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Abstract The paper presents first a linear stability analysis for the time-parallel
Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as
fine propagator, confirming that dominant imaginary eigenvalues negatively affect
Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear
Navier-Stokes equations, problems for small viscosities could arise. Numerical
results for a driven cavity benchmark are presented, confirming that Parareal’s
convergence can indeed deteriorate as viscosity decreases and the flow becomes
increasingly dominated by convection. The effect is found to strongly depend on
the spatial resolution.

1 Introduction

As core counts in modern supercomputers continue to grow, parallel algorithms
are required that can provide concurrency beyond existing approaches parallelizing
in space. In particular, algorithms that parallelize in time “along the steps” have
attracted noticeable interest. Probably the most widely studied algorithm of this type
is Parareal [13], but other important methods exist as well, for example PITA [8] or
PFASST [7].

The applicability of Parareal to the Navier-Stokes equations has been studied
in [10], where it is shown that Parareal can solve the initial value problem arising
from a Finite Element discretization of the Navier-Stokes equations for a Reynolds
number of 200 as well as from a Spectral Element discretization for a problem with
Reynolds number 7,500. A non-Newtonian problem is studied in [2]. In [17, 18],
Parareal is combined with parallelization in space and setups with Reynolds
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numbers up to 1,000 are investigated. While it is confirmed that Parareal can
successfully be applied to flow simulations, the attempt to demonstrate its potential
to provide speedup beyond the saturation of the spatial parallelization was incon-
clusive, as either the pure time or pure space parallel approach provided minimum
runtimes. A successful demonstration that Parareal can speed up simulations after
the spatial parallelization has saturated can be found in [5], where Parareal is used
to simulate a driven cavity flow in a cube with a Reynolds number of 1,000. The
performance of PFASST for a particle-based discretization of the Navier-Stokes
equations on O.100;000/ cores is studied in [15].

It has been noted in multiple works that Parareal as well as PITA have stability
issues for convection-dominated problems, see [1, 8, 12, 14, 16]. This suggests
that Parareal will at some point cease to converge properly for the Navier-Stokes
equations if the Reynolds number increases and the problem becomes more and
more dominated by advection. This paper discusses results from linear stability
analysis and presents a numerical study for two-dimensional driven cavity flow of
how the convergence of Parareal is affected as viscosity decreases.

2 Parareal

Parareal is a method to introduce concurrency in the solution of initial value
problems

ut D f .u.t/; t/; u.0/ D u0; 0 � t � T: (1)

It relies on the introduction of two classical one-step time integration methods,
one computationally expensive and of high accuracy (denoted by F ) and one
computationally cheap method of lower accuracy (denoted by G ). The former is
commonly referred to as the “fine propagator”, the latter as the “coarse propagator”.
Denote by Un the numerical approximation of the exact solution u of (1) at some
point in time tn. Further, denote as

UnC1 D Fıt .Un/ (2)

the result obtained by integrating from an initial value Un given at a time tn
forward in time to a time tnC1 using a time-step ıt and the method indicated
by F . For a decomposition of Œ0; T � into N so-called time-slices Œtn; tnC1�, n D 0;

: : : ; N � 1, solving (2) time-slice after time-slice corresponds to classical time-
marching, running the fine method in serial from t0 D 0 to tN D T . Instead, Parareal
approximately computes the values Un by means of the iteration

U kC1
nC1 D G�t.U

kC1
n / C Fıt .U

k
n / � G�t.U

k
n / (3)

where k denotes the iteration counter. For k ! N , iteration (3) converges towards
the serial fine solution, that is U k

n ! Un. Once values U k
n are known, the

evaluation of the computationally expensive terms F .U k
n / in (3) can be done in
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parallel on N processors. Then, a correction is propagated serially by evaluating the
terms G�t.U

kC1
n / and computing U kC1

nC1 . We refer to e.g. [14] for a more in-depth
presentation of the algorithm. The speedup achievable by Parareal concurrently
computing the solution on N time-intervals assigned to N processors is bounded by

s.N / � min

�
N

Nit
;

CF

CG

�
(4)

where Nit is the number of iterations performed and CF , CG denote the time
required to evaluate Fıt and G�t respectively, see again e.g. [14]. Note that the
two bounds are competing in the sense that using a coarser and cheaper method for
G will usually improve the second bound but might cause Parareal to require more
iterations to converge, thereby reducing the first bound. In contrast, a more accurate
and more expensive G will likely reduce the iteration number but also reduce the
coarse-to-fine runtime ratio CF

CG
.

