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Abstract In this work, we apply the adaptive discontinuous Galerkin method
(DGAFEM) to the convection dominated nonlinear, quasi-steady state convection
diffusion reaction equations. We propose an efficient algorithm to solve the sparse
linear systems iteratively arising from the discretized nonlinear equations. Numeri-
cal examples demonstrate the effectiveness of the DGAFEM to damp the spurious
oscillations for the convection dominated nonlinear equations.

1 Introduction

Many engineering problems such as chemical reaction processes, heat conduc-
tion, nuclear reactors, population dynamics are governed by coupled convection-
diffusion-reaction partial differential equations (PDEs) with nonlinear source or sink
terms. It is a significant challenge to solve such PDEs numerically when they are
convection/reaction-dominated, which is the case in our study. As a model problem,
we consider the coupled quasi-stationary model arising from the time discretization
of the time dependent nonlinear diffusion-convection-reaction equations
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with ˝ is a bounded, open, convex domain in R
2 with boundary @˝ D � ,

0 < �i � 1 are the diffusivity constants, fi 2 L2.˝/ are the source functions,
bi 2 �

W 1;1.˝/
�2

are the velocity fields, gi 2 H 1=2.�D/ are the Dirichlet
boundary conditions and u.x; t/ D .u1; : : : ; um/T denotes the vector of unknown
solutions. The coefficients of the linear reaction terms, ˛ > 0, stand for the temporal
discretization, corresponding to 1=�t , where �t is the discrete time step. For the
uniqueness of the solution of (2), we assume that the nonlinear reaction terms
are bounded, locally Lipschitz continuous and monotone, i.e. satisfy the following
conditions [3]

ri 2 C 1.RC
0 /; ri .0/ D 0; r 0

i .s/ � 0; 8s � 0; s 2 R

Such models describe chemical processes and they are strongly coupled as an
inaccuracy in one unknown affects all the others. Hence, an efficient numerical
approximation of these systems is needed. For the convection/reaction-dominated
problems, the standard Galerkin finite element methods are known to produce
spurious oscillations, especially in the presence of sharp fronts in the solution,
on boundary and interior layers. In contrast to standard Galerkin conforming
finite element methods, DG methods produce stable discretizations without the
need for stabilization strategies, and overcome the spurious oscillations due to the
convection domination. For linear convection dominated problems, the streamline
upwind Petrov-Galerkin(SUPG) method is capable of stabilizing the unphysical
oscillations [3, 4]. Nevertheless, in nonlinear convection dominated problems,
spurious oscillations are still present in crosswind direction. Therefore, SUPG
is used with the anisotropic shock capturing technique (SUPG-SC) for reactive
transport problems [3, 4].

Similar to the stabilized conforming finite elements, discontinuous Galerkin
finite element methods (DGFEMs) damp the unphysical oscillations for linear
convection dominated problems. In [9], several nonlinear convection dominated
problems of type (1) are solved with DGFEM and DG-SC, discontinuous Galerkin
method with the shock-capturing technique. The main advantages of DGFEMs
are the flexibility in handling non-matching grids and in designing hp-refinement
strategies. An important drawback is that the resulting linear systems are more
dense than the ones in continuous finite elements and ill-conditioned. The condition
number grows rapidly with the number of elements and with the penalty parameter.
Therefore, efficient solution strategies such as preconditioning are required to
solve the linear systems. In this paper, an adaptive discontinuous Galerkin method
(DGAFEM) is developed for the convection dominated nonlinear problems of type
(1) using the modification of a posteriori error estimates for linear convection
dominated problems in [6]. We show the effectiveness and accuracy of DGAFEM
capturing boundary and internal layers very sharply and without significant oscilla-
tions.

In the next two sections, we give the DGFEMs discretization and describe
the residual based adaptivity for nonlinear diffusion-convection-reaction problems.
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Section 4 deals with an efficient solution technique to handle the linear systems
arising from the DGAFEM. In Sect. 5, we demonstrate on two examples the
efficiency of the adaptivity for handling the sharp layers.

2 DG Discretization

The weak formulation of the scalar equation (m D 1) of (1) reads as
Z

˝

.�ru � rv C b � ruv C ˛uv/dx C
Z

˝

r.u/vdx D
Z

˝

fvdx 8v 2 V (2)

where the solution space U and the test function space V are given by

U D fu 2 H 1.˝/ W u D g on � g; V D fv 2 H 1.˝/ W v D 0 on � g

The variational form of the scalar equation (1) is discretized by the symmetric
discontinuous interior penalty Galerkin (SIPG) method with upwinding for the
convection part [1, 2]

ah.uh; vh/ C bh.uh; vh/ D lh.vh/ ; 8vh 2 Vh � H 1.˝/ (3)

ah.uh; vh/ D
X

K2�h

Z

K

�ruh � rvhdx C
X

K2�h

Z

K

.b � ruh C ˛uh/vhdx

�
X

e2�0[�

Z

e

f�rvhg � Œuh�ds �
X

e2�0[�

Z

e

f�ruhg � Œvh�ds

C
X

K2�h

Z

@K�n�

b � n.uout
h � uin

h /vhds �
X

K2�h

Z

@K�\� �

b � nuin
h vhds

C
X

e2�0[�

��

he

Z

e
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X
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Z

K

r.uh/vhdx;

lh.vh/ D
X

K2�h

Z

K

fvhdx C
X

e2�

Z

e

g

�
��

he

vh � �rvh � n
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b � ngvhds;
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where the finite dimensional solution and test function spaces are the same. @K� and
� � denote the inflow parts to an element boundary @K and the domain boundary � ,
respectively. The jump and average terms for uh and vh across the edges are denoted
by Œ�� and f�g, respectively. The parameter � 2 R

C
0 is called the penalty parameter

which should be sufficiently large for SIPG [6].

