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Abstract We present a method for two-scale model derivation of the periodic
homogenization of the one-dimensional wave equation in a bounded domain. It
allows for analyzing the oscillations occurring on both microscopic and macro-
scopic scales. The novelty reported here is on the asymptotic behavior of high
frequency waves and especially on the boundary conditions of the homogenized
equation. Numerical simulations are reported.

1 Introduction

The paper is devoted to the periodic homogenization of the wave equation in a
one-dimensional open bounded domain where the time-independent coefficients are
"�periodic with small period " > 0. Corrector results for the low frequency waves
have been published in [2, 7]. These works were not taking into account fast time
oscillations, so the models reflect only a part of the physical solution. In [3], an
homogenized model has been developed to cover the time and space oscillations
occurring both at low and high frequencies. It is comprised with a second order
microscopic equation with quasi-periodic boundary conditions but also with a first
order macroscopic equation which boundary condition was missing. Therefore,
establishing the boundary conditions of the homogenized model is critical and is
the goal of the present work. A generalization of the wave equation posed in R

n has
also been considered in [4] but taking into account only "-periodic oscillations in the
space variables resulting in periodic conditions in the microscopic problem. Periodic
homogenization of the wave equation have been derived for other asymptotic
regime, for instance for long time in [5, 6, 8, 10].
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To this end, the wave equation is written under the form of a first order
formulation and the modulated two-scale transform W "

k is applied to the solution
U " as in [3]. For n 2 N

� and k 2 R; the nth eigenvalue �k
n of the Bloch wave

problem with k-quasi-periodic boundary conditions satisfies �k
n D ��k

n , in addition
�k

m D �k
n for k 2 Z=2, so the corresponding waves are oscillating with the same

frequency. The homogenized model is thus derived for pairs of fibers f�k; kg if
k ¤ 0 and for fiber f0g otherwise which allows to derive the expected boundary
conditions. The weak limit of

P
�2I k W "

� U " includes low and high frequency waves,
the former being solution of the homogenized model derived in [2, 7] and the latter
are associated to Bloch wave expansions. Numerical results comparing solutions of
the wave equation with solution of the two-scale model for fixed " and k are reported
in the last section.

2 The Physical Problem and Elementary Properties

The physical problem We consider I D .0; T / � R
C a finite time interval and

˝ D .0; ˛/ � R
C a space interval, which boundary is denoted by @˝ . Here,

as usual " > 0 denotes a small parameter intended to go to zero. Two functions
.a"; �"/ are assumed to obey a prescribed profile a" WD a

�
x
"

�
and �" WD �

�
x
"

�
where

� 2 L1 .R/, a 2 W 1;1 .R/ are both Y �periodic where Y D .0; 1/. Moreover, they
are required to satisfy the standard uniform positivity and ellipticity conditions, 0 <

�0 � � � �1 and 0 < a0 � a � a1; for some given strictly positive numbers �0, �1,
a0 and a1. We consider u" .t; x/ solution to the wave equation with the source term
f " 2 L2 .I � ˝/, initial conditions u"

0 2 H 1.˝/; v"
0 2 L2 .˝/ and homogeneous

Dirichlet boundary conditions,

�"@ttu" � @x .a"@xu"/ D f " in I � ˝;

u" .t D 0; :/ D u"
0 and @t u" .t D 0; :/ D v"

0 in ˝;

u" D 0 on I � @˝:

(1)

By setting: U " WD .
p

a"@xu";
p

�"@t u"/; A" D
0

@
0

p
a"@x

�
1p
�" :
�

1p
�" @x

�p
a":
�

0

1

A ;

U "
0 WD .

p
a"@xu"

0;
p

�"v"
0/ and F " WD .0; f "=

p
�"/, we reformulate the wave

equation (1) as an equivalent system: .@t � A"/ U " D F " in I � ˝; U " .t D 0/ D
U "

0 in ˝ and U "
2 D 0 on I � @˝ where U "

2 is the second component of U ". From
now on, this system will be referred to as the physical problem and taken in the
distributional sense,

Z

I�˝

F " � � C U " � .@t � A"/ �dtdx C
Z

˝

U "
0 � � .t D 0/ dx D 0; (2)
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for all the admissible test functions � 2 H 1.I � ˝/2 such that � .t; :/ 2 D .A"/

for a.e. t 2 I where the domain D.A"/ WD f.'; �/ 2 L2 .˝/
2jpa"' 2 H 1 .˝/ ;

�=� 2 H 1
0 .˝/g. As proved in [3], the operator iA" with the domain D.A"/ is

self-adjoint on L2.˝/2. We assume that the data are bounded kf "kL2.I�˝/ C�
�@xu"

