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Abstract The subject of this paper is the numerical solution of the problem of
dynamic linear elasticity by several time-discretization techniques based on the
application of the discontinuous Galerkin (DG) method in space. In the formulation
of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of
the discretization of the elasticity term and the interior and boundary penalty are
used. The DG space discretization is combined with the backward-Euler, second-
order backward-difference formula and DG time discretization. Finally, we present
some test problems.

1 Introduction

This paper is concerned with the application of the discontinuous Galerkin (DG)
method to the solution of dynamic linear elasticity problem. (For a survey of DG
techniques, see, e.g., [2,4].) The DG space discretization is combined with the time
discretization by the backward Euler (BEDG), second-order BDF (BDFDG) or DG
scheme in time (STDG).

In [3], the method using the DG technique in time, but conforming finite elements
in space is analyzed in the case of a linear wave equation. Here we are not interested
in the computation of wave propagation in an elastic body, but our future goal will
be to apply the developed method, which is different from the scheme analyzed in
[3], to the solution of the interaction of a fluid and an elastic body.

We describe the mentioned methods and apply them to a test problem in order
to compare their quality. Numerical experiments show that the STDG method is
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the most promising. Our further work will be oriented to a deeper analysis of the
developed method and its applications to fluid-structure interaction (FSI) problems.

2 Formulation of the Dynamic Elasticity Problem

We consider an elastic body represented by a bounded domain ˝ � R
2 with

boundary formed by two disjoint parts: @˝ D �D [ �N . By u D u.t; x/ W
Œ0; T � � ˝ ! R

2 we denote the displacement of the body. The symbol ru D�
@ui =@xj

�2

i;j D1
denotes the gradient of the function u. The dynamic elasticity

problem is defined as follows: we seek for the displacement function u such that

�
@2u
@t2

C cM �
@u
@t

� div � .u/ � cK

@

@t
div � .u/ D f in .0; T / � ˝; (1)

u D uD in .0; T / � �D; � .u/ � n D gN in .0; T / � �N ; (2)

u.0; x/ D u0.x/;
@u
@t

.0; x/ D z0.x/; in ˝: (3)

Here f W .0; T / � ˝ ! R
2 is the outer volume force, uD W .0; T / � �D ! R

2 is
the boundary displacement, gN W .0; T / � �N ! R

2 is the boundary normal stress,
u0 W ˝ ! R

2 is the initial displacement, z0 W ˝ ! R
2 is the initial displacement

velocity, T > 0 is the time interval length and � > 0 is the constant material density.
The expressions cM � @u

@t
and cK

@
@t

div � .u/ with cM ; cK � 0 represent structural and
viscous damping terms. We assume that the material is isotropic and homogeneous
and that the stress tensor � .u/ depends on the infinitesimal strain tensor e.u/ by
the relation

� .u/ WD � tr.e.u//I C 2�e.u/; e.u/ WD 1

2

�ru C ruT
�

: (4)

We assume that the Lamè parameters � and � are constant. For most solid materials
it holds that �; � > 0. Finally, tr.e.u// denotes the trace of the tensor e.u/.

3 Discretization

In order to introduce the discrete problem we rewrite problem (1)–(3) as a couple of
first-order equations in time: find functions u and z W Œ0; T � � ˝ ! R

2 such that

%
@z
@t

C cM %z � div � .u/ � cKdiv � .z/ D f ; (5)

@u
@t

� z D 0 in .0; T / � ˝; (6)
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u D uD in .0; T / � �D; � .u/ � n D gN in .0; T / � �N ; (7)

u.0; x/ D u0.x/; z.0; x/ D z0.x/ in ˝: (8)

3.1 Notation

Let us assume that the computational domain ˝ is polygonal. By Th we denote a
triangulation of the domain ˝ with triangular elements K 2 Th having standard
properties from the finite element method, cf. [1].

We say that the elements K , K 0 2 Th are neighbours, if the set @K \ @K 0 has
positive 1-dimensional measure. We say that � � @K is a face of K , if it is a
maximal connected open subset of either @K \@K 0, where K 0 is a neighbour of K or
of @K \ �D or of @K \ �N . By Fh we denote the system of all faces of all elements
K 2 Th. Further, we define the set of all boundary, “Dirichlet”, “Neumann” and
inner faces by

FB
h D f� 2 FhI � � @˝g ; FD

h D f� 2 FhI � � �Dg ;

FN
h D f� 2 FhI � � �N g ; F I

h D FhnFB
h ;

respectively. We put F ID
h D F I

h [ FD
h . For each � 2 Fh we define a unit normal

vector n� . We assume that for � 2 FB
h the normal n� has the same orientation as

the outer normal to @˝ . For each � 2 F I
h the orientation of n� is arbitrary, but

fixed.
We define the finite dimensional space

Shp D ˚
v 2 L2.˝/I vjK 2 P p.K/; K 2 Th

�
;

where p � 1 is an integer and P p.K/ denotes the space of all polynomials on K of
degree � p. It is easy to show that dim Shp D NTh

.p C 1/.p C 2/=2, where NTh
is

the number of elements in Th.
Because of the time discretization we introduce a uniform partition 0 D t0 <

