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Abstract Variational principles are very powerful tools when studying self-adjoint
linear operators on a Hilbert space H . Bounds for eigenvalues, comparison
theorems, interlacing results and monotonicity of eigenvalues can be proved easily
with these characterizations, to name just a few. In this paper we consider gener-
alization of these principles to families of linear, self-adjoint operators depending
continuously on a scalar in a real interval.

1 Introduction

Let A be a self-adjoint operator on a Hilbert space H with scalar product h�; �i,
and denote by �1 � �2 � : : : those eigenvalues of A (if there are any), which are
smaller than the minimum of the essential spectrum �ess.A/, each counted according
to its multiplicity. Then �j can be characterized by three fundamental variational
principles [28], namely by Rayleigh’s principle [19]

�j D minfR.x/ W hx; xi i D 0; i D 1; : : : ; j � 1g (1)

where R.x/ WD hAx; xi=hx; xi is the Rayleigh quotient and x1; : : : ; xj �1 is a set of
orthogonal eigenvectors of A (xi corresponding to �i ), the minmax characterization
by Poincaré [18]

�j D min
dim V Dj

max
x2V;x¤0

R.x/; (2)
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and the maxmin principle due to Courant [5], Fischer [9] and Weyl [30]

�j D max
dim V Dj �1

min
x2V ?;x¤0

R.x/ (3)

where V ? WD fx 2 H W hv; xi D 0 for every v 2 V g.
The purpose of this paper is to survey generalizations of these principles to the

nonlinear eigenvalue problem

T .�/x D 0 (4)

and to trace the history of these generalizations. Here T .�/, � 2 J , is a family
of linear self-adjoint and bounded operator on H , and J is a real open interval
which may be unbounded. As in the linear case T .�/ WD �I � A we call � 2 J an
eigenvalue of T .�/ if Eq. (4) has a nontrivial solution x ¤ 0 and the solution x is
called a corresponding eigenelement.

We stress the fact that we are only concerned with real eigenvalues in J

although T .�/ may be defined on a larger subset of C, and T .�/ may have additional
eigenvalues in C n J .

2 Overdamped Problems

To receive generalizations of the variational principles to the nonlinear eigenvalue
problem (4) the Rayleigh quotient R.x/ of a linear problem Ax D �x has to be
replaced with some functional. We assume that for every x 2 J , x ¤ 0 the real
equation f .�I x/ WD hT .�/x; xi D 0 has at most one solution in J denoted by
p.x/. This defines the so called Rayleigh functional p which obviously generalizes
the Rayleigh quotient for the linear case.

If the Rayleigh functional p is defined on the entire space H n f0g then
the eigenproblem (4) is called overdamped. This term is motivated by the finite
dimensional quadratic eigenvalue problem

T .�/x D �2Mx C �Cx C Kx D 0 (5)

governing the damped free vibrations of a system where M; C; K 2 Rn�n are
symmetric and positive definite matrices corresponding to the mass, the damping
and the stiffness of the system, respectively.

Assume that the damping C D ˛ QC depends on a parameter ˛ � 0. Then for
˛ D 0 the system has purely imaginary eigenvalues corresponding to harmonic
vibrations of the system. Increasing ˛ the eigenvalues move into the left half plane
as conjugate complex pairs corresponding to damped vibrations. Finally they reach
the negative real axis as double eigenvalues where they immediately split and move
into opposite directions.
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When eventually all eigenvalues have become real, and all eigenvalues going
to the right are right of all eigenvalues moving to the left the system is called
overdamped. In this case the two solutions

p˙.x/ D .�˛h QCx; xi ˙
q

˛2h QCx; xi2 � 4hMx; xihKx; xi/=.2hMx; xi/:

of the quadratic equation

hT .�/x; xi D �2hMx; xi C �˛h QCx; xi C hKx; xi D 0 (6)

are real, and they satisfy supx¤0 p�.x/ < infx¤0 pC.x/:

Hence, for J� WD .�1; infx¤0 pC.x// Eq. (6) defines the Rayleigh functional
p�, and for JC WD .supx¤0 p�.x/; 0/ it defines the Rayleigh functional pC.

