
Sensitivity Estimation and Inverse Problems
in Spatial Stochastic Models of Chemical
Kinetics

Pavol Bauer and Stefan Engblom

Abstract We consider computational stochastic modeling of diffusion-controlled
reactions with applications mainly in molecular cell biology. A complication from
the traditional ‘well-stirred’ case is that our models have a spatial dimension. Our
aim here is to put forward a practical algorithm by which perturbations can be
propagated through these types of simulations. This is important since the quality
of experimental data calls for frequently estimating stability constants. Another use
is in inverse formulations which generally relies on being able to effectively and
accurately judge the effects of small perturbations. For this purpose we present our
implementation of an “all events method” and give two concrete examples of its use.
One case studied is the effect of stochastic focusing in the spatial setting, the other
case treats the optimization of a small biochemical network.

1 Introduction

In the classical case of non-spatial stochastic modeling of chemical kinetics, the
reaction rates are understood as transition intensities in a continuous-time Markov
chain Xt�0. When spatial variability is important, space may be discretized in
voxels. Between voxels, diffusion-, or more generally, transport rates become
transition intensities in a Markov chain which now takes place in a much larger
state space.

This is the point of view taken in the software framework URDME [2, 5] where
fairly large-scale spatial stochastic reaction-diffusion models can be simulated. We
have developed a solver for sensitivity analysis which allows us to compare single
trajectories under arbitrary perturbations of input data and opens up for computing
stability estimates as well as optimizing models under various conditions.
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For a given parameter perturbation c ! c Cı the task is to characterize the mean
effect on some function of interest,

EŒf .X.T; c C ı// � f .X.T; c//�; (1)

for example, by computing a sample average. As a prototypical application, c is a
rate constant and f a measure of the molecular population Xt .

The obvious way to carry out this is to conduct two Monte Carlo simula-
tions using independent random numbers and generating N trajectories each of
f .X.T; c C ı// and f .X.T; c//, and then taking the average. Two factors can lead
to unsatisfactory results with this approach. Firstly, with independent samples, the
variance of f .X.T; c C ı// and f .X.T; c// can be large compared to the difference
f .X.T; c C ı// � f .X.T; c//. This is the variance reduction problem which has
been discussed in the well-stirred setting by others [12]. Secondly, a slightly more
subtle point has been pointed out in [12]; solver algorithms related to Gillespie’s
Direct Method [8] are not suitable to compute the difference between two processes
X.T; cCı/ and X.T; c/ as their coupling is simply not the intended one. This would
be a problem for instance, if (1) were to be replaced by

EŒf .X.T; c C ı/ � X.T; c//�; (2)

and f some nonlinear function. In fact, a popularly used algorithm for solving
spatial stochastic models, the Next Subvolume Method (NSM) [3], belongs to this
class of algorithms and can therefore not be used.

In this paper we present the “All Events Method”; a variant of the so-called
Common Reaction Path method [12], extended for spatial models in URDME and
meeting both the criteria above for an efficient and sound estimation of (1)–(2). In
Sect. 2 we give a brief overview of the modeling involved, in the non-spatial as well
as in the fully spatial setting, and we also sketch a theory for perturbations, including
some implementation aspects of our AEM-solver. In Sect. 3 we discuss two applied
examples and show how this solver can be conveniently used in the sense of both
forward- and backward formulations.

2 A Viable “All Events Method”-Implementation

After a brief review of stochastic reaction-diffusion modeling we will here summa-
rize the logic behind URDMEs AEM-solver.
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2.1 Spatial Stochastic Chemical Kinetics

According to classical well-stirred stochastic modeling of chemical kinetics, reac-
tions are transitions between states x 2 ZDC, counting the number of molecules of
each of D distinct species. The transition intensity defines the probability per unit
of time for the transition from the state x to x C Sr ;

x
wr .x/���! x C Sr; (3)

where the transition vector Sr 2 ZD is the r th column in the stoichiometric matrix
S . Equation (3) defines a continuous-time Markov chain Xt�0 on ZDC.

