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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is a series of conferences held every 2 years to provide a forum
for discussion on recent aspects of numerical mathematics and scientific and
industrial applications. The previous ENUMATH meetings took place in Paris
(1995), Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago
de Compostela (2005), Graz (2007), Uppsala (2009), and Leicester (2011).

This book contains a selection of invited and contributed lectures of the ENU-
MATH 2013 conference organised by the Mathematical Institute of Computational
Science and Engineering (MATHICSE), EPFL, and held in Lausanne, Switzerland,
August 26–30, 2013. It gives an overview of recent developments in numerical
analysis, computational mathematics, and applications by leading experts in the
field. The conference attracted around 400 participants from around the world
including 11 invited talks by:

• Ruth Elizabeth Baker (University of Oxford, UK), on “Developing multiscale
models for exploring biological phenomena”

• Eric Cancès (CERMICS, Ecole des Ponts ParisTech, France), on “Electronic
structure calculation”

• Omar Ghattas (ICES, University of Texas at Austin, USA), on “Stochastic
Newton MCMC methods for Bayesian inverse problems with application to ice
sheet dynamics”

• Ernst Hairer (Université de Genève, Switzerland), on “Long-term analysis of
numerical and analytical oscillations”

• Jan Hesthaven (Brown University, USA), on “High-order reduced basis multi-
scale finite element methods”

• Petr Knobloch (Univerzita Karlova, Czech Republic), on “Finite element meth-
ods for convection dominated problems”

• Dmitri Kuzmin (Friedrich Alexander Universität Erlangen-Nürnberg, Germany),
on “Vertex-based limiters for continuous and discontinuous Galerkin methods”

• Ilaria Perugia (Università degli studi di Pavia, Italy), on “Trefftz-discontinuous
Galerkin methods for time-harmonic wave problems”

v
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• Rolf Stenberg (Aalto University, Finland), on “Mixed finite element methods for
elasticity”

• Martin Vetterli (EPFL, Switzerland), public lecture on “Inverse problems regu-
larized by sparsity”

• Barbara Wohlmuth (TU München, Germany), on “Interfaces, corner and point
sources”

There were 24 minisymposia and numerous contributed talks covering a broad
spectrum of numerical mathematics. This ENUMATH 2013 proceeding will be
useful for a wide range of readers giving them a state-of-the-art overview of
advanced techniques, algorithms, and results in numerical mathematics and scien-
tific computing. Advances on finite element methods, time integrators, multiscale
methods, numerical linear algebra, and discretisation techniques for fluid mechanics
and optics are presented. This book contains a selection of 79 papers by the invited
speakers and from the minisymposia as well as the contributed sessions. It is
organised in 11 parts as follows:

Part I Space Discretisation Methods for PDEs
Part II Time Integration Schemes
Part III A Posteriori Error Estimation and Adaptive Methods
Part IV Numerical Linear Algebra
Part V Multiscale Modeling and Simulation
Part VI Reduced Order Modeling
Part VIII Uncertainty, Stochastic Modeling, and Applications
Part IX Solvers, High Performance Computing, and Software Libraries
Part X Computational Fluid and Structural Mechanics
Part XI Computational Electromagnetics

We would like to thank all the participants for their valuable contributions and
scientific discussions during the conference and to the minisymposium organisers
for helping to shape the core structure of the meeting. The members of the Scientific
Committee have helped us tremendously in reviewing the contributions to this
proceedings. This conference would not have been possible without all the work
and guidance provided by the Programme Committee: Franco Brezzi, Miloslav
Feistauer, Roland Glowinski, Gunilla Kreiss, Yuri Kuznetsov, Jacques Periaux,
Alfio Quarteroni, Rolf Rannacher, Endre Süli. We also thank our sponsors for
their generous support: the School of Basic Sciences and the Centre Interfacultaire
Bernoulli from EPFL, the Center for Advanced Modeling Science (CADMOS),
MathWorks and Springer. Last but not least we would like to acknowledge the
tireless effort of Virginie Ledouble leading the administration tasks, Corinne
Craman who coordinated the edition of this proceedings, all the secretaries of
MATHICSE for their tremendous help in organising this conference, and our PhDs
and Post-Docs that have helped us in many ways.



Preface vii

We hope that this volume reflects the inspiring talks and lively scientific
exchanges that took place at EPFL during the ENUMATH 2013 meeting.

Lausanne, Switzerland Assyr Abdulle
August 2014 Simone Deparis

Daniel Kressner
Fabio Nobile

Marco Picasso
Alfio Quarteroni
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Steady Mixed Convection in a Heated Lid-Driven Square
Cavity Filled with a Fluid-Saturated Porous Medium . . . . . . . . . . . . . . . . . . . . . . . 689
Bengisen Pekmen and Munevver Tezer-Sezgin

The Influence of Boundary Conditions on the 3D Extrusion of
a Viscoelastic Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
Marco Picasso

Numerical Simulation of Polymer Film Stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
Hogenrich Damanik, Abderrahim Ouazzi, and Stefan Turek

Numerical Modelling of Viscoelastic Fluid-Structure
Interaction and Its Application for a Valveless Micropump. . . . . . . . . . . . . . . . . 717
Xingyuan Chen, Michael Schäfer, and Dieter Bothe

Numerical Investigation of Convergence Rates for the FEM
Approximation of 3D-1D Coupled Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
Laura Cattaneo and Paolo Zunino

The Interaction of Compressible Flow and an Elastic Structure
Using Discontinuous Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
Adam Kosík, Miloslav Feistauer, Martin Hadrava, and Jaromír
Horáček
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Weakly Symmetric Mixed Finite Elements
for Linear Elasticity

Rolf Stenberg

Abstract The approximation of the equations of linear elasticity by so-called
weakly symmetric mixed methods is considered. It is shown that the technique
of mesh dependent norms yields a natural and elementary error analysis of the
methods. The technique is applied to several families of methods.

1 Introduction

During the last decade the theory of mixed finite element methods have been recast
with the aid of differential geometry, cf. [6]. This was first done for methods for
scalar second order elliptic equation, i.e., the Raviart-Thomas-Nédélec [29, 30] and
the Brezzi-Douglas-Marini-Duran-Fortin [14, 15] families. Lately, the theory has
been extended to methods for linear elasticity [17]. Both methods with a symmetric
approximation for the stress tensor [5, 19, 24, 33] and methods where the symmetry
is imposed weakly [1, 4, 6, 18, 20, 21, 31], have been analyzed.

The purpose of this paper is to highlight an alternative and more elementary way
of analysis, which, nevertheless, gives optimal error estimates. The approach is that
of using mesh dependent norms, first used by BabuLska, Osborn and Pitkäranta [11].
In this, the norm used for the “stress” variable is theL2-norm, which has the physical
meaning of energy. For the “displacement” variable the brokenH1-norm (now well-
known from Discontinuous Galerkin Methods) is used. The stability of the methods
follows directly from local scaling arguments. The second ingredient is the so-called
“equilibrium condition,” which the methods fulfill. Using these, the quasi-optimal
error estimate for the stress follows by the classical saddle point theory.

Our exposition follows the talk at the conference, and we consider mixed
methods for weakly symmetric elasticity elements. We write down the continuous
form of the problem, for which we first prove the uniqueness. Then we prove
the stability in the natural energy norms. Then we turn to the mixed method, and
we follow exactly the same approach to show the uniqueness and stability of the
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4 R. Stenberg

method. In this we use only elementary finite element techniques, but nevertheless,
we obtain the optimal error estimates.

For the displacement the analysis yields a superconvergence result for the
distance between the L2 projection onto the discrete space and the finite element
solution. This is utilized to postprocess the displacement yielding an approximation
of two polynomial degrees higher, with an optimal convergence rate.

2 The Equations of Elasticity

We consider the equations of linear elasticity for which we, for simplicity, assume
a unit Young’s modulusE D 1, and a vanishing Poisson ratio � D 0. The unknown
are the symmetric stress tensor � 2 R

d�d ; and the displacement u 2 R
d .

The displacement gradient is the sum of its symmetric and skew-symmetric parts,
the strain and the rotation tensors:

ru D ".u/C !.u/

with

".u/ D 1

2
.ruCruT /

and

!.u/ D 1

2
.ru � ruT /:

Note that symmetric and skew-symmetric tensors are orthogonal. The linear
elasticity problem in mixed form is then [23]: Find � and u such that

� � ".u/ D 0;
div � C f D 0 in ˝; (1)

u D 0 on @˝:

Mixed finite elements based on this formulation are rather complicated to construct,
cf. [5,19,24,33]. The simplest elements are composite, and the requirement of pure
polynomials lead to elements of high degree [2, 7].

It is, however, possible to design simpler elements if one treats the symmetry of
the stress tensor as an independent equation [4,18,31]. Mechanically, this is natural,
since the symmetry of the stress tensor is the condition of moment equilibrium [23].
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With one more equation, an additional unknown is needed, and this is the skew-
symmetric rotation, which we denote by �. The system of equations is then

� C � � ru D 0;
� � �T D 0; (2)

div � C f D 0 in ˝;

u D 0 on @˝:

Comparing (1) and (2) we see that they are equivalent with � D !.u/.
The weak formulation is: Find .�; �; u/ 2 ŒL2.˝/�d�d �ŒL2.˝/�d�dskw �ŒH1

0 .˝/�
d

such that

.�; �/C .�; �/� .ru; �/ D 0 8� 2 ŒL2.˝/�d�d
.�; �/ D 0 8� 2 ŒL2.˝/�d�dskw (3)

.�;rv/ D .f; v/ 8v 2 ŒH1
0 .˝/�

d :

The first thing to check, is the uniqueness of solution to these equations.

Theorem 1 The solution to (3) is unique.

Proof We have to prove that f D 0 implies u D 0; � D 0 and � D 0. To this end,
we first choose � D � ��T in the second equation. The orthogonality of symmetric
and skew-symmetric tensors then yields

0 D .�; �/ D .�; � � �T / D 1

2
k� � �T k20

implying

� D �T :

Next, choosing � D � in the first equation and v D u in the third, we get (as f D 0),
again using the orthogonality,

k�k20 � .".u/; �/ D 0 and .�;ru/ D .�; ".u// D 0:

Hence

� D 0:

The first equation now reduces to

.�; �/� .ru; �/ D 0;



6 R. Stenberg

the symmetric and skew-symmetric parts of which are

.�sym; ".u// D 0 and .� � !.u/; �skw/ D 0:

Choosing �sym D ".u/ and �skw D � � !.u/ then yields

".u/ D 0 and � � !.u/ D 0:

Hence, the deflection u is a rigid displacement, and since it vanishes on the
boundary, it vanishes in the whole of the domain. From above, it then follows that
also the rotation � vanishes.

For the analysis we need stronger results, i.e., stability in proper norms, and these
we will choose as energy type norms.

Theorem 2 There exists a positive constant C such that

k�k0 C k".u/k0 C k� � !.u/k0 � Ckf k� (4)

and

kuk1 C k�k0 � Ckf k�1; (5)

with

kf k� D sup
v2ŒH1

0 .˝/�
d

.f; v/

k".v/k0 :

Proof Define the bilinear form

B.�; �; uI �; �; v/ D .�; �/ � .� � ru; �/ � .� � rv; �/

so that the variational form is

B.�; �; uI �; �; v/C.f; v/ D 0 8.�; �; v/ 2 ŒL2.˝/�d�d�ŒL2.˝/�d�dskw �ŒH1
0 .˝/�

d :

It now holds

B.�; �; uI �;��;�u/ D k�k20:

Define

� D � � ru:



Mixed Finite Elements for Elasticity 7

By the orthogonality .� � !.u/; ".u// D 0 we get

k�k20 D k� � !.u/k20 C k".u/k20
and

B.�; �; u; �; 0; 0/ D .�; �/C k� � !.u/k20 C k".u/k20:

Since jabj � .a2 C b2/=2; a; b 2 R, Schwarz inequality gives

.�; �/C k� � !.u/k20 C k".u/k20 � �k�k0k�k0 C k� � !.u/k20 C k".u/k20
� �1

2
k�k20 �

1

2
k�k20 C k� � !.u/k20 C k".u/k20

D �1
2
k�k20 C

1

2
.k� � !.u/k20 C k".u/k20/:

With .'; �; v/ D .� C �;��;�u/ we now get

B.�; �; uI'; �; v/ � 1

2

�k�k20 C k� � !.u/k20 C k".u/k20
�
:

Hence, it holds

k�k20 C k� � !.u/k20 C k".u/k20 � 2j.f; v/j � 2kf k�k".v/k0 D 2kf k�k".u/k0:

The arithmetic-geometric mean inequality gives

2kf k�k".u/k0 � 2kf k2� C
1

2
k".u/k20:

Combining the two inequalities above gives

k�k20 C k� � !.u/k20 C
1

2
k".u/k20 � 2kf k2�;

and the stability estimate (4) follows. Korn’s inequality and the standard definition
of k�k�1 then gives (5).

Remark 1 In the theorem we proved that the stability of the bilinear formB follows
from the L2-ellipticity of the bilinear form .�; �/ and the “inf-sup” condition (which
we also verified)

sup
�2ŒL2.˝/�d�d

.�; �� rv/

k�k0 � C.k��!.v/k0Ck".v/k0/ 8.�; v/ 2 ŒL2.˝/�d�dskw �ŒH1
0 .˝/�

d ;

i.e., the main result of the BabuLska-Brezzi [8–10, 13] theory applied for this
particular problem.
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3 Mixed Finite Element Methods

The mixed method is not directly based on the variational formulation of the
previous section. Instead, a formulation in which the integration by parts

.rv; �/ D �.div �; u/C h� n; vi@˝
is used. The stress is sought in

H.div W˝/ D f � j � 2 ŒL2.˝/�d�d ; div � 2 ŒL2.˝/�d g

and the displacement in ŒL2.˝/�d . The Dirichlet boundary condition for the
displacement now becomes a natural boundary condition, and the mixed formulation
is then: Find .�h; �h; uh/ 2 Sh �Kh � Vh � H.div W˝/ � ŒL2.˝/�d�dskw � ŒL2.˝/�d
such that

.�h; �/C .�h; �/C .div �; uh/ D 0 8� 2 Sh;
.�h; �/ D 0 8� 2 Kh; (6)

.div�h; v/C .f; v/ D 0 8v 2 Vh:

By defining

b.� I v; �/ D .div �; v/C .�; �/:

the problem in saddle point form is: Find .�h; �h; uh/ 2 Sh�Kh�Vh � H.div W˝/�
ŒL2.˝/�d�dskw � ŒL2.˝/�d such that

.�h; �/C b.� I uh; �h/ D 0 8� 2 Sh;
b.�hI v; �/C .f; v/ D 0 8.v; �/ 2 Vh �Kh:

By the BabuLska-Brezzi theory the stability is a consequence of an “inf-sup”
condition

sup
�2Sh

b.� I v; �/
k�k � Ckv; �k 8.v; �/ 2 Vh �Kh

for some norms. The traditional approach is to use the H.div W˝/ norm for the
stress and the L2 norm for both the displacement and rotation. With this choice, a
direct application of the BabuLska-Brezzi theory does not give optimal error estimate.
Furthermore, when posing the stability in these norms, Korn’s inequality has been
used, and hence the discrete stability cannot be proved by local scaling arguments.
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First in the next section we will consider specific finite element spaces. Now we
will only assume that they are piecewise polynomials on the finite element mesh Ch.
The collection of edges/faces on the mesh is denoted by �h.

In our approach we proceed in analogy to (4). The norm chosen for the stress is
a mesh dependentL2 norm

k�k20;h D k�k20 C
X

E2�h
hEk� nk20;E :

This is paired with the broken norm:

kv; �k2h D
X

K2Ch
k".v/k20;K C

X

E2�h
h�1E kŒŒv��k20;E

C
X

K2Ch
k� � !.v/k20;K:

Here ŒŒv�� denotes the jump of v whenE is in the interior of the domain, and the value
of v when E � @˝ .

Lemma 1 It holds

jb.� I v; �/j � k�k0;hkv; �kh 8.�; �; v/ 2 Sh �Kh � Vh:

Proof Integrating by parts on each element and using Schwarz inequality yields

b.� I v; �/ D .div �; v/C .�; �/
D
X

K2Ch
.div �; v/K C .�; �/

D �
X

K2Ch
.�;rv/K C

X

E2�h
h� n; ŒŒv��iE C .�; �/

D �
X

K2Ch
.�; ".v//K C

X

E2�h
h� n; ŒŒv��iE C

X

K2Ch
.�; �� !.v//K

�
X

K2Ch
k�k0;Kk".v/k0;K C

X

E2�h
k� nk0;EkŒŒv��k0;E C

X

K2Ch
k�k0;Kk� � !.v/k0;K

� k�k0;hkv; �kh:

The stability condition we require for the method is hence

sup
�2Sh

b.� I v; �/
k�k0;h � Ckv; �kh 8.v; �/ 2 Vh �Kh: (7)
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With the brokenH1 norm

kvk21;h D
X

K2Ch
krvk20;K C

X

E2�h
h�1E kŒŒv��k20;E ; (8)

the following discrete Korn’s inequality holds in the subspace Vh [12, 28]:

X

K2Ch
k".v/k20;K C

X

E2�h
h�1E kŒŒv��k20;E � Ckvk21;h: (9)

The triangle inequality then gives

kv; �kh � C.kvk1;h C k�k0/: (10)

The stability condition can thus be written

sup
�2Sh

b.� I v; �/
k�k0;h � C.kvk1;h C k�k0/ 8.v; �/ 2 Vh �Kh: (11)

In addition to the stability condition the discrete spaces have to satisfy the
equilibrium condition.

divSh � Vh: (12)

For the L2 projection Ph W ŒL2.˝/�d ! Vh, it then holds

.div �; v � Phv/ D 0; 8� 2 Sh; 8v 2 ŒL2.˝/�d : (13)

We then have the following error estimate.

Theorem 3 Suppose that the stability condition (11) and the equilibrium condition
(12) are valid. Then there exists a positive constant C such that

k� � �hk0;hCk� � �hk0CkPhu� uhk1;h � C
�

inf
�2Sh
k� � �hk0;hC inf

�2Kh
k� � �k0

�
:

Proof Define the bilinear form

B.�; �; uI �; �; v/ D .�; �/C b.� I �; u/C b.� I �; v/:

Let .�; �/ 2 Sh �Kh. The stability implies that exits .'; 	; z/ 2 Sh �Kh � Vh, with

k'k0;h C k	k0 C kzk1;h � C;

such that

k�h � �k0;h C k�h � �k0 C kuh � Phuk1;h � B.�h � �; �h � �; uh � PhuI'; 	; z/:
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The discrete and exact solutions satisfy

B.�h � �; �h � �; uh � PhuI'; 	; z/ D �.f; z/ � B.�; �; PhuI'; 	; z/
D B.�; �; uI'; 	; z/ � B.�; �; PhuI'; 	; z/
D B.� � �; � � �; u � PhuI'; 	; z/
D .� � �; '/C b.'I � � �; u � Phu/C b.� � � I 	; z/
D .� � �; '/C .'I � � �/C .div'; u � Phu/C b.� � � I 	; z/
D .� � �; '/C .'I � � �/C b.� � � I 	; z/;

where we in the last step used (13). By the Schwarz inequality we have

.� � �; '/C .'; � � �/C b.� � � I 	; z/ � .k� � �k0;h C k� � �k0/k'k0
Ck� � �k0;h.k	k0 C kzk1;h/;

and by combining the above inequalities, the assertion is proved.

4 Finite Element Families

In this section we discuss concrete families of elements. In all of them the elements
are triangles or tetrahedra. We start with the one introduced by us in 1988.

The Stenberg family [31].
We will partly use different notation as in [31]. ForK 2 Ch we define the bubble

function bK 2 PdC1.K/ by

bK D
dY

iD0

i ;

where 
0; : : : ; 
d ; are the barycentric coordinates onK . For a vector valued function
z in R

3 we define curl z D r � z and for a scalar function z we let

curl z D . @z

@x2
;� @z

@x1
/:

Define

SkCd�1.K/ D f � D f�ijg; i; j D 1; : : : ; d j .�i1; : : : ; �id/ D curl .wi bK/

wi 2 ŒPk�1.K/�
3 for d D 3; and wi 2 Pk�1.K/ for d D 2; i D 1; : : : ; d g:
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Here the index kC d � 1 is equal to the polynomial degree of the space (the degree
of the bubble bK is d C 1, wi is of degree k � 1, and taking the curl lowers the
degree by one). Note that these “stabilizing” degrees of freedom satisfy

div � D 0 on K; and � n D 0 on @K; 8� 2 SkCd�1.K/: (14)

The family of [31] is then defined for the degree k � 2 by

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d C SkCd�1.K/ 8K 2 Ch g;
Kh D f v 2 ŒL2.˝/�d�dskw j vjK 2 ŒPk.K/�dskw 8K 2 Ch g; (15)

Vh D f v 2 ŒL2.˝/�d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g:

Note that the stress space consists of d copies of the BDM/BDDF space augmented
by the space SkCd�1.K/ on each element.

We now in analogy with the uniqueness proof of Theorem 1, prove the unique-
ness of the finite element solution.

Theorem 4 The solution of (6) with the finite element spaces (15) is unique.

Proof The uniqueness of the stress �h is immediate as for the continuous case.
Hence, as in the proof of Theorem 1 we have to verify that the condition

b.� I uh; �h/ D 0 8� 2 Sh
first implies that uh is a rigid body motion and that �h D !.uh/, and then by the
boundary conditions that both of them vanish. To this end, let K be arbitrary and
choose � such that � D 0 in ˝ nK and � jK 2 SkCd�1.K/. Due to (14) it then holds

b.� I uh; �h/ D .�h; �/C .div �; uh/ D .�h; �/K:

We proceed slightly differently in two and three dimensions. For d D 2 let

�h D
�
0 z
�z 0

�
:

We then choose

.�i1; �i2/ D curl .
@z

@xi
bK/:

Integrating by parts, this gives

.�h; �/K D
Z

K

� � @

@x1
.bK

@z

@x1
/ � @

@x2
.bK

@z

@x2
/
�
z D

Z

K

bK jrzj2:
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The condition b.� I uh; �h/ D 0 then implies that z equals a constant. Hence, on each
K the rotation is constant �K . Let R.K/ be the space of rigid body motions on K .
For eachK there is a rK 2 R.K/ such that

�K D !.rK/ D rrK: (16)

For d D 3 we choose

.�i1; �i2; �i3/ D curl.curl�ih bK/;

where �ih is the i -th row of �h. Integrating by parts gives

0 D .�; �h/K D
3X

iD1

Z

K

bK jcurl�ihj2;

showing that curl�ih D 0 on K . Since �h is skew-symmetric, this implies that it is
constant. Hence, we conclude that also for d D 3 there is a rK 2 R.K/ such that
(16) holds.

In the sequel we use the subspace of Sh consisting of the Raviart-Thomas-
Nédélec spaces

SRTN
h D f � 2 H.div W˝/ j � jK 2 ŒPk�1.K/d ˚ z QPk�1.K/�d 8K 2 Ch g

where QPk�1.K/ denotes homogeneous polynomials of degree k � 1.
The degrees of freedom for this spaces are

h� n; ziE 8z 2 Pk�1.E/d ; E � @K; (17)

.�; z/K 8z 2 ŒPk�2.K/�d�d ; (18)

for each K 2 Ch.
Now choose � 2 SRTN

h � Sh such that � D 0 in ˝ nK . Then it holds

b.� I uh; �h/ D .�h; �/C .div �; uh/ D .�h; �/K C .div �; uh/K

D .�h; �/K � .�;ruh/K

D .rrK; �/K � .�;ruh/K

D .r.rK � uh/; �/K:

Now r.rK � uh/jK 2 ŒPk�2.K/�d�d , and hence the degrees of freedom (18) show
that the condition b.� I uh; �h/ D 0 implies that

r.rK � uh/ D 0: (19)
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The symmetric and skew-symmetric parts of this are

".uh/ D 0 and !.uh/ D !.rK/ D �hjK:

Hence uhjK is a rigid body motion and there is a constant vector cK such that

uhjK D rK C cK:

For uh and �h it thus holds

b.� I uh; �h/ D
X

E2�h
h� n; ŒŒuh��iE:

In the condition b.� I uh; �h/ D 0 8� 2 Sh, the degrees of freedom (17) for � show
that the jump ŒŒuh�� vanishes along interior edges, i.e. uh is continuous and a global
rigid body motion, and �h D !.uh/:

Finally, since, ŒŒuh�� D uh on the boundary @˝ , the degrees of freedom (17) show
that uh D 0, and hence also �h D 0:

We note that in the uniqueness proof above, we have used local arguments
element by element, and edge by edge. The stability can thus be built in the same
manner and the norms and the bilinear form scales in the same way. Hence, we have
essentially already proved the stability estimate.

Theorem 5 There is a positive constant C such that

sup
�2Sh

b.� I v; �/
k�k0;h � Ckv; �kh 8.v; �/ 2 Vh �Kh: (20)

Theorem 3 then gives the following error estimate.

Theorem 6 There is a positive constant C such that

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � ChkC1
�k�kkC1 C k�kkC1

�
:

Let us continue by discussing this family. First, for an implementation in mind, the
sum of local spaces in the definition of the stress should be replaced by a direct sum.
To this end, we define

OSkCd�1.K/ D f � D f�ijg; i; j D 1; : : : ; d j .�i1; : : : ; �id/ D curl .wi bK/;

wi 2 Œ OPk�1.K/�3 for dD3; and wi 2 OPk�1.K/ for dD2; iD1; : : :; d g;

with

OPk�1.K/ D f v 2 Pk�1.K/ j .v;w/K D 0 8w 2 Pk�n.K/ g:
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Since all degrees of freedom in SkCd�1.K/ n OSkCd�1.K/ are contained in
ŒPk.K/�

d�d , the stress space is

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d ˚ OSkCd�1.K/ 8K 2 Ch g:

Next, we note from the proof that in the space OSkCd�1.K/ there are more degrees of
freedom that what is used to get the stability. We also note that this space contains
polynomials of degree k C 1 for d D 2, and k C 2 for d D 3, and these do not
contribute to the accuracy.

These drawbacks are fixed in the
The Gopalakrishnan-Guzmán family [22].

In two dimensions the family is obtained from our family by restricting the
stabilizing degrees of freedom to those which are actually needed. From the proof
above, we see that in R

2 the additional degrees of freedom are

OSkC1.K/Df �Df�ijg; i; j D 1; 2 j .�i1; �i2/ D curl .
@z

@xi
bK/ i D 1; 2; z 2 QPk.K/ g:

In three dimension they were able to reduce the degree of the additional degrees of
freedom with one. They define the matrix bubble by

BK D
3X

lD0

l�3
l�2
l�1.r
l/tr
l ;

where the index is modulo 4, and r
l is considered as a row vector. In [16] it is
shown that this is symmetric and positively definite, and it can then be used as a
weight for an inner product on tensors. Defining the curl of a tensor as the tensor in
which each row is the curl of the corresponding row in the original tensor, the space
is defined as

OSkC1.K/ D f � 2 ŒL2.K/�d�d j � D curl .curl .�/BK/ � 2 Œ QPk.K/�dskw g:

Since

.curl .curl .�/BK/; �/K D .curl .�/BK; curl .�//K

these degrees of freedom can be used in the proof of the stability.
The family is then defined by

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d C OSkC1.K/ 8K 2 Ch g;
Kh D f v 2 ŒL2.˝/�d�dskw j vjK 2 ŒPk.K/�dskw 8K 2 Ch g; (21)

Vh D f v 2 ŒL2.˝/�d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g:
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Theorem 7 For k � 2 the family (21) is stable and the following error estimate
holds

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � ChkC1
�k�kkC1 C k�kkC1

�
:

Remark 2 The family of [16] is based on the Raviart-Thomas-Nédélec elements
and not the Brezzi-Douglas-Fortin-Duran-Marini elements as above.

The third family to be considered is
The Arnold-Falk-Winther family [22].

In this the polynomial degree for the rotation is decreased by one. We then note
that the there is no need to include additional degrees of freedom in order to obtain
stability for the rotation, the degrees of freedom are already included in the stress
space. The family is then the following.

Kh D f v 2 ŒL2.˝/�d�dskw j vjK 2 ŒPk�1.K/�d�d 8K 2 Ch g
Vh D f v 2 L2.˝/d j vjK 2 ŒPk�1.K/�d 8K 2 Ch g; (22)

Sh D f � 2 H.div W˝/ j � jK 2 ŒPk.K/�d�d 8K 2 Ch g:

The advantage of this space is that pure polynomial degrees of freedom are used.
The disadvantage is, however, that the convergence rate is decreased by one and the
full approximation power of the stress space is not achieved.

Theorem 8 For k � 2 the family (22) is stable and the following error estimate
holds

k� � �hk0;h C k� � �hk0 C kPhu � uhk1;h � Chk
�k�kk C k�kk

�
:

In our analysis we have assumed that k � 2 so that the rigid body motions are
included in the local displacement spaces. The method are, however, stable also for
k D 1, but the analysis has to be modified. This case can be found in the recent
paper [25].

Finally, let us remark that the estimates for kPhu � uhk1;h are superconvergence
results that enables a local postprocessing of the displacement, cf. [3, 31, 32]. The
postprocessed displacement is crucial for a posteriori estimates [26, 27].
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Energy-Corrected Finite Element Methods
for Scalar Elliptic Problems

Thomas Horger, Markus Huber, Ulrich Rüde, Christian Waluga,
and Barbara Wohlmuth

Abstract In this work, we consider the finite element solution of several scalar
elliptic problems with singularities in two dimensions. We outline recent theoretical
developments in energy corrected approaches and demonstrate numerically that
by local and easy to implement modifications of the discrete operators, optimal
convergence orders in weighted Sobolev norms can be recovered.

1 Introduction

We consider boundary value problems in an open and bounded domain ˝ � R
2,

involving the second order linear elliptic operator

L WD �div.Kru/;

where 0 < K0 � K 2 L1.˝/ is a known coefficient, e.g., a diffusivity or the
permeability of a porous medium. If not mentioned otherwise, we will setK D 1 for
simplicity. However, we will also consider the case of a heterogeneous coefficient
having jumps. It is known that numerical methods applied to such problems often
suffer from suboptimal convergence due to singularities in the solution which dictate
the regularity. In this paper, we consider modified finite element methods that allow
to deal with singular solution components in an efficient and effective way.
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As a first example for such singularities, we consider the case of a non-convex
Lipschitz domain ˝ having a re-entrant corner with interior angle � <  < 2� . In
general, the solution to the problem

Lu D f in ˝; u D 0 on @˝ (1)

will then be composed of smooth components as well as singular components of
type sk D rk�= sin.k�=�/, k 2 N, where � denotes the angle in polar coordinates,
and r stands for the distance to the re-entrant corner of˝ . This can be observed even
when the data are smooth [18,23,27]. While the convergence order in theH1-norm
is the same as the order of the best approximation, this does not hold for the L2-
norm, where a gap of 1 � �= can be observed due to the non-smoothness of the
singular component s1 62 H˛.˝/, ˛ � 1C �= . This effect is commonly referred
to as pollution [9, 10, 32]. A similar, but even worse situation occurs in interface
problems, see, e.g., [21, 22], when the interfaces between subdomains ˝i � ˝

with different coefficient K intersect in one point. Here we typically see singular
components of type r� , 0 < � � 1.

In the literature, many different approaches have been proposed to deal with
singular solution components, such as graded meshes [2], the enrichment of the
finite element space with singular functions [6, 9, 13, 14, 16, 26, 32], or first order
system least squares approaches, which add discrete versions of the singular
basis functions to standard finite element spaces in a least-squares framework
[7, 8, 11, 17, 24].

Most of the aforementioned approaches have in common the aim to improve the
finite element approximation nearby the singularity. However, in some applications,
the quantity of interest can be computed by excluding or relaxing the influence of
the neighborhood of the singularities, e.g., stress intensity factors, eigenvalues or
the flux at some given interface not including the singular points. Here, an accurate
representation of the solution is not required near the singularity. This motivates the
use of energy correction schemes that do not enrich the finite element spaces [20,30,
31, 33]. The basic idea was originally introduced in the context of finite difference
methods in [31, 33] and applied to finite elements in [29]. It was then analyzed
in [20] for more general meshes, and it was proved that a careful modification of
the energy in the original method can drastically improve the convergence. In the
following, we briefly sketch the main ideas.

2 Re-entrant Corners

We consider a weak form of the boundary value problem (1). The corresponding
bilinear form is given by a.v;w/ WD R

˝
rv �rw dx, v;w 2 H1.˝/. To define the

energy correction, we introduce ai;h.v;w/ WD
R
!i;h
rv �rw dx, where !i;h denotes

the union of the i th layer of elements in Th around the re-entrant corner xc , i.e.,
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Fig. 1 left: Triangulation of the circular L-shape domain with  D 3�
2

; right: circular slit domain
with  D 2� . The elements marked in dark gray belong to !1;h and the elements in light gray are
in !2;h

!1;h WD S
T2Th;xc2@T T and !i;h WD S

T2Th;@T\!i�1;h¤; T for i > 1; cf. Fig. 1 for
some illustration. Here Th stands for a family of quasi-uniform simplicial meshes
with mesh-size h. For given 	 2 R

n, n 2 N fixed, we then define the bilinear form

aec.v;w/ WD a.v;w/ �
Xn

iD1 	i ai;h.v;w/: (2)

The energy-corrected finite element form of (1) then reads: Find uh.	/ 2 V p

h s.t.

aec.uh.	/; v/ D .f; v/; v 2 V p

h ; (3)

where .�; �/ denotes the standard L2-scalar product, and V
p

h � H1
0 .˝/ is the

conforming piecewise polynomial finite element space of degree p > 0 associated
with Th. For 	 D 0 the standard finite element solution is recovered. As we will see
in Sect. 3, our approach is not restricted to Dirichlet boundary conditions but also
applies for Neumann boundary conditions. Note that the Laplace operator can be
used to model a membrane, i.e., the effect of the modification with the parameters
	 can be regarded as a softening (	i 2 .0; 1/) or stiffening (	i < 0) of the material
in the vicinity of the re-entrant corner.

The modification (2) does not change the structure of the stiffness matrix. Hence,
it is cheap and easy to implement into existing codes, provided that 	i and !i;h are
known. Theoretical results for linear finite elements [20] require that we apply the
correction in a union of elements !h � Bk0h, where Bk0h is a ball with radius k0h
and k0 sufficiently large, with center at the re-entrant corner. Numerical results show
that fixing n D 1 and setting !h D !i;h is sufficient for the case p D 1, see also [30].
Our choice of !i;h is motivated by this observation indicating that for one parameter
	 2 Œ0; 1/, it is sufficient to impose the correction only in those elements directly
attached to the singularity.
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We emphasize that, different from other techniques, the number of nodes affected
by the correction will not depend on h as long as n does not depend on h. For
simplicity, we assume that the layers !i;h are mirror-symmetric with respect to the
singular point if  � 3

2
� . Otherwise, we would possibly have to consider more

correction parameters, since then some terms in the analysis will not cancel by
symmetry arguments.

2.1 A Nested Newton Algorithm

Let us first consider the case of linear finite elements and set n D 1: Assuming that
the union of elements defined by !1;h is large enough, the quality of uh.	/ 2 V 1

h is
only determined by the choice of 	 . In [20] it has been shown that for each h > 0

a proper subinterval of Œ0; 1/ exists such that no pollution occurs, and second order
convergence in a suitably-weighted Sobolev norm can be recovered. The length of
the subinterval tends to zero as the mesh-size does. Thus asymptotically exactly one
correction parameter exists such that optimality can be observed. Here, we define
the correction parameter as the unique root of the non-linear scalar-valued energy
defect function

gh.	/ WD a.s1; s1/ � aec.s1;h.	/; s1;h.	//; for 	 2 R: (4)

where we recall that s1 denotes the first singular function and s1;h.	/ its mod-
ified finite element approximation. In [30] we developed and analyzed Newton
algorithms for the calculation of an accurate enough correction parameter 	 in a
multi-level context. Such methods will be used frequently in the numerical results
in this article to determine suitable correction parameters.

Next, we consider the extension to quadratic finite elements (or, analogously,
linear elements on non-symmetric meshes) and n D 2. It turns out that a good
choice of 	 2 R

2 is the root of the vector-valued energy defect function

gh.	/ WD
�
a.s1; s1/� aec.s1;h.	/; s1;h.	//
a.s2; s2/� aec.s2;h.	/; s2;h.	//

�
; for 	 2 R

2: (5)

By similar considerations as in the case of one parameter, we can derive a nested
one-step Newton algorithm on a family of uniformly refined meshes Tl . The mesh
TlC1 is obtained by decomposing each element of Tl into four sub-elements. Given
the initial guess 	0 D .0; 0/ 2 .�1; 1/2 on the coarse mesh T0, we set for l D
0; 1; : : :

	lC1 D Œrgh.	l /��1
�
a.s1;h.	l /; s1;h.	l // � a.s1; s1/
a.s2;h.	l /; s2;h.	l //� a.s2; s2/

�
; (6)
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with

rgh.	/ D
�
a1;h.s1;h.	/; s1;h.	// a2;h.s1;h.	/; s1;h.	//

a1;h.s2;h.	/; s2;h.	// a2;h.s2;h.	/; s2;h.	//

�
: (7)

Note that the index l denotes the refinement level, and on each level typically only
one Newton step is carried out. The start value for the Newton on level l C 1 is the
value computed on level l . For the nested one-step Newton method we see that

Œgh�i D O
�
h
2i�
!

	
and Œrgh��1ij D O

�
h

�2j�
!

