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Abstract Steady mixed convection flow in a porous square cavity with moving side
walls is studied numerically using the dual reciprocity boundary element method
(DRBEM). The equations governing the two-dimensional, steady, laminar mixed
convection flow of an incompressible fluid are solved for various values of param-
eters as Darcy (Da), Grashof (Gr), and Prandtl (Pr) numbers. The results are given
in terms of vorticity contours, streamlines and isotherms. Further, average Nusselt
number variations with respect to the problem parameters are also presented. The
fluid flows slowly as Da decreases since the permeability of the medium decreases,
and the increase in Grashof number causes the flow to pass to the natural convective
behavior. DRBEM has the advantage of using considerably small number of grid
points due to the boundary only nature of the method. This provides the numerical
procedure computationally cheap and efficient.

1 Introduction

In many fundamental heat transfer analyses, convective flows in porous media have
received much attention and played the central role due to the important applications
as in packed sphere beds, insulation for buildings, grain storage, chemical catalytic
reactors, and geophysical problems. The underground spread of pollutants, solar
power collectors, and geothermal energy systems include porous media.

The theoretical and analytical details of heat transfer in porous medium may
be found in the books [5, 6]. Also, a lot of numerical studies concerning heat
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transfer in a porous medium are reported in the last decade. Among these, numerical
solutions obtained by DRBEM [9], finite element method (FEM) [2], penalty FEM
with biquadratic elements [10], finite volume method (FVM) [1, 11], and the finite
difference method (FDM) [4, 7] may be mentioned.

In this study, steady mixed convection flow in a porous square cavity with differ-
entially heated and moving side walls is studied numerically using the DRBEM.
An isotropic, homogeneous porous medium saturated with an incompressible,
viscous fluid is considered. The thermal and physical properties of the fluid are
assumed to be constant, but the fluid density varies according to Boussinessq
approximation. The fluid and the solid particles are also assumed to be in local
thermal equilibrium. Viscous dissipation, and Forchheimer terms (quadratic drag
terms) in the momentum equations are neglected.

The two-dimensional, steady, laminar mixed convection flow of an incompress-
ible fluid is taken into account. The non-dimensional governing equations in terms
of stream function  -temperature T -vorticity w are [2]
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where �p is the porosity of the porous medium, u D @ =@y; v D �@ =@x; w D
@v=@x�@u=@y. Non-dimensional physical parameters are Reynolds, Grashof, Darcy
and Prandtl numbers, respectively, given as

Re D U0L

�e
; Gr D gˇ�TL3
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with characteristic velocity U0, characteristic length L, gravitational acceleration
g, effective kinematic viscosity �e, permeability of the porous medium �, thermal
expansion coefficient ˇ, temperature difference �T D Th � Tc , effective thermal
diffusivity ˛e of the porous medium.

We consider the problem geometry consisting of the cross-section of a unit square
cavity which has the moving lids on the left and right walls (Fig. 1). The boundary
conditions are as follows. The velocity v D 1 on the vertical walls with u D  D 0;
and u D v D  D 0 on the horizontal walls. The right wall is the hot (Th D 1), and
the left wall is the cold (Tc D 0) wall while the top and bottom walls are adiabatic
(@T=@n D 0). Vorticity boundary conditions are unknown, and are going to be
derived with the help of DRBEM coordinate matrix during the iterative solution
procedure.



DRBEM Solution of Mixed Convection in a Porous Medium 691

Fig. 1 Problem configuration

2 DRBEM Application

DRBEM treats all the right hand side terms of Eqs. 1 as inhomogeneity, and an
approximation for this inhomogeneous term is proposed [8] as

b �
NCLX
jD1

˛j fj D
NCLX
jD1

˛jr2 Ouj (3)

where N is the number of boundary nodes, L is the number of internal collocation
points, ˛j ’s are sets of initially unknown coefficients, and the fj ’s are approximat-
ing functions which are related to particular solutions Ouj with r2 Ouj D fj . The
radial basis functions fj ’s are usually chosen as polynomials of radial distance
rij D

p
.xi � xj /2 C .yi � yj /2 as fij D 1 C rij C r2ij C : : : C rnij where i and

j correspond to the source(fixed) (xi ; yi ) and the field(variable) (xj ; yj ) points,
respectively.

