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Abstract We propose Nitsche’s method for discontinuous parameters that takes the
local mesh sizes of the non-matching meshes carefully into account. The method
automatically adapts to the changing material parameters and mesh sizes. With
continuous parameters, the method compares to the classical Nitsche’s method.
With large discontinuity, the method approaches assigning Dirichlet boundary
conditions with Nitsche’s method.

1 Introduction

Suppose the computational domain is divided along the material edges yielding
material parameters that are discontinuous over the subdomain interfaces. If the
discontinuity in the material parameters is moderate, the Nitsche’s method in [3]
applies. Some of the problems with large parameter discontinuities are avoided
using the harmonic average of the material parameters to create a weighted average
flux over the interface [1, 2, 5, 7–9, 11, 13, 14].

In this article we propose Nitsche’s method that takes both the material parame-
ters and the mesh sizes carefully into account in the bilinear form. Both the average
flux and the stabilizing term are modified to depend on the material parameters
and the mesh sizes, similar to [2]. As a result, the proposed method automatically
adapts to the material parameters and mesh sizes. If there is no discontinuity over the
interface and the mesh sizes are of the same order, we have the classical Nitsche’s
method. If the mesh sizes or material parameters have very large contrast over
the interface, the method reduces to assigning Dirichlet boundary conditions with
Nitsche’s method.
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2 Model Problem

Consider a domain ˝ � R
d , d D 2; 3, with a piecewise smooth boundary @˝ .

Assume that the domain is divided into two non-overlapping subdomains ˝1 and
˝2. The subdomains cover the whole domain N̋ D N̋

1 [ N̋
2 and they share an

interface � D @˝1 \ @˝2. We solve the Poisson problem such that

�r � ki rui D f in ˝i ; i D 1; 2; (1)

ui D 0 on @˝;

u1 � u2 D 0 on �; (2)

k1

@u1

@n1

C k2

@u2

@n2

D 0 on �; (3)

in which ki 2 R, 0 < kmin < ki < kmax, i D 1; 2, are the material parameters
and f 2 L2.˝/ is the load function. We denote with ki

@ui

@ni
D ki rui � ni the

normal flux and with n1 and n2 the outward normals of the subdomains. We also
use n D n1 D �n2 and

@u1

@n
D @u1

@n1

and
@u2

@n
D @u2

@n1

D � @u2

@n2

:

Let the subdomains be divided into sets of non-overlapping elements denoted by
T h

1 and T h
2 , in which h denotes the maximum diameter of elements. Let E h

1 and E h
2

denote the edges or faces of the meshes T h
1 and T h

2 , respectively. Let hK denote
the diameter of an element K 2 T h

i and hE the diameter of E 2 E h
i .

Suppose the solutions ui belong to Vi such that

Vi D
n
v 2 H 1.˝i/ W @vi

@ni

j� 2 L2.� /; vj@˝ D 0
o
; i D 1; 2:

Let the finite element spaces be

V h
i D fv 2 H 1.˝i / W vj@˝ D 0; vjK 2 Pp.K/ 8K 2 T h

i g; i D 1; 2;

in which Pp denotes the polynomials of degree � p. We assume p � 1. We use the
notation V D V1 � V2 and V h D V h

1 � V h
2 . Respectively, we use v D .v1; v2/ 2 V

and vh D .vh
1; vh

2/ 2 V h to denote the pair of functions defined in the subdomains.
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3 The Proposed Method

In this section we propose Nitsche’s method that takes the possible discontinuity of
the material parameters and mesh sizes into account. The method is similar to [2].

For simplicity of notation we define the functions hi W N̋
i ! R, i D 1; 2 such

that

hi .x/ D
(

hK if x 2 K; K 2 T h
i ;

hE if x 2 E; E 2 E h
i :

At the interface � , for v 2 V we use �v� D v1 � v2 to denote the jump over the
interface.

