
Harmonic Complete Flux Schemes
for Conservation Laws with Discontinuous
Coefficients

J.H.M. ten Thije Boonkkamp, L. Liu, J. van Dijk, and K.S.C. Peerenboom

Abstract In this paper we discuss several complete flux schemes for advection-
diffusion-reaction problems. We consider both scalar equations as well as systems
of equations. For the flux approximations in the latter case, we take into account
the coupling between the constituent equations. We study conservation laws with
discontinuous diffusion matrix/coefficient and show that the (matrix) harmonic
average should be employed in the expressions for the numerical fluxes. The
vectorial harmonic complete flux schemes are validated for a test problem.

1 Introduction

Conservation laws are ubiquitous in continuum physics. They occur in disciplines
like combustion theory, plasma physics, transport in porous media etc. These
conservation laws are often of advection-diffusion-reaction type, describing the
interplay between different processes such as advection or drift, (multi-species)
diffusion and chemical reactions or impact ionization.

Advection-diffusion-reaction problems are usually quite complex and require
sophisticated numerical solution methods. In this contribution we discuss numerical
flux approximations for two special cases: first, a scalar conservation law with a
rapidly varying or even discontinuous diffusion coefficient, and second, a system
of conservation laws coupled through a diffusion matrix. We also allow the
diffusion matrix to be discontinuous. The second problem is typical for multi-
species diffusion in mixtures or plasmas; see for example [3] for a detailed account.
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Due to the nonlinear dependency of the diffusion process on pressure, temperature
and plasma composition, diffusion matrices can vary rapidly in space.

Therefore, we consider the one-dimensional scalar model problem df=dx D
s, where f is the (advection-diffusion) flux and s the source term. The flux f is
given by

f D u' � "
d'

dx
; (1)

with u the advection velocity and " > 0 the diffusion coefficient. The system
counterpart reads df =dx D s with f the flux vector given by

f D U ' � E
d'

dx
; (2)

and s the source term. In relation (2) U is the advection matrix, which is usually
diagonal, and E is the diffusion matrix, which we assume symmetric positive
definite. We consider equations with " and E discontinuous.

The finite volume method is our discretization method of choice. Thus we cover
the domain with a finite set of control volumes (cells) Ij of size �x and choose
the grid points xj , where the unknown has to be approximated, in the cell centres.
Consequently, we have Ij D Œxj�1=2; xjC1=2� with xjC1=2 D 1

2

�
xj C xjC1

�
.

Integrating, for example, df =dx D s over Ij and applying the midpoint rule for
the integral of s, we obtain the discrete conservation law

F jC1=2 � F j�1=2 D �x sj ; (3)

with F jC1=2 the numerical flux approximating f at the cell interface xjC1=2 and
sj D s.xj /. For the numerical flux we adopt the complete flux schemes developed
in [4, 5]. The complete flux schemes for F jC1=2 typically read

F jC1=2 D ˛jC1=2'j � ˇjC1=2'jC1 C�x.�jC1=2sj C ıjC1=2sjC1/; (4)

where 'j denotes the numerical approximation of '.xj / and where the coefficient
matrices ˛jC1=2 etc. are piecewise constant and depend on U and E . The goal of this
paper is to extend the standard complete flux schemes to equations with discontinu-
ous diffusion matrix/coefficient. We will deduce that the (matrix) harmonic average
of the diffusion matrix/coefficient is required in the expressions for the numerical
fluxes, which we collectively refer to as harmonic complete flux schemes.

We have organised our paper as follows. In Sect. 2 we modify the standard
scalar complete flux scheme for piecewise constant diffusion coefficient ". Next,
in Sect. 3, we extend the scalar scheme to systems of conservation laws, taking into
account the coupling between the constituent equations. In Sect. 4 we demonstrate
the performance of the vectorial harmonic complete flux schemes, and finally we
present conclusions in section “Concluding Remarks”.
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2 Numerical Approximation of the Scalar Flux

In this section we outline the complete flux scheme for the scalar equation, which is
based on the integral representation of the flux. The derivation is a modification of
the theory in [4].

