
Scalable Hybrid Parallelization Strategies
for the DUNE Grid Interface

Christian Engwer and Jorrit Fahlke

Abstract The DUNE framework provides a PDE toolbox which is both flexible and
efficient. Integration of hardware oriented techniques into DUNE will be necessary
to maintain performance on modern and future architectures. We present the current
effort to add hybrid parallelization to the DUNE grid interface, which up to now only
supports MPI parallelization. In current hardware trends, we see a transition from
multi-core to many-core architectures, like the Intel PHI. Techniques which worked
well on traditional multi-core CPUs don’t scale anymore on many-core systems. We
compare different strategies to add a thread parallel layer to DUNE and discuss their
scalability and performance.

1 Introduction

Numerical software currently undergoes a dramatic change. We discuss this change
in the context of simulations of partial differential equations (PDEs). Since math-
ematical models are growing in complexity, we seek coupled multi-physics appli-
cations, and advanced numerical methods. This calls for flexible general purpose
frameworks, with a large body of functionality.

At the same time the underlying hardware is posing orthogonal challenges.
The memory and power wall problems are becoming hard limitations, and further
performance improvements are only achieved by using all levels of parallelism and
heterogeneity. Many people believe this can only be achieved by hardware-software
co-design, which contradicts the flexibility goal [5].

Simulation Software becomes more specialised and at the same time generalised.
On one hand, applications need to specialise toward advanced models in order to
answer more detailed questions. On the other hand, it is infeasible to write such an
application from scratch, so a general basis is needed to build upon. Here Software
frameworks play an important role to provide the required flexibility. As applications

C. Engwer (�) • J. Fahlke
Institute for Computational und Applied Mathematics, WWU Münster, Münster, Germany
e-mail: christian.engwer@uni-muenster.de; jorrit.fahlke@uni-muenster.de

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced
Applications - ENUMATH 2013, Lecture Notes in Computational Science
and Engineering 103, DOI 10.1007/978-3-319-10705-9__57

583

mailto:christian.engwer@uni-muenster.de
mailto:jorrit.fahlke@uni-muenster.de

584 C. Engwer and J. Fahlke

continue to grow in complexity, the need for sustainable development of software
for PDEs is increasing rapidly: Modern numerical ingredients such as unstructured
grids, adaptivity, high-order discretizations and fast and robust multilevel solvers are
required to achieve high numerical efficiency, and several physical models must be
combined in challenging applications. This is beyond the scope of an individual
simulation application, but requires additional support. Frameworks like Deal.II
[1], Fenics [8], or DUNE [2, 3] (the one we are focusing on) support developers
by providing a rich set of numerical algorithms and mathematical models. Such
frameworks are designed from the beginning for flexibility and generality. Thus
users can easily extend the generic framework code with their own algorithms and
models. Using modern C++ techniques DUNE supports this fusion of user and
framework code at compile time, which enables many compiler optimisations and
thus grants flexibility and efficiency.

Hardware is undergoing a dramatic change. Current peta-scale systems in general
still follow the old paradigms of high performance compute nodes, linked by
fast interconnects. Both on the low-power end and at the high performance end,
future systems will differ significantly: Typical workstations and cluster nodes now
comprise at least two multicore CPUs and potentially several manycore accelerators
such as GPUs, and energy-efficient designs such as ARMCGPU or BlueGene-
Q are gaining ground. Future systems will offer much less memory per node,
and show a massive increase of parallelism inside a single node, either with a
‘many conventional core’ approach or by combining fewer cores with specialised
accelerator designs like GPUs [6]. This is a 100 to 1,000-fold increase of parallelism
within each node, combined with an ever increasing impact of the memory wall
problem. While message passing will still be the communication of choice between
NUMA-nodes, dedicated hierarchic layers of hybrid parallelism will be necessary
to exploit instruction level parallelism (ILP) and short-vector units (SIMD).