	
;

hence 	lC1 2 O.1/, i.e., the values of 	 stay bounded independent of the mesh-level.
However, a detailed analysis of this algorithm is beyond the scope of this paper.

In the following section, we demonstrate the efficiency of the nested Newton
method in numerical experiments.

2.2 Numerical Examples with Second Order Elements

In the following examples, we consider the Poisson problem in a circular domain
with re-entrant corners of angle  D 3

2
� and  D 2� and assume that !1;h is

mirror-symmetric on the coarsest mesh. We set a homogeneous right hand side
and Dirichlet boundary conditions are chosen such that the exact solution is given
by u D s1 C s2 C s3. Note that the third singular component does not reduce
the convergence rates of the uncorrected approach due to sufficient regularity. We
conduct our numerical experiments on a series of uniformly refined meshes (cf.
Fig. 1 for the initial triangulations and correction domains) and compare the errors
of corrected vs. uncorrected finite elements in weighted L2 norms

ku � uhk0;˛ WD kr˛.u � uh/kL2.˝/; (8)

where r D jx � xcj denotes the distance to the re-entrant corner xc , and ˛ is the
weighting parameter. Note that for ˛ D 0 we recover the standard L2 norm. In each
case, the roots of the energy correction function (5) are determined by the nested
Newton-method discussed above where the initial guess on level 0 is always set to
zero. The contour lines of the energy correction function for the initial meshes are
plotted in Fig. 2. The bullet in the pictures denotes the unique root of the energy
correction function.

The correction parameters for the L-shape and slit domain are listed in Table 1.
As it can be seen easily both parameters converge with respect to the level and for
both domains 	1;opt is positive while 	2;opt is negative.

In our convergence study, we consider p D 2 and different choices of the
correction parameter for illustration, namely, the energy correction with the level-
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Fig. 2 Contour lines and root (bullet) of the energy functional (5) in the L-shape (left) and slit
domain (right); gray lines are associated with the first and black ones with the second component
of the energy functional

Table 1 Approximate roots of gh.	/ obtained by a nested Newton method applied to subsequent
refinements of the respective initial meshes of Fig. 1

Level 	1;opt 	2;opt

1 0.0320706 �0.0055412

2 0.0315346 �0.0055392

3 0.0315229 �0.0055351

4 0.0315208 �0.0055342

L-shape

Level 	1;opt 	2;opt

1 0.1493019 �0.0497673

2 0.1395878 �0.0510151

3 0.1395358 �0.0510148

4 0.1395348 �0.0510143

Slit

dependent parameters of Table 1, and the choice .	1; 0:0/ with 	1 determined by
the one-step Newton method of [30]. Moreover, we compare the standard quadratic
finite element method resulting from the choice .	1; 	2/ D .0:0; 0:0/ as well as two
manually chosen values, where one is closer to the actual optimal parameter than
the other. The latter experiments are given to demonstrate that the energy correction
can yield solutions of much better quality by manual fine-tuning of parameters, even
when the actual asymptotically correct values are unknown.

In Tables 2 and 3, we list the results of our convergence study for the L-shape and
slit domains, respectively. The errors are measured in the weighted L2 norm with
weighting ˛ 	 1:38 for the L-shape and ˛ 	 1:55 for the slit.

In both cases, we observe that the asymptotically optimal convergence order of
O.h3/ is only recovered for the correction approach with both parameters chosen
according to the root of the energy defect function. Restricting the correction to
only one parameter, however, still improves the rate to O.h2/, since the effects of the
stronger singularity s1 can still be compensated by this simpler correction. From the
results for the manually tuned parameters it can be concluded that our approach can
significantly improve the quality of the solution, even when the exact parameters are
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Table 2 L-shape: Errors 104 � ku� uh.	1; 	2/k0;˛�1:38 for different parameters

.	1; 	2/ .	1;opt; 	2;opt/ .	2; 0/ .0; 0/ .0:031;�0:005/ .0:02;�0:006/
Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 1.8697 – 1.9402 – 4.9912 – 1.7893 – 2.8886 –

2 0.2031 3.20 0.2843 2.77 1.9475 1.36 0.2017 3.10 1.0433 1.47

3 0.0240 3.08 0.0425 2.74 0.7716 1.34 0.0257 2.94 0.4100 1.35

4 0.0030 3.00 0.0064 2.72 0.3061 1.33 0.0047 2.46 0.1625 1.34

Table 3 Slit domain: Errors 103 � ku� uh.	1; 	2/k0;˛�1:55 for different parameters

.	1; 	2/ .	1;opt; 	2;opt/ .	2; 0/ .0; 0/ .0:139;�0:051/ .0:15;�0:06/
Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 1.1790 – 1.3055 – 2.4165 – 1.0874 – 1.2833 –

2 0.1372 3.10 0.2994 2.12 1.1968 1.01 0.1372 2.99 0.1749 2.88

3 0.0168 3.03 0.0738 2.02 0.5966 1.00 0.1720 3.00 0.0312 2.49

4 0.0021 3.02 0.0184 2.01 0.2978 1.00 0.0275 2.65 0.0112 1.48

unknown. However, to observe optimal asymptotic convergence rates, we require a
high accuracy of the parameter on the finer meshes. Let us remark here that for
multiple re-entrant corners, the correction parameters can be determined by solving
local problems for each corner in a preprocessing step. The optimal correction
parameters depends on the interior angle, as already seen from the numerical results,
but also on !1;h. More precisely, the number and the local shape of elements in !1;h
influence the optimal correction parameters.

3 Eigenvalue Problems

Next, we consider the eigenvalue problem with homogeneous Neumann boundary
conditions

Lum D 
mum in ˝:

As before, we choose an L-shaped domain ˝ WD .�1; 1/2n.Œ0; 1� � Œ�1; 0�/ and a
slit-domain˝ WD .�1; 1/2n.Œ0; 1� � f0g/ for our numerical results. For comparison
with reference values given in the literature [12,19], we use different meshes in this
example. Moreover, we also present results for a domain with multiple re-entrant
corners, in which case we compute a reference solution on a finer mesh. The meshes
are always constructed such that we obtain perfectly symmetric isosceles triangles
around the singular points; cf. Fig. 3.

It is well-known from the literature [3–5, 12, 25], that the above mentioned
pollution effect can be observe, but that it occurs only for all eigenfunctions and
eigenvalues, for which a non-smooth singular component is present. For sufficiently
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Fig. 3 L-shape, slit, and domain with multiple re-entrant corners

smooth eigenfunctions, a quadratic convergence rate for the eigenvalues can be
observed in case of linear finite elements, i.e., p D 1.

Our modified finite element formulation reads: find the discrete eigenvalues

m;h 2 R and the eigenfunctions uh;m.	/ 2 V 1

h such that

aec.uh;m.	/; v/ D 
h;m.uh;m.	/; v/; v 2 V 1
h ; (9)

where 0 � 
h;1 � 
h;2 � : : :. For simplicity of notation, we use the same symbol as
before for the finite element space although no homogeneous boundary conditions
are imposed on the space. Let us next briefly outline the convergence analysis for
this modified scheme.

3.1 Convergence Analysis

In this subsection, we focus on the convergence analysis of the discrete eigenvalues

h;m and follow the lines of [28] in the conforming setting. To do so, we introduce
the eigenvalue problem: find 
 2 R and w 2 H1.˝/ such that a.w; z/ D 
.w; z/ for
all z 2 H1.˝/. The non-negative eigenvalues are ordered such that 0 � 
1 � 
2 �
: : :, and the associated eigenfunctions are denoted by wi with the normalization
.wi ;wj / D ıi;j . Now define the m-dimensional space Vm by Vm WD spanfwi ; i �
mg. Further for each v 2 Vm let the modified Galerkin projection Rh onto V 1

h be
defined by aec.Rhv; vh/ D a.v; vh/ for all vh 2 V 1

h . We recall that Rh depends on
the specific choice of 	 . In terms of Rh, we define Em;h WD RhVm and note that
dimEm;h D m for h � h0 small enough.

For the sake of presentation, let us first state the main result and subsequently
develop the ingredients needed for its proof.

Theorem 1 Let 1 � �
!
< ˛ < 1. If the above mentioned modification is used with

n D 1 and 	opt, the following upper and lower bound for 
h;m hold,


m.1 � Ch2
1C˛m / � 
h;m � 
m.1C Ch2
˛C1m /:
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Our proof is based on the following two technical results which are provided
without a detailed proof.

Lemma 1 Let 1 � �
!
< Q̨ < ˛ < 1 then it holds

kr�Q̨vk0 � Ckvk1�˛0 kvk˛1 ; v 2 H1.˝/:

The upper bound in Lemma 1 can be obtained by using the Hölder inequality
in combination with interpolation arguments and standard Sobolev embedding
results. Combining Lemma 1 with [28, Lemma 6.4-2], [20, Theorem 2.4] and some
straightforward computations yield the following bounds.

Lemma 2 Let v 2 Vm with .v; v/ D 1. Then v D Pm
iD1 ˇiwi with

Pm
iD1 ˇ2i D 1,

and it satisfies a.v; z/ D .fv; z/ for all z 2 H1.˝/ with fv WD Pm
iD1 ˇi
iwi .

Moreover, we have r�˛fv 2 L2.˝/ for 1 � �
!
< ˛ < 1, and the following bounds

hold with constants independent of the mesh-size

ja.v; v/� aec.Rhv; Rhv/j � Ch2
2C˛m ;

.Rhv; Rhv/ � 1 � Ch2
˛C1m :

Now we are prepared to provide the proof of the main result.

Proof (Theorem 1) The proof is based on the characterization of the eigenvalues by
the Rayleigh quotient. We start with the upper bound. Using Eh;m as defined above
together with Lemma 2, we get the following upper bound:


h;m � max
v2Em;h

aec.v; v/

.v; v/
D max

v2Vm
aec.Rhv; Rhv/

.Rhv; Rhv/

D max
v2Vm

a.v; v/C aec.Rhv; Rhv/ � a.v; v/
.Rhv; Rhv/

D max
v2Vm

a.v; v/

.v; v/
max
v2Vm

.v; v/

.Rhv; Rhv/
Cmax

v2Vm
aec.Rhv; Rhv/ � a.v; v/

.Rhv; Rhv/

� 
m 1C Ch2
2C˛m

1 � Ch2
˛C1m

. 
m.1C Ch2
˛C1m /C Ch2
2C˛m .1C Ch2
˛C1m /:

As next step it remains to show the lower bound. In contrast to the uncorrected
scheme, we do not have the trivial bound 
m � 
m;h. The proof of the lower bound
follows basically the lines of the upper bound but requires the use of a differentm-
dimensional space. Firstly we define a new space given by Em WD spanfewi ; i � mg
where Qwi 2 H1.˝/ is defined by a. Qwi ; z/ D .wi;h; z/ for all z 2 H1.˝/. Secondly,
we note that RhEm D Em;h and thus for h small enough we have dimEm D m.
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Now, similar arguments as before yields


m � max
v2Em

a.v; v/

.v; v/
D max

v2Em
aec.Rhv; Rhv/C a.v; v/� aec.Rhv; Rhv/

.v; v/

D max
v2Em

aec.Rhv; Rhv/

.Rhv; Rhv/
max
v2Em

.Rhv; Rhv/

.v; v/
C max

v2Em
a.v; v/ � aec.Rhv; Rhv/

.v; v/

� 
h;m.1C Ch2
1C˛h;m /:

Combining the upper bounds for 
m and 
h;m yields the lower bound for 
h;m. �
The steps outlined in this section show the flexibility and potential of the ideas of
[20, 30] to eigenvalue problems. A more detailed analysis provides also optimal
bounds for the eigenfunction convergence. Let us next support our theoretical ideas
by numerical results.

3.2 Numerical Computation of Eigenvalues

We conduct convergence studies for the eigenvalue problem defined on the geome-
tries depicted in Fig. 3. We first compare the numerical results obtained without
correction to those obtained with a suitable modification parameter.

In this example, we make use of the Neumann fit tabulated in [30, Table 5.3],
which provides a simple heuristic approach to determine modification parameters in
case of meshes consisting of isosceles triangles around the singularity. This purely
geometric assumption is satisfied for our meshes by construction (see Fig. 3).

The correction parameter 	 for the L-shape ( D 3
2
�) and the multiple re-entrant

corners domain is given by 	 	 0:1478. We note that in each case four isosceles
triangles are attached to the singularity, and thus the correction parameter is the
same for all re-entrant corners. For the slit domain ( D 2�), we count six adjacent
elements at the singular vertex, and hence we determine our correction parameter to
	 	 0:2716 (more precise values are given in the respective tables).

In Tables 4–6 we list the results for our convergence study for the L-shape, the
slit domain and the domain with multiple re-entrant corners, respectively. Without
correction, we observe suboptimal rates for some eigenvalues in each of the three
cases. However, using the modified method, the asymptotically optimal convergence
of O.h2/ for all given eigenvalues is obtained in the three cases. Note that we
excluded the results for some eigenvalues for the slit domain in Table 5. This
is because the corresponding eigenfunctions do not include singular components
strong enough to affect the optimal rate for linear elements. Hence, for these
eigenvalues, a convergence rate of O.h2/ can be reached already by using the non-
corrected method.
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Table 4 Convergence rates for eigenvalues in the L-shaped domain with and without energy
correction

No correction 	 D 0:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 1.47562 Exact: 3.53403 Exact: 9.86960 Exact: 9.86960 Exact: 11.38948

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.55008 – 3.63939 – 10.79641 – 10.90447 – 12.67323 –

2 1.50014 1.60 3.56116 1.96 10.10623 1.97 10.12814 2.00 11.71975 1.96

3 1.48402 1.55 3.54091 1.98 9.92994 1.97 9.93496 1.98 11.47442 1.96

4 1.47861 1.49 3.53576 1.99 9.88483 1.99 9.88604 1.99 11.41101 1.98

5 1.47672 1.44 3.53447 2.00 9.87342 2.00 9.87372 2.00 11.39489 1.99

Correction 	 D 0:147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 1.47562 Exact: 3.53403 Exact: 9.86960 Exact: 9.86960 Exact: 11.38948

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.51075 – 3.62603 – 10.78432 – 10.89390 – 12.64990 –

2 1.48457 1.97 3.55913 1.87 10.10560 1.95 10.12758 1.99 11.71674 1.95

3 1.47785 2.00 3.54060 1.93 9.92990 1.97 9.93493 1.98 11.47396 1.95

4 1.47617 2.03 3.53571 1.96 9.88482 1.99 9.88604 1.99 11.41094 1.98

5 1.47575 2.06 3.53446 1.98 9.87342 2.00 9.87372 2.00 11.39488 1.99

Table 5 Convergence rates for eigenvalues in the slit domain with and without energy correction

No correction 	 D 0:

1.EV 2.EV 5.EV 7.EV 8.EV
Exact: 1.03407 Exact: 2.46740 Exact: 9.86960 Exact: 12.26490 Exact: 12.33701

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.14032 – 2.52918 – 10.78301 – 13.97705 – 14.17015 –

2 1.07951 1.23 2.48307 1.98 10.10730 1.94 12.75729 1.80 12.81216 1.95

3 1.05478 1.13 2.47135 1.99 9.93045 1.97 12.43849 1.50 12.44434 2.15

4 1.04392 1.07 2.46839 2.00 9.88497 1.99 12.32633 1.50 12.36411 1.99

5 1.03887 1.04 2.46765 2.00 9.87346 1.99 12.28924 1.34 12.34381 1.99

Correction 	 D 0:271607294328175:

1.EV 2.EV 5.EV 7.EV 8.EV
Exact: 1.03407 Exact: 2.46740 Exact: 9.86960 Exact: 12.26490 Exact: 12.33701

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 1.06167 – 2.49235 – 10.76626 – 13.85168 – 13.88581 –

2 1.04116 1.96 2.47377 1.97 10.10651 1.92 12.66340 1.99 12.73749 1.95

3 1.03583 2.01 2.46902 1.97 9.93041 1.96 12.36581 1.98 12.43961 1.96

4 1.03449 2.06 2.46781 1.99 9.88497 1.98 12.29021 1.99 12.36294 1.98

5 1.03417 2.14 2.46750 1.99 9.87346 1.99 12.27120 2.01 12.34352 1.99
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Table 6 Convergence rates for eigenvalues in the domain with multiple re-entrant corners with
and without correction

No correction 	 D 0:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 0.11422 Exact: 0.11422 Exact: 0.23460 Exact: 0.31626 Exact: 0.31626

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 0.11609 – 0.11609 – 0.23841 – 0.32303 – 0.32323 –

2 0.11489 1.48 0.11489 1.48 0.23595 1.51 0.31861 1.53 0.31867 1.53

3 0.11446 1.46 0.11446 1.46 0.23509 1.47 0.31709 1.49 0.31711 1.50

4 0.11431 1.42 0.11431 1.42 0.23478 1.44 0.31656 1.45 0.31657 1.45

5 0.11425 1.39 0.11425 1.39 0.23467 1.40 0.31637 1.41 0.31637 1.42

Correction 	 D 0:147850426060652:

1.EV 2.EV 3.EV 4.EV 5.EV
Exact: 0.11422 Exact: 0.11422 Exact: 0.23460 Exact: 0.31626 Exact: 0.31626

Level Value Rate Value Rate Value Rate Value Rate Value Rate

1 0.11472 – 0.11473 – 0.23574 – 0.31869 – 0.31887 –

2 0.11435 1.85 0.11436 1.85 0.23492 1.85 0.31690 1.92 0.31695 1.92

3 0.11425 1.97 0.11425 1.96 0.23469 1.96 0.31642 1.99 0.31643 1.99

4 0.11422 2.04 0.11422 2.03 0.23462 2.02 0.31630 2.04 0.31630 2.03

5 0.11422 2.11 0.11422 2.10 0.23461 2.09 0.31627 2.09 0.31627 2.08

4 Jumping Coefficients

Next, let us study the influence of heterogeneous coefficients with jumps. We
consider again the scalar elliptic problem (1) but in contrast to the previous sections,
we now assume that K is piecewise constant on disjoint subsets ˝i � ˝ WD
.�1; 1/2, i.e., we define ˝1 WD .0; 1/2, ˝2 WD .�1; 0/ � .0; 1/, ˝3 WD .�1; 0/2
and ˝4 WD .0; 1/ � .�1; 0/, and set K D 1 in ˝2; ˝4 and K D a in ˝1; ˝3

for finite a > 0. Whenever a ¤ 1 one obtains a discontinuity at the origin, which
causes solutions in H1C�.˝/ for 0 < � < 1 and possibly � � 1; cf. [15, 21].
As before, this severely limited regularity bound results in poor L2-accuracy of the
uncorrected discrete solutions. The solution of (1) again admits a singular function
representation, with singular components of the form

sk.r; �/ D r
k k.�/; 
k � 
kC1; k 2 N: (10)

Here the exponent 
k can be determined with help of an auxiliary Sturm–Liouville
eigenvalue problem [15]. We note that .r; �/ are the polar coordinates with respect
to the origin .0; 0/. Typically, the exponent 
1 is very small, i.e., 
1 � 1, which
renders s1 as the dominating singular component in the problem. Since by [21,
Lemma 3.3] there holds 
1 C 
2 D 2 for the case outlined above, the energy
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correction with only one correction parameter per singular vertex is feasible. Hence,
we introduce a modification of the weak form at the singularity by

aec.v;w/ WD
Z

˝

Krv�rw dx � 	
Z

!h

Krv�rw dx: (11)

where 	 2 Œ0; 1/, and !h is a union of elements in Th. As before, we choose !h as
the union of those elements adjacent to the vertex at which the singularity is located.
The modified finite element method for (1) is then again given in the form of (3),
and the corrections are again determined as the root of the energy functional (4).
We remark that a similar correction has been proposed to recover optimal multigrid
convergence rates for elliptic problems with intersecting interfaces in [1].

4.1 Numerical Results

As a first benchmark, we consider non-homogeneous Dirichlet boundary conditions
such the exact solution is given by u D s1. We conduct a convergence study on a
series of uniformly refined meshes and, as before, we compare the energy corrected
approach to the standard finite element method. The first two mesh levels and
correction domains are depicted in Fig. 4 for illustration.

We consider two values of a, i.e., a D 10 and a D 1;000, and in a preprocessing
step we solve the Sturm–Liouville problem to obtain the first eigenvalue as 
1 	
0:38996 and 
1 	 0:04025, respectively. The other singular components are of
higher regularity (i.e., si 2 H2.˝/; i > 1) and are therefore not considered in
the following. For both cases we then approximate the roots of the energy defect
function (4) by a classical Newton method until the relative error between two
consecutive iterates is at most 1:48 � 10�8. The results are listed in Fig. 5 alongside
with nonlinear fits against the function 	1 C ch2.1�
1/. For a D 1;000, we observe

Fig. 4 Mesh levels 1 and 2 of the unit square with correction domains !h in gray
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Fig. 5 Approximate roots of the energy defect function (4) obtained on subsequent refinements of
the initial meshes of Fig. 4 for jumping material coefficients. Dashed lines indicate the nonlinear
fits against the function 	1 C ch2.1�
1/

Table 7 Errors 102 � ku� uh.	/k0;˛�0:66004 for jumping coefficients with a D 10

	 	opt 0 0:406 0:3 0:5

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 2.72860 – 3.06090 – 2.71390 – 2.80460 – 2.63900 –

2 0.71951 1.92 1.38890 1.14 0.71293 1.93 0.84889 1.72 0.68297 1.95

3 0.18359 1.97 0.69770 0.99 0.18253 1.97 0.29198 1.54 0.23705 1.53

4 0.04636 1.99 0.37922 0.88 0.04627 1.98 0.13016 1.17 0.11776 1.01

5 0.01170 1.99 0.21420 0.82 0.01175 1.98 0.06939 0.91 0.06718 0.81

6 0.00295 1.99 0.12297 0.80 0.00301 1.96 0.03938 0.82 0.03924 0.78

that the convergence of 	opt with respect to the refinement level is much faster than
for a D 10. This is in accordance with the theoretical results for re-entrant corners
of [30], which state that the convergence is faster in case of stronger singularities
(Table 7).

Again, for both cases, we conduct a convergence study in which we compare the
modified and standard finite element solutions, as well as three heuristic choices.
For a D 10, we measure the error in the weighted L2-norm with ˛ 	 0:66004.
For the modified approach with correction parameters as listed in Fig. 5, an optimal
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convergence rate of O.h2/ is obtained, while the convergence of the standard finite
element method is clearly limited due to the singular components. For the manually
tuned choices we again observe that the solution quality is much better than without
correction. Although on coarse meshes nearly optimal rates can only be seen for
the choice 	 D 0:406, which is close enough to the optimal values of Fig. 5,
asymptotically the convergence rate will deteriorate. This effect can be seen more
dominantly for the choices 	 D 0:3 and 	 D 0:5. A not optimal choice of 	 will
yield asymptotically the same poor convergence rate as the uncorrected method has.

For comparison, we list the results for the case a D 1;000 in Table 8, where the
error is measured in the weightedL2-norm with ˛ 	 0:96475. Also here we see that
using the previously determined parameters an optimal asymptotic convergence rate
is recovered despite the strongly singular component.

Finally, let us consider a more complex numerical example in ˝ D Œ�2; 2� �
Œ�2; 2�. We define i D bxc and j D byc, and set

K D


1;000 if .�1/iCj > 0;
1 if .�1/iCj < 0;

thus, we identify 9 singularities which are corrected as depicted in Fig. 6. The
boundary conditions are chosen as u D 1 on the bottom boundary, u D 0 on the
top and ru � n D 0 elsewhere.

Table 8 Errors 102 � ku� uh.	/k0;˛�0:96475 for jumping coefficients with a D 1;000

	 	opt 0 0:936 0:9 0:95

Level Error Rate Error Rate Error Rate Error Rate Error Rate

1 0.41774 – 0.51892 – 0.43095 – 0.43531 – 0.42932 –

2 0.11332 1.88 0.32494 0.68 0.11944 1.85 0.12422 1.81 0.11825 1.86

3 0.02917 1.96 0.24001 0.44 0.03142 1.93 0.03725 1.74 0.03178 1.90

4 0.00738 1.98 0.19177 0.32 0.00813 1.95 0.01876 0.99 0.01073 1.57

5 0.00186 1.99 0.15902 0.27 0.00209 1.96 0.01587 0.24 0.00704 0.61

6 0.00047 1.99 0.13485 0.24 0.00054 1.96 0.01475 0.11 0.00637 0.14

Fig. 6 Left: coefficient K D 1 (dark), K D 1;000 (light); center: correction on level 1 in light
gray; right: reference solution (with energy correction on level 8)
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Table 9 Errors
10� ku� uh.	/k0;˛�0:96475;
Convergence analysis of the
energy correction method and
standard finite element
method for the example with
9 singularities

	 	opt 0

Level Error Rate Error Rate

1 0.50254 – 1.15720 –

2 0.09690 2.07 0.92582 0.32

3 0.02472 1.97 0.77083 0.26

4 0.00636 1.96 0.65581 0.23

Due to the construction of the jumping coefficient K each of the 9 singularities
has the same first eigenvalue 
1 D 0:04025, thus, also the correction parameter in
the neighborhood of each singularity has the same value, namely, 	 	 0:93611.
Since we have no exact solution at hand for this example, we compute a reference
solution with the energy corrected method on a high resolution mesh for compar-
ison. In Table 9, we study the convergence to the reference solution, starting with
the mesh of Fig. 6. The error is measure in a weighted L2 norm with a weight of
˛ 	 0:96475 around each singularity. Again, we observe optimal convergence
rates for the energy corrected method. Hence, the correction parameters for each
singularity arising in a practical application can be determined independently in a
preprocessing step.

Conclusion
In this work, we discussed the extension of energy corrected finite element
methods from the special case of linear finite elements on domains with re-
entrant corners to second order finite elements, eigenvalue problems, and
singularities resulting from jumping material parameters in two space dimen-
sions. We demonstrated that given the correction parameters, the modified
methods can dramatically improve the numerical solutions in presence of
strong singular solution component. Quasi-optimal convergence rates are
recovered. Hence, they provide an appealing alternative to graded or adaptive
meshes and function space enrichment for applications in which a high
accuracy in vicinity of the singular regions is not required.
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Stabilized Galerkin for Linear Advection
of Vector Fields

Holger Heumann and Ralf Hiptmair

Abstract We present a stabilized Galerkin method for linear advection of vector
fields and prove, for sufficiently smooth solutions, optimal a priori error estimates
forH .curl;˝/ andH .Div;˝/-conforming approximation spaces.

1 Introduction

The focus of this article is the following linear advection problem for a vector
field A:

˛AC curl A � ˇ C grad .A � ˇ/ D f in ˝ ;

Aj�in D A0 on �in :
(1)

Here˝ � R
3 is a bounded domain with inflow boundary �in � @˝ , and ˇ D ˇ.x/

and ˛ D ˛.x/ are given parameters of which we assume ˇ 2 W 1;1 .˝/ and
˛ 2 L1.˝/.

This advection problem is an important model problem for devising reliable
numerical methods for problems in electromagnetics and fluid dynamics, when
vector fields such as electromagnetic fields or vorticity are advected in some flow.
Since the natural space of such quantities is either H .curl;˝/ or H .Div;˝/, it
is desirable to have stabilized methods for appropriate conforming finite element
spaces.
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Problem (1) owes its name to the following consideration: Let Xt .x/ denote the
flow associated with the given vector field ˇ.x/, C a one-dimensional manifold and
Xt .C / the image of C under the flow. The transformation rule for line integrals
yields

d

dt

Z

Xt .C /
A.y/ � dS.y/ D d

dt

Z

C

DXT
t .x/A.Xt .x// � dS.x/ ;

and a lengthy calculation verifies:

d

dt

�
DXT

t .x/A.Xt .x//
�
jtD0 D curl A.x/ � ˇ.x/C grad .A.x/ � ˇ.x// :

Hence, the first order differential operator in (1) is a generalization of the material
derivative of scalar functions u that are integrated over volumesM , i.e.

d

dt

Z

Xt .M/

u.y/dy D d

dt

Z

M

det.DXt .x// u.Xt .x//dx (2)

and

d

dt
.det.DXt .x// u.Xt .x///jtD0 D Div.ˇ.x/u.x// :

It is the framework of differential forms [4] that embeds this advection idea in a
general setting, the Lie derivative formalism, and we would like to refer to [2,9,17]
for recent applications of this formalism in devising new numerical methods.

The advection problem (1) can be regarded as the hyperbolic limit case of an
advection-diffusion type problem, where a curl curl-operator doubles for the dif-
fusion. Such models appear for electromagnetic problems within a quasi-magneto-
static setting. This was the main motivation in [11] to define and analyse stabilized
Galerkin methods for the linear advection problem (1) that rely on H .curl;˝/-
conforming finite element spaces. The theoretical convergence theory in [11]
yields the same approximation results as a more classical stabilized Discontinuous
Galerkin method for Friedrichs’ operators [5, 6, 16], which employs approximation
functions that are discontinuous across element interfaces. In contrast, the functions
of H .curl;˝/-conforming finite element spaces, sometimes called edge elements
or Whitney forms [1, 12, 18, 19], have continuous tangential components and
discontinuous normal components at the element interfaces. The classical stabilized
methods that work with globally continuous finite element functions, add certain
stabilization terms to the standard Galerkin variational formulations, that enhance
the stability but do not destroy the consistency of the methods [14,15]. The stabiliza-
tion effect of the method in [11] does not rely on such additional stabilization terms,
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but uses the upwinding idea of the Discontinuous Galerkin method. We consider this
to be a remarkable advantage ofH .curl;˝/-conforming approximation spaces for
linear advection of vector fields: a similar simple stabilization as in Discontinuous
Galerkin methods, but fewer degrees of freedom.

In light of this point of view, it appears reasonable to ask for stabilized
Galerkin methods for (1) that use H .Div;˝/-conforming finite element spaces
since the functions of these spaces have discontinuous tangential and continuous
normal components at the element interfaces. Besides this conceptual motivation
we also emphasize that the advection operator .ˇ � grad/u in linearized Navier-
Stokes problems can be rephrased in terms of the advection operator in (1). And,
H .Div;˝/-conforming finite element spaces are frequently used for such kind of
problems [3, 7].

In the next section, Sect. 2 we present the method and state stability and con-
sistency. This is followed, in Sect. 3, by a short summary on previous convergence
result. In Sect. 4 we state and prove the main result.

2 Stabilized Galerkin

Standard well-posedness results for (1) (see e.g. [10, Section 3]) require the
following assumption.

Assumption 1 We assume that ˛ 2 L1.˝/ and ˇ 2 W 1;1 .˝/ are such that

min

˚
.2˛ � Divˇ/I3 CDˇ C .Dˇ/T

� � ˛0 ; almost everywhere in ˝ for some
˛0 > 0. Dˇ is the Jacobi matrix and 
min the smallest eigenvalue.

Let us first introduce some notation that is similar the notation used in Discontinuous
Galerkin methods.

Let T be a regular partition of˝ into tetrahedral elements T ; hT is the diameter
of T , and h D maxT2T hT . The boundary of each element is decomposed into four
triangles, called facets. We assume that each facet f has a distinguished normal nf .
If a facet f is contained in the boundary of some element T then either nf D n@T jf
or nf D �n@T jf . Then, if u is a piecewise smooth vector field on T , uC and u�
denote the two different restrictions of u to f , e.g. uC WD uj

TC
where element TC

has outward normal nf . With these restrictions we define also the jump Œu�f D
uC � u� and the average fugf D 1

2
.uC C u�/. For f � @˝ we assume f to be

oriented such that nf points outwards. Let F ı and F @ be the set of interior and
boundary facets. F @�;F @C � F @ are the sets of facets on the inflow and outflow
boundary, respectively.

We define the bilinear mapping, .u; v/f;ˇ WD
R
f .ˇ �nf /.u � v/ dS ; the advection

operator Lˇ u WD grad.ˇ �u/C curl u�ˇ and its formal adjoint L ˇ u WD curl.ˇ�
u/ � ˇDiv u : Hence, for smooth u and v we have

�
Lˇ u; v

�
˝
� �

u;L ˇ v
�
˝
D

.u; v/@˝;ˇ : In the following Vh denotes some space of piecewise polynomial vector
fields that are continuous on each element of the mesh T . For the moment we do not
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specify, which components are continuous and which components are discontinuous
at the element interfaces. The stabilized Galerkin method reads as follows:

Find u 2 Vh, such that:

a .u; v/ D .f; v/˝ �
X

f 2F @
�

.g; v/f;ˇ ; 8v 2 Vh ; (3)

with

a .u; v/ D .˛u; v/˝ C
X

T

.curl u � ˇ; v/T � .u;ˇDiv v/T

C
X

f 2Fı

Z

f

ˇ � fugf Œv�f � nf dS �
Z

f

�
Œu�f � nf

� � �fvgf � ˇ
�

dS

C
X

f 2Fı

Z

f

cf ˇ � Œu�f Œv�f � nf dS C
Z

f

cf
�
Œu�f � nf

� � �Œv�f � ˇ
�

dS

C
X

f 2F @nF @
�

Z

f

.ˇ � u/.v � nf / dS �
X

f 2F @
�

Z

f

�
u � nf

� � .v � ˇ/ dS ;

(4)

We refer to [11, Section 2] for a detailed derivation of this method. There too, it is
shown that the method is consistent and stable in the mesh dependent norm (with
k�k2f;ˇ WD .u;u/f;ˇ)

kuk2h WD kuk2L2.˝/ C
X

f 2Fı

��Œu�f
��2
f;cf ˇ

C
X

f 2F @nF @
�

kuk2
f; 12ˇ
C

X

f 2F @
�

kuk2
f;� 1

2ˇ
;

when the parameter cf fulfills the following positivity condition.

Assumption 2 Assume the parameters cf in the definition (3) satisfy for all faces
f the positivity condition cf ˇ � nf >Kjˇ � nf j for positive K 2 R.

Lemma 1 Let Assumptions 1 and 2 hold. Then we have for all u 2 Vh:

a .u;u/ � min.
1

2
˛0; 1/kuk2h :

3 Previous Results

If we choose Vh in (3) to be a space of vector fields that have neither continuous
tangential nor continuous normal components at the element interfaces our method
coincides with the Discontinuous Galerkin method for Friedrichs’ operators [11,
Section 3]. The choice cf D ˇ�nf

jˇ�nf j yields the classical upwind methods, and we can
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cite the following convergence result from [5, Theorem 4.6 & Corollary 4.7], [16,
Theorem 50 & Corollary 12] or [11, Theorem 3.1]

Theorem 1 Let Assumptions 1 and 2 hold. Let Vh be the finite element space of
discontinuous piecewise polynomial vector fields:

Vh D Vr
dis WD fv 2 L2.˝/; vjT 2 .Pr.T //3 ; T 2 T g ; (5)

where Pr , r � 0 is the space of polynomials of degree r or less. Let u 2 H rC1 .˝/
and uh 2 Vh be the solutions to the advection problem (1) and its variational
formulation (3). We get with C > 0 depending only on ˛, ˇ, K , the polynomial
degree and the shape regularity

ku � uhkh � ChrC
1
2 kukH rC1.˝/ :

Surprisingly, the same rate of convergence can be shown, if Vh in (3) is a space of
vector fields that have continuous tangential but discontinuous normal components
at the element interfaces [11, Theorem 4.2].

Theorem 2 Let Assumptions 1 and 2 hold. Pr , r � 0 is the space of polynomials of
degree r or less. Let then Vh be a finite element space of H .curl;˝/-conforming
piecewise polynomial vector fields of degree r or less:

Vh D Vr
cnf;1 WD fv 2 H .curl;˝/ ; vjT 2 .Pr.T //3 ; T 2 T g ;

such that best approximation estimates

min
wh2Vh

ku �whkH s .T / � ChrC1�skukH rC1.T / ; s D 0; 1 ;8u 2 H rC1 .˝/

hold with constants depending only on shape regularity of the mesh, e.g., Vh can
belong to one of the two families of spaces proposed in [18] and [19]. Let u and
uh 2 Vh be the solutions to the advection problem (1) and its discrete variational
formulation (3). Then, with C > 0 depending only on ˛, ˇ,K the polynomial degree
and shape regularity, we get

ku� uhkh � ChrC
1
2 kukH rC1.˝/ ;

provided that h is sufficiently small.

4 H.Div;˝/-Conforming Approximation

In this section we prove the main result, the optimal convergence of our method
(3) when Vh is a space of H .Div;˝/-conforming vector fields. The proof relies
on the so-called averaging interpolation operators mapping piecewise polynomial
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non-conforming vector fields to piecewise polynomial H .curl;˝/-conforming or
H .Div;˝/-conforming vector fields. Similar to Vr

cnf;1 in Theorem 2 we introduce

Vr
cnf;2 WD fv 2 H .Div;˝/; vjT 2 .Pr.T //3 ; T 2 T g, the space of H .Div;˝/-

conforming finite elements.

Proposition 1 Let u 2 Vr
dis. Then there exist uc;1 2 Vr

cnf;1 and uc;2 2 Vr
cnf;2 such

that

�
�u� uc;1

�
�2
L2.˝/

� C1
X

f 2Fı

hf

Z

f

ˇ
ˇŒu�f � nf

ˇ
ˇ2 dS (6)

and

�
�u � uc;2

�
�2
L2.˝/

� C2
X

f 2Fı

hf

Z

f

ˇ
ˇŒu�f � nf

ˇ
ˇ2 dS ; (7)

where hf is the diameter of facet f and C1 and C2 depend only on the shape-
regularity and the polynomial degree r , and, in particular, are independent of the
mesh size.

The proof of (6) can be found in [13, Proposition 4.5] and the second assertion
follows by similar arguments (see also [8, Proposition 4.1.2]).

