ( mean _ l ef t�mean _ r i g h t )�exp(� y . ^ 2 / 2 ) / s q r t (2� p i ) ;
36 f o r k =3 : p
37 P s i _ s ( : , k ) = y .�s q r t ( f a c t o r i a l ( k�2) / f a c t o r i a l ( k�1) ) .�P s i _ s ( : , k�1) � ( k�2)� s q r t ( f a c t o r i a l ( k�3) /

f a c t o r i a l ( k�1) ) .�P s i _ s ( : , k�2) ;
38 u _ r e f ( : , k ) = ( mean _ l ef t �mean _ r i g h t ) / s q r t ( k�1)�exp(� y . ^ 2 / 2 ) / s q r t (2� p i ) .�P s i _ s ( : , k�1) ;
39 end
40 end
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