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Abstract The Dirichlet-Neumann reduced basis method is a model order reduction
method for homogeneous domain decomposition of elliptic PDEs on a-priori known
geometries. It is based on an iterative scheme with full offline-online decomposition
and rigorous a-posteriori error estimates. We show that the primal-dual framework
for non-compliant output quantities can be transferred to this method. The results
are validated by numerical experiments with a thermal block model.

1 Introduction

Recently, several approaches combining the reduced basis (RB) method—a
model reduction method for efficient treatment of parametrized partial differential
equations (PDEs)—and domain decomposition—a technique for coupling PDEs
on adjacent computational domains—have been developed [1–4]. A standard
RB approach consists in approximating the solution manifold of a parametrized
PDE by a low-dimensional linear space spanned by so-called snapshots—highly
accurate solutions computed with Finite Elements (FE) for example—and a
Galerkin-projection on this space. In a domain decomposition framework it is no
longer necessary to compute detailed solutions on the whole domain. Furthermore,
the dimensions of RB approximation spaces on subdomains may be lower than in
the monolithic approach.

The Dirichlet-Neumann RB method [4] is based on the Dirichlet-Neumann FE
procedure. It represents a well-known iterative domain decomposition method for
linear elliptic problems with an offline/online decomposition, which allows solving
the PDE in a very fast online-stage. All high-dimensional FE computations are done
in the offline-stage. It also includes effective a-posteriori error estimation for RB
approximations, that possibly are discontinuous over the internal boundary.
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In this contribution we provide an extension of the method regarding compu-
tation and error estimation of output quantities. We make use of the primal-dual
framework, which is commonly known to produce good output error bounds for
non-compliant problems. We refer to [5] and [6] for an introduction into output
error estimation for standard RB methods.

2 Problem Definition

Let ˝ � R
2 be a domain with Lipschitz–boundary @˝ and x 2 ˝ the space

variable. We introduce a Hilbert space X � H1
0 .˝/ with the norm kvkX WD

kvkH1.˝/ which can be either finite or infinite dimensional. We now consider a
decomposition of ˝ into 2 subdomains, i.e. ˝ D ˝1 [ ˝2 and ˝1 \ ˝2 D ;.
The interface � is defined as � WD @˝1 \ @˝2. We assume that ˝1 and ˝2

have Lipschitz–boundaries and that � , @˝1 n � and @˝2 n � have a nonvanishing
.n � 1/-dimensional measure. Several function spaces are defined according to the
domain decomposition,

Xk WD ˚
vj˝k jv 2 X�

;

X0
k WD fv 2 Xkj�v D 0g ;

X� WD �.X1/ D �.X2/;

where k D 1; 2. The operator � denotes the trace operator on � , where we do not
notationally discriminate between the spaces X1 or X2, as it will always be clear
from the context. It holds X1 � H1.˝1/, X2 � H1.˝2/ and X� � H

1=2
00 .� /. We

equip the Hilbert spaces Xk , k D 1; 2 with the norms kvkXk WD kvkH1.˝k/ and X�
with kgkX� WD kgkL2.� /.

Now let P � R
P , P 2 N be the domain of the parameter � 2 P . We introduce

the parametric elliptic variational problem for defining the parameter-dependent
primal solution u.�/ 2 X and the output s.�/ 2 R:

a.u.�/; vI�/ D f .vI�/; 8v 2 X; (1)

s.�/ D l.u.�/I�/; (2)

with a parametric bilinear form a W X � X � P ! R and parametric linear forms
f; l W X � P ! R. We do not assume symmetry in a. Furthermore, the so-called
dual problem for defining the dual solution  .�/ reads

a.v;  .�/I�/ D �l.vI�/; 8v 2 X: (3)

The approximation of  .�/ in the RB scheme helps to get good output approxi-
mations, although the dual problem is not strictly necessary for the computation of
s.�/.
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2.1 Assumptions

We assume that, for all � 2 P , a is continuous on X and coercive on X with
coercivity constant

˛X.�/ WD inf
v2Xnf0g

a.v; vI�/
kvk2X

> 0:

We also assume that f and l are continuous and that a, f and l are parameter
separable, i.e. for all of them exist decompositions of the following type:

a.v;wI�/ D
QaX

qD1
�q
a.�/a

q.v;w/; 8v;w 2 X;� 2 P;

with preferably small integer Qa and �–independent continuous bilinear forms aq .
We assume that the solution u.�/ of (1) is approximated with an iterative domain

decomposition procedure. To this end, symmetric bilinear forms ak.v;wI�/ W Xk �
Xk � P ! R (“aj˝k”) and linear forms fk.vI�/ W Xk � P ! R (“f j˝k”) are
given on the subdomains. This enables us also to define a and f on

