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Abstract The approximation of the equations of linear elasticity by so-called
weakly symmetric mixed methods is considered. It is shown that the technique
of mesh dependent norms yields a natural and elementary error analysis of the
methods. The technique is applied to several families of methods.

1 Introduction

During the last decade the theory of mixed finite element methods have been recast
with the aid of differential geometry, cf. [6]. This was first done for methods for
scalar second order elliptic equation, i.e., the Raviart-Thomas-Nédélec [29, 30] and
the Brezzi-Douglas-Marini-Duran-Fortin [14, 15] families. Lately, the theory has
been extended to methods for linear elasticity [17]. Both methods with a symmetric
approximation for the stress tensor [5, 19, 24, 33] and methods where the symmetry
is imposed weakly [1, 4, 6, 18, 20, 21, 31], have been analyzed.

The purpose of this paper is to highlight an alternative and more elementary way
of analysis, which, nevertheless, gives optimal error estimates. The approach is that
of using mesh dependent norms, first used by BabuLska, Osborn and Pitkäranta [11].
In this, the norm used for the “stress” variable is the L2-norm, which has the physical
meaning of energy. For the “displacement” variable the broken H 1-norm (now well-
known from Discontinuous Galerkin Methods) is used. The stability of the methods
follows directly from local scaling arguments. The second ingredient is the so-called
“equilibrium condition,” which the methods fulfill. Using these, the quasi-optimal
error estimate for the stress follows by the classical saddle point theory.

Our exposition follows the talk at the conference, and we consider mixed
methods for weakly symmetric elasticity elements. We write down the continuous
form of the problem, for which we first prove the uniqueness. Then we prove
the stability in the natural energy norms. Then we turn to the mixed method, and
we follow exactly the same approach to show the uniqueness and stability of the
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method. In this we use only elementary finite element techniques, but nevertheless,
we obtain the optimal error estimates.

For the displacement the analysis yields a superconvergence result for the
distance between the L2 projection onto the discrete space and the finite element
solution. This is utilized to postprocess the displacement yielding an approximation
of two polynomial degrees higher, with an optimal convergence rate.

2 The Equations of Elasticity

We consider the equations of linear elasticity for which we, for simplicity, assume
a unit Young’s modulus E D 1, and a vanishing Poisson ratio � D 0. The unknown
are the symmetric stress tensor � 2 R

d�d ; and the displacement u 2 R
d .

The displacement gradient is the sum of its symmetric and skew-symmetric parts,
the strain and the rotation tensors:

ru D ".u/ C !.u/

with

".u/ D 1

2
.ru C ruT /

and

!.u/ D 1

2
.ru � ruT /:

Note that symmetric and skew-symmetric tensors are orthogonal. The linear
elasticity problem in mixed form is then [23]: Find � and u such that

� � ".u/ D 0;

div � C f D 0 in ˝; (1)

u D 0 on @˝:

Mixed finite elements based on this formulation are rather complicated to construct,
cf. [5,19,24,33]. The simplest elements are composite, and the requirement of pure
polynomials lead to elements of high degree [2, 7].

It is, however, possible to design simpler elements if one treats the symmetry of
the stress tensor as an independent equation [4,18,31]. Mechanically, this is natural,
since the symmetry of the stress tensor is the condition of moment equilibrium [23].
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With one more equation, an additional unknown is needed, and this is the skew-
symmetric rotation, which we denote by �. The system of equations is then

� C � � ru D 0;

� � �T D 0; (2)

div � C f D 0 in ˝;

u D 0 on @˝:

Comparing (1) and (2) we see that they are equivalent with � D !.u/.
The weak formulation is: Find .�; �; u/ 2 ŒL2.˝/�d�d �ŒL2.˝/�d�d

skw �ŒH 1
0 .˝/�d

such that

.�; �/ C .�; �/ � .ru; �/ D 0 8� 2 ŒL2.˝/�d�d

.�; �/ D 0 8� 2 ŒL2.˝/�d�d
skw (3)

.�; rv/ D .f; v/ 8v 2 ŒH 1
0 .˝/�d :

The first thing to check, is the uniqueness of solution to these equations.

