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Abstract In this work, we consider the finite element solution of several scalar
elliptic problems with singularities in two dimensions. We outline recent theoretical
developments in energy corrected approaches and demonstrate numerically that
by local and easy to implement modifications of the discrete operators, optimal
convergence orders in weighted Sobolev norms can be recovered.

1 Introduction

We consider boundary value problems in an open and bounded domain ˝ � R
2,

involving the second order linear elliptic operator

L WD �div.Kru/;

where 0 < K0 � K 2 L1.˝/ is a known coefficient, e.g., a diffusivity or the
permeability of a porous medium. If not mentioned otherwise, we will set K D 1 for
simplicity. However, we will also consider the case of a heterogeneous coefficient
having jumps. It is known that numerical methods applied to such problems often
suffer from suboptimal convergence due to singularities in the solution which dictate
the regularity. In this paper, we consider modified finite element methods that allow
to deal with singular solution components in an efficient and effective way.

T. Horger • C. Waluga (�) • B. Wohlmuth
Institute for Numerical Mathematics, Technische Universität München, Boltzmannstraße 3,
85748 Garching b. München, Germany
e-mail: horger@ma.tum.de; waluga@ma.tum.de;wohlmuth@ma.tum.de

M. Huber • U. Rüde
Universität Erlangen-Nürnberg, Lehrstuhl für Informatik 10, Cauerstraße 11, 91058 Erlangen,
Germany
e-mail: markus.huber@fau.de; ulrich.ruede@fau.de

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced
Applications - ENUMATH 2013, Lecture Notes in Computational Science
and Engineering 103, DOI 10.1007/978-3-319-10705-9__2

19

mailto:horger@ma.tum.de
mailto:waluga@ma.tum.de
mailto:wohlmuth@ma.tum.de
mailto:markus.huber@fau.de
mailto:ulrich.ruede@fau.de


20 T. Horger et al.

As a first example for such singularities, we consider the case of a non-convex
Lipschitz domain ˝ having a re-entrant corner with interior angle � < � < 2� . In
general, the solution to the problem

Lu D f in ˝; u D 0 on @˝ (1)

will then be composed of smooth components as well as singular components of
type sk D rk�=� sin.k�=��/, k 2 N, where � denotes the angle in polar coordinates,
and r stands for the distance to the re-entrant corner of ˝ . This can be observed even
when the data are smooth [18,23,27]. While the convergence order in the H 1-norm
is the same as the order of the best approximation, this does not hold for the L2-
norm, where a gap of 1 � �=� can be observed due to the non-smoothness of the
singular component s1 62 H ˛.˝/, ˛ � 1 C �=� . This effect is commonly referred
to as pollution [9, 10, 32]. A similar, but even worse situation occurs in interface
problems, see, e.g., [21, 22], when the interfaces between subdomains ˝i � ˝

with different coefficient K intersect in one point. Here we typically see singular
components of type r� , 0 < � � 1.

In the literature, many different approaches have been proposed to deal with
singular solution components, such as graded meshes [2], the enrichment of the
finite element space with singular functions [6, 9, 13, 14, 16, 26, 32], or first order
system least squares approaches, which add discrete versions of the singular
basis functions to standard finite element spaces in a least-squares framework
[7, 8, 11, 17, 24].

Most of the aforementioned approaches have in common the aim to improve the
finite element approximation nearby the singularity. However, in some applications,
the quantity of interest can be computed by excluding or relaxing the influence of
the neighborhood of the singularities, e.g., stress intensity factors, eigenvalues or
the flux at some given interface not including the singular points. Here, an accurate
representation of the solution is not required near the singularity. This motivates the
use of energy correction schemes that do not enrich the finite element spaces [20,30,
31, 33]. The basic idea was originally introduced in the context of finite difference
methods in [31, 33] and applied to finite elements in [29]. It was then analyzed
in [20] for more general meshes, and it was proved that a careful modification of
the energy in the original method can drastically improve the convergence. In the
following, we briefly sketch the main ideas.

2 Re-entrant Corners

We consider a weak form of the boundary value problem (1). The corresponding
bilinear form is given by a.v; w/ WD R

˝
rv �rw dx, v; w 2 H 1.˝/. To define the

energy correction, we introduce ai;h.v; w/ WD R
!i;h

rv �rw dx, where !i;h denotes
the union of the i th layer of elements in Th around the re-entrant corner xc , i.e.,
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Fig. 1 left: Triangulation of the circular L-shape domain with � D 3�
2

; right: circular slit domain
with � D 2� . The elements marked in dark gray belong to !1;h and the elements in light gray are
in !2;h

!1;h WD S
T 2Th;xc2@T T and !i;h WD S

T 2Th;@T \!i�1;h¤; T for i > 1; cf. Fig. 1 for
some illustration. Here Th stands for a family of quasi-uniform simplicial meshes
with mesh-size h. For given � 2 R

n, n 2 N fixed, we then define the bilinear form

aec.v; w/ WD a.v; w/ �
Xn

iD1
�i ai;h.v; w/: (2)

The energy-corrected finite element form of (1) then reads: Find uh.�/ 2 V
p

h s.t.

aec.uh.�/; v/ D .f; v/; v 2 V
p

h ; (3)

where .�; �/ denotes the standard L2-scalar product, and V
p

h � H 1
0 .˝/ is the

conforming piecewise polynomial finite element space of degree p > 0 associated
with Th. For � D 0 the standard finite element solution is recovered. As we will see
in Sect. 3, our approach is not restricted to Dirichlet boundary conditions but also
applies for Neumann boundary conditions. Note that the Laplace operator can be
used to model a membrane, i.e., the effect of the modification with the parameters
� can be regarded as a softening (�i 2 .0; 1/) or stiffening (�i < 0) of the material
in the vicinity of the re-entrant corner.

