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Abstract We present a stabilized Galerkin method for linear advection of vector
fields and prove, for sufficiently smooth solutions, optimal a priori error estimates
for H .curl; ˝/ and H .Div; ˝/-conforming approximation spaces.

1 Introduction

The focus of this article is the following linear advection problem for a vector
field A:

˛A C curl A � ˇ C grad .A � ˇ/ D f in ˝ ;

Aj�in D A0 on �in :
(1)

Here ˝ � R
3 is a bounded domain with inflow boundary �in � @˝ , and ˇ D ˇ.x/

and ˛ D ˛.x/ are given parameters of which we assume ˇ 2 W 1;1 .˝/ and
˛ 2 L1.˝/.

This advection problem is an important model problem for devising reliable
numerical methods for problems in electromagnetics and fluid dynamics, when
vector fields such as electromagnetic fields or vorticity are advected in some flow.
Since the natural space of such quantities is either H .curl; ˝/ or H .Div; ˝/, it
is desirable to have stabilized methods for appropriate conforming finite element
spaces.
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Problem (1) owes its name to the following consideration: Let Xt .x/ denote the
flow associated with the given vector field ˇ.x/, C a one-dimensional manifold and
Xt .C / the image of C under the flow. The transformation rule for line integrals
yields

d

dt

Z
Xt .C /

A.y/ � dS.y/ D d

dt

Z
C

DXT
t .x/A.Xt .x// � dS.x/ ;

and a lengthy calculation verifies:

d

dt

�
DXT

t .x/A.Xt .x//
�

jtD0
D curl A.x/ � ˇ.x/ C grad .A.x/ � ˇ.x// :

Hence, the first order differential operator in (1) is a generalization of the material
derivative of scalar functions u that are integrated over volumes M , i.e.

d

dt

Z
Xt .M/

u.y/dy D d

dt

Z
M

det.DXt .x// u.Xt .x//dx (2)

and

d

dt
.det.DXt .x// u.Xt .x///jtD0 D Div.ˇ.x/u.x// :

It is the framework of differential forms [4] that embeds this advection idea in a
general setting, the Lie derivative formalism, and we would like to refer to [2,9,17]
for recent applications of this formalism in devising new numerical methods.

The advection problem (1) can be regarded as the hyperbolic limit case of an
advection-diffusion type problem, where a curl curl-operator doubles for the dif-
fusion. Such models appear for electromagnetic problems within a quasi-magneto-
static setting. This was the main motivation in [11] to define and analyse stabilized
Galerkin methods for the linear advection problem (1) that rely on H .curl; ˝/-
conforming finite element spaces. The theoretical convergence theory in [11]
yields the same approximation results as a more classical stabilized Discontinuous
Galerkin method for Friedrichs’ operators [5, 6, 16], which employs approximation
functions that are discontinuous across element interfaces. In contrast, the functions
of H .curl; ˝/-conforming finite element spaces, sometimes called edge elements
or Whitney forms [1, 12, 18, 19], have continuous tangential components and
discontinuous normal components at the element interfaces. The classical stabilized
methods that work with globally continuous finite element functions, add certain
stabilization terms to the standard Galerkin variational formulations, that enhance
the stability but do not destroy the consistency of the methods [14,15]. The stabiliza-
tion effect of the method in [11] does not rely on such additional stabilization terms,
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but uses the upwinding idea of the Discontinuous Galerkin method. We consider this
to be a remarkable advantage of H .curl; ˝/-conforming approximation spaces for
linear advection of vector fields: a similar simple stabilization as in Discontinuous
Galerkin methods, but fewer degrees of freedom.

In light of this point of view, it appears reasonable to ask for stabilized
Galerkin methods for (1) that use H .Div; ˝/-conforming finite element spaces
since the functions of these spaces have discontinuous tangential and continuous
normal components at the element interfaces. Besides this conceptual motivation
we also emphasize that the advection operator .ˇ � grad/u in linearized Navier-
Stokes problems can be rephrased in terms of the advection operator in (1). And,
H .Div; ˝/-conforming finite element spaces are frequently used for such kind of
problems [3, 7].