Theorem 1 The solution to (3) is unique.

Proof We have to prove that f D 0 implies u D 0; � D 0 and � D 0. To this end,
we first choose � D � � �T in the second equation. The orthogonality of symmetric
and skew-symmetric tensors then yields

0 D .�; �/ D .�; � � �T / D 1

2
k� � �T k2

0

implying

� D �T :

Next, choosing � D � in the first equation and v D u in the third, we get (as f D 0),
again using the orthogonality,

k�k2
0 � .".u/; �/ D 0 and .�; ru/ D .�; ".u// D 0:

Hence

� D 0:

The first equation now reduces to

.�; �/ � .ru; �/ D 0;
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the symmetric and skew-symmetric parts of which are

.�sym; ".u// D 0 and .� � !.u/; �skw/ D 0:

Choosing �sym D ".u/ and �skw D � � !.u/ then yields

".u/ D 0 and � � !.u/ D 0:

Hence, the deflection u is a rigid displacement, and since it vanishes on the
boundary, it vanishes in the whole of the domain. From above, it then follows that
also the rotation � vanishes.

For the analysis we need stronger results, i.e., stability in proper norms, and these
we will choose as energy type norms.

Theorem 2 There exists a positive constant C such that

k�k0 C k".u/k0 C k� � !.u/k0 � C kf k� (4)

and

kuk1 C k�k0 � C kf k�1; (5)

with

kf k� D sup
v2ŒH 1

0 .˝/�d

.f; v/

k".v/k0

:

Proof Define the bilinear form

B.�; �; uI �; �; v/ D .�; �/ � .� � ru; �/ � .� � rv; �/

so that the variational form is

B.�; �; uI �; �; v/C.f; v/ D 0 8.�; �; v/ 2 ŒL2.˝/�d�d �ŒL2.˝/�d�d
skw �ŒH 1

0 .˝/�d :

It now holds

B.�; �; uI �; ��; �u/ D k�k2
0:

Define

� D � � ru:
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By the orthogonality .� � !.u/; ".u// D 0 we get

k�k2
0 D k� � !.u/k2

0 C k".u/k2
0

and

B.�; �; u; �; 0; 0/ D .�; �/ C k� � !.u/k2
0 C k".u/k2

0:

Since jabj � .a2 C b2/=2; a; b 2 R, Schwarz inequality gives

.�; �/ C k� � !.u/k2
0 C k".u/k2

0 � �k�k0k�k0 C k� � !.u/k2
0 C k".u/k2

0

� �1

2
k�k2

0 � 1

2
k�k2

0 C k� � !.u/k2
0 C k".u/k2

0

D �1

2
k�k2

0 C 1

2
.k� � !.u/k2

0 C k".u/k2
0/:

With .'; �; v/ D .� C �; ��; �u/ we now get

B.�; �; uI '; �; v/ � 1

2

�k�k2
0 C k� � !.u/k2

0 C k".u/k2
0

�
:

Hence, it holds

k�k2
0 C k� � !.u/k2

0 C k".u/k2
0 � 2j.f; v/j � 2kf k�k".v/k0 D 2kf k�k".u/k0:

The arithmetic-geometric mean inequality gives

2kf k�k".u/k0 � 2kf k2� C 1

2
k".u/k2

0:

Combining the two inequalities above gives

k�k2
0 C k� � !.u/k2

0 C 1

2
k".u/k2

0 � 2kf k2�;

and the stability estimate (4) follows. Korn’s inequality and the standard definition
of k�k�1 then gives (5).