3 Linear Stability Analysis

In order to illustrate Parareal’s stability properties, we apply it to the test equation

y0.t/ D �Rey.t/ C i�Imy.t/; y.0/ D 0; 0 � t � T: (5)

A linear stability analysis of this kind was first done in [16], using RadauIIA
methods for both F and G . Here, in line with the numerical examples presented
in Sect. 4, the stability analysis is done for an implicit-explicit Euler method for G
and an explicit Runge-Kutta-3 method for F with five time steps of F per two time
steps of G . The IMEX scheme treats the real part (“diffusion”) implicitly and the
imaginary term (“convection”) explicitly. Further, N D 15 concurrent time slices
are used and a time step �t D 1:0 for G , so that T D 15.

Figure 1 shows the resulting stability domains and isolines of accuracy for the
coarse method run serially (a), the fine method run serially (b), and for Parareal
with different numbers of iteration (c)–(f). For Nit D N D 15, the solution from
Parareal is identical to the one provided by F and thus the stability domains also
coincide (not shown). As can be expected because of the stability constraint arising
from the explicitly treated imaginary term, the IMEX method used for G becomes
unstable if the imaginary part of � becomes too dominant. Parareal however ceases
to be stable even before reaching the stability limit of the coarse propagator. The
analysis confirms again that for problems with imaginary eigenvalues, Parareal can
develop instabilities although both F and G are stable. Furthermore, the stability
domain of Parareal shrinks from Nit D 1 to Nit D 4 and Nit D 8 before expanding
again for Nit D 12. Note also that for a fixed number of iterations, Parareal
becomes less accurate as �Im increases (in contrast to the serial fine method),
corresponding to reduced rates of convergence. This means that achieving the
accuracy of the underlying fine method will require more iterations for problems
with larger imaginary eigenvalues, therefore reducing the speedup achievable by
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Fig. 1 Stability and accuracy of Parareal using an implicit-explicit Euler for G , a RK3 method
for F , N D 15 time slices and a ratio of s D 5=2 fine to coarse steps in each time-slice. The
thick gray line indicates where the amplification factor becomes greater than one. The black lines
indicate error levels. Note that in (a) no black lines are visible because the error never drops below
10�1. Note also that s D 5=2 means the fine scheme in serial performs five steps per time-slice and
the coarse scheme two, so that (a) and (b) are not identical to the stability function of the respective
method with only a single time-step. Figures (c)–(f) show the stability domain for Parareal with
Nit D 1; 4; 8; 12 iterations. For comparison, the stability region of G is also sketched again as a
thin dashed gray line

Parareal, cf. the estimate (4). Eventually, as convergence becomes too slow, Parareal
will no longer be able to achieve speedup at all and will no longer be useful. The
mathematical explanation for this behavior is a growing term in the error estimate
for Parareal for imaginary eigenvalues that is only compensated for as the iteration
number approaches the number of time-slices, see the analysis in [12].

4 Numerical Results for Driven Cavity Flow

In order to investigate if and how the results from the linear stability analysis carry
over to the fully nonlinear case, we solve now the non-dimensional, nonlinear,
incompressible Navier-Stokes equations in two dimensions

ut C u � ru C rp D ��u (6)

r � u D 0 (7)
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Fig. 2 Convergence of Parareal against the serial fine solution for �t D 1=200, different numbers
of mesh points Nx and different values for the viscosity �. (a) Nx D 8. (b) Nx D 16. (c) Nx D 32.
(d) Nx D 64