0

�
�

L2.˝/
C �
�v"

0

�
�

L2.˝/
� c0, then U " is uniformly bounded in L2 .I � ˝/ :

Bloch waves We introduce the dual Y � D �� 1
2
; 1

2

�
of Y . For any k 2 Y �,

we define the space of k�quasi-periodic functions L2
k WD fu 2 L2

loc.R/ j
u.x C `/ D u.x/e2i�k` a.e. in R for all ` 2 Zg and set H s

k WD L2
k \ H s

loc .R/

for s � 0: The periodic functions correspond to k D 0. For a given k 2 Y �,
we denote by .�k

n; �k
n /n2N� the Bloch wave eigenelements that are solution to

P.k/ W �@y

�
a@y�k

n

� D �k
n��k

n in Y with �k
n 2 H 2

k .Y / and
�
��k

n

�
�

L2.Y /
D 1:

The asymptotic spectral problem P.k/ is also restated as a first order system by

setting Ak WD
0

@
0

p
a@y

�
1p
�
:
�

1p
�
@y

�p
a:
�

0

1

A, nAk
D 1p

�

�
0

p
anYp

anY 0

�

and

ek
n WD 1p

2

 
�isn=

q
�k

jnj
p

a@y

�
�k

jnj
�

p
��k

jnj

!

where sn and nY denote the sign of n 2 Z
�

and the outer unit normal of @Y respectively. As proved in [3], iAk is self-adjoint
on the domain D .Ak/ WD f.'; �/ 2 L2 .Y /2 jpa' 2 H 1

k .Y / ; �=
p

� 2 H 1
k .Y / �

L2 .Y /2g: The Bloch wave spectral problem P.k/ is equivalent to finding pairs�
�k

jnj; ek
n

�
indexed by n 2 Z

� solution to Q.k/ W Akek
n D isn

q
�k

jnje
k
n in

Y with ek
n 2 H 1

k .Y /2. We pose M k
n WD fm2 Z

�j�k
jmjD�k

jnj and sm D sng
and introduce the coefficients b.k; n; m/ D R

Y
��k

jnj � �k
jmjdy and c.k; n; m/ D

isn=
�
2
q

�k
jnj
� R

Y
�k

jnj � a@y�k
jmj � a@y�k

jnj � �k
jmjdy for n; m 2 M k

n :

The modulated two-scale transform Let us assume from now that the domain
˝ is the union of a finite number of entire cells of size " or equivalently that the
sequence " is exactly "n D ˛

n
for n 2 N

�. For any k 2 Y �, we define I k D f�k; kg
if k ¤ 0 and I 0 D f0g. By choosing � D .0; 1/ as a time unit cell, we introduce
the operator W "

k W L2 .I � ˝/2 ! L2 .I � � � ˝ � Y /2 acting in all time and

space variables, W "
k WD �

1 �P
n2Z� ˘k

n

�
S"

k C P
n2Z� T "˛k

n ˘
k

nS"
k where the time

and space two-scale transforms T "˛k
n and S"

k , and the orthogonal projector ˘k
n onto

ek
n are defined in [3], see pages 11, 15 and 17, with ˛k

n D 2�=
q

�k
jnj, and where it is

proved that
�
�W "

k u
�
�2

L2.I���˝�Y /
D kuk2

L2.I�˝/ :

We define .Bk
nv/.t; x/ D v.t; t

"˛k
n
; x; x

"
/ the operator that operates on functions

v.t; 	; x; y/ defined in I � R�˝ � R. The notation O ."/ refers to numbers or
functions tending to zero when " ! 0 in a sense made precise in each case. The
next lemma shows that Bk

n is an approximation of T "˛k
n �S"�

k for a function which is

periodic in 	 and k�quasi-periodic in y, where T "˛k
n � W L2 .I � �/ ! L2 .I / and

S"�
k W L2 .˝ � Y / ! L2 .˝/ are adjoint of T "˛k

n and S"
k respectively.
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Lemma 1 Let v 2 C 1 .I � � � ˝ � Y / a periodic function in 	 and
k�quasi-periodic in y, then T "˛k

n �S"�
k v D Bk

nv C O ."/ in the L2 .I � ˝/ sense.

Consequently, for any sequence u" bounded in L2 .I � ˝/ such that T "˛k
n S"

ku"

converges to u in L2.I � � � ˝ � Y / weakly when " ! 0,

Z

I�˝

u" � Bk
nv dtdx !