Remark 1 In the theorem we proved that the stability of the bilinear form B follows
from the L2-ellipticity of the bilinear form .�; �/ and the “inf-sup” condition (which
we also verified)

sup
�2ŒL2.˝/�d�d

.�; � � rv/

k�k0
� C.k��!.v/k0Ck".v/k0/ 8.�; v/ 2 ŒL2.˝/�d�d

skw �ŒH 1
0 .˝/�d ;

i.e., the main result of the BabuLska-Brezzi [8–10, 13] theory applied for this
particular problem.
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3 Mixed Finite Element Methods

The mixed method is not directly based on the variational formulation of the
previous section. Instead, a formulation in which the integration by parts

.rv; �/ D �.div �; u/ C h� n; vi@˝

is used. The stress is sought in

H.div W˝/ D f � j � 2 ŒL2.˝/�d�d ; div � 2 ŒL2.˝/�d g

and the displacement in ŒL2.˝/�d . The Dirichlet boundary condition for the
displacement now becomes a natural boundary condition, and the mixed formulation
is then: Find .�h; �h; uh/ 2 Sh � Kh � Vh � H.div W˝/ � ŒL2.˝/�d�d

skw � ŒL2.˝/�d

such that

.�h; �/ C .�h; �/ C .div �; uh/ D 0 8� 2 Sh;

.�h; �/ D 0 8� 2 Kh; (6)

.div �h; v/ C .f; v/ D 0 8v 2 Vh:

By defining

b.� I v; �/ D .div �; v/ C .�; �/:

the problem in saddle point form is: Find .�h; �h; uh/ 2 Sh�Kh�Vh � H.div W˝/�
ŒL2.˝/�d�d

skw � ŒL2.˝/�d such that

.�h; �/ C b.� I uh; �h/ D 0 8� 2 Sh;

b.�hI v; �/ C .f; v/ D 0 8.v; �/ 2 Vh � Kh:

By the BabuLska-Brezzi theory the stability is a consequence of an “inf-sup”
condition

sup
�2Sh

b.� I v; �/

k�k � C kv; �k 8.v; �/ 2 Vh � Kh

for some norms. The traditional approach is to use the H.div W˝/ norm for the
stress and the L2 norm for both the displacement and rotation. With this choice, a
direct application of the BabuLska-Brezzi theory does not give optimal error estimate.
Furthermore, when posing the stability in these norms, Korn’s inequality has been
used, and hence the discrete stability cannot be proved by local scaling arguments.
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First in the next section we will consider specific finite element spaces. Now we
will only assume that they are piecewise polynomials on the finite element mesh Ch.
The collection of edges/faces on the mesh is denoted by �h.

In our approach we proceed in analogy to (4). The norm chosen for the stress is
a mesh dependent L2 norm

k�k2
0;h D k�k2

0 C
X

E2�h

hEk� nk2
0;E :

This is paired with the broken norm:

kv; �k2
h D

X

K2Ch

k".v/k2
0;K C

X

E2�h

h�1
E kŒŒv��k2

0;E

C
X

K2Ch

k� � !.v/k2
0;K:

Here ŒŒv�� denotes the jump of v when E is in the interior of the domain, and the value
of v when E � @˝ .

Lemma 1 It holds

jb.� I v; �/j � k�k0;hkv; �kh 8.�; �; v/ 2 Sh � Kh � Vh:

Proof Integrating by parts on each element and using Schwarz inequality yields

b.� I v; �/ D .div �; v/ C .�; �/

D
X

K2Ch

.div �; v/K C .�; �/

D �
X

K2Ch

.�; rv/K C
X

E2�h

h� n; ŒŒv��iE C .�; �/

D �
X

K2Ch

.�; ".v//K C
X

E2�h

h� n; ŒŒv��iE C
X

K2Ch

.�; � � !.v//K

�
X

K2Ch

k�k0;Kk".v/k0;K C
X

E2�h

k� nk0;EkŒŒv��k0;E C
X

K2Ch

k�k0;Kk� � !.v/k0;K

� k�k0;hkv; �kh:

The stability condition we require for the method is hence

sup
�2Sh

b.� I v; �/

k�k0;h

� C kv; �kh 8.v; �/ 2 Vh � Kh: (7)
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With the broken H 1 norm

kvk2
1;h D

X

K2Ch

krvk2
0;K C

X

E2�h

h�1
E kŒŒv��k2

0;E ; (8)

the following discrete Korn’s inequality holds in the subspace Vh [12, 28]:

X

K2Ch

k".v/k2
0;K C

X

E2�h

h�1
E kŒŒv��k2

0;E � C kvk2
1;h: (9)

The triangle inequality then gives

kv; �kh � C.kvk1;h C k�k0/: (10)

The stability condition can thus be written

sup
�2Sh

b.� I v; �/

k�k0;h

� C.kvk1;h C k�k0/ 8.v; �/ 2 Vh � Kh: (11)

In addition to the stability condition the discrete spaces have to satisfy the
equilibrium condition.

div Sh � Vh: (12)

For the L2 projection Ph W ŒL2.˝/�d ! Vh, it then holds

.div �; v � Phv/ D 0; 8� 2 Sh; 8v 2 ŒL2.˝/�d : (13)

We then have the following error estimate.