For spatially extended problems, a stochastic model can be defined by first
discretizing space in voxels. Molecular transport can then be handled as a “reaction”
which brings a molecule of the l th species from voxel i to j ,

Xli
aijxli��! Xlj; (4)

where xli is the number of molecules of species l in subvolume i . When space is
discretized by general unstructured meshes, suitable rate constants can be obtained
by a numerical discretization of the diffusion equation. The consistency in this
approach hinges on the fact that the expected value of the concentration converges
to the deterministic numerical solution [5].

2.2 Path-Wise Analysis of Perturbations

Without loss of generality, we consider the well-stirred case (3). Let the state X.t/ 2
ZDC count the number of molecules of the D species. The associated Markov chain
can be written in the convenient jump SDE form

dXt D S�.dt/; (5)

with counting measure � D Œ�1; : : : ; �R�T . According to this compact notation the
time to the arrival of the next reaction of type r is exponentially distributed with
intensity wr .Xt�/. A perhaps more familiar notation is Kurtz’s random time change
representation [6, Chap. 6.2], in which the path is characterized in terms of unit-rate
Poisson processes ˘r ,

Xt D X0 C PR
rD1 Sr˘r

�R t

0
wr .Xs�/ ds

�
: (6)

This naturally gives rise to the term operational time for the argument to each of the
R Poissonian processes.
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Let a trajectory Y.t/ be a perturbed version of X.t/ in the sense that the former
is driven by modified rates vr .Yt /, but otherwise has an identical reaction topology
S . To compare the two trajectories we write

dXt D S
�
�.0/.w.Xt�/; v.Yt�/I dt/ C �.ı/.w.Xt�/; v.Yt�/I dt/

�
; (7)

dYt D S
�
�.0/.w.Xt�/; v.Yt�/I dt/ C �.ı/.v.Yt�/; w.Xt�/I dt/

�
; (8)

in terms of the base (superscript 0) and remainder counting measures (superscript
ı), respectively. The intensities for �

.0/
r and �

.ı/
r are given by

wr .x/ ^ vr .y/ and wr .x/ � .wr .x/ ^ vr .y// : (9)

As indicated in the order of the arguments in (7) and (8), there is an asymmetry in
the remainder measure.

To analyze Zt WD kXt � Yt k2 we apply a form of Itô’s formula [1, Chap. 4.4.2],

dZt D 2.Xt� � Yt�/T SŒ�
.ı/
w;v � �

.ı/
v;w�.dt/ C S2Œ�

.ı/
w;v C �

.ı/
v;w�.dt/: (10)

Taking expectation values and ignoring the martingale part we get, after determining
the drift parts of the relevant measures,

d=dt EZt D E
�
2.Xt � Yt/

T SŒw.Xt / � v.Yt /� C S2jw.Xt/ � v.Yt /j
�
: (11)

At this point we need some assumption on the dynamics of the process and on the
perturbation. Let the rates be locally Lipschitz and let the magnitude of the relative
perturbation be ı. Then for kxk _ kyk � P ,

kw.x/ � v.y/k � kw.x/ � w.y/k C kw.y/ � v.y/k (12)

� LP kx � yk C ıkw.y/k � CP .ı C kx � yk/: (13)

Working similarly, we find from (11) that for some constant CP ,

d=dt EkXt � Ytk2 � E CP .ı C kXt � Ytk2/; (14)

where we used the simple observation that for integers n, knk � knk2. From
Grönwall’s inequality, assuming X0 D Y0, we get under a stopping time t � �P WD
inft�0fkXtk _ kYtk > P g that

EkXt � Ytk2 � ı.exp.CP t/ � 1/: (15)

Thus, for bounded systems, (15) predicts a RMS perturbation which behaves as ı1=2.
For unbounded systems, the only immediate generalization is that the limit as ı ! 0

is zero, see [4] and the references therein.
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2.3 Simulation Using Consistent Poisson Processes

To motivate our approach to evolving two or more trajectories which can be path-
wise compared, consider first the diffusion approximation of (5),

dXt D Sw.Xt / dt C Sw.Xt/
1=2 dW t : (16)

Two comparable replicas of (16) can clearly be constructed using the same Wiener
process W .t/. In discrete time this boils down to using the same sequence of normal
random numbers. This idea can be transferred to the current setting by simply using
the same sequence of random numbers when simulating different trajectories, and it
leads to the Common Random Numbers method [9].