� � � < tM D T of the time interval Œ0; T � with a constant time step � D tm � tm�1,
m D 1; : : : ; M . Let p � 1, q � 0 be integers. By S

�q
hp we denote the space of

piecewise polynomial functions

S
�q
hp D

(

v 2 L2..0; T / � ˝/I vjIm D
qX

iD0

t i 'i with 'i 2 Shp; m D 1; : : : ; M

)

;

where Im D .tm�1; tm/, m D 1; : : : ; M . The space S
�q
hp consists of all polynomials

of degree less or equal to q in time with coefficients in Shp. As we see, functions
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from S
�q
hp are, in general, discontinuous on faces � 2 F I and at time instants

tm; m D 1; : : : ; M � 1. The dimension of the space S
�q
hp equals M.q C 1/ dim Shp.

For each � 2 F I
h there exist two neighbouring elements K

.L/
� ; K

.R/
� 2 Th such

that � � @K
.L/
� \@K

.R/
� . We use the convention that n� is the outer normal to @K

.L/
�

and the inner normal to @K
.R/
� . For v 2 ŒShp�2 or ŒS

�q
hp �2 we introduce the following

notation:

vj.L/
� D the trace of vj

K
.L/
�

on �; vj.R/
� D the trace of vj

K
.R/
�

on �;

hvi� D 1
2

�
vj.L/

� C vj.R/
�

�
; Œv�� D vj.L/

� � vj.R/
� ;

where � 2 F I
h . For � 2 FB

h there exists an element K
.L/
� 2 Th such that � �

K
.L/
� \ @˝ . Then for v 2 ŒShp�2 we introduce the following notation:

vj.L/
� D the trace of vj

K
.L/
�

on �; hvi� D Œv�� D vj.L/
� :

In case that Œ��� , h�i� and n� appear in integrals
R

�
: : : dS , � 2 Fh, we omit

the subscript � and simply write Œ��, h�i and n, respectively.
Finally, by T W S we shall denote the tensor inner product, defined by

T W S D
2X

iD1

2X

j D1

TijSij D tr
�
T T S

�
; S; T 2 R

2�2:

3.2 Space Discretization

We begin with the space discretization of the dynamic elasticity problem. An
approximate solution of problem (5)–(8), i.e., the approximations of the functions
u; z will be sought in the space V WD ŒShp�2 in the finite-difference based schemes
or V WD ŒS

�q
hp �2 in the space-time discontinuous Galerkin method.

In the first step, we multiply Eqs. (5)–(6) by test functions v and w 2 V ,
respectively, integrate the resulting equations over K 2 Th, sum the resulting
equations over all K 2 Th and use the following relations. Using Green’s theorem,
we obtain the equality

�
X

K2Th

Z

K

div � .u/ � v dx D
X

K2Th

Z

K

� .u/ W e.v/ dx

�
X

� 2F ID
h

Z

�

.h� .u/i � n/ � Œv� dS �
X

� 2FN
h

Z

�

gN � v dS:
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The interior and boundary penalty methods incorporate the fact that for the exact
solution we have Œu�� D 0 for each � 2 F I

h and u satisfies the Dirichlet condition
in (7). Hence,

X

� 2F ID
h

Z

�

CW

h�

Œu� � Œv� dS D
X

� 2FD
h

Z

�

CW

h�

uD � v dS

for each v 2 V , where CW > 0 is a given parameter and h� represents the

“magnitude” of � as, for example, the length of � of h� D
�
h

.L/
K�

C h
.R/
K�

�
=2.

Finally, for the exact solution u and arbitrary v 2 V we have

X

� 2F ID
h

Z

�

.h� .v/i � n/ � Œu� dS D
X

� 2FD
h

Z

�

.� .v/ � n/ � uD dS:

We now define the forms ah.u; v/ W V � V ! R, `s
h.v/ W V ! R and `e

h.v/ W
V ! R by

ah.u; v/ D
X

K2Th

Z

K

� .u/ W e.v/ dx �
X

� 2F ID

Z

�

.h� .u/i � n/ � Œv� dS (9)

� �
X

� 2F ID

Z

�

.h� .v/i � n/ � Œu� dS C
X

� 2F ID

Z

�

CW

h�

Œu� � Œv� dS;

`s
h.v/ D

X

K2Th

Z

K

f � v dx; (10)

`e
h.v/ D

X

� 2FN

Z

�

gN � v dS � �
X

� 2FD

Z

�

.� .v/ � n/ � uD dS (11)

C
X

� 2FD

Z

�

CW

h�

uD � v dS:

The parameter � defines the symmetric (� D 1), incomplete (� D 0) and
nonsymmetric (� D �1) variant of the interior penalty DG method.

Application of these formulas yields the system

�

�
@zh

@t
; vh

�

˝

C cM � .zh; vh/˝ C ah.uh; vh/ C cKah.zh; vh/ (12)

D `s
h.vh/ C `e

h.vh/ C cK`
e;dt
h .vh/ 8vh 2 V ;

�
@uh

@t
; wh

�

˝

� .zh; wh/˝ D 0 8wh 2 V : (13)
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The term `e;dt
h .vh/ is defined similarly as `e

h.vh/ with the exception that the functions
uD , gN are replaced with @uD=@t , @gN =@t , respectively. By .�; �/˝ we denote the
ŒL2.˝/�2-scalar product.

