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Abstract We apply the finite element-boundary element method (FEM-BEM) for
a smooth approximation of a curvilinear interior interface in a finite domain. This
avoids unphysical singularities at the interface due to a piece-wise linear boundary.
This type of FEM-BEM coupling arises from simulating the biophysical problem of
dielectric relaxation spectroscopy of solvated proteins. Boundary elements convert
the linear Poisson problem due to the intramolecular charges of the protein into a
boundary condition at the protein-solvent interface. The electro-diffusion of ions
in the solvent is modeled as a set of convection-diffusion equations. The spatial
distributions of the ion species induce an electrostatic potential which solves a
Poisson problem. The gradient of the potential constitutes the convective flow field.
The link to experiments is given by computing the stationary ionic current through
the system. This requires Robin-type boundary conditions at the electrodes.

1 Introduction

The coupling of finite and boundary element methods, (FEM) and (BEM), is
commonly used for interface problems on unbounded domains. Finite elements
are applied to bounded “regions of interest” which contain non-linearities, inho-
mogeneities and other properties which need a well-resolved volume mesh. The
BEM part models unboundedness and physical effects described by a homogeneous
partial differential equation (PDE) with constant coefficients. In this work we
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discuss how to employ BEM to exclude a subdomain from a finite domain. This
accurately models the geometric shape of an interior, curvilinear and smooth
interface and unifies the computational domain for the components of a PDE model.

The investigation of this subclass of FEM-BEM coupling arises from the need
to simulate the biophysical problem of dielectric relaxation spectroscopy (DRS) of
solvated proteins, in particular ubiquitin, which plays a fundamental role in cell
biology. The discovery of ubiquitin-mediated protein degradation won the nobel
prize in chemistry in 2004. The physical basis of DRS is the polarizability of non-
conducting materials in the presence of an external electric field. Polarization is
the material-specific part of the dielectric displacement which is proportional to the
electric field. The proportionality is given by the complex dielectric permittivity "�.
In the frequency domain it quantifies the dynamic response of molecular dipoles
(contributing at high frequencies) and mobile charge carriers (predominant influence
at low frequencies). The DRS technique allows to measure dielectric properties in
the range of 10�6–1012 Hz. For a detailed review see the monograph [1]. The typical
experimental setup is a parallel plate capacitor with the dielectric sample in between
the plates [1, Chapter 2]. Application of an alternating voltage yields the dielectric
loss spectrum, i.e. the conductivity-corrected imaginary part of "� as function of
frequency. In case of ubiquitin in aqueous solution this spectrum is dominated by
the “�” peak at about 10 GHz, which represents the reorientation of the dipoles of
water molecules in the bulk, and the “ˇ” peak at roughly 10 MHz which accounts
for the tumbling motion of the protein molecule while its molecular dipole aligns
with the applied electric field [2]. This is sketched in Fig. 1a. The peak positions
reveal the time scales on which the relaxation processes take place. Recent DRS
studies on ubiquitin [3] suggest that the dynamics of conformational sampling, i.e.
a protein’s ability to switch between different molecular conformations (indicated
by the different positions of the intramolecular charges in Fig. 1b, c), influence the
direct current component of the dielectric loss spectrum and can be observed as the
“sub-ˇ” peak. This important discovery provides a direct experimental access to
the rates of the intramolecular dynamics, which are mostly inaccessible to nuclear
magnetic resonance (NMR) spectroscopy, the most frequently used experimental

Fig. 1 (a) Dielectric loss spectrum of ubiquitin. (b, c) Charge configurations in protein (domain
˝P ) in the DRS cell ˝ D ˝S [˝P . Details see text



FEM-BEM for Modeling of Excluded Volume Effects in DRS 49

technique to characterize protein dynamics. For the detailed explanation of many
biomolecular processes, e.g. of protein-protein recognition [4], the exact knowledge
of the kinetics of conformational sampling is decisive.

In this paper we apply the theory of FEM-BEM methods for infinite domains to
the case of using the BEM part to exclude a subdomain from a finite domain in order
to develop a deeper understanding of the origin of the “sub-ˇ” peak. We use BEM
to retain the smooth shape of the protein-solvent interface. The proper incorporation
of a stationary current by means of Robin-type boundary conditions (BCs) provides
the link to a comparison with experimental data. The equations are solved by the
geometric multigrid (GMG) method [5] from deal.II [6].