W WD X1 ˚X2;

which can be identified with a superset of X . For details we refer the reader to [4].
To complete the notational framework we introduce the continuity constant

MW .�/ WD sup
v2W nf0g

sup
w2W nf0g

a.v;wI�/
kvkW kwkW < 1:

3 Reduced Basis Scheme

The approximation of the output s.�/ defined in (2) for a parameter� 2 P consists
in an offline-stage, which is done once, and an online-stage, which is performed for
every output evaluation. In the offline-stage bases for the RB approximation spaces
on the subdomains are generated. This is done in a Greedy-algorithm, using a fastly
evaluable a-posteriori error estimate to get the “worst-error” parameter. The bases
are extended stepwise by a specific routine, yielding partly orthonormalized bases.
For more details we refer the reader to [4]. The primal and dual problem are treated
equally in this step, yielding separate primal and dual RB spaces. We concentrate
now on the explanation of the online-stage, where the approximations to s.�/ are
actually computed.
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We introduce RB spaces XN;k � Xk , X0
N;k � X0

k and X�
N;k � Xk for k D

1; 2 with dimensions Nk WD dim.XN;k/ < 1, N0
k WD dim.X0

N;k/ < 1, N�
k WD

dim.X�
N;k/ < 1 for k D 1; 2 and the following relations:

XN;k Š X0
N;k ˚X�

N;k; k D 1; 2

X0
N;k D XN;k \H1

0 .˝k/; k D 1; 2;

�.X�
N;1/ D �.X�

N;2/;

Consequently, it holds Nk D N0
k C N�

k for k D 1; 2 and N� WD N�
1 D N�

2 .
Further we define XN;� WD �.X�

N;1/ D �.X�
N;2/. This one-to-one correspondence

on the interface allows us to transmit values without evaluating traces inXN;k online.
It also enables us to define a lifting operator in the following way:

RXN;1 W XN;� ! XN;1 W g 7! .� jX�N;1/
�1g:

We assume that those spaces were built for the approximation of the primal
solution. For the approximation of the dual solution we introduce RB spaces
YN;k � Xk , Y 0N;k � X0

k , Y �N;k � Xk for k D 1; 2 and YN;� � X� with exactly
the same properties. The corresponding dimensions are denoted Mk , M0

k and M�

and the lifting operator RYN;1 WD .� jY �N;1 /�1.
Definition 1 (Primal and dual iteration) Given � 2 P , g0N .�/ D 0 2 XN;� ,
�0N .�/ D 0 2 YN;� and �nN .�/, �

n
N .�/ 2 Œ0; 1	 for n � 1. We construct sequences

unN;1.�/ 2 XN;1, unN;2.�/ 2 XN;2 and gnN .�/ 2 XN;� for n � 1 satisfying

a1.u
n
N;1.�/; vI�/ D f1.vI�/; 8v 2 X0

N;1;

�unN;1.�/ D gn�1
N .�/;

a2.u
n
N;2.�/; vI�/ D f2.vI�/C f1.R

X
N;1�vI�/

�a1.unN;1.�/;RXN;1�vI�/; 8v 2 XN;2;
gnN .�/ D �

1 � �nN .�/
�
gn�1
N .�/C �nN .�/�unN;2.�/

and sequences  nN;1.�/ 2 YN;1,  nN;2.�/ 2 YN;2 and �nN .�/ 2 YN;� for n � 1

satisfying

a1.v;  
n
N;1.�/I�/ D �l1.vI�/; 8v 2 Y 0N;1;
� nN;1.�/ D �n�1

N .�/;

a2.v;  
n
N;2.�/I�/ D �l2.vI�/� l1.R

Y
N;1�vI�/

�a1.RYN;1�v;  nN;1.�/I�/; 8v 2 YN;2;
�nN .�/ D �

1 � �nN .�/
�
�n�1
N .�/C �nN .�/� 

n
N;2.�/:
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Remark 1 Those infinite sequences are terminated as soon as

kunN;1.�/ � un�1
N;1 .�/k21;� C kunN;2.�/ � un�1

N;2 .�/k22;� � 
tol;

k nN;1.�/ �  n�1
N;1 .�/k21;� C k nN;2.�/ �  n�1

N;2 .�/k22;� � 
tol;

for some 
tol > 0 where kvkk;� WD p
ak.v; vI�/ for all v 2 Xk. The numbers

of actually accomplished iterations are denoted by nu;acc.�/ and n ;acc.�/, respec-
tively.

