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Abstract In general, reduced-order model (ROM) solutions obtained using proper
orthogonal decomposition (POD) at a single parameter cannot approximate the
solutions at other parameter values accurately. In this paper, parameter sensitivity
analysis is performed for POD reduced order optimal control problems (OCPs)
governed by linear diffusion-convection-reaction equations. The OCP is discretized
in space and time by discontinuous Galerkin (dG) finite elements. We apply two
techniques, extrapolating and expanding the POD basis, to assess the accuracy of
the reduced solutions for a range of parameters. Numerical results are presented to
demonstrate the performance of these techniques to analyze the sensitivity of the
OCP with respect to the ratio of the convection to the diffusion terms.

1 Introduction

Optimal control problems for nonlinear and time-dependent partial differential
equations (PDEs) depending on a set of parameters are very time consuming.
To overcome this, in the last years, POD-ROMs are applied to optimal control
of PDEs (see for example [4]). The POD is based on projecting the dynamical
system onto subspaces of basis elements using the snapshots computed by finite
elements. The finite element solutions are not correlated to the physical properties
of the system they approximate, whereas the POD bases express the characteristics
of the solutions better. Besides POD, reduced basis methods are also used to
obtain efficient ROM solutions for parameterized PDEs (see for example [6]).
When ROMs should approximate solutions for a wide range of parameters, the
cost of basis selection increases because full data are required. In recent years,
sensitivity analysis has been used in the POD basis selection process for fluid
dynamics [3]. They rely on the continuous or discrete sensitivities, baseline or
reference POD modes and their derivatives with respect to parameters. In this
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work, we extend the parameter sensitivity analysis in [3] to time dependent OCPs
constrained by linear diffusion-convection-reaction equations. We compute two
new POD bases by extrapolating and expanding the baseline POD basis to assess
the accuracy of the reduced solutions for a range of parameters. The optimality
system is discretized using space-time dG method. DG time discretization schemes
combined with the symmetric interior penalty (SIPG) method in space have the
pleasant property that discretization and optimization commute. In addition, dG
time-stepping methods require less regularity compared to the finite difference
schemes in time [7, Chap. 7].

The paper is organized as follows: In Sect. 2, we give the optimality system for
the OCP governed by the unsteady diffusion-convection equation. The fully-discrete
optimality system using the space-time dG is given in Sect. 3. The POD-ROM for
the OCP and the derivation of POD sensitivities are presented in Sect. 4. Numerical
results for an OCP with interior and boundary layers are discussed in Sect. 5.

2 The Optimal Control Problem

We consider the following distributed OCP by the unsteady diffusion-convection-
reaction equation without control constraints

minimize
u2L2.0;T IL2.˝//

J.y; u/ WD 1

2

Z T

0

� ky � ydk2L2.˝/ C ˛ kuk2L2.˝/
�

dt;

subject to @ty � ��y C ˇ � ry C ry D f C u .x; t/ 2 ˝ � .0; T �;
y.x; t/ D 0 .x; t/ 2 @˝ � Œ0; T �; (1)

y.x; 0/ D y0.x/ x 2 ˝;
where ˝ is a bounded open, convex domain in R

2 with a Lipschitz boundary @˝
and I D .0; T � is the time interval, f; yd 2 L2.0; T IL2.˝//; y0.x/ 2 H1

0 .˝/; r 2
L1.˝/;ˇ 2 .W 1;1.˝//2 are given functions and �; ˛ > 0 are given scalars.
The velocity field ˇ does not depend on time and satisfies the incompressibility
condition, i.e. r � ˇ D 0.