Theorem 3 Suppose that the stability condition (11) and the equilibrium condition
(12) are valid. Then there exists a positive constant C such that

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � C
�

inf
�2Sh

k� � �hk0;h C inf
�2Kh

k� � �k0

�
:

Proof Define the bilinear form

B.�; �; uI �; �; v/ D .�; �/ C b.� I �; u/ C b.� I �; v/:

Let .�; �/ 2 Sh � Kh. The stability implies that exits .'; 	; z/ 2 Sh � Kh � Vh, with

k'k0;h C k	k0 C kzk1;h � C;

such that

k�h � �k0;h C k�h � �k0 C kuh � Phuk1;h � B.�h � �; �h � �; uh � PhuI '; 	; z/:
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The discrete and exact solutions satisfy

B.�h � �; �h � �; uh � PhuI '; 	; z/ D �.f; z/ � B.�; �; PhuI '; 	; z/

D B.�; �; uI '; 	; z/ � B.�; �; PhuI '; 	; z/

D B.� � �; � � �; u � PhuI '; 	; z/

D .� � �; '/ C b.'I � � �; u � Phu/ C b.� � � I 	; z/

D .� � �; '/ C .'I � � �/ C .div '; u � Phu/ C b.� � � I 	; z/

D .� � �; '/ C .'I � � �/ C b.� � � I 	; z/;

where we in the last step used (13). By the Schwarz inequality we have

.� � �; '/ C .'; � � �/ C b.� � � I 	; z/ � .k� � �k0;h C k� � �k0/k'k0

Ck� � �k0;h.k	k0 C kzk1;h/;

and by combining the above inequalities, the assertion is proved.

4 Finite Element Families

In this section we discuss concrete families of elements. In all of them the elements
are triangles or tetrahedra. We start with the one introduced by us in 1988.

The Stenberg family [31].
We will partly use different notation as in [31]. For K 2 Ch we define the bubble

function bK 2 PdC1.K/ by

bK D
dY

iD0


i ;

where 
0; : : : ; 
d ; are the barycentric coordinates on K . For a vector valued function
z in R

3 we define curl z D r � z and for a scalar function z we let

curl z D .
@z

@x2

; � @z

@x1

/:

Define

SkCd�1.K/ D f � D f�ijg; i; j D 1; : : : ; d j .�i1; : : : ; �id/ D curl .wi bK/

wi 2 ŒPk�1.K/�3 for d D 3; and wi 2 Pk�1.K/ for d D 2; i D 1; : : : ; d g:
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Here the index k C d � 1 is equal to the polynomial degree of the space (the degree
of the bubble bK is d C 1, wi is of degree k � 1, and taking the curl lowers the
degree by one). Note that these “stabilizing” degrees of freedom satisfy

div � D 0 on K; and � n D 0 on @K; 8� 2 SkCd�1.K/: (14)

The family of [31] is then defined for the degree k � 2 by

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d C SkCd�1.K/ 8K 2 Ch g;
Kh D f v 2 ŒL2.˝/�d�d

skw j vjK 2 ŒPk.K/�dskw 8K 2 Ch g; (15)

Vh D f v 2 ŒL2.˝/�d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g:

Note that the stress space consists of d copies of the BDM/BDDF space augmented
by the space SkCd�1.K/ on each element.

We now in analogy with the uniqueness proof of Theorem 1, prove the unique-
ness of the finite element solution.

Theorem 4 The solution of (6) with the finite element spaces (15) is unique.