The modification (2) does not change the structure of the stiffness matrix. Hence,
it is cheap and easy to implement into existing codes, provided that �i and !i;h are
known. Theoretical results for linear finite elements [20] require that we apply the
correction in a union of elements !h � Bk0h, where Bk0h is a ball with radius k0h

and k0 sufficiently large, with center at the re-entrant corner. Numerical results show
that fixing n D 1 and setting !h D !i;h is sufficient for the case p D 1, see also [30].
Our choice of !i;h is motivated by this observation indicating that for one parameter
� 2 Œ0; 1/, it is sufficient to impose the correction only in those elements directly
attached to the singularity.
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We emphasize that, different from other techniques, the number of nodes affected
by the correction will not depend on h as long as n does not depend on h. For
simplicity, we assume that the layers !i;h are mirror-symmetric with respect to the
singular point if � � 3

2
� . Otherwise, we would possibly have to consider more

correction parameters, since then some terms in the analysis will not cancel by
symmetry arguments.

2.1 A Nested Newton Algorithm

Let us first consider the case of linear finite elements and set n D 1: Assuming that
the union of elements defined by !1;h is large enough, the quality of uh.�/ 2 V 1

h is
only determined by the choice of � . In [20] it has been shown that for each h > 0

a proper subinterval of Œ0; 1/ exists such that no pollution occurs, and second order
convergence in a suitably-weighted Sobolev norm can be recovered. The length of
the subinterval tends to zero as the mesh-size does. Thus asymptotically exactly one
correction parameter exists such that optimality can be observed. Here, we define
the correction parameter as the unique root of the non-linear scalar-valued energy
defect function

gh.�/ WD a.s1; s1/ � aec.s1;h.�/; s1;h.�//; for � 2 R: (4)

where we recall that s1 denotes the first singular function and s1;h.�/ its mod-
ified finite element approximation. In [30] we developed and analyzed Newton
algorithms for the calculation of an accurate enough correction parameter � in a
multi-level context. Such methods will be used frequently in the numerical results
in this article to determine suitable correction parameters.

Next, we consider the extension to quadratic finite elements (or, analogously,
linear elements on non-symmetric meshes) and n D 2. It turns out that a good
choice of � 2 R

2 is the root of the vector-valued energy defect function

gh.�/ WD
�

a.s1; s1/ � aec.s1;h.�/; s1;h.�//

a.s2; s2/ � aec.s2;h.�/; s2;h.�//

�

; for � 2 R
2: (5)

By similar considerations as in the case of one parameter, we can derive a nested
one-step Newton algorithm on a family of uniformly refined meshes Tl . The mesh
TlC1 is obtained by decomposing each element of Tl into four sub-elements. Given
the initial guess �0 D .0; 0/ 2 .�1; 1/2 on the coarse mesh T0, we set for l D
0; 1; : : :

�lC1 D Œrgh.�l /�
�1

�
a.s1;h.�l /; s1;h.�l // � a.s1; s1/

a.s2;h.�l /; s2;h.�l // � a.s2; s2/

�

; (6)
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with

rgh.�/ D
�

a1;h.s1;h.�/; s1;h.�// a2;h.s1;h.�/; s1;h.�//

a1;h.s2;h.�/; s2;h.�// a2;h.s2;h.�/; s2;h.�//

�

: (7)

Note that the index l denotes the refinement level, and on each level typically only
one Newton step is carried out. The start value for the Newton on level l C 1 is the
value computed on level l . For the nested one-step Newton method we see that

Œgh�i D O
�
h

2i�
!

�
and Œrgh��1

ij D O
�
h

�2j�
!

�
;

hence �lC1 2 O.1/, i.e., the values of � stay bounded independent of the mesh-level.
However, a detailed analysis of this algorithm is beyond the scope of this paper.

In the following section, we demonstrate the efficiency of the nested Newton
method in numerical experiments.

2.2 Numerical Examples with Second Order Elements

In the following examples, we consider the Poisson problem in a circular domain
with re-entrant corners of angle � D 3

2
� and � D 2� and assume that !1;h is

mirror-symmetric on the coarsest mesh. We set a homogeneous right hand side
and Dirichlet boundary conditions are chosen such that the exact solution is given
by u D s1 C s2 C s3. Note that the third singular component does not reduce
the convergence rates of the uncorrected approach due to sufficient regularity. We
conduct our numerical experiments on a series of uniformly refined meshes (cf.
Fig. 1 for the initial triangulations and correction domains) and compare the errors
of corrected vs. uncorrected finite elements in weighted L2 norms

ku � uhk0;˛ WD kr˛.u � uh/kL2.˝/; (8)

where r D jx � xcj denotes the distance to the re-entrant corner xc , and ˛ is the
weighting parameter. Note that for ˛ D 0 we recover the standard L2 norm. In each
case, the roots of the energy correction function (5) are determined by the nested
Newton-method discussed above where the initial guess on level 0 is always set to
zero. The contour lines of the energy correction function for the initial meshes are
plotted in Fig. 2. The bullet in the pictures denotes the unique root of the energy
correction function.