However, we see from the representation (6) that two trajectories formed by
identical Poisson processes are stronger candidates to being similar than any
dependency on identical random numbers may generate. This is the motivation
behind the Common Reaction Path method [12]. Here all R reaction channels access
their own stream of random numbers such that a consistent operational time in
the sense of (6) is continuously well-defined. In practise we implement this by
storing generator seeds si for every channel i and use these for every update of the
corresponding Poisson process. For the current case of spatial models this implies
that all reaction events and all transport events must be associated with a consistent
Poisson process. This in contrast to the NSM [3] where only a ‘total event’ process
per voxel is available.

A remark on continuity is made in [12, Appendix B]. When a zero rate is
encountered a discontinuity typically forms which is due to the fact that in most
implementations, a zero rate will lead to discarding the previous operational time.
A new, uncorrelated waiting time is drawn whenever the rate becomes non-zero
again. In our implementation we circumvent this problem by storing the pre-zero
operational time � inf and associated non-zero rate winf. When the channel is re-
activated we compute the next waiting time �new using the rescaling (essentially
proposed in [7]),

�new D tcurrent C �
� inf � tcurrent

�
winf=wnew: (17)

For more information on implementation of solvers in URDME, consult [2].

3 Sample Applications

We shall now consider two sample applications of our URDME solver; one example
in the ‘forward’ mode, i.e. propagating a definite perturbation, and one example in
the ‘backward’ (or inverse) setting. Due to the computational complexity involved,
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the inverse problem we choose to consider is non-spatial. However, it is clearly
possible to, at an increased computational cost, also target fully spatial formulations.

3.1 Spatial Stochastic Focusing

As a basic but informative example we consider the following enzymatic law,

C C E
k c�e��! P C E; (18)

in which E is an enzyme and C an intermediate complex which matures into a
product P . The model is completed by adding the in- and outflow laws

; ˛C•̌
C c

C; ; ˛E•̌
Ee

E; P
ˇP p��! ;: (19)

Stochastic focusing [11] is a non-linear stochastic effect under which an input
signal is strongly amplified, and notably much more effectively so than for the
corresponding mean field model. In the present case this effect can be observed
in the response of the number of intermediate complexes C when the birth rate ˛E

is perturbed according to ˛E ! ˛E.1 � ı/ (Fig. 1, left). A spatial version of (18)
and (19) can be defined in the geometry ˝ D Œ0; 1� with diffusion of the species.
We generate an ‘unperturbed’ trajectory C1.t/ for which ˛E D c is constant and
a ‘perturbed case’ C2.t/ for which ˛E is replaced by the space dependent function
˛E.x/ D c.1=2 C x/. Note that this preserves the total production rate in the sense
that

Z

˝

˛E.x/dV D c: (20)

We combine the reactions with varying diffusion " and observe a phenomenon
which can be referred to as Spatial stochastic focusing (Fig. 1, center/right).

In the table below we determine at two different perturbations ı and for several
values of TOL, the number of realizations N D 10; 20; : : : needed to bring the
standard Monte Carlo error estimate std=

p
N below TOL. This for the case of

estimating EŒC2.1/ � C1.1/� using either the Next Subvolume Method [3] or the
solver proposed by us.

NSM AEM

ın TOL 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

1=2 1,480 3,470 6,990 33,010 30 600 3,630 12,870

1=32 1,350 2,780 5,630 14,970 10 20 60 3,190



Sensitivity and Inverse Problems in URDME 525

0 10
5

10

15

20

25

30

35

40

45

Time

C

C1, C2 (0D)

ODESDE

0 1/2 1
0

10

20

30

40

50

C
T

st
ea

dy

E[C
1
]

0 1/2 1
0

10

20

30

40

50
C

T
st

ea
dy

Space

E[C
2
]

0 10
0

500

∫ Ω
 C

 d
V

E[C
1,2

]