In order to write the variational formulation of the problem, we define the bilinear
forms a.y; v/ D R

˝
.�ry �rvCˇ �ryvCryv/ dx, .u; v/ D R

˝
uv dx, the state and the

test space as Y D V D H1
0 .˝/;8t 2 .0; T �. It is well known that the pair .y; u/ 2

H1.0; T IL2.˝// \ L2.0; T IH1
0 .˝// � L2.0; T IL2.˝// is the unique solution of

the optimal control problem if and only if there is an adjointp 2 H1.0; T IL2.˝//\
L2.0; T IH1

0 .˝// such that .y; u; p/ satisfy the following optimality system [8]

.@ty; v/C a.y; v/ D .f C u; v/ 8v 2 V; y.x; 0/ D y0;

�.@tp;  /C a. ; p/ D �.y � yd ;  / 8 2 V; p.x; T / D 0; (2)

˛u D p:
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3 Space-Time Discretization of the Optimal Control Problem

Let fThgh be a family of shape regular meshes such that˝ D [K2ThK,Ki \Kj D
; for Ki ;Kj 2 Th, i 6D j . We use discontinuous piecewise finite element space
Vh D ˚

y 2 L2.˝/ W y jK2 P
1.K/ 8K 2 Th

�
for the control, state and adjoint.

Here, P1.K/ denotes the set of all polynomials onK 2 Th of degree 1. The diffusion
term is discretized by the SIPG method and the convection term is discretized by
upwinding [2]. Then, the semi-discrete state equation is given as in the study [1]

.@t yh; vh/C ah.yh; vh/C bh.uh; vh/ D .fh; vh/ 8vh 2 Vh; t 2 .0; T �:

For time discretization, we also use dG method. Let 0 D t0 < t1 < � � � < tN D T

be a subdivision of I D .0; T / with time intervals In D .tn�1; tn� and time steps
kn D tn � tn�1 for n D 1; : : : ; N and k D max1�n�N kn. We define the space-time
finite element space of piecewise discontinuous functions for test function, state,
control and adjoint as

V k
h D

(
v 2 L2.0; T IL2.˝// W vjIm D

qX
sD0

t s�s; t 2 Im; �s 2 Vh;m D 1; : : : ; N

)
:

We use dG(0) method, i.e. q D 0, where the approximating polynomials are
piecewise constant in time. We define yn D yhkjIn , pn D phkjIn , un D uhkjIn for
n D 1; � � � ; N , y�

hk;0 D y0, p
C
hk;N D 0. Then, the fully-discrete state and the adjoint

equation are written as

.M C kAs/yn D Myn�1 C k

2
.fn C fn�1/C k

2
M.un C un�1/;

.M C kAa/pn�1 D Mpn � k

2
M.yn C yn�1/C k

2
.ydn C ydn�1/;

where M is the mass matrix and As , Aa are the stiffness matrices for the state
ah.yh; vh/ and adjoint equations ah.vh; ph/, respectively. We note that the resulting
scheme is a variant of the backward Euler method where the temporal terms on the
right-hand side of (2) are computed by trapezoidal rule [7, Chap. 7].

4 Reduced-Order Modelling Using POD

In this section, we briefly explain the POD method. Let the matrix W be a real-
valued M � N matrix of rank d � min.M;N / representing the snapshot data. We
introduce the correlation matrixK D QW T QW with QW D M1=2W . Then, we compute
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the coefficients of a POD basis of rank l using the eigenvalue decomposition (EVD)
of K as follows

�W;j D W QVW;j =
q
�j ; j D 1; � � � ; l;

where QVW;j is the j -th eigenvector of K and �j is the associated eigenvalue. On the
other hand, the singular value decomposition (SVD) of the matrix QW D U˙V T can
also be used. The POD basis coefficients are computed by solving the linear system
.M1=2/T �W;l D U l , with the first l columns of U , for �W;l . Then, the l POD basis
functions are written as a linear combination of the finite element basis functions,

 j .x/ D
MP
iD1

�ij'i.x/; j D 1; : : : ; l:

In general, the POD basis generated via the snapshots depending on a parameter
�0 cannot capture the dynamics of the perturbed problem associated to � D
�0 C ��. Motivated by the study of fluid flow equations using POD-ROMs [3],
POD sensitivities can be used to enrich the low-dimensional space for a wider
range of parameters. In order to derive POD sensitivities, the sensitivity of the
snapshot set is required. The sensitivity of a term is defined as the derivative of
that term with respect to a quantity of interest. In this study, we are interested in the
sensitivities with respect to � corresponding to the ratio � Dj ˇ j =� in the OCP (1).
For the computation of the sensitivities, we compare two different approaches: the
continuous sensitivity equation (CSE) and finite-difference (FD) approximation.
In CSE approach, state, adjoint and control are assumed to be differentiable with
respect to �. The subscript � denotes the derivative with respect to �. Then, with
the sensitivities s D y�; q D p�; 	 D u�; we derive another optimality system
depending on s; q and 	,