3.1 Smoothed Solutions

For n � 1 we define unN .�/ WD .unN;1.�/; u
n
N;2.�// 2 W . In general unN .�/ 62 X and

so we define OunN .�/ 2 W via

OunN .�/ D
(

OunN;1.�/ WD R1.�unN;1.�/ � �unN;2.�// in ˝1;

OunN;2.�/ WD 0 in ˝2;

where R1 W X� ! X1 is an arbitrary but linear lifting operator, that is �R1g D g

for all g 2 X� . We get the following representation:

unN .�/ D OunN .�/C NunN .�/;

with a smoothed solution NunN .�/ WD unN .�/ � OunN .�/ 2 X and a part OunN .�/
compensating for the jump on the interface. For n ! 1 the solution unN .�/
converges to a smooth function [4], so OunN .�/ tends to zero.

Analogously, we define  nN .�/ WD . nN;1.�/;  
n
N;2.�// 2 W , O nN;1.�/ WD 0,

O nN;2.�/ WD R2.� 
n
N;2.�/ � � nN;1.�//, where R2 W X� ! X2 is an arbitrary but

linear lifting operator, and N nN .�/ D  nN .�/ � O nN .�/ 2 X . As a result, it holds
N nN .�/j˝1 D  nN;1.�/ in contrast to NunN .�/j˝2 D unN;2.�/. This observation will

simplify the offline/online-decomposition of our output approximation.

Definition 2 (Output approximation) Given � 2 P and corresponding primal
and dual solutions unu

N .�/, nu � 1 and 
n 
N .�/, n � 1 we define the corresponding

output approximation

s
.nu;n /

N .�/ WD l.Nunu
n .�/I�/ � f . N n N .�/I�/C a.Nunu

N .�/;
N n N .�/I�/: (4)



442 I. Martini and B. Haasdonk

4 Error Estimation

The a-posteriori error estimate of the linear output relies on a-posteriori estimates
for the primal and dual solutions. To be more precise, we use estimates for the
above defined smoothed solutions NunN .�/ and N nN .�/. To that, we define residuals
rnu .�I�/ 2 X 0 and rn .�I�/ 2 X 0 for n � 1 and � 2 P through:

rnu .vI�/ WD f .vI�/ � a.unN .�/; vI�/; 8v 2 X;
rn .vI�/ WD �l.vI�/ � a.v;  nN .�/I�/; 8v 2 X:

Proposition 1 Given n � 1 and � 2 P , the errors u.�/ � NunN .�/ and  .�/ �
N nN .�/ can be estimated in the energy-norm kj � kj� D p

a.�; �I�/ via

kju.�/ � NunN .�/kj� � �n
u.�/; kj .�/ � N nN .�/kj� � �n

 .�/;

where

�n
u.�/ WD 1

q
˛LB
X .�/

krnu .�I�/kX 0 C MUB
W .�/

q
˛LB
X .�/

�
�OunN;1.�/

�
�
X1
; (5)

�n
 .�/ WD 1

q
˛LB
X .�/

krn .�I�/kX 0 C MUB
W .�/

q
˛LB
X .�/

��
� O nN;2.�/

��
�
X2
: (6)

Here ˛LB
X .�/ denotes a computable lower bound for the constant ˛X.�/ and

MUB
W .�/ a computable upper bound for MW .�/.

The Proposition 1 for the primal variable was proven in [4]. The proof for the
dual variable follows the same lines.

Corollary 1 Given nu, n � 1 and � 2 P , the error js.�/ � s
.nu;n /

N .�/j can be
estimated via

js.�/ � s.nu;n /

N .�/j � �
.nu;n /
s .�/;

where

�
.nu;n /
s .�/ D �nu

u .�/�
n 
 .�/

D 1

˛LB
X .�/

�krnu
u .�I�/kX 0 CMUB

W .�/kOunu
N;1.�/kX1

�

�
krn  .�I�/kX 0 CMUB

W .�/k O n N;2.�/kX2
�
:

Thanks to the smoothness of the solutions in the output approximation, the proof
of Corollary 1 is analogue to the proof for the standard RB method [5, 6].
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4.1 Offline/Online Decomposition

