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Abstract We address the numerical solution of the Dirichlet problem for a partial
differential equation involving the Jacobian determinant in two dimensions of
space. The problem consists in finding a vector-valued function such that the
determinant of its gradient is given point-wise in a bounded domain, together
with essential boundary conditions. The proposed numerical algorithm relies on
an augmented Lagrangian algorithm with biharmonic regularization, and low order
mixed finite element approximations. An iterative method allows to decouple the
local nonlinearities and the global variational problem that involves a biharmonic
operator. Numerical experiments validate the proposed method.

1 Motivation

Fully nonlinear equations can usually be written F.u; ru; D2u/ D 0, for some
function F , in a bounded domain ˝ , together with Dirichlet boundary conditions.
Several examples and numerical schemes can be found in [1, 2, 5–7, 9], applied
mainly to second order equations, such as Monge-Ampère or Pucci’s.

Inspired by [3, 4], we consider here a particular equation that involves only the
Jacobian of the unknown function. Namely, for a given data f , we want to find u
such that det ru D f . This example has a geometric partial differential equation
flavor, as it corresponds to finding a given deformation. Unlike for the Monge-
Ampère equation, it thus does not involve the Hessian D2u. The goal in the present
work is to provide an alternative, for the computational viewpoint, to the theoretical,
explicit, construction of solutions that exists in the literature for simple cases.
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Following previous works on the Monge-Ampère equation [2], a variational
approach is advocated. An iterative algorithm, reminiscent of alternating direction
implicit methods, allows to alternatively solve linear variational problems and local
nonlinear optimization problems. Numerical validation is achieved with simple
examples, and convergence results are obtained from a computational perspective.

2 Problem Formulation

Let ˝ be a bounded domain of R2, with � its boundary, and f W R2 ! R a given
function. The fully nonlinear partial differential equation involving the Jacobian
determinant we want to solve reads as follows: find u W ˝ ! R

2 satisfying

�
det ru D f in ˝

u D Id on �:
(1)

where Id is the identity application. Problem (1) admits a solution, as discussed

in [3, 4], under the compatibility condition on the data:
Z

˝

fdx D measure .˝/.

Actually, the existence proof has been first made for f � 0 in [4], and extended to
the more general case in [3]. However, the solution to (1) is not necessarily unique;
indeed, for instance, if ˝ is the unit disc and f � 1, u1.x/ D x is an obvious
solution, and (denoting the polar coordinates by .�; �/), u2.�; �/ D .� cos.� C
2k��2/ ; � sin.� C 2k��2//T is also a solution.

We assume here that f is non-negative. In order to design a numerical method
based on some variational principle, and enforce the uniqueness of the solution to
(1), we consider the following problem:

min
v2E

1

2

Z
˝

jrv � Ij2 dx (2)

where E D ˚
v 2 H 1.˝/2 ; det rv D f ; vj� D Id

�
. Here I denotes the 2 � 2

identity operator. The Frobenius norm and product are respectively defined by
jTj D .T W T/1=2, S W T D P2

i;j D1 sijtij for each S D .sij/; T D .tij/ 2 R
2�2.

If f 2 L1.˝/, then the set E is not empty.
Let us denote by u 2 E the solution to (2). The choice of the objective distance

function is arbitrary and is made in order to facilitate the decomposition properties
of the algorithm discussed below.
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3 An Augmented Lagrangian Algorithm

3.1 Regularization and Augmented Lagrangian Functional

We first introduce a biharmonic regularization to the variational problem (2). Let
ı > 0 be a small parameter. The biharmonic regularization reads:

min
v2QE

�
1

2

Z
˝

jrv � Ij2 dx C ı

2

Z
˝

ˇ̌r2v
ˇ̌2

dx
�

(3)

where QE D ˚
v 2 H 2.˝/2 ; det rv D f ; vj� D Id

�
. Then we introduce a new

variable p 2 L2.˝/2�2, so that (3) is equivalent to

min
.v;q/2 OE

�
1

2

Z
˝

jrv � Ij2 dx C ı

2

Z
˝

ˇ̌r2v
ˇ̌2

dx
�

(4)

where OE D ˚
v 2 H 2.˝/2 ; det q D f ; vj� D Id ; rv D q

�
. With formulation (4),

we advocate an augmented Lagrangian algorithm. Namely, for r > 0 a given
parameter, we define the augmented Lagrangian functional