Theorem 3 Let Assumptions 1 and 2 hold. Pr , r � 0 is the space of polynomials
of degree r or less. Let then Vh be a finite element space ofH .Div;˝/-conforming
piecewise polynomial vector fields of degree r or less:

Vh D Vr
cnf;2 WD fv 2 H .Div;˝/; vjT 2 .Pr.T //3 ; T 2 T g ;

such that best approximation estimates

min
wh2Vh

ku �whkH s .T / � ChrC1�skukH rC1.T / ; s D 0; 1 ;8u 2 H rC1 .˝/

hold with constants depending only on shape regularity of the mesh. Let u and
uh 2 Vh be the solutions to the advection problem (1) and its discrete variational
formulation (3). Then, with C > 0 depending only on ˛, ˇ,K the polynomial degree
and shape regularity, we get

ku� uhkh � ChrC
1
2 kukH rC1.˝/ ;

provided that h is sufficiently small.

Proof Let Nuh denote the global L2-projection of u onto Vh and define � WD u � Nuh
and �h WD uh � Nuh. With this, the error ku � uhkh is bounded by two terms:

ku � uhkh � k�kh C k�hkh :
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For the first term, by the assumptions of the theorem, we have

k�kL2.T / � ChrC1kukH rC1.T / ;

and for the second term, by stability, consistency and �h 2 Vr
cnf;2:

min.
1

2
˛0; 1/k�hk2h � a .�;�h/ :

Next, we add and subtract the Lie-derivative with respect to a piecewise constant
velocity field ˇh 2 V0

dis that is the L2-projection of ˇ onto V0
dis:

a .�;�h/ D .˛�;�h/˝ C
X

T

�
�; .L ˇ �L ˇh

/�h
�
T
C �

�;L ˇh
�h
�
T

C
X

f 2F @nF @
�

.�;�h/f;ˇ C
X

f 2Fı

�
f�gf ; Œ�h�f

	

f;ˇ
C
�
cf Œ��f ; Œ�h�f

	

f;ˇ
:

Yet, as
P

T

�
�;L ˇh

�h
�
T
¤ 0, the difficult part is now to show

ˇ
ˇ
ˇ
ˇ
ˇ

X

T

.�; curl.�h � ˇh/C ˇh Div�h/T

ˇ
ˇ
ˇ
ˇ
ˇ
� Ch� 12 k�kL2.˝/k�hkh : (8)

Let wc;1 2 Vr
cnf;1 and wc;2 2 Vr

cnf;2 be the conforming approximations of ˇh � �h 2
Vr

dis and ˇh Div�h 2 Vr
dis. Since � D u � Nuh and both curl wc;1 2 Vr

cnf;2 and
wc;2 2 Vr

cnf;2 we find

ˇ̌
ˇ
ˇ
ˇ

X

T

.�; curl.�h � ˇh//T
ˇ̌
ˇ
ˇ
ˇ
� C0h�1k�kL2.˝/

�
��h � ˇh �wc;1

�
�
L2.˝/

and
ˇ̌
ˇ
ˇ
ˇ

X

T

.�;ˇh Div�h/T

ˇ̌
ˇ
ˇ
ˇ
� k�kL2.˝/

�
�ˇh Div�h �wc;2

�
�
L2.˝/

:

The approximation results (6) and (7) give

�
��h � ˇh � wc;1

�
�2
L2.˝/

� C1h
X

f 2Fı

�
�
�Œ�h � ˇh�f � nf

�
�
�
2

L2.f /
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and

�
�ˇh Div�h � wc;2

�
�2
L2.˝/

� C2h
X

f 2Fı

��
�Œˇh Div�h�f � nf

��
�
2

L2.f /
:

Inverse inequalities, approximation properties of ˇh, normal continuity of �h and
tangential continuity yield for the right hand sides of the last two equations:

�
�
�Œ�h�ˇh�f �nf

�
�
�
L2.f /
�
�
�
�Œ�h�.ˇh � ˇ/�f �nf

�
�
�
L2.f /
C
�
�
�Œ�h�ˇ�f �nf

�
�
�
L2.f /

� C3h1
2 k�hkL2.T1[T2/ C

�
�
�ˇ � nf Œ�h�f � Œ�h�f � nf ˇ

�
�
�
L2.f /

� C3h1
2 k�hkL2.T1[T2/ C

�
�
�ˇ � nf Œ�h�f

�
�
�
L2.f /

and
��
�Œˇh Div�h�f �nf

��
�
L2.f /
�
��
�Œ.ˇh � ˇ/Div�h�f �nf

��
�
L2.f /
C
��
�ˇ �nf ŒDiv�h�f

��
�
L2.f /

� C4h� 12 k�hkL2.T1[T2/ C C5h�1
��
�ˇ �nf Œ�h�f

��
�
L2.f /

;

with constants C3, C4 and C5 independent of h, and T1 and T2 those elements that
share f . Hence we deduce (8), and the assertion follows.

We refer to [8, Section 4.1.4] for detailed numerical experiments for test cases
with both smooth and non-smooth solutions.
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Finite Element-Boundary Element Methods
for Dielectric Relaxation Spectroscopy

Stephan C. Kramer and Gert Lube

Abstract We apply the finite element-boundary element method (FEM-BEM) for
a smooth approximation of a curvilinear interior interface in a finite domain. This
avoids unphysical singularities at the interface due to a piece-wise linear boundary.
This type of FEM-BEM coupling arises from simulating the biophysical problem of
dielectric relaxation spectroscopy of solvated proteins. Boundary elements convert
the linear Poisson problem due to the intramolecular charges of the protein into a
boundary condition at the protein-solvent interface. The electro-diffusion of ions
in the solvent is modeled as a set of convection-diffusion equations. The spatial
distributions of the ion species induce an electrostatic potential which solves a
Poisson problem. The gradient of the potential constitutes the convective flow field.
The link to experiments is given by computing the stationary ionic current through
the system. This requires Robin-type boundary conditions at the electrodes.

1 Introduction

The coupling of finite and boundary element methods, (FEM) and (BEM), is
commonly used for interface problems on unbounded domains. Finite elements
are applied to bounded “regions of interest” which contain non-linearities, inho-
mogeneities and other properties which need a well-resolved volume mesh. The
BEM part models unboundedness and physical effects described by a homogeneous
partial differential equation (PDE) with constant coefficients. In this work we

S.C. Kramer (�)
Institut für Numerische und Angewandte Mathematik der Universität Göttingen, Lotzestraße
16-18, D-37073 Göttingen, Germany

Max-Planck Institut für biophysikalische Chemie, Am Faßberg 11, D-37077 Göttingen, Germany
e-mail: stkramer@math.uni-goettingen.de; stephan.kramer@mpibpc.mpg.de;
sck.goe@googlemail.com

G. Lube
Institut für Numerische und Angewandte Mathematik der Universität Göttingen, Lotzestraße
16-18, D-37073 Göttingen, Germany
e-mail: lube@math.uni-goettingen.de

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2013, Lecture Notes in Computational Science and Engineering 103,
DOI 10.1007/978-3-319-10705-9_4

47

mailto:stkramer@math.uni-goettingen.de
mailto:stephan.kramer@mpibpc.mpg.de
mailto:sck.goe@googlemail.com
mailto:lube@math.uni-goettingen.de


48 S.C. Kramer and G. Lube

discuss how to employ BEM to exclude a subdomain from a finite domain. This
accurately models the geometric shape of an interior, curvilinear and smooth
interface and unifies the computational domain for the components of a PDE model.

The investigation of this subclass of FEM-BEM coupling arises from the need
to simulate the biophysical problem of dielectric relaxation spectroscopy (DRS) of
solvated proteins, in particular ubiquitin, which plays a fundamental role in cell
biology. The discovery of ubiquitin-mediated protein degradation won the nobel
prize in chemistry in 2004. The physical basis of DRS is the polarizability of non-
conducting materials in the presence of an external electric field. Polarization is
the material-specific part of the dielectric displacement which is proportional to the
electric field. The proportionality is given by the complex dielectric permittivity "�.
In the frequency domain it quantifies the dynamic response of molecular dipoles
(contributing at high frequencies) and mobile charge carriers (predominant influence
at low frequencies). The DRS technique allows to measure dielectric properties in
the range of 10�6–1012 Hz. For a detailed review see the monograph [1]. The typical
experimental setup is a parallel plate capacitor with the dielectric sample in between
the plates [1, Chapter 2]. Application of an alternating voltage yields the dielectric
loss spectrum, i.e. the conductivity-corrected imaginary part of "� as function of
frequency. In case of ubiquitin in aqueous solution this spectrum is dominated by
the “	” peak at about 10 GHz, which represents the reorientation of the dipoles of
water molecules in the bulk, and the “ˇ” peak at roughly 10 MHz which accounts
for the tumbling motion of the protein molecule while its molecular dipole aligns
with the applied electric field [2]. This is sketched in Fig. 1a. The peak positions
reveal the time scales on which the relaxation processes take place. Recent DRS
studies on ubiquitin [3] suggest that the dynamics of conformational sampling, i.e.
a protein’s ability to switch between different molecular conformations (indicated
by the different positions of the intramolecular charges in Fig. 1b, c), influence the
direct current component of the dielectric loss spectrum and can be observed as the
“sub-ˇ” peak. This important discovery provides a direct experimental access to
the rates of the intramolecular dynamics, which are mostly inaccessible to nuclear
magnetic resonance (NMR) spectroscopy, the most frequently used experimental

Fig. 1 (a) Dielectric loss spectrum of ubiquitin. (b, c) Charge configurations in protein (domain
˝P ) in the DRS cell ˝ D ˝S [˝P . Details see text
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technique to characterize protein dynamics. For the detailed explanation of many
biomolecular processes, e.g. of protein-protein recognition [4], the exact knowledge
of the kinetics of conformational sampling is decisive.

In this paper we apply the theory of FEM-BEM methods for infinite domains to
the case of using the BEM part to exclude a subdomain from a finite domain in order
to develop a deeper understanding of the origin of the “sub-ˇ” peak. We use BEM
to retain the smooth shape of the protein-solvent interface. The proper incorporation
of a stationary current by means of Robin-type boundary conditions (BCs) provides
the link to a comparison with experimental data. The equations are solved by the
geometric multigrid (GMG) method [5] from deal.II [6].

2 Poisson-Nernst-Planck Model

Initial theoretical studies explained the “sub-ˇ” peak by a 2-state, ratchet-like
stochastic model for the conformational dynamics coupled to a Fokker-Planck
model for the mobile ions [3, supplementary material]. Depending on its confor-
mation the ubiquitin molecule may bind a varying number of ions in its dielectric
double layer thus influencing the density of mobile ions responsible for the direct
current component. Although it explains the essential features of the “sub-ˇ” peak,
this stochastic model neither includes spatial inhomogeneities nor BCs.

For the effects at the protein-solvent interface � we need at least a generic anion
and cation species with densities c� and cC, respectively, with charges of equal
strength. To incorporate a stationary current through the DRS cell (Fig. 1), we have
to take into account the redox reaction ICCe� $ N for converting a cation IC into
a neutral particleN at the cathode�C or the anode�A. Thus, we have to incorporate
the density c0 of the neutral particles. The stochastic description of the ion dynamics
is replaced by the Poisson-Nernst-Planck equations

@t ca D �r � ja ; (1a)

ja D �.rca C acar˚/ (1b)

�r � ."r .r/r˚/ D �.cC � c�/�˝S C �f (1c)

for non-dimensional ion densities ca W ˝S ! R, a 2 fC; 0;�g, electro-diffusive
fluxes ja W ˝S ! R

3 and electrostatic potential ˚ W ˝ ! R. The charge density
on the right-hand side of Eq. (1c) comprises the mobile ions in the subdomain of
the solvent˝S , indicated by its characteristic function �˝S , and the intramolecular,
conformation-specific charge distribution %f , indicated by the index f . Here, the
protein is a dipole with two point charges immersed in a spherical, dielectric domain
˝P D ˝n˝S , ˝P \ ˝S D ;. The function "r in Eq. (1c) is piece-wise constant
and denotes the relative permittivities, i.e. "r D "S 	 80 on ˝S , "r D "P 	 2 on
˝P . Note the different computational domains for ions, ˝S , and potential,˝ .
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A realistic description of DRS requires BCs for the ja and˚ capable of modeling
an applied current. Usually, the redox reaction rates KR and KO are described by
Butler-Volmer kinetics, including the Frumkin correction due to the Stern layer [7].
As discussed in [8], for ˚ Dirichlet BCs, ˚

ˇ
ˇ
�C
D ˚C , ˚

ˇ
ˇ
�A
D ˚A, suffice. The

redox reaction implies a balance of in- and outward fluxes at the electrodes

n � jC
ˇ
ˇ
�C
D KR cC

ˇ
ˇ
�C
D � n � j0

ˇ
ˇ
�C
; (2)

�n � jC
ˇ
ˇ
�A
D KO c0

ˇ
ˇ
�A
D n � j0

ˇ
ˇ
�A
; (3)

where n is the outer normal of the surface @˝S and �jB is the trace on some part
B � @˝S D �C [ �0 [ �A [ � . The rates are treated as constants, especially their
dependence on ˚ is neglected. The anions do not contribute to the current transport
and fulfill n � j�j�A D n � j�j�C D 0. The hull �0 of the cell and the protein surface �
are impermeable for all ions, n � jaj�0 D n � jaj� D 0, a 2 fC; 0;�g. For ˚ we have
n � r˚ j�0 D 0 and � is a dielectric interface with continuity and the jump relations

lim
ı!0˚.x � ın/ D lim

ı!0˚.xC ın/ ; "P .x/n � r˚ D "S.x/n � r˚ 8x 2 � :(4)

One goal in computational biochemistry is to model molecular surfaces of proteins
in a smooth manner [9]. Instead of an accurate sub-cell resolution of the dielectric
interface � we convert the interior constant-coefficient-Poisson equation into a
boundary integral equation (BIE) on � . The protein becomes an excluded volume
˝P of constant dielectric permittivity "r D "P containing point charges fqkg at
fixed positions fxkg. To do this, we apply the discussion of the BIE formulation
for linear interior Neumann boundary value and interface problems in [10]. The
Johnson-Nédélec coupling [11] needs the normal component of the electric field
w.r.t. to the outer normal nP (nP D �n on � ) of ˝P as independent variable
tP WD �@n˚ . Potential theory shows that on C1-smooth, closed surfaces � the
intramolecular part ˚P of the potential at x 2 � fulfills

1

2
˚.x/ C

I

�


˚.x0/

@Gx

@n0P
.x0/ �Gx.x0/

@˚

@n0P
.x0/

�
d� .x0/ D 1

"P

Z

˝P

Gx.x0/�f .x0/ :

Here, Gx.y/ WD 1=.4�jx � yj/ is the Green’s function of the Laplace equation.
The right-hand side defines the Newton potential �C . We define the single layer
boundary integral operator (BIO) V W H�1=2.� /! H1=2.� / and the double layer
BIO K W H1=2.� / ! H1=2.� / as in [12, Secs. 6.2 and 6.4]. Instead of nP we use
the outward normal n D �nP relative to ˝S

.V tP /.x/ WD
I

�

Gx.x0/tP .x0/d� .x0/ ; .K˚P /.x/ WD
I

�

@Gx

@n.x0/
.x0/˚.x0/d� .x0/ :
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From Eq. (4) follows "S@n˚
ˇ
ˇ
�
D �"P tP and we get

�
1

2
I �K

�
˚ C "S

"P
V tP D �C : (5)

This is the basis for the FEM-BEM method for the potential, reducing its com-
putational domain to ˝S D ˝n˝P . The distribution of the ions is governed by
convection-diffusion equations with either Neumann or Robin but no Dirichlet BCs.
The link to experiments is the direct current Idc created by a potential difference
� WD ˚C � ˚A. Due to the redox reaction at the electrodes Idc D

R
�C

n � jCd�C D
KR

R
�C
cCd�C . The conformational sampling introduces a time-dependence on Idc .

This is modeled by a two-state telegraph process, i.e. a random switching between
two stationary states. This makes Eq. (1a) formally time independent. For details
cf. [8]. To validate the hypothesis about the origin of the “sub-ˇ” peak we have to
compute two different values for Idc from the time independent version of Eq. (1).

3 Weak Formulation and Discretization

We do not solve Eq. (1) in its mixed form, but reduce it to a set of convection-
diffusion equations by inserting Eq. (1b) into Eq. (1a), eliminating the currents.

Let .�; �/D be the L2 inner product on a domain D and k � kX the norm of a
function space X . For D 
 ˝S we drop the index. The weak form of Eq. (1) is
derived by multiplying with test functions, integrating by parts and inserting all flux
BCs. The Dirichlet BCs for the potential ˚ are built into the solution space X for
the FEM part. We define X as a direct product of a space Xc WD ŒH1.˝S/�

3 for
the densities and X˚ WD f˚ 2 H1.˝S/ W ˚ j�A D 0; ˚ j�C D �g for ˚ . For
the BCs for ˚ on � we need the space Y WD H�1=2.� /. The final solution space
is V WD X � Y . The FEM part of the solution is u WD .cC; c0; c�; ˚/ and the test
function is v WD .s; u; v;w/. Except for the interface term for˚ on � the weak form
is a semilinear form a.�I �/ W X � X ! R which is nonlinear in its first argument.
The terms in a.�I �/ can be grouped to reflect, after linearizing, the block structure
of the matrix using scalar test functions as block row and trial functions as block
column indexes. Diagonal terms are in aD.�I �/, linear upper off-diagonal terms in
alU .�I �/, nonlinear drift terms in adU .�I �/ and lower off-diagonal terms in aL.�I �/, i.e.

aD.uI v/ WD .rs;rcC/C .ru;rc0/C kO.u; c0/�A C .rv;rc�/C "S.rw;r˚/;
alU .uI v/ WD �kO.s; c0/�A ; adU .uI v/ WD .rs; cCr˚/ � .rv; c�r˚/ ;
aL.u; v/ WD �kR.u; cC/�C � .w; cC � c�/ :
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After linearizing adU .�I �/ w.r.t. cC and c�, the associated matrices are AD , AU and
AL, respectively. The left-hand side of the weak form of Eq. (5), with associated
matrices BK and BV , is a sum of the two bilinear forms

bK. ;˚/ WD
�
 ;
�
1
2
I �K�˚�

�
W H1=2.� / �H1=2.� /! R ;

bV . ; t
P / WD "S

"P

�
 ; V tP

�
�

W H�1=2.� / �H1=2.� /! R :

We use conformal discretizations Xh � X and Yh � Y by globally continuous
Lagrange elements for which we use deal.II’s FE_Q<dim> class. In practice, the
trial functions in Yh are given by the traces of those in Xh because we treat the
normal derivative as independent variable. This is due to the way finite elements
are implemented in deal.II. The same holds for the test functions  in the dual
space Y 0h � H1=2.� /. Then, the discretized variational problem is: Find .uh; tPh / 2
Xh � Yh s: t:

8vh 2 Xh W a.uhI vh/C .w; "P tP /� D 0 ; (6a)

8 h 2 Y 0h W bK. h;˚h/C bV . h; tPh / D
�
 h; �

C
�
�
: (6b)

Several numerical problems arise in solving the discretized problem. Only the
potential ˚ is unambiguous since it is subject to Dirichlet BCs at the electrodes
�A and �C . The equation for the density of the neutral particles c0 effectively
is a pure Neumann Laplace problem. Its average merely enters via the boundary
terms in Eq. (3) for the cations cC. Particle numbers, and thus average densities,
are conserved

R
˝S
ca d˝S D const, a 2 fC; 0;�g in the stationary state.

This is enforced by adding a pseudo-time dependence, i.e. �r2u D f becomes
ŒıI � r2�unC1 D f C ıun, where ı is an inverse time step and I is the identity
operator.

We solve by interleaving successive mesh refinement, pseudo-time stepping and
reassembly of the nonlinear terms. This introduces a sequence of finite-dimensional
subspaces Xh � X , parametrized by the cell diameter h. On a given mesh, i.e. in
FE space V `

h � V , V `
h � V `C1

h we run a few steps in pseudo-time (while kunC1 �
unk`2 � Tol). In each time step we reassemble the drift terms in AU after solving
the linear algebraic problem by deal.II’s GMRES solver with left-preconditioning.

For the numerical solution of Eq. (6) we have considerably extended the GMG
example step-16 of deal.II, v7.2.0. When computing the matrices BK , BV from the
bilinear forms bK.:; :/ and bV .:; :/ the double integration is avoided by using the
support points of the test functions for collocation. With tPh D

P
i t
P
i �i 2 Yh, e.g.

the entries of the matrix representing the single layer BIO are formally given by
BV;ij D . i ; V�j /: Let xi be the support point of DoF i , then collocation at xi can
be interpreted as BV;ij D .ı.x� xi /; V�j /, i.e. BV;ij is computed as

BV;ij D
I

@˝S

Gxi .x
0/�j .x0/d� .x0/ : (7)
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Fig. 2 Convergence of the Neumann problem, Eq. (11), with (a) Eq. (8), (b) Eq. (9) as solution. (c)
FEM and (d) BEM error for dipole test case, Eq. (9), on the FEM-BEM problem, Eq. (10). Figures
share axis labels and legends

To minimize the costs of matrix assembly we compute bulk and boundary mass
matrices only once. The definitions of Xc and X˚ require the assembly of two dif-
ferent Laplacians and hence to setup two GMG preconditionersP c

MG and P˚
MG. Cell

contributions get reused when building global matrices which differ only in the BCs.
The costs of assembling the matrices by numerical quadrature are roughly equal to
two Poisson equations with variable coefficients as the data for the linear Laplacians
can be reused to a great extent for the drift terms. The matrix A for the linearized
DRS problem, Eq. (6), is stored as dealii::BlockMatrixArray and the pre-
conditioner PA as dealii::BlockTrianglePecondition which acts like
a block Gauss-Seidel method. Its diagonal blocks are .P c

MG; P
c
MG; P

c
MG; P

˚
MG; P

V /,
where PV preconditions BV and is the identity matrix. The upper off-diagonal
blocks ofPA are void. The lower off-diagonal blocks are those ofA, i.e.AL andBK .

Results and Conclusion
In our tests we model the boundary piece-wise by polynomials of order m D
2, cf. legend of Fig. 2. This numerical boundary is not C1-smooth. According
to our tests, it approximates the curved surface of a sphere sufficiently well
such that we do not have to consider the solid angle subtended by the surface

(continued)
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elements at a vertex of the mesh of � . Due to the outer surface of the DRS
cell we cannot use the C1-mapping provided by deal.II as deal.II cannot
assign different mappings to different subboundaries. Throughout we use
either linear (p D 1) or quadratic (p D 2) FEM.

We are interested in the convergence of our method for the pure Neumann
problem and for the FEM-BEM coupling. We define two test problems with
solutions

˚SP WD 0:1.2x C y C z/C 0:01xyz ; (8)

˚D WD 1

4�jx � xCj �
1

4�jx � x�j ; (9)

with x˙ D .0; 0;˙0:5/ in a sphere of radius 1. As ˚ref is either ˚SP or
˚DSP WD ˚D C˚SP. Note that ˚SP is harmonic. The FEM-BEM convergence
is assessed on the simplified problem: find .˚; tP / 2 X˚ � Y s:t: 8.�;  / 2
X˚ � Y 0 W

.rv; "Sr˚/C .v; "S tP /� D 0 ; (10a)

bK. h;˚h/C bV . h; tPh / D
�
 ; �C

�
�
; (10b)

with ˚ j�A[�0[�C D ˚ref . The test for pure Neumann BCs is: find ˚ 2
H1.˝S/ s:t:

.rv;r˚/ D .v; @n˚ref / 8� 2 H1.˝S/ : (11)

To measure the error we use the standard L2.˝S/- andH1.˝S/-norm for the
FEM part. For the BEM part we measure the L2 error of the trace of ˚ on �
k˚ref � ˚hk2L2.� /, and the L2 error in the trace of @n˚ 
 �tP on � . Here,

denoted asH1.� / semi-norm j˚ref�˚hj2H1.� /
WD k@n˚refCtPh k2L2.� /. In case

of Eq. (11) and ˚ref D ˚SP convergence is as expected. For FEM of order p
we get ku�uhk2L2.˝S / D O.hpC1/ and ku�uhk2H1.˝S /

D O.hp/ independent
of the order of the boundary approximation m, cf. Fig. 2a. Figure 2b shows
that for ˚ref D ˚DSP we roughly lose half an order which we attribute to the
right-hand side of the BEM part containing the ı-distributions for the point
charges. Figure 2c shows the convergence of the FEM part of Eq. (10). For
Lagrange finite elements of order p D 2 the L2.˝S/ and H1.˝S/ error
have the same asymptotic behavior. The error in the BEM part, Fig. 2d, is as
expected for linear elements (p D 1). Due to the collocation the decay of the
error in tP does not improve. The error of˚ j� partly profits from higher order
elements. Figure 3 shows that local inhomogeneities of the cation density in

(continued)
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the vicinity of the protein surface are resolved and the current-carrying species
(cations and neutral particles) are distributed opposite to each other.

Fig. 3 Distribution of cations and neutral particles in the DRS cell

To conclude, we have derived a mathematical model for the detailed sim-
ulation of the electro-diffusive processes in dielectric relaxation spectroscopy
of proteins in solution including boundary effects inaccessible in previously
derived stochastic models. The key feature is the modeling of the protein-
solvent interface as excluded volume with a smooth surface by taking into
account its electrostatic properties by means of a boundary integral equation.
For the efficient solution of the resulting FEM-BEM model we have extended
the geometric multigrid example of the deal.II library (step-16) to vector-
valued problems and higher order elements. Unlike the strategy proposed
in deal.II’s step-34 for boundary elements we have to use the traces of the
finite elements as boundary elements. Most of the equations in the DRS
model are pure Neumann problems and subject to a conservation of particle
numbers. To assure their unique solvability we implemented an interleaved
pseudo-time stepping/mesh refinement strategy which avoids the saddle-point
problems arising from Lagrange multipliers. The convergence is as expected.
The convergence of the FEM-BEM method depends on the particular test
case but is consistent with the literature. Applied to the full DRS problem
our numerical results indicate the validity of the proposed explanation of the
origin of the “sub-ˇ” peak.
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On the Local Mesh Size of Nitsche’s Method
for Discontinuous Material Parameters

Mika Juntunen

Abstract We propose Nitsche’s method for discontinuous parameters that takes the
local mesh sizes of the non-matching meshes carefully into account. The method
automatically adapts to the changing material parameters and mesh sizes. With
continuous parameters, the method compares to the classical Nitsche’s method.
With large discontinuity, the method approaches assigning Dirichlet boundary
conditions with Nitsche’s method.

1 Introduction

Suppose the computational domain is divided along the material edges yielding
material parameters that are discontinuous over the subdomain interfaces. If the
discontinuity in the material parameters is moderate, the Nitsche’s method in [3]
applies. Some of the problems with large parameter discontinuities are avoided
using the harmonic average of the material parameters to create a weighted average
flux over the interface [1, 2, 5, 7–9, 11, 13, 14].

In this article we propose Nitsche’s method that takes both the material parame-
ters and the mesh sizes carefully into account in the bilinear form. Both the average
flux and the stabilizing term are modified to depend on the material parameters
and the mesh sizes, similar to [2]. As a result, the proposed method automatically
adapts to the material parameters and mesh sizes. If there is no discontinuity over the
interface and the mesh sizes are of the same order, we have the classical Nitsche’s
method. If the mesh sizes or material parameters have very large contrast over
the interface, the method reduces to assigning Dirichlet boundary conditions with
Nitsche’s method.

M. Juntunen (�)
Department of Mathematics and Systems Analysis, Aalto University School of Science, P.O. Box
11100, 00076 Aalto, Finland
e-mail: mika.juntunen@aalto.fi

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2013, Lecture Notes in Computational Science and Engineering 103,
DOI 10.1007/978-3-319-10705-9_5

57

mailto:mika.juntunen@aalto.fi


58 M. Juntunen

2 Model Problem

Consider a domain ˝ � R
d , d D 2; 3, with a piecewise smooth boundary @˝ .

Assume that the domain is divided into two non-overlapping subdomains ˝1 and
˝2. The subdomains cover the whole domain N̋ D N̋

1 [ N̋ 2 and they share an
interface � D @˝1 \ @˝2. We solve the Poisson problem such that

�r � kirui D f in ˝i ; i D 1; 2; (1)

ui D 0 on @˝;

u1 � u2 D 0 on �; (2)

k1
@u1
@n1
C k2 @u2

@n2
D 0 on �; (3)

in which ki 2 R, 0 < kmin < ki < kmax, i D 1; 2, are the material parameters
and f 2 L2.˝/ is the load function. We denote with ki

@ui
@ni
D kirui � ni the

normal flux and with n1 and n2 the outward normals of the subdomains. We also
use n D n1 D �n2 and

@u1
@n
D @u1
@n1

and
@u2
@n
D @u2
@n1
D � @u2

@n2
:

Let the subdomains be divided into sets of non-overlapping elements denoted by
T h
1 and T h

2 , in which h denotes the maximum diameter of elements. Let E h
1 and E h

2

denote the edges or faces of the meshes T h
1 and T h

2 , respectively. Let hK denote
the diameter of an element K 2 T h

i and hE the diameter of E 2 E h
i .

Suppose the solutions ui belong to Vi such that

Vi D
n
v 2 H1.˝i/ W @vi

@ni
j� 2 L2.� /; vj@˝ D 0

o
; i D 1; 2:

Let the finite element spaces be

V h
i D fv 2 H1.˝i / W vj@˝ D 0; vjK 2Pp.K/ 8K 2 T h

i g; i D 1; 2;

in which Pp denotes the polynomials of degree� p. We assume p � 1. We use the
notation V D V1 � V2 and V h D V h

1 � V h
2 . Respectively, we use v D .v1; v2/ 2 V

and vh D .vh1; vh2/ 2 V h to denote the pair of functions defined in the subdomains.
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3 The Proposed Method

In this section we propose Nitsche’s method that takes the possible discontinuity of
the material parameters and mesh sizes into account. The method is similar to [2].

For simplicity of notation we define the functions hi W N̋ i ! R, i D 1; 2 such
that

hi .x/ D
(
hK if x 2 K; K 2 T h

i ;

hE if x 2 E; E 2 E h
i :

At the interface � , for v 2 V we use �v� D v1 � v2 to denote the jump over the
interface.

Let .�; �/G denote theL2-inner product over a domainG. Multiplying Eq. (1) with
a test function v 2 Vi and integrating by parts gives

.kirui ; vi /˝i �
�
ki
@ui
@ni

; vi

�

�

D .f; vi /˝i :

By Eq. (3) it holds that

�
k1h2

k2h1 C k1h2
�
�k1 @u1

@n
C k2 @u2

@n

�
; v1

�

�

D 0;
�

k2h1

k2h1 C k1h2
�
k1
@u1
@n
� k2 @u2

@n

�
;�v2

�

�

D 0;

and by Eq. (2) it holds that

�
k1k2

k2h1 C k1h2 �u�; �v�

�

�

D 0:

Adding the equations above and introducing a stability parameter 	 > 0 gives the
weak form of the proposed Nitsche’s method: Find uh 2 V h such that

Bh.uh; vh/ D F .vh/ 8vh 2 V h:

The bilinear form is

Bh.w; v/ D
2X

iD1
.kirwi ;rvi /˝i �

�


k
@w

@n

��
; �v�

�

�

�
�



k
@v

@n

��
; �w�

�

�

C 	
�

k1k2

k2h1 C k1h2 �w�; �v�

�

�

;
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in which



k
@v

@n

��
D ˛1 k1 @v1

@n
C ˛2 k2 @v2

@n
;

˛1 D k2h1

k2h1 C k1h2 ; ˛2 D k1h2

k2h1 C k1h2 ;

denotes the weighted average flux. The linear functional is simply

F .v/ D
2X

iD1
.f; vi /˝i :

By the derivation above it is clear that the proposed method is consistent with the
strong form.

3.1 A Priori Analysis

Following [3,10,12,13] we use the mesh dependent norms in the analysis. Let k�kG
denote theL2 norm over a domainG. The parameters k1 and k2 are explicitly shown
in the norms on V :

kvk21;h D
2X

iD1

�
�
�
�k

1
2

i rvi

�
�
�
�

2

˝i

C
�
�
�
��

�
k1k2

k2h1 C k1h2
� 1

2

�v�

�
�
�
��

2

�

;

jjjvjjj21;h D kvk21;h C
2X

iD1

�
�
�
�.hiki /

1
2
@vi
@n

�
�
�
�

2

�

:

Clearly kvk1;h � jjjvjjj1;h for all v 2 V . The converse,
ˇ̌̌̌ ˇ̌

vh
ˇ̌̌̌ ˇ̌
1;h
� C��vh

��
1;h

with a

C > 0, holds for any vh 2 V h. This follows using the trace inequality [4, 6]

�
�
��.hiki /

1
2
@vhi
@n

�
�
��

2

@K

� CI
�
�
��k

1
2

i rvhi

�
�
��

2

K

8K 2 T h
i ; vhi 2 V h

i ; (4)

for a CI > 0. Consequently, the norms are equivalent in V h independent of the
mesh sizes hi and the parameters ki : There exists c; C > 0 such that

c
��vh

��
1;h
� ˇ̌̌̌ ˇ̌vh ˇ̌̌̌ ˇ̌

1;h
� C��vh

��
1;h
8vh 2 V h:
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Theorem 1 The bilinear form Bh is continuous in V with the norm jjj�jjj1;h and,
assuming the stability parameter satisfies 	 > 2CI , the bilinear form Bh is coercive
in V h with the norm jjj�jjj1;h.

Proof Recall the definition of the weighted average flux and observe that

�


k
@w

@n

��
; �v�

�

�

D
�
˛1k1

@w1
@n
C ˛2k2 @w2

@n
; �v�

�

�

D
 

.˛1k1h1/
1
2
@w1
@n
C .˛2k2h2/ 12 @w2

@n
;

�
k1k2

k2h1 C k1h2
� 1

2

�v�

!

�

�
���
�
�.˛1k1h1/

1
2
@w1
@n

��
�
�
�

C
��
�
�.˛2k2h2/

1
2
@w2
@n

��
�
�
�

����
�
�

�
k1k2

k2h1 C k1h2
� 1

2

�v�

�
��
�
�
�

�
���
��.k1h1/

1
2
@w1
@n

�
�
��
�

C
�
�
��.k2h2/

1
2
@w2
@n

�
�
��
�

���
�
��

�
k1k2

k2h1 C k1h2
� 1

2

�v�

�
�
�
��
�

(5)

for all w; v 2 V . Using (5) it is easy to see that the bilinear form Bh is continuous.
Applying the trace inequality (4) to (5) and using Young’s inequality with a

parameter � > 0 gives

�


k
@wh

@n

��
;
�

vh
�
�

�

�
 

C
1
2

I

�
��
�k

1
2

1 rwh1

�
��
�
˝1

C C 1
2

I

�
��
�k

1
2

2 rwh2

�
��
�
˝2

!��
��
�

�
k1k2

k2h1 C k1h2
� 1

2 �
vh

�
�
�
��
�
�

� CI

2�

�
�
��k

1
2

1 rwh1

�
�
��

2

˝1

C CI

2�

�
�
��k

1
2

2 rwh2

�
�
��

2

˝2

C �
�
�
�
��

�
k1k2

k2h1 C k1h2
� 1

2 �
vh

�
�
�
�
��

2

�

for vh;wh 2 V h. With this we get that

Bh.vh; vh/ �
�
1 � CI

�

� 2X

iD1

�
�
�
�k

1
2
i rvhi

�
�
�
�

2

˝i

C .	 � 2�/
��
�
�
�

�
k1k2

k2h1 C k1h2
� 1

2 �
vh

�
��
�
�
�

2

�

:

By the assumption 	 > 2CI we can choose CI < � < 	=2, which shows that the
bilinear form Bh is coercive. �
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Let uh 2 V h denote the finite element solution and u 2 V the exact solution of
the problem. The coercivity, consistency and continuity show that

��uh � vh
��2
1;h
� CBh.uh � vh; uh � vh/ D CBh.u � vh; uh � vh/

� C ˇˇˇˇˇˇu � vh
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1;h

�
�uh � vh

�
�
1;h

for any vh 2 V h. Using the triangle inequality and the equivalence of norms we get
ˇ
ˇ
ˇ
ˇ
ˇ
ˇu � uh

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1;h
� C inf

vh2V h
ˇ
ˇ
ˇ
ˇ
ˇ
ˇu � vh

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1;h
:

Applying the interpolation results to the estimate above, we get the a priori result

ˇ
ˇ
ˇ
ˇ
ˇ
ˇu � uh

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
1;h
� Chs�1

 
2X

iD1

�
�
�
�k

1
2

i ui

�
�
�
�

2

s;˝i

! 1
2

for ui 2 Hs.˝i / with i D 1; 2 and 2 � s � p C 1.

4 Observations on the Method

The method adapts automatically and continuously with respect to the parameters.
The relation between k2h1 and k1h2, or equivalently between k1=h1 and k2=h2,
determines the behavior of the method.

Suppose that k2h1 D k1h2 at the interface � . Denoting k=h D k1=h2 D k2=h2,
the bilinear form is

Bh.w; v/ D
2X

iD1
.kirwi ;rvi /˝i �

�
1

2

�
k1
@w1
@n
C k2 @w2

@n

�
; �v�

�

�

�
�
1

2

�
k1
@v1
@n
C k2 @v2

@n

�
; �w�

�

�

C 	
�
k

2h
�w�; �v�

�

�

:

In other words, the proposed method reduces to the method designed for continuous
material parameters [3]. This indicates that the method in [3] should work for
discontinuous material parameters too as long as the mesh sizes such that k2h1 	
k1h2.