As already mentioned, an efficient offline/online decomposition is essential for our
method. The parameter separability (4) is the main ingredient for obtaining such
a decomposition. Again we refer to [4] for a detailed explanation of the routine for
the primal iteration. Offline/online decomposition of the dual iteration is achieved in
the same way. For a decomposition of the output approximation (4) into parameter-
dependent coefficients and parameter-independent components we exploit

s
.nu;n /

N .�/ D l.Nunu
n .�// � f . N n N .�/I�/C a.Nunu

N .�/;
N n N .�/I�/

D l.unu
N .�/I�/ � l1.R1�unu

N;1.�/I�/C l1.R1�unu
N;2.�/I�/

�f . n N .�/I�/C f2.R2� 
n 
N;2.�/I�/ � f2.R2� n N;1.�/I�/

Ca.unu
N .�/;  

n 
N .�/I�/

�a1.R1�unu
N;1.�/;  

n 
N;1.�/I�/C a1.R1�unu

N;2.�/;  
n 
N;1.�/I�/

�a2.unu
N;2.�/;R2� 

n 
N;2.�/I�/C a2.u

nu
N;2.�/;R2� 

n 
N;1.�/I�/:

Details on the offline/online decomposition of the error estimate (5), respectively (6)
can also be found in [4].

5 Numerical Results

We consider the static heat equation on the unit square in R
2 with a decomposition

of the domain into two parts. The heat coefficient �.xI�/ is piecewise constant and
depends on three parameters: k.�I�/jBi D �i for i D 1; : : : ; 3 and k.�I�/jB4 D 1.
Figure 1 shows the blocks B1; : : : ; B4 and the domain decomposition. This model
leads to a weak form with

a.v;wI�/ D
Z

˝

�.�/rv � rw dx; v;w 2 X;� 2 P :

The source consists of two exponential bubbles, with peaks in ˝1 and ˝2 and a
fourth parameter as a weight between them:

f .vI�/ D
Z

˝

h.�/v dx; v 2 X;� 2 P;

h.xI�/ D 80�4 exp
��20jx � z1j2

� C 80.1� �4/ exp
��20jx � z2j2

�
;
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Fig. 1 Left: blocks, where �.�/ is constant in space, right: domain decomposition of˝ D .0; 1/2
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Fig. 2 Left: output values s.�/ on a parameter set of 100 randomly generated parameters. Right:
investigation of the output error and corresponding estimate on the same parameter set with RB
spaces of dimensions N D 80, M D 28

for x 2 ˝ , � 2 P with z1 D .0:5; 0:5/T and z2 D .0:875; 0:875/T . So the
parameter vector is 4-dimensional; P � R

4. The linear output is defined as the
mean value of u.�/ on ˝s D Œ0; 0:25	 � Œ0:75; 1	:

s.�/ D l.u.�// D 1

j˝sj
Z

˝s

u.�/ dx; � 2 P :

The left-hand side of Fig. 2 shows values of s.�/ for 100 randomly generated
parameters. Our basis generation procedure yields bases of different sizes N D
N1 C N2 and M D M1 C M2 for the primal and the dual approximation space.
We define the error e

nu;n 
s .�/ D js.�/ � s

nu;n 
N .�/j and the effectivity �

nu;n 
s .�/ D

�
nu;n 
s .�/=e

nu;n 
s .�/, where in the following nu D nu;acc.�/ and n D n ;acc.�/

for the respective parameter. The right-hand side of Fig. 2 shows that we obtain
fairly good approximations and that the estimate is clearly related to the error. The
effectivity is at the range of 102. Exemplary values of the effectivity are shown in
Table 1.
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Table 1 Output error e
nu;n 
s .�/, estimate �

nu;n 
s .�/ and effectivity �

nu;n 
s .�/ for one randomly

generated parameter and different bases sizes

Bases sizes .N;M/ Output error Estimate Effectivity

.61; 13/ 7:65 � 10�7 7:23 � 10�5 94.55

.80; 28/ 4:31 � 10�11 3:84 � 10�9 89.18

.85; 40/ 6:94 � 10�15 2:78 � 10�13 40.06

To conclude, the primal-dual framework has been successfully transferred to
the Dirichlet-Neumann RB method. The introduction of smoothed solutions in
the output approximation allows a-posteriori error estimation in a straight-forward
manner. The results meet the expectations to the method.
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