2 Poisson-Nernst-Planck Model

Initial theoretical studies explained the “sub-ˇ” peak by a 2-state, ratchet-like
stochastic model for the conformational dynamics coupled to a Fokker-Planck
model for the mobile ions [3, supplementary material]. Depending on its confor-
mation the ubiquitin molecule may bind a varying number of ions in its dielectric
double layer thus influencing the density of mobile ions responsible for the direct
current component. Although it explains the essential features of the “sub-ˇ” peak,
this stochastic model neither includes spatial inhomogeneities nor BCs.

For the effects at the protein-solvent interface � we need at least a generic anion
and cation species with densities c� and cC, respectively, with charges of equal
strength. To incorporate a stationary current through the DRS cell (Fig. 1), we have
to take into account the redox reaction IC Ce� $ N for converting a cation IC into
a neutral particleN at the cathode�C or the anode�A. Thus, we have to incorporate
the density c0 of the neutral particles. The stochastic description of the ion dynamics
is replaced by the Poisson-Nernst-Planck equations

@t ca D �r � ja ; (1a)

ja D �.rca C acar˚/ (1b)

�r � ."r .r/r˚/ D �.cC � c�/�˝S C �f (1c)

for non-dimensional ion densities ca W ˝S ! R, a 2 fC; 0;�g, electro-diffusive
fluxes ja W ˝S ! R

3 and electrostatic potential ˚ W ˝ ! R. The charge density
on the right-hand side of Eq. (1c) comprises the mobile ions in the subdomain of
the solvent˝S , indicated by its characteristic function �˝S , and the intramolecular,
conformation-specific charge distribution %f , indicated by the index f . Here, the
protein is a dipole with two point charges immersed in a spherical, dielectric domain
˝P D ˝n˝S , ˝P \ ˝S D ;. The function "r in Eq. (1c) is piece-wise constant
and denotes the relative permittivities, i.e. "r D "S � 80 on ˝S , "r D "P � 2 on
˝P . Note the different computational domains for ions, ˝S , and potential,˝ .
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A realistic description of DRS requires BCs for the ja and˚ capable of modeling
an applied current. Usually, the redox reaction rates KR and KO are described by
Butler-Volmer kinetics, including the Frumkin correction due to the Stern layer [7].
As discussed in [8], for ˚ Dirichlet BCs, ˚

ˇ
ˇ
�C

D ˚C , ˚
ˇ
ˇ
�A

D ˚A, suffice. The
redox reaction implies a balance of in- and outward fluxes at the electrodes

n � jC
ˇ
ˇ
�C

D KR cC
ˇ
ˇ
�C

D � n � j0
ˇ
ˇ
�C
; (2)

�n � jC
ˇ
ˇ
�A

D KO c0
ˇ
ˇ
�A

D n � j0
ˇ
ˇ
�A
; (3)

where n is the outer normal of the surface @˝S and �jB is the trace on some part
B � @˝S D �C [ �0 [ �A [ � . The rates are treated as constants, especially their
dependence on ˚ is neglected. The anions do not contribute to the current transport
and fulfill n � j�j�A D n � j�j�C D 0. The hull �0 of the cell and the protein surface �
are impermeable for all ions, n � jaj�0 D n � jaj� D 0, a 2 fC; 0;�g. For ˚ we have
n � r˚ j�0 D 0 and � is a dielectric interface with continuity and the jump relations

lim
ı!0

˚.x � ın/ D lim
ı!0

˚.x C ın/ ; "P .x/n � r˚ D "S.x/n � r˚ 8x 2 � :(4)

One goal in computational biochemistry is to model molecular surfaces of proteins
in a smooth manner [9]. Instead of an accurate sub-cell resolution of the dielectric
interface � we convert the interior constant-coefficient-Poisson equation into a
boundary integral equation (BIE) on � . The protein becomes an excluded volume
˝P of constant dielectric permittivity "r D "P containing point charges fqkg at
fixed positions fxkg. To do this, we apply the discussion of the BIE formulation
for linear interior Neumann boundary value and interface problems in [10]. The
Johnson-Nédélec coupling [11] needs the normal component of the electric field
w.r.t. to the outer normal nP (nP D �n on � ) of ˝P as independent variable
tP WD �@n˚ . Potential theory shows that on C1-smooth, closed surfaces � the
intramolecular part ˚P of the potential at x 2 � fulfills