The correction parameters for the L-shape and slit domain are listed in Table 1.
As it can be seen easily both parameters converge with respect to the level and for
both domains �1;opt is positive while �2;opt is negative.

In our convergence study, we consider p D 2 and different choices of the
correction parameter for illustration, namely, the energy correction with the level-



24 T. Horger et al.

Fig. 2 Contour lines and root (bullet) of the energy functional (5) in the L-shape (left) and slit
domain (right); gray lines are associated with the first and black ones with the second component
of the energy functional

Table 1 Approximate roots of gh.�/ obtained by a nested Newton method applied to subsequent
refinements of the respective initial meshes of Fig. 1

Level �1;opt �2;opt

1 0.0320706 �0.0055412

2 0.0315346 �0.0055392

3 0.0315229 �0.0055351

4 0.0315208 �0.0055342

L-shape

Level �1;opt �2;opt

1 0.1493019 �0.0497673

2 0.1395878 �0.0510151

3 0.1395358 �0.0510148

4 0.1395348 �0.0510143

Slit

dependent parameters of Table 1, and the choice .�1; 0:0/ with �1 determined by
the one-step Newton method of [30]. Moreover, we compare the standard quadratic
finite element method resulting from the choice .�1; �2/ D .0:0; 0:0/ as well as two
manually chosen values, where one is closer to the actual optimal parameter than
the other. The latter experiments are given to demonstrate that the energy correction
can yield solutions of much better quality by manual fine-tuning of parameters, even
when the actual asymptotically correct values are unknown.

In Tables 2 and 3, we list the results of our convergence study for the L-shape and
slit domains, respectively. The errors are measured in the weighted L2 norm with
weighting ˛ � 1:38 for the L-shape and ˛ � 1:55 for the slit.

In both cases, we observe that the asymptotically optimal convergence order of
O.h3/ is only recovered for the correction approach with both parameters chosen
according to the root of the energy defect function. Restricting the correction to
only one parameter, however, still improves the rate to O.h2/, since the effects of the
stronger singularity s1 can still be compensated by this simpler correction. From the
results for the manually tuned parameters it can be concluded that our approach can
significantly improve the quality of the solution, even when the exact parameters are
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Table 2 L-shape: Errors 104 � ku � uh.�1; �2/k0;˛�1:38 for different parameters

.�1; �2/ .�1;opt; �2;opt/ .�2; 0/ .0; 0/ .0:031; �0:005/ .0:02; �0:006/

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 1.8697 – 1.9402 – 4.9912 – 1.7893 – 2.8886 –

2 0.2031 3.20 0.2843 2.77 1.9475 1.36 0.2017 3.10 1.0433 1.47

3 0.0240 3.08 0.0425 2.74 0.7716 1.34 0.0257 2.94 0.4100 1.35

4 0.0030 3.00 0.0064 2.72 0.3061 1.33 0.0047 2.46 0.1625 1.34

Table 3 Slit domain: Errors 103 � ku � uh.�1; �2/k0;˛�1:55 for different parameters

.�1; �2/ .�1;opt; �2;opt/ .�2; 0/ .0; 0/ .0:139; �0:051/ .0:15; �0:06/

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 1.1790 – 1.3055 – 2.4165 – 1.0874 – 1.2833 –

2 0.1372 3.10 0.2994 2.12 1.1968 1.01 0.1372 2.99 0.1749 2.88

3 0.0168 3.03 0.0738 2.02 0.5966 1.00 0.1720 3.00 0.0312 2.49

4 0.0021 3.02 0.0184 2.01 0.2978 1.00 0.0275 2.65 0.0112 1.48

unknown. However, to observe optimal asymptotic convergence rates, we require a
high accuracy of the parameter on the finer meshes. Let us remark here that for
multiple re-entrant corners, the correction parameters can be determined by solving
local problems for each corner in a preprocessing step. The optimal correction
parameters depends on the interior angle, as already seen from the numerical results,
but also on !1;h. More precisely, the number and the local shape of elements in !1;h

influence the optimal correction parameters.

3 Eigenvalue Problems

Next, we consider the eigenvalue problem with homogeneous Neumann boundary
conditions

Lum D �mum in ˝:

As before, we choose an L-shaped domain ˝ WD .�1; 1/2n.Œ0; 1� 	 Œ�1; 0�/ and a
slit-domain ˝ WD .�1; 1/2n.Œ0; 1� 	 f0g/ for our numerical results. For comparison
with reference values given in the literature [12,19], we use different meshes in this
example. Moreover, we also present results for a domain with multiple re-entrant
corners, in which case we compute a reference solution on a finer mesh. The meshes
are always constructed such that we obtain perfectly symmetric isosceles triangles
around the singular points; cf. Fig. 3.

It is well-known from the literature [3–5, 12, 25], that the above mentioned
pollution effect can be observe, but that it occurs only for all eigenfunctions and
eigenvalues, for which a non-smooth singular component is present. For sufficiently
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Fig. 3 L-shape, slit, and domain with multiple re-entrant corners

smooth eigenfunctions, a quadratic convergence rate for the eigenvalues can be
observed in case of linear finite elements, i.e., p D 1.