Suppose now that k2h1 � k1h2 at the interface � due to k2 being very large. At
the limit k2 !1, the coefficients of the method become

lim
k2!1

˛1 D 1; lim
k2!1

k1k2

k2h1 C k1h2 D
k1

h1
;

lim
k2!1

˛2 D 0;
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and the bilinear form is

Bh.w; v/ D
2X

iD1
.kirwi ;rvi /˝i �

�
k1
@w1
@n

; �v�

�

�

�
�
k1
@v1
@n
; �w�

�

�

C 	
�
k1

h1
�w�; �v�

�

�

:

The interpretation of the bilinear form above is: In the subdomain ˝1, the method
enforces continuity at the interface � using Nitsche’s method.
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Robust Local Flux Reconstruction for Various
Finite Element Methods

Roland Becker, Daniela Capatina, and Robert Luce

Abstract We present a uniform approach to local reconstructions of the gradient
of primal approximations by conforming, nonconforming and totally discontinuous
finite elements of arbitrary order. We start from a hybrid formulation which covers
all considered methods and whose Lagrange multipliers approximate the normal
fluxes. It turns out that the multipliers can be computed locally and are next used
to define local corrections of the flux. We also show that the DG solution and
reconstructed flux with stabilisation parameter 	 converge uniformly in h with the
convergence rate 1=	 towards the CG or NC ones, depending on the stabilisation.

1 Introduction

This article is concerned with local reconstructions of the gradient of primal
finite element approximations. We consider conforming, nonconforming and totally
discontinuous (Galerkin) methods (abbreviated next as CG, NC, DG) of arbitrary
order.

We consider the Poisson problem on a polygonal bounded domain˝ � R
2

��u D f in ˝; u D 0 on � D;
@u

@n
D g on � N (1)

with boundary @˝ D � D [ � N, f 2 L2.˝/, g 2 L2.� N/. The generalisation to
non-homogeneous Dirichlet condition rises no difficulty.

Let �h 2 H.div;˝/ verify div �h D ��hf in ˝ and �h � n˝ D �Nh g

on � N , where �h and �Nh are L2.˝/, respectively L2.� N / projections on
piecewise polynomial finite element spaces. In order to be of practical interest, the
reconstruction has to be discrete, which requires �h to be an element of aH.div;˝/-
conforming finite element space. We will throughout use the Raviart-Thomas spaces
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RTmh containing completem-th order polynomials [7]. In addition, the computation
of �h should be local. This means that a correction �h D �h �ruh can be computed
on patches of cells.

The importance of local reconstructions for a posteriori error estimators has been
noted at many places in the literature, see for example [3–5, 8]. We have kr.u �
uh/k � k�h � ruhk C c�h, which means that the correction �h can be used as an
error estimator with a sharp upper bound, up to a often higher-order term �h related
to the data approximation. Such results have been largely developed for various
finite element methods by sometimes seemingly different approaches.

The DG case is the simplest one and has been discussed in detail in the literature.
In the case of NC and piecewise-constant data the Marini relation [6] between the
solutions of the nonconforming and mixed finite element methods yields a cheap
reconstruction. However, a more involved procedure is necessary in the general case
of arbitrary data and polynomial degrees, see below. Finally, our approach for CG
is related to the hypercircle method [2].

Our first aim in this article is to present a uniform approach to flux reconstruction.
We start from a hybrid formulation covering all considered finite element methods.
The Lagrange multipliers compensating for the different weak continuity conditions
yield approximations to the normal fluxes. It turns out that they can be computed
locally in all cases on patches defined by the support of the lowest-order basis
functions. Then these multipliers are used to define interpolations in broken RTmh
spaces which yield the local corrections �h. Our second aim is to study relations
between the methods, see also [1]. We prove that the DG method converges
uniformly in hwith convergence rate 1=	 towards the CG or NC solution, depending
on the form of stabilisation. The same convergence result holds true for the
reconstructed fluxes and, therefore, also for the error estimators.

A regular triangular mesh h consists of cells Kh, such that @˝ D S D
h [ S N

h .
Let S int

h the set of interior sides and Sh D S int
h [S D

h . The measure of S 2 Sh is
denoted by jS j, the diameter ofK 2 Kh by dK and d D maxdK . For an interior side
S , nS is a fixed unit vector normal to S . If the side S lies on @˝ , we set nS D n˝ ,
the outward unit normal. We denote by �lS and �lK the L2.S/ andL2.K/ orthogonal
projections on P l . We define the spaces:

Dk
h W D

˚
vh 2 L2.˝/ W vhjK 2 Pk.K/ 8K 2 Kh

�
;

M l
h W D

˚
�h 2 L2.Sh/ W �hjS 2 P l.S/ 8S 2 Sh

�
:

Let u 2 Dk
h . We define for S 2 S int

h and x 2 S : uin
S .x/ D lim

"&0
u.x � "nS/,

uex
S .x/ D lim

"&0
u.x C "nS/. Next we define the jump and the mean for x 2 S by

Œu�.x/ WD uin
S .x/ � uex

S .x/, fug.x/ WD 1
2

�
uin
S .x/C uex

S .x/
�
. For a boundary side we

set Œu�S D fugS D uin
S .
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2 Unified Framework, Stability and Robustness

Let 	 > 0 and let us introduce a hybrid formulation covering the DG, CG and NC
cases. For this purpose, we define the bilinear and linear forms

a.uh; vh/ D
Z

Kh

ruh � rvh �
Z

Sh

f@nuhgŒvh� �
Z

Sh

Œuh�f@nvhg;

b.�h; vh/ D
Z

Sh

�hŒvh�; c.h; �h/ D
Z

Sh

jS j h�h; l.vh/ D
Z

˝

f vh C
Z

� N
gvh:

We consider the following problem as well as its limit version as 	 ! 1: Find
.u	h; 

	

h / and .u1h ; 1h / in Dk
h �Ml

h such that 8.vh; �h/ 2 Dk
h �Ml

h,

a.u	h; vh/C b.	h ; vh/ D l.vh/

b.�h; u
	

h/�
1

	
c.

	

h ; �h/ D 0;
(2)

a.u1h ; vh/C b.1h ; vh/ D l.vh/

b.�h; u
1
h / D 0;

(3)

For l D k�1, the solution u	h satisfies a DG formulation whereas in the limit case
	 ! 1, the solution u1h satisfies the classical nonconforming primal formulation.
For l D k, it turns out that the space Mk

h has to be reduced in order to obtain

uniqueness of the multiplier in the limit case. Since 	h D
	

jS j Œu
	

h� on S 2 S int
h and

since the jump satisfies a node-wise identity, we are lead to introduce

M
k;�
h WD

8
<

:
�h 2 Mk

h W
X

S2SN

˛S.N /�h.N / D 0 8N 2 Nh

9
=

;
: (4)

Here above, SN denotes the set of sides S sharing the node N and ˛S.N / D
jS j sign.nS ;N /, where sign.nS ;N / equals 1 or �1 depending upon the orientation
of nS with respect to the clockwise rotation sense around N . Nh represents the set
of nodes which are interior to the domain or to � D .

We now consider problem (2) withMl
h replaced byMk;�

h ; its solution u	h actually
satisfies the well-known DG formulation with interior penalty stabilisation. The
limit problem as 	 !1 corresponds now to the CG formulation.

It is useful to introduce the forms Qb.�; �/, Qc.�; �/ obtained from b.�; �/, c.�; �/
by reduced integration. Let the Newton-Cotes formula on S 2 Sh, with
.wi ; N S

i /1�i�kC1 the weights and equidistant nodes: Ih.g/ D PkC1
iD1 wi g.N S

i /.
The weights are uniquely defined, independent of S and strictly positive. Then
we define

Qb.�h; vh/ D
X

S2Sh

jS jIh.�hŒvh�/; Qc.h; �h/ D
X

S2Sh

jS j2Ih.h�h/:
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We also consider the corresponding DG and CG variants: Find .Qu	h; Q	h /,
respectively .Qu1h ; Q1h / in Dk

h � Mk;�
h such that for all .vh; �h/ 2 Dk

h � Mk;�
h ,

a.Qu	h; vh/C Qb. Q	h ; vh/ D l.vh/;
Qb.�h; Qu	h/�

1

	
Qc. Q	h ; �h/ D 0;

(5)

a.Qu1h ; vh/C Qb. Q1h ; vh/ D l.vh/;
Qb.�h; Qu1h / D 0:

(6)

Let the space Ml
h denote from now onMk�1

h for l D k � 1, andMk;�
h for l D k.

We introduce the norms on Dk
h andMl

h respectively:

kjvhjk WD
�Z

Kh

jrvhj2 C
Z

Sh

jS j�1�lS Œvh�2
�1=2

; k�hkSh
WD c.�h; �h/1=2:

The forms a, b, Qb and l are clearly uniformly continuous and Qc is an equivalent
scalar product on Mk;�

h . It is important to note that Ker b coincides with the Pk

nonconforming space for l D k � 1, respectively with the Pk conforming space for
l D k (also Ker Qb). Therefore, in the conforming case it follows that u1h D Qu1h since
they both satisfy the primal CG formulation, although 1h and Q1h are different.

The uniform coercivity of a on Ker b, with respect to h and 	 , is obvious. The
technical point concerns the inf-sup conditions, given without proof.

Theorem 1 There exist ˇ > 0; Q̌ > 0 independent of h and 	 such that

inf
�h2Ml

h

sup
vh2Dk

h

b.�h; vh/

k�hkSh
kjvhjk � ˇ; inf

�h2Mk;�
h

sup
vh2Dk

h

Qb.�h; vh/
k�hkSh

kjvhjk �
Q̌:

The Babuška-Brezzi theorem yields the following result.

Theorem 2 The systems (2), (3) and (5), (6) are uniformly well-posed. Their
solutions satisfy the following a priori error estimates:

kju � u	hjk C k	h kSh
� CdkjujkC1;˝; kju � u1h jk C k1h kSh

� CdkjujkC1;˝:

Next we analyse the limit of the hybrid formulations (2), (5) as 	 !1.

Theorem 3 There exists a constant C independent of h and 	 such that

kju	h � u1h jk C k	h � 1h kSh
� C

	
; kQu	h � Quh1k C k Q	h � Q1h kSh

� C

	
:

Proof We consider the orthogonal decomposition Dk
h D Ker b ˚ Ker b?, which

yields u	h � uh D .u	h � uh/0C .u	h � uh/?. We substract the mixed problems and we
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first take vh D .u	h � uh/0. By using the coercivity of ah.�; �/, the fact that k	h kSh
is

bounded and the inf-sup condition in the second variational equation, we obtain

kj.u	h � uh/
0jk � C1kj.u	h � uh/

?jk � C2

	
k	h kSh

� C3

	
:

The inf-sup condition in the first equation yields the result for the multipliers. ut

3 Local Computation of Multipliers and Fluxes

A remarkable feature of the approach is that for the three types of finite element
methods, the multiplier h can be computed locally.

The DG case is the simplest: the second equation of any of the hybrid formula-
tions yields, for l D k; k � 1,


	

h D
	

jS j�
l
S Œu

	

h� on S 2 Sh: (7)

The NC and CG methods are less trivial, since 1h is now computed from the first
variational equation, that is by solving a global system. For simplicity of notation,
we introduce the righthand side term L.�/ WD l.�/� a.u1h ; �/.

We write h as the sum of local contributions ! associated to patches !
representing the support of a finite element basis function. The unknown ! lives
only on the interior sides of the patch ! and is null elsewhere.

We first treat the NC formulation. To any side S 2 Sh, we associate a patch
!S D supp jS where  jS is the basis function associated to the j th of the k Gauss
points on S . For fSg D @ NK in\ @ NKex, we recall that !S D K in[Kex. Then S lives
only on S , belongs to Pk�1 and is defined by

b.S ;  
j
S �K/ D L. jS �K/; 1 � j � k; 8K � !S (8)

where �K denotes the characteristic function of K . This allows to uniquely define
S 2 Pk�1 since the nonconforming solution uNC

h satisfies, for all S 2 S int
h and

1 � j � k: L. jS / D
P

K�!S L. 
j
S �K/ D 0.

Theorem 4 Let h D
X

S2Sh

S . It satisfies b.h; vh/ D L.vh/ for all vh 2 Dk
h .

Hence, h is the unique solution NC
h of (3) with l D k � 1.

Proof The key point is that for another side S 0 sharing the triangle K with S one
has b.S 0;  

j
S �K/ D 0, since S 0 

j
S 2 P2k�1 is integrated exactly on S [ S 0 by the

Gauss formula with k points. Therefore, h satisfies for anyK 2 Kh and S � @K:

b.h;  
j
S �K/ D

X

S 02Sh

b.S 0;  
j
S �K/ D L. jS �K/; 1 � j � k: (9)
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Next, let us note that P1.K/ D vect f S I S � @Kg whereas for 2 � k � 3,

one has Pk.K/ D vect
n
 
j
S I S � @K; 1 � j � k

o
˚ vect fbkg where bk is the

quadratic, respectively cubic bubble function on K . Taking vh D bk�K in (3) one
gets L.bk�K/ D 0; since b.h; bk�K/ D 0, the conclusion follows. ut

Finally, we consider the two CG approximations. To any node N we associate
the patch !N D supp'N , where 'N is the P1 -basis function associated to N . We
introduce the hierarchical basis of Pk on a side S of verticesN andM ; besides 'N
and 'M , it contains for k � 2 the functions 'jS (1 � j � k � 1) associated to the
interior Lagrange nodes of S .

For (3) with l D k, we define N living on the sides S 2 SN of verticesN; M 2
Nh. For all K � !N , we impose:

b.N ; 'N�K/ D L.'N�K/; (10)

b.N ; '
j
S�K/ D

1

2
L.'

j
S�K/; S 2 Sh \ @K; 1 � j � k � 1; (11)

b.N ; 'M�K/ D 0; M 2 Nh \ @K; M ¤ N: (12)

We look for .N /jS in Pk . Note that the conforming solution uCG
h satisfies

L.'N / D L.'jS / D 0; 8N 2 N int
h ; 8S 2 S int

h ; 1 � j � k � 1: (13)

Hence, the previous system is compatible. However, it has a one-dimensional kernel
KN characterized by sign.nS ;N /

R
S
N'N D const, for all S 2 SN .

In conclusion, there exists a solution N , unique up to an element of KN .

Theorem 5 Let h D
X

N2Nh

N . Then h is equal to the solution CG
h of (3) with

l D k, up to an element Ker
h of the kernel of b.

Note that the flux �h reconstructed thanks to h (see the next section) has the
desired divergence and belongs to H.div;˝/, independently of the choice of Ker

h .
However, in order to obtain that it also represents the limit of the DG flux as 	
tends towards infinity, we have to determine the correction Ker

h such that h belongs
to Mk;�

h , by solving a global problem. In order to overcome this drawback and to
preserve both the locality of the computation and the robustness with respect to 	 ,
we turn to the formulation (6). We define QN by the same local system (10)–(12) but
using Qb.�; �/ instead of b.�; �/. The new kernel is defined by QKN D vectf˛S.N /'N g.
By imposing now that QN is orthogonal to the kernel, we obtain that the global
multiplier Qh D

X

N2Nh

QN belongs to Mk;�
h , therefore Qh D QCG

h .

We are next interested in defining a flux �h 2 H.div;˝/ from h. For l D k�1 it
is natural to use the space RTmh withm D k�1, since its normal traces are .k�1/-th
order polynomials. However, for l D k we can either use m D k or m D k � 1.
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For any method, we impose the degrees of freedom on the edges as below. On
the Neumann boundary, we set �h � nS D �mS g while on S 2 Sh we impose:

Z

S

�h � nS' D
Z

S

f@nuhg' � bS.h; '/ if S 2 S int
h ; (14)

Z

S

�h � nS' D �bS.h; '/ if S 2 S D
h : (15)

The test-functions ' stand for the basis functions of each finite element method,
that is: any ' 2 P l.S/ for DG,  jS for NC and 'N ; '

j
S ; 'M for CG, with

N; M the vertices of S . The bilinear form bS.�; �/ represents the restriction of the
corresponding b.�; �/ to the side S and is defined by

bS.h; '/ D
Z

S

'h; QbS.h; '/ D jS jIh.h'/

for the DG and NC problems (2), (3), respectively the DG and CG problems (5), (6).
For m � 1, we also define interior degrees of freedom as follows:

Z

K

�h � r D
Z

K

ruh � r � 1

2

Z

@K\S int
h

Œuh� r � nS �
Z

@K\SD
h

uhr � nS

for the DG formulations, while for the NC and CG formulations we set

Z

K

�h � r D
Z

K

ruh � r; 8r 2 .Pm�1/2:

Theorem 6 For any method, the reconstructed flux satisfies

div�hjK D ��mKf; 8K 2 Kh: (16)

Moreover, there exists a constant C independent of h and 	 such that

k�	h � �NC
h k �

C

	
; k Q�	h � Q�CG

h k �
C

	
:

Proof By taking as test-function in any of the hybrid formulations v�K with v 2 Pm

and by using the integration by parts formula:

Z

K

div�hv D �
Z

K

�h � rvC
Z

@K

�h � nKv;
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we immediately get the first property. The convergence with respect to 	 follows
from Theorem 3 and from a standard scaling argument which yields

k�	h � �NC
h k0;K � c

X

S�@K
jS j1=2k.�	h � �NC

h / � nSk0;S :

ut
Remark 1 In [2], Braess and Schöberl propose a flux correction for the CG method
inspired by the hypercircle method and defined as the sum of local contributions on
!N . Each local correction is obtained as the solution of a mixed method. However,
the divergence of the global flux is equal to �k�1K f due to the property

X

N2Nh

'N D 1.

4 Numerical Experiment

We solve the Poisson equation with Dirichlet condition on the square ��1; 1Œ2. The

data are chosen such that u.x/ D e�
kx�x0k

ı , where x0 D .0:5; 0:5/ and ı D 0:03, is
the solution. We take k D 1 and we focus on the behavior as 	 ! 1 on a fixed
mesh.

We show in Table 1 the errors for 	 between the DG and the CG, respectively
NC solutions. In the first table, we consider both variants of DG and CG methods.
We numerically obtain the expected O.1=	/ convergence rate for the variant with
reduced integration. As regards the initial variant without numerical integration
(the classical interior penalty method), we find that u	h�uCG

h behaves again like 1=	
but, as predicted, 	h �CG

h does not converge. Table 2 shows that the DG method (2)
converges towards the NC one with O.1=	/, and this convergence occurs at rather
small values of 	 .

Table 1 Convergence of DG towards CG as 	 !1
	 jkQu	h � QuCG

h kj k Q	h � QCG
h k jku	h � uCG

h kj k	h � CG
h k

10 1.08439e�01 5.66067e�02 2.25960e�01 3.14170e�01

102 1.17825e�02 6.15432e�03 3.00036e�02 4.66233e�01

103 1.19242e�03 6.23495e�04 3.10670e�03 4.88739e�01

104 1.19388e�04 6.24228e�05 3.11780e�04 4.91095e�01

105 1.19403e�05 6.23418e�06 3.11891e�05 4.91332e�01

106 1.19385e�06 6.29765e�07 3.11907e�06 4.91356e�01

Table 2 Convergence of DG
towards NC as 	 !1 	 jku	h � uNC

h kj k	h � NC
h k

10 5.66994e�03 1.39880e�03

102 4.14435e�04 1.00756e�04

103 4.04056e�05 9.79224e�06

104 4.03050e�06 9.74755e�07
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On the Use of Reconstruction Operators
in Discontinuous Galerkin Schemes

Václav Kučera

Abstract This work is concerned with the introduction of reconstruction operators
as known from higher order finite volume (FV) schemes into the discontinuous
Galerkin (DG) method. This operator constructs higher order piecewise polynomial
reconstructions from the lower order DG scheme. The result is the increase
in accuracy of the DG scheme which is cheaper than directly using standard
DG schemes of very high orders. We discuss the reconstruction operators and
their construction, the relation to DG and present numerical experiments which
demonstrate the increased accuracy of this approach.

1 Problem Formulation and Notation

We treat a nonlinear nonstationary scalar hyperbolic equation in a bounded domain
˝ � IRd with a Lipschitz-continuous boundary. We seek u W ˝ � Œ0; T �! IR such
that

@u

@t
C div f.u/ D 0 in � � .0;T/ (1)

along with an appropriate initial and boundary condition. Here f D .f1; � � � ; fd /
and fs; s D 1; : : : ; d are Lipschitz continuous fluxes in the direction xs .

Let Th be a triangulation of the closure˝ into a finite number of closed simplices
K 2 Th. By @K we denote the boundary of an element K 2 Th and set h D
maxK2Thdiam.K/. By Fh we denote the system of all faces of all elementsK 2 Th.
For each � 2 Fh we define a unit normal vector n� , such that for � 2 FB

h , n�
is the outer unit normal to @˝ . For each interior face � 2 F I

h there exist two
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neighbours K.L/
� ; K

.R/
� 2 Th such that � � K

.L/
� \ K.R/

� . For a piecewise H1-
function defined on Th and � 2 F I

h we introduce the following notation:

vj.L/� D trace of vj
K
.L/
�

on �; vj.R/� D trace of vj
K
.R/
�

on �

and the jump Œv�� D vj.L/� � vj.R/� . For � 2 FB
h we define vj.R/� D Œv�� WD vj.L/� .

Let n � 0 be an integer. We define the space of discontinuous piecewise
polynomial functions

Snh D fvI vjK 2 Pn.K/;8K 2 Thg;

where Pn.K/ is the space of all polynomials on K of degree � n. Specifically,

• S0h : is the space of piecewise constant functions used in the FV method,
• Snh ; n > 0: the DG space of piecewise nth degree polynomials,
• SNh ; N > n: the space of higher order reconstructed DG solutions.

2 Discontinuous Galerkin (DG) Formulation

We multiply (1) by an arbitrary 'nh 2 Snh , integrate over an element K 2 Th and
apply Green’s theorem. By summing over all K 2 Th and rearranging,

d

dt

Z

˝

u.t/ 'nh dxC
X

� 2Fh

Z

�

f.u/ � n Œ'nh � dS �
X

K2Th

Z

K

f.u/ � r'nh dx D 0: (2)

The boundary convective terms will be treated similarly as in the finite volume
method, i.e. with the aid of a numerical flux H.u; v;n/, cf. [2, 3, 6]:

Z

�

f.u/ � n Œ'nh � dS 	
Z

�

H.u.L/; u.R/;n/Œ'nh � dS: (3)

Finally, we define the convective form bh.�; �/ defined for v; ' 2 H1.˝;Th/:

bh.v; '/ D
Z

Fh

H.v.L/; v.R/;n/Œ'� dS �
X

K2Th

Z

K

f.v/ � r' dx:

Definition 1 (Standard DG scheme) We seek u W Œ0; T �! Snh such that

d

dt

�
uh.t/; '

n
h

�C bh
�
uh.t/; '

n
h

� D 0; 8'nh 2 Snh ; 8t 2 .0; T /: (4)
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We note that if we take n D 0, i.e. uh W .0; T /! S0h , then from the definition of bh
the DG scheme (4) is equivalent to the standard FV method.

3 Reconstructed Discontinuous Galerkin (RDG)
Formulation

For v 2 L2.˝/, we denote by ˘n
h v the L2.˝/-projection of v on Snh :

˘n
h v 2 Snh ;

�
˘n
h v � v; 'nh

� D 0; 8 'nh 2 Snh : (5)

The basis of the proposed method lies in the observation that (2) can be viewed as
an equation for the evolution of˘n

h u.t/, where u is the exact solution of (1). In other
words, due to (5), ˘n

h u.t/ 2 Snh satisfies the following equation for all 'nh 2 Snh :

d

dt

Z

˝

˘n
h u.t/ 'nh dxC

Z

Fh

f.u/ � n Œ'nh � dS �
X

K2Th

Z

K

f.u/ � r'nh dx D 0: (6)

Let N > n be an integer. We assume that there exists a piecewise polynomial
function UN

h .t/ 2 SNh , which is an approximation of u.t/ of order N C 1, i.e.

UN
h .x; t/ D u.x; t/CO.hNC1/; 8x 2 ˝; 8t 2 Œ0; T �; (7)

which is possible if u is sufficiently regular in space. Now we incorporate the
approximation UN

h .t/ into (6): the exact solution u satisfies

d

dt

�
˘n
h u.t/; 'nh

�C bh
�
UN
h .t/; '

n
h

� D E.'nh ; t/; 8'nh 2 Snh ; 8t 2 .0; T /; (8)

where E.'nh/ is an error term defined as

E.'nh; t/ D bh
�
UN
h .t/; '

n
h

� � bh
�
u.t/; 'nh

�
: (9)

Lemma 1 ([5]) The following estimate holds for all t 2 Œ0; T �:

E.'nh; t/ D O.hN /k'nhkL2.˝/: (10)

It remains to construct a sufficiently accurate approximation UN
h .t/ 2 SNh to

u.t/, such that (7) is satisfied. This leads to the following problem.

Definition 2 (Reconstruction problem) Let v W ˝ ! IR be sufficiently regular.
Given ˘n

h v 2 Snh , find vNh 2 SNh such that v � vNh D O.hNC1/ in ˝ . Define the
reconstruction operatorR W Snh ! SNh by R˘n

h v WD vNh .
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By setting UN
h .t/ WD R˘n

h u.t/ in (8), we obtain the following semidiscrete,
formally N th order scheme for the L2.˝/-projections of u onto Snh :

d

dt

�
˘n
h u.t/; 'nh

�C bh
�
R˘n

h u.t/; 'nh
� D O.hN /k'nhkL2.˝/; 8'nh 2 Snh : (11)

By neglecting the right-hand side and approximating unh.t/ 	 ˘n
h u.t/, we arrive at

the following reconstructed discontinuous Galerkin (RDG) scheme.

Definition 3 (Reconstructed DG scheme) Seek unh W Œ0; T �! Snh s.t.

d

dt

�
unh.t/; '

n
h

�C bh
�
Runh.t/; '

n
h

� D 0; 8'nh 2 Snh ; 8t 2 .0; T /: (12)

We point out several facts about the RDG scheme:

• The derivation of the RDG scheme follows the methodology of higher order FV
schemes. The basis of these schemes is an equation for the evolution of averages
of the exact solution on individual elements (i.e. an equation for ˘0

hu.t/).
Equation (11) is a direct generalization for the case of higher order L2.˝/-
projections˘n

h u.t/; n � 0.
• Both unh.t/ and 'nh lie in Snh . Only Runh.t/, lies in the higher dimensional space
SNh . Despite this fact, Eq. (11) indicates that we may expect u�Runh D O.hNC1/,
although u � unh D O.hnC1/.

• Numerical quadrature must be employed to evaluate surface and volume integrals
in (12). Since test functions are in Snh , as compared to SNh in the corresponding
N th order standard DG scheme, we may use lower order (i.e. more efficient)
quadrature formulae as compared to standard DG.

As in the case of higher order FV, we use an explicit time stepping method. For
simplicity, we formulate the forward Euler method, however in Sect. 4, higher order
Adams–Bashforth methods are used.

Let us construct a partition 0 D t0 < t1 < t2 : : : of the time interval Œ0; T � and
define the time step �k D tkC1 � tk . We use the approximation unh.tk/ 	 un;kh 2 Snh .
The forward Euler scheme is given by:

Definition 4 (Explicit RDG scheme) Seek un;kh 2 Snh ; k D 0; 1; : : : s.t.

�
un;kC1h � un;kh

�k
; 'nh

�
C bh

�
Run;kh ; 'nh

� D 0; 8'nh 2 Snh ; k D 0; 1; : : : ; (13)

where un;0h D uh;0 is an Snh approximation of the initial condition u0.

The upper limit on stable time steps, given by a CFL-like condition, is more
restrictive with growing N . However, in the RDG scheme, stability properties are
inherited from the lower order scheme, therefore a larger time step is possible as
compared to the correspondingN th order DG scheme.
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3.1 Construction of the Reconstruction Operator

As in the finite volume method [4, 6], a stencil (a group of neighboring elements
and the element under consideration) is used to build an N th-degree polynomial
approximation to u on the element under consideration [4,6]. In the FV method, the
von Neumann neighborhood of an element is used as a stencil to obtain a piecewise
linear reconstruction, cf. Fig. 1a. However, for higher order reconstructions, the
size of the stencil increases dramatically, cf. Fig. 1b, rendering higher degrees than
quadratic very time consuming. In the case of the RDG scheme, we need not
increase the stencil size to obtain higher order accuracy, it suffices to take the von
Neumann neighborhood and increase the order of the underlying DG scheme.

In analogy to the FV method, the reconstruction operator R is constructed on
each stencil independently and satisfies that R˘n

h is in some sense polynomial
preserving. Specifically, for each element K and its corresponding stencil SK , we
require that for all p 2 PN .SK/

��
R˘n

h

�ˇˇ
SK
p
	ˇˇ
ˇ
K
D pˇˇ

K
: (14)

This requirement allows us to study approximation properties of R using the
Bramble–Hilbert technique as in the standard finite element method. It seems that
the simplest construction of R is to take the piecewise Pn function ˘n

hp and
perform an L2.SK/-projection onto PN .SK/. However such a procedure does not
preserve p, as we see from the following:

Example Let K1 D Œ0; 1�;K D K2 D Œ1; 2�;K3 D Œ2; 3�, hence SK D Œ0; 3�.
If we take p.x/ D x2 and project onto the space of piecewise constants, we get
.˘0

hp/jK1 D 1
3
; .˘0

hp/jK2 D 7
3

and .˘0
hp/jK3 D 19

3
. If we take this piecewise

constant function and perform an L2.Œ0; 3�/-projection onto P2.Œ0; 3�/, we obtain
the function 40

81
x2C 32

27
x � 7

27
, whose graph on Œ0; 3� is similar to that of the original

function x2, however we have failed to reconstruct it exactly.

a b

Fig. 1 (a) FV stencil for (a) linear and (b) quadratic reconstruction
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Now we shall describe the construction of R satisfying (14). For simplicity,
we shall deal with the 1D case. Let K 2 Th, then the reconstruction stencil
SK consisting of the von Neumann neighborhood of K contains three elements
K1;K2;K3 numbered from left to right, hence K2 D K . We denote by ˘n

Ki
the

L2.Ki /�projection onto the space Pn.Ki /, which is a restriction of the operator
˘n
h defined on Th. The goal is to construct a reconstruction operator RK W

L3
iD1 P n.Ki/! PN .SK/ such that (14) is satisfied, i.e.

RK
�
˘n
K1
p;˘n

K2
p;˘n

K3
p
� D p; 8p 2 PN .SK/: (15)

Let p.x/ D PN
jD0 ˇj˚j .x/, where ˚j ; j D 0; : : : ; N is some basis of PN .SK/.

Let˘n
Ki
p DPn

jD0 ˛
Ki
j '

Ki
j .x/; i D 1; 2; 3, where 'Kij ; j D 0; : : : ; N is some basis

of Pn.Ki/. By definition, .˘n
Ki
p; '/ D .p; '/ for all ' 2 Pn.Ki /, thus

NX

jD0
˛
Ki
j .'

Ki
j ; '

Ki
k / D

NX

jD0
ˇj .˚j ; '

Ki
k / 8i D 1; 2; 3; 8k D 0; : : : ; n: (16)

Given ˛Kij for all i D 1; 2; 3 and j D 0; : : : ; n, i.e. given the L2.Ki/-projections of
p or some other general function f , Eq. (16) represents a system of linear algebraic
equations for unknowns ˇj ; j D 0; : : : ; N . If 3 � .n C 1/ D N C 1, i.e. N D
3n C 2, this is a system with a square matrix which can be solved for ˇj and the
reconstruction operator is then given by

RK
�
˘n
K1
p;˘n

K2
p;˘n

K3
p
� D

NX

jD0
ˇj˚j .x/: (17)

Clearly, if one constructs RK as in (17), condition (14) will be satisfied. We note
that (16) can be simplified if f'Kij gnjD0 is an orthonormal basis.

The presented construction can be straightforwardly generalized to higher dimen-
sions, but the resulting system of linear equations will not have a square matrix in
general. A direct computation in 2D shows that on a von Neumann neighborhood we
can reconstruct from Pn to P2nC1 and Eq. (17) will be an underdetermined system
with n free parameters. Such systems can be solved e.g. using pseudoinverses.

3.2 Relation Between RDG and Standard DG

The only difference between the DG scheme (4) and RDG scheme (12) is the
presence of the reconstruction operator R in the first variable of bh.�; �/. While the
error analysis of (4) is well understood (at least for convection-diffusion problems
[3]), the analysis of (12) or (13) poses a new challenge. The problem lies in the fact
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that we cannot test (12) with 'nh WD Run;kh or something similar, since Run;kh … Snh .
Therefore, we need to establish a relation between (12) and N th order DG, instead
of only nth order DG.

Definition 5 (Auxiliary problem) We seek QuN;kh 2 SNh such that

� QuN;kC1h � QuN;kh
�k

; 'Nh

�
C bh

�
R˘n

h QuN;kh ; 'Nh
� D 0; 8'Nh 2 SNh ; k D 0; 1; : : : ;

(18)

where QuN;0h is an SNh approximation of the initial condition u0.

The auxiliary problem has a direct connection to N th order DG, as can be seen
from the following lemma proved in [5].

Lemma 2 Let un;0h D ˘n
h QuN;0h . Then un;kh 2 Snh , the solution of (13) and the solution

QuN;kh 2 SNh of (18) satisfy

un;kh D ˘n
h QuN;kh ; 8k D 0; 1; � � � : (19)

As a corollary, error estimates for the auxiliary problem imply error estimates
for the RDG scheme. Problem (18) is basically the N th order DG scheme with
the operator R˘n

h in the first variable of bh.�; �/. Therefore, sufficient knowledge
of the properties of R˘n

h (which is polynomial preserving) and standard DG error
estimates would imply estimates for the RDG scheme.

4 Numerical Experiments

We consider the advection of a 1D sine wave with unit speed on uniform meshes
with a periodic boundary condition. Experimental orders of accuracy ˛ in various
norms on meshes with N elements are given in Tables 1 and 2. Here eh D u � Runh
at t corresponding to ten periods. The increase in accuracy due to reconstruction

Table 1 1D advection of sine wave, P 1 RDG scheme with P 5 reconstruction

N jjehjjL1.˝/ ˛ jjehjjL2.˝/ ˛ jehjH1.˝;Th/ ˛

4 5.82E�03 – 3.49E�03 – 3.65E�02 –

8 7.53E�05 6.27 4.43E�05 6.30 1.06E�03 5.11

16 9.07E�07 6.38 5.95E�07 6.22 3.58E�05 4.89

32 1.82E�08 5.64 8.70E�09 6.10 1.16E�06 4.95

64 3.41E�10 5.74 1.33E�10 6.03 3.67E�08 4.98
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Table 2 1D advection of sine wave, P 2 RDG scheme with P 8 reconstruction

N jjehjjL1.˝/ ˛ jjehjjL2.˝/ ˛ jehjH1.˝;Th/ ˛

4 2.90E�03 – 1.85E�03 – 1.63E�02 –

8 7.75E�06 8.55 3.56E�06 9.02 1.03E�04 7.30

16 2.10E�08 8.53 6.64E�09 9.07 4.34E�07 7.89

32 7.21E�11 8.18 4.02E�11 7.37 1.76E�09 7.94

0

1

0.8

0.6

0.4

0.2

0 0.80.60.40.2
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Fig. 2 Standard DG solution, P1 elements
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1
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Fig. 3 RDG solution, P1 elements (left) with P5 reconstruction (right)

is clearly visible. In Fig. 2, we have plotted the P1 standard DG solution for the
considered problem at time t D 5. In Fig. 3, the P1 RDG solution is plotted along
with its P5 reconstructions at t D 5. We have chosen a very crude mesh consisting
of only eight elements in order to show the increased quality of the RDG scheme.
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Conclusions
We have presented a possible generalization of higher-order reconstruction
operators as used in the FV method to the DG method. Such possibilities
were already considered in [1]. The resulting scheme has many advantages
over standard DG and FV schemes:

• To increase the order of the scheme, the reconstruction stencil need not be
enlarged, we may simply increase the order of the underlying DG scheme.

• Test functions are from the lower order space, hence more efficient
quadratures may be used than in the corresponding higher order DG
scheme.

• Since the RDG scheme is basically a lower order DG scheme with higher
order reconstruction, the CFL condition is less restrictive than for the
corresponding higher order DG scheme.
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Adaptive Discontinuous Galerkin Methods
for Nonlinear Diffusion-Convection-Reaction
Equations

Bulent Karasözen, Murat Uzunca, and Murat Manguoǧlu

Abstract In this work, we apply the adaptive discontinuous Galerkin method
(DGAFEM) to the convection dominated nonlinear, quasi-steady state convection
diffusion reaction equations. We propose an efficient algorithm to solve the sparse
linear systems iteratively arising from the discretized nonlinear equations. Numeri-
cal examples demonstrate the effectiveness of the DGAFEM to damp the spurious
oscillations for the convection dominated nonlinear equations.