on a square Œ0; 1�2. A method-of-lines approach is used to first discretize in
space. For the spatial discretization a finite volume method based on a vertex
centered scheme is used. On an unstructured or not necessarily structured triangle
mesh, control volumes are constructed via a dual mesh. This leads to a non-
staggered scheme of velocity and pressure. Therefore, a stabilization based on
upwind differences and an incremental version of the Chorin-Temam method for
the pressure is used [19]. Parareal is then employed to solve the resulting initial
value problem until a final time T D 15 with N D 15 time-slices. As in the stability
analysis above, G is an implicit-explicit Euler method while F is an explicit Runge-
Kutta-3 method. The time-step for the coarse method is �t D 1=200, for the fine
method ıt D 1=500, reproducing a rate of s D 5=2 fine per coarse steps. Although
the driven cavity setup is probably not the most ideal here, since, depending on
the viscosity, the solution settles into a steady state rather quickly, its wide use and
comparative simplicity still make for a good first test case. Further tests for a more
complex vortex shedding setups are currently ongoing.

Figure 2 shows the convergence of Parareal against the solution provided by
running F in serial. Shown is the maximum of the relative error at the end of all
time-slices, that is

ek WD max
nD1;:::;N

��U k
n � Un

��1 = kUnk1 (8)
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where U k
n is the solution at tn provided by Parareal after k iterations and Un the

solution provided by running F in serial. The spatial discretization uses values
of Nx D 8, 16, 32, 64 and the viscosity parameter is set to � D 10�1, 10�2,
10�3, 10�4. For Nx D 64 and � D 10�1 no values are shown, because here the
explicit RK3 method used for F started to show stability problems. On all meshes,
the convergence of Parareal deteriorates as � becomes smaller and this effect is
much more pronounced for finer spatial resolutions, where the mesh is able to better
resolve the features of the more convection dominated flow. On the finest mesh,
there is a clear transition between � D 10�3, for which Parareal still converges
reasonably well, and � D 10�4, where the method first stalls for several iterations
before slowly starting to converge. Requiring a number of iterations close to the
number of time-slices means that only marginal speedup is possible from Parareal,
because the first bound in (4) becomes very small. Note also that the still reasonable
convergence of Parareal for very low viscosity on a very coarse spatial mesh is not
of great practical interest, as the provided solution will be strongly under-resolved.
Figure 3 shows again the convergence of Parareal for a decreased coarse time-step
size �t D 1=400. As can be seen, reducing the coarse time-step again improves
convergence and allows Parareal to converge in fewer iterations. However, it reduces
the second speedup bound in (4) and thus will also at some point prevent Parareal
from achieving speedup. Therefore, the reduced convergence speed of Parareal for
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Fig. 3 Convergence of Parareal against the serial fine solution for �t D 1=400, different numbers
of mesh points Nx and different values for the viscosity �. (a) Nx D 8. (b) Nx D 16. (c) Nx D 32.
(d) Nx D 64
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small viscosities either necessitates a small time-step in the coarse method or a large
number of iterations and both choices significantly reduce the achievable speedup.
A possible remedy could be the application of stabilization techniques as discussed
in [4, 9] for PITA or [3, 6, 11, 14] for Parareal, but so far none of these have been
tested for the full Navier-Stokes equations.

Conclusions
The paper presents a numerical study of how the Reynolds number
(or, inversely, the viscosity parameter) affects the convergence of the time-
parallel Parareal method when used to solve the Navier-Stokes equations.
From other works it is known that Parareal can develop a mild instability
for problems with dominant imaginary eigenvalues, so it can be expected
that as the viscosity is decreased, Parareal will eventually become unstable
at some point. A linear stability analysis is performed to motivate this
assumption, which is then substantiated by numerical examples, solving a
two-dimensional driven cavity problem for different Reynolds numbers and
different spatial resolutions. It is confirmed that the convergence of Parareal
deteriorates as the viscosity parameter becomes smaller and the flow becomes
more and more dominated by convection. This necessitates either the use of a
very small time-step in the coarse method or many iterations of Parareal, but
both these choices significantly reduce the achievable speedup.

Acknowledgements This work was supported by Swiss National Science Foundation (SNSF)
grant 145271 under the lead agency agreement through the project “ExaSolvers” within the
Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) of the Deutsche
Forschungsgemeinschaft (DFG).