L .v; qI �/ D 1

2

Z
˝

jrv � Ij2 dx C ı

2

Z
˝

ˇ̌r2v
ˇ̌2

dx

Cr

2

Z
˝

jrv � qj2 dx C
Z

˝

� W .rv � q/dx:

and search for a saddle-point of L .v; qI �/. Thus, after defining the function
spaces V D ˚

v 2 H 2.˝/2 ; vj� D Id
�
, Q D ˚

q 2 L2.˝/2�2
�
, and Qf D

fq 2 Q ; det q D f g, the saddle-point problem consists in looking for fu; p; �g 2
V � Qf � Q such that

L .u; pI �/ � L .u; pI �/ � L .v; qI �/ (5)

for all fv; q; �g 2 V � Qf � Q.
The addition of the biharmonic regularization is actually not necessary when the

problem admits a classical solution and when the data is smooth (which will be the
case for the numerical experiments presented in Sect. 5). However, it is incorporated
here as it helps, via a smoothing effect, the convergence of the iterative algorithm
when the data are less regular or when there is no classical solution. Note that the
additional cost of introducing this regularization corresponds to the marginal cost of
solving two Poisson problems instead of one at each iteration.
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3.2 Iterative Algorithm

In order to solve (5), we advocate an Uzawa/alternating direction iterative algorithm.
Let u0 2 V and �0 2 Q be given. Then, for n � 1, we do:

(A) Solve the constrained nonlinear problem minq2Qf
L .un�1; qI �n�1/ to obtain

pn 2 Qf . This is equivalent to the quadratic problem under constraints:

min
q2Qf

�
r

2

Z
˝

jqj2 dx �
Z

˝

Xn�1 W qdx
�

; (6)

where Xn WD rrun C �n 2 Q. This problem having no derivatives, it can
be solved point-wise a.e. x 2 ˝ (in practice on each element of a finite
element discretization). Namely, for a.e. x 2 ˝ , it corresponds to a constrained
quadratic problem: find pn.x/ 2 R

2�2 solution of

min
q2Qx

hr

2
jqj2 � Xn�1 W q

i
; (7)

where Qx D ˚
q 2 R

2�2 ; det q D q11q22 � q12q21 D f .x/
�
.

(B) Solve the linear variational problem minv2V L .v; pnI �n�1/ to obtain un 2 V.
This is equivalent to

min
v2V

�
ı

2

Z
˝

ˇ̌r2v
ˇ̌2

dx C 1 C r

2

Z
˝

jrvj2 dx �
Z

˝

rv W Yndx;

�
(8)

where Yn WD ICrpn��n�1 2 Q. This (linear) problem involves derivatives but
does not include any constraints (other than the Dirichlet boundary conditions
included in V). The first order optimality conditions corresponding to (8) lead
to a linear variational problem, of the biharmonic type: find u 2 V satisfying

ı

Z
˝

r2u � r2vdx C .1 C r/

Z
˝

ru W rvdx D
Z

˝

Yn W rvdx;

for all v 2 .H 2.˝/ \ H 1
0 .˝//2.

(C) Update the multipliers �n D �n�1 C r.run � pn/ 2 Q.
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3.3 Numerical Solution of the Constrained Nonlinear Problem

Problem (7) can be rewritten as the following constrained finite dimensional
minimization problem:

min
q2Ec

�
1

2
jqj2 � b � q

�
; (9)

with Ec D ˚
q 2 R

4 ; q1q2 � q3q4 D c.> 0/
�
. Actually, here, c D f .x/ and

b D 1
r
.Xn

11; Xn
22; Xn

12; Xn
21/. Problem (9) is solved with a Lagrangian approach and

a Newton algorithm, after a suitable change of variables to take advantage of the
structure of the problem (also encountered in incompressible finite elasticity, see,
e.g., [8]). Let us denote by S the 4 � 4 orthogonal matrix