1 Introduction

Many engineering problems such as chemical reaction processes, heat conduc-
tion, nuclear reactors, population dynamics are governed by coupled convection-
diffusion-reaction partial differential equations (PDEs) with nonlinear source or sink
terms. It is a significant challenge to solve such PDEs numerically when they are
convection/reaction-dominated, which is the case in our study. As a model problem,
we consider the coupled quasi-stationary model arising from the time discretization
of the time dependent nonlinear diffusion-convection-reaction equations

˛ui � �i�ui C bi � rui C ri .u/ D fi in ˝; ui D gi on �; i D 1; : : : ; m
(1)
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with ˝ is a bounded, open, convex domain in R
2 with boundary @˝ D � ,

0 < �i � 1 are the diffusivity constants, fi 2 L2.˝/ are the source functions,
bi 2

�
W 1;1.˝/

�2
are the velocity fields, gi 2 H1=2.�D/ are the Dirichlet

boundary conditions and u.x; t/ D .u1; : : : ; um/T denotes the vector of unknown
solutions. The coefficients of the linear reaction terms, ˛ > 0, stand for the temporal
discretization, corresponding to 1=�t , where �t is the discrete time step. For the
uniqueness of the solution of (2), we assume that the nonlinear reaction terms
are bounded, locally Lipschitz continuous and monotone, i.e. satisfy the following
conditions [3]

ri 2 C1.RC0 /; ri .0/ D 0; r 0i .s/ � 0; 8s � 0; s 2 R

Such models describe chemical processes and they are strongly coupled as an
inaccuracy in one unknown affects all the others. Hence, an efficient numerical
approximation of these systems is needed. For the convection/reaction-dominated
problems, the standard Galerkin finite element methods are known to produce
spurious oscillations, especially in the presence of sharp fronts in the solution,
on boundary and interior layers. In contrast to standard Galerkin conforming
finite element methods, DG methods produce stable discretizations without the
need for stabilization strategies, and overcome the spurious oscillations due to the
convection domination. For linear convection dominated problems, the streamline
upwind Petrov-Galerkin(SUPG) method is capable of stabilizing the unphysical
oscillations [3, 4]. Nevertheless, in nonlinear convection dominated problems,
spurious oscillations are still present in crosswind direction. Therefore, SUPG
is used with the anisotropic shock capturing technique (SUPG-SC) for reactive
transport problems [3, 4].

Similar to the stabilized conforming finite elements, discontinuous Galerkin
finite element methods (DGFEMs) damp the unphysical oscillations for linear
convection dominated problems. In [9], several nonlinear convection dominated
problems of type (1) are solved with DGFEM and DG-SC, discontinuous Galerkin
method with the shock-capturing technique. The main advantages of DGFEMs
are the flexibility in handling non-matching grids and in designing hp-refinement
strategies. An important drawback is that the resulting linear systems are more
dense than the ones in continuous finite elements and ill-conditioned. The condition
number grows rapidly with the number of elements and with the penalty parameter.
Therefore, efficient solution strategies such as preconditioning are required to
solve the linear systems. In this paper, an adaptive discontinuous Galerkin method
(DGAFEM) is developed for the convection dominated nonlinear problems of type
(1) using the modification of a posteriori error estimates for linear convection
dominated problems in [6]. We show the effectiveness and accuracy of DGAFEM
capturing boundary and internal layers very sharply and without significant oscilla-
tions.

In the next two sections, we give the DGFEMs discretization and describe
the residual based adaptivity for nonlinear diffusion-convection-reaction problems.
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Section 4 deals with an efficient solution technique to handle the linear systems
arising from the DGAFEM. In Sect. 5, we demonstrate on two examples the
efficiency of the adaptivity for handling the sharp layers.

2 DG Discretization

The weak formulation of the scalar equation (m D 1) of (1) reads as
Z

˝

.�ru � rvC b � ruvC ˛uv/dxC
Z

˝

r.u/vdx D
Z

˝

fvdx 8v 2 V (2)

where the solution space U and the test function space V are given by

U D fu 2 H1.˝/ W u D g on � g; V D fv 2 H1.˝/ W v D 0 on � g

The variational form of the scalar equation (1) is discretized by the symmetric
discontinuous interior penalty Galerkin (SIPG) method with upwinding for the
convection part [1, 2]

ah.uh; vh/C bh.uh; vh/ D lh.vh/ ; 8vh 2 Vh � H1.˝/ (3)

ah.uh; vh/ D
X

K2�h

Z

K

�ruh � rvhdxC
X

K2�h

Z

K

.b � ruh C ˛uh/vhdx

�
X

e2�0[�

Z

e

f�rvhg � Œuh�ds �
X

e2�0[�

Z

e

f�ruhg � Œvh�ds

C
X

K2�h

Z

@K�n�
b � n.uout

h � uin
h /vhds �

X

K2�h

Z

@K�\��

b � nuin
h vhds

C
X

e2�0[�

��

he

Z

e

Œuh� � Œvh�ds;

bh.uh; vh/ D
X

K2�h

Z

K

r.uh/vhdx;

lh.vh/ D
X

K2�h

Z

K

fvhdxC
X

e2�

Z

e

g

�
��

he
vh � �rvh � n

�
ds

�
X

K2�h

Z

@K�\��

b � ngvhds;
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where the finite dimensional solution and test function spaces are the same. @K� and
� � denote the inflow parts to an element boundary @K and the domain boundary � ,
respectively. The jump and average terms for uh and vh across the edges are denoted
by Œ�� and f�g, respectively. The parameter � 2 R

C
0 is called the penalty parameter

which should be sufficiently large for SIPG [6].

3 Adaptivity

We apply the residual based adaptive strategy in [6] which is robust, i.e. independent
of the Péclet number, for linear diffusion-convection equations. We include in the a
posteriori error estimates the nonlinear reaction terms as local contributions to the
cell residuals and not to the interior/boundary edge residuals [Chp. 5.1.4, [8]]. Let
the constant � � 0 satisfies

˛.x/ � 1
2
r � b.x/ � � ; k � r � bC ˛kL1.˝/ � ���

for a non-negative ��, to easily have the efficiency of the a posteriori error estimator.
We define the local error indicator for each elementK 2 �h

�2K D �2RK C �2E0K C �
2

EDK
;

�2RK D �2Kkf � ˛uh C ��uh � b � ruh � r.uh/k2L2.K/;

�2
E0K
D

X

e2@K\�0

�
1

2
��

1
2 �ekŒ�ruh�k2L2.e/ C

1

2
.
��

he
C �he C he

�
/kŒuh�k2L2.e/

�
;

�2
EDK
D

X

e2@K\�
.
��

he
C �he C he

�
/kg � uhk2L2.e/;

with the weights �K and �e on an elementK are defined for � ¤ 0

�K D minfhK�� 1
2 ; ��

1
2 g; �e D minfhe�� 1

2 ; ��
1
2 g:

When � D 0, we set �K D hK�
� 1
2 and �e D he�

� 1
2 . Our adaptive algorithm is

based on the standard adaptive finite element (AFEM) iterative loop: SOLVE !
ESTIMATE ! MARK ! REFINE. The mesh is marked at each iteration using
the Dörfler strategy and refined using the longest edge bisection method [5]. For
coupled problems, the elements in the set of union of each component are refined.
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4 Efficient Solution of Linear Systems

Because the stiffness matrices obtained by DGFEM become ill-conditioned and
more dense with increasing polynomial degree [2], several preconditioners are
developed for an efficient and accurate solution of linear diffusion-convection
equations under DG discretization. Here we apply the matrix reordering and
partitioning technique in [7], which uses the largest eigenvalue and corresponding
eigenvector of the Laplacian matrix. This reordering reflects very well the block
structure of the underlying sparse matrix.

The solution to (3) has the form uh D Pdof
iD1 Ui�i where �i ’s are the basis

functions spanning the DGFEM space Vh, and Ui ’s are the unknown coefficients.
Then, the discrete residual of (3) can be given as

R.U / D SU C h.U / �L (4)

whereU D .U1; U2; : : : ; Udof /
T is the vector of unknown coefficients, S 2 R

dof�dof

is the stiffness matrix with the entries Sij D ah.�j ; �i /, h 2 R
dof is the vector

function of U with the entries hi D bh.uh; �i / and L 2 R
dof is the vector to the

linear form with Li D lh.�i /, i; j D 1; 2; : : : ; dof . We start with a non-zero initial
vector U 0. The nonlinear system of equations (4) are solved by Newton-Raphson
method. The linear system arising from i th-Newton-Raphson iteration step has the
form Jwi D �Ri , where J is the Jacobian matrix to R.U 0/ (i.e. J D S C h0.U 0/

and it remains unchanged among the iteration steps), wi D U iC1�U i is the Newton
correction, and Ri denotes the residual of the system at U i (Ri D R.U i/). Next,
we construct a permutation matrix P for the Jacobian matrix J as described in [7].
Then, we apply the permutation matrix P to obtain the permuted system Nw D b

whereN D PJPT , w D Pwi and b D �PRi . After solving the permuted system, the
solution of the unpermuted linear system can be obtained by applying the inverse
permutation, wi D PT w. The permuted and partitioned linear system can be solved
via the block LU factorization in which the coefficient matrix has the form

N D

A B

CT D

�
D

A 0

CT S

� 
I U

0 I

�

where U D A�1B and S is the Schur complement matrix: S D D � CTU . For
the right hand side vector b D .b1; b2/T and the reordered solution w D .w1;w2/T ,
solution of the block LU factorized system can be obtained in three steps as follows

Az D b1; Sw2 D b2 � CT z; w1 D z �Uw2 (5)

with both the matrices A and S are well-conditioned compared to the coefficient
matrix of the unpermuted system shown in Table 1.
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Table 1 Condition numbers
of the stiffness matrices
corresponding to the systems
obtained by the model in
Example 5.1 on a uniform
mesh

Degree 1 2 3 4

dof 24,576 49,152 81,192 122,880

J 299.1 660.8 1,596.2 3,399.0

S 139.9 279.1 911.7 1,485.7

A 5.3 18.3 37.7 79.7

5 Numerical Results

Example 5.1 We consider the problem in [3] on ˝ D .0; 1/2 with � D 10�6,
b D 1p

5
.1; 2/T , ˛ D 1 and r.u/ D u2. The source function f and the Dirichlet

boundary condition are chosen so that u.x; y/ D 1
2

�
1 � tanh 2x1�x2�0:25p

5�

	
is the

exact solution. The problem is characterized by an internal layer of thickness
O.
p
� j ln � j/ around 2x1 � x2 D 1

4
. This problem was solved using SUPG-SC

in [3] and SIPG-SC in [9]. Similar to those results, the mesh is locally refined by
DGAFEM around the interior layer and the spurious solutions are damped out in
Fig. 1, right similar to [3] using SUPG-SC, in [9] with SIPG-SC. On adaptively and
uniformly refined meshes, from the Fig. 2, left, it is evident that the adaptive meshes
save substantial computing time. On uniform meshes, the SIPG is slightly more
accurate than the SUPG-SC in [3]. The error reduction by increasing the degree of
the polynomials is remarkable on finer adaptive meshes (Fig. 2, right). For solving
the sparse linear systems, we present the results for the BiCGStab iterative method
of MATLAB with the stopping criterion as krkk2=kr0k2 � tol for tol D 10�4 (ri
is the residual of the corresponding linear system at the i th iteration) applied to
the original unpermuted system and Schur complement system with and without
preconditioner. As a preconditioner, the incomplete LU factorization of the Schur
complement matrix S (ILU(S )) is used. The linear systems with the coefficient
matrix A are solved directly. Table 2 shows that solving the problem by block LU
factorization where the Schur complement system is solved iteratively using the
preconditioner ILU(S ) is the fastest and has the least number of iterations. We use an
adaptive mesh by quadratic elements with dof 85,488 at the final refinement level of
the 16 refinement levels. The time to obtain the reordered matrix N and computing
the permutation in sum among the refinement levels takes 45:18 s, whereas, it takes
1:42 s to compute the Schur complement matrix S and ILU(S ), on a PC with Intel
Core-i7 processor and 8 GB 1066 MHz DDR3 RAM.

Remark We note that since the Jacobian matrix does not change during the
nonlinear iterations, the permutation, the Schur complement matrix and ILU(S)
are computed only once for each adaptive refinement level. In Table 2, we give the
number of Newton-Raphson iterations, the average number of BiCGStab iterations
for each adaptive mesh refinement level and the total time to solve the problem
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Fig. 1 Example 5.1, Adaptive mesh (left) and adaptive solution (right), quadratic elements with
dof 85,488
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Fig. 2 Example 5.1, Global errors: comparison of the methods by quadratic elements (left),
adaptive DG for polynomial degrees 1–4 (right)

Table 2 Example 5.1, Efficiency results for the sparse linear solver technique for adaptive mesh
refinement levels

Linear solver # Newton its. # BiCGStab its. Time (s)

BiCGStab w/o prec. (Unpermuted) 10–11 49–1,143 879.6

Block LUC (BiCGStab w/o prec.) 10–12 33–1,162 454.4

Block LUC (BiCGStab w/ prec. ilu(S) ) 10–14 4–82 144.9

just including the computation time for the reordered matrix N , the permutation
P , Schur complement matrix S , ILU(S ) and solving the linear systems among all
adaptive mesh refinement levels.

Example 5.2 We consider the two component quasi-steady problem from [4]

ui C b � rui � r � .�rui /C u1u2 D fi i D 1; 2
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Fig. 3 Example 5.2, Adaptive mesh (left) and the cross-section plot (right) in the crosswind
direction x1 C 2x2 D 1:5, quadratic elements with dof 144678

on ˝ D .0; 1/2 with � D 10�8, b D 1p
5
.1; 2/T . The source functions fi and the

Dirichlet boundary conditions are chosen with the exact solutions u1;2.x1; x2/ D
1
2

�
1˙ tanh 2x1�x2�0:25p

5�

	
. The equations are coupled by the lowest order terms of

the unknowns through ri .u; x/. This problem was solved in [4] with SUPG and
SUPG-SC and it was shown that unphysical oscillations are damped using SUPG-
SC with fourth order finite elements. Our results in Fig. 3 show that the sharp fronts
are very well detected and preserved with the adaptive DG using second order
elements. As a results, there is no over or under prediction, and artificial mixing
due to discretization will not occur.

We have shown that DGAFEM with the sparse linear solver is an efficient
method for solving nonlinear convection dominated problems accurately and
avoids the design of the parameters in the shock capturing technique as for
the SUPG-SC and DG-SC. The MATLAB programs can be obtained from
http://www.ceng.metu.edu.tr/m̃anguoglu/MatLab.zip.
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Harmonic Complete Flux Schemes
for Conservation Laws with Discontinuous
Coefficients

J.H.M. ten Thije Boonkkamp, L. Liu, J. van Dijk, and K.S.C. Peerenboom

Abstract In this paper we discuss several complete flux schemes for advection-
diffusion-reaction problems. We consider both scalar equations as well as systems
of equations. For the flux approximations in the latter case, we take into account
the coupling between the constituent equations. We study conservation laws with
discontinuous diffusion matrix/coefficient and show that the (matrix) harmonic
average should be employed in the expressions for the numerical fluxes. The
vectorial harmonic complete flux schemes are validated for a test problem.

1 Introduction

Conservation laws are ubiquitous in continuum physics. They occur in disciplines
like combustion theory, plasma physics, transport in porous media etc. These
conservation laws are often of advection-diffusion-reaction type, describing the
interplay between different processes such as advection or drift, (multi-species)
diffusion and chemical reactions or impact ionization.

Advection-diffusion-reaction problems are usually quite complex and require
sophisticated numerical solution methods. In this contribution we discuss numerical
flux approximations for two special cases: first, a scalar conservation law with a
rapidly varying or even discontinuous diffusion coefficient, and second, a system
of conservation laws coupled through a diffusion matrix. We also allow the
diffusion matrix to be discontinuous. The second problem is typical for multi-
species diffusion in mixtures or plasmas; see for example [3] for a detailed account.
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Due to the nonlinear dependency of the diffusion process on pressure, temperature
and plasma composition, diffusion matrices can vary rapidly in space.

Therefore, we consider the one-dimensional scalar model problem df=dx D
s, where f is the (advection-diffusion) flux and s the source term. The flux f is
given by

f D u' � "d'

dx
; (1)

with u the advection velocity and " > 0 the diffusion coefficient. The system
counterpart reads df =dx D s with f the flux vector given by

f D U' � E
d'

dx
; (2)

and s the source term. In relation (2) U is the advection matrix, which is usually
diagonal, and E is the diffusion matrix, which we assume symmetric positive
definite. We consider equations with " and E discontinuous.

The finite volume method is our discretization method of choice. Thus we cover
the domain with a finite set of control volumes (cells) Ij of size �x and choose
the grid points xj , where the unknown has to be approximated, in the cell centres.
Consequently, we have Ij D Œxj�1=2; xjC1=2� with xjC1=2 D 1

2

�
xj C xjC1

�
.

Integrating, for example, df =dx D s over Ij and applying the midpoint rule for
the integral of s, we obtain the discrete conservation law

F jC1=2 � F j�1=2 D �x sj ; (3)

with F jC1=2 the numerical flux approximating f at the cell interface xjC1=2 and
sj D s.xj /. For the numerical flux we adopt the complete flux schemes developed
in [4, 5]. The complete flux schemes for F jC1=2 typically read

F jC1=2 D ˛jC1=2'j � ˇjC1=2'jC1 C�x.�jC1=2sj C ıjC1=2sjC1/; (4)

where 'j denotes the numerical approximation of '.xj / and where the coefficient
matrices˛jC1=2 etc. are piecewise constant and depend onU and E . The goal of this
paper is to extend the standard complete flux schemes to equations with discontinu-
ous diffusion matrix/coefficient. We will deduce that the (matrix) harmonic average
of the diffusion matrix/coefficient is required in the expressions for the numerical
fluxes, which we collectively refer to as harmonic complete flux schemes.

We have organised our paper as follows. In Sect. 2 we modify the standard
scalar complete flux scheme for piecewise constant diffusion coefficient ". Next,
in Sect. 3, we extend the scalar scheme to systems of conservation laws, taking into
account the coupling between the constituent equations. In Sect. 4 we demonstrate
the performance of the vectorial harmonic complete flux schemes, and finally we
present conclusions in section “Concluding Remarks”.
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2 Numerical Approximation of the Scalar Flux

In this section we outline the complete flux scheme for the scalar equation, which is
based on the integral representation of the flux. The derivation is a modification of
the theory in [4].

The integral representation of the flux f .xjC1=2/ at the cell edge xjC1=2 is based
on the following model boundary value problem (BVP) for ':

d

dx

�
u' � "d'

dx

	
D s; xj < x < xjC1; (5a)

'.xj / D 'j ; '.xjC1/ D 'jC1: (5b)

We like to emphasize that f .xjC1=2/ corresponds to the solution of the inhomo-
geneous BVP (5), implying that f .xjC1=2/ not only depends on the advection-
diffusion operator, but also on the source term s. It is convenient to introduce the
variables P.x/, p.x/ and S.x/ for x 2 .xj ; xjC1/ by

P.x/ WD u.x/�x

".x/
; p.x/ WD

Z x

xjC1=2

u.�/

".�/
d�; S.x/ WD

Z x

xjC1=2

s.�/ d�: (6)

Here, P.x/ and p.x/ are the Peclet function and integral, respectively, generalizing
the well-known (numerical) Peclet number. Integrating the differential equation
df=dx D s from xjC1=2 to x 2 Œxj ; xjC1� we get the integral balance f .x/ �
f .xjC1=2/ D S.x/. Using the definition of p in (6), it is clear that the flux can
be rewritten as f .x/ D �".x/ep.x/ d

�
' e�p.x/

�
=dx. Substituting this representation

into the integral balance and integrating from xj to xjC1 we find the following
expressions for the flux:

f .xjC1=2/ D f h.xjC1=2/C f i.xjC1=2/; (7a)

f h.xjC1=2/ D
�
e�p.xj /'j � e�p.xjC1/'jC1

� ıZ xjC1

xj

"�1.x/e�p.x/ dx; (7b)

f i.xjC1=2/ D �
Z xjC1

xj

"�1.x/e�p.x/S.x/ dx
ıZ xjC1

xj

"�1.x/e�p.x/ dx; (7c)

where f h.xjC1=2/ and f i.xjC1=2/ are the homogeneous and inhomogeneous part,
corresponding to the homogeneous and particular solution of (5), respectively.

Next, we assume that u is constant and " is piecewise constant on .xj ; xjC1�, i.e.,
u.x/ D NujC1=2 WD 1

2

�
uj C ujC1

�
and

".x/ D
(

"j if xj < x � xjC1=2;
"jC1 if xjC1=2 < x � xjC1:

(8)
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Consequently, the function p.x/ is piecewise linear. Likewise, in agreement with
the finite volume discretization, we take s piecewise constant. Substituting these
approximations in the integral representation (7), and evaluating all integrals
involved, we obtain the numerical flux:

FjC1=2 D F h
jC1=2 C F i

jC1=2; (9a)

F h
jC1=2 D

Q"jC1=2
�x

�
B
� � NPjC1=2

�
'j � B

� NPjC1=2
�
'jC1

�
; (9b)

F i
jC1=2 D �x

�
	jC1=2sj C ıjC1=2sjC1

�
; (9c)

	jC1=2 D 1
2

 
� � 1

2
Pj
�

e� NPjC1=2 � 1 ; ıjC1=2 D � 12
 
�
1
2
PjC1

�

e NPjC1=2 � 1 ; (9d)

where Q"jC1=2 is the harmonic average of " and NPjC1=2 the arithmetic average of P ,
defined by

1

Q"jC1=2 WD
1

2

� 1
"j
C 1

"jC1

	
; NPjC1=2 WD NujC1=2�xQ"jC1=2 : (10)

Furthermore, the functions B.z/ and  .z/ in (9) are defined by B.z/ D z=
�
ez � 1�

and  .z/ D �
ez � 1 � z

�
=z. The flux approximation in (9) is referred to as the

piecewise constant complete flux scheme (PCCFS).
Alternatively, we propose to replace the (local) Peclet numbers Pj and PjC1

in (9d) by the average Peclet number NPjC1=2. This way we obtain

	jC1=2 D W1

� NPjC1=2
�
; ıjC1=2 D �W1

�� NPjC1=2
�
; (11)

withW1.z/ D
�
e�z=2�1Cz=2

�
=
�
z
�
1�e�z

��
. The corresponding flux approximation

is referred to as the harmonic complete flux scheme (HCF).

3 Extension to Systems of Conservation Laws

In this section we extend the derivation of the complete flux schemes to systems
of conservation laws. The derivation is a modification of the theory in [5] and is
detailed in [2].

Analogous to the scalar case, we derive the expression for the numerical flux
F jC1=2 from the following system BVP:

d

dx

�
U' � E

d'

dx

	
D s; xj < x < xjC1; (12a)

'.xj / D 'j ; '.xjC1/ D 'jC1; (12b)
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assuming thatU .x/ D NU jC1=2 WD 1
2

�
U jCU jC1

�
is constant and E .x/ is piecewise

constant on .xj ; xjC1�, i.e.,

E .x/ D
(

E j if xj < x � xjC1=2;
E jC1 if xjC1=2 < x � xjC1:

(13)

Recall that E is symmetric positive definite, and thus regular. We assume the source
term s.x/ to be piecewise constant. Letm denote the size of the system, thus ' and
s are m-vectors and U and E are m �m matrices.

For the derivation which follows it is convenient to introduce the variables

A.x/ WD E �1.x/U ; P.x/ WD �xA.x/; S .x/ WD
Z x

xjC1=2

s.�/ d�: (14)

The matrix P is referred to as the Peclet matrix P . Note that the matrices A
and P are piecewise constant on .xj ; xjC1�. Moreover, we assume that A has
m real eigenvalues 
i and m corresponding, linearly independent eigenvectors
vi .i D 1; 2; : : : ; m/. Since A has a complete set of eigenvectors, its spectral
decomposition is given by

AV D V �; � WD diag
�

1; 
2; : : : ; 
m

�
; V WD �v1; v2; : : : ; vm

�
; (15)

and based on this decomposition we can compute any matrix function of P as
follows

g.P/ WD V g.�x�/V �1; g.�x�/ WD diag.g.�x
1/; g.�x
2/; : : : ; g.�x
m//;
(16)

provided g is defined on the spectrum of A [1].
Integrating the conservation law df =dx D s from the interface at xjC1=2 to

some arbitrary x 2 Œxj ; xjC1�, we obtain

f .x/ � f �xjC1=2
� D S .x/: (17)

Next, we substitute the integrating factor formulation of the flux, which for x ¤
xjC1=2 is given by

f .x/ D �E e.x�xjC1=2/A
d

dx

�
e�.x�xjC1=2/A'

�
(18)
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in (17), isolate the derivative and subsequently integrate over the interval Œxj ; xjC1�
to obtain the integral formulation of the flux

Z xjC1

xj

e�.x�xjC1=2/AE �1.x/ dx f .xjC1=2/ D

ePj =2'j � e�PjC1=2'jC1 �
Z xjC1

xj

e�.x�xjC1=2/AE �1.x/S .x/ dx;

(19)

where Pj D P.xj / etc. In the right hand side, the first two terms correspond to the
advection-diffusion operator whereas the integral corresponds to the source term. In
order to determine the numerical flux we have to evaluate both integrals in (19).

Consider first the integral in the left hand side of (19) and take S .x/ D 0. Since
E and A are piecewise constant, we split the integral in two parts and find the
following relation for the homogeneous numerical flux F h

jC1=2:

1
2
�x
��
E jB

�
1
2
Pj

���1 C �E jC1B
� � 1

2
PjC1

���1	
F h
jC1=2 D

ePj =2'j � e�PjC1=2'jC1:
(20)

Note that this expression is properly defined since the matrices B
�
1
2
Pj

�
andB

� �
1
2
PjC1

�
are always regular. Next, consider the integral in the right hand side of (19).

Since S .x/ is piecewise linear, we can also evaluate this integral. Omitting the first
two terms in the right hand side of (19) we obtain the following expression for the
inhomogeneous flux F i

jC1=2:

��
E jB

�
1
2
Pj

���1 C �E jC1B
� � 1

2
PjC1

���1	
F i
jC1=2 D

� 1
2
�x
�
W2

�
1
2
Pj

�
E �1j sj �W2

� � 1
2
PjC1

�
E �1jC1sjC1

	
;

(21)

where W2.z/ D
�
ez.1 � z/ � 1�=z2. The complete flux approximation is obviously

given by F jC1=2 D F h
jC1=2 C F i

jC1=2, referred to as the piecewise constant
complete flux scheme (PCCFS).

PCCFS is a rather complicated and expensive scheme, and therefore we propose
the following approximation. Assume first that U is regular, then we can rewrite the
expression (20) for the homogeneous flux as

�
ePj =2 � e�PjC1=2

	
U�1F h

jC1=2 D ePj =2'j � e�PjC1=2'jC1: (22)

In general the Peclet matrices in (22) do not commute, so that we have to invoke the
Baker-Campbell-Hausdorff formula [1], e.g.,

e�Pj =2e�PjC1=2 D e� NPjC1=2C 18�x2ŒAj ;AjC1�CO.�x3/
; (23)
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where ŒAj ;AjC1� WD AjAjC1 � AjC1Aj is the commutator of both matrices.
Neglecting the O

�
�x2

�
-term in the exponent we can derive the vectorial equivalent

of (9b), i.e.,

F h
jC1=2 D

1

�x
QE jC1=2

�
B
�� NPjC1=2

�
'j � B

� NPjC1=2
�
'jC1

	
; (24)

with QE jC1=2 and NPjC1=2 the matrix harmonic average of E and the average Peclet
matrix, respectively, defined by

QE �1jC1=2 WD 1
2

�
E �1j C E �1jC1

�
; NPjC1=2 WD �x QE �1jC1=2 NU jC1=2; (25)

where obviously E �1j D E �1.xj / etc.
In case U is singular, and consequently also A, we apply a regularization

technique to derive (24). Therefore, we replace A by a perturbationAı D A C ıI
for some ı such that Aı is regular. This is possible, provided �ı … �.A/. The
matrices Pı and NP ı;jC1=2 are the corresponding perturbations of P and NPjC1=2,
respectively. ReplacingP by Pı in (20) we obtain a similar expression as (24) with
NPı;jC1=2 instead of NPjC1=2. Since B.z/ is continuous for z D 0 we can take the

limit ı ! 0 to arrive at the expression (24).
Next, for the inhomogeneous flux, we take for E its matrix harmonic average
QE jC1=2 and evaluate the integral in the right hand side of (19) to obtain

F i
jC1=2 D �x

�
W1

� OPjC1=2
�
sj �W1

� � OPjC1=2
�
sjC1

�
; (26)

with OPjC1=2 WD �x NU jC1=2 QE �1jC1=2; for more details see [2]. The resulting complete

flux approximationF jC1=2 D F h
jC1=2 C F i

jC1=2 with F h
jC1=2 and F i

jC1=2 defined
in (24) and (26), respectively, is referred to as the harmonic complete flux scheme
(HCFS), as opposed to the standard complete flux scheme, which employs the
arithmetic average of the diffusion matrix.

4 Numerical Example

As an example, we apply the vectorial complete flux schemes to the following test
problem:

d

dx

�
U' � E

d'

dx

	
D s; 0 < x < 1; (27a)

d'1
dx

.0/ D 0; '1.1/ D '1;R; '2.0/ D '2;L; d'2
dx
.1/ D 0; (27b)
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Fig. 1 Numerical solution of (27) (left) and discretization errors (right). Parameter values are:
u1 D �1, u2 D 1, ˛ D 0:05 and smax D 103 . Disretization schemes employed are: standard
complete scheme (CFS), homogeneous flux scheme (HFS), PCCFS and HCFS

with U D diag.u1; u2/ and where the diffusion matrix E and the source term vector
s are given by

E D 1
2
"

�
1C ˛ 1 � ˛
1 � ˛ 1C ˛

�
; ".x/ D

8
ˆ̂
<

ˆ̂
:

10�2 if x 2 Œ0; 0:25/
1 if x 2 Œ0:25; 0:75/
10�2 if x 2 Œ0:75; 1/

; (27c)

s.x/ D smax

1C smax.2x � 1/2
�
1

0:2

�
: (27d)

The problem is diffusion dominant in the middle, in .0:25; 0:75/, and advection
dominant in the remainder of the domain. The parameter ˛ .0 � ˛ � 1/ determines
the coupling between the constituent equations of (27a). The source term has a sharp
peak at x D 0:5 causing steep interior layers near the discontinuities of ". A typical
solution of (27) is displayed in Fig. 1.

To assess the (order) of convergence of the numerical solutions we first compute
a very fine grid solution '�, which to good approximation equals the exact solution.
An average discretization error for the second component '2, for example, is then
given by e2.�x/ D �xjj'�2 � '2jj1. In Fig. 1 this discretization error as function
of the grid size �x is plotted for various schemes. The standard complete flux and
homogeneous flux schemes display only first order convergence, whereas HCFS and
PCCFS are second order convergent and have a much smaller discretization error.

Concluding Remarks
In this contribution we have proposed several modifications of the stan-
dard complete flux schemes, both scalar and vectorial, for conservation
laws with discontinuous diffusion matrix/coefficient. For the numerical flux

(continued)
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approximations we employed the (matrix) harmonic average of the diffusion
matrix/coefficient, which turned out to be more accurate than the standard
schemes. However, more elaborate testing of the modified schemes for
realistic applications, such as plasma simulations, is still required.
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Analysis of Space-Time DGFEM for the Solution
of Nonstationary Nonlinear
Convection-Diffusion Problems

Miloslav Feistauer, Monika Balázsová, Martin Hadrava, and Adam Kosík

Abstract The subject of this paper is the analysis of the space-time discontinuous
Galerkin method for the solution of nonstationary, nonlinear, convection-diffusion
problems. In the formulation of the numerical scheme, the nonsymmetric, symmet-
ric and incomplete versions of the discretization of diffusion terms and interior and
boundary penalty are used. Then error estimates derived under a sufficient regularity
of the exact solution are briefly characterized. The main attention is paid to the
investigation of unconditional stability of the method. An important tool is the
concept of the discrete characteristic function. The dominating convection case is
not considered. Theoretical results are accompanied by numerical experiments.

1 Continuous Problem

Let ˝ � IR2 be a bounded polygonal domain and T > 0. We consider the
initial-boundary value problem to find u W QT D ˝ � .0; T /! IR such that

@u

@t
C

2X

sD1

@fs.u/

@xs
� div.ˇ.u/ru/ D g in QT D ˝ � .0; T /; (1)

u
ˇ̌
@˝�.0;T / D uD; (2)

u.x; 0/ D u0.x/; x 2 ˝: (3)

We assume that g; uD; u0; fs are given functions, fs 2 C1.IR/; jf 0s j � C; s D
1; 2, ˇ W IR ! Œˇ0; ˇ1� with 0 < ˇ0 < ˇ1 < 1 and jˇ.u1/ � ˇ.u2/j � Lju1 � u2j
for all u1; u2 2 IR.
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2 Space-Time Discretization

We construct a partition in the time interval Œ0; T � formed by time instants 0 D
t0 < � � � < tM D T and use the notation Im D .tm�1; tm/; �m D tm � tm�1, � D
maxmD1;:::;M �m. For ' defined in

SM
mD1 Im we put 'ṁ D ' .tm˙/ D limt!tm˙ '.t/

(one-sided limits at time tm), f'gm D ' .tmC/ � ' .tm�/ (jump).
For each Im we consider a partition Th;m of the closure ˝ of the domain ˝ into

a finite number of closed triangles with mutually disjoint interiors. The partitions
Th;m are in general different for different m. The following notation is used: Fh;m

– the system of all faces of all elements K 2 Th;m, F I
h;m – the set of all inner

faces, FB
h;m – the set of all boundary faces. Each � 2 Fh;m is associated with a unit

normal vector n� . ByK.L/
� andK.R/

� 2 Th;m we denote the elements adjacent to the
face � 2 F I

h;m. Moreover, for � 2 FB
h;m, the element adjacent to this face will be

denoted by K.L/
� . We assume that n� is the outer normal to @K.L/

� .
Let CW > 0 be a fixed constant. We set

h.� / D
h
K
.L/
�
C h

K
.R/
�

2CW
for � 2 F I

h;m; h.� / D
h
K
.L/
�

CW
for � 2 FB

h;m:

(4)

We introduce the broken Sobolev space

Hk.˝;Th;m/ D fvI vjK 2 Hk.K/ 8K 2 Th;mg:

If v 2 H1.˝;Th;m/ and � 2 Fh;m, then v.L/� ; v.R/� will denote the traces of v on �

from the side of elementsK.L/
� ; K

.R/
� adjacent to � . For � 2 F I

h;m we set

hvi� D 1

2

�
v.L/� C v.R/�

	
; Œv�� D v.L/� � v.R/� :

Further, let p; q � 1 be integers. Then for each m D 1; : : : ;M we define the
spaces

S
p

h;m D
˚
' 2 L2.˝/I'jK 2 Pp.K/ 8K 2 Th;m

�
; (5)

S
p;q

h;� D
n
' 2 L2.QT /I'

ˇ
ˇ
Im
D

qX

iD0
t i 'i with 'i 2 Sph;m; m D 1; : : : ;M

o
: (6)

In the space Sp;qh;� an approximate solution will be sought.
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If u; ' 2 H2.˝;Th;m/, then we define the following forms:

Diffusion form

ah;m.u; '/ D
X

K2Th;m

Z

K

ˇ.u/r u � r ' dx (7)

�
X

� 2F I
h;m

Z

�

.hˇ.u/rui � n� Œ'�C hˇ.u/r'i � n� Œu�/ dS

�
X

� 2FB
h;m

Z

�

.ˇ.u/ru � n� ' C  ˇ.u/r ' � n� u � ˇ.u/r ' � n� uD/ dS:

Let us note that in integrals over faces we omit the subscript � . For  D 1,  D 0
and  D �1 we get the symmetric (SIPG), incomplete (IIPG) and nonsymmetric
(NIPG) variants of the approximation of the diffusion terms, respectively.
Interior and boundary penalty

Jh;m.u; '/ D
X

� 2F I
h;m

h.� /�1
Z

�

Œu� Œ'� dS C
X

� 2FB
h;m

h.� /�1
Z

�

u ' dS: (8)

Right-hand side form

`h;m.'/ D .g; '/C ˇ0
X

� 2FB
h;m

h.� /�1
Z

�

uD ' dS: (9)

Convection form

bh;m.u; '/ D �
X

K2Th;m

Z

K

2X

sD1
fs.u/

@'

@xs
dx (10)

C
X

� 2F I
h;m

Z

�

H
�

u.L/� ; u.R/� ; n�

	
Œ'� dS

C
X

� 2FB
h;m

Z

�

H
�

u.L/� ; u.L/� ; n�

	
' dS:
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HereH D H.u; v; n/ is a numerical flux, which is Lipschitz-continuous in IR2�B1,
where B1 D fn 2 IR2I jnj D 1g, consistent:

H.u; u; n/ D
2X

sD1
fs.u/ ns; u 2 IR; n D .n1; n2/ 2 B1;

and conservative:

H.u; v; n/ D �H.v; u;�n/; u; v 2 IR; n 2 B1:

We set

Ah;m D ah;m C ˇ0Jh;m; (11)

and by .�; �/ we denote the scalar product in L2.˝/. It induces the norm k � k in
L2.˝/. The space H1.˝;Th;m/ will be equipped with the norm

k'kDG;m D
� X

K2Th;m
j'j2

H1.K/
C Jh;m.'; '/

	1=2
:

In what follows we shall use the notation U 0 D @U=@t; u0 D @u=@t . Now the
space-time DG approximate solution is defined as a function U 2 Sp;qh;� such that

Z

Im

�
.U 0; '/C Ah;m.U; '/C bh;m.U; '/

�
dt C �fU gm�1; 'Cm�1

�
(12)

D
Z

Im

`h;m.'/ dt; 8 ' 2 Sp;qh;� ; m D 1; : : : ;M;

U�0 D L2.˝/-projection of u0 on Sph;1:

3 Error Estimates

The papers [4] and [2] were devoted to the analysis of the STDG method applied to
problem in the case of linear diffusion and nonlinear diffusion, respectively. Under
the assumptions on the regularity of the exact solution

u 2 HqC1�0; T IH1.˝/
�\ C.Œ0; T �IHpC1.˝//; (13)

kru.t/kL1.˝/ � CR for a. e. t 2 .0; T /;
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using approximation properties of Sph;m- and Sp;qh;� -interpolation operators, assump-
tions on the properties of the meshes, namely the shape regularity and local
quasiuniformity and the condition

�m � Ch2m; m D 1; : : : ;M; (14)

error estimates in terms of h and � were proven.