3 Adaptivity

We apply the residual based adaptive strategy in [6] which is robust, i.e. independent
of the Péclet number, for linear diffusion-convection equations. We include in the a
posteriori error estimates the nonlinear reaction terms as local contributions to the
cell residuals and not to the interior/boundary edge residuals [Chp. 5.1.4, [8]]. Let
the constant � � 0 satisfies

˛.x/ � 1

2
r � b.x/ � � ; k � r � b C ˛kL1.˝/ � ���

for a non-negative ��, to easily have the efficiency of the a posteriori error estimator.
We define the local error indicator for each element K 2 �h

	2
K D 	2

RK
C 	2

E0
K

C 	2

ED
K

;

	2
RK

D 
2
Kkf � ˛uh C ��uh � b � ruh � r.uh/k2

L2.K/
;

	2

E0
K

D
X

e2@K\�0

�
1

2
�� 1

2 
ekŒ�ruh�k2
L2.e/

C 1

2
.
��

he

C �he C he

�
/kŒuh�k2

L2.e/

�
;

	2

ED
K

D
X

e2@K\�

.
��

he

C �he C he

�
/kg � uhk2

L2.e/
;

with the weights 
K and 
e on an element K are defined for � ¤ 0


K D minfhK�� 1
2 ; �� 1

2 g; 
e D minfhe�
� 1

2 ; �� 1
2 g:

When � D 0, we set 
K D hK�� 1
2 and 
e D he�

� 1
2 . Our adaptive algorithm is

based on the standard adaptive finite element (AFEM) iterative loop: SOLVE !
ESTIMATE ! MARK ! REFINE. The mesh is marked at each iteration using
the Dörfler strategy and refined using the longest edge bisection method [5]. For
coupled problems, the elements in the set of union of each component are refined.
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4 Efficient Solution of Linear Systems

Because the stiffness matrices obtained by DGFEM become ill-conditioned and
more dense with increasing polynomial degree [2], several preconditioners are
developed for an efficient and accurate solution of linear diffusion-convection
equations under DG discretization. Here we apply the matrix reordering and
partitioning technique in [7], which uses the largest eigenvalue and corresponding
eigenvector of the Laplacian matrix. This reordering reflects very well the block
structure of the underlying sparse matrix.

The solution to (3) has the form uh D Pdof
iD1 Ui �i where �i ’s are the basis

functions spanning the DGFEM space Vh, and Ui ’s are the unknown coefficients.
Then, the discrete residual of (3) can be given as

R.U / D SU C h.U / � L (4)

where U D .U1; U2; : : : ; Udof /
T is the vector of unknown coefficients, S 2 R

dof �dof

is the stiffness matrix with the entries Sij D ah.�j ; �i /, h 2 R
dof is the vector

function of U with the entries hi D bh.uh; �i / and L 2 R
dof is the vector to the

linear form with Li D lh.�i /, i; j D 1; 2; : : : ; dof . We start with a non-zero initial
vector U 0. The nonlinear system of equations (4) are solved by Newton-Raphson
method. The linear system arising from i th-Newton-Raphson iteration step has the
form Jwi D �Ri , where J is the Jacobian matrix to R.U 0/ (i.e. J D S C h0.U 0/

and it remains unchanged among the iteration steps), wi D U iC1�U i is the Newton
correction, and Ri denotes the residual of the system at U i (Ri D R.U i/). Next,
we construct a permutation matrix P for the Jacobian matrix J as described in [7].
Then, we apply the permutation matrix P to obtain the permuted system Nw D b

where N D PJPT , w D Pwi and b D �PRi . After solving the permuted system, the
solution of the unpermuted linear system can be obtained by applying the inverse
permutation, wi D P T w. The permuted and partitioned linear system can be solved
via the block LU factorization in which the coefficient matrix has the form

N D
�

A B

C T D

�
D

�
A 0

C T S

� �
I U

0 I

�

where U D A�1B and S is the Schur complement matrix: S D D � C T U . For
the right hand side vector b D .b1; b2/

T and the reordered solution w D .w1; w2/T ,
solution of the block LU factorized system can be obtained in three steps as follows

Az D b1; Sw2 D b2 � C T z; w1 D z � Uw2 (5)

with both the matrices A and S are well-conditioned compared to the coefficient
matrix of the unpermuted system shown in Table 1.
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Table 1 Condition numbers
of the stiffness matrices
corresponding to the systems
obtained by the model in
Example 5.1 on a uniform
mesh