DRBEM transforms differential equations defined in a domain ˝ to integral
equations on the boundary � . For this, differential equation is multiplied by the
fundamental solution u� D �ln.r/=.2�/ of Laplace equation and integrated over
the domain. In Eqs. 1, the right hand sides are approximated using Eq. 3 giving
Laplacian terms on both sides. Using Divergence theorem for the Laplacian terms on
both sides of the equation, domain integrals are transformed to boundary integrals
as follows
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where ci D 0:5 if the boundary � is a straight line and i 2 � , and ci D 1 when
node i is inside, Oqij D @Ouij=@n with the outward unit normal n to � .
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Discretizing the boundary � by using N linear elements, evaluating integrals
over each element, and then performing assembly procedure for all elements result
in a system of equations for each of the Eqs. 1 as

Hu� Guq D
�
H OU �G OQ

�
F�1b; (5)

where H and G are BEM matrices contain integral values of fundamental solution
u� and its normal derivative over the boundary elements, respectively. F is the
coordinate matrix formed from the radial basis functions fj ’s. OU and OQ matrices
are of size .N C L/ � .N C L/, and are built from particular solution Ou and its
normal derivative Oq D @Ou=@n at the .N C L/ source and field points. The vector b
is formed from the right hand sides of Eqs. 1.

Matrix-vector form for Eqs. 1 are written as
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where S D .H OU � G OQ/F�1; umC1 D .@F=@y/F �1 mC1; vmC1 D
�.@F=@x/F �1 mC1,
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, the subscript d shows the diagonal

matrix, and m is the iteration level.
Unknown vorticity boundary conditions are obtained from the definition of w as

w D @v
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with the help of coordinate matrix F . Also, all the space derivatives in b are
computed by using DRBEM coordinate matrix F , i.e.

@T

@x
D @F

@x
F�1T;

@w

@y
D @F

@y
F�1w: (8)

Systems of Eqs. 6a–6c are solved iteratively for the unknowns  ; T;w; and
normal derivatives  q; Tq;wq . Initially,  ; T and w are taken as zero except on
the boundary. First, Eq. 6a is solved for stream function. Then, stream function is
used to compute velocity components u and v inserting their boundary conditions.
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The energy and vorticity transport equations are then solved by using u and v,
respectively. The iterations continue until the criterion [4]

�� mC1 �  m��1
k mC1k1

C
��T mC1 � T m��1
kT mC1k1

C
��wmC1 � wm

��1
kwmC1k1

< � (9)

is satisfied where � D 10�5 is the tolerance to stop the iterations.
In order to accelerate the convergence for large values of problem parameters a

relaxation parameter 0 < 	 � 1 is used for the vorticity as wmC1  	wmC1 C
.1 � 	/wm. Further, average Nusselt number through the heated wall is computed
by Nu D R 1

0
.@T=@x/dy.

3 Numerical Results

As a validation case, a non-porous unit square cavity with heated bottom, cold top
wall, adiabatic left and right walls and moving top lid is considered. As is seen in
Table 1, present results using considerably small number of grid points are in good
agreement with the results in [10] where 57 � 57 grid points are used.

In the numerical computations of stream function, vorticity and temperature in a
square cavity with heated and upwards moving vertical walls, radial basis function
f D 1C r , and 8-point Gaussian quadrature are used for the construction of F;H
and G BEM matrices. N D 96; L D 625 are taken, and Re D 100 is fixed.
Cavity contains a fluid saturated porous medium with �p � 1. Mixed convection
flow behavior in this porous medium is depicted in terms of streamlines, isotherms,
and vorticity contours for various values of Da;Gr and Pr.