In the next section, Sect. 2 we present the method and state stability and con-
sistency. This is followed, in Sect. 3, by a short summary on previous convergence
result. In Sect. 4 we state and prove the main result.

2 Stabilized Galerkin

Standard well-posedness results for (1) (see e.g. [10, Section 3]) require the
following assumption.

Assumption 1 We assume that ˛ 2 L1.˝/ and ˇ 2 W 1;1 .˝/ are such that
�min

˚
.2˛ � Div ˇ/I3 C Dˇ C .Dˇ/T

� � ˛0 ; almost everywhere in ˝ for some
˛0 > 0. Dˇ is the Jacobi matrix and �min the smallest eigenvalue.

Let us first introduce some notation that is similar the notation used in Discontinuous
Galerkin methods.

Let T be a regular partition of ˝ into tetrahedral elements T ; hT is the diameter
of T , and h D maxT 2T hT . The boundary of each element is decomposed into four
triangles, called facets. We assume that each facet f has a distinguished normal nf .
If a facet f is contained in the boundary of some element T then either nf D n@T jf
or nf D �n@T jf . Then, if u is a piecewise smooth vector field on T , uC and u�
denote the two different restrictions of u to f , e.g. uC WD uj

T C
where element T C

has outward normal nf . With these restrictions we define also the jump Œu�f D
uC � u� and the average fugf D 1

2
.uC C u�/. For f � @˝ we assume f to be

oriented such that nf points outwards. Let F ı and F @ be the set of interior and
boundary facets. F @�;F @C � F @ are the sets of facets on the inflow and outflow
boundary, respectively.

We define the bilinear mapping, .u; v/f;ˇ WD R
f .ˇ � nf /.u � v/ dS ; the advection

operator Lˇ u WD grad.ˇ � u/ C curl u � ˇ and its formal adjoint L ˇ u WD curl.ˇ �
u/ � ˇ Div u : Hence, for smooth u and v we have

�
Lˇ u; v

�
˝

� �
u;L ˇ v

�
˝

D
.u; v/@˝;ˇ : In the following Vh denotes some space of piecewise polynomial vector
fields that are continuous on each element of the mesh T . For the moment we do not
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specify, which components are continuous and which components are discontinuous
at the element interfaces. The stabilized Galerkin method reads as follows:

Find u 2 Vh, such that:

a .u; v/ D .f; v/˝ �
X

f 2F @
�

.g; v/f;ˇ ; 8v 2 Vh ; (3)

with

a .u; v/ D .˛u; v/˝ C
X

T

.curl u � ˇ; v/T � .u; ˇDiv v/T

C
X

f 2Fı

Z
f

ˇ � fugf Œv�f � nf dS �
Z

f

�
Œu�f � nf

� � �fvgf � ˇ
�

dS

C
X

f 2Fı

Z
f

cf ˇ � Œu�f Œv�f � nf dS C
Z

f

cf

�
Œu�f � nf

� � �
Œv�f � ˇ

�
dS

C
X

f 2F @nF @
�

Z
f

.ˇ � u/.v � nf / dS �
X

f 2F @
�

Z
f

�
u � nf

� � .v � ˇ/ dS ;

(4)

We refer to [11, Section 2] for a detailed derivation of this method. There too, it is
shown that the method is consistent and stable in the mesh dependent norm (with
k�k2

f;ˇ WD .u; u/f;ˇ)

kuk2
h WD kuk2

L2.˝/
C

X
f 2Fı

��Œu�f
��2

f;cf ˇ
C

X
f 2F @nF @

�

kuk2

f; 1
2 ˇ

C
X

f 2F @
�

kuk2

f;� 1
2 ˇ

;

when the parameter cf fulfills the following positivity condition.

Assumption 2 Assume the parameters cf in the definition (3) satisfy for all faces
f the positivity condition cf ˇ � nf >Kjˇ � nf j for positive K 2 R.

