On the Local Mesh Size of Nitsche’s Method
for Discontinuous Material Parameters

Mika Juntunen

Abstract We propose Nitsche’s method for discontinuous parameters that takes the
local mesh sizes of the non-matching meshes carefully into account. The method
automatically adapts to the changing material parameters and mesh sizes. With
continuous parameters, the method compares to the classical Nitsche’s method.
With large discontinuity, the method approaches assigning Dirichlet boundary
conditions with Nitsche’s method.

1 Introduction

Suppose the computational domain is divided along the material edges yielding
material parameters that are discontinuous over the subdomain interfaces. If the
discontinuity in the material parameters is moderate, the Nitsche’s method in [3]
applies. Some of the problems with large parameter discontinuities are avoided
using the harmonic average of the material parameters to create a weighted average
flux over the interface [1,2,5,7-9,11,13, 14].

In this article we propose Nitsche’s method that takes both the material parame-
ters and the mesh sizes carefully into account in the bilinear form. Both the average
flux and the stabilizing term are modified to depend on the material parameters
and the mesh sizes, similar to [2]. As a result, the proposed method automatically
adapts to the material parameters and mesh sizes. If there is no discontinuity over the
interface and the mesh sizes are of the same order, we have the classical Nitsche’s
method. If the mesh sizes or material parameters have very large contrast over
the interface, the method reduces to assigning Dirichlet boundary conditions with
Nitsche’s method.
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2 Model Problem

Consider a domain 2 C RY, d = 2,3, with a piecewise smooth boundary 952.
Assume that the domain is divided into two non-overlapping subdomains £2; and
£2,. The subdomains cover the whole domain 2 = 2, U £2, and they share an
interface I" = 052, N 9£2,. We solve the Poisson problem such that

uy =0 onas2,
uy—up; =0 onl, (2)
0 0
kil 4 2 =0 onr 3)
on, on,

in whichk; € R, 0 < kyin < ki < kmax, I = 1,2, are the material parameters
and f € L*(£2) is the load function. We denote with ki% = k;Vu; - n; the
normal flux and with n; and n, the outward normals of the subdomains. We also
usen = n; = —n, and

8141 _ 8u1 8u2 _ 8u2 _ 8u2
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Let the subdomains be divided into sets of non-overlapping elements denoted by
ﬂlh and ﬂzh, in which % denotes the maximum diameter of elements. Let 51” and 52”
denote the edges or faces of the meshes 91’1 and ﬂzh, respectively. Let hg denote
the diameter of an element K € .7, h and h g the diameter of E € gl_h_

Suppose the solutions #; belong to V; such that

v
Vi = {v e H'(2) : 21| e LX), vjsg = o}, i=1,2.
8n,~
Let the finite element spaces be
Vi ={ve H'(2) : v[ae =0, vlx € Z?(K)VK € "}, i=1,2,

in which &7 denotes the polynomials of degree < p. We assume p > 1. We use the
notation V. = V; x V5 and V" = Vlh X V2h. Respectively, we use v = (vi,v;) € V
and V' = (v}l’, vg) € V" to denote the pair of functions defined in the subdomains.
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3 The Proposed Method

In this section we propose Nitsche’s method that takes the possible discontinuity of
the material parameters and mesh sizes into account. The method is similar to [2].

For simplicity of notation we define the functions /; : £2; — R,i = 1,2 such
that

hg ifxeK, Ke ",

hi(x =
) {hE ifxeE, Ec&h

At the interface I', for v € V we use [v] = v; — v, to denote the jump over the
interface.

Let (-, -)g denote the L2-inner product over a domain G. Multiplying Eq. (1) with
a test function v € V; and integrating by parts gives

8ui

kiVui,vi)g — | kimz—
( u V)Ql ( on;

,vi) = (fv)a,
r

By Eq. (3) it holds that
k1h2 3M1 3u2
— | ki — F+ kh— ], =0,
(k2h1 Fah ( o TR 8}1) Vl)r

kohy ouy Ouy
_ B (8 %) ) =,
(k2h1 T ki ( Yon " on ) Vz)r

and by Eq. (2) it holds that

kik»
(kzhl s 1 M)p =0

Adding the equations above and introducing a stability parameter y > 0 gives the
weak form of the proposed Nitsche’s method: Find u” € V" such that

BV = F0M eV,

The bilinear form is

i=1
kik»
Ly (—kzhl 2l M)r,
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in which

ad
on on
kohy kihy

“r= kohq +k1h2’ * = kohy + klhz’

denotes the weighted average flux. The linear functional is simply

2
F0) =Y (fivi)g, -

i=1

By the derivation above it is clear that the proposed method is consistent with the
strong form.