Duffin [6] proved that all eigenvalues ��
1 � : : : ��

n and �C
1 � � � � � �C

n

are maxmin values of the functionals p� and pC, respectively, and Rogers [20]
generalized it to the finite dimensional overdamped case.

Theorem 1 Let T .�/ 2 Rn�n, � 2 J be an overdamped family of symmetric matri-
ces depending continuously differentiable on � 2 J such that hT 0.p.x//x; xi > 0

for every x ¤ 0. Then there are exactly n eigenvalues �1 � � � � � �n of T .�/x D 0

in J , and it holds

�j D min
dim V Dj

max
x2V;x¤0

p.x/; j D 1; : : : ; n: (7)

Infinite dimensional overdamped problems were considered first for quadratic
problems .A � �2B � �I/x D 0 where A and B are bounded, positive definite
and compact by Turner [22] and Weinberger [27] who proved all three types of
variational characterization by linearization (i.e. taking advantage of the fact that
the quadratic problem is equivalent to a linear self-adjoint eigenproblem), and by
Langer [15] who proved minmax and maxmin characterizations for the quadratic
problem .�2A C �B C C /x D 0 taking advantage of the theory of J -self-adjoint
operators.

The general overdamped problem was considered by Hadeler [11] who proved
the following minmax and maxmin theorem:

Theorem 2 Let T .�/ W H ! H , � 2 J be a family of linear self-adjoint and
bounded operators such that (4) is over-damped, and assume that for � 2 J there
exists �.�/ > 0 such that T .�/ C �.�/I is compact.

Let T .�/ be continuously differentiable and suppose that

hT 0.p.x//x; xi > 0 for ever x ¤ 0: (8)
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Let the eigenvalues �n of T .�/x D 0 be numbered in non-decreasing order
regarding their multiplicities. Then they can be characterized by the following two
variational principles

�n D min
dim V Dn

max
x2V; x¤0

p.x/

D max
dim V Dn�1

min
x2V ?; x¤0

p.x/:

Moreover, Hadeler [11] generalized Rayleigh’s principle for overdamped problems
proving that the eigenvectors are orthogonal with respect to the generalized scalar
product

Œx; y� WD
8
<
:

h.T .p.x// � T .p.y///x; yi
p.x/ � p.y/

; if p.x/ ¤ p.y/

hT 0.p.x//x; yi; if p.x/ D p.y/

(9)

which is symmetric, definite and homogeneous, but in general it is not bilinear.
Further generalizations of the minmax and maxmin characterizations were

proved for certain overdamped polynomial eigenproblems by Turner [23], and for
general overdamped problems by Rogers [21], Werner [29], Abramov [1], and
Hadeler [12] who relaxed the compactness conditions on T .�/.

Markus [16] and Hasanov [13] (with a completely different proof) considered
nonoverdamped problems which depended only continuously on the parameter and
they replaced assumption (8) with the condition that hT .�/x; xi is increasing at the
point p.x/ given in condition (A2) of the next section

3 Nonoverdamped Problems

We consider the nonlinear eigenvalue problem (4), where T .�/ W H ! H , � 2 J ,
is a family of self-adjoint and bounded operators depending continuously on the
parameter �.

We assume that

(A1) For every fixed x 2 H , x ¤ 0 the real equation

f .�I x/ WD hT .�/x; xi D 0 (10)

has at most one solution � DW p.x/ 2 J .

which defines the Rayleigh functional p of (4) with respect to J , and we denote by
D.p/ � H the domain of definition of p.
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Generalizing the definiteness requirement for linear pencils T .�/ D �B � A we
further assume that hT .�/x; xi is increasing at the point p.x/, i.e.

(A2) For every x 2 D.p/ and every � 2 J with � ¤ p.x/ it holds that

.� � p.x//f .�I x/ > 0: (11)

The key to the variational principle in the nonoverdamped case is an appropriate
enumeration of the eigenvalues. In general, the natural enumeration i.e. the first
eigenvalue is the smallest one, followed by the second smallest one etc. is not
reasonable. Instead, the number of an eigenvalue � of the nonlinear problem (4)
is inherited from the location of the eigenvalue 0 in the spectrum of the operator
T .�/ based on the following consideration (cf. [26]).

