One-Dimensional Surrogate Models
for Advection-Diffusion Problems
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Abstract Numerical solution of partial differential equations can be made more
tractable by model reduction techniques. For instance, when the problem at hand
presents a main direction of the dynamics (such as blood flow in arteries), it may
be conveniently reduced to a 1D model. Here we compare two strategies to obtain
this model reduction, applied to classical advection-diffusion equations in domains
where one dimension dominates the others.

1 Introduction

Many applications in scientific computing demand for surrogate models, i.e., simpli-
fied models which are expected to be computationally affordable and reliable from a
modeling viewpoint. Problems presenting an evident main direction, such as blood
flow in arteries, gas dynamics in internal combustion engines, etc., are naturally
reduced to 1D equations along the coordinate of the main (or “axial” as opposed
to “transverse”) direction. Here we consider and compare two different strategies
to get surrogate models for this kind of problems. The first procedure stems from
an appropriate average of the equation along the transverse direction, combined
with (plausible) problem-dependent simplifying assumptions. The second approach
comes from a different representation of the axial and of the transverse dynamics,
according to what has been called a Hierarchical Model (Hi-Mod) reduction [4].
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In particular, transverse dynamics are represented by a modal expansion, that is
supposed to require just a few modes for the nature of the problem. This leads to
solve a system of 1D coupled equations. At the bottom line, when using just one
transverse mode, this leads to a genuinely 1D model. For the sake of comparison,
these two reduction procedures are applied to the following two-dimensional
advection-diffusion problem
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where x is the main direction, y is the transverse one, and with u € L%°(£2),
b = (bi,h)" € [W'(Q)), f € L), g € H'*(IN), x € L®(2), tews €
L?*(T4), ndu/0n the conormal derivative of u. Standard notation are adopted for
the Sobolev spaces. We distinguish in the domain £2 a supporting fiber §2,p aligned
with the main stream and a set of transverse fibers y,, with x € £2)p, parallel to
the secondary transverse dynamics. Since §2 coincides with a rectangle, y, = y, for
each x.

We assume suitable assumptions on the data to guarantee the well-posedness of the
weak form of (1), i.e.,
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witha(u,v) = [,[uVu-Vv+b-Vuv]d$2 +f1“1m quvdl and F(v) = [, fvd2+
/ Iy UextV dI' —a(pg.v), p, denoting a lifting of g on I7,. Problem (1) models, for
instance, the oxygen transport inside an artery. In this case, u represents the oxygen
partial pressure, u denotes the diffusivity of oxygen in blood, field b takes into
account the blood dynamics, f is a generic sink or source term, g usually coincides
with a concentration profile, the Robin boundary conditions model the absorption of
the oxygen through the vessel walls, with y depending on the absorption properties
of the wall and u,,, measuring the oxygen partial pressure outside the vessel. For
simplicity, we assume p and y constant.

When comparing the two approaches mentioned above, we address in particular
the combination of models with different accuracy. For the first approach, this leads
to what has been called a geometrical multiscale formulation [2]. For Hi-Mod
reduction, this is obtained by selecting a different number of modes in different
regions of the domain [4, 5].
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2 A Transverse Average Model

We particularize the approach in [3] for modeling the transport of solutes in arteries
with bifurcations to an elliptic setting. Let us introduce the transverse profile of the
solution, given by

u(x, y)
U(x)

px.y) = with U = — / u(x. y) dy,

U(x) denoting the mean of the solution along the transverse (constant) section y of
£2. As first modeling hypothesis, we assume that the profile p does not depend on
X, i.e., only the mean of the solution may vary along the x-direction. Thus, after
separation of variables, the solution u can be regarded as a certain profile varying in
y tuned by a function varying along x, i.e., u(x, y) = U(x) p(y). By exploiting this
representation of u in the assignment of the boundary conditions on [, i.e., on the
boundary of y, we get

0 ext
(i M%)‘y +Ry ( 1)+ MU(ECX)))‘y=iRo'