.@t s; v/C a.s; v/ D .f� C 	; v/ � .ry;rv/; s.x; 0/ D .y0/�;

�.@tq;  /C a. ; q/ D �.s � yd�;  / � .rp;r /; q.x; T / D 0; (3)

˛	 D q:

We note that the sensitivity equations are always linear, so CSE method would be
especially promising for nonlinear problems. The sensitivities s; q and � can be
computed either by inserting the solution of the state and adjoint to the right-hand
side of (3) or solving the systems arising from (2) and (3) simultaneously. We use
the second approach. In FD method, particularly for the centred difference scheme,
the solution of the perturbed optimal control problem is required, i.e. depending on
� D �0 ˙ ��. Then, the sensitivity of the state can be computed via the centred
difference as follows

y�.�0/ � y.�0 C��/� y.�0 ���/

2��
: (4)
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We treat each POD mode as a function of both space and the parameter, i.e.  D
 .x; �/. In order to find POD sensitivities, we differentiate .M1=2/T � D U l with
respect to � and then solve the resulting equation for ��. Then, the sensitivities of
the l POD basis functions, namely  �, are written as a linear combination of the

finite element basis functions, . j /� D
MP
iD1

.�ij/�'i .x/; j D 1; : : : ; l .

We have taken the same range of parameters as in [3]. For larger parameter
variations, the applicability of this approach might not be useful, because the
sensitivities are based on the asymptotic expansion of � in (4).

The connection between the state and the POD sensitivities is realised through
the relation

U l
� D . QW V l˙
/� D QW�V

l˙
 C QW V l
�˙


 C QW V l˙

�:

For the computation of V l
� and˙


�, we consider the equationB D ATAwhich leads

to the following eigenvalue problem BVk D V k�k with the kth column of V .
After differentiation, one obtains

.V k/T .B� � �k�I /V
k D 0: (5)

Equation (5) is solved in the least-squares sense and we denote one particular
solution by sk . ˙


� is computed using the relation �2 D �. For details, we refer
to [3, Sec. 3.2].

We use the sensitivity information in two ways, i.e. extrapolating POD (ExtPOD)
and expanding POD (ExpPOD) basis. In ExtPOD, the POD basis depending on �
is written using the first-order Taylors expansion as follows

 .x; �/ D  .x; �0/C��
@ 

@�
.x; �0/C O.��2/:

In ExpPOD, the POD basis sensitivities are also added to the original POD basis as
Œ 1; : : : ;  l ; . 1/�; : : : ; . l /�� and the reduced order solution is written as

yrh.x; t/ D
lX

jD1
yrj .t/ j .x/C

2lX
jDlC1

yrj .t/. j .x//�;

where the dimension of the reduced basis is doubled.
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5 Numerical Results

We consider the optimal control problem with

Q D .0; 1� �˝; ˝ D .0; 1/2; � D 10�2; ˇ D 1p
2
.1; 1/T ; r D 1; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from the optimality system (2) using the following exact solutions of the state and
control, respectively,

y.x; t/ D .1 � e�t /xye� 1�x
� �1e� 1�y

� �1;

u.x; t/ D .1 � t/xy.1� x/.1 � y/ arctan
�x � y

�

�
:

We observe that the state contains boundary layers along x D 1 and y D 1, while
the control exhibit an interior layer along x D y of the width �. The full problem is
solved for �x D 1=40;�t D 1=60. The conjugate gradient method is used in the
optimization step. The error between the full and reduced solution of the control is
measured with respect to L2.0; T IL2.˝//.