For j 2 N and � 2 J let

�j .�/ WD sup
V 2Sj

min
v2V;v¤0

hT .�/v; vi
hv; vi (12)

where Sj is the set of all j dimensional subspaces of H . We assume that

(A3) If �n.�/ D 0 for some n 2 N and some � 2 J , then for j D 1; : : : ; n

the supremum in �j .�/ is attained, and �1.�/ � �2.�/ � � � � � �n.�/ are the
n largest eigenvalues of the linear operator T .�/. Conversely, if � D 0 is an
eigenvalue of the operator T .�/, then �n.�/ D 0 for some n 2 N.

Definition 1 � 2 J is an nth eigenvalue of T .�/ if �n.�/ D 0 for n 2 N.

Condition (A3) is satisfied for example if for every � 2 J the supremum of the
essential spectrum of T .�/ is less than 0. The following stronger condition that for
every � 2 J there exists �.�/ > 0 such that T .�/ C �.�/I is a compact operator
was used in [11].

The following Lemma proved in [25] (and in [26] for T .�/ depending differen-
tiable on �) relates the supremum of p on a subspace V to the sign of the Rayleigh
quotient of T .�/ on V .

Lemma 1 Under the conditions .A1/, .A2/ and .A3/ let � 2 J , and assume that V

is a finite dimensional subspace of H such that V \ D.p/ ¤ ;. Then

�

8<
:

<

D
>

9=
; sup

x2V \D.p/

p.x/ , min
x2V

hT .�/x; xi
8<
:

<

D
>

9=
; 0 (13)

Proof [25], Lemma 2.4
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Theorem 3 Assume that the conditions (A1), (A2) and (A3) are satisfied. Then the
nonlinear eigenvalue problem T .�/x D 0 has at most a countable set of eigenvalues
in J, and it holds that:

(i) For every n 2 N there exists at most one nth eigenvalue, and the following
characterization holds:

�n D min
V 2Sn

V \D.p/¤;

sup
v2V \D.p/

p.v/: (14)

(ii) If

�n WD inf
V 2Sn

V \D.p/¤;

sup
v2V \D.p/

p.v/ 2 J; (15)

then �n is an nth eigenvalue of (4), and the infimum is attained, i.e. the
characterization (14) holds.

(iii) If there is an m-th and an n-th eigenvalue �m and �n in J with m < n, then J

contains a k-th eigenvalue �k , m < k < n as well, and

inf J < �m � �mC1 � � � � � �n < sup J:

Proof (i) If �n is an n-th eigenvalue, then �n.�n/ D 0, and

�n.�n/ D max
dim V Dn

min
x2V; kxkD1

hT .�n/x; xi D min
x2 QV ; kxkD1

hT .�n/x; xi

for the invariant subspace QV corresponding to the n largest eigenvalues of
T .�n/

Hence, minx2V;kxkD1hT .�n/x; xi � 0 for every V with dim V D n, and
(13) implies

sup
x2V \D

p.x/ � �n D sup
x2 QV \D

p.x/:

Hence, �n is a minmax value of p.
(ii) Was proved in [26] under the condition that T .�/ depends differentiable on �.

But the proof uses only the fact that D.p/ is an open set (which follows also
from .A1/ and .A2/ considered here; cf. Lemma 2.3 in [25]) and the analogue
of Lemma 1. So the proof holds also for the continuous case considered here.

(iii) Follows from the continuity of �k.�/ in J (cf. [7]).

Remark 1 We only considered the case that for every � 2 J the supremum of the
essential spectrum of T .�/ is less than 0. In the same way we obtain for the case
that for every � 2 J the infimum of T .�/ exceeds 0 a maxinf characterization of
the eigenvalues of T .�/ in J if we replace .A2/ with

(A0
2) .� � p.x//f .�I x/ < 0 for every x 2 D.p/ and � 2 J such that � ¤
p.x/.p/
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and .A3/ with

(A0
3) If �m.�/ WD infV 2Sm maxx2V;x¤0hT .�/x; xi=hx; xi D 0 for some m 2 N

and some � 2 J , then for j D 1; : : : ; m the supremum in �j .�/ is attained,
and �1.�/ � �2.�/ � � � � � �m.�/ are the m smallest eigenvalues of the linear
operator T .�/. Conversely, if � D 0 is an eigenvalue of the operator T .�/, then
�m.�/ D 0 for some m 2 N.