3.1 A Priori Analysis

Following [3, 10, 12,13] we use the mesh dependent norms in the analysis. Let ||-||
denote the L2 norm over a domain G. The parameters k; and k» are explicitly shown
in the norms on V':

2 2 1 2
2 ! kik, 2
= |k'vv T :
||v||l,h ; i V @ + (kZhI +k1h2) [[vﬂ "F
2 2 2 1 avi 2
VI = IVl + 2 | ik 2

i=1

Clearly [[v[l,;, < VIl forall v € V. The converse, with a

Ml = €V

C > 0, holds for any v € V", This follows using the trace inequality [4, 6]

2 2

h 1
H (h,-ki)%%l’; < |k Vv VK € " e v, )

1

K K

for a C; > 0. Consequently, the norms are equivalent in V" independent of the
mesh sizes /; and the parameters k; : There exists ¢, C > 0 such that
e v

e[ s < "Ml = €15
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Theorem 1 The bilinear form %" is continuous in V with the norm lI-llly , and,
assuming the stability parameter satisfies y > 2Cj, the bilinear form 9" is coercive
in VI with the norm |||, ;-

Proof Recall the definition of the weighted average flux and observe that

=) M)p (o2 o2 11)

k 3
= ((Oéllﬁ )2 —+ (Oézkzhz)f | w2 (ﬁ) M)
r

| aWZ k1k2 %
+ [(akahn)? ) (m) vl " r
e

)| )
—_— v
r kahy + kihy

for all w,v € V. Using (5) it is easy to see that the bilinear form %" is continuous.
Applying the trace inequality (4) to (5) and using Young’s inequality with a
parameter € > 0 gives

(aikih 1)2 8W1

1"

8W2

&)

H (kaho)? :

1 1 1 1 kik, 3
< (Cf k2 Vwh N +C7 k3 Vwh QZ) H (m) ] )
Cr|, 4 i Cr|, 4 & kiks %hz
SZ ki Vw] Ql—l—— k3 Vw, 92+6 (m) [[v]] )
for v, w" € V"'. With this we get that
c [
BV > (1—?’)2 kzw” I—i—(y 2¢€) (m) ] )

By the assumption y > 2C; we can choose C; < € < y/2, which shows that the
bilinear form %" is coercive. a
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Let u" € V" denote the finite element solution and u € V' the exact solution of
the problem. The coercivity, consistency and continuity show that
||u —vh” <CH"W -V "= =CAB " w—-'u" -V

= Clllu= vl " =1

for any v € V. Using the triangle inequality and the equivalence of norms we get

Ml =lll,, = € jnf =" -

Applying the interpolation results to the estimate above, we get the a priori result

1
2 2
S,.Ql')

2

-l =0 (3

i=1

1
k-2 u;

1

foru; € H°($2;) withi = 1,2and2 <s < p + 1.

4 Observations on the Method

The method adapts automatically and continuously with respect to the parameters.
The relation between kyh; and kihy, or equivalently between k;/hy and ky/ hj,
determines the behavior of the method.

Suppose that k,h; = kyh, at the interface I". Denoting k/h = ky/ h, = ka/ ha,
the bilinear form is

2

B (w,v) = Z(kiVWi, Vvi)a, — ( (kl 88W1 BWZ) [[V]])

i=1
- (5 (05 + 32, [[w]]) +y(f—huwﬂ,[[vﬂ)r

In other words, the proposed method reduces to the method designed for continuous
material parameters [3]. This indicates that the method in [3] should work for
discontinuous material parameters too as long as the mesh sizes such that ko sy =
kih;.

Suppose now that kohy > ki h; at the interface I due to k, being very large. At
the limit k, — o0, the coefficients of the method become

li 1 li ki ki

m =1, m ——7F - = —,

ks & koo kol + kita By
lim Oy = O,

kz—)OO
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and the bilinear form is

2

B (w,v) = Z(kiVWi, Vvi)a: — (kl%» M)r - (kl%v [[Wﬂ)r

i=1

+r (Rl [[vﬂ)r .

The interpretation of the bilinear form above is: In the subdomain £2;, the method
enforces continuity at the interface I" using Nitsche’s method.
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