0 10
0

50

100

E[C
2
−C

1
]

∫ Ω
 C

 d
V

0 10
0

1

2

x 10
5

Time

E[(C
2
−C

1
)2]

 

 

∫ Ω
 C

 d
V

C
1

C
2

Fig. 1 Left: ODE and mean SDE solutions of the unperturbed (C1 , red, lower) and perturbed (C2 ,
blue, upper) model (18)–(19) in the well-stirred case (ı D 1=2). Center: SDE solutions with spatial
perturbation and varying diffusion. Each point represents the mean of C at steady-state. From top
to bottom as in legend (Colors online). Right: traces of C1 (dashed) and C2 (solid) integrated over
space and plotted over time. All SDE solutions are averages of N D 104 trajectories, error bars
are std=

p
N

3.2 Enzymatic Control

Consider again the model (18)–(19) but with the enzyme E under control,

; s.t/•̌
E e

E; (21)

with s.t/ a time-dependent signal. We define a payoff function '.P / by

'.P / D .P � c�/Œc� < P � CC� C .CC � c�/ŒCC < P � (22)

with c�=CC suitable cutoff values. Reasonable constraints are that ks.t/k1 and
ks.t/k1 are bounded. After adding a regularization term the target functional
becomes

M ŒP � WD
Z T

0

'.Pt / dt C �Œs.t/�0�t�T ; (23)

with Œ�� the total variation. Thus the overall formulation is “Find s.t/ such that in
expectation, M ŒP � attains it maximum subject to the constraints”. Here P D P.t/

is the solution to (18)–(19) and (21) with P.0/ D E.0/ D 0. We solve the
optimization problem both in the deterministic ODE setting and in the stochastic
setting using URDME/AEM. The optimization algorithm applied was the Nelder-
Mead simplex method [10] and results for two sets of cutoff-values are shown in
Fig. 2.



526 P. Bauer and S. Engblom

0 50 100
0

20

40

c−

c+

# 
M

ol
ec

ul
es

ODE

0

0.5

1

0 50 100
0

20

40

c−

c+

Time

# 
M

ol
ec

ul
es

0

0.5

1

0 50 100
0

20

40

c−

c+

s(
t)

SDE

0

0.5

1

0 50 100
0

20

40

c−

c+

Time

s(
t)

0

0.5

1

M
ODE

=487, M
SDE

=521 M
ODE

=487, M
SDE

=522

M
ODE

=2158, M
SDE

=1866 M
ODE

=2135, M
SDE

=1880

a

b

Fig. 2 (a) Optimal solution s.t/ for cutoff values c
�

D 30 and C
C

D 50, for the case of a
deterministic ODE (left), and an SDE (right). These cutoff values yield similar “all-or-nothing”
optimal strategies in both cases. (b) Here c

�

D 5 and C
C

D 30, and the optimal solutions are
clearly different for the two cases. Legend: From top to bottom (colors online), P (red), C (green),
E (blue), signal s.t/ (black, dashed). Values of the target functional for the optimal s.t/ are also
indicated

Conclusions
We have presented a viable simulation algorithm for continuous-time Markov
chains which relies upon a self-consistent use of Poisson processes. This com-
putationally intensive technique enables perturbations in the input parameters
to be propagated and opens up for several relevant applications. To the best of
our knowledge none of the applications considered here have been addressed
previously.

Through straightforward perturbation calculations in the ‘forward’ mode
we have reported results for spatial stochastic focusing, where the strong
focusing effect can be uniquely attributed to the spatial dimension. In a
nutshell, the existence of a gradient implies an increase of outgoing products
which cannot be explained through well-stirred and/or deterministic analysis.

As an example of an interesting inverse formulation we studied a simple
chemical network and defined an arguably quite open criterion for optimality.
By wrapping our simulator with a simple external optimizing routine we were
able to find optimal control signals which realizes this optimality. In one case
the signals found clearly differ from their deterministic versions.

(continued)
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While developing computational algorithms simultaneously with challeng-
ing applications requires some care, it is our hope that this report shows the
value of this approach.
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