If the eigenvalues of T .�/ are now enumerated in decreasing order, i.e. � 2 J is an
mth eigenvalue of T .�/ if �m.�/ D 0 for m 2 N, then �m can be characterized as

�m D max
V 2Sm

V \D.p/¤;

inf
v2V \D.p/

p.v/:

In the following we consider only problem (4) under the conditions .A1/, .A2/

and .A3/, although the analogue results also hold under the conditions .A1/, .A0
2/

and .A0
3/ with the modified enumeration given above.

If the extreme eigenvalue �1 is contained in J , then the enumeration based on .A3/ is
the natural ordering. For this case Barston [3] proved the minmax characterization
for some extreme real eigenvalues for the finite dimensional quadratic eigenvalue
problem. Abramov [2] and Hasanov [14] derived the minmax and maxmin char-
acterizations for the extreme eigenvalues for pencils of waveguide type, which are
certain quadratic eigenvalues problems depending on two parameters.

For the general T .�/ it can be shown that the eigenspaces corresponding to
eigenvalues in J are contained in D.p/ [ f0g. Hence the minmax characterization
obtains the following form:

Theorem 4 Let the conditions (A1), (A2) and (A3) be satisfied, and assume that
�1 D infx2D.p/ p.x/ 2 J; and �n 2 J for some n 2 N.

If j 2 f1; : : : ; ng and V 2 Sj such that �j D supx2V \D.p/ p.x/, then V �
D.p/ [ f0g, and the characterization of �j can be replaced with

�n D min
V 2Sj

V �D.p/[f0g

sup
v2V \D.p/

p.v/: (16)

The generalization of the maxmin characterization of Courant, Fischer and Weyl
is based on the following Lemma which was proved in [24]:

Lemma 2 Let � 2 J , and let V be a finite dimensional subspace of H such that
V ? \ D ¤ ;. Then it holds that

�

8
<
:

<

D
>

9
=
; inf

x2V ?\D.p/
p.x/ , max

x2V ?; kxkD1
hT .�/x; xi

8
<
:

<

D
>

9
=
; 0
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Theorem 5 Assume that the conditions (A1), (A2) and (A3) are satisfied. If there
exists an n-th eigenvalue �n 2 J of T .�/x D 0, then

�n D max
V 2Sn�1

V ?\D¤;

inf
v2V ?\D

p.v/;

and the maximum is attained by W WD spanfu1; : : : ; un�1g where uj denotes an
eigenvector corresponding to the j -largest eigenvalue �j .�n/ of T .�n/.

Essentially the same variational characterizations of Poincaré and of Courant-
Fischer-Weyl type were derived by Mel’nik and Nazarov [17], where T .�/ is a set
of bounded self-adjoint operators depending continuously differentiable on �, by
Griniv and Mel’nik [10] for T .�/ D A.�/ � I , where A.�/ is self-adjoint, and
compact, and by Binding, Eschwé and H. Langer [4] for general bounded and self-
adjoint T .�/ depending continuously on �. Eschwé and M. Langer [8] obtained
these variational characterizations for unbounded operators. In all of these papers
the natural enumeration of the eigenvalues is used, but the dimension of the subspace
in the characterizations is shifted by the number of the largest eigenvalue of T .�1/.

Hadeler [11] proved Rayleigh’s principle for differentiable overdamped prob-
lems. For the continuous case the generalized scalar product (9) has to be modified
for the case p.x/ D p.y/ setting Œx; y� WD hx; yi. Then the generalized scalar
product Œ�; �� becomes discontinuous for p.x/ D p.y/, but the continuity is not
needed in the proof of Rayleigh’s principle which obtains the following form:

Theorem 6 Under the conditions .A1/, .A2/, .A3/ assume that J contains n � 1

eigenvalues �1 � � � � � �n (where �i is an i th eigenvalue) with corresponding Œ�; ��
orthogonal eigenvectors x1; : : : ; xn.

If there exists x 2 D.p/ with Œxi ; x� D 0 for i D 1; : : : ; n then J contains an
.n C 1/th eigenvalue, and

�nC1 D inffp.x/ W Œxj ; x� D 0; i D 1; : : : ; ng: (17)
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