Theorem 1 There exists a constant C > 0 such that

ke�mk2 C
"

2

mX

jD1

Z

Im

kek2DG;j dt (15)

� C
�
h2pjuj2

C.Œ0;T �IHpC1.˝//
C �2qC˛juj2

HqC1.0;T IH1.˝//

	
:

Here ˛ D 2, if uD is a polynomial of degree � q in t . Otherwise, ˛ D 0 under the
assumption that the CFL-like condition

�m � ChK; K 2 Th;m; m D 1; : : : ;M; (16)

with a constant C independent of hK , �m and M is satisfied for the elements K
adjacent to the boundary @˝ . (If all meshes Th;m are identical, then condition (14)
can be omitted.)

4 Unconditional Stability of the Space-Time DGM

Our main goal is to show that the space-time DG method is unconditionally stable,
which means that the approximate solution U is bounded in suitable norms of data
g .2 L2.QT //, u0 (2 L2.˝/) and uD (2 L2.@˝/) independently of h and � without
condition (16). To this end, we introduce the norm

kvkDGB;m D

0

B
@
X

� 2FB
h;m

h�1.� /
Z

�

jvj2dS

1

C
A

1=2

; v 2 L2.@˝/: (17)

In what follows, we shall give a sketch of the proof of the unconditional stability,
which is rather technical. The details will be contained in [1]. In the stability analysis
we start from the relation

Z

Im

��
U 0; U

�C ah;m.U;U /C ˇ0 Jh;m.U;U /C bh;m.U;U /
�

dt (18)

C.fU gm�1; 'Cm�1/ D
Z

Im

`h;m.U / dt;

obtained from (12) putting ' WD U , and estimate individual terms.
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We use some auxiliary results:

Coercivity:
Z

Im

.ah;m.U;U /C ˇ0 Jh;m.U;U // dt (19)

� ˇ0

2

Z

Im

kU k2DG;m dt � ˇ0
2

Z

Im

kuDk2DGB;m dt;

if CW is sufficiently large. (Lower bound of CW is expressed by the constants
from the multiplicative trace inequality, inverse inequality and local quasiunifor-
mity of the meshes.)
Bound of the right-hand side form `h;m.U /: For each k > 0 we have
Z

Im

j`h;m.U /j dt (20)

� 1

2

Z

Im

�kgk2 C kU k2� dtC ˇ0k
Z

Im

kuDk2DGB;m dtC ˇ0

k

Z

Im

kU k2DG;m dt:

Bound of the form bh;m: For each k > 0 we have
Z

Im

jbh;m.U;U /j dt � ˇ0

k

Z

Im

kU k2DG;m dtC cb.k/
Z

Im

kU k2 dt: (21)

On the basis of the above results it is possible to prove the following estimate:

kU�m k2 � kU�m�1k2 C
ˇ0

2

Z

Im

kU k2DG;mdt (22)

� c
�Z

Im

kgk2 dtC
Z

Im

kU k2 dtC
Z

Im

kuDk2DGB;mdt

�
:

We see that it is necessary to estimate the expression
R
Im
kU k2 dt in terms of data.

The main tool is the concept of the discrete characteristic function �y 2 Sp;qh;� to U
for y 2 Im D .tm�1; tm/ defined by

Z

Im

.�y; '/ dt D
Z y

tm�1

.U; '/ dt 8' 2 Sp;q�1h;� ; �y.t
C
m�1/ D U.tCm�1/; (23)

introduced, e.g., in [3].
The operator assigning �y to U is continuous, i.e.,
Z

Im

k�yk2DG;m dt � cq
Z

Im

kU k2DG;m dt;
Z

Im

k�yk2 dt � cq
Z

Im

kU k2 dt; (24)

where the constant cq > 0 depends only on q.
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With the aid of a complicated technical process it is possible to prove the
following important inequality: There exists a constant c > 0 such that

Z

Im

kU k2 dt � c �m
�
kU�m�1k2 C

Z

Im

�kgk2 C kuDk2DGB;m

�
dt

�
: (25)

Now we come to the formulation of the final main result.

Theorem 2 There exists a constant c > 0 such that

kU�m k2 C
ˇ0

2

MX

jD1

Z

Ij

kU k2DG;j dt

� c
0

@kU�0 k2 C
MX

jD1

Z

Ij

�
kgk2 C kuDk2DGB;j

	
dt

1

A ;

m D 1; : : : ;M; h 2 .0; h0/;

kU k2
L2.QT /

� c
0

@kU�0 k2 C
MX

jD1

Z

Ij

�
kgk2 C kuDk2DGB;j

	
dt

1

A ;

h 2 .0; h0/:

As we see, this theorem represents the unconditional stability of the space-time DG
method in the discrete L1.L2/-norm, energy DG norm and L2.L2/-norm.

5 Numerical Experiments

In this section, the accuracy and stability of the method is demonstrated by
numerical experiments. We consider problem (1) for equation

@u

@t
C u

@u

@x1
C u

@u

@x2
D "�uC g in .0; 1/2 � .0; 10/ (26)

with " D 0:1 and such initial and Dirichlet boundary conditions that the exact
solution has the form u.x1; x2; t/ D .1 � e�10t /2r˛x1x2.1 � x1/.1 � x2/, where
r D .x1 C x2/

1=2 and ˛ 2 IR is a constant. It is possible to prove that u 2
HqC1.0; T IHˇ.˝// for all ˇ 2 .0; ˛ C 3/: The numerical flux is defined by

H.u; v; n/ D

 P2

sD1 fs.u/ns; if A > 0P2
sD1 fs.v/ns; if A � 0;
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where

A D
2X

sD1
f 0s
�

uC v

2

�
ns and n D .n1; n2/:

Five special triangular meshes having 235, 333, 749, 1,622 and 2,521 elements,
space polynomial degrees p D 1; 2; 3 and time polynomial degree q D 2were used.
We chose the fixed time step � D 0:025 and the constant CW D 100 in the SIPG
version of the diffusion discretization. Figure 1 shows the coarsest mesh, which is
refined near the right-hand side of the boundary. This mesh was successively refined.

Tables 1 and 2 show the computational errors in the L1.L2/-norm and the
corresponding experimental orders of convergence (EOC). We see that for a
sufficiently regular exact solution (˛ D 4) we get the optimal order of convergence
O.hpC1/ for p D 1; 2; 3, whereas in the case with irregular solution (˛ D �3=2)
the error estimates are of order O.h3=2/ for p D 1; 2; 3. (This result can be proven
with the aid of estimates in Sobolev-Slobodetskii spaces.) The presented numerical
experiments demonstrate the stability of the numerical process without CFL-like
condition (16).

Fig. 1 Coarse mesh with 235
elements
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Table 1 Computational errors and the corresponding orders of convergence of the SIPG method
for ˛ D 4

p D 1 p D 2 p D 3

Mesh h kehk EOC kehk EOC kehk EOC

1 1.768E�01 2.229E�03 – 1.317E�04 – 6.708E�06 –

2 1.414E�01 1.522E�03 1.708 7.272E�05 2.663 2.956E�06 3.672

3 8.839E�02 6.660E�04 1.759 1.994E�05 2.753 5.026E�07 3.770

4 5.657E�02 2.947E�04 1.827 5.634E�06 2.832 9.017E�08 3.850

5 4.419E�02 1.858E�04 1.869 2.770E�06 2.876 3.446E�08 3.897

Table 2 Computational errors and the corresponding orders of convergence of the SIPG method
for ˛ D �3=2

p D 1 p D 2 p D 3

Mesh h kehk EOC kehk EOC kehk EOC

1 1.768E�01 2.669E�02 – 6.038E�03 – 2.784E�03 –

2 1.414E�01 1.946E�02 1.416 4.330E�03 1.490 2.003E�03 1.475

3 8.839E�02 9.857E�03 1.447 2.149E�03 1.491 9.985E�04 1.481

4 5.657E�02 5.116E�03 1.469 1.103E�03 1.493 5.141E�04 1.488

5 4.419E�02 3.552E�03 1.478 7.630E�04 1.495 3.556E�04 1.493
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Space-Time Discontinuous Galerkin Method
for the Problem of Linear Elasticity

Martin Hadrava, Miloslav Feistauer, Jaromír Horáček, and Adam Kosík

Abstract The subject of this paper is the numerical solution of the problem of
dynamic linear elasticity by several time-discretization techniques based on the
application of the discontinuous Galerkin (DG) method in space. In the formulation
of the numerical scheme, the nonsymmetric, symmetric and incomplete versions of
the discretization of the elasticity term and the interior and boundary penalty are
used. The DG space discretization is combined with the backward-Euler, second-
order backward-difference formula and DG time discretization. Finally, we present
some test problems.

1 Introduction

This paper is concerned with the application of the discontinuous Galerkin (DG)
method to the solution of dynamic linear elasticity problem. (For a survey of DG
techniques, see, e.g., [2,4].) The DG space discretization is combined with the time
discretization by the backward Euler (BEDG), second-order BDF (BDFDG) or DG
scheme in time (STDG).

In [3], the method using the DG technique in time, but conforming finite elements
in space is analyzed in the case of a linear wave equation. Here we are not interested
in the computation of wave propagation in an elastic body, but our future goal will
be to apply the developed method, which is different from the scheme analyzed in
[3], to the solution of the interaction of a fluid and an elastic body.

We describe the mentioned methods and apply them to a test problem in order
to compare their quality. Numerical experiments show that the STDG method is

M. Hadrava (�) • M. Feistauer • A. Kosík
Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75
Praha 8, Czech Republic
e-mail: martin@hadrava.eu; feist@karlin.mff.cuni.cz; adam.kosik@atlas.cz

J. Horáček
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the most promising. Our further work will be oriented to a deeper analysis of the
developed method and its applications to fluid-structure interaction (FSI) problems.

2 Formulation of the Dynamic Elasticity Problem

We consider an elastic body represented by a bounded domain ˝ � R
2 with

boundary formed by two disjoint parts: @˝ D �D [ �N . By u D u.t;x/ W
Œ0; T � � ˝ ! R

2 we denote the displacement of the body. The symbol ru D�
@ui =@xj

�2
i;jD1 denotes the gradient of the function u. The dynamic elasticity

problem is defined as follows: we seek for the displacement function u such that

�
@2u
@t2
C cM�@u

@t
� div � .u/ � cK @

@t
div� .u/ D f in .0; T / �˝; (1)

u D uD in .0; T / � �D; � .u/ � n D gN in .0; T / � �N ; (2)

u.0; x/ D u0.x/;
@u
@t
.0; x/ D z0.x/; in ˝: (3)

Here f W .0; T / � ˝ ! R
2 is the outer volume force, uD W .0; T / � �D ! R

2 is
the boundary displacement, gN W .0; T /� �N ! R

2 is the boundary normal stress,
u0 W ˝ ! R

2 is the initial displacement, z0 W ˝ ! R
2 is the initial displacement

velocity, T > 0 is the time interval length and � > 0 is the constant material density.
The expressions cM� @u

@t
and cK @

@t
div � .u/ with cM ; cK � 0 represent structural and

viscous damping terms. We assume that the material is isotropic and homogeneous
and that the stress tensor � .u/ depends on the infinitesimal strain tensor e.u/ by
the relation

� .u/ WD 
 tr.e.u//I C 2�e.u/; e.u/ WD 1

2

�ruCruT
�
: (4)

We assume that the Lamè parameters 
 and � are constant. For most solid materials
it holds that 
;� > 0. Finally, tr.e.u// denotes the trace of the tensor e.u/.

3 Discretization

In order to introduce the discrete problem we rewrite problem (1)–(3) as a couple of
first-order equations in time: find functions u and z W Œ0; T � �˝ ! R

2 such that

%
@z
@t
C cM%z � div � .u/� cKdiv � .z/ D f ; (5)

@u
@t
� z D 0 in .0; T / �˝; (6)
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u D uD in .0; T / � �D; � .u/ � n D gN in .0; T / � �N ; (7)

u.0; x/ D u0.x/; z.0; x/ D z0.x/ in ˝: (8)

3.1 Notation

Let us assume that the computational domain ˝ is polygonal. By Th we denote a
triangulation of the domain ˝ with triangular elements K 2 Th having standard
properties from the finite element method, cf. [1].

We say that the elements K , K 0 2 Th are neighbours, if the set @K \ @K 0 has
positive 1-dimensional measure. We say that � � @K is a face of K , if it is a
maximal connected open subset of either @K\@K 0, whereK 0 is a neighbour ofK or
of @K \�D or of @K \�N . By Fh we denote the system of all faces of all elements
K 2 Th. Further, we define the set of all boundary, “Dirichlet”, “Neumann” and
inner faces by

FB
h D f� 2 FhI� � @˝g ; FD

h D f� 2 FhI� � �Dg ;
FN
h D f� 2 FhI� � �N g ; F I

h D FhnFB
h ;

respectively. We put F ID
h D F I

h [FD
h . For each � 2 Fh we define a unit normal

vector n� . We assume that for � 2 FB
h the normal n� has the same orientation as

the outer normal to @˝ . For each � 2 F I
h the orientation of n� is arbitrary, but

fixed.
We define the finite dimensional space

Shp D
˚
v 2 L2.˝/I vjK 2 Pp.K/;K 2 Th

�
;

where p � 1 is an integer and Pp.K/ denotes the space of all polynomials onK of
degree� p. It is easy to show that dimShp D NTh.p C 1/.pC 2/=2, where NTh is
the number of elements in Th.

Because of the time discretization we introduce a uniform partition 0 D t0 <

� � � < tM D T of the time interval Œ0; T � with a constant time step � D tm � tm�1,
m D 1; : : : ;M . Let p � 1, q � 0 be integers. By S�qhp we denote the space of
piecewise polynomial functions

S
�q
hp D

(

v 2 L2..0; T / �˝/I vjIm D
qX

iD0
t i'i with 'i 2 Shp; m D 1; : : : ;M

)

;

where Im D .tm�1; tm/, m D 1; : : : ;M . The space S�qhp consists of all polynomials
of degree less or equal to q in time with coefficients in Shp. As we see, functions
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from S
�q
hp are, in general, discontinuous on faces � 2 F I and at time instants

tm; m D 1; : : : ;M � 1. The dimension of the space S�qhp equalsM.q C 1/ dimShp.

For each � 2 F I
h there exist two neighbouring elements K.L/

� ;K
.R/
� 2 Th such

that � � @K.L/
� \@K.R/

� . We use the convention that n� is the outer normal to @K.L/
�

and the inner normal to @K.R/
� . For v 2 ŒShp�

2 or ŒS�qhp �
2 we introduce the following

notation:

vj.L/� D the trace of vj
K
.L/
�

on �; vj.R/� D the trace of vj
K
.R/
�

on �;

hvi� D 1
2

�
vj.L/� C vj.R/�

	
; Œv�� D vj.L/� � vj.R/� ;

where � 2 F I
h . For � 2 FB

h there exists an element K.L/
� 2 Th such that � �

K
.L/
� \ @˝ . Then for v 2 ŒShp�

2 we introduce the following notation:

vj.L/� D the trace of vj
K
.L/
�

on �; hvi� D Œv�� D vj.L/� :

In case that Œ��� , h�i� and n� appear in integrals
R
�
: : : dS , � 2 Fh, we omit

the subscript � and simply write Œ��, h�i and n, respectively.
Finally, by T W S we shall denote the tensor inner product, defined by

T W S D
2X

iD1

2X

jD1
TijSij D tr

�
T T S

�
; S; T 2 R

2�2:

3.2 Space Discretization

We begin with the space discretization of the dynamic elasticity problem. An
approximate solution of problem (5)–(8), i.e., the approximations of the functions
u; z will be sought in the space V WD ŒShp�

2 in the finite-difference based schemes
or V WD ŒS�qhp �

2 in the space-time discontinuous Galerkin method.
In the first step, we multiply Eqs. (5)–(6) by test functions v and w 2 V ,

respectively, integrate the resulting equations over K 2 Th, sum the resulting
equations over all K 2 Th and use the following relations. Using Green’s theorem,
we obtain the equality

�
X

K2Th

Z

K

div � .u/ � v dx D
X

K2Th

Z

K

� .u/ W e.v/ dx

�
X

� 2F ID
h

Z

�

.h� .u/i � n/ � Œv� dS �
X

� 2FN
h

Z

�

gN � v dS:
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The interior and boundary penalty methods incorporate the fact that for the exact
solution we have Œu�� D 0 for each � 2 F I

h and u satisfies the Dirichlet condition
in (7). Hence,

X

� 2F ID
h

Z

�

CW

h�
Œu� � Œv� dS D

X

� 2FD
h

Z

�

CW

h�
uD � v dS

for each v 2 V , where CW > 0 is a given parameter and h� represents the

“magnitude” of � as, for example, the length of � of h� D
�
h
.L/
K�
C h.R/K�

	
=2.

Finally, for the exact solution u and arbitrary v 2 V we have

X

� 2F ID
h

Z

�

.h� .v/i � n/ � Œu� dS D
X

� 2FD
h

Z

�

.� .v/ � n/ � uD dS:

We now define the forms ah.u; v/ W V � V ! R, `sh.v/ W V ! R and `eh.v/ W
V ! R by

ah.u; v/ D
X

K2Th

Z

K

� .u/ W e.v/ dx �
X

� 2F ID

Z

�

.h� .u/i � n/ � Œv� dS (9)

� 
X

� 2F ID

Z

�

.h� .v/i � n/ � Œu� dS C
X

� 2F ID

Z

�

CW

h�
Œu� � Œv� dS;

`sh.v/ D
X

K2Th

Z

K

f � v dx; (10)

`eh.v/ D
X

� 2FN

Z

�

gN � v dS � 
X

� 2FD

Z

�

.� .v/ � n/ � uD dS (11)

C
X

� 2FD

Z

�

CW

h�
uD � v dS:

The parameter  defines the symmetric ( D 1), incomplete ( D 0) and
nonsymmetric ( D �1) variant of the interior penalty DG method.

Application of these formulas yields the system

�

�
@zh
@t
; vh

�

˝

C cM� .zh; vh/˝ C ah.uh; vh/C cKah.zh; vh/ (12)

D `sh.vh/C `eh.vh/C cK`e;dt
h .vh/ 8vh 2 V ;

�
@uh
@t
;wh

�

˝

� .zh;wh/˝ D 0 8wh 2 V : (13)



120 M. Hadrava et al.

The term `e;dt
h .vh/ is defined similarly as `eh.vh/with the exception that the functions

uD , gN are replaced with @uD=@t , @gN=@t , respectively. By .�; �/˝ we denote the
ŒL2.˝/�2-scalar product.

3.3 Time Discretization

We consider two schemes based on finite-difference approximations in time. The
process of the derivation of the full discretization is well-known and hence we shall
only present the finite-difference approximations here. The backward-Euler (BE)
scheme is based on the approximation

@u
@t
.t/ 	 u.t/ � u.t � �/

�
:

The second finite-difference scheme is based on the second-order backward-
difference formula

@u
@t
.t/ 	 3u.t/ � 4u.t � �/C u.t � 2�/

2�
:

In order to define the space-time discontinuous Galerkin method, let us introduce
the one-sided limits and the jump of a function v 2 ŒSpq

h� �
2 at time tm:

vCm D lim
s!0C

v.tm C s/; v�m D lim
s!0C

v.tm � s/; fvgm D vCm � v�m: (14)

The approximate space-time DG solution of problem (5)–(8) is defined as a
couple uh� ; zh� 2 ŒSpq

h� �
2 satisfying

Z

Im

�
�

�
@zh�
@t

; vh�

�

˝

C cM� .zh� ; vh� /˝ C ah.uh� ; vh� / (15)

C cKah.zh� ; vh� /
	

dt C .fzh�gm�1; vh� .tm�1C//˝

D
Z

Im

�
`sh.vh� /C `eh.vh� /C cK`e;dt

h .vh� /
	

dt 8vh� 2 ŒS sq
h� �

2;

Z

Im

��
@uh�
@t

;wh�

�

˝

� .zh� ;wh� /˝
�

dt C .fuh�gm�1;wh� .tm�1C//˝ D 0

8wh� 2 ŒS sq
h� �

2; m D 1; : : : ;M:

The initial states uh.0�/; zh.0�/ 2 ŒShp�
2 are defined by .uh.0�/; vh/˝ D

.u0; vh/˝ , .zh.0�/; vh/˝ D .z0; vh/˝ for all vh 2 ŒShp�
2.



Space-Time Discontinuous Galerkin Method for Linear Elasticity 121

In all three cases, the resulting linear systems are solved using the direct solver
UMFPACK.

4 Numerical Experiments

Here we present numerical results for a simple model problem solved by the
STDG method with  D �1 (nonsymmetric version of the space discretization).
We assume that the domain ˝ is represented by a rectangular elastic material,
which is 2 cm long and 2mm wide. We consider the following material properties:
density % D 1;100 kg.m�3, Young’s modulus E D 105 kg.m�1.s�2, Poisson’s ratio
� D 0:4. The Lamè parameters 
 and � can be computed fromE and � by relations

 D E�

.1C�/.1�2�/ , � D E
2.1C�/ . These parameters correspond to a very soft, rubber-

like material. The material is exposed to a horizontal surface force in the direction
of the negative part of the x1-axis for a short period of time. The lower left corner
of the domain is at the point Œ�0:001;�0:01� and the upper right corner is at the
point Œ0:001; 0:01�. On the fixed part of the boundary, where x2 D �0:01 and which
is denoted by �D , we prescribe the Dirichlet boundary condition (2) with uD D 0.
The Neumann boundary condition (2) is prescribed on the rest of the boundary @˝ ,
denoted by �N , where we put gN D .�20; 0/T for t < 0:02 s, x1 D 0:001 and
x2 > 0:005, and gN D 0 otherwise. Finally, we set T D 0:5 s, cM D 0:1 s�1 and
cK D 0.

Figure 1 shows the model scheme and the time evolution of the computed dis-
placement at several time instants. Figure 2 shows the evolution of the displacement
at the fixed spatial point Œ�0:001; 0:01� (upper left corner) obtained by the three
presented numerical methods. Here STDGM 1 denotes the space-time discontinuous
Galerkin method with the time polynomial degree q D 1. For all the computations
the space polynomial degree p was set to 1, i.e. linear elements in space were used.

Fig. 1 Schema of the model problem (left) and the visualization of the evolution of the displace-
ment function u at the time instants t D 0, 0:01, 0:02, 0:03 s
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Fig. 2 The evolution of the displacement function u at the fixed point Œ�0:001; 0:01�

Conclusion
We have presented several different discretizations for the problem of
dynamic linear elasticity based on the discontinuous Galerkin semi-
discretization in space. A special attention was paid to the space-time
discontinuous Galerkin method, which is based on the piecewise polynomial
approximation of the sought function both in space and in time. The presented
numerical example shows promising convergence properties of this method.
For a given time step � the error of the numerical solution obtained by the
STDG method with q D 1 is lower than the error of the solution obtained
by the method based on the second-order BDF method, which is of equal
theoretical order of convergence. On the other hand, the STDG method is

(continued)
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more expensive in terms of the computational time. This is caused by a larger
system of linear algebraic equations, which has to be solved at each time level,
and by the quadrature rules, which have to be applied not only in space but
also in time.

The future work will be focused towards the analysis of the convergence
of the STDG method and its comparison with other methods on more
sophisticated test problems.
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Mimetic Finite Difference Method for Shape
Optimization Problems

P.F. Antonietti, Nadia Bigoni, and Marco Verani

Abstract We test the performance of the Mimetic Finite Difference method applied
to a wide class of shape optimization problems. Adaptive strategies based on
heuristic error indicators are also considered to validate the effectiveness of the
numerical scheme.

1 Introduction

In this paper we are interested in solving shape optimization problems by using the
Mimetic Finite Difference (MFD) method. For an introduction of the MFD method
applied to elliptic problems we refer to, e.g., [3, 4]. Thanks to a great flexibility
allowed in the choice of the grid, the MFD method turns out to be a very promising
technology in the context of the approximation of shape optimization problems.
Standard numerical methods such as finite elements, finite volumes and spectral
elements, usually require a massive use of re-meshing techniques to preserve the
geometrical regularity of the computational domain and as a consequence, the
computational cost could become prohibitive (see, e.g., [7]). Since the MFD method
can deal with grids made of very general polygons/polyhedra, we investigate the
possibility of obtain reliable numerical simulations without resorting to any re-
meshing strategy.

The paper is organized as follows: in Sect. 2 we study the application of the MFD
method to three different shape optimization problems. The first two examples are
classical shape optimization problems governed by an elliptic equation and a Stokes
equation, respectively, whereas the last example is related to the solution of an
elliptic free-boundary problem. Finally, in Sect. 3 we briefly explore the possibility
of incorporating an adaptive procedure into the optimization process by showing
some numerical results.
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2 MFD Method Applied to Shape Optimization Problems

Let ˝ be an open, bounded set of R2, with a polygonal boundary � WD @˝ , and let
J .˝; y.˝// be a cost functional, which depends on ˝ itself and on the solution
y.˝/ of the following boundary value problem

Ly.˝/ D 0 in ˝; (1)

where L is a differential operator. We are interested in solving the following
minimization problem:

find ˝� 2 A WJ .˝�; y.˝�// D inf
˝2A J .˝; y.˝//; (2)

where A is a set of admissible domains in R
2. Assuming that a local minimizer

˝� of (2) exists, the shape optimization problem (2) can be solved by building a
sequence of domains f˝.k/g for k > 0, in such a way that ˝.k/ converges to ˝� as
k approaches infinity (cf. [5]). Roughly speaking, if ˝.k/ is the domain at iteration
k, then˝.kC1/ is updated by

˝.kC1/ D ˝.k/ C �.k/V .k/;

where �.k/ is a parameter which regulates the “length” of the movement and V .k/

is an admissible descent direction. In other words, V .k/ is such that the shape
derivative dJ .˝.k/IV .k// of the considered functional is negative. For a precise
definition of the shape derivative and other technical details we refer to [5]. Problem
(2) can be solved by means of the steepest-descent like algorithm (cf. [6]), described
in Algorithm 2.1.

Algorithm 2.1: Shape optimization algorithm

1: Given the initial domain ˝.0/, set k D 1

2: SOLVE problem (1) and find y.k/ D y.˝.k//

3: COMPUTE the shape derivative dJ .˝IV / of the given functional
4: COMPUTE a descent direction V .k/

5: FIND an admissible stepsize �.k/

6: UPDATE ˝.kC1/ D ˝.k/ C �.k/V .k/ , set k D k C 1 and GOTO step 2



MFD for Shape Optimization Problems 127

2.1 Elliptic Problem

In the first example we solve the benchmark problem introduced in [6]. Let us
consider the domain˝ � R

2 with @˝ D �f [˙1 [˙2, where �f , ˙1 and˙2 are
disjoint (possibly empty) subset of @˝ . Moreover, letD be an open bounded subset
of ˝ (see Fig. 1). Then, let y.˝/ be the solution of the following elliptic problem:

��y D 0 in ˝; y D 0 on ˙1; @ny D 0 on ˙2; @ny D 1 on �f :
(3)

The cost functional we aim at minimizing is set as

J .˝; y.˝// WD 1

2

Z

D

�
y.˝/ � zg

�2
dx C 	

2

�Z

�

dS� P
�2
; (4)

where 	 and P are positive constants. The set A of admissible domains is
represented by all domains obtained through a deformation of˝ by keeping˙1 and
˙2 fixed and by moving only �f in such a way that �f \ D D ;. The mimetic
discretization of problem (3) and a detailed discussion of the MFD method for
elliptic problems can be found for example in [4].
Let x D .x1; x2/, and let k � k denote the Euclidean norm. In the numerical test, we
choose the regionD equal to the half ring f2 � kxk � 2:5g\fx2 > 0g and zg in (4)
as the exact solution of (3) on ˝ D f1 < kxk < 3g \ fx2 > 0g. A global minimizer
exists and it is exactly given by ˝� D f1 < kxk < 3g \ fx2 > 0g (cf. Fig. 1). We
point out that in this set of experiments no adaptive nor remeshing technique are
used. In Fig. 2 we report the initial computational domain (left) and a zoom of the
obtained configuration (right) after four iterations of Algorithm 2.1.

The computed value of the functional (4) starts from 3:2990e� 01 and after four
iterations reduces to 9:3176e�04. A finer grid in the regionD is employed in order
to accurately approximate the cost functional. We can state that the method seems
to be sufficiently robust despite most of the elements around the moving boundary
become very stretched.

Fig. 1 Sketch of the optimal
domain ˝�
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Fig. 2 Shape optimization problem (non-adaptive strategy). Initial computational domain ˝0

(left) and zoom of the final obtained domain (right)

2.2 Drag Minimization

In the second example, we are interested in modeling the flow of a fluid around an
obstacle. In this numerical test, the initial computational domain is set as follows:

˝ W fŒ�1;�1� � Œ0; 1�g \ fx2 C y2 � 0:16g;

(see Fig. 3 (left)). In this case, the obstacle is represented by the half circle lying
on the lower part of the domain and it is denoted by �f . The remaining parts
of the boundary are labeled as follows: �in D f.x; y/ W x D �1g and �out D
f.x; y/ W x D 1g are the inflow and the outflow layers, respectively while
�s D f.x; y/ W y D 0g and �w D f.x; y/ W y D 1g are the lower and upper part
of the channel, respectively. The set A of admissible domains contains all domains
obtained through a deformation of ˝ by moving only �f and keeping fixed the
remaining parts of the boundary. The fluid flow is modeled by the following linear
Stokes problem:

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

� div.T.u; p// D 0 in ˝;

div u D 0 in ˝;

u D ud on �w [ �f [ �in;

T.u; p/ � n D 0 on �out;

u � n D 0 .T.u; p/ � n/ � t D 0 on �s;

(5)

where T.u; p/ WD 2�.u/ � pI denotes the Cauchy stress tensor. We set

ud D
(
Œ1 � y2 0�T on �in

0 on �f [ �w :
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Fig. 3 Drag minimization. Zooms of the initial (left) and final (right) computed domains

Note that on �s we impose an axial-symmetry boundary condition while on �w

we set a non-slip boundary condition. Again, we do not add any details about the
mimetic discretization of problem (5) and refer to [2].
In this example, we choose to minimize the following cost functional:

J .˝;u; p/ WD �
Z

�f

.T.u; p/n/ � Ov1 dSC 


2

�
j˝0j �

Z

˝

dx

�2
; (6)

where .u; p/ solves (5), Ov1 D Œ1; 0� is the direction of the fluid and j˝0j is a given
target volume value. The first term of (6) represents the drag of the fluid, while
the second one penalizes the volume constraint. In Fig. 3 we plot a zoom of the
initial and final computational domains. The computed value of the drag starts from
4:41887e-01 and it reduces progressively to 3:69713e� 02 after five iterations. We
note that the obtained final configuration is in agreement with the so-called “rugby-
ball” optimal shape known in the literature [8].

2.3 Free-Boundary Problem

In the last example, we are interested in solving the free-boundary elliptic problem
taken from [9]. We consider an annular domain, where the fixed boundary is
� D fkxk D 1g and we want to find the moving free-boundary �f WD @˝ n � , so
that

��u D 0 in ˝; u D 1 on �; u D 0 on �f ;
@u

@n
D �1 on �f :

(7)
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We formulate problem (7) as a shape optimization problem as follows. Let u solve
the following auxiliary boundary value problem:

��u D 0 in ˝; u D 1 on �; ˛uC @u

@n
D �1 on �f : (8)

Then, we choose a proper cost functional in order to incorporate the Dirichlet
boundary condition set on �f in the original free-boundary problem (7), i.e.,

J .˝; u/ D
Z

�f

u2 dS: (9)

Since the exact solution of the free-boundary problem (7) is zero on�f , the dumping
parameter ˛ > 0 appearing in (8) can be chosen freely. However, following [9], it
turns out that ˛ D H , with H being the mean curvature of �f , is a good choice
leading in practice to a robust numerical procedure. We iteratively solve the problem
(8) on the half-annulus by imposing proper axial-symmetry boundary conditions
on the x-axis (cf. Fig. 4). The final obtained computational domain is reported in
Fig. 5 (left). The value of the computed functional reduces progressively, as shown
in Fig. 5 (right), where we plot the value of (9) versus the number of total iterations.
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Fig. 4 Free-boundary problem. Sketch of the initial (solid line) and final (dotted line) domains

−1.5 −1 −0.5 0.50 1.51
0

0.5

1

1.5

0 2 4 6
0

0.1

0.2

0.3

0.4

iteration number

J

Fig. 5 Free-boundary problem. Final computational domain (left) and computed functional (9)
versus the number of iteration (right)
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3 Adaptive Strategy

In this section, we briefly explore the possibility of incorporating mesh adaptivity
into the optimization process. An example of a similar approach in the FEM context
can be found in [7].

We run the same numerical experiment presented in Sect. 2.1 and we decide a pri-
ori to perform an adaptive refinement step every two iterations of the minimization
process. To perform the adaptive procedure we employ heuristic indicators, given
by the sum of the following two local error indicators:

(�1) For every polygon E � ˝h the indicator �1.E/ is the local discrete H1.E/

seminorm of the MFD approximate solution to (3);
(�2) For every polygon E � D the indicator �2.E/ is the MFD approximation of

1
2

R
E

�
y.˝/� zg

�2
dV and is set to zero outsideD (cf. Fig. 2 (left)).

The local error indicators .�1C�2/.E/ are then used to mark the elements that has to
be refined, while the marking procedure relies on the Dörfler strategy with marking
parameter  D 0:5. For a more detailed description of the refinement modulus we
refer to [1, Section 4.1].

The optimal discrete configuration is obtained by the algorithm after six iterations
(cf. Fig. 1 for the exact optimal domain). In Fig. 6 we plot two zooms of the final
configuration. Comparing Fig. 2 (right) with Fig. 6 (right) we can observe that
here, thanks to the adaptive procedure, the element close to the moving boundary
result less stretched. Moreover, due to the error indicator �2, the adaptive algorithm
correctly refines the elements in the regionD (see Fig. 6 (left)).

We analyze the performance of the adaptive and non-adaptive strategies by
comparing the obtained value of the cost functional. In Table 1 we report the
computed values of J1 D 1

2

R
D

�
y.˝/� zg

�2
dV together with the corresponding

number of degrees of freedom. From a closer inspection, it is evident that at
comparable number of degrees of freedom the adaptive strategy obtains lower values
of J .
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Fig. 6 Shape optimization problem (adaptive strategy). Zooms of the final obtained configuration
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Table 1 Adaptive and
non-adaptive strategies: cost
functional versus dofs

Iteration Non-adaptive Adaptive
ndofs J1 ndofs J1

0 1,207 9.990754E�03 157 8.780796E�03

1 1,207 6.501192E�03 157 5.103216E�03

2 1,207 1.493240E�03 283 5.735032E�04

3 1,207 9.618140E�04 283 4.441652E�04

4 1,207 8.911968E�04 564 1.368972E�04

5 – – 564 5.677177E�05

6 – – 1,194 7.538973E�05
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Semi-discrete Time-Dependent Fourth-Order
Problems on an Interval: Error Estimate

Dalia Fishelov

Abstract We present high-order compact schemes for fourth-order time-dependent
problems, which are related to the “buckling plate” or the “clamping plate”
problems. Given a mesh size h, we show that the truncation error is O.h4/ at
interior points and O.h/ at near-boundary points. In addition, the convergence of
these schemes is analyzed. Although the truncation error is only of first-order at
near-boundary points, we have proved that the error of these schemes converges to
zero as h tends to zero at least asO.h3:5/. Numerical results are performed and they
calibrate the high-order accuracy of the schemes. It is shown that the numerical rate
of convergence is actually four, thus the error tends to zero as O.h4/.

1 Introduction

Time-dependent fourth-order differential problems play an important role in various
areas of physics. In mechanics they are involved in plate problems, such as the
“buckling plate” or the “clamping plate” problem. In fluid dynamics they are used
in the Navier-Stokes equations. In this paper we are interested in two time dependent
problems, which are related to fourth-order problems.

The first one is

uxxt D uxxxx C b uxx C c ux C d uC f .x; t/; 0 < x < 1; t > 0 (1)

and the second is

ut D �uxxxx C b uxx C c ux C d uC f .x; t/; 0 < x < 1; t > 0: (2)

Both problems are supplemented with boundary conditions

u.0; t/ D @xu.0; t/ D 0; u.1; t/ D @xu.1; t/ D 0 (3)
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and the initial condition

u.x; 0/ D g.x/; 0 � x � 1: (4)

Consider now the finite interval I D Œ0; 1� with the grid

x0 D 0 < x1 < � � � < xN�2 < xN�1 < xN D 1; (5)

where xj D jh, j D 1; � � � ; N and h D 1=N . In order to approximate the solutions
of Problems (1) and (2) one needs to approximate the operators @4x , @2x and @x . We
approximate @4x by ı4x , where ı4x is the three-point compact operator defined by (see
[3, 4]).