Z

I���˝�Y

u � v dtd	dxdy when " ! 0: (3)

Note that for k D 0, the convergence (3) regarding each variable corresponds to the
definition of two-scale convergence in [1]. The proof is carried out in three steps.
First the explicit expression of T "˛k

n �S"�
k v is derived, second the approximation

of T "˛k
n �S"�

k v is deduced, finally the convergence (3) follows. For a function
v .t; 	; x; y/ defined in I � � � ˝ � Y; we observe that

A"Bk
nv D Bk

n

��
Ak

"
C B

�

v

�

and @t

�
Bk

nv
� D Bk

n

��
@	

"˛k
n

C @t

�

v

�

, (4)

where the operator B is defined as the result of the formal substitution of
x�derivatives by y�derivatives in Ak .

3 Homogenized Results and Their Proof

For k 2 Y �, we decompose

˛k

"
D hk

" C lk
" with hk

" D
	

˛k

"




and lk
" 2 Œ0; 1/ ; (5)

and assume that the sequence " is varying in a set Ek � R
C� so that

lk
" ! lk when " ! 0 and " 2 Ek with lk 2 Œ0; 1/ : (6)

After extraction of a subsequence, we introduce the weak limits of the relevant
projections along ek

n for any n 2 Z
�,

F k
n WD lim

"!0

Z

��Y

T "˛k
n S"

kF " � e2i�sn	 ek
ndyd	 and U k

0;n WD lim
"!0

Z

Y

S"
kU "

0 � ek
ndy:

(7)

The next lemmas state the microscopic equation for each mode and the correspond-
ing macroscopic equation.

Lemma 2 For k 2 Y � and n 2 Z
�, let U " be a bounded solution of (2), there

exists at least a subsequence of T "˛k
n S"

kU " converging weakly towards a limit U k
n
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in L2.I � � � ˝ � Y /2 when " tends to zero. Then U k
n is a solution of the weak

formulation of the microscopic equation
�

@	

˛k
n

�Ak

�

U k
n D 0 in I � � � ˝ � Y (8)

and is periodic in 	 and k�quasi-periodic in y. Moreover, it can be decomposed as

U k
n .t; 	; x; y/ D

X

p2Mk
n

uk
p .t; x/ e2i�sp	 ek

p .y/ with uk
p 2 L2 .I � ˝/ : (9)

Lemma 3 In the condition of Lemma 2, for each k 2 Y �, n 2 Z
�; " 2 Ek , for each

� 2 I k and q 2 M �
n , the macroscopic equation is stated by

P
p2M �

n

�
b .�; p; q/ @t u�

p � c .�; p; q/ @xu�
p

�
D F �

q in I � ˝;
P

p2M �
n

b .�; p; q/ u�
p .t D 0/ D U �

0;q in ˝;
(10)

with the boundary conditions in case where there exists p 2 M k
n such that

c .k; p; q/ ¤ 0 and �k
jpj.0/ ¤ 0,

X

�2I k;p2M �
n

u�
p��

jpj .0/ esign.�/2i� lk x
˛ D 0 on I � @˝: (11)

The low frequency part U 0
H relates to the weak limit in L2 .I � ˝ � Y /2 of the

kernel part of S"
k in the definition of W "

k . It has been treated completely, in [2,
3]. Here, we focus on the non-kernel part of S"

k , it relates to the high frequency
waves and microscopic and macroscopic scales. In order to obtain the solution of
the model, we analyze the asymptotic behaviour of each mode through T "˛k

n S"
k as in

Lemmas 2 and 3. Then the full solution is the sum of all modes. The main Theorem
states as follows.

Theorem 1 For a given k 2 Y �, let U " be a solution of (2) bounded in L2 .I � ˝/,
for " 2 Ek; as in (5,6), the limit Gk of any weakly converging extracted subsequence
of
P

�2I k W "
� U " in L2 .I � � � ˝ � Y /2 can be decomposed as

Gk .t; 	; x; y/ D 
0 .k/ U 0
H .t; x; y/ C

X

�2I k ;n2Z�

u�
n .t; x/ e2i�sn	 e�

n .y/ (12)

where
�
u�

n

�
n;�

are solutions of the macroscopic equation, and the characteristic
function 
0 .k/ D 1 if k D 0 and D 0 otherwise.