The Challenge posed for frameworks is the adoption of these new hardware
paradigms. As frameworks allow for thorough user extensions at a very fine
grained level, it is much harder to support modern hardware than it is for classic
coarse grained libraries like BLAS. A complete rewrite of the framework for every
change in hardware is not feasible and contradicts the concept of fine grained user
interfaces. Thus all changes in the framework should be hidden from the user code,
or at least require only moderate changes. Keeping the generality and flexibility of
software frameworks while adapting them to the hardware revolution to make use of
the advertised performance improvements in a transparent way is the main challenge
today.

Our aim is to combine the flexibility, generality and application base of DUNE
[2,3] with the concepts of ‘hardware-oriented numerics’ as developed in the FEAST
project [9]. The hypothesis is that advanced numerical methods are the key to enable
efficient use of the underlying hardware and to maintain generality alike. The work
presented in this paper is part of the EXA-DUNE1 project.

1http://www.sppexa.de/general-information/projects.html#EXADUNE

http://www.sppexa.de/general-information/projects.html#EXADUNE

Scalable Hybrid Parallelization Strategies for the DUNE Grid Interface 585

2 Concepts

For PDE-based simulations the computation time is dominated by two phases, the
assembly and the solving of sparse linear problems. We define a partition T .˝/

of the computational domain, which we refer to as the mesh or grid. This mesh
induces our FEM function space and our degrees of freedom. On each cell of the
mesh local contributions to the global system matrix are computed and collected in
a local matrix, then these local matrices are used to update the global matrix.

To maintain performance assembling of the linear system and the linear solver
need to be accelerated homogeneously. In the following we discuss the necessary
changes to the DUNE grid interface and to the assembler in DUNE-PDELab.
Changes to the linear algebra are not discussed in this paper and will be incorporated
later.

3 Design and Implementation

The mesh is one of the key components of DUNE. The grid interface [2] follows
a generic definition [3], which can be implemented in many different ways and
also allows to use existing external mesh libraries through this interface. Based on
this grid interface and on the linear algebra library (DUNE-ISTL) the discretization
module DUNE-PDELab provides many choices of function spaces and many
different discretization schemes, which the user can easily extend or combine into
complete discretizations.

Up to now DUNE only considered MPI parallelization, as suitable data decompo-
sition is directly supported by the DUNE grid interface. As DUNE supports external
grid managers and many of these were only designed for MPI and don’t support
hybrid parallelization, we are seeking a hybrid approach which can be implemented
on top of the existing grid interface. Such an interface can be implemented in a
generic fashion, but can be specialised if a specific grid implementation provides
additional information.

Levels of Parallelism We plan for three levels of parallelism. For an efficient
assembly of the stiffness matrix and the right hand side vector, the key is concurrent
access to grid information and to associated data.

Globally the grid is partitioned using the existing MPI layer. This gives coarse
grained parallelism on the level of UMA nodes, where all cores within one MPI
node have uniform memory access.

Within each UMA node system threads are used to share the workload among
all cores. For a user-defined number of concurrent threads the grid will be locally
partitioned such that each thread handles the same amount of work.

On the finest layer future extensions will make use of vectorisation (SIMD,
ILP) by adapting the internal data structures used in DUNE and especially in the
assembler.

586 C. Engwer and J. Fahlke

Shared Memory parallelization using system threads is the main focus of our
following experiments. The coarse grained message-passing level is used as it is
and finer grained vectorisation level will be investigated in future work.

We introduce the concept of EntitySets to define iterator ranges, which
describe different mesh partitions. An EntitySet describes a set of grid objects,
e.g. a set of grid cells, which can be iterated over. For each cell and the associated
sub-entities we compute indices to store data consecutively; using these indices
we can directly access linear algebra vectors or matrices. As the EntitySet
lives outside the original mesh, it can take locally varying computational costs into
account.

For the local partitioning of a mesh T .˝/ we consider three different strategies,
where the first two are directly based on the induced linear ordering of all mesh cells
e 2 T .˝/.