Our modified finite element formulation reads: find the discrete eigenvalues
�m;h 2 R and the eigenfunctions uh;m.�/ 2 V 1

h such that

aec.uh;m.�/; v/ D �h;m.uh;m.�/; v/; v 2 V 1
h ; (9)

where 0 � �h;1 � �h;2 � : : :. For simplicity of notation, we use the same symbol as
before for the finite element space although no homogeneous boundary conditions
are imposed on the space. Let us next briefly outline the convergence analysis for
this modified scheme.

3.1 Convergence Analysis

In this subsection, we focus on the convergence analysis of the discrete eigenvalues
�h;m and follow the lines of [28] in the conforming setting. To do so, we introduce
the eigenvalue problem: find � 2 R and w 2 H 1.˝/ such that a.w; z/ D �.w; z/ for
all z 2 H 1.˝/. The non-negative eigenvalues are ordered such that 0 � �1 � �2 �
: : :, and the associated eigenfunctions are denoted by wi with the normalization
.wi ; wj / D ıi;j . Now define the m-dimensional space Vm by Vm WD spanfwi ; i �
mg. Further for each v 2 Vm let the modified Galerkin projection Rh onto V 1

h be
defined by aec.Rhv; vh/ D a.v; vh/ for all vh 2 V 1

h . We recall that Rh depends on
the specific choice of � . In terms of Rh, we define Em;h WD RhVm and note that
dimEm;h D m for h � h0 small enough.

For the sake of presentation, let us first state the main result and subsequently
develop the ingredients needed for its proof.

Theorem 1 Let 1 � �
!

< ˛ < 1. If the above mentioned modification is used with
n D 1 and �opt, the following upper and lower bound for �h;m hold,

�m.1 � Ch2�1C˛
m / � �h;m � �m.1 C Ch2�˛C1

m /:
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Our proof is based on the following two technical results which are provided
without a detailed proof.

Lemma 1 Let 1 � �
!

< Q̨ < ˛ < 1 then it holds

kr�Q̨vk0 � C kvk1�˛
0 kvk˛

1 ; v 2 H 1.˝/:

The upper bound in Lemma 1 can be obtained by using the Hölder inequality
in combination with interpolation arguments and standard Sobolev embedding
results. Combining Lemma 1 with [28, Lemma 6.4-2], [20, Theorem 2.4] and some
straightforward computations yield the following bounds.

Lemma 2 Let v 2 Vm with .v; v/ D 1. Then v D Pm
iD1 ˇi wi with

Pm
iD1 ˇ2

i D 1,
and it satisfies a.v; z/ D .fv; z/ for all z 2 H 1.˝/ with fv WD Pm

iD1 ˇi �i wi .
Moreover, we have r�˛fv 2 L2.˝/ for 1 � �

!
< ˛ < 1, and the following bounds

hold with constants independent of the mesh-size

ja.v; v/ � aec.Rhv; Rhv/j � Ch2�2C˛
m ;

.Rhv; Rhv/ � 1 � Ch2�˛C1
m :

Now we are prepared to provide the proof of the main result.

Proof (Theorem 1) The proof is based on the characterization of the eigenvalues by
the Rayleigh quotient. We start with the upper bound. Using Eh;m as defined above
together with Lemma 2, we get the following upper bound:

�h;m � max
v2Em;h

aec.v; v/

.v; v/
D max

v2Vm

aec.Rhv; Rhv/

.Rhv; Rhv/

D max
v2Vm

a.v; v/ C aec.Rhv; Rhv/ � a.v; v/

.Rhv; Rhv/

D max
v2Vm

a.v; v/

.v; v/
max
v2Vm

.v; v/

.Rhv; Rhv/
C max

v2Vm

aec.Rhv; Rhv/ � a.v; v/

.Rhv; Rhv/

� �m

1 C Ch2�2C˛
m

1 � Ch2�˛C1
m

. �m.1 C Ch2�˛C1
m / C Ch2�2C˛

m .1 C Ch2�˛C1
m /:

As next step it remains to show the lower bound. In contrast to the uncorrected
scheme, we do not have the trivial bound �m � �m;h. The proof of the lower bound
follows basically the lines of the upper bound but requires the use of a different m-
dimensional space. Firstly we define a new space given by Em WD spanfewi ; i � mg
where Qwi 2 H 1.˝/ is defined by a. Qwi ; z/ D .wi;h; z/ for all z 2 H 1.˝/. Secondly,
we note that RhEm D Em;h and thus for h small enough we have dim Em D m.
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Now, similar arguments as before yields

�m � max
v2Em

a.v; v/

.v; v/
D max

v2Em

aec.Rhv; Rhv/ C a.v; v/ � aec.Rhv; Rhv/

.v; v/

D max
v2Em

aec.Rhv; Rhv/

.Rhv; Rhv/
max
v2Em

.Rhv; Rhv/

.v; v/
C max

v2Em

a.v; v/ � aec.Rhv; Rhv/

.v; v/

� �h;m.1 C Ch2�1C˛
h;m /:

Combining the upper bounds for �m and �h;m yields the lower bound for �h;m. �
The steps outlined in this section show the flexibility and potential of the ideas of
[20, 30] to eigenvalue problems. A more detailed analysis provides also optimal
bounds for the eigenfunction convergence. Let us next support our theoretical ideas
by numerical results.