Lemma 1 Let Assumptions 1 and 2 hold. Then we have for all u 2 Vh:

a .u; u/ � min.
1

2
˛0; 1/kuk2

h :

3 Previous Results

If we choose Vh in (3) to be a space of vector fields that have neither continuous
tangential nor continuous normal components at the element interfaces our method
coincides with the Discontinuous Galerkin method for Friedrichs’ operators [11,
Section 3]. The choice cf D ˇ�nf

jˇ�nf j yields the classical upwind methods, and we can
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cite the following convergence result from [5, Theorem 4.6 & Corollary 4.7], [16,
Theorem 50 & Corollary 12] or [11, Theorem 3.1]

Theorem 1 Let Assumptions 1 and 2 hold. Let Vh be the finite element space of
discontinuous piecewise polynomial vector fields:

Vh D Vr
dis WD fv 2 L2.˝/; vjT 2 .Pr.T //3 ; T 2 T g ; (5)

where Pr , r � 0 is the space of polynomials of degree r or less. Let u 2 H rC1 .˝/

and uh 2 Vh be the solutions to the advection problem (1) and its variational
formulation (3). We get with C > 0 depending only on ˛, ˇ, K , the polynomial
degree and the shape regularity

ku � uhkh � C hrC 1
2 kukH rC1.˝/ :

Surprisingly, the same rate of convergence can be shown, if Vh in (3) is a space of
vector fields that have continuous tangential but discontinuous normal components
at the element interfaces [11, Theorem 4.2].

Theorem 2 Let Assumptions 1 and 2 hold. Pr , r � 0 is the space of polynomials of
degree r or less. Let then Vh be a finite element space of H .curl; ˝/-conforming
piecewise polynomial vector fields of degree r or less:

Vh D Vr
cnf;1 WD fv 2 H .curl; ˝/ ; vjT 2 .Pr.T //3 ; T 2 T g ;

such that best approximation estimates

min
wh2Vh

ku � whkH s .T / � C hrC1�skukH rC1.T / ; s D 0; 1 ; 8u 2 H rC1 .˝/

hold with constants depending only on shape regularity of the mesh, e.g., Vh can
belong to one of the two families of spaces proposed in [18] and [19]. Let u and
uh 2 Vh be the solutions to the advection problem (1) and its discrete variational
formulation (3). Then, with C > 0 depending only on ˛, ˇ, K the polynomial degree
and shape regularity, we get

ku � uhkh � C hrC 1
2 kukH rC1.˝/ ;

provided that h is sufficiently small.

4 H .Div; ˝/-Conforming Approximation

In this section we prove the main result, the optimal convergence of our method
(3) when Vh is a space of H .Div; ˝/-conforming vector fields. The proof relies
on the so-called averaging interpolation operators mapping piecewise polynomial
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non-conforming vector fields to piecewise polynomial H .curl; ˝/-conforming or
H .Div; ˝/-conforming vector fields. Similar to Vr

cnf;1 in Theorem 2 we introduce

Vr
cnf;2 WD fv 2 H .Div; ˝/; vjT 2 .Pr.T //3 ; T 2 T g, the space of H .Div; ˝/-

conforming finite elements.

Proposition 1 Let u 2 Vr
dis. Then there exist uc;1 2 Vr

cnf;1 and uc;2 2 Vr
cnf;2 such

that

��u � uc;1
��2

L2.˝/
� C1

X
f 2Fı

hf

Z
f

ˇ̌
Œu�f � nf

ˇ̌2
dS (6)

and

��u � uc;2
��2

L2.˝/
� C2

X
f 2Fı

hf

Z
f

ˇ̌
Œu�f � nf

ˇ̌2
dS ; (7)

where hf is the diameter of facet f and C1 and C2 depend only on the shape-
regularity and the polynomial degree r , and, in particular, are independent of the
mesh size.

The proof of (6) can be found in [13, Proposition 4.5] and the second assertion
follows by similar arguments (see also [8, Proposition 4.1.2]).

Theorem 3 Let Assumptions 1 and 2 hold. Pr , r � 0 is the space of polynomials
of degree r or less. Let then Vh be a finite element space of H .Div; ˝/-conforming
piecewise polynomial vector fields of degree r or less:

Vh D Vr
cnf;2 WD fv 2 H .Div; ˝/; vjT 2 .Pr.T //3 ; T 2 T g ;

such that best approximation estimates

min
wh2Vh

ku � whkH s .T / � C hrC1�skukH rC1.T / ; s D 0; 1 ; 8u 2 H rC1 .˝/

hold with constants depending only on shape regularity of the mesh. Let u and
uh 2 Vh be the solutions to the advection problem (1) and its discrete variational
formulation (3). Then, with C > 0 depending only on ˛, ˇ, K the polynomial degree
and shape regularity, we get

ku � uhkh � C hrC 1
2 kukH rC1.˝/ ;

provided that h is sufficiently small.