Strided: For P threads each thread p iterates over the whole set of cells e 2
T .˝/, but stops only at cells where e mod P D p holds. As all P threads
have to iterate over the whole grid simultaneously, they might start competing
for bandwidth.

Ranged: We define consecutive iterator ranges of the size jT j=P . This is
efficiently implemented using entry points in the form of begin and end iterators.
The memory requirement is O.P / and thus will not strain the bandwidth.

General: Technically all other partitioning strategies will be handled in the same
way. On structured meshes we can directly define geometric partitions, e.g.
equidistant partitions along one or all coordinate axes (later called sliced or
tensor, repectively). For unstructured meshes graph partitioning libraries like
METIS or SCOTCH offer different strategies. We support all these by storing
copies of all cells in an EntitySet. While this approach is the most flexible
one, it is memory intensive, which might lead to cache trashing. The additional
memory requirement is O.jT j/, but the constant can be big, depending on the
actual grid implementation.

Data Access is the other critical component. During assembly data races can occur,
as different local vectors and local matrices contribute to the same global entries.
Two approaches are possible to avoid race conditions: locking and colouring. As
global locking is known to diminish performance as all threads are competing for
this single lock, we discard this option right away and consider three different
strategies:

Elock: entity-wise locks are expected to give very good performance, as they
correspond to the granularity of the critical sections. The downside is the
additional memory requirement of O.jT j/.

Batched: batched write operations are a compromise between global and entity-
wise locking. Threads still compete for a global lock, but the frequency of
locking attempts is reduced by collecting updates in a temporary buffer. A lock is
acquired when the buffer is full and all buffered updates are performed at once.
The additional memory is O.P / with a large constant.

Scalable Hybrid Parallelization Strategies for the DUNE Grid Interface 587

Colouring: colouring avoids competing data access by assigning each partition
to a colour such that there is no overlap between partitions of the same color.
Different colors must be handled strictly in sequence, but partitions of the
same color may be handled concurrently. Colouring is not meaningful for some
partitioning strategies, e.g. strided and ranged. In general colouring may add to
the set-up time, but requires very little memory, O.P / with a small constant.

4 Performance Evaluation

Our goal is to evaluate the different strategies for system-level thread parallelization.
We validate the cross-architecture scalability and formulate best practice sugges-
tions. We restrict ourselves to the test problem of a stationary advection-diffusion
equation in two dimensions

r � f�A.x/ru C b.x/ug D f in ˝ (1)

with Dirichlet and outflow boundary conditions and compare the performance for
assembling the stiffness matrix and the residual. These are the most expensive mesh-
related operations in the FE method. Equation (1) is discretized using the weighted
SIPG discontinuous Galerkin method [4]. Ansatz and test space are discretized
using an orthonormal P k basis of degree k. While this scheme can actually be
implemented in a completely race-free manner, doing so means that fluxes have
to be computed twice.

To get a worst case estimate on the impact of different partitioning and data
access strategies, we use a lightweight MPI-parallel structured mesh (Dune::
YaspGrid) for our performance evaluations. For unstructured meshes the relative
overhead will be considerably smaller and thus we expect better parallel efficiency.

We discuss timing results and scalability for the different hybridisation strategies
and compare the results for a multi-core system with many-core architecture.
Our experiments for the multi-core system are performed on a 4-socket (i.e.
4-UMA-node) Intel Xeon E7-4850 system at 2.00 GHz, with 10 cores per socket,
2 hyperthreads per core, 198 GB DDR3 total memory and 4 � 25:6 GB/s transfer
rate. The many-core system is an Intel Xeon-PHI 5110P with 60 compute cores at
1.05 GHz, 4 hyperthreads per core, 8 GB total memory and 320 GB/s bandwidth.
Performance is measured for the assembly of the residual and of the Jacobian, i.e.
the right-hand side and the stiffness matrix. Additionally we compare results for
different polynomial degrees.