3.2 Numerical Computation of Eigenvalues

We conduct convergence studies for the eigenvalue problem defined on the geome-
tries depicted in Fig. 3. We first compare the numerical results obtained without
correction to those obtained with a suitable modification parameter.

In this example, we make use of the Neumann fit tabulated in [30, Table 5.3],
which provides a simple heuristic approach to determine modification parameters in
case of meshes consisting of isosceles triangles around the singularity. This purely
geometric assumption is satisfied for our meshes by construction (see Fig. 3).

The correction parameter � for the L-shape (� D 3
2
�) and the multiple re-entrant

corners domain is given by � � 0:1478. We note that in each case four isosceles
triangles are attached to the singularity, and thus the correction parameter is the
same for all re-entrant corners. For the slit domain (� D 2�), we count six adjacent
elements at the singular vertex, and hence we determine our correction parameter to
� � 0:2716 (more precise values are given in the respective tables).

In Tables 4–6 we list the results for our convergence study for the L-shape, the
slit domain and the domain with multiple re-entrant corners, respectively. Without
correction, we observe suboptimal rates for some eigenvalues in each of the three
cases. However, using the modified method, the asymptotically optimal convergence
of O.h2/ for all given eigenvalues is obtained in the three cases. Note that we
excluded the results for some eigenvalues for the slit domain in Table 5. This
is because the corresponding eigenfunctions do not include singular components
strong enough to affect the optimal rate for linear elements. Hence, for these
eigenvalues, a convergence rate of O.h2/ can be reached already by using the non-
corrected method.
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Table 4 Convergence rates for eigenvalues in the L-shaped domain with and without energy
correction

No correction � D 0:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 1.47562 Exact: 3.53403 Exact: 9.86960 Exact: 9.86960 Exact: 11.38948

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.55008 – 3.63939 – 10.79641 – 10.90447 – 12.67323 –

2 1.50014 1.60 3.56116 1.96 10.10623 1.97 10.12814 2.00 11.71975 1.96

3 1.48402 1.55 3.54091 1.98 9.92994 1.97 9.93496 1.98 11.47442 1.96

4 1.47861 1.49 3.53576 1.99 9.88483 1.99 9.88604 1.99 11.41101 1.98

5 1.47672 1.44 3.53447 2.00 9.87342 2.00 9.87372 2.00 11.39489 1.99

Correction � D 0:147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 1.47562 Exact: 3.53403 Exact: 9.86960 Exact: 9.86960 Exact: 11.38948

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.51075 – 3.62603 – 10.78432 – 10.89390 – 12.64990 –

2 1.48457 1.97 3.55913 1.87 10.10560 1.95 10.12758 1.99 11.71674 1.95

3 1.47785 2.00 3.54060 1.93 9.92990 1.97 9.93493 1.98 11.47396 1.95

4 1.47617 2.03 3.53571 1.96 9.88482 1.99 9.88604 1.99 11.41094 1.98

5 1.47575 2.06 3.53446 1.98 9.87342 2.00 9.87372 2.00 11.39488 1.99

Table 5 Convergence rates for eigenvalues in the slit domain with and without energy correction

No correction � D 0:

1.EV 2.EV 5.EV 7.EV 8.EV
Exact: 1.03407 Exact: 2.46740 Exact: 9.86960 Exact: 12.26490 Exact: 12.33701

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.14032 – 2.52918 – 10.78301 – 13.97705 – 14.17015 –

2 1.07951 1.23 2.48307 1.98 10.10730 1.94 12.75729 1.80 12.81216 1.95

3 1.05478 1.13 2.47135 1.99 9.93045 1.97 12.43849 1.50 12.44434 2.15

4 1.04392 1.07 2.46839 2.00 9.88497 1.99 12.32633 1.50 12.36411 1.99

5 1.03887 1.04 2.46765 2.00 9.87346 1.99 12.28924 1.34 12.34381 1.99

Correction � D 0:271607294328175:

1.EV 2.EV 5.EV 7.EV 8.EV
Exact: 1.03407 Exact: 2.46740 Exact: 9.86960 Exact: 12.26490 Exact: 12.33701

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.06167 – 2.49235 – 10.76626 – 13.85168 – 13.88581 –

2 1.04116 1.96 2.47377 1.97 10.10651 1.92 12.66340 1.99 12.73749 1.95

3 1.03583 2.01 2.46902 1.97 9.93041 1.96 12.36581 1.98 12.43961 1.96

4 1.03449 2.06 2.46781 1.99 9.88497 1.98 12.29021 1.99 12.36294 1.98

5 1.03417 2.14 2.46750 1.99 9.87346 1.99 12.27120 2.01 12.34352 1.99
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Table 6 Convergence rates for eigenvalues in the domain with multiple re-entrant corners with
and without correction

No correction � D 0:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 0.11422 Exact: 0.11422 Exact: 0.23460 Exact: 0.31626 Exact: 0.31626

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 0.11609 – 0.11609 – 0.23841 – 0.32303 – 0.32323 –

2 0.11489 1.48 0.11489 1.48 0.23595 1.51 0.31861 1.53 0.31867 1.53

3 0.11446 1.46 0.11446 1.46 0.23509 1.47 0.31709 1.49 0.31711 1.50

4 0.11431 1.42 0.11431 1.42 0.23478 1.44 0.31656 1.45 0.31657 1.45

5 0.11425 1.39 0.11425 1.39 0.23467 1.40 0.31637 1.41 0.31637 1.42

Correction � D 0:147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 0.11422 Exact: 0.11422 Exact: 0.23460 Exact: 0.31626 Exact: 0.31626