S D

0
BB@

1=
p

2 1=
p

2 0 0

1=
p

2 �1=
p

2 0 0

0 0 1=
p

2 1=
p

2

0 0 1=
p

2 �1=
p

2

1
CCA ;

and introduce the new variables z D Sq, together with ˇ D Sb. Problem (9) is
equivalent to

min
z2Fc

�
1

2
jzj2 � ˇ � z

�
; (10)

with Fc D ˚
z 2 R

4 ; z2
1 � z2

2 � z2
3 C z2

4 D 2c.> 0/
�
. In order to solve (10), let us

introduce the associated Lagrangian functional L .z; �/ D 1
2

jzj2 � ˇ � z � �

2
.z2

1 �
z2
2 � z2

3 C z2
4 � 2c/. If y is a solution of (10), and � is a related Lagrange multiplier,

the first order optimality conditions read:

y1D ˇ1

1 � �
; y2D ˇ2

1 C �
; y3 D ˇ3

1 C �
; y4 D ˇ4

1 � �
;

ˇ2
1 C ˇ2

4

.1 � �/2
� ˇ2

2 C ˇ2
3

.1 C �/2
D 2c

It can be shown (see, e.g., [10]) that the solution of this system of equations
corresponds to the unique solution of

ˇ2
1 C ˇ2

4

.1 � �/2
� ˇ2

2 C ˇ2
3

.1 C �/2
D 2c (11)

that belongs to .�1; C1/. We then solve (11) with a Newton method with initial
guess �0 D 0.
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Remark 1 In numerical experiments, the Newton method almost always converges
to a root in .�1; C1/. When it is not the case, we arbitrarily set � D 0 and yi D
ˇi , i D 1; : : : ; 4. This procedure does not jeopardize the convergence of the outer
iterative algorithm.

3.4 Numerical Solution of the Linear Variational Problem

The first order optimality conditions related to (8) are: find unC1 2 V satisfying

ı

Z
˝

r2unC1 � r2vdx C .1 C r/

Z
˝

runC1 W rvdx D
Z

˝

Yn W rvdx; (12)

for all v 2 V0, where V0 D ˚
v 2 H 2.˝/2 ; vj� D 0

�
. Problem (12) is a classical

biharmonic problem, closely related to those encountered when solving the elliptic
Monge-Ampère equation in [2]. We observe that this problem is equivalent (if ˝

is convex or @˝ smooth enough) to the following second-order variational system:
find wnC1 2 .H 1

0 .˝//2 satisfying

ı

Z
˝

rwnC1 W rvdxC.1Cr/

Z
˝

wnC1 �vdx D
Z

˝

Yn W rvdx; 8v 2 .H 1
0 .˝//2I

(13)

followed by: find unC1 2 .H 1.˝//2, unC1
ˇ̌
@˝

D g, satisfying

Z
˝

runC1 W rvdx D
Z

˝

wnC1 � vdx; 8v 2 .H 1
0 .˝//2: (14)

The solution of both second-order elliptic problems can be obtained with many well-
known finite element techniques when ˝ � R

2.

4 Finite Element Approximation

Finite elements are a natural choice for the discretization of (3) due to the variational
flavor of this problem. A piecewise linear and globally continuous approximation of
the solution u and piecewise constant approximations of its gradient ru and of the
additional variable p over a finite element triangulation of ˝ are used here. Let
h > 0 be a discretization step, and Th a conforming triangulation of ˝ . We assume
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for the sake of the discussion that ˝ and � are exactly approximated by their finite
element discretizations. From Th, we approximate Q and Qf respectively by

Qh D
n
qh 2 L2 .˝/2�2 ; qhjT 2 R

2�2; 8T 2 Th

o

Qf h D ˚
qh 2 Qh ; det qhjT D NfT ; 8T 2 Th

�
;

where NfT is the value of the piecewise constant approximation of f on Th defined
as NfT D 1

3

P
T 3Pj

f .Pj /, Pj being the vertices of the triangle T . On the other
hand, the space V is approximated by

Vh D
n
v 2 C 0

�
˝

�2
; vjT 2 .P1/

2; 8T 2 Th; v D Idh on �
o

;

with P1 the space of the two-variables polynomials of degree � 1, and Idh a
piecewise linear interpolant of the identity function on � . Similarly, we define

V0h D
n
v 2 C 0

�
˝

�2
; vjT 2 .P1/

2; 8T 2 Th; v D 0 on �
o
.