Degree 1 2 3 4

dof 24,576 49,152 81,192 122,880

J 299.1 660.8 1,596.2 3,399.0

S 139.9 279.1 911.7 1,485.7

A 5.3 18.3 37.7 79.7

5 Numerical Results

Example 5.1 We consider the problem in [3] on ˝ D .0; 1/2 with � D 10�6,
b D 1p

5
.1; 2/T , ˛ D 1 and r.u/ D u2. The source function f and the Dirichlet

boundary condition are chosen so that u.x; y/ D 1
2

�
1 � tanh 2x1�x2�0:25p

5�

	
is the

exact solution. The problem is characterized by an internal layer of thickness
O.

p
� j ln � j/ around 2x1 � x2 D 1

4
. This problem was solved using SUPG-SC

in [3] and SIPG-SC in [9]. Similar to those results, the mesh is locally refined by
DGAFEM around the interior layer and the spurious solutions are damped out in
Fig. 1, right similar to [3] using SUPG-SC, in [9] with SIPG-SC. On adaptively and
uniformly refined meshes, from the Fig. 2, left, it is evident that the adaptive meshes
save substantial computing time. On uniform meshes, the SIPG is slightly more
accurate than the SUPG-SC in [3]. The error reduction by increasing the degree of
the polynomials is remarkable on finer adaptive meshes (Fig. 2, right). For solving
the sparse linear systems, we present the results for the BiCGStab iterative method
of MATLAB with the stopping criterion as krkk2=kr0k2 � tol for tol D 10�4 (ri

is the residual of the corresponding linear system at the i th iteration) applied to
the original unpermuted system and Schur complement system with and without
preconditioner. As a preconditioner, the incomplete LU factorization of the Schur
complement matrix S (ILU(S )) is used. The linear systems with the coefficient
matrix A are solved directly. Table 2 shows that solving the problem by block LU
factorization where the Schur complement system is solved iteratively using the
preconditioner ILU(S ) is the fastest and has the least number of iterations. We use an
adaptive mesh by quadratic elements with dof 85,488 at the final refinement level of
the 16 refinement levels. The time to obtain the reordered matrix N and computing
the permutation in sum among the refinement levels takes 45:18 s, whereas, it takes
1:42 s to compute the Schur complement matrix S and ILU(S ), on a PC with Intel
Core-i7 processor and 8 GB 1066 MHz DDR3 RAM.

Remark We note that since the Jacobian matrix does not change during the
nonlinear iterations, the permutation, the Schur complement matrix and ILU(S)
are computed only once for each adaptive refinement level. In Table 2, we give the
number of Newton-Raphson iterations, the average number of BiCGStab iterations
for each adaptive mesh refinement level and the total time to solve the problem
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Fig. 1 Example 5.1, Adaptive mesh (left) and adaptive solution (right), quadratic elements with
dof 85,488
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Fig. 2 Example 5.1, Global errors: comparison of the methods by quadratic elements (left),
adaptive DG for polynomial degrees 1–4 (right)

Table 2 Example 5.1, Efficiency results for the sparse linear solver technique for adaptive mesh
refinement levels

Linear solver # Newton its. # BiCGStab its. Time (s)

BiCGStab w/o prec. (Unpermuted) 10–11 49–1,143 879.6

Block LU C (BiCGStab w/o prec.) 10–12 33–1,162 454.4

Block LU C (BiCGStab w/ prec. ilu(S) ) 10–14 4–82 144.9

just including the computation time for the reordered matrix N , the permutation
P , Schur complement matrix S , ILU(S ) and solving the linear systems among all
adaptive mesh refinement levels.

Example 5.2 We consider the two component quasi-steady problem from [4]

ui C b � rui � r � .�rui / C u1u2 D fi i D 1; 2
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Fig. 3 Example 5.2, Adaptive mesh (left) and the cross-section plot (right) in the crosswind
direction x1 C 2x2 D 1:5, quadratic elements with dof 144678

on ˝ D .0; 1/2 with � D 10�8, b D 1p
5
.1; 2/T . The source functions fi and the

Dirichlet boundary conditions are chosen with the exact solutions u1;2.x1; x2/ D
1
2

�
1 ˙ tanh 2x1�x2�0:25p

5�

	
. The equations are coupled by the lowest order terms of

the unknowns through ri .u; x/. This problem was solved in [4] with SUPG and
SUPG-SC and it was shown that unphysical oscillations are damped using SUPG-
SC with fourth order finite elements. Our results in Fig. 3 show that the sharp fronts
are very well detected and preserved with the adaptive DG using second order
elements. As a results, there is no over or under prediction, and artificial mixing
due to discretization will not occur.

We have shown that DGAFEM with the sparse linear solver is an efficient
method for solving nonlinear convection dominated problems accurately and
avoids the design of the parameters in the shock capturing technique as for
the SUPG-SC and DG-SC. The MATLAB programs can be obtained from
http://www.ceng.metu.edu.tr/m̃anguoglu/MatLab.zip.
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