1

2
˚.x/ C

I

�

�

˚.x0/
@Gx

@n0
P

.x0/ �Gx.x0/
@˚

@n0
P

.x0/
�

d� .x0/ D 1

"P

Z

˝P

Gx.x0/�f .x0/ :

Here, Gx.y/ WD 1=.4�jx � yj/ is the Green’s function of the Laplace equation.
The right-hand side defines the Newton potential �C . We define the single layer
boundary integral operator (BIO) V W H�1=2.� / ! H1=2.� / and the double layer
BIO K W H1=2.� / ! H1=2.� / as in [12, Secs. 6.2 and 6.4]. Instead of nP we use
the outward normal n D �nP relative to ˝S

.V tP /.x/ WD
I

�

Gx.x0/tP .x0/d� .x0/ ; .K˚P /.x/ WD
I

�

@Gx

@n.x0/
.x0/˚.x0/d� .x0/ :
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From Eq. (4) follows "S@n˚
ˇ
ˇ
�

D �"P tP and we get

�
1

2
I �K

�

˚ C "S

"P
V tP D �C : (5)

This is the basis for the FEM-BEM method for the potential, reducing its com-
putational domain to ˝S D ˝n˝P . The distribution of the ions is governed by
convection-diffusion equations with either Neumann or Robin but no Dirichlet BCs.
The link to experiments is the direct current Idc created by a potential difference
� WD ˚C � ˚A. Due to the redox reaction at the electrodes Idc D R

�C
n � jCd�C D

KR

R

�C
cCd�C . The conformational sampling introduces a time-dependence on Idc .

This is modeled by a two-state telegraph process, i.e. a random switching between
two stationary states. This makes Eq. (1a) formally time independent. For details
cf. [8]. To validate the hypothesis about the origin of the “sub-ˇ” peak we have to
compute two different values for Idc from the time independent version of Eq. (1).

3 Weak Formulation and Discretization

We do not solve Eq. (1) in its mixed form, but reduce it to a set of convection-
diffusion equations by inserting Eq. (1b) into Eq. (1a), eliminating the currents.

Let .�; �/D be the L2 inner product on a domain D and k � kX the norm of a
function space X . For D � ˝S we drop the index. The weak form of Eq. (1) is
derived by multiplying with test functions, integrating by parts and inserting all flux
BCs. The Dirichlet BCs for the potential ˚ are built into the solution space X for
the FEM part. We define X as a direct product of a space Xc WD ŒH1.˝S/	

3 for
the densities and X˚ WD f˚ 2 H1.˝S/ W ˚ j�A D 0; ˚ j�C D �g for ˚ . For
the BCs for ˚ on � we need the space Y WD H�1=2.� /. The final solution space
is V WD X � Y . The FEM part of the solution is u WD .cC; c0; c�; ˚/ and the test
function is v WD .s; u; v;w/. Except for the interface term for˚ on � the weak form
is a semilinear form a.�I �/ W X � X ! R which is nonlinear in its first argument.
The terms in a.�I �/ can be grouped to reflect, after linearizing, the block structure
of the matrix using scalar test functions as block row and trial functions as block
column indexes. Diagonal terms are in aD.�I �/, linear upper off-diagonal terms in
alU .�I �/, nonlinear drift terms in adU .�I �/ and lower off-diagonal terms in aL.�I �/, i.e.

aD.uI v/ WD .rs;rcC/C .ru;rc0/C kO.u; c0/�A C .rv;rc�/C "S.rw;r˚/;
alU .uI v/ WD �kO.s; c0/�A ; adU .uI v/ WD .rs; cCr˚/ � .rv; c�r˚/ ;
aL.u; v/ WD �kR.u; cC/�C � .w; cC � c�/ :
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After linearizing adU .�I �/ w.r.t. cC and c�, the associated matrices are AD , AU and
AL, respectively. The left-hand side of the weak form of Eq. (5), with associated
matrices BK and BV , is a sum of the two bilinear forms

bK. ;˚/ WD �

 ;
�
1
2
I �K

�

˚
�

�
W H1=2.� / �H1=2.� / ! R ;

bV . ; t
P / WD "S

"P

�

 ; V tP
�

�
W H�1=2.� / �H1=2.� / ! R :