Let .�; �/G denote the L2-inner product over a domain G. Multiplying Eq. (1) with
a test function v 2 Vi and integrating by parts gives

.ki rui ; vi /˝i
�
�

ki

@ui

@ni

; vi

�

�

D .f; vi /˝i
:

By Eq. (3) it holds that

�
k1h2

k2h1 C k1h2

�
�k1

@u1

@n
C k2

@u2

@n

�
; v1

�

�

D 0;

�
k2h1

k2h1 C k1h2

�
k1

@u1

@n
� k2

@u2

@n

�
; �v2

�

�

D 0;

and by Eq. (2) it holds that

�
k1k2

k2h1 C k1h2

�u�; �v�

�

�

D 0:

Adding the equations above and introducing a stability parameter � > 0 gives the
weak form of the proposed Nitsche’s method: Find uh 2 V h such that

Bh.uh; vh/ D F .vh/ 8vh 2 V h:

The bilinear form is

Bh.w; v/ D
2X

iD1

.ki rwi ; rvi /˝i �
���

k
@w

@n

��
; �v�

�

�

�
���

k
@v

@n

��
; �w�

�

�

C �

�
k1k2

k2h1 C k1h2

�w�; �v�

�

�

;
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in which
��

k
@v

@n

��
D ˛1 k1

@v1

@n
C ˛2 k2

@v2

@n
;

˛1 D k2h1

k2h1 C k1h2

; ˛2 D k1h2

k2h1 C k1h2

;

denotes the weighted average flux. The linear functional is simply

F .v/ D
2X

iD1

.f; vi /˝i
:

By the derivation above it is clear that the proposed method is consistent with the
strong form.

3.1 A Priori Analysis

Following [3,10,12,13] we use the mesh dependent norms in the analysis. Let k�kG

denote the L2 norm over a domain G. The parameters k1 and k2 are explicitly shown
in the norms on V :

kvk2
1;h D

2X
iD1

����k
1
2

i rvi

����
2

˝i

C
�����
�

k1k2

k2h1 C k1h2

� 1
2

�v�

�����
2

�

;

jjjvjjj21;h D kvk2
1;h C

2X
iD1

����.hi ki /
1
2

@vi

@n

����
2

�

:

Clearly kvk1;h � jjjvjjj1;h for all v 2 V . The converse,
ˇ̌̌̌ ˇ̌

vh
ˇ̌̌̌ ˇ̌

1;h
� C

��vh
��

1;h
with a

C > 0, holds for any vh 2 V h. This follows using the trace inequality [4, 6]

����.hiki /
1
2

@vh
i

@n

����
2

@K

� CI

����k
1
2

i rvh
i

����
2

K

8K 2 T h
i ; vh

i 2 V h
i ; (4)

for a CI > 0. Consequently, the norms are equivalent in V h independent of the
mesh sizes hi and the parameters ki : There exists c; C > 0 such that

c
��vh

��
1;h

� ˇ̌̌̌ ˇ̌
vh
ˇ̌̌̌ ˇ̌

1;h
� C

��vh
��

1;h
8vh 2 V h:
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Theorem 1 The bilinear form Bh is continuous in V with the norm jjj�jjj1;h and,
assuming the stability parameter satisfies � > 2CI , the bilinear form Bh is coercive
in V h with the norm jjj�jjj1;h.

Proof Recall the definition of the weighted average flux and observe that

���
k

@w

@n

��
; �v�

�

�

D
�

˛1k1

@w1

@n
C ˛2k2

@w2

@n
; �v�

�

�

D
 

.˛1k1h1/
1
2

@w1

@n
C .˛2k2h2/

1
2

@w2

@n
;

�
k1k2

k2h1 C k1h2

� 1
2

�v�

!