On the CPU we observe good scalability for all partitioning strategies, see Fig. 1.
This is in correspondence to the experimental hybrid parallelization discussed in [7].
The parallel efficiency of the residual drops down to �50 %, whereas the Jacobian
keeps an efficiency �60 % up to the 10 physical cores. Hyper-threading improves
the run times further, even though the efficiency drops significantly. The better

588 C. Engwer and J. Fahlke

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 8 10 12 16 20

Effi
ci

en
cy

#threads

res ranged
res sliced
res strided
res tensor
jac ranged
jac sliced
jac strided
jac tensor

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 8 10 12 16 20

Effi
ci

en
cy

#threads

res batched
res colored
res elock
jac batched
jac colored
jac elock

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 10 20 40 60 120 240

Effi
ci

en
cy

#threads

res ranged
res sliced
res strided
res tensor
jac ranged
jac sliced
jac strided
jac tensor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 2 4 10 20 40 60 120 240

Effi
ci

en
cy

#threads

res batched
res colored
res elock
jac batched
jac colored
jac elock

Fig. 1 Parallel efficiency of the assembly of residual (res) and Jacobian (jac) for different
partitioning (left, entity-wise locking) and locking (right, sliced partitioning) strategies on CPU
and PHI, polynomial degree k D 1

efficiency of the Jacobian is due to the increased algorithmic intensity for higher
polynomial degrees.

For data access we compare batched writes, entity-wise locks and a lock-free
strategy, via colouring. In our experiments the performance of entity-wise locking
and colouring is comparable. Batched writes pose difficulties when assembling the
Jacobian: the performance of batched writes depends severely on the size of the
temporary buffer and the sparsity pattern, which means that good performance can
only be achieved by tuning buffer sizes.

By comparing different partitioning strategies possible performance issues
become more visible. While strided partitioning is attractive in multi-core CPU
systems, it does not scale to the larger numbers of cores on the PHI. This is to be
expected: for this kind of partitioning, all threads will usually operate on nearby
mesh cells at any given time. On the CPU they benefit from the level 3 cache shared
by all 10 cores: one thread is likely to access data that a different thread has just
loaded. On the PHI each of the 60 cores has its own cache: the cores compete for
the memory bandwidth to transfer cache lines, but only a small part of each cache
line is actually used for computation.

Apart from strided partitioning, the choice of partitioning strategy has very
little effect. This means that the memory bandwidth has not been reached for
these schemes; we expect this effect to become important when element local
computations are vectorized. In this case it will be necessary to further increase the
algorithmic intensity—either by the use of significantly higher polynomial orders,
or by using locally structured low-order computations.

Scalable Hybrid Parallelization Strategies for the DUNE Grid Interface 589

Table 1 Comparison of different polynomial degrees k, number of threads P , and hardware X .
Time per DOF tX

P Œ�s� and efficiency EX
P of the Jacobian assembly using sliced partitioning and

entity-wise locking. We see a clear benefit from higher order discretizations, due to the increased
algorithmic intensity

k t
CPU

1 t
CPU

10 t
CPU

20 E
CPU

10 E
CPU

20 t
PHI

1 t
PHI

60 t
PHI

120 t
PHI

240 E
PHI

60 E
PHI

120 E
PHI

240

0 4.59 0.74 0.54 62% 42% 59.57 1.33 1.17 1.20 75% 43% 21%

1 1.38 0.22 0.17 62% 42% 18.92 0.37 0.27 0.26 84% 57% 30%

2 1.10 0.15 0.12 72% 46% 17.12 0.32 0.21 0.19 90% 69% 38%

3 1.29 0.16 0.13 79% 50% 19.84 0.36 0.23 0.20 92% 72% 41%

4 1.52 0.18 0.15 87% 49%

5 1.81 0.21 0.18 88% 51%

Table 1 shows the computation time per DOF and the obtained efficiency for
different polynomial degrees in the DG discretization. Due to increased algorithmic
intensity the efficiency increases for higher order discretizations. Hyperthreading
does diminish the efficiency, but still gives a slight improvement in computation
time. In computation time the Xeon PHI does not pay of, as the current implemen-
tation does not use vectorisation, which necessary to unlock the potential of the PHI.