We use conformal discretizations Xh � X and Yh � Y by globally continuous
Lagrange elements for which we use deal.II’s FE_Q<dim> class. In practice, the
trial functions in Yh are given by the traces of those in Xh because we treat the
normal derivative as independent variable. This is due to the way finite elements
are implemented in deal.II. The same holds for the test functions  in the dual
space Y 0

h � H1=2.� /. Then, the discretized variational problem is: Find .uh; tPh / 2
Xh � Yh s: t:

8vh 2 Xh W a.uhI vh/C .w; "P tP /� D 0 ; (6a)

8 h 2 Y 0
h W bK. h;˚h/C bV . h; t

P
h / D �

 h; �
C

�

�
: (6b)

Several numerical problems arise in solving the discretized problem. Only the
potential ˚ is unambiguous since it is subject to Dirichlet BCs at the electrodes
�A and �C . The equation for the density of the neutral particles c0 effectively
is a pure Neumann Laplace problem. Its average merely enters via the boundary
terms in Eq. (3) for the cations cC. Particle numbers, and thus average densities,
are conserved

R

˝S
ca d˝S D const, a 2 fC; 0;�g in the stationary state.

This is enforced by adding a pseudo-time dependence, i.e. �r2u D f becomes
ŒıI � r2	unC1 D f C ıun, where ı is an inverse time step and I is the identity
operator.

We solve by interleaving successive mesh refinement, pseudo-time stepping and
reassembly of the nonlinear terms. This introduces a sequence of finite-dimensional
subspaces Xh � X , parametrized by the cell diameter h. On a given mesh, i.e. in
FE space V `

h � V , V `
h � V `C1

h we run a few steps in pseudo-time (while kunC1 �
unk`2 � Tol). In each time step we reassemble the drift terms in AU after solving
the linear algebraic problem by deal.II’s GMRES solver with left-preconditioning.

For the numerical solution of Eq. (6) we have considerably extended the GMG
example step-16 of deal.II, v7.2.0. When computing the matrices BK , BV from the
bilinear forms bK.:; :/ and bV .:; :/ the double integration is avoided by using the
support points of the test functions for collocation. With tPh D P

i t
P
i �i 2 Yh, e.g.

the entries of the matrix representing the single layer BIO are formally given by
BV;ij D . i ; V�j /: Let xi be the support point of DoF i , then collocation at xi can
be interpreted as BV;ij D .ı.x � xi /; V�j /, i.e. BV;ij is computed as

BV;ij D
I

@˝S

Gxi .x
0/�j .x0/d� .x0/ : (7)
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Fig. 2 Convergence of the Neumann problem, Eq. (11), with (a) Eq. (8), (b) Eq. (9) as solution. (c)
FEM and (d) BEM error for dipole test case, Eq. (9), on the FEM-BEM problem, Eq. (10). Figures
share axis labels and legends

To minimize the costs of matrix assembly we compute bulk and boundary mass
matrices only once. The definitions of Xc and X˚ require the assembly of two dif-
ferent Laplacians and hence to setup two GMG preconditionersP c

MG and P˚
MG. Cell

contributions get reused when building global matrices which differ only in the BCs.
The costs of assembling the matrices by numerical quadrature are roughly equal to
two Poisson equations with variable coefficients as the data for the linear Laplacians
can be reused to a great extent for the drift terms. The matrix A for the linearized
DRS problem, Eq. (6), is stored as dealii::BlockMatrixArray and the pre-
conditioner PA as dealii::BlockTrianglePecondition which acts like
a block Gauss-Seidel method. Its diagonal blocks are .P c

MG; P
c
MG; P

c
MG; P

˚
MG; P

V /,
where PV preconditions BV and is the identity matrix. The upper off-diagonal
blocks ofPA are void. The lower off-diagonal blocks are those ofA, i.e.AL andBK .