Consistently with the previous assumption on p, we postulate that the ratio
ue(x)/ U(x) is constant along the whole length of the domain. Finally, we constrain
the advective field, by assuming V-b = 0 and b|,, = 0. Since b is divergence-free,
we can rewrite the full model (1) in a conservative form, as —uAu+ V - (bu) = f.
Now, integrating with respect to y along y, we obtain
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By exploiting the Robin conditions and the hypothesis on b|,,,, we have
2
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Now, we exploit the factorization u(x, y) = U(x)p(y) assumed for the solution u
together with the fact that, by definition, the mean of p along y is equal to one, to
get the desired averaged 1D model (the primes denoting x-differentiation)

—pU"(x) + (Ux)w, (x))" + 0, U(x) = fi(x) for x € (0,L), 3)
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The reduction procedure leads from a 2D advection-diffusion problem to a 1D
advection-diffusion-reaction problem. To close the model we need to select a
profile p in (4). For simplicity, it may be assumed constant or, more in general,
it is suggested by physical considerations. It could be advantageous an automatic
criterion to select p. A strategy in such a direction is proposed in the next section.

Remark 1 From a physical viewpoint, the most restrictive hypothesis for deriving
model (3) is the independence of p on x. Nevertheless, the numerical validation
shows that this surrogate model provides reliable results even when this hypothesis
is not strictly guaranteed. The second assumption is reasonable, at least in haemody-
namics, since the ratio u,,(x)/ U(x) may be reliably considered constant. The two
requirements on b are standard in a haemodynamic context. Hypothesis V- b = 0
ensures the incompressibility of the blood, while assumption b|r,, = 0 imposes a
no-slip condition on [j,.

2.1 A Geometrical Multiscale Approach

A geometrical multiscale formulation consists of coupling dimensionally hetero-
geneous models. The idea is to alternate a full-dimensional model with suitable
downscaled models to be associated with the areas characterized by the most
complex and by the simplest dynamics, respectively (see, e.g., [2, Chapter 11]). The
identification of appropriate matching conditions and the location of the interface
between the two models represent the main issues of this approach. We identify
the full model with (1) and the downscaled model with (3). We choose 2 =
(0,10) x (0, 1), u = 1,5 = (20,0)7, f = 10((x — 1.5)* + 0.4(y — 0.5)* < 0.01),
x = 1 and u,y, = 0.02. We assign a homogeneous Neumann condition on
I, = {10} x (0, 1) and a profile compatible with the conditions along I, on [7,.
In Fig. 1 (top-left), we provide the contour plots of the full solution approximated
via linear finite elements on a uniform unstructured grid of 8,918 elements. The
solution exhibits more significant transverse dynamics in the leftmost part of the
domain, where the source term is localized. Conversely, the solution profile is less
fluctuating in the rightmost part of §2, as assumed in the derivation of model (3).
This suggests to split £2 into two subdomains, £2; and £2, such that 2 =02,UQ,.
On £2; we solve problem (1), while we resort to (3) in £2,. Both the problems are
discretized via linear finite elements on uniform meshes. The coupling between
the two models is performed via a relaxed Neumann/Dirichlet scheme. In more
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Fig. 1 Geometrical multiscale: full solution (top-left); graph of o, (top-right); coupled solution
for I'y (bottom-left) and I 5 (bottom-right)

detail, we exploit the derivative of the 1D surrogate solution u, to assign a constant
Neumann condition on £2; as udu; /dn(x;, y) = u5(x;), where u; is the full solution
defined on £2; and I'y, = {x;} x (0, 1) identifies the interface 2,N2,.To correctly
define the problem on §2,, we have to properly select the boundary condition at x;
and the solution profile. As Dirichlet data we assign us(x;) = |y|™! /, , U (xi, ) dy,
while we follow a new approach to select p(y) at x;. The idea is to exploit
the problem in £2; instead of resorting to an a priori selection. Thus, we pick
p(y) = |y|lwmi(xi,y)/ fy uy(x;, y) dy. This definition justifies the prescription of
a Neumann condition on the left hand side of Iy, to allow the solution profile
to develop freely. Indeed, the adoption of the surrogate model in £2,, implicitly
assumes that p is completely developed at I'y,. Figure 1 (bottom) compares two
couplings associated with different interfaces, i.e., I'y and I3 s, respectively. The
second choice introduces the interface where the transverse dynamics are still too
significant, thus violating the hypothesis on a fully developed profile. We provide
a bidimensional visualization also for the surrogate model simply by using relation
u(x,y) = U(x)p(y). In Fig. 1 (top-right) we show the reactive coefficient in (4),
computed via the profile of the full solution. Since o, strongly depends on p, we
argue that when the profile stabilizes, o, reaches a constant value. So a possible
heuristic way to select 'y, is to locate it in a region where o, is constant.