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 0.11472 – 0.11473 – 0.23574 – 0.31869 – 0.31887 –

2 0.11435 1.85 0.11436 1.85 0.23492 1.85 0.31690 1.92 0.31695 1.92

3 0.11425 1.97 0.11425 1.96 0.23469 1.96 0.31642 1.99 0.31643 1.99

4 0.11422 2.04 0.11422 2.03 0.23462 2.02 0.31630 2.04 0.31630 2.03

5 0.11422 2.11 0.11422 2.10 0.23461 2.09 0.31627 2.09 0.31627 2.08

4 Jumping Coefficients

Next, let us study the influence of heterogeneous coefficients with jumps. We
consider again the scalar elliptic problem (1) but in contrast to the previous sections,
we now assume that K is piecewise constant on disjoint subsets ˝i � ˝ WD
.�1; 1/2, i.e., we define ˝1 WD .0; 1/2, ˝2 WD .�1; 0/ 	 .0; 1/, ˝3 WD .�1; 0/2

and ˝4 WD .0; 1/ 	 .�1; 0/, and set K D 1 in ˝2; ˝4 and K D a in ˝1; ˝3

for finite a > 0. Whenever a ¤ 1 one obtains a discontinuity at the origin, which
causes solutions in H 1C�.˝/ for 0 < � < 1 and possibly � � 1; cf. [15, 21].
As before, this severely limited regularity bound results in poor L2-accuracy of the
uncorrected discrete solutions. The solution of (1) again admits a singular function
representation, with singular components of the form

sk.r; �/ D r�k �k.�/; �k � �kC1; k 2 N: (10)

Here the exponent �k can be determined with help of an auxiliary Sturm–Liouville
eigenvalue problem [15]. We note that .r; �/ are the polar coordinates with respect
to the origin .0; 0/. Typically, the exponent �1 is very small, i.e., �1 � 1, which
renders s1 as the dominating singular component in the problem. Since by [21,
Lemma 3.3] there holds �1 C �2 D 2 for the case outlined above, the energy
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correction with only one correction parameter per singular vertex is feasible. Hence,
we introduce a modification of the weak form at the singularity by

aec.v; w/ WD
Z

˝

Krv�rw dx � �

Z

!h

Krv�rw dx: (11)

where � 2 Œ0; 1/, and !h is a union of elements in Th. As before, we choose !h as
the union of those elements adjacent to the vertex at which the singularity is located.
The modified finite element method for (1) is then again given in the form of (3),
and the corrections are again determined as the root of the energy functional (4).
We remark that a similar correction has been proposed to recover optimal multigrid
convergence rates for elliptic problems with intersecting interfaces in [1].

4.1 Numerical Results

As a first benchmark, we consider non-homogeneous Dirichlet boundary conditions
such the exact solution is given by u D s1. We conduct a convergence study on a
series of uniformly refined meshes and, as before, we compare the energy corrected
approach to the standard finite element method. The first two mesh levels and
correction domains are depicted in Fig. 4 for illustration.

We consider two values of a, i.e., a D 10 and a D 1;000, and in a preprocessing
step we solve the Sturm–Liouville problem to obtain the first eigenvalue as �1 �
0:38996 and �1 � 0:04025, respectively. The other singular components are of
higher regularity (i.e., si 2 H 2.˝/; i > 1) and are therefore not considered in
the following. For both cases we then approximate the roots of the energy defect
function (4) by a classical Newton method until the relative error between two
consecutive iterates is at most 1:48 � 10�8. The results are listed in Fig. 5 alongside
with nonlinear fits against the function �1 C ch2.1��1/. For a D 1;000, we observe

Fig. 4 Mesh levels 1 and 2 of the unit square with correction domains !h in gray
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Fig. 5 Approximate roots of the energy defect function (4) obtained on subsequent refinements of
the initial meshes of Fig. 4 for jumping material coefficients. Dashed lines indicate the nonlinear
fits against the function �

1

C ch2.1��1/

Table 7 Errors 102 � ku � uh.�/k0;˛�0:66004 for jumping coefficients with a D 10

� �opt 0 0:406 0:3 0:5

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 2.72860 – 3.06090 – 2.71390 – 2.80460 – 2.63900 –

2 0.71951 1.92 1.38890 1.14 0.71293 1.93 0.84889 1.72 0.68297 1.95

3 0.18359 1.97 0.69770 0.99 0.18253 1.97 0.29198 1.54 0.23705 1.53

4 0.04636 1.99 0.37922 0.88 0.04627 1.98 0.13016 1.17 0.11776 1.01

5 0.01170 1.99 0.21420 0.82 0.01175 1.98 0.06939 0.91 0.06718 0.81

6 0.00295 1.99 0.12297 0.80 0.00301 1.96 0.03938 0.82 0.03924 0.78

that the convergence of �opt with respect to the refinement level is much faster than
for a D 10. This is in accordance with the theoretical results for re-entrant corners
of [30], which state that the convergence is faster in case of stronger singularities
(Table 7).