Proof The uniqueness of the stress �h is immediate as for the continuous case.
Hence, as in the proof of Theorem 1 we have to verify that the condition

b.� I uh; �h/ D 0 8� 2 Sh

first implies that uh is a rigid body motion and that �h D !.uh/, and then by the
boundary conditions that both of them vanish. To this end, let K be arbitrary and
choose � such that � D 0 in ˝ n K and � jK 2 SkCd�1.K/. Due to (14) it then holds

b.� I uh; �h/ D .�h; �/ C .div �; uh/ D .�h; �/K:

We proceed slightly differently in two and three dimensions. For d D 2 let

�h D
�

0 z
�z 0

�
:

We then choose

.�i1; �i2/ D curl .
@z

@xi

bK/:

Integrating by parts, this gives

.�h; �/K D
Z

K

� � @

@x1

.bK

@z

@x1

/ � @

@x2

.bK

@z

@x2

/
�
z D

Z

K

bK jrzj2:
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The condition b.� I uh; �h/ D 0 then implies that z equals a constant. Hence, on each
K the rotation is constant �K . Let R.K/ be the space of rigid body motions on K .
For each K there is a rK 2 R.K/ such that

�K D !.rK/ D rrK: (16)

For d D 3 we choose

.�i1; �i2; �i3/ D curl.curl �i
h bK/;

where �i
h is the i -th row of �h. Integrating by parts gives

0 D .�; �h/K D
3X

iD1

Z

K

bK jcurl �i
hj2;

showing that curl �i
h D 0 on K . Since �h is skew-symmetric, this implies that it is

constant. Hence, we conclude that also for d D 3 there is a rK 2 R.K/ such that
(16) holds.

In the sequel we use the subspace of Sh consisting of the Raviart-Thomas-
Nédélec spaces

SRTN
h D f � 2 H.div W˝/ j � jK 2 ŒPk�1.K/d ˚ z QPk�1.K/�d 8K 2 Ch g

where QPk�1.K/ denotes homogeneous polynomials of degree k � 1.
The degrees of freedom for this spaces are

h� n; ziE 8z 2 Pk�1.E/d ; E � @K; (17)

.�; z/K 8z 2 ŒPk�2.K/�d�d ; (18)

for each K 2 Ch.
Now choose � 2 SRTN

h � Sh such that � D 0 in ˝ n K . Then it holds

b.� I uh; �h/ D .�h; �/ C .div �; uh/ D .�h; �/K C .div �; uh/K

D .�h; �/K � .�; ruh/K

D .rrK; �/K � .�; ruh/K

D .r.rK � uh/; �/K:

Now r.rK � uh/jK 2 ŒPk�2.K/�d�d , and hence the degrees of freedom (18) show
that the condition b.� I uh; �h/ D 0 implies that

r.rK � uh/ D 0: (19)
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The symmetric and skew-symmetric parts of this are

".uh/ D 0 and !.uh/ D !.rK/ D �hjK:

Hence uhjK is a rigid body motion and there is a constant vector cK such that

uhjK D rK C cK:

For uh and �h it thus holds

b.� I uh; �h/ D
X

E2�h

h� n; ŒŒuh��iE:

In the condition b.� I uh; �h/ D 0 8� 2 Sh, the degrees of freedom (17) for � show
that the jump ŒŒuh�� vanishes along interior edges, i.e. uh is continuous and a global
rigid body motion, and �h D !.uh/:

Finally, since, ŒŒuh�� D uh on the boundary @˝ , the degrees of freedom (17) show
that uh D 0, and hence also �h D 0:

We note that in the uniqueness proof above, we have used local arguments
element by element, and edge by edge. The stability can thus be built in the same
manner and the norms and the bilinear form scales in the same way. Hence, we have
essentially already proved the stability estimate.

Theorem 5 There is a positive constant C such that

sup
�2Sh

b.� I v; �/

k�k0;h

� C kv; �kh 8.v; �/ 2 Vh � Kh: (20)

Theorem 3 then gives the following error estimate.