3 Hi-Mod Reduction

Hi-Mod reduction is an alternative approach to “compress” high dimensional
problems. In this case, a full 2D (or even 3D) model is reduced to a system of
1D coupled differential problems associated with the dominant dynamics [4]. In the
geometric setting of a Hi-Mod formulation, for any x € £2p, we introduce a map
¥, between the generic fiber y, and a reference fiber , so that the computational
domain £2 is mapped into the reference domain 2 = 21p x 7 via the map
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W, given by W(z) = 2, wherez = (x,y) € 2,2 = (£.§) € £, with
X = x and = ¥,(y). In particular, for the domain £2 in (1) a unique map
Y can be used for each point x € £2,p. The Hi-Mod approach strongly relies
upon the fiber structure postulated on §2. The idea is to differently tackle the
dependence of the full solution on the dominant and on the transverse directions.
We perform a modal approximation of the transverse dynamics coupled with a
Galerkin representation along the axial direction. The rationale driving this approach
is that the transverse dynamics can be suitably described with a few degrees of
(modal) freedom, resulting in a hierarchy of one-dimensional models which differ
each other according to the number of included transverse modes. To state the
Hi-Mod reduced formulation for problem (1), we move from the weak form (2).
Now, let Vip be a space spanned by functions defined on §2;p which properly
includes the boundary conditions assigned along I, and I, and let {@k }; e+ be
a modal basis of functions in H!(}), orthonormal with respect to the L?(j)-scalar
product and compatible with the boundary conditions along I7},. As a consequence,
we look for a reduced solution u, which belongs to the Hi-Mod reduced space
Vi = {om(x, ) = Y= w(x) o (¥ (y)), withvx € Vip, x € 2ip. y € y}.
A conformity and a spectral approximability hypothesis are introduced on V,, to
guarantee the well-posedness and the convergence of u,, to u [4]. We identify
the Galerkin representation along §2,p with a finite element discretization, so that
the modal coefficients belong to a finite element space VlhD C Vip associated
with a partition .75, of £21p. Thus, the Hi-Mod reduced form for (2) is: for a
certain modal index m € INT, find it,f € VlhD, with k' = 1,...,m, such
that Y5, a(il'ee, 0;0;) = F(6ip;), with j = 1,....mandi = 1,..., N,
where 6; denotes the generic finite element basis function in VlhD and with N, =
dim(Vl}b) < +o00. From a computational viewpoint, the Hi-Mod formulation leads
to solve a system of m coupled 1D advection-diffusion-reaction problems instead of
problem (1). As in the derivation of the surrogate model (3), the Hi-Mod reduction
procedure yields reactive terms, while no reactive contribution is included in the full
model. The system is characterized by an m x m block matrix, where each block
is an N, x Nj, matrix exhibiting the sparsity pattern typical of the selected finite
element space.

The modal index m can be selected a priori moving from some preliminary
knowledge of the phenomenon at hand [4] or automatically, driven by an a posteriori
modeling error analysis [5]. Another important issue is the choice of the modal
basis, in particular when Robin boundary conditions are assigned on I}, as in (1).
We build a specific modal basis able to automatically include these conditions.
The idea proposed in [1] is to solve on § an auxiliary Sturm-Liouville eigenvalue
problem, with conditions on 3y coinciding with the conditions assigned on I7,,. We
call this modal basis educated basis.
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3.1 Piecewise Hi-Mod Reduction