Summary and Conclusions
We have shown that many-core architectures require additional care in design-
ing the thread parallelism for hybrid simulations. As many mesh libraries
were only designed for distributed memory, using MPI parallelization, we
designed the extensions such that thread parallelism can be implemented on-
top of an existing DUNE grid. Support for this additional layer was added to
the DUNE-PDELab module. We emphasise that from the user point of view
the changes are totally transparent and hidden underneath the discretization
interface.

We demonstrated performance tests on an Intel Xeon PHI and compared
with results for a 4-socket Intel Xeon E7-4850 system. With a ranged
partitioning and entity-wise locking, or with colouring and the according
partitioning, it is possible to provide a low overhead thread parallelization
layer, which shows good performance on classic multi-core CPUs and on
modern many-core systems alike. The performance gain from coloring is
negligible, but increases code complexity, so that this approach is less
favourable. We increased the efficiency further to �90 % by the use of higher
order methods.

Supporting modern hardware paradigms is possible within a general
purpose interface, without sacrificing flexibility and still obtain good perfor-
mance. From the user’s perspective all changes are completely transparent.

(continued)

590 C. Engwer and J. Fahlke

Future work will investigate how to add SIMD and wide-SIMD support
during the assembly of stiffness matrices and residuals and incorporate SIMD
support in the linear algebra. Adding SIMD support is still an open issue,
because in order to keep flexibility, it is no option to directly use intrinsics in
the user code.

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Programme 1648 ‘Software for Exascale Computing’ (SPPEXA).

References

1. W. Bangerth, C. Burstedde, T. Heister, M. Kronbichler, Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw. 38(2), 14:1–
14:28 (2012)

2. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger,
O. Sander, A generic grid interface for parallel and adaptive scientific computing. part II:
implementation and tests in DUNE. Computing 82(2–3), 121–138 (2008)

3. P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander, A generic
grid interface for parallel and adaptive scientific computing. part I: abstract framework.
Computing 82(2–3), 103–119 (2008)

4. A. Ern, A.F. Stephansen, P. Zunino, A discontinuous galerkin method with weighted averages
for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer.
Anal. 29(2), 235–256 (2009)

5. X.S. Hu, R.C. Murphy, S. Dosanjh, K. Olukotun, S. Poole, Hardware/software co-design
for high performance computing: challenges and opportunities, in 2010 IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis (CODESC
ISSS), Scottsdale (IEEE, 2010), pp. 63–64

6. D.E. Keyes, Exaflop/s: the why and the how. Comptes Rendus Mécanique 339(2–3), 70–77
(2011)

7. R. Klöfkorn, Efficient matrix-free implementation of discontinuous galerkin methods for
compressible flow problems, in ALGORITMY 2012, Proceedings of Contributed Papers and
Posters, Podbanske, ed. by A. Handlovičová, Z. Minarechová, D. Ševčovič (Publishing House
of STU, 2012), pp. 11–21. http://www.iam.fmph.uniba.sk/algoritmy2012/

8. A. Logg, K.-A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite
Element Method (Springer, Berlin/New York, 2012)

9. S. Turek, D. Göddeke, C. Becker, S. Buijssen, S. Wobker, FEAST – Realisation of hardware-
oriented numerics for HPC simulations with finite elements. Concurr. Comput.: Pract. Experi-
ence 22(6), 2247–2265 (2010)

http://www.iam.fmph.uniba.sk/algoritmy2012/

	Scalable Hybrid Parallelization Strategiesfor the DUNE Grid Interface
	1 Introduction
	Simulation Software
	Hardware
	The Challenge

	2 Concepts
	3 Design and Implementation
	Levels of Parallelism
	Shared Memory
	Data Access

	4 Performance Evaluation
	Summary and Conclusions
	References