Proof Let Nuh denote the global L2-projection of u onto Vh and define � WD u � Nuh

and �h WD uh � Nuh. With this, the error ku � uhkh is bounded by two terms:

ku � uhkh � k�kh C k�hkh :
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For the first term, by the assumptions of the theorem, we have

k�kL2.T / � C hrC1kukH rC1.T / ;

and for the second term, by stability, consistency and �h 2 Vr
cnf;2:

min.
1

2
˛0; 1/k�hk2

h � a .�; �h/ :

Next, we add and subtract the Lie-derivative with respect to a piecewise constant
velocity field ˇh 2 V0

dis that is the L2-projection of ˇ onto V0
dis:

a .�; �h/ D .˛�; �h/˝ C
X

T

�
�; .L ˇ �L ˇh

/�h

�
T

C �
�;L ˇh

�h

�
T

C
X

f 2F @nF @
�

.�; �h/f;ˇ C
X

f 2Fı

�
f�gf ; Œ�h�f

�
f;ˇ

C
�
cf Œ��f ; Œ�h�f

�
f;ˇ

:

Yet, as
P

T

�
�;L ˇh

�h

�
T

¤ 0, the difficult part is now to show

ˇ̌
ˇ̌
ˇ
X

T

.�; curl.�h � ˇh/ C ˇh Div �h/T

ˇ̌
ˇ̌
ˇ � C h� 1

2 k�kL2.˝/k�hkh : (8)

Let wc;1 2 Vr
cnf;1 and wc;2 2 Vr

cnf;2 be the conforming approximations of ˇh � �h 2
Vr

dis and ˇh Div �h 2 Vr
dis. Since � D u � Nuh and both curl wc;1 2 Vr

cnf;2 and
wc;2 2 Vr

cnf;2 we find

ˇ̌
ˇ̌
ˇ
X

T

.�; curl.�h � ˇh//T

ˇ̌
ˇ̌
ˇ � C0h

�1k�kL2.˝/

���h � ˇh � wc;1
��

L2.˝/

and
ˇ̌
ˇ̌
ˇ
X

T

.�; ˇh Div �h/T

ˇ̌
ˇ̌
ˇ � k�kL2.˝/

��ˇh Div �h � wc;2
��

L2.˝/
:

The approximation results (6) and (7) give

���h � ˇh � wc;1
��2

L2.˝/
� C1h

X
f 2Fı

���Œ�h � ˇh�f � nf

���2

L2.f /
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and

��ˇh Div �h � wc;2
��2

L2.˝/
� C2h

X
f 2Fı

���Œˇh Div �h�f � nf

���2

L2.f /
:

Inverse inequalities, approximation properties of ˇh, normal continuity of �h and
tangential continuity yield for the right hand sides of the last two equations:

���Œ�h�ˇh�f �nf

���
L2.f /

�
���Œ�h�.ˇh � ˇ/�f �nf

���
L2.f /

C
���Œ�h�ˇ�f �nf

���
L2.f /

� C3h
1
2 k�hkL2.T1[T2/ C

���ˇ � nf Œ�h�f � Œ�h�f � nf ˇ

���
L2.f /

� C3h
1
2 k�hkL2.T1[T2/ C

���ˇ � nf Œ�h�f

���
L2.f /

and
���Œˇh Div �h�f �nf

���
L2.f /

�
���Œ.ˇh � ˇ/ Div �h�f �nf

���
L2.f /

C
���ˇ �nf ŒDiv �h�f

���
L2.f /

� C4h
� 1

2 k�hkL2.T1[T2/ C C5h
�1

���ˇ �nf Œ�h�f

���
L2.f /

;

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that
share f . Hence we deduce (8), and the assertion follows.

We refer to [8, Section 4.1.4] for detailed numerical experiments for test cases
with both smooth and non-smooth solutions.
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