Theorem 6 There is a positive constant C such that

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � ChkC1
�k�kkC1 C k�kkC1

�
:

Let us continue by discussing this family. First, for an implementation in mind, the
sum of local spaces in the definition of the stress should be replaced by a direct sum.
To this end, we define

OSkCd�1.K/ D f � D f�ijg; i; j D 1; : : : ; d j .�i1; : : : ; �id/ D curl .wi bK/;

wi 2 Œ OPk�1.K/�3 for dD3; and wi 2 OPk�1.K/ for dD2; iD1; : : :; d g;

with

OPk�1.K/ D f v 2 Pk�1.K/ j .v; w/K D 0 8w 2 Pk�n.K/ g:
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Since all degrees of freedom in SkCd�1.K/ n OSkCd�1.K/ are contained in
ŒPk.K/�d�d , the stress space is

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d ˚ OSkCd�1.K/ 8K 2 Ch g:

Next, we note from the proof that in the space OSkCd�1.K/ there are more degrees of
freedom that what is used to get the stability. We also note that this space contains
polynomials of degree k C 1 for d D 2, and k C 2 for d D 3, and these do not
contribute to the accuracy.

These drawbacks are fixed in the
The Gopalakrishnan-Guzmán family [22].

In two dimensions the family is obtained from our family by restricting the
stabilizing degrees of freedom to those which are actually needed. From the proof
above, we see that in R

2 the additional degrees of freedom are

OSkC1.K/Df �Df�ijg; i; j D 1; 2 j .�i1; �i2/ D curl .
@z

@xi

bK/ i D 1; 2; z 2 QPk.K/ g:

In three dimension they were able to reduce the degree of the additional degrees of
freedom with one. They define the matrix bubble by

BK D
3X

lD0


l�3
l�2
l�1.r
l/
t r
l ;

where the index is modulo 4, and r
l is considered as a row vector. In [16] it is
shown that this is symmetric and positively definite, and it can then be used as a
weight for an inner product on tensors. Defining the curl of a tensor as the tensor in
which each row is the curl of the corresponding row in the original tensor, the space
is defined as

OSkC1.K/ D f � 2 ŒL2.K/�d�d j � D curl .curl .�/BK/ � 2 Œ QPk.K/�dskw g:

Since

.curl .curl .�/BK/; �/K D .curl .�/BK; curl .�//K

these degrees of freedom can be used in the proof of the stability.
The family is then defined by

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d C OSkC1.K/ 8K 2 Ch g;
Kh D f v 2 ŒL2.˝/�d�d

skw j vjK 2 ŒPk.K/�dskw 8K 2 Ch g; (21)

Vh D f v 2 ŒL2.˝/�d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g:
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Theorem 7 For k � 2 the family (21) is stable and the following error estimate
holds

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � ChkC1
�k�kkC1 C k�kkC1

�
:

Remark 2 The family of [16] is based on the Raviart-Thomas-Nédélec elements
and not the Brezzi-Douglas-Fortin-Duran-Marini elements as above.

The third family to be considered is
The Arnold-Falk-Winther family [22].

In this the polynomial degree for the rotation is decreased by one. We then note
that the there is no need to include additional degrees of freedom in order to obtain
stability for the rotation, the degrees of freedom are already included in the stress
space. The family is then the following.

Kh D f v 2 ŒL2.˝/�d�d
skw j vjK 2 ŒPk�1.K/�d�d 8K 2 Ch g

Vh D f v 2 L2.˝/d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g; (22)

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d 8K 2 Ch g:

The advantage of this space is that pure polynomial degrees of freedom are used.
The disadvantage is, however, that the convergence rate is decreased by one and the
full approximation power of the stress space is not achieved.

Theorem 8 For k � 2 the family (22) is stable and the following error estimate
holds

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � Chk
�k�kk C k�kk

�
:

In our analysis we have assumed that k � 2 so that the rigid body motions are
included in the local displacement spaces. The method are, however, stable also for
k D 1, but the analysis has to be modified. This case can be found in the recent
paper [25].

Finally, let us remark that the estimates for kPhu � uhk1;h are superconvergence
results that enables a local postprocessing of the displacement, cf. [3, 31, 32]. The
postprocessed displacement is crucial for a posteriori estimates [26, 27].
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