Again, for both cases, we conduct a convergence study in which we compare the
modified and standard finite element solutions, as well as three heuristic choices.
For a D 10, we measure the error in the weighted L2-norm with ˛ � 0:66004.
For the modified approach with correction parameters as listed in Fig. 5, an optimal
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convergence rate of O.h2/ is obtained, while the convergence of the standard finite
element method is clearly limited due to the singular components. For the manually
tuned choices we again observe that the solution quality is much better than without
correction. Although on coarse meshes nearly optimal rates can only be seen for
the choice � D 0:406, which is close enough to the optimal values of Fig. 5,
asymptotically the convergence rate will deteriorate. This effect can be seen more
dominantly for the choices � D 0:3 and � D 0:5. A not optimal choice of � will
yield asymptotically the same poor convergence rate as the uncorrected method has.

For comparison, we list the results for the case a D 1;000 in Table 8, where the
error is measured in the weighted L2-norm with ˛ � 0:96475. Also here we see that
using the previously determined parameters an optimal asymptotic convergence rate
is recovered despite the strongly singular component.

Finally, let us consider a more complex numerical example in ˝ D Œ�2; 2� 	
Œ�2; 2�. We define i D bxc and j D byc, and set

K D
�

1;000 if .�1/iCj > 0;

1 if .�1/iCj < 0;

thus, we identify 9 singularities which are corrected as depicted in Fig. 6. The
boundary conditions are chosen as u D 1 on the bottom boundary, u D 0 on the
top and ru � n D 0 elsewhere.

Table 8 Errors 102 � ku � uh.�/k0;˛�0:96475 for jumping coefficients with a D 1;000

� �opt 0 0:936 0:9 0:95

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 0.41774 – 0.51892 – 0.43095 – 0.43531 – 0.42932 –

2 0.11332 1.88 0.32494 0.68 0.11944 1.85 0.12422 1.81 0.11825 1.86

3 0.02917 1.96 0.24001 0.44 0.03142 1.93 0.03725 1.74 0.03178 1.90

4 0.00738 1.98 0.19177 0.32 0.00813 1.95 0.01876 0.99 0.01073 1.57

5 0.00186 1.99 0.15902 0.27 0.00209 1.96 0.01587 0.24 0.00704 0.61

6 0.00047 1.99 0.13485 0.24 0.00054 1.96 0.01475 0.11 0.00637 0.14

Fig. 6 Left: coefficient K D 1 (dark), K D 1;000 (light); center: correction on level 1 in light
gray; right: reference solution (with energy correction on level 8)



34 T. Horger et al.

Table 9 Errors
10 � ku � uh.�/k0;˛�0:96475;
Convergence analysis of the
energy correction method and
standard finite element
method for the example with
9 singularities

� �opt 0

Level Error Rate Error Rate

1 0.50254 – 1.15720 –

2 0.09690 2.07 0.92582 0.32

3 0.02472 1.97 0.77083 0.26

4 0.00636 1.96 0.65581 0.23

Due to the construction of the jumping coefficient K each of the 9 singularities
has the same first eigenvalue �1 D 0:04025, thus, also the correction parameter in
the neighborhood of each singularity has the same value, namely, � � 0:93611.
Since we have no exact solution at hand for this example, we compute a reference
solution with the energy corrected method on a high resolution mesh for compar-
ison. In Table 9, we study the convergence to the reference solution, starting with
the mesh of Fig. 6. The error is measure in a weighted L2 norm with a weight of
˛ � 0:96475 around each singularity. Again, we observe optimal convergence
rates for the energy corrected method. Hence, the correction parameters for each
singularity arising in a practical application can be determined independently in a
preprocessing step.

Conclusion
In this work, we discussed the extension of energy corrected finite element
methods from the special case of linear finite elements on domains with re-
entrant corners to second order finite elements, eigenvalue problems, and
singularities resulting from jumping material parameters in two space dimen-
sions. We demonstrated that given the correction parameters, the modified
methods can dramatically improve the numerical solutions in presence of
strong singular solution component. Quasi-optimal convergence rates are
recovered. Hence, they provide an appealing alternative to graded or adaptive
meshes and function space enrichment for applications in which a high
accuracy in vicinity of the singular regions is not required.

Acknowledgements Financial support by the “Deutsche Forschungsgemeinschaft” through grant
WO-671/13-1 is gratefully acknowledged.



Energy-Corrected Finite Element Methods for Scalar Elliptic Problems 35

References

1. R.E. Alcouffe, A. Brandt, J.E. Dendy Jr., J.W. Painter, The multi-grid method for the diffusion
equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2(4), 430–454
(1981)

2. T. Apel, A. Sändig, J. Whiteman, Graded mesh refinement and error estimates for finite element
solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl.
Sci. 19, 63–85 (1996)

3. I. Babuška, B. Guo, J. Osborn, Regularity and numerical solution of eigenvalue problems with
piecewise analytic data. SIAM J. Numer. Anal. 26(6), 1534–1560 (1989)

4. I. Babuška, J. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvec-
tors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989)

5. , Eigenvalue problems, in Handbook of Numerical Analysis, vol. 2 (North Holland,
Amsterdam, 1991), pp. 643–787

6. I. Babuška, M. Rosenzweig, A finite element scheme for domains with corners. Numer. Math.
20, 1–21 (1972)

7. M. Berndt, T. Manteuffel, S. McCormick, Analysis of first-order system least-squares (FOSLS)
for elliptic problems with discontinuous coefficients: part II. SIAM J. Numer. Anal. 42, 409–
436 (2005)