The iterative algorithm in Sect. 3.2 can be re-written at the discrete level. The
nonlinear optimization problem (6) is then solved element-wise on each triangle
T of Th, with exactly the same method as the one presented in Sect. 3.3 (when
replacing c WD f .x/ by c WD NfT ). The discrete version of the variational problem
(12) is solved with a sequence of discrete Poisson problems that are the discrete
equivalents of (13) and (14), in a similar fashion than in [2].

Remark 2 (On the choice of low order finite element approximations) The solution
to (12) is actually a variation of the steady Stokes problem. Indeed, let us denote by
w D v � Id and suppose that w is small and f is close to 1. We have then

rw D rv � I det rv D det.I C rw/ D 1 C r � w C ".v/

where ".w/ is a (small) residual. This implies that r � w D .f � 1/ � ".w/, meaning
that the vector field w is nearly divergence free. The problem we have to solve is thus
closely related to the steady Stokes problem. Our approach, where Qh is the space
of the 2 � 2 matrix valued functions constant on each triangle T of the triangulation
Th (used to approximate .H 1.˝//2), is therefore close to the P1 �P1 approximation
of the Stokes problem, which explains the convergence orders obtained in the next
section.

5 Numerical Validation

The purpose of the numerical experiments in this section is to validate the proposed
methodology with one well-chosen example, and highlight the convergence orders
obtained for a prototypical problem.



150 A. Caboussat and R. Glowinski

Let us consider a validation case, for which (one of) the solution is the identity
mapping u.x/ D x. Thus, for the unit disc ˝ D ˚

x 2 R
2 ; jjxjj2 < 1

�
, we consider:

find u W ˝ ! R
2 satisfying

�
det ru D 1 in ˝

u.x/ D x on �;
(15)

The set of numerical parameters is given by r D 10�6 and ı D 10�6. The
tolerance between successive iterates uk and ukC1 for the stopping criterion is set to
" D 10�8. The tolerance for the Newton method for local nonlinear problems is set
to 10�5 on the residual. The mesh is an unstructured Delaunay discretization of ˝ .
The advocated numerical algorithm converges in less than 20 iterations (actually
between 17 and 19 iterations depending on the mesh size). Figure 1 visualizes
the solution on one given mesh (with h ' 0:0161). The most natural solution
u.x/ D x is correctly approximated, and the radial invariance is appropriately
tracked even though the mesh does not guarantee such a symmetry. The determinant
of ph is exactly equal to one on each element (up to machine precision), while the
determinant of ruh is nearly everywhere equal to one, implying that the constraint
ruh D ph is weakly satisfied.

Fig. 1 Validation with the identity mapping. Visualization of the approximated solution obtained
with the augmented Lagrangian approach after 19 steps (h ' 0:0161). Vector field uh (top left),
determinant det ph (top right), determinant det ruh (bottom left), and (bottom right) convergence
of the error in L2 norm, for the unit disc and the unit square
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Numerical results are similar when considering the unit square ˝ D .0; 1/2,
with either a structured or an unstructured mesh. Figure 1 (bottom right) illustrates
the convergence of the error between the numerical solution uh and the exact
solution u D Id, for the unit disc and the unit square (with both types of meshes).
All configurations lead to the convergence with order approximately O.h/ of the
numerical approximation towards the exact solution.

Future work will include more complicated test cases, including problems
without solutions, non-convex domains, and the generalization to less regular
Dirichlet boundary conditions.
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