Now, the idea is to properly exploit the hierarchy of models provided by the Hi-
Mod reduced space to couple models with a different accuracy. A different choice
for the modal index m identifies a reduced model with a certain level of detail in
describing the phenomenon at hand. As a consequence, by properly tuning m over
different regions of 2, we are able to capture the local significant features of the
solution with a relatively low number of degrees of freedom. Following [4], we
denote this approach by piecewise Hi-Mod reduction. This leads to dimensionally
homogeneous models (yet with a locally varying level of accuracy), as opposed
to the geometrical multiscale approach. For instance, with reference to the test
case in Fig. 1, we can preserve the two splittings of the domain identified by Iy
and I 5 and employ a number of modes in §2; higher than in £2,, e.g., 5 and 2,
respectively. This choice is motivated by the fact that the most complex dynamics
are localized in £2; and, consequently, more modes are demanded in this area. To
glue the two models we employ a relaxed Neumann/Dirichlet scheme as in the
geometrical multiscale formulation. At each iteration of this scheme, we apply a
uniform Hi-Mod reduction on £2, and §2,, separately, i.e., we solve two systems of
coupled 1D problems with a block matrix of order 5N, hl and 2N, hz’ respectively N, ,i
denoting the dimension of the one dimensional finite element space introduced on
£21p N §2;, fori = 1,2. As detailed in [5], to rigorously formalize the piecewise
Hi-Mod approach, we introduce a suitable broken Sobolev space, endowed with an
integral condition which weakly enforces the continuity of the reduced solution in
correspondence with the minimum number of modes common on the whole §2. This
does not necessarily guarantee the conformity of the piecewise reduced solution.
This is evident in Fig. 2. The loss of conformity is particularly significant when the
interface is located in an area involved by strong transverse dynamics. The reduced
solution in Fig. 2 (left) is in good agreement with the full one in Fig. 1 (top-left) and
it is very similar to the one in Fig. 1 (bottom-left).
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Fig. 2 Piecewise Hi-Mod reduction: reduced solutions associated with {5, 2} modes, the interface
is I'; (on the left) and I 5 (on the right); h = 0.05 on £2,p
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4 A Numerical Comparison

For a fair comparison between the two approaches, we consider here a test case
where the “low-fidelity” model (the genuine 1D in the geometrical multiscale and
a low-mode approximation in the Hi-Mod) are straightforwardly comparable. This
means that we employ a single mode in the Hi-Mod approximation. In particular,
we consider problem (1) with 2 = (0,6) x (0,1), u = 1, b = (20,0)7,
f =10([(x—1.5)*+0.4(y—0.75)* < 0.01]+[(x—1.5)*+0.4(y—0.25)* < 0.01]),
x = 3 and u.,, = 0.05. The boundary conditions are as in Sect.2.1 and the
interface is located at x = 3. Numerical results are provided in Fig.3. The top-
left panel displays the full solution discretized via standard linear finite elements
on a uniform unstructured grid of 5,084 triangles. The top-right panel shows the
geometrical multiscale solution. This is fairly accurate even though it suffers from
an underestimation of the reactive term induced by the 1D average. This is evident
in the contour line associated with the value 0.09. The bottom panels display the Hi-
Mod solution, having a “low-fidelity” model with m = 1 and two different models
for the “high-fidelity” part. In particular, on the left we take m = 3 which is clearly
not enough to capture reliably the solution in the leftmost domain. In the right-panel,
with m = 5 we have a pretty accurate solution, where the inaccuracy present in the
geometrical multiscale solution as well as the model non-conformity do not pollute
significantly the results.

An extensive comparison between the two approaches cannot be clearly com-
pleted by these preliminary results. As a matter of fact, the computational advan-
tages of the one approach over the other must be evaluated on 3D more realistic test
cases, solved with compiled softwares. However, we may notice that, even though
the Hi-Mod approach relies entirely on a “psychologically” 1D representation of the
solution within a dimensionally heterogeneous framework, it may provide accurate
solution also in presence of significant transverse components. For this reason,
we do expect it may lead to easily implemented and manageable solvers, with
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Fig. 3 Full solution (top-left); geometrical multiscale solution (fop-right) and Hi-Mod solution
with {3, 1} (bottom-left) and {5, 1} (right) modes
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competitive performances in terms of both accuracy and efficiency. A framework
of investigation of practical interest is the blood flow simulation in a network of
arteries.
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