Results and Conclusion
In our tests we model the boundary piece-wise by polynomials of order m D
2, cf. legend of Fig. 2. This numerical boundary is not C1-smooth. According
to our tests, it approximates the curved surface of a sphere sufficiently well
such that we do not have to consider the solid angle subtended by the surface

(continued)
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elements at a vertex of the mesh of � . Due to the outer surface of the DRS
cell we cannot use the C1-mapping provided by deal.II as deal.II cannot
assign different mappings to different subboundaries. Throughout we use
either linear (p D 1) or quadratic (p D 2) FEM.

We are interested in the convergence of our method for the pure Neumann
problem and for the FEM-BEM coupling. We define two test problems with
solutions

˚SP WD 0:1.2x C y C z/C 0:01xyz ; (8)

˚D WD 1

4�jx � xCj � 1

4�jx � x�j ; (9)

with x˙ D .0; 0;˙0:5/ in a sphere of radius 1. As ˚ref is either ˚SP or
˚DSP WD ˚D C˚SP. Note that ˚SP is harmonic. The FEM-BEM convergence
is assessed on the simplified problem: find .˚; tP / 2 X˚ � Y s:t: 8.
;  / 2
X˚ � Y 0 W

.rv; "Sr˚/C .v; "S t
P /� D 0 ; (10a)

bK. h;˚h/C bV . h; t
P
h / D �

 ; �C
�

�
; (10b)

with ˚ j�A[�0[�C D ˚ref . The test for pure Neumann BCs is: find ˚ 2
H1.˝S/ s:t:

.rv;r˚/ D .v; @n˚ref / 8
 2 H1.˝S/ : (11)

To measure the error we use the standard L2.˝S/- andH1.˝S/-norm for the
FEM part. For the BEM part we measure the L2 error of the trace of ˚ on �
k˚ref � ˚hk2L2.� /, and the L2 error in the trace of @n˚ � �tP on � . Here,

denoted asH1.� / semi-norm j˚ref �˚hj2H1.� /
WD k@n˚ref CtPh k2

L2.� /
. In case

of Eq. (11) and ˚ref D ˚SP convergence is as expected. For FEM of order p
we get ku � uhk2L2.˝S / D O.hpC1/ and ku � uhk2H1.˝S /

D O.hp/ independent
of the order of the boundary approximation m, cf. Fig. 2a. Figure 2b shows
that for ˚ref D ˚DSP we roughly lose half an order which we attribute to the
right-hand side of the BEM part containing the ı-distributions for the point
charges. Figure 2c shows the convergence of the FEM part of Eq. (10). For
Lagrange finite elements of order p D 2 the L2.˝S/ and H1.˝S/ error
have the same asymptotic behavior. The error in the BEM part, Fig. 2d, is as
expected for linear elements (p D 1). Due to the collocation the decay of the
error in tP does not improve. The error of˚ j� partly profits from higher order
elements. Figure 3 shows that local inhomogeneities of the cation density in

(continued)
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the vicinity of the protein surface are resolved and the current-carrying species
(cations and neutral particles) are distributed opposite to each other.

Fig. 3 Distribution of cations and neutral particles in the DRS cell

To conclude, we have derived a mathematical model for the detailed sim-
ulation of the electro-diffusive processes in dielectric relaxation spectroscopy
of proteins in solution including boundary effects inaccessible in previously
derived stochastic models. The key feature is the modeling of the protein-
solvent interface as excluded volume with a smooth surface by taking into
account its electrostatic properties by means of a boundary integral equation.
For the efficient solution of the resulting FEM-BEM model we have extended
the geometric multigrid example of the deal.II library (step-16) to vector-
valued problems and higher order elements. Unlike the strategy proposed
in deal.II’s step-34 for boundary elements we have to use the traces of the
finite elements as boundary elements. Most of the equations in the DRS
model are pure Neumann problems and subject to a conservation of particle
numbers. To assure their unique solvability we implemented an interleaved
pseudo-time stepping/mesh refinement strategy which avoids the saddle-point
problems arising from Lagrange multipliers. The convergence is as expected.
The convergence of the FEM-BEM method depends on the particular test
case but is consistent with the literature. Applied to the full DRS problem
our numerical results indicate the validity of the proposed explanation of the
origin of the “sub-ˇ” peak.
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