Thus, the physical solution U " is approximated by two-scale modes

U " .t; x/ ' 
0 .k/ U k
H

�
t; x;

x

"

�
C

X

�2I k;n2Z�

u�
n .t; x/ eisn

p
��

n t="e�
n

�x

"

�
: (13)

The remain of this section provides the proofs of results.
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Proof of Lemma 2 The test functions of the weak formulation (2) are chosen as
� " D Bk

n� .t; x/ for k 2 Y �, n 2 Z
� where � 2 C 1 .I � � �˝ � Y /2

is periodic in 	 and k�quasi-periodic in y. From (4) multiplied by ", since�
@	

˛k
n

� Ak

�
� is periodic in 	 and k�quasi-periodic in y and T "˛k

n S"
kU " ! U

k

n

in L2 .I � � � ˝ � Y /2 weakly, Lemma 1 allows to pass to the limit in

the weak formulation,
R

I���˝�Y
U k

n �
�

@	

˛k
n
�Ak

�
�dtd	dxdy D 0. Using the

assumption U k
n 2 D .Ak/ \ L2

�
I � ˝ � Y I H 1 .�/

�
and applying an integration

by parts,
R

I���˝�Y

�
� @	

˛k
n

C Ak

�
U k

n ��dtd	dxdyC R
I�@��˝�Y U k

n ��dtd	dxdy �
R

I���˝�@Y U k
n � nAk

�dtd	dxdy D 0: Choosing � 2 L2.I � ˝I H 1
0 � � Y / comes

the strong form (8). Since the product of a periodic function by a k�quasi-periodic
function is k�quasi-periodic then nAk

� is k�quasi-periodic in y. Therefore, U k
n is

periodic in 	 and k�quasi-periodic in y: Moreover, (9) is obtained, by projection.

Proof of Lemma 3 For k 2 Y �, let
�
��

jpj; e�
p

�

p2M �
n ;�2I k

be the Bloch eigenmodes

of the spectral equation Q .�/ corresponding to the eigenvalue �k
jnj. We pose

� " .t; x/ D P
�2I k B�

n� �
" 2 H 1 .I � ˝/2 as a test function in the weak formu-

lation (2) with each � �
" .t; 	; x; y/ D P

q2M k
n

'�
q;" .t; x/ e2i�sq	 e�

q .y/ where '�
q;" 2

H 1 .I � ˝/ and satisfies the boundary conditions
P

�2I k;q2M �
n

e2i�sq t=."˛�
q /'�

q;" .t; x/

��
jqj
�

x
"

� D O ."/ on I � @˝: Note that this condition is related to the second

component of � " only. Since ˛�
q D ˛k

n and sq D sn for all q 2 M �
n and � 2 I k ,

so e2i�sq t=."˛�
q / ¤ 0 can be eliminated. Extracting a subsequence " 2 Ek , using

the ��quasi-periodicity of ��
jqj and (5,6), '�

q;" converges strongly to some '�
q in

H 1 .I � ˝/, then the boundary conditions are

X

�2I k;q2M �
n

'�
q .t; x/ ��

jqj .0/ esign.�/2i� lk x
˛ D 0 on I � @˝: (14)

Applying (4) and since
�

@	

˛�
n

� A�

�
� � D0 for � 2 I k , then in the weak

formulation it remains
P

�2I k

R
I�˝

F " � B�
n� �

" C U " � B�
n.@t � B/ � �

" dtdx �
R

˝
U "

0 � B�
n� �

" .t D 0/ dx D 0: Since .@t � B/ � �
" is ��quasi-periodic, so passing

to the limit thanks to Lemma 1, after using (7) and replacing the decomposition of
U �

n ,
P

�2I k ;fp;qg2M �
n

� R
I�˝

b .�; p; q/ u�
p �@t '

�
q �c .�; p; q/ u�

p � @x'�
q � F �

q �'�
q dtdx�

R
˝

U �
0;q �'�

q .t D 0/ dx
�D 0 for all '�

q 2H 1 .I � ˝/ fulfilling (14).
Moreover, if u�

q 2H 1 .I � ˝/ then it satisfies the strong form of the inter-
nal equations (10) for each � 2 I k , q 2 M �

n and the boundary conditionsP
�;p;q c .�; p; q/ u�

p'�
q D 0 on I � @˝ for '�

q satisfies (14):

In order to find the boundary conditions of
�

u�
p

�

�;p
, we distinguish between the

two cases k ¤ 0 and k D 0. First, for k ¤ 0, �k
jnj is simple so M k

n D fng.
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Introducing C D diag .c .�; n; n//� , B D diag .b .�; n; n//� , U D �
u�

n

�
�
, F D

�
F �

n

�
�
, U0 D �

U �
0;n

�
�
, � D �

'�
n

�
�
, ˚ D

�
��

jnj .0/ esign.�/2i�lkx=˛
�

�
, Eq. (10) states

under matrix form B@t U CC @xU D F in I �˝ and BU .t D 0/ D U0 in ˝ which
the boundary condition is rewritten as CU .t; x/ :� .t; x/ D 0 on I � @˝ for all �

such that ˚.x/:�.t; x/ D 0 on I � @˝: Equivalently, CU .t; x/ is collinear with

˚.x/ yielding the boundary condition uk
n�k

jnj .0/ e2i� lk x
˛ C u�k

n ��k
jnj .0/ e�2i� lk x

˛ D 0

on I � @˝ after remarking that c .k; n; n/ ¤ 0 and c .k; n; n/ D �c .�k; n; n/.
Second, for k D 0, �0

jnj is double �0
jnj D �0

jmj so M k
n D fn; mg. With C D

.c .0; p; q//p;q , B D .b .0; p; q//p;q , U D
�

u0
p

�

p
, F D

�
F 0

q

�

q
, U0 D

�
U 0

0;q

�

q
,

� D
�
'0

q

�

q
, ˚ D

�
�0

jqj .0/
�

q
, the matrix form is still stated as above which the

boundary condition is u0
n�0

jnj .0/ Cu0
m�0

jmj .0/ D 0 on I � @˝ after remarking that
c .0; p; p/ D 0 and c .0; n; m/ ¤ 0.

Proof of Theorem For a given k 2 Y �, let U " be solution of (2) which is
bounded in L2.I � ˝/, then kW "

� U "kL2.I���˝�Y / is bounded for � 2 I k . So

there exists Gk 2 L2 .I � � � ˝ � Y /2 such that, up to the extraction of a
subsequence,

P
�2I k W "

� U " tends weakly to Gk D 
0 .k/ U 0
H C P

�2I k ;n2Z� U k
n

in L2 .I � � � ˝ � Y /2. The high frequency part is based on the decomposition
(9) and Lemma 3.

Remark 1 This method allows to complete the homogenized model of the wave
equation in [3] for the one-dimensional case. Let K 2 N

�, we decompose ˛
"K

D
�

˛
"K

�C l1
" with l1

" 2 Œ0; 1/ and assume that the sequence " is varying in a set EK �
R

C� so that l1
" ! l1 when " ! 0 with l1 2 Œ0; 1/. For any k 2 L�

K , defined in [3],
we denote pk D kK 2 N, so ˛pk

"K
D pk

�
˛

"K

�C pkl1
" and pkl1

" ! lk WD pkl1 when
" ! 0 with the same sequence of " 2 EK .

4 Numerical Examples

We report simulations regarding comparison of physical solution and its approxima-
tion for I D .0; 1/ ; ˝ D .0; 1/, � D 1, a D 1

3
.sin .2�y/ C 2/, f " D 0, v"

0 D 0,
" D 1

10
and k D 0:16. Since k ¤ 0, so the approximation (13) comes

U " .t; x/ '
X

�2I k;n2Z�

u�
n .t; x/ e

isn

p
��

jnj
="

e�
n

�x

"

�
: (15)

The validation of the approximation is based on the modal decomposition of any
solution U " D P

l2Z� R"
l .t/ V "

l .x/ where the modes V "
l are built from the solutions

v"
l of the spectral problem @x

�
a"@xv"

l

� D �"
l v

"
l in ˝ with v"

l D 0 on @˝ . Moreover,
in [9], two-scale approximations of modes have been derived on the form of linear
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Fig. 1 Numerical results

combinations
P

�2I k ��
n .x/ ��

jnj
�

x
"

�
of Bloch modes, so the initial conditions of

the physical problem are taken on the form u"
0 .x/ D P

n2N�;�2I k ��
n .x/ ��

n

�
x
"

�
:

Two simulations are reported, one for an initial condition u"
0 spanned by the pair

of Bloch modes corresponding to n D 2 when the other is spanned by three pairs
n 2 f2; 3; 4g. In the first case, the first component of U "

0 approximates the first
component of a single eigenvector V "

l approximated by (15) where all coefficients
u�

n D 0 for n ¤ ˙2. Figure 1a shows the initial condition u"
0. Figure 1b presents the

real part (solid line) and the imaginary part (dashed-dotted line) of the macroscopic
solution uk

n and also the real part (dotted line) and the imaginary part (dashed line) of
u�k

n at space step x D 0:699 when Fig. 1c, d plot the real part of the first component
U "

1 of physical solution and the relative error vector of U "
1 with its approximation

which L2.˝/-norm is equal to 7e�3 at t D 0:466. For the second case where
u�

n D 0 for n … f˙2; ˙3; ˙4g, the first component U "
1 and the relative error vector

of U "
1 with its approximation which L2.˝/-norm is 3.8e�3 are plotted in Fig. 1e,

f. Finally, for the two cases the L2.I /-relative errors at x D 0:699 on the first
component are 8e�3 and 3.5e�3 respectively.
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