We choose the parameter range for the ratio � Dj ˇ j =� as 1=� D 80 W 5 W 120.
We compute l POD basis functions associated to the nominal diffusion parameter,
i.e. � D 1=100, and compare the resulting error with the ExtPOD and ExpPOD
basis. Three different snapshot sets for W are used to generate the POD basis
functions, namely state Y , adjoint P and the combination of them Y [ P , as in
[5]. The state, adjoint and the control are written in terms of the same POD basis
functions associated to W and then the optimality system is projected onto the low-
dimensional subspace.

We choose the number of POD basis functions, namely l , according to the
relative information content, that is, the ratio of the modelled energy to the total

energy contained in the system E .l/ D
lP

iD1
�i=

dP
iD1

�i . It is fixed up to 100.1� �/%
by keeping the most energetic POD modes. In this study, we choose 10 POD basis
functions setting � D 10�2.

Because the velocity field is constant in our example, we proceed with the
diffusion term to calculate the sensitivities. In Fig. 1, we present the decrease of
the first 15 eigenvalues of the snapshot ensemble Y;P; Y [ P on the left and their
sensitivities Y�; P�; Y� [ P� on the right. The sensitivities are computed using the
centered FD quotient and CSE method. We observe that FD and CSE methods yield
almost the same eigenvalues. We note that the eigenvalues and their sensitivities are
decreasing.
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Fig. 1 Eigenvalues(left) and their sensitivities(right)
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Fig. 2 Error versus parameter for 10 POD basis functions generated with the snapshot set Y (left),
P (middle) and Y [ P (right)

In Fig. 2, we present the error for the control with respect to � with 10 POD
bases functions. The control approximated with the POD bases generated from the
state solution is poor because the characteristics of the control are totally different
from the state solution. The inclusion of the adjoint information in W improves
the performance of the method, because the relation between the adjoint and the
control is determined through the optimality condition (2). In addition, a good
approximation to the control influences the state solution directly due to acting on
the right-hand side of the state equation. The figures on the left and in the middle
indicate that the snapshot sets Y and P cannot reveal the sensitivity of the control
with respect to �. Although ExpPOD gives the smallest error, it is too large for the
reduced solution to be accepted. The solution plotted in the right of Fig. 2 is obtained
using the snapshot set Y [P and it reveals the sensitivity of the problem with respect
to �. As we move away the parameter, the error in the reduced solution increases.
For the reduced solution of the perturbed problem, ExpPOD basis generated with
the snapshot ensemble Y [P is the most promising basis among POD and ExtPOD.

In Fig. 3, we present the error for the control with respect to increasing number of
POD basis functions by taking � D 1=120. The figure on the left has been obtained
with the state snapshots Y and shows that the error decays slowly and is oscillating
due to a poor approximation to the control is used. The figure in the middle depicts
the error obtained by the POD basis generated with the adjoint snapshot set P .
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Fig. 3 Error versus the number of POD basis functions for � D 1=120 generated with the snapshot
set Y (left), P (middle) and Y [ P (right)

Although the error for the first POD mode is around 10�4, error increases up to
10�2, which is not usual when the number POD basis functions are increased.
The figure on the right shows that snapshot ensemble Y [ P leads to the smallest
error. Moreover, the error for ExtPOD oscillates until the 6th POD mode and then
surpasses the error in the nominal POD. However, the benefit of using ExpPOD is
revealed at the most, because the error in the nominal POD basis is improved almost
2 digits. In addition, the decay of the errors for Y [ P is much faster than the one
obtained with Y or P using a smaller number of POD basis functions.

We observe that although the eigenvalues of the snapshot sets Y and P decreases
as shown in Fig. 1, the quality of the reduced-order control obtained using Y or P is
not sufficient. The state and adjoint snapshots might be a good choice if associated
POD basis is used to approximate the state and adjoint independently. The POD
basis generated via the snapshot ensemble Y [ P , containing information about
both state and adjoint, give more accurate reduced order solutions and capture the
sensitivity of the problem better. For the perturbed problem, expanding the POD
basis increases accuracy without solving the nominal problem for each parameter.
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