3.3 Time Discretization

We consider two schemes based on finite-difference approximations in time. The
process of the derivation of the full discretization is well-known and hence we shall
only present the finite-difference approximations here. The backward-Euler (BE)
scheme is based on the approximation

@u
@t

.t/ � u.t/ � u.t � �/

�
:

The second finite-difference scheme is based on the second-order backward-
difference formula

@u
@t

.t/ � 3u.t/ � 4u.t � �/ C u.t � 2�/

2�
:

In order to define the space-time discontinuous Galerkin method, let us introduce
the one-sided limits and the jump of a function v 2 ŒS

pq
h� �2 at time tm:

vC
m D lim

s!0C
v.tm C s/; v�

m D lim
s!0C

v.tm � s/; fvgm D vC
m � v�

m: (14)

The approximate space-time DG solution of problem (5)–(8) is defined as a
couple uh� ; zh� 2 ŒS

pq
h� �2 satisfying

Z

Im

�
�

�
@zh�

@t
; vh�

�

˝

C cM � .zh� ; vh� /˝ C ah.uh� ; vh� / (15)

C cKah.zh� ; vh� /
�

dt C .fzh�gm�1; vh� .tm�1C//˝

D
Z

Im

�
`s

h.vh� / C `e
h.vh� / C cK`e;dt

h .vh� /
�

dt 8vh� 2 ŒS
sq
h� �2;

Z

Im

��
@uh�

@t
; wh�

�

˝

� .zh� ; wh� /˝

�
dt C .fuh�gm�1; wh� .tm�1C//˝ D 0

8wh� 2 ŒS
sq
h� �2; m D 1; : : : ; M:

The initial states uh.0�/; zh.0�/ 2 ŒShp�2 are defined by .uh.0�/; vh/˝ D
.u0; vh/˝ , .zh.0�/; vh/˝ D .z0; vh/˝ for all vh 2 ŒShp�2.
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In all three cases, the resulting linear systems are solved using the direct solver
UMFPACK.

4 Numerical Experiments

Here we present numerical results for a simple model problem solved by the
STDG method with � D �1 (nonsymmetric version of the space discretization).
We assume that the domain ˝ is represented by a rectangular elastic material,
which is 2 cm long and 2 mm wide. We consider the following material properties:
density % D 1;100 kg.m�3, Young’s modulus E D 105 kg.m�1.s�2, Poisson’s ratio
	 D 0:4. The Lamè parameters � and � can be computed from E and 	 by relations
� D E	

.1C	/.1�2	/
, � D E

2.1C	/
. These parameters correspond to a very soft, rubber-

like material. The material is exposed to a horizontal surface force in the direction
of the negative part of the x1-axis for a short period of time. The lower left corner
of the domain is at the point Œ�0:001; �0:01� and the upper right corner is at the
point Œ0:001; 0:01�. On the fixed part of the boundary, where x2 D �0:01 and which
is denoted by �D , we prescribe the Dirichlet boundary condition (2) with uD D 0.
The Neumann boundary condition (2) is prescribed on the rest of the boundary @˝ ,
denoted by �N , where we put gN D .�20; 0/T for t < 0:02 s, x1 D 0:001 and
x2 > 0:005, and gN D 0 otherwise. Finally, we set T D 0:5 s, cM D 0:1 s�1 and
cK D 0.

Figure 1 shows the model scheme and the time evolution of the computed dis-
placement at several time instants. Figure 2 shows the evolution of the displacement
at the fixed spatial point Œ�0:001; 0:01� (upper left corner) obtained by the three
presented numerical methods. Here STDGM 1 denotes the space-time discontinuous
Galerkin method with the time polynomial degree q D 1. For all the computations
the space polynomial degree p was set to 1, i.e. linear elements in space were used.

Fig. 1 Schema of the model problem (left) and the visualization of the evolution of the displace-
ment function u at the time instants t D 0, 0:01, 0:02, 0:03 s
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Fig. 2 The evolution of the displacement function u at the fixed point Œ�0:001; 0:01�

Conclusion
We have presented several different discretizations for the problem of
dynamic linear elasticity based on the discontinuous Galerkin semi-
discretization in space. A special attention was paid to the space-time
discontinuous Galerkin method, which is based on the piecewise polynomial
approximation of the sought function both in space and in time. The presented
numerical example shows promising convergence properties of this method.
For a given time step � the error of the numerical solution obtained by the
STDG method with q D 1 is lower than the error of the solution obtained
by the method based on the second-order BDF method, which is of equal
theoretical order of convergence. On the other hand, the STDG method is

(continued)
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more expensive in terms of the computational time. This is caused by a larger
system of linear algebraic equations, which has to be solved at each time level,
and by the quadrature rules, which have to be applied not only in space but
also in time.

The future work will be focused towards the analysis of the convergence
of the STDG method and its comparison with other methods on more
sophisticated test problems.
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