References

1. G. Bal, On the convergence and the stability of the parareal algorithm to solve partial
differential equations, in Domain Decomposition Methods in Science and Engineering, ed.
by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40
(Springer, Berlin, 2005), pp. 426–432

2. E. Celledoni, T. Kvamsdal, Parallelization in time for thermo-viscoplastic problems in
extrusion of aluminium. Int. J. Numer. Methods Eng. 79(5), 576–598 (2009)

3. F. Chen, J. Hesthaven, X. Zhu, On the use of reduced basis methods to accelerate and stabilize
the parareal method, in Reduced Order Methods for Modeling and Computational Reduction.
MS&A – Modeling, Simulation and Applications, vol. 9 (Springer, International Publishing
Switzerland, 2014)

4. J. Cortial, C. Farhat, A time-parallel implicit method for accelerating the solution of non-linear
structural dynamics problems. Int. J. Numer. Methods Eng. 77(4), 451–470 (2009)

5. R. Croce, D. Ruprecht, R. Krause, Parallel-in-Space-and-Time Simulation of the Three-
Dimensional, Unsteady Navier-Stokes Equations for Incompressible Flow. Modeling, Simu-
lation and Optimization of Complex Processes (Springer, Berlin/Heidelberg, 2012, in press)



202 J. Steiner et al.

6. X. Dai, Y. Maday, Stable parareal in time method for first- and second-order hyperbolic
systems. SIAM J. Sci. Comput. 35(1), A52–A78 (2013)

7. M. Emmett, M.L. Minion, Toward an efficient parallel in time method for partial differential
equations. Commun. Appl. Math. Comput. Sci. 7, 105–132 (2012)

8. C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility
studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58(9),
1397–1434 (2003)

9. C. Farhat, J. Cortial, C. Dastillung, H. Bavestrello, Time-parallel implicit integrators for the
near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Methods Eng.
67, 697–724 (2006)

10. P.F. Fischer, F. Hecht, Y. Maday, A parareal in time semi-implicit approximation of the
Navier-Stokes equations, in Domain Decomposition Methods in Science and Engineering,
ed. by R. Kornhuber et al. Lecture Notes in Computational Science and Engineering, vol. 40
(Springer, Berlin, 2005), pp. 433–440

11. M. Gander, M. Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for linear
problems. ESAIM: Proc. 25, 114–129 (2008)

12. M.J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-integration method.
SIAM J. Sci. Comput. 29(2), 556–578 (2007)

13. J.-L. Lions, Y. Maday, G. Turinici, A “parareal” in time discretization of PDE’s, Comptes
Rendus de l’Académie des Sciences – Series I – Mathematics 332, 661–668 (2001)

14. D. Ruprecht, R. Krause, Explicit parallel-in-time integration of a linear acoustic-advection
system. Comput. Fluids 59(0), 72–83 (2012)

15. R. Speck, D. Ruprecht, R. Krause, M. Emmett, M. Minion, M. Winkel, P. Gibbon, A massively
space-time parallel n-body solver, in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Salt Lake City (IEEE Computer
Society Press, Los Alamitos, 2012), pp. 92:1–92:11

16. G.A. Staff, E.M. Rønquist, Stability of the parareal algorithm, in Domain Decomposition
Methods in Science and Engineering ed. by R. Kornhuber et al. Lecture Notes in Computational
Science and Engineering, vol. 40 (Springer, Berlin, 2005), pp. 449–456

17. J.M.F. Trindade, J.C.F. Pereira, Parallel-in-time simulation of the unsteady Navier–Stokes
equations for incompressible flow. Int. J. Numer. Methods Fluids 45(10), 1123–1136 (2004)

18. , Parallel-in-time simulation of two-dimensional, unsteady, incompressible laminar
flows. Numer. Heat Transf. Part B: Fundam. 50(1), 25–40 (2006)

19. H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite
Volume Method (Pearson Education, Harlow, England, 2007)


	Convergence of Parareal for the Navier-Stokes Equations Depending on the Reynolds Number
	1 Introduction
	2 Parareal
	3 Linear Stability Analysis
	4 Numerical Results for Driven Cavity Flow
	Conclusions
	References