As Da decreases (Fig. 2), permeability decreases and causes a force opposite
to the flow direction which tends to resist the flow. This means that the fluid
flows slowly. While the center of streamlines is in the direction of moving lids,
they cluster along the left and right boundaries forming boundary layers, and the
effects of moving walls almost disappear. Isotherms become almost perpendicular
to the top and bottom walls pointing to the increase in conduction dominated effect.
Circulation in the vorticity through the upper corners due to the effect of moving

Table 1 Re D 500;

	 D 0:1; Nu comparison
with various Pr numbers

[10] Present

Pr Gr Nu Nu N,L CPU(sec.)

0.01 104 1.0431 1.0372 136,529 139.9

0.01 105 1.0721 1.0733 136,529 129.3

0.1 104 2.3815 2.3711 96,529 110.7

0.1 105 2.8704 2.8731 96,576 143.9

1 104 5.5695 5.5661 96,729 256.2

1 105 6.3313 6.3242 96,900 591.7
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Fig. 3 Pr D 0:71; Da D 0:01; �p D 1

lids diminishes, and strong boundary layers are formed through the right and left
walls leaving a stagnant region at the center.

As Gr increases, the left counter-clockwise secondary cell starts to be squeezed
through the left wall, and the clockwise primary cell is centered. Buoyancy effect is
pronounced due to the increase in Ri D Gr=Re2. That is, natural convection is high.
Actually, this can be seen in isotherms at Gr D 105. While the isotherms pronounce
the forced convection with Gr D 103; Da D 0:01(Ri D 0:1) in Fig. 2, they cluster
through the left and right walls forming strong temperature gradients for Gr D 105
(Fig. 3). Even though there is a Darcy effect with strength Da D 0:01, one is able
to observe the characteristics of mixed convection flow in a non-porous medium in
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Fig. 4 Da D 0:01; Gr D 103; �p D 1
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Fig. 5 Mid-u-velocity profile and average Nusselt Number on the heated wall. (a) Gr D
103; Pr D 0:71; �p D 1. (b) Pr D 0:71; �p D 1

the cavity [3]. Vorticity almost covers the cavity with new cells through the left and
right walls, and spreads also along the top and bottom walls.

The increase in Pr only affects the isotherms (as is seen in Fig. 4) due to the
dominance of convection terms in the temperature equation.

The decrease in the velocity of the fluid with the decrease in Da number is
shown in Fig. 5a with the u-velocity profile through x D 0:5. The dominance of
natural convection with high Gr is depicted in Fig. 5b. When Gr is increased, Nu
values also increase. Average Nusselt number is almost the same for all values of
Grashof number with Da � 10�4 due to the dominance of conduction. However, Nu
increases as Da increases showing the increase in the heat transfer.

Finally, we show how the heat transfer is affected by different values of porosity.
As is seen in Fig. 6a (Ri < 1, forced convection is dominant), Nu increases at all �p
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Fig. 6 Average Nusselt number variations with �p on the heated wall. (a) Gr D 103;Pr D 0:71.
(b) Da D 0:01;Pr D 0:71

values as Da increases. High Nu values are obtained by small �p values which yields
the increase in convective heat transfer. As the natural convective effect increases
Ri > 1 (Fig. 6b), it is found that Nu takes larger values with �p D 0:8 than the other
ones. Namely, natural convection is pronounced with the increase in �p .

Conclusion
The two-dimensional, steady mixed convection flow in a square cavity with
porous medium is numerically solved by dual reciprocity boundary element
method. The space derivatives in inhomogeneous terms as well as unknown
vorticity boundary conditions are easily computed by the coordinate matrix.
For this Brinkmann-extended Darcy model, the decrease in Darcy number
causes the fluid to flow slowly, and the heat to transfer in conductive mode.
Natural convection is pronounced with the increase in Grashof number. In
natural convection mode (Ri > 1), convective heat transfer increases in a high
porosity of the medium.
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