ı4xvj D 12

h2

�
vx;jC1 � vx;j�1

2h
� vjC1 C vj�1 � 2vj

h2

�
D 12

h2
.ıxvx;j�ı2xvj /; (6)

for 1 � j � N � 1. The operator @2x is a approximated by Qı2x , where

Qı2xvj D 2ı2xvj � ıxvx;j D ı2xvj � h
2

12
ı4xvj ; 1 � j � N � 1: (7)

Here vx;j is the Hermitian derivative of v at point xj . It is defined by

1

6
vx;j�1 C 2

3
vx;j C 1

6
vx;jC1 D vjC1 � vj�1

2h
; 1 � j � N � 1: (8)

This operator was extensively studied in previous works [2, 4]. Problem (1) is
approximated by the semi-discrete finite-difference scheme

d

dt
Qı2xvj D ı4xvj C b Qı2xvj C c vx;j C d vj C f .xj ; t/ (9)

and Problem (2) by

d

dt
vj D �ı4xvj C b Qı2xvj C c vx;j C d vj C f .xj ; t/: (10)

Let v; w be two discrete functions, defined on the grid (5) and vanishing at the
two endpoints x0; xN . We define the discrete inner product .v;w/h and the discrete
norm jvjh as

.v;w/h D
N�1X

jD1
vjwj h; jvjh D

p
.v; v/h: (11)
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2 Consistency for Compact Operators on an Interval

2.1 The Truncation Error

Here we consider the truncation errors related to the operators ı4x, Qı2x and the
Hermitian derivative vx. Let �x be the (Simpson) operator [4]

�xvj D 1

6
vj�1 C 2

3
vj C 1

6
vjC1: (12)

We consider first the truncation error related to ı4x . We have the following
inequalities (see [4]):

j�xı4xu�j � �x.u.4//�.xj /j � Ch4ku.8/kL1 ; 2 � j � N � 2: (13)

j�xı4xu�j � �x.u.4//�.xj /j � Chku.5/kL1 j D 1;N � 1: (14)

Consider now the operator Qı2x

� Qı2xuj D �2ı2xuj C ıxux;j D �ı2xuj C h2

12
ı4xuj : (15)

Operating with �x on the last equality, we have

� �x Qı2xuj D ��xı2xuj C h2

12
�xı

4
xuj : (16)

Using the truncation error for�ı2x , we have �ı2xuj D �@2xu.xj ; t/� h2

12
@4xu.xj ; t/C

O.h4/: Thus,

� �xı2xuj D ��x@2xu.xj ; t/ � h
2

12
�x@

4
xu.xj ; t/CO.h4/: (17)

Inserting the last equality in (16), we have

� �x Qı2xuj D ��x@2xu.xj ; t/C h2

12
�x.ı

4
xuj � @4xu.xj ; t//CO.h4/: (18)

Combing the above with (13) and (14), we find that

� �x Qı2xuj D ��x@2xu.xj ; t/CO.h4/; 2 � j � N � 2: (19)

� �x Qı2xuj D ��x@2xu.xj ; t/CO.h3/; j D 1;N � 1: (20)
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In addition (see [3, 4]), we have

ux;j D @xu.xj ; t/CO.h4/; 1 � j � N � 1: (21)

3 The Time-Dependent Case
uxxt D uxxxx C b uxx C c ux C d u C f.x; t/

Consider the time-dependent fourth-order problem
8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

uxxt D uxxxx C b uxx C c ux C d uC f .x; t/; 0 < x < 1; t > 0

u.0; t/ D 0; u.1; t/ D 0; ux.0; t/ D 0; ux.1; t/ D 0; t > 0

u.x; 0/ D g.x/; 0 � x � 1:

(22)

The canonical semi-discrete approximation of (22) on the grid (5) is

@
@t
Qı2xvj .t/ D ı4xvj .t/C b Qı2xvj .t/C c vx;j C d vj .t/C fj .t/; j D 1; : : : ; N � 1;

v0.t/ D 0; vN .t/ D 0; vx;0.t/ D 0; vx;N .t/ D 0; t > 0

vj .0/ D gj WD g.xj /; j D 0; : : : ; N:
(23)

Although the truncation error deteriorate at near-boundary points, we prove in the
following Proposition that the convergence of the approximate solution to the exact
one is of high accuracy. A similar result was shown in [1, 6, 7] in cases where the
accuracy of the scheme deteriorates near the boundary. In [6] and [7] a hyperbolic
system of first order and a parabolic problem were analyzed. In [1] it was proved for
a parabolic equation that if the scheme is of orderO.h˛/ at inner points and of order
O.h˛�s/ near the boundary, then if s D 0; 1 the accuracy of the scheme is O.h˛/.
However, if s � 2 then the overall accuracy the scheme is O.h˛�sC3=2/. In our case
˛ D 4 and s D 3 so this result yields a convergence rate of 2:5, but we actually
prove that the convergence rate is at least 3:5.

Theorem 1 Let u.x; t/ be the exact solution of (1) satisfying the boundary condi-
tions (3) and the initial condition (4). Assume that u has continuous derivatives with
respect to x up to order eight on Œ0; 1� and up to order 1 with respect to t . Let v.t/ be
the approximation to u, given by the (23). Then, the error ej .t/ D vj .t/ � u.xj ; t/
satisfies

max
0�t�T je.t/jh � max

0�t�T jı
C
x e.t/jh � C.T /h3:5; (24)

where C.T / depends only on f , g and T .
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Proof The error ej .t/ satisfies

� @
@t
Qı2xej .t/ D �ı4xej .t/ � b Qı2xej .t/� c ex;j .t/ � d ej .t/C rj .t/; j D 1; : : : ; N � 1;

e0.t/ D 0; eN .t/ D 0; ex;0.t/ D 0; ex;N .t/ D 0; t > 0;

ej .0/ D 0; j D 0; : : : ; N;
(25)

where rj .t/ is the truncation error at point xj at time t . Taking the inner product of
(25) with e.t/ and using

1

2

@

@t
.�Qı2xe.t/; e.t//h D .�

@

@t
Qı2xe.t/; e.t//h; (26)

we find that

1
2
@
@t
.�Qı2xe.t/; e.t//h D �.ı4xe.t/; e.t//h � b . Qı2xe.t/; e.t//h

� c .ex.t/; e.t//h � d .e.t/; e.t//h C .r.t/; e.t//h: (27)

First consider the term .ex.t/; e.t//h. Using the Cauchy-Schwartz inequality, we
have

j.ex.t/; e.t//hj � je.t/jh jex.t/jh � 1

2
je.t/j2h C

1

2
jex.t/j2h: (28)

Since ex D ��1x ıxe and ��1x is bounded (see [2] Equation (51)), we have
that jex.t/j2h � C jıCx e.t/j2h. By discrete integration by parts jıCx e.t/j2h D
�.ı2xe.t/; e.t//h. Using the definition (7) of �Qı2x and the coercivity of ı4x , we
have

� . Qı2xe.t/; e.t//h � �.ı2xe.t/; e.t//h: (29)

Thus, jex.t/j2h � �C. Qı2xe.t/; e.t//h: Therefore,

j.ex.t/; e.t//hj � �C. Qı2xe.t/; e.t//h C
1

2
.e.t/; e.t//h: (30)

Combining (30) with (27) we obtain

1
2
@
@t
.�Qı2xe.t/; e.t//h � �.ı4xe.t/; e.t//h � C1. Qı2xe.t/; e.t//h

C QC.e.t/; e.t//h C .r.t/; e.t//h:
(31)
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Let us now consider the term QC.e.t/; e.t//h: Using the definition (7) of �Qı2x , and
the coercivity of ı4x, we have

� . Qı2xe.t/; e.t//h � �.ı2xe.t/; e.t//h D .ıCx e.t/; ıCx e.t//h: (32)

By the discrete Poincaré inequality, we find

.e.t/; e.t//h � C .ıCx e.t/; ıCx e.t//h: (33)

Therefore, .e.t/; e.t//h � �C . Qı2xe.t/; e.t//h: Combining (31) with the last
inequality, we obtain

1
2
@
@t
.�Qı2xe.t/; e.t//h � �.ı4xe.t/; e.t//h � C1 . Qı2xe.t/; e.t//h C .e.t/; r.t//h:

(34)

Consider now the term .r.t/; e.t//h. Using the Cauchy-Schwartz inequality, we
have

j.r.t/; e.t//hj D ..ı�4x /1=2r.t/; .ı4x/1=2e.t//h

� j.ı�4x /1=2r.t/jh j.ı4x/1=2e.t/jh � 1
2
.r.t/; ı�4x r.t//h C 1

2
.ı4xe.t/; e.t//h

D 1
2
.�xr.t/; �

�1
x ı�4x ��1x �xr.t//C 1

2
.ı4xe.t/; e.t//h:

(35)

Combining the truncation errors (13) and (14) for �xı4x , (19) and (20) for �x Qı2x and
(21) for the Hermitian derivative ex , we have

.PR.t//T D ŒO.h/;O.h4/; : : : ; O.h4/;O.h/�: (36)

Here, P is the matrix representing the operator 6�x and R.t/ is the vector
corresponding to r.t/. As a result of [5] Equations (111) and (116), we have

.a/ j.P�1S�1P�1PR/i j � Ch4; 2 � i � N � 2;

.b/ j.P�1S�1P�1PR/i j � Ch5; i D 1;N � 1;
(37)

where S the matrix representing ı4x. Using (37) (a),(b) and (36), we find that

j.PR.t//T P�1S�1R.t/j � Ch6: (38)

Therefore, j�xr.t/; ��1x ı�4x ��1x �xr.t/j � Ch7: Combining the last inequality with
(35), we obtain

j.r.t/; e.t//hj � 1
2
.ı4xe.t/; e.t//h C Ch7: (39)
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Inserting (39) in (34), we have

1
2
@
@t
.�Qı2xe; e/h � � 12 .ı4xe.t/; e.t//h � C1 . Qı2xe.t/; e.t//h C Ch7

� C1.�Qı2xe; e/h C Ch7:
(40)

By Gronwall’s inequality �. Qı2xe.t/; e.t//h � C.t/h7: Using the coercivity property

� .e.t/; Qı2xe.t//h � .ıCx e.t/; ıCx e.t//h; (41)

and the discrete Poincaré inequality, we obtain the estimate

je.t/jh � C jıCx e.t/jh � C.T /h3:5; 0 � t � T: (42)

ut

4 The Time-Dependent Case
ut D �uxxxx C b uxx C c ux C d u C f.x; t/

Consider the time-dependent biharmonic problem

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

ut D �uxxxx C b uxx C c ux C d uC f .x; t/; 0 < x < 1;

u.0; t/ D 0; u.1; t/ D 0; ux.0; t/ D 0; ux.1; t/ D 0; t > 0

u.x; 0/ D g.x/; 0 � x � 1:

(43)

The canonical semi-discrete approximation of (43) on the grid (5) is

@vj .t/
@t
D �ı4xvj .t/C b Qı2xvj C c vx;j .t/C d vj .t/C fj .t/; j D 1; : : : ; N � 1;

v0.t/ D 0; vN .t/ D 0; vx;0.t/ D 0; vx;N .t/ D 0; t > 0

vj .0/ D gj WD g.xj /; j D 0; : : : ; N:
(44)

Define the error ej .t/ by ej .t/ D vj .t/ � u.xj ; t/:

Theorem 2 Let u.x; t/ be the exact solution of (2) satisfying the boundary condi-
tions (3) and the initial condition (4). Assume that u has continuous derivatives with
respect to x up to order eight on Œ0; 1� and up to order 1 with respect to t . Let v.t/ be
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the approximation to u, given by the (44). Then, the error ej .t/ D vj .t/ � u.xj ; t/
satisfies

max
0�t�T je.t/jh � C.T /h

3:5; (45)

where C.T / depends only on f , g and T .

Proof The error ej .t/ satisfies

@ej .t/

@t
D �ı4xej .t/C b Qı2xej .t/C c ex;j .t/C d ej .t/ � rj .t/; j D 1; : : : ; N � 1;

e0.t/ D 0; eN .t/ D 0; ex;0.t/ D 0; ex;N .t/ D 0; t > 0

ej .0/ D 0; j D 0; : : : ; N;
(46)

where rj .t/ is the truncation error at point xj at time t . Taking the inner product of
(46) with e.t/, and using

1

2

@

@t
.e.t/; e.t//h D . @

@t
e.t/; e.t//h; (47)

we find that

1
2
@
@t
.e.t/; e.t//h D �.ı4xe.t/; e.t//h C b . Qı2xe.t/; e.t//h

C c .ex.t/; e.t//h C d .e.t/; e.t//h � .r.t/; e.t//h:
(48)

Considering first the term .ex.t/; e.t//h. Combining (30) with (48) we obtain

1
2
@
@t
.e.t/; e.t//h D �.ı4xe.t/; e.t//h C Qb . Qı2xe.t/; e.t//h
C Qd .e.t/; e.t//h � .r.t/; e.t//h: (49)

Let us now consider the term . Qı2xe.t/; e.t//h. Using the definition of �Qı2x , we
have

� . Qı2xe.t/; e.t//h D �.ı2xe.t/; e.t//h C
h2

12
.ı4xe.t/; e.t//h: (50)

Therefore,

1
2
@
@t
.e.t/; e.t//h D �.1C Qb h212 /.ı4xe.t/; e.t//h C Qb .ı2xe.t/; e.t//h
C Qd .e.t/; e.t//h � .r.t/; e.t//h: (51)
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Consider now the term .ı2xe.t/; e.t//h. Using Cauchy-Schwartz inequality, we
have

� .ı2xe.t/; e.t//h � je.t/jh jı2xe.t/jh �
1

2�
je.t/j2h C

�

2
jı2xe.t/j2h: (52)

Using the coercivity property jı2xe.t/j2h � C.e.t/; ı4xe.t//h, we obtain

� .ı2xe.t/; e.t//h �
1

2�
je.t/j2h C

C�

2
.ı4xe.t/; e.t//h: (53)

Inserting (53) in (51), we obtain that for h � h0 and � � �0,
1
2
@
@t
.e.t/; e.t//h � � 12 .ı4xe.t/; e.t//h C C2 .e.t/; e.t//h � .r.t/; e.t//h: (54)

Inserting (39) in (54), we have

1

2

@

@t
.e.t/; e.t//h � C2 .e.t/; e.t//h C Ch7: (55)

By Gronwall’s inequality jej2h � Ch7: Thus, je.t/jh � C.T /h3:5; 0 � t � T: ut

5 Numerical Results

Consider the exact solution u.x; t/ D e�t ex of the problem

8
ˆ̂
<

ˆ̂:

uxxt D uxxxx C uxx C f .x; t/; 0 < x < 1; t > 0;

u.0; t/ D e�t ; ux.0; t/ D e�t ; t > 0;

u.1; t/ D e1�t ; ux.1; t/ D e1�t ; t > 0;

u.x; 0/ D ex; 0 � x � 1:
(56)

Here u and ux are given on the boundary points and f .x; t/ is chosen as u.x; t/ D
e�t ex is the solution of the differential equation above. The results are given in
Table 1. They demonstrate the fourth-order accuracy of the scheme.

Table 1 Compact scheme for uxxt D uxxxx C uxx C f with exact solution: u D e�t ex on
Œ0; 1�; t > 0. We present jehjh the error in u, and jex jh the error in ux in the l2 norm at t D 0:5

Mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64

jejh 1.5742(�7) 4.07 9.3544(�9) 4.02 5.7490(�10) 4.00 3.5844(�11)

jex jh 1.5500(�6) 4.00 9.7033(�8) 4.00 6.0672(�9) 4.00 3.7893(�10)
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Table 2 Compact scheme for uxxt D uxxxx C uxx C f with exact solution: u D e�t sin.�x/=�2

on Œ0; 1�; t > 0. We present jejh the error in u, and jex jh the error in ux in the l2 norm at t D 0:5

Mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64

jejh 5.2800(�6) 4.01 3.2679(�7) 4.00 2.0381(�8) 4.00 1.2732(�9)

jex jh 2.0038(�6) 4.07 1.1926(�7) 4.02 7.3451(�9) 4.01 4.5737(�10)

Next we consider the solution u.x; t/ D e�t sin.�x/=�2 of the problem

8
ˆ̂
<

ˆ̂:

uxxt D uxxxx C uxx C f .x; t/; 0 < x < 1; t > 0;

u.0; t/ D 0; ux.0; t/ D e�t =�; t > 0;

u.1; t/ D 0; ux.1; t/ D �e�t =�; t > 0;

u.x; 0/ D sin.�x/=�2; 0 � x � 1:
(57)

Here u and ux are given at the two boundary points and f .x; t/ is chosen such that
u.x; t/ D e�t sin.�x/=�2 if the exact solution of the problem above. The numerical
results are shown in Table 2. The calibrate the fourth-order accuracy of the scheme.

References

1. S. Abarbanel, A. Ditkowski, B. Gustafsson, On error bound of finite difference approximations
for partial differential equations. J. Sci. Comput. 15, 79–116 (2000)

2. M. Ben-Artzi, J-P. Croisille, D. Fishelov, Convergence of a compact scheme for the pure
streamfunction formulation of the unsteady Navier–Stokes system. SIAM J. Numer. Anal. 44,
1997–2024 (2006)

3. M. Ben-Artzi, J.-P. Croisille, D. Fishelov, A fast direct solver for the biharmonic problem in a
rectangular grid. SIAM J. Sci. Comput. 31(1), 303–333 (2008)

4. M. Ben-Artzi, J.-P. Croisille, D. Fishelov, Navier-Stokes Equations in Planar Domains (Imperial
College Press, London, 2013)

5. D. Fishelov, M. Ben-Artzi, J-P. Croisille, Recent advances in the study of a fourth-order compact
scheme for the one-dimensional biharmonic equation. J. Sci. Comput. 53, 55–70 (2012)

6. B. Gustafsson, The convergence rate for difference approximations to mixed initial boundary
value problems. Math. Comput. 29, 386–406 (1975)

7. B. Gustafsson, The convergence rate for difference approximations to general mixed initial
boundary value problems. SIAM J. Numer. Anal. 18, 179–190 (1981)



A Numerical Algorithm for a Fully Nonlinear
PDE Involving the Jacobian Determinant

Alexandre Caboussat and Roland Glowinski

Abstract We address the numerical solution of the Dirichlet problem for a partial
differential equation involving the Jacobian determinant in two dimensions of
space. The problem consists in finding a vector-valued function such that the
determinant of its gradient is given point-wise in a bounded domain, together
with essential boundary conditions. The proposed numerical algorithm relies on
an augmented Lagrangian algorithm with biharmonic regularization, and low order
mixed finite element approximations. An iterative method allows to decouple the
local nonlinearities and the global variational problem that involves a biharmonic
operator. Numerical experiments validate the proposed method.

1 Motivation

Fully nonlinear equations can usually be written F.u;ru;D2u/ D 0, for some
function F , in a bounded domain ˝ , together with Dirichlet boundary conditions.
Several examples and numerical schemes can be found in [1, 2, 5–7, 9], applied
mainly to second order equations, such as Monge-Ampère or Pucci’s.

Inspired by [3, 4], we consider here a particular equation that involves only the
Jacobian of the unknown function. Namely, for a given data f , we want to find u
such that detru D f . This example has a geometric partial differential equation
flavor, as it corresponds to finding a given deformation. Unlike for the Monge-
Ampère equation, it thus does not involve the Hessian D2u. The goal in the present
work is to provide an alternative, for the computational viewpoint, to the theoretical,
explicit, construction of solutions that exists in the literature for simple cases.
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Following previous works on the Monge-Ampère equation [2], a variational
approach is advocated. An iterative algorithm, reminiscent of alternating direction
implicit methods, allows to alternatively solve linear variational problems and local
nonlinear optimization problems. Numerical validation is achieved with simple
examples, and convergence results are obtained from a computational perspective.

2 Problem Formulation

Let ˝ be a bounded domain of R2, with � its boundary, and f W R2 ! R a given
function. The fully nonlinear partial differential equation involving the Jacobian
determinant we want to solve reads as follows: find u W ˝ ! R

2 satisfying



detru D f in ˝
u D Id on �:

(1)

where Id is the identity application. Problem (1) admits a solution, as discussed

in [3, 4], under the compatibility condition on the data:
Z

˝

fdx D measure .˝/.

Actually, the existence proof has been first made for f � 0 in [4], and extended to
the more general case in [3]. However, the solution to (1) is not necessarily unique;
indeed, for instance, if ˝ is the unit disc and f 
 1, u1.x/ D x is an obvious
solution, and (denoting the polar coordinates by .�; /), u2.�; / D .� cos. C
2k��2/ ; � sin. C 2k��2//T is also a solution.

We assume here that f is non-negative. In order to design a numerical method
based on some variational principle, and enforce the uniqueness of the solution to
(1), we consider the following problem:

min
v2E

1

2

Z

˝

jrv � Ij2 dx (2)

where E D ˚
v 2 H1.˝/2 ; detrv D f ; vj� D Id

�
. Here I denotes the 2 � 2

identity operator. The Frobenius norm and product are respectively defined by
jTj D .T W T/1=2, S W T D P2

i;jD1 sijtij for each S D .sij/; T D .tij/ 2 R
2�2.

If f 2 L1.˝/, then the set E is not empty.
Let us denote by u 2 E the solution to (2). The choice of the objective distance

function is arbitrary and is made in order to facilitate the decomposition properties
of the algorithm discussed below.
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3 An Augmented Lagrangian Algorithm

3.1 Regularization and Augmented Lagrangian Functional

We first introduce a biharmonic regularization to the variational problem (2). Let
ı > 0 be a small parameter. The biharmonic regularization reads:

min
v2QE


1

2

Z

˝

jrv � Ij2 dxC ı

2

Z

˝

ˇ
ˇr2vˇˇ2 dx

�
(3)

where QE D ˚
v 2 H2.˝/2 ; detrv D f ; vj� D Id

�
. Then we introduce a new

variable p 2 L2.˝/2�2, so that (3) is equivalent to

min
.v;q/2OE


1

2

Z

˝

jrv � Ij2 dxC ı

2

Z

˝

ˇ
ˇr2vˇˇ2 dx

�
(4)

where OE D ˚v 2 H2.˝/2 ; det q D f ; vj� D Id ; rv D q
�
. With formulation (4),

we advocate an augmented Lagrangian algorithm. Namely, for r > 0 a given
parameter, we define the augmented Lagrangian functional

L .v;qI�/ D 1

2

Z

˝

jrv � Ij2 dxC ı

2

Z

˝

ˇ̌r2vˇ̌2 dx

Cr
2

Z

˝

jrv � qj2 dxC
Z

˝

� W .rv� q/dx:

and search for a saddle-point of L .v;qI�/. Thus, after defining the function
spaces V D ˚

v 2 H2.˝/2 ; vj� D Id
�
, Q D ˚

q 2 L2.˝/2�2�, and Qf D
fq 2 Q ; det q D f g, the saddle-point problem consists in looking for fu;p;�g 2
V �Qf �Q such that

L .u;pI�/ � L .u;pI�/ � L .v;qI�/ (5)

for all fv;q;�g 2 V �Qf �Q.
The addition of the biharmonic regularization is actually not necessary when the

problem admits a classical solution and when the data is smooth (which will be the
case for the numerical experiments presented in Sect. 5). However, it is incorporated
here as it helps, via a smoothing effect, the convergence of the iterative algorithm
when the data are less regular or when there is no classical solution. Note that the
additional cost of introducing this regularization corresponds to the marginal cost of
solving two Poisson problems instead of one at each iteration.
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3.2 Iterative Algorithm

In order to solve (5), we advocate an Uzawa/alternating direction iterative algorithm.
Let u0 2 V and �0 2 Q be given. Then, for n � 1, we do:

(A) Solve the constrained nonlinear problem minq2Qf
L .un�1;qI�n�1/ to obtain

pn 2 Qf . This is equivalent to the quadratic problem under constraints:

min
q2Qf


r

2

Z

˝

jqj2 dx �
Z

˝

Xn�1 W qdx
�
; (6)

where Xn WD rrun C �n 2 Q. This problem having no derivatives, it can
be solved point-wise a.e. x 2 ˝ (in practice on each element of a finite
element discretization). Namely, for a.e. x 2 ˝ , it corresponds to a constrained
quadratic problem: find pn.x/ 2 R

2�2 solution of

min
q2Qx

hr
2
jqj2 � Xn�1 W q

i
; (7)

where Qx D
˚
q 2 R

2�2 ; det q D q11q22 � q12q21 D f .x/
�
.

(B) Solve the linear variational problem minv2V L .v;pnI�n�1/ to obtain un 2 V.
This is equivalent to

min
v2V


ı

2

Z

˝

ˇ
ˇr2vˇˇ2 dxC 1C r

2

Z

˝

jrvj2 dx�
Z

˝

rv W Yndx;
�

(8)

where Yn WD ICrpn��n�1 2 Q. This (linear) problem involves derivatives but
does not include any constraints (other than the Dirichlet boundary conditions
included in V). The first order optimality conditions corresponding to (8) lead
to a linear variational problem, of the biharmonic type: find u 2 V satisfying

ı

Z

˝

r2u � r2vdxC .1C r/
Z

˝

ru W rvdx D
Z

˝

Yn W rvdx;

for all v 2 .H2.˝/\H1
0 .˝//

2.
(C) Update the multipliers �n D �n�1 C r.run � pn/ 2 Q.
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3.3 Numerical Solution of the Constrained Nonlinear Problem

Problem (7) can be rewritten as the following constrained finite dimensional
minimization problem:

min
q2Ec


1

2
jqj2 � b � q

�
; (9)

with Ec D
˚
q 2 R

4 ; q1q2 � q3q4 D c.> 0/
�
. Actually, here, c D f .x/ and

b D 1
r
.Xn

11;X
n
22;X

n
12;X

n
21/. Problem (9) is solved with a Lagrangian approach and

a Newton algorithm, after a suitable change of variables to take advantage of the
structure of the problem (also encountered in incompressible finite elasticity, see,
e.g., [8]). Let us denote by S the 4 � 4 orthogonal matrix

S D

0

BB
@

1=
p
2 1=

p
2 0 0

1=
p
2 �1=p2 0 0

0 0 1=
p
2 1=

p
2

0 0 1=
p
2 �1=p2

1

CC
A ;

and introduce the new variables z D Sq, together with ˇ D Sb. Problem (9) is
equivalent to

min
z2Fc


1

2
jzj2 � ˇ � z

�
; (10)

with Fc D
˚
z 2 R

4 ; z21 � z22 � z23 C z24 D 2c.> 0/
�
. In order to solve (10), let us

introduce the associated Lagrangian functional L .z; �/ D 1
2
jzj2 � ˇ � z � �

2
.z21 �

z22 � z23 C z24 � 2c/. If y is a solution of (10), and 
 is a related Lagrange multiplier,
the first order optimality conditions read:

y1D ˇ1

1 � 
; y2D
ˇ2

1C 
; y3 D
ˇ3

1C 
; y4 D
ˇ4

1 � 
;
ˇ21 C ˇ24
.1 � 
/2 �

ˇ22 C ˇ23
.1C 
/2 D 2c

It can be shown (see, e.g., [10]) that the solution of this system of equations
corresponds to the unique solution of

ˇ21 C ˇ24
.1 � 
/2 �

ˇ22 C ˇ23
.1C 
/2 D 2c (11)

that belongs to .�1;C1/. We then solve (11) with a Newton method with initial
guess 
0 D 0.
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Remark 1 In numerical experiments, the Newton method almost always converges
to a root in .�1;C1/. When it is not the case, we arbitrarily set 
 D 0 and yi D
ˇi , i D 1; : : : ; 4. This procedure does not jeopardize the convergence of the outer
iterative algorithm.

3.4 Numerical Solution of the Linear Variational Problem

The first order optimality conditions related to (8) are: find unC1 2 V satisfying

ı

Z

˝

r2unC1 � r2vdxC .1C r/
Z

˝

runC1 W rvdx D
Z

˝

Yn W rvdx; (12)

for all v 2 V0, where V0 D
˚
v 2 H2.˝/2 ; vj� D 0

�
. Problem (12) is a classical

biharmonic problem, closely related to those encountered when solving the elliptic
Monge-Ampère equation in [2]. We observe that this problem is equivalent (if ˝
is convex or @˝ smooth enough) to the following second-order variational system:
find wnC1 2 .H1

0 .˝//
2 satisfying

ı

Z

˝

rwnC1 W rvdxC.1Cr/
Z

˝

wnC1 �vdx D
Z

˝

Yn W rvdx; 8v 2 .H1
0 .˝//

2I
(13)

followed by: find unC1 2 .H1.˝//2, unC1
ˇ̌
@˝
D g, satisfying

Z

˝

runC1 W rvdx D
Z

˝

wnC1 � vdx; 8v 2 .H1
0 .˝//

2: (14)

The solution of both second-order elliptic problems can be obtained with many well-
known finite element techniques when ˝ � R

2.

4 Finite Element Approximation

Finite elements are a natural choice for the discretization of (3) due to the variational
flavor of this problem. A piecewise linear and globally continuous approximation of
the solution u and piecewise constant approximations of its gradient ru and of the
additional variable p over a finite element triangulation of ˝ are used here. Let
h > 0 be a discretization step, and Th a conforming triangulation of˝ . We assume
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for the sake of the discussion that ˝ and � are exactly approximated by their finite
element discretizations. From Th, we approximate Q and Qf respectively by

Qh D
n
qh 2 L2 .˝/2�2 ; qhjT 2 R

2�2; 8T 2 Th

o

Qf h D
˚
qh 2 Qh ; det qhjT D NfT ; 8T 2 Th

�
;

where NfT is the value of the piecewise constant approximation of f on Th defined
as NfT D 1

3

P
T3Pj f .Pj /, Pj being the vertices of the triangle T . On the other

hand, the space V is approximated by

Vh D
n
v 2 C0

�
˝
�2
; vjT 2 .P1/2; 8T 2 Th; v D Idh on �

o
;

with P1 the space of the two-variables polynomials of degree � 1, and Idh a
piecewise linear interpolant of the identity function on � . Similarly, we define

V0h D
n
v 2 C0

�
˝
�2
; vjT 2 .P1/2; 8T 2 Th; v D 0 on �

o
.

The iterative algorithm in Sect. 3.2 can be re-written at the discrete level. The
nonlinear optimization problem (6) is then solved element-wise on each triangle
T of Th, with exactly the same method as the one presented in Sect. 3.3 (when
replacing c WD f .x/ by c WD NfT ). The discrete version of the variational problem
(12) is solved with a sequence of discrete Poisson problems that are the discrete
equivalents of (13) and (14), in a similar fashion than in [2].

Remark 2 (On the choice of low order finite element approximations) The solution
to (12) is actually a variation of the steady Stokes problem. Indeed, let us denote by
w D v � Id and suppose that w is small and f is close to 1. We have then

rw D rv � I detrv D det.ICrw/ D 1Cr � wC ".v/

where ".w/ is a (small) residual. This implies that r �w D .f �1/� ".w/, meaning
that the vector field w is nearly divergence free. The problem we have to solve is thus
closely related to the steady Stokes problem. Our approach, where Qh is the space
of the 2� 2 matrix valued functions constant on each triangle T of the triangulation
Th (used to approximate .H1.˝//2), is therefore close to the P1�P1 approximation
of the Stokes problem, which explains the convergence orders obtained in the next
section.

5 Numerical Validation

The purpose of the numerical experiments in this section is to validate the proposed
methodology with one well-chosen example, and highlight the convergence orders
obtained for a prototypical problem.
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Let us consider a validation case, for which (one of) the solution is the identity
mapping u.x/ D x. Thus, for the unit disc ˝ D ˚x 2 R

2 ; jjxjj2 < 1
�
, we consider:

find u W ˝ ! R
2 satisfying



detru D 1 in ˝
u.x/ D x on �;

(15)

The set of numerical parameters is given by r D 10�6 and ı D 10�6. The
tolerance between successive iterates uk and ukC1 for the stopping criterion is set to
" D 10�8. The tolerance for the Newton method for local nonlinear problems is set
to 10�5 on the residual. The mesh is an unstructured Delaunay discretization of ˝ .
The advocated numerical algorithm converges in less than 20 iterations (actually
between 17 and 19 iterations depending on the mesh size). Figure 1 visualizes
the solution on one given mesh (with h ' 0:0161). The most natural solution
u.x/ D x is correctly approximated, and the radial invariance is appropriately
tracked even though the mesh does not guarantee such a symmetry. The determinant
of ph is exactly equal to one on each element (up to machine precision), while the
determinant of ruh is nearly everywhere equal to one, implying that the constraint
ruh D ph is weakly satisfied.

Fig. 1 Validation with the identity mapping. Visualization of the approximated solution obtained
with the augmented Lagrangian approach after 19 steps (h ' 0:0161). Vector field uh (top left),
determinant det ph (top right), determinant detruh (bottom left), and (bottom right) convergence
of the error in L2 norm, for the unit disc and the unit square
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Numerical results are similar when considering the unit square ˝ D .0; 1/2,
with either a structured or an unstructured mesh. Figure 1 (bottom right) illustrates
the convergence of the error between the numerical solution uh and the exact
solution u D Id, for the unit disc and the unit square (with both types of meshes).
All configurations lead to the convergence with order approximately O.h/ of the
numerical approximation towards the exact solution.

Future work will include more complicated test cases, including problems
without solutions, non-convex domains, and the generalization to less regular
Dirichlet boundary conditions.

Acknowledgements The authors thank Prof. B. Dacorogna (EPFL) for suggesting the investiga-
tion of this problem, and for helpful comments and discussions.
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Pattern Formation for a Reaction Diffusion
System with Constant and Cross Diffusion

Verónica Anaya, Mostafa Bendahmane, Michel Langlais,
and Mauricio Sepúlveda

Abstract In this work, we study a finite volume scheme for a reaction diffusion
system with constant and cross diffusion modeling the spread of an epidemic disease
within a host population structured with three subclasses of individuals (SIR-model).
The mobility in each class is assumed to be influenced by the gradient of other
classes. We establish the existence of a solution to the finite volume scheme and
show convergence to a weak solution. The convergence proof is based on deriving a
series of a priori estimates and using a general Lp compactness criterion.

AMS Subject Classification: 35K57, 35M10, 35A05

1 Introduction

Consider a host population subdivided into three subclasses of individuals, suscepti-
ble, infective and recovered with respect to some epidemic disease. The susceptible
class consists of individuals who are capable of becoming infected and the infective
class consists of individuals who have contracted the disease and are capable of
transmitting it. Susceptible individuals can contract the disease from cross contacts
with infected ones. Our state variables .S.t; x/; I.t; x/; R.t; x// represent densities
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of susceptible, infective and recovered subclasses for a total host population H D
S C I C R at time t and location x 2 ˝ � R

3. The host population will
follow a logistic dynamic with a spatially dependent birth-rate, b.x/, identical in
each subclass, offspring being susceptible at birth (one assumes the disease to be
benign in H ). A spatially and density dependent mortality rate, m.x/ C k.x/H ,
is considered allowing for a spatially variable carrying capacity. Let 1=
 be the
duration of the infective stage at the end of which a fixed proportion 0 � w � 1

of infective individuals become permanently immune, a proportion 0 � 1 � w � 1
reentering the susceptible class. Our model system is given by the following set of
equations

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

@tS � div
�
.d1 C ˛1S C I CR/rS C SrI C SrR

	

D ��SI C .1 � w/
I C b.x/H � .m.x/C k.x/H/S;
@t I � div

�
IrS C .d2 C S C ˛2I CR/rI C IrR

	

D �SI � 
I � .m.x/C k.x/H/I;
@tR � div

�
RrS CRrI C .d3 C S C I C ˛3R/rR

	

D w
I � .m.x/C k.x/H/R;

(1)

in QT D ˝ � .0; T / the time-space cylinder, where H D S C I C R. System (1)
is supplemented with no-flux boundary conditions:

rS � � D 0; rI � � D 0; rR � � D 0; (2)

on .0; T /�@˝ , � being the outer unit normal to˝ along its boundary @˝ , and with
nonnegative initial data:

S.0; x/ D S0.x/ � 0; I.0; x/ D I0.x/ � 0; R.0; x/ D R0.x/ � 0; (3)

on ˝ . Here, di > 0 and ˛i > 1 are supposed constants, for i D 1; 2; 3, m < b

and b;m; k 2 L1C .QT /. We assume that individuals move from a higher to a
lower density region. Cross-diffusion expresses the dependence of the population
flux of one subclass on other subclasses. A positive cross-diffusion term denotes
that individuals from a given subclass tends to move in the direction of lower
concentration of another subclass. Dynamics of interacting populations with self and
cross-diffusion are investigated by several researchers (see [4–8] and the references
therein).
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1.1 Weak Solution

Before stating our results concerning the weak solution, we collect some preliminary
material, including relevant notations and conditions imposed on the data of our
problem. Let˝ be a bounded, open subsets of R3 with a smooth boundary @˝; � is
the unit outward normal to ˝ on @˝ . Next, j˝j is the Lebesgue measure of ˝ . We
denote by H1.˝/ the Sobolev space of functions u W ˝ ! R for which u 2 L2.˝/
and ru 2 L2.˝IR3/. For 1 � p � C1, k � kLp.˝/ is the usual norm in Lp.˝/. If
X is a Banach space, a < b and 1 � p � C1, Lp.a; bIX/ denotes the space of
all measurable functions u W .a; b/ �! X such that k u.�/ kX belongs to Lp.a; b/.
Next T is a positive number andQt D ˝� .0; t/,˙t D @˝� .0; t/; for 0 < t � T .
Now we define what we mean by weak solutions of the system (1). We also supply
our main existence results.