The integral representation of the flux f .xjC1=2/ at the cell edge xjC1=2 is based
on the following model boundary value problem (BVP) for ':

d

dx

�
u' � "d'

dx

�
D s; xj < x < xjC1; (5a)

'.xj / D 'j ; '.xjC1/ D 'jC1: (5b)

We like to emphasize that f .xjC1=2/ corresponds to the solution of the inhomo-
geneous BVP (5), implying that f .xjC1=2/ not only depends on the advection-
diffusion operator, but also on the source term s. It is convenient to introduce the
variables P.x/, p.x/ and S.x/ for x 2 .xj ; xjC1/ by

P.x/ WD u.x/�x

".x/
; p.x/ WD

Z x

xjC1=2

u.�/

".�/
d�; S.x/ WD

Z x

xjC1=2

s.�/ d�: (6)

Here, P.x/ and p.x/ are the Peclet function and integral, respectively, generalizing
the well-known (numerical) Peclet number. Integrating the differential equation
df=dx D s from xjC1=2 to x 2 Œxj ; xjC1� we get the integral balance f .x/ �
f .xjC1=2/ D S.x/. Using the definition of p in (6), it is clear that the flux can
be rewritten as f .x/ D �".x/ep.x/ d

�
' e�p.x/�=dx. Substituting this representation

into the integral balance and integrating from xj to xjC1 we find the following
expressions for the flux:

f .xjC1=2/ D f h.xjC1=2/C f i.xjC1=2/; (7a)

f h.xjC1=2/ D �
e�p.xj /'j � e�p.xjC1/'jC1

� ıZ xjC1

xj

"�1.x/e�p.x/ dx; (7b)

f i.xjC1=2/ D �
Z xjC1

xj

"�1.x/e�p.x/S.x/ dx
ıZ xjC1

xj

"�1.x/e�p.x/ dx; (7c)

where f h.xjC1=2/ and f i.xjC1=2/ are the homogeneous and inhomogeneous part,
corresponding to the homogeneous and particular solution of (5), respectively.

Next, we assume that u is constant and " is piecewise constant on .xj ; xjC1�, i.e.,
u.x/ D NujC1=2 WD 1

2

�
uj C ujC1

�
and

".x/ D
(

"j if xj < x � xjC1=2;
"jC1 if xjC1=2 < x � xjC1:

(8)
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Consequently, the function p.x/ is piecewise linear. Likewise, in agreement with
the finite volume discretization, we take s piecewise constant. Substituting these
approximations in the integral representation (7), and evaluating all integrals
involved, we obtain the numerical flux:

FjC1=2 D F h
jC1=2 C F i

jC1=2; (9a)

F h
jC1=2 D Q"jC1=2

�x

�
B

� � NPjC1=2
�
'j � B� NPjC1=2

�
'jC1

�
; (9b)

F i
jC1=2 D �x

�
�jC1=2sj C ıjC1=2sjC1

�
; (9c)

�jC1=2 D 1
2

 
� � 1

2
Pj

�

e� NPjC1=2 � 1 ; ıjC1=2 D � 1
2

 
�
1
2
PjC1

�

e NPjC1=2 � 1 ; (9d)

where Q"jC1=2 is the harmonic average of " and NPjC1=2 the arithmetic average of P ,
defined by

1

Q"jC1=2
WD 1

2

� 1
"j

C 1

"jC1

�
; NPjC1=2 WD NujC1=2�x

Q"jC1=2
: (10)

Furthermore, the functions B.z/ and  .z/ in (9) are defined by B.z/ D z=
�
ez � 1

�

and  .z/ D �
ez � 1 � z

�
=z. The flux approximation in (9) is referred to as the

piecewise constant complete flux scheme (PCCFS).
Alternatively, we propose to replace the (local) Peclet numbers Pj and PjC1

in (9d) by the average Peclet number NPjC1=2. This way we obtain

�jC1=2 D W1

� NPjC1=2
�
; ıjC1=2 D �W1

� � NPjC1=2
�
; (11)

withW1.z/ D �
e�z=2�1Cz=2

�
=
�
z
�
1�e�z

��
. The corresponding flux approximation

is referred to as the harmonic complete flux scheme (HCF).

3 Extension to Systems of Conservation Laws

In this section we extend the derivation of the complete flux schemes to systems
of conservation laws. The derivation is a modification of the theory in [5] and is
detailed in [2].

Analogous to the scalar case, we derive the expression for the numerical flux
F jC1=2 from the following system BVP:

d

dx

�
U ' � E

d'

dx

�
D s; xj < x < xjC1; (12a)

'.xj / D 'j ; '.xjC1/ D 'jC1; (12b)
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assuming that U .x/ D NU jC1=2 WD 1
2

�
U jCU jC1

�
is constant and E .x/ is piecewise

constant on .xj ; xjC1�, i.e.,

E .x/ D
(

E j if xj < x � xjC1=2;
E jC1 if xjC1=2 < x � xjC1:

(13)

Recall that E is symmetric positive definite, and thus regular. We assume the source
term s.x/ to be piecewise constant. Letm denote the size of the system, thus ' and
s are m-vectors and U and E are m �m matrices.