�

�
�����.˛1k1h1/

1
2

@w1

@n

����
�

C
����.˛2k2h2/

1
2

@w2

@n

����
�

������
�

k1k2

k2h1 C k1h2

� 1
2

�v�

�����
�

�
�����.k1h1/

1
2

@w1

@n

����
�

C
����.k2h2/

1
2

@w2

@n

����
�

������
�

k1k2

k2h1 C k1h2

� 1
2

�v�

�����
�

(5)

for all w; v 2 V . Using (5) it is easy to see that the bilinear form Bh is continuous.
Applying the trace inequality (4) to (5) and using Young’s inequality with a

parameter � > 0 gives

���
k

@wh

@n

��
;
�

vh
�
�

�

�
 

C
1
2

I

����k
1
2

1 rwh
1

����
˝1

C C
1
2

I

����k
1
2

2 rwh
2

����
˝2

!�����
�

k1k2

k2h1 C k1h2

� 1
2 �

vh
�
�����

�

� CI

2�

����k
1
2

1 rwh
1

����
2

˝1

C CI

2�

����k
1
2

2 rwh
2

����
2

˝2

C �

�����
�

k1k2

k2h1 C k1h2

� 1
2 �

vh
�
�����

2

�

for vh; wh 2 V h. With this we get that

Bh.vh; vh/ �
�

1 � CI

�

� 2X
iD1

����k
1
2
i rvh

i

����
2

˝i

C .� � 2�/

�����
�

k1k2

k2h1 C k1h2

� 1
2 �

vh
�
�����

2

�

:

By the assumption � > 2CI we can choose CI < � < �=2, which shows that the
bilinear form Bh is coercive. �
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Let uh 2 V h denote the finite element solution and u 2 V the exact solution of
the problem. The coercivity, consistency and continuity show that

��uh � vh
��2

1;h
� CBh.uh � vh; uh � vh/ D CBh.u � vh; uh � vh/

� C
ˇ̌̌̌ ˇ̌

u � vh
ˇ̌̌̌ ˇ̌

1;h

��uh � vh
��

1;h

for any vh 2 V h. Using the triangle inequality and the equivalence of norms we get
ˇ̌̌̌ ˇ̌

u � uh
ˇ̌̌̌ ˇ̌

1;h
� C inf

vh2V h

ˇ̌̌̌ ˇ̌
u � vh

ˇ̌̌̌ ˇ̌
1;h

:

Applying the interpolation results to the estimate above, we get the a priori result

ˇ̌̌̌ ˇ̌
u � uh

ˇ̌̌̌ ˇ̌
1;h

� Chs�1

 
2X

iD1

����k
1
2

i ui

����
2

s;˝i

! 1
2

for ui 2 H s.˝i / with i D 1; 2 and 2 � s � p C 1.

4 Observations on the Method

The method adapts automatically and continuously with respect to the parameters.
The relation between k2h1 and k1h2, or equivalently between k1=h1 and k2=h2,
determines the behavior of the method.

Suppose that k2h1 D k1h2 at the interface � . Denoting k=h D k1=h2 D k2=h2,
the bilinear form is

Bh.w; v/ D
2X

iD1

.ki rwi ; rvi /˝i �
�

1

2

�
k1

@w1

@n
C k2

@w2

@n

�
; �v�

�

�

�
�

1

2

�
k1

@v1

@n
C k2

@v2

@n

�
; �w�

�

�

C �

�
k

2h
�w�; �v�

�

�

:

In other words, the proposed method reduces to the method designed for continuous
material parameters [3]. This indicates that the method in [3] should work for
discontinuous material parameters too as long as the mesh sizes such that k2h1 �
k1h2.

Suppose now that k2h1 	 k1h2 at the interface � due to k2 being very large. At
the limit k2 ! 1, the coefficients of the method become

lim
k2!1 ˛1 D 1; lim

k2!1
k1k2

k2h1 C k1h2

D k1

h1

;

lim
k2!1 ˛2 D 0;
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and the bilinear form is

Bh.w; v/ D
2X

iD1

.ki rwi ; rvi /˝i �
�

k1

@w1

@n
; �v�

�

�

�
�

k1

@v1

@n
; �w�

�

�

C �

�
k1

h1

�w�; �v�

�

�

:

The interpretation of the bilinear form above is: In the subdomain ˝1, the method
enforces continuity at the interface � using Nitsche’s method.
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