8. M. Berndt, T. Manteuffel, S. McCormick, G. Starke, Analysis of first-order system least-
squares (FOSLS) for elliptic problems with discontinuous coefficients: part I. SIAM J. Numer.
Anal. 42, 386–408 (2005)

9. H. Blum, M. Dobrowolski, On finite element methods for elliptic equations on domains with
corners. Computing 28, 53–63 (1982)

10. H. Blum, R. Rannacher, Extrapolation techniques for reducing the pollution effect of reentrant
corners in the finite element method. Numer. Math. 52, 539–564 (1988)

11. P. Bochev, M. Gunzburger, Finite element methods of least-squares type. SIAM Rev. 40(4),
789–837 (1998)

12. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19(01), 1–120
(2010)

13. M. Bourlard, M. Dauge, M.-S. Lubuma, S. Nicaise, Coefficients of the singularities for elliptic
boundary value problems on domains with conical points iii. Finite element methods on
polygonal domains. SIAM J. Numer. Anal. 29, 136–155 (1992)

14. S. Brenner, Multigrid methods for the computation of singular solutions and stress intensity
factors. I: corner singularities. Math. Comput. 68(226), 559–583 (1999)

15. S. Brenner, L. Sung, Multigrid methods for the computation of singular solutions and stress
intensity factors. III: interface singularities. Comput. Methods Appl. Mech. Eng. 192, 4687–
4702 (2003)

16. Z. Cai, S. Kim, A finite element method using singular functions for the Poisson equation:
corner singularities. SIAM J. Numer. Anal. 39, 286–299 (2001)

17. C. Cox, G. Fix, On the accuracy of least squares methods in the presence of corner singularities.
Comput. Math. Appl. 10, 463–475 (1984)

18. M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymp-
totics of Solutions (Springer, Berlin, 1988)

19. , Benchmark computations for Maxwell equations (2003). http://perso.univ-rennes1.
fr/monique.dauge/benchmax.html

20. H. Egger, U. Rüde, B. Wohlmuth, Energy-corrected finite element methods for corner
singularities. SIAM J. Numer. Anal. 52(1), 171–193 (2014)

21. R.B. Kellogg, On the Poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129
(1974)

22. R. Kellogg, Singularities in interface problems, in Numerical Solution of Partial Differential
Equations, II (SYNSPADE 1970): Proceedings of the Symposium, University of Maryland,
College Park, 1970 (1971), pp. 351–400

http://perso.univ-rennes1.fr/monique.dauge/benchmax.html
http://perso.univ-rennes1.fr/monique.dauge/benchmax.html


36 T. Horger et al.

23. V. Kondratiev, Boundary value problems for elliptic equations in domains with conical or
angular points. Trans. Mosc. Math. Soc. 16, 227–313 (1967)

24. E. Lee, T. Manteuffel, C. Westphal, Weighted norm first-order system least-squares (FOSLS)
for problems with corner singularities. SIAM J. Numer. Anal. 44, 1974–1996 (2006)

25. X. Liu, S. Oishi, Verified eigenvalue evaluation for the Laplacian over polygonal domains of
arbitrary shape. SIAM J. Numer. Anal. 51, 1634–1654 (2013)

26. J.M.-S. Lubuma, K.C. Patidar, Towards the implementation of the singular function method
for singular perturbation problems. Appl. Math. Comput. 209, 68–74 (2009)

27. V.G. Maz´ja, B.A. Plamenevskii, The coefficients in the asymptotic expansion of the solutions
of elliptic boundary value problems to near conical points. Dokl. Akad. Nauk SSSR 219, 286–
289 (1974)

28. P. Raviart, J. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles
(Masson, Paris, 1983)

29. U. Rüde, Local corrections for eliminating the pollution effect of reentrant corners. Technical
report TUM-INFO-02-89-I01, Institut für Informatik, Technische Universtät München, 1989

30. U. Rüde, C. Waluga, B. Wohlmuth, Nested Newton strategies for energy-corrected finite ele-
ment methods. SIAM J. Sci. Comput. 36(4), A1359–A1383 (2014). doi: 10.1137/130935392

31. U. Rüde, C. Zenger, On the treatment of singularities in the multigrid method, in Multigrid
Methods II, ed. by W. Hackbusch, U. Trottenberg. Lecture Notes in Mathematics, vol. 1228
(Springer, Berlin/Heidelberg, 1986), pp. 261–271. 10.1007/BFb0072651

32. G. Strang, G. Fix, An Analysis of the Finite Element Method, 2nd edn. (Wellesley-Cambridge
Press, Wellesley, 2008)

33. C. Zenger, H. Gietl, Improved difference schemes for the Dirichlet problem of Poisson’s
equation in the neighbourhood of corners. Numer. Math. 30, 315–332 (1978)


	Energy-Corrected Finite Element Methodsfor Scalar Elliptic Problems
	1 Introduction
	2 Re-entrant Corners
	2.1 A Nested Newton Algorithm
	2.2 Numerical Examples with Second Order Elements

	3 Eigenvalue Problems
	3.1 Convergence Analysis
	3.2 Numerical Computation of Eigenvalues

	4 Jumping Coefficients
	4.1 Numerical Results

	Conclusion
	References