For the derivation which follows it is convenient to introduce the variables

A.x/ WD E �1.x/U ; P.x/ WD �xA.x/; S .x/ WD
Z x

xjC1=2

s.�/ d�: (14)

The matrix P is referred to as the Peclet matrix P . Note that the matrices A

and P are piecewise constant on .xj ; xjC1�. Moreover, we assume that A has
m real eigenvalues �i and m corresponding, linearly independent eigenvectors
vi .i D 1; 2; : : : ; m/. Since A has a complete set of eigenvectors, its spectral
decomposition is given by

AV D V �; � WD diag
�
�1; �2; : : : ; �m

�
; V WD �

v1; v2; : : : ; vm
�
; (15)

and based on this decomposition we can compute any matrix function of P as
follows

g.P/ WD V g.�x�/V �1; g.�x�/ WD diag.g.�x�1/; g.�x�2/; : : : ; g.�x�m//;
(16)

provided g is defined on the spectrum of A [1].
Integrating the conservation law df =dx D s from the interface at xjC1=2 to

some arbitrary x 2 Œxj ; xjC1�, we obtain

f .x/ � f
�
xjC1=2

� D S .x/: (17)

Next, we substitute the integrating factor formulation of the flux, which for x ¤
xjC1=2 is given by

f .x/ D �E e.x�xjC1=2/A
d

dx

�
e�.x�xjC1=2/A'

�
(18)
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in (17), isolate the derivative and subsequently integrate over the interval Œxj ; xjC1�
to obtain the integral formulation of the flux

Z xjC1

xj

e�.x�xjC1=2/AE �1.x/ dx f .xjC1=2/ D

ePj =2'j � e�PjC1=2'jC1 �
Z xjC1

xj

e�.x�xjC1=2/AE �1.x/S .x/ dx;

(19)

where Pj D P.xj / etc. In the right hand side, the first two terms correspond to the
advection-diffusion operator whereas the integral corresponds to the source term. In
order to determine the numerical flux we have to evaluate both integrals in (19).

Consider first the integral in the left hand side of (19) and take S .x/ D 0. Since
E and A are piecewise constant, we split the integral in two parts and find the
following relation for the homogeneous numerical flux F h

jC1=2:

1
2
�x

��
E jB

�
1
2
Pj

���1 C �
E jC1B

� � 1
2
PjC1

���1�
F h
jC1=2 D

ePj =2'j � e�PjC1=2'jC1:
(20)

Note that this expression is properly defined since the matrices B
�
1
2
Pj

�
andB

� �
1
2
PjC1

�
are always regular. Next, consider the integral in the right hand side of (19).

Since S .x/ is piecewise linear, we can also evaluate this integral. Omitting the first
two terms in the right hand side of (19) we obtain the following expression for the
inhomogeneous flux F i

jC1=2:

��
E jB

�
1
2
Pj

���1 C �
E jC1B

� � 1
2
PjC1

���1�
F i
jC1=2 D

� 1
2
�x

�
W2

�
1
2
Pj

�
E �1
j sj �W2

� � 1
2
PjC1

�
E �1
jC1sjC1

�
;

(21)

where W2.z/ D �
ez.1 � z/ � 1

�
=z2. The complete flux approximation is obviously

given by F jC1=2 D F h
jC1=2 C F i

jC1=2, referred to as the piecewise constant
complete flux scheme (PCCFS).

PCCFS is a rather complicated and expensive scheme, and therefore we propose
the following approximation. Assume first that U is regular, then we can rewrite the
expression (20) for the homogeneous flux as

�
ePj =2 � e�PjC1=2

�
U �1F h

jC1=2 D ePj =2'j � e�PjC1=2'jC1: (22)

In general the Peclet matrices in (22) do not commute, so that we have to invoke the
Baker-Campbell-Hausdorff formula [1], e.g.,

e�Pj =2e�PjC1=2 D e� NPjC1=2C 1
8
�x2ŒAj ;AjC1�CO.�x3/

; (23)
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where ŒAj ;AjC1� WD AjAjC1 � AjC1Aj is the commutator of both matrices.
Neglecting the O

�
�x2

�
-term in the exponent we can derive the vectorial equivalent

of (9b), i.e.,

F h
jC1=2 D 1

�x
QE jC1=2

�
B

� � NPjC1=2
�
'j � B

� NPjC1=2
�
'jC1

�
; (24)

with QE jC1=2 and NPjC1=2 the matrix harmonic average of E and the average Peclet
matrix, respectively, defined by

QE �1
jC1=2 WD 1

2

�
E �1
j C E �1

jC1
�
; NPjC1=2 WD �x QE �1

jC1=2 NU jC1=2; (25)

where obviously E �1
j D E �1.xj / etc.

In case U is singular, and consequently also A, we apply a regularization
technique to derive (24). Therefore, we replace A by a perturbation Aı D A C ıI

for some ı such that Aı is regular. This is possible, provided �ı … �.A/. The
matrices Pı and NP ı;jC1=2 are the corresponding perturbations of P and NPjC1=2,
respectively. Replacing P by Pı in (20) we obtain a similar expression as (24) with
NPı;jC1=2 instead of NPjC1=2. Since B.z/ is continuous for z D 0 we can take the

limit ı ! 0 to arrive at the expression (24).
Next, for the inhomogeneous flux, we take for E its matrix harmonic average

QE jC1=2 and evaluate the integral in the right hand side of (19) to obtain

F i
jC1=2 D �x

�
W1

� OPjC1=2
�
sj �W1

� � OPjC1=2
�
sjC1

�
; (26)

with OPjC1=2 WD �x NU jC1=2 QE �1
jC1=2; for more details see [2]. The resulting complete

flux approximation F jC1=2 D F h
jC1=2 C F i

jC1=2 with F h
jC1=2 and F i

jC1=2 defined
in (24) and (26), respectively, is referred to as the harmonic complete flux scheme
(HCFS), as opposed to the standard complete flux scheme, which employs the
arithmetic average of the diffusion matrix.

4 Numerical Example

As an example, we apply the vectorial complete flux schemes to the following test
problem:

d

dx

�
U ' � E

d'

dx

�
D s; 0 < x < 1; (27a)

d'1
dx

.0/ D 0; '1.1/ D '1;R; '2.0/ D '2;L;
d'2
dx
.1/ D 0; (27b)



102 J.H.M. ten Thije Boonkkamp et al.

Fig. 1 Numerical solution of (27) (left) and discretization errors (right). Parameter values are:
u1 D �1, u2 D 1, ˛ D 0:05 and smax D 103 . Disretization schemes employed are: standard
complete scheme (CFS), homogeneous flux scheme (HFS), PCCFS and HCFS

with U D diag.u1; u2/ and where the diffusion matrix E and the source term vector
s are given by

E D 1
2
"

�
1C ˛ 1 � ˛
1 � ˛ 1C ˛

�
; ".x/ D

8
ˆ̂
<

ˆ̂
:

10�2 if x 2 Œ0; 0:25/
1 if x 2 Œ0:25; 0:75/
10�2 if x 2 Œ0:75; 1/

; (27c)

s.x/ D smax

1C smax.2x � 1/2
�
1

0:2

�
: (27d)

The problem is diffusion dominant in the middle, in .0:25; 0:75/, and advection
dominant in the remainder of the domain. The parameter ˛ .0 � ˛ � 1/ determines
the coupling between the constituent equations of (27a). The source term has a sharp
peak at x D 0:5 causing steep interior layers near the discontinuities of ". A typical
solution of (27) is displayed in Fig. 1.

To assess the (order) of convergence of the numerical solutions we first compute
a very fine grid solution '�, which to good approximation equals the exact solution.
An average discretization error for the second component '2, for example, is then
given by e2.�x/ D �xjj'�

2 � '2jj1. In Fig. 1 this discretization error as function
of the grid size �x is plotted for various schemes. The standard complete flux and
homogeneous flux schemes display only first order convergence, whereas HCFS and
PCCFS are second order convergent and have a much smaller discretization error.

Concluding Remarks
In this contribution we have proposed several modifications of the stan-
dard complete flux schemes, both scalar and vectorial, for conservation
laws with discontinuous diffusion matrix/coefficient. For the numerical flux

(continued)
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approximations we employed the (matrix) harmonic average of the diffusion
matrix/coefficient, which turned out to be more accurate than the standard
schemes. However, more elaborate testing of the modified schemes for
realistic applications, such as plasma simulations, is still required.
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