Definition 1 A weak solution of (1)–(3) is a set of nonnegative functions .S; I; R/,
such that,

.S; I; R/2L2.0; T IH1.˝;R3//; .@tS; @t I; @tR/ 2 L2.0; T I .W 1;1.˝;R3//�/;
�.0/ D �0 a.e. in ˝ , for � D .S; I; R/ and satisfying
R T
0 h@tS; �1i dtC’

QT
..d1 C ˛1S C I CR/rS C SrI C SrR/ � r�1 dx dt

D ’
QT
F1.x; S; I; R/�1 dx dt;

R T
0 h@tI; �2i dtC’QT

.IrS C .d2 C S C ˛2I CR/rI C IrR/ � r�2 dx dt

D ’
QT
F2.x; S; I; R/�2 dx dt

R T
0 h@tR; �3i dtC’

QT
.RrS CRrI C .d3S C I C ˛3R/rR/ � r�3 dx dt

D ’
QT
F3.x; S; I; R/�3 dx dt;

for all �i 2 L2.0; T IW 1;1.˝//, for i D 1; 2; 3, and where F1, F2 and F3 denote
the right hand side terms of (1). Here, h�; �i denotes the duality pairing between
W 1;1.˝/ and .W 1;1.˝//�.

Theorem 1 If .S0; I0; R0/ 2 L2.˝;R3/, then the problem (1)–(3) possesses a weak
solution. On the other hand if .S0; I0; R0/ 2 C2C . N̋ ;R3/ for some  2 .0; 1/, then
the system (1)–(3) has a unique, classical, global nonnegative solution .S; I; R/ 2
C

2C
2 ;2C .Œ0;C1/ � N̋ ;R3/. Furthermore, there is a constant C > 0 (dependent

upon the initial data and the coefficients) such that, 0 � S.t; x/; I.t; x/; R.t; x/ �
C for all x 2 N̋ and t > 0.

The proof of Theorem 1 is based in a series of a priori estimates of the solutions in
Banach spaces, especially the boundness of the solutions in L1, and then we apply
the Sobolev embedding and standard regularity results of parabolic equations (see
e.g. [3]). The proof of Theorem 1 can be seen as a simplification of a more general
version in the appendix of [1] (see also [2]).
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2 Finite Volume Approximation

To discretize (1), we choose an admissible discretization of QT consisting of an
admissible mesh Th of ˝ and of a time step size ıth > 0; both ıth and the size
maxK2Th diam.K/ tend to zero as h! 0. We define Nh > 0 as the smallest integer
such that .NhC1/ıth � T , and set tn WD nıth for n 2 f0; : : : ; Nhg. Whenever ıth is
fixed, we will drop the subscript h in the notation. Furthermore, we denote for i D
1; 2; 3,F nC1

i;K D Fi .xnC1
C

K ; SnC1C

K ; I nC1C

K ;RnC1C

K /, whereK 2 ˝ . To approximate
the cross-diffusive terms, we introduce the termM nC1

ij;K;L. Herein, we make the choice

M nC1
ij;K;L WDMij

�
min fSnC1C

K ; SnC1C

L g;minfI nC1C

K ; I nC1C

L g;minfRnC1C

K ;RnC1C

L g
	
;

where �nC1C D max.0; �nC1/ for � D S; I;R. The discrete initial conditions are
given by: S0K D 1

jKj
R
K
S0.x/ dx, I 0K D 1

jKj
R
K
I0.x/ dx, R0K D 1

jKj
R
K
R0.x/ dx: We

use the following implicit finite volume scheme to advance the numerical solution
from tn to tnC1 D tn C ıt :
Determine .SnC1K ; I nC1K ;RnC1K /K2Th , such that

jKjS
nC1
K � SnK
ıt

�
X

L2N.K/

j�K;Lj
dK;L

�
M nC1

11;K;L.S
nC1
L � SnC1K /

CM nC1
12;K;L.I

nC1
L � I nC1K /CM nC1

13;K;L.R
nC1
L � RnC1K /

� D jKjFnC1
1;K ;

(4)

jKjI
nC1
K � I nK
ıt

�
X

L2N.K/

j�K;Lj
dK;L

�
M nC1

21;K;L.S
nC1
L � SnC1K /

CM nC1
22;K;L.I

nC1
L � I nC1K /CM nC1

23;K;L.R
nC1
L � RnC1K /

� D jKjFnC1
2;K ;

(5)

jKjR
nC1
K �RnK
ıt

�
X

L2N.K/

j�K;Lj
dK;L

�
M nC1

31;K;L.S
nC1
L � SnC1K /

CM nC1
32;K;L.I

nC1
L � I nC1K /CM nC1

33;K;L.R
nC1
L � RnC1K /

� D jKjFnC1
3;K ;

(6)

where the matrix coefficients Mij, for i; j D 1; 2; 3 include the cross diffusion
terms. The set of values .SnC1K ; I nC1K ;RnC1K /K2Th;n2Œ0;Nh� satisfying (4)–(6) is called
a discrete solution. The convergence of the discrete solution generated by our
scheme is given in the following theorem (see [1, 2]):

Theorem 2 Let .S0; I0; R0/ 2 .L2.˝;R3//C and .SnC1K ; I nC1K ;RnC1K /
n2Œ0;Nh�
K2Th be

the solution generated by the finite volume scheme (4)–(6) on a family of admissible
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and regular meshes. Then, as h ! 0, the discrete solution converges (along a
subsequence) a.e. on ˝T to a limit .S; I; R/ which is a weak solution of (1)–(3).

3 Numerical Results

We take the domain as follow ˝ D .0; 1/ � .0; 1/ We consider here a uniform
mesh in the domain, given by a Cartesian grid with Nx � Ny , control volumes.
Obviously, it is possible to consider unstructured meshes, but we will take here to
an uniform mesh˝R D fKij 2 ˝jKij D ..i � 1/Nx; iNx/� ..j � 1/Ny; jNy/; i D
1; : : : ; Nx; j D 1; : : : ; Nyg, for simplicity of the simulated models.

The discretization in time is given by Nt D 500 time steps for T D 0:5. That is,
ıt D T=Nt and m.K/ D 1=.NxNy/, with Nx D Ny D 256. The parameters of the
model are given by � D 0:8; ! D 0:1; 
 D 12; b D 0:03; m D 0:01; k D 0:03.

3.1 First Example

The initial conditions are given by S.x; y; 0/ D 0:75, R.x; y; 0/ D 0 and
I.x; y; 0/ D 5C 5%.x; y/, with

%.x; y/ D 1 � .1C e�50.
p
.x�0:75/2C.y�0:75/2�0:18//�1

�.1C e�50.
p
.x�0:25/2C.y�0:25/2�0:18//�1

for all .x; y/ 2 .0; 1/ � .0; 1/, where % represents here two focus of localized
initial disease. In the pictures of Figs. 1–3, we observe some patterns obtained
by taking different values for the nonlinear diffusion parameters. In Fig. 1, the
variation of the nonlinear diffusion coefficient ˛1 gives different pattern formation
for the susceptible population, but in turn, the behavior of the infected and recovered
population is quite insensitive to the variation of this coefficient ˛1. Similar behavior
occurs with the coefficient ˛3, and the recovered population (see Fig. 2): while this
parameter ˛3 varies, we see different patterns in the recovered population, but not
so the other two populations S and I . Finally in Fig. 3, we see that the variation of
parameter ˛2 affects the pattern of behavior across the three populations S , I and
R, getting unusual shapes.
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Fig. 1 Variation of the nonlinear diffusion coefficient related with the susceptible population.
˛1 D 500; 700; 900; ˛2 D ˛3 D 100, t D 0:01

Fig. 2 Variation of the nonlinear diffusion coefficient related with the recovered population. ˛3 D
19;000; 21;000; ˛1 D ˛2 D 100, t D 0:01
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Fig. 3 Variation of the nonlinear diffusion coefficient related with the infective population. ˛2 D
400; 600; 800; 900; ˛1 D ˛3 D 100, t D 0:01

3.2 Second Example

We consider now five initial focus of infection given by S.x; y; 0/ D 10,
R.x; y; 0/ D 0 and I.x; y; 0/ D 40

P5
jD1 sech.15.x � xj //sech.15.y � yj //,

with .x; y/ 2 .0; 1/ � .0; 1/, where .x1; y1/ D .0:5; 0:5/, .x2; y2/ D .0:3; 0:3/,
.x3; y3/ D .0:3; 0:7/, .x4; y4/ D .0:7; 0:3/, and .x5; y5/ D .0:7; 0:7/. In Figs. 4
and 5, we observe some peculiar patterns taking different values for the nonlinear
diffusion parameters ˛1 and ˛3. In particular in Fig. 4, it shows that if we modify
parameter ˛1, then different patterns are obtained for the susceptible population.
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Fig. 4 Variation of the coefficient related with the susceptible population: ˛1 D 70; 90; ˛2 D
˛3 D 10, t D 0:01

Fig. 5 Variation of the coefficient related with the recovered population: ˛3 D
2;000; 2;400; 2;700; ˛1 D ˛2 D 10, t D 0:01
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Thus, for small values of ˛2 and ˛3 and higher values of ˛1, there is a formation of
patterns of “labyrinth” type in the susceptible population. This conformation is very
sensitive to the value chosen for ˛1, but also is sensitive with respect to the initial
condition if we compare with Fig. 1. On the other hand, it is observed in Fig. 5 that
for the sensitivity of the recovered population with respect to parameters, it requires
very high values for ˛3, but with quite amazing images for the recovered population.
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Part II
Time Integration Schemes



Stability of Explicit Runge-Kutta Methods
for High Order Finite Element Approximation
of Linear Parabolic Equations

Weizhang Huang, Lennard Kamenski, and Jens Lang

Abstract We study the stability of explicit Runge-Kutta methods for high order
Lagrangian finite element approximation of linear parabolic equations and establish
bounds on the largest eigenvalue of the system matrix which determines the largest
permissible time step. A bound expressed in terms of the ratio of the diagonal
entries of the stiffness and mass matrices is shown to be tight within a small factor
which depends only on the dimension and the choice of the reference element and
basis functions but is independent of the mesh or the coefficients of the initial-
boundary value problem under consideration. Another bound, which is less tight and
expressed in terms of mesh geometry, depends only on the number of mesh elements
and the alignment of the mesh with the diffusion matrix. The results provide an
insight into how the interplay between the mesh geometry and the diffusion matrix
affects the stability of explicit integration schemes when applied to a high order
finite element approximation of linear parabolic equations on general nonuniform
meshes.
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1 Introduction

We consider the initial-boundary value problem (IBVP)

8
ˆ̂
<

ˆ̂
:

ut D r � .Dru/ ; x 2 ˝; t 2 .0; T � ;
u.x; t/ D 0; x 2 �D; t 2 .0; T � ;
Dru.x; t/ � n D 0; x 2 �N ; t 2 .0; T � ;
u.x; 0/ D u0.x/; x 2 ˝;

(1)

where ˝ � R
d .d � 1/ is a bounded polygonal or polyhedral domain, �D [ �N D

@˝ , measd�1 �D > 0, u0 is a given function, and D D D.x/ is the diffusion matrix,
which is assumed to be time-independent, symmetric and uniformly positive-
definite on ˝ . If u0 2 H1

D.˝/ D
˚
v 2 H1.˝/ W v D 0 on �D

�
and u is sufficiently

smooth, then the solution of the IBVP satisfies the stability estimates

(
ku.�; t/kL2.˝/ �

�
�u0

�
�
L2.˝/

; t 2 .0; T � ;
jjju.�; t/jjj � jjju0jjj; t 2 .0; T � ;

where jjjujjj D ��D1=2ru
�
�
L2.˝/

is the energy norm. We are interested in the stability
conditions so that the numerical approximation preserves these stability estimates.

The stability of explicit Runge-Kutta methods depends on the largest eigenvalue
of the corresponding system matrix, which, in turn, depends on the mesh and the
coefficients of the IBVP. For our model problem this means that we need to estimate
the largest eigenvalue ofM�1A, whereM andA are the mass and stiffness matrices
for the finite element discretization of the IBVP (1) [4, Theorem 3.1]. For the
Laplace operator on a uniform mesh it is well known that 
max.M

�1A/  N2=d ,
where N is the number of mesh elements. For general meshes and diffusion
coefficients, estimates have been derived recently in Huang et al. [4] and Zhu and
Du [6, 7] (see also [1–3, 5] for estimates on M and A). All of these works allow
anisotropic diffusion coefficients and anisotropic meshes, while the former employs
a more accurate measure for the interplay between the mesh geometry and the
diffusion matrix and gives a sharper estimate on 
max.M

�1A/ than the latter. On the
other hand, [4] considers only linear finite elements whereas the estimates in [7] are
valid for both linear and higher order finite elements.

The purpose of this paper is to extend the result of [4] to high order Lagrangian
finite elements as well as provide a mathematical understanding of how the interplay
between the mesh geometry and the diffusion matrix affects the stability condition.
We show that the main result of [4, Theorem 3.3] holds for high order finite elements
as well. The analysis is based on bounds on the mass and stiffness matrices. We
follow the approach in [4, 5] and derive simple but accurate bounds for the case
of high order Lagrangian finite elements on simplicial meshes (Lemmas 2–5). We
also consider the more general case of surrogate mass matrices QM . The main result
(Theorem 1) shows that 
max. QM�1A/ is proportional to the maximum ratio between
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the corresponding diagonal entries of the stiffness and surrogate mass matrices.
Moreover, 
max. QM�1A/ is bounded by a term depending only on the number of
the mesh elements and the alignment of the shape of the mesh elements with the
inverse of the diffusion matrix.

2 Stability Condition for Explicit Time Stepping

Let fThg be a family of simplicial meshes for˝ and V h the Lagrangian Pm (m � 1)
finite element space associated with Th. LetK be an arbitrary element of Th, OK the
reference element, and !i the element patch of the i th vertex (Fig. 1); element and
patch volumes are denoted by jKj and j!i j D P

K2!i jKj. For each K 2 Th let

FK W OK ! K be an invertible affine mapping and F 0K its Jacobian matrix which is
constant and satisfies det.F 0K/ D jKj (for simplicity, we assume that j OKj D 1). We
further assume that the mesh is fixed for all time steps.

With V h
D D V h \H1

D.˝/, the finite element solution uh.t/ 2 V h
D (t 2 .0; T �) is

defined by

Z

˝

@tu
hvh dx D �

Z

˝

rvh � Druh dx; 8vh 2 V h
D; t 2 .0; T � ; (2)

subject to the initial condition

Z

˝

uh.x; 0/vh dx D
Z

˝

u0.x/vh dx; 8vh 2 V h
D: (3)

Let N� be the dimension of the finite element space V h
D and denote a nodal basis of

V h
D by f�1; : : : ; �N� g, then uh can be expressed as

uh.x; t/ D
N�X

jD1
uhj .t/�j .x/:

K̂
K

node i

patch ωi

FK(ξ)

F−1
K (x)

node i

Fig. 1 Example of the standard quadratic FE reference mesh element OK , mapping FK , the
corresponding mesh elements K , nodes and their patches
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Using U D .uh1; : : : ; uhN� /
T

, (2) and (3) can be written into a matrix form

MU t D �AU ; U .0/ D U 0; (4)

where the mass and stiffness matrices M and A are defined by

Mij D
Z

˝

�i�j dx and Aij D
Z

˝

r�i �Dr�j dx; i; j D 1; : : : ; N�:

We further assume that surrogate mass matrices QM considered throughout the paper
satisfy

(M1) The reference element matrix QM OK is symmetric positive definite.
(M2) The element matrix QMK satisfies QMK D jKj QM OK.

For example, (M1) and (M2) are satisfied for any mass lumping by means of
numerical quadrature with positive weights.

Lemma 1 ([4, Theorem 3.1]) For a given explicit RK method with the polynomial
stability function R and a symmetric positive definite surrogate matrix QM that
satisfies1 c1 QM �M � c2 QM for some positive constants c1 and c2, the finite element
approximation uhn at tn D n� satisfies

�
�uhn

�
�
L2.˝/

�
r
c2

c1

�
�uh0

�
�
L2.˝/

and jjjuhnjjj � jjjuh0jjj;

if the time step � is chosen such that

max
i
jR.��
i. QM�1A//j � 1:

This lemma is proven in [4] for the linear finite element discretization. However,
from the proof one can see that it is valid for any system in the form of (4) with
symmetric positive definite matrices M and A. Particularly, it can be used for the
system (4) resulting from the Pm finite element discretization. In the following, we
establish a series of lemmas for bounds on the stiffness and mass matricesA and QM
and then develop bounds for 
max. QM�1A/.
Lemma 2 Let � be the maximal number of basis functions per element. Then the
stiffness matrix A and its diagonal part AD for Pm finite elements satisfy

A � �AD:

1In the following, the less-than-or-equal-to sign for matrices means that the difference between the
right-hand side and left-hand side terms is positive semidefinite.
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Proof Notice that for any positive semi-definite matrix S and any vectors u and v
we have uT SvC vT Su � uT SuC vT Sv. From this,

uT Au D
X

i;j

Z

˝

.uir�i /TD
�
ujr�j

�
dx �

X

i

�

Z

˝

.uir�i /TD .uir�i/ dx

D �
X

i

u2i

Z

˝

r�Ti Dr�i dx D uT �ADu:

Lemma 3 Let O�i be the basis functions on the reference element that correspond to
�i and

CH1 D max
i
j O�i j2H1. OK/:

Then the diagonal entries Aii of the stiffness matrix A are bounded by

Aii � CH1

X

K2!i
jKjmax

x2K

�
�
�.F 0K/

�1
D.F 0K/

�T ���
2
;

Proof From the definition of the stiffness matrix we have

Aii D
Z

˝

r�Ti Dr�i dx D
X

K2!i

Z

K

r�Ti Dr�i dx:

Let Or D @=@� be the gradient operator in OK. The chain rule yields r D .F 0K/
�T Or

and together with det.F 0K/ D jKj we obtain

Aii D
X

K2!i
jKj

Z

OK
Or O�Ti .F 0K/�1D.F 0K/�T Or O�i d�

�
X

K2!i
jKj k Or O�ik2L2. OK/ max

x2K

�
��.F 0K/

�1
D.F 0K/

�T ���
2

� CH1

X

K2!i
jKjmax

x2K

�
�
�.F 0K/

�1
D.F 0K/

�T ���
2
:

Lemma 4 Let QM be a surrogate Pm finite element mass matrix, O� QM and O
 QM be the
largest and smallest eigenvalues of the surrogate mass matrix QM OK on the reference
element and

W D diag
�j!1j; : : : ;

ˇ̌
!N�

ˇ̌�
:
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Then

O
 QMW � QM � O� QMW : (5)

Proof We have

uT QMu D
X

K

uTK QMKuK D
X

K

jKjuTK QM OKuK �
X

K

jKj O� QMkuKk22

D O� QM
X

i

u2i
X

K2!i
jKj D O� QM

X

i

u2i j!i j D O� QMuTW u:

The lower bound can be obtained similarly.

Lemma 5 Let QM1 and QM2 be two surrogate mass matrices for Pm finite elements.
Then

O
 QM1

O� QM2

QM2 � QM1 �
O� QM1

O
 QM2

QM2:

Proof Use Lemma 4 by applying (5) to QM1 and QM2.

Corollary 1 Let �.M OK/ and �. QM OK/ be the condition numbers of the full and the
surrogate reference element mass matrices. Under the assumptions of Lemma 1 we
have

�
�uhn

�
�
L2.˝/

�
q
�.M OK/�. QM OK/

�
�uh0

�
�
L2.˝/

and jjjuhnjjj � jjjuh0jjj:

Proof Use QM1 D M and QM2 D QM in Lemma 5 and apply Lemma 1.

Corollary 2 The surrogate mass matrix QM for Pm finite elements and its diagonal
part QMD satisfy

1

�. QM OK/
QMD � QM � �. QM OK/ QMD:

Proof Using (5) with the canonical basis vector ei implies O
 QMWii � QMii � O� QMWii,
which gives ui O
 QMWiiui � ui QMiiui � ui O� QMW ui for any ui . Since QMD and W are
diagonal matrices, this leads to

O
 QMW � QMD � O� QMW : (6)

The statement now follows from Lemma 5 with QM1 D QM and QM2 D QMD .
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Having obtained the preliminary bounds on the stiffness and mass matrices A
and QM , we can now give the estimate for the largest eigenvalue of the system matrix
QM�1A for Pm finite elements.

Theorem 1 The eigenvalues of QM�1A are real and positive and the largest
eigenvalue is bounded by

max
i

Aii

QMii

� 
max
� QM�1A� � � �. QM OK/max

i

Aii

QMii

; (7)

where � is the maximal number of basis functions per element. Further,


max
� QM�1A� � �CH1

O
 QM
max
i

8
<

:

X

K2!i

jKj
j!i j max

x2K

�
�
�.F 0K/

�1
D.F 0K/

�T ���
2

9
=

;
: (8)

Proof Since QM andA are symmetric positive definite, the eigenvalues of QM�1A are
real and positive. The lower bound in (7) is obtained by using the canonical basis
vectors ei and the upper bound follows from Lemmas 2 and Corollary 2,


max. QM�1A/ D max
v¤0

vT Av

vT QM v
� max

v¤0
vT �ADv

vT 1

�. QM
OK/
QMDv
D � �. QM OK/max

i

Aii

QMii

:

The geometric bound (8) is a direct consequence of Lemmas 2–4,


max. QM�1A/ D max
v¤0

vT Av

vT QM v
� max

v¤0
vT �ADv

vT O
 QMW v

� �CH1

O
M
max
i

8
<

:

X

K2!i

jKj
j!i j max

x2K

�
��.F 0K/

�1
D.F 0K/

�T ���
2

9
=

;
:

Theorem 1 can be used in combination with Lemma 1 or Corollary 1 to derive
the stability condition of a given explicit Runge-Kutta scheme, as shown in the next
example.

Example 1 (Explicit Euler method) The stability region of the explicit Euler
method includes the real interval Œ�2; 0�. Lemma 1 implies that the method is
stable if

�2 � ��
i . QM�1A/ � 0; i D 1; : : : ; N�:
Using Theorem 1, we conclude that the method is stable if the time step � satisfies

� � 2

� �. QM OK/
min
i

QMii

Aii



172 W. Huang et al.

or, in terms of mesh geometry,

� �
2 O
 QM

OK

�CH1

min
i

0

@
X

K2!i

jKj
j!i j max

x2K

�
�
�.F 0K/

�1
D.F 0K/

�T ���
2

1

A

�1

:

Remark 1 Lemmas 2, 3, and Corollary 2 are very general and valid for any mesh,
any D and any surrogate mass matrix QM satisfying (M1) and (M2). More accurate
bounds can be obtained if more information is available about the mesh or the
stiffness and mass matrices.

For example, if A is an M-matrix, then the Gershgorin circle theorem yields

max.A/ � 2maxi Aii [4, Remark 2.2] and therefore � in Theorem 1 can be replaced
by 2.

If QM D M (no mass lumping), then, instead of estimating MD through (6), a
direct calculation for the standard Pm finite elements yields

MD D CL2W ; CL2 D diag
�
k O�1k2L2 ; : : : ; k O�N�k

2

L2

	
;

and

O
MC�1L2 MD �M � O�MC
�1
L2
MD;

resulting in a slighly more accurate bound in Corollary 2.

Also, for simplicity, in Lemma 3 we usedCH1 D maxi j O�i j2H1. OK/. A slightly more
accurate bound can be derived if we use

CH1 D diag
�
j O�1j2H1. OK/; : : : ; j O�N� j

2

H1. OK/
	
:

3 Summary and Conclusion

Theorem 1 states that the largest eigenvalue of the system matrix and, thus, the
largest permissible time step can be bounded by a term depending only on the
number of mesh elements and the alignment of the mesh with the diffusion matrix.

The bound in terms of matrix entries is tight within a small factor which depends
only on the dimension and the choice of the reference element and basis functions
but is independent of the mesh or the coefficients of the IBVP. This is valid for any
Lagrangian Pm finite elements with m � 1.

A similar result is obtained by Zhu and Du [7, Theorem 3.1]. In our notation, it
can be written as


max.M
�1A/ . max

K

n
max
x2K 
max.D/

�
�
�.F 0K/

�1
.F 0K/

�T ���
2

o
: (9)
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The significant difference between the new bound (8) and the bound (9) is the factor
which represents the interplay between the mesh geometry and the diffusion matrix,

max
x2K

�
�
�.F 0K/

�1
D.F 0K/

�T ���
2

vs. max
x2K 
max.D/

�
�
�.F 0K/

�1
.F 0K/

�T ���
2
:

For isotropic D or isotropic meshes both terms are comparable. However, the former
is smaller than the latter in general. In particular, if both D and K are anisotropic,
then the difference between (8) and (9) can be very significant (see [4, Sect. 4.4] for
a numerical example in case of P1 finite elements). In this sense, Theorem 1 can
be seen either as a generalization of [4] to Pm.m � 2/ finite elements or as a more
accurate version of [7] for anisotropic meshes and general diffusion coefficients.

Finally, we would like to point out that a similar result can be established for
p-adaptive finite elements without major modifications.
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Comparison of Time Discretization Schemes
to Simulate the Motion of an Inextensible Beam

Steffen Basting, Annalisa Quaini, Roland Glowinski, and Suncica Canic

Abstract We compare three different time discretization schemes in combination
with an augmented Lagrangian method to simulate the motion of an inextensible
beam. The resulting saddle-point problem is solved with an Uzawa-Douglas-
Rachford algorithm. The three schemes are tested on a benchmark with an analytical
solution and on a more challenging application. We found that in order to obtain
optimal convergence behavior in time, the stopping tolerance for the Uzawa-type
algorithm should be balanced against the time step size.

1 Introduction

The motion of an inextensible beam, while well studied (see, e.g., [4] and references
therein), remains to be a challenging problem numerically. The main difficulties
stem from the nonlinearity due to the inextensibility condition, and the choice of
appropriate time discretization scheme that is stable and accurate (see [7] for a
survey on different schemes). In this work, we evaluate the performance of the
Houbolt scheme, a generalized Crank-Nicolson scheme, and a Newmark scheme,
which are combined with an Uzawa-type algorithm for solving the saddle-point
problem associated with an augmented Lagrangian method employed to handle the
inextensibility condition.
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2 Motion of an Inextensible Beam

We consider an inextensible elastic beam in static and dynamic regimes, assuming
negligible torsional effects. We will denote by � the linear density (i.e. mass per
unit length), by L the length, and by EI the flexural stiffness of the beam. We
will use the following notation, with s denoting arc length and t time: y0 D @y

@s
;

Py D @y
@t
; y00 D @2y

@s2
; Ry D @2y

@t2
:

2.1 The Static Problem

We assume that the beam is subject to external forces f and that the strain-stress
relation is linear. The position of the beam at the equilibrium configuration is
solution of a non-convex constrained problem:

x D arg min
y2K

J.y/; where J.y/ D 1

2

Z L

0

EI
ˇ
ˇy00
ˇ
ˇ2 ds�

Z L

0

f � y ds; (1)

with K D ˚y 2 .H2.0; L//2; jy0j D 1; plus boundary conditions
�
.

To treat the inextensibility condition jy0j D 1, which is a quadratic constraint,
we use an augmented Lagrangian method (see, e.g., [1–4]). Let us introduce the
following space and set:

V D ˚y 2 .H2.0; L//2; plus boundary conditions
�
;

Q D ˚q 2 .L2.0; L//2; jqj D 1 a.e. on .0; L/
�
:

The static problem (1) is equivalent to

fx; x0g D arg min
fy;qg2W

J.y/; with W D fy 2 V; q 2 Q; y0 � q D 0g:

With r > 0, we introduce the following augmented Lagrangian functional:

Lr .y;qI�/ D J.y/C r

2

Z L

0

jy0 � qj2 dsC
Z L

0

� � .y0 � q/ ds (2)

Let fx;pI�g be a saddle point of Lr over .V � Q/ � .L2.0; L//2. Then x is a
solution of the static problem (1) and p D x0. In order to solve the above saddle-
point problem, we employ the algorithm called ALG2 in, e.g., [2, 4]. As shown
in, e.g., [2], this Uzawa-type algorithm is in fact a ‘disguised’ Douglas-Rachford
operator-splitting scheme. It reads as follow:

Step 0: The initial guess fx�1;�0g 2 V � .L2.0; L//2 is given.
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Then, for k � 0, fxk�1;�k; g being known, proceed with:

Step 1: Find pk 2 Q such that:

Lr .xk�1;pk I�k/ � Lr .xk�1;qI�k/; 8q 2 Q:

Step 2: Find xk 2 V such that:

Lr .xk;pk I�k/ � Lr .y;pk I�k/; 8y 2 V0: (3)

Step 3: Update the Lagrange multipliers by:

�kC1 D �k C r..xk/0 � pk/:

If the boundary conditions for problem (1) are y.0/ D xA and y0.0/ D xB , then the
test function space at step 2 is defined by:

V0 D
˚
y 2 .H2.0; L//2; y.0/ D 0; y0.0/ D 0

�
:

To obtain pk at step 1, we have to solve the minimization problem:

min
jqjD1

Lr .xk�1;qI�k/; with the solution pk D r.xk�1/0 C �k
jr.xk�1/0 C �kj : (4)

Problem (3) can be stated as the equivalent problem: Find xk 2 V such that for
all y 2 V0:

Z L

0

EIx00k � y00dsC r
Z L

0

x0k � y0ds D
Z L

0

f � ydsC
Z L

0

.rpk � �k/ � y0ds:

Steps 1–3 are repeated till the following stopping criterion is satisfied:

jjxkC1 � xkjj
jjxkjj < �: (5)

2.2 The Dynamic Problem

Using the virtual work principle, the beam motion for t 2 Œ0; T � is modeled by: Find
x.t/ 2 Kt :

Z L

0

� Rx � ydsC
Z L

0

EI x00 � y00ds D
Z L

0

f � yds; 8y 2 dKt .x/; (6)



178 S. Basting et al.

with

Kt D
˚
y 2 .H2.0; L//2;

ˇ
ˇy0
ˇ
ˇ D 1; y.0/ D xA.t/; y0.0/ D xB.t/

�
;

dKt .x/ D
˚
y 2 .H2.0; L//2; x0 � y0 D 0; y.0/ D 0; y0.0/ D 0

�
;

and initial conditions x.s; 0/ D x0.s/ and Px.s; 0/ D x1.s/. Weak formulation (6)
assumes that at s D L natural boundary conditions x00.L/ D 0 and x000.L/ D 0 are
imposed. Note that problem (6) in strong form reads: � RxC EIx0000 D f:

For the time discretization of problem (6), we will consider three schemes:
a generalized Crank-Nicolson scheme, the Houbolt scheme [5], and a Newmark
scheme (see, e.g., [4, 6]). All these schemes are known to be second order accurate
for linear problems. Let �t be a time discretization step and set tn D n�t ,
for n D 1; : : : ; N , with N D T=�t . The time discrete problem reads: Find
xnC1 2 KtnC1 :

Z L

0

� RxnC1 � ydsC
Z L

0

EI Qx00 � y00ds D
Z L

0

Qf � yds; (7)

for all y 2 dKtnC1.xnC1/. The definition of RxnC1, Qx, and Qf in (7) is reported in
Table 1 for each scheme under consideration. Time discretization approximates
problem (6) by a sequence of quasi-static problems for which ALG2 still applies.
For the space discretization of problem (7) we use a third order Hermite finite
element method (see, e.g., [1]). For details about the discretization of pk 2 Q (4)
and �k 2 .L2.0; L//2 we refer to [4].

Table 1 Definition of RxnC1, Qx, and Qf in (7) for the time discretization schemes under consideration:
Generalized Crank-Nicolson (GCN), Houbolt, and Newmark with ˇ D 1=4; 	 D 1=2. For GCN,
0 < ˛ < 1=2

GCN Houbolt Newmarka

RxnC1 xnC1 � 2xn C xn�1

�t2
2xnC1 � 5xn C 4xn�1 � xn�2

�t2
vnC1 � vn

�t

Qx ˛xnC1 C .1� 2˛/xn C ˛xn�1 xnC1
xnC1 C xn

2

Qf ˛fnC1 C .1� 2˛/fn C ˛fn�1 fnC1
fnC1 C fn

2

a with
vnC1 C vn

2
D xnC1 � xn

�t
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3 Numerical Results

3.1 Benchmark with Analytical Solution

We consider s 2 Œ0; �=2� and t 2 Œ0; 1�, and a family of exact solutions which is
given by:

xex.s; t/ D .�.t//�1 Œcos.s�.t//; sin.s�.t//�T : (8)

Notice that solution (8) satisfies the inextensibility condition jxj0 D 1 pointwise for
every function �.t/. We chose �.t/ D et , for which the solution is a quarter of a
circle of initial radius 1 that coils over time as its radius decreases (see Fig. 1). At
s D 0 and s D �=2, we impose the values of x and x0. The forcing term fex needed
to recover solution (8) is found by plugging xex into the governing differential
equations (strong form):

� Rxex C EIx0000ex D fex: (9)

For simplicity, we set � D 1Kg/m3 and EI D 1Kg/(m s)2. The forcing term fex

is made up of two contributions: an external body force fb and an internal force
due to inextensibility fin. To find fin, we notice that problem (6) is equivalent to

Fig. 1 Comparison between analytical and numerical solution at t D 0 s (left), t D 0:5 s (center),
t D 1 s (right) for two values of stopping tolerance: � D 10�1 (top) and � D 10�5 (bottom). The
legend in the subfigures on the left is common to all the subfigures
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minimization problem x D arg miny2Kt J.y/; where the total energy of the beam
can be written as:

J.y/ D 1

2

Z L

0

�jRyj2dsC 1

2

Z L

0

EI
ˇ
ˇy00
ˇ
ˇ2 dsC

Z L

0


.jy0j2 � 1/ds�
Z L

0

f � yds;

where 
 is a scalar function. If the above functional attains its minimum at x, it
follows that its Gâteaux derivative must be vanishing at x, leading to

Z L

0

� Rx � ydsC
Z L

0

EI x00 � y00ds D
Z L

0

f � ydsC
Z L

0

.
x0/0 � yds;

for all y 2 dKt .x/. The second integral on the right-hand side (equal to zero if
y 2 dKt .x/, which is not the case for the test functions used in the computations)
gives the explicit contribution of fin.

We are going to check the convergence rates in time for the three schemes in
Table 1 in two cases:

• Linear case: when the forcing term is fex the inextensibility condition becomes
inactive due to the fact that fex is given by (9) and the problem reduces to the
linear beam equation;

• Nonlinear case: when then forcing term is fex C .
x0/0, with, e.g., 
 D 1, the
problem becomes nonlinear and the inextensibility is treated via the augmented
Lagrangian method described in Sect. 2.

The space resolution �s is taken to be �=240. For the generalized Crank-
Nicolson scheme, we set ˛ D 1=4 since in linear cases this choice leads to an
unconditionally stable scheme which possesses a very small numerical dissipation
compared, e.g., to Houbolt method [1]. In the nonlinear case, for ALG2 we set
stopping tolerance � D 10�5 (5) and r D 102. In Fig. 2, we plot the L2 norm of
the difference between the exact solution xex and the numerical solution xh at t D 1

Fig. 2 Convergence rate in time for the generalized Crank-Nicolson (GCN) scheme, the Houbolt
scheme, and the Newmark scheme in the linear (left) and nonlinear/inextensible (right) case
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Fig. 3 Convergence rate in time for the generalized Crank-Nicolson (GCN) scheme in the
nonlinear case for different values of the stopping tolerance �

against time step (�t D 0:2, 0.1, 0.05, 0.025, 0.0125, 0.00625) for the linear and
nonlinear cases. The rates predicted by the theory are achieved in the linear case: all
the schemes are of second order. We remark that for a given value of�t the Houbolt
scheme is less accurate than the other two. In the nonlinear case, for all the schemes
the order of convergence is even larger than 2 provided that �t is greater than a
critical value for which the error reaches the stopping tolerance �. If �t is less than
that critical value, the error remains unchanged or even slightly increases.

As noted earlier, the error depends on the choice of �. To illustrate this, in Fig. 1
we compare analytical solution (8) with the numerical solution at t D 0; 0:5; 1 s and
for two values of the stopping tolerance: � D 10�1 (top) and � D 10�5 (bottom),
every other discretization parameter being the same. For � D 10�1 the difference
between analytical and numerical solution is clearly visible, while for � D 10�5 the
two solutions are almost superimposed.

Finally, in order to evaluate the dependence of the error on �, we report in Fig. 3
the convergence rates in time for the generalized Crank-Nicolson scheme in the
nonlinear case for different values of the stopping tolerance � D 10�2, 10�3, 10�4,
10�5, 10�6, 10�7. The values for �t and �s are the same as those used for the
results in Fig. 2. We see that at the critical value of�t the curves reach a plateau for
all the values of �, indicating that for a given value of � it does not make sense to
choose a time step size that is too small. Our computations seem to indicate that�t
should be larger than

p
�.

3.2 Swinging Beam

The second test problem we consider involves the two-dimensional motion of a
beam subject to gravity, which is a an established test problem [3]. The beam is
attached at one extremity (denoted by A here) and free at the other one (B). We
aim at comparing our results with those reported in [3]. We have: L D 32:6m,
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Fig. 4 Position of the beam every 0.1 s for t 2 Œ0; 5� s (left) and t 2 Œ5; 10� (right)

Fig. 5 Displacement of the beam tip for t 2 Œ0; 10�: x-component (left) and y-component (right)

EI D 700Kg/(m s2), � D 7:67Kg/m. At A D .0; 0/ the beam is fixed and BjtD0 D
.20; 0/. The initial position is given by the solution of the static problem (1),
with boundary conditions x.0/ D .0; 0/ and x.L/ D .20; 0/. The motion of the
beam for t 2 Œ0; 10� s is visualized in Fig. 4. For the results in Fig. 4, we have
used the generalized Crank-Nicolson scheme (˛ D 1=4) with �t D 0:01, and
�s D 32:6=60. For ALG2, we have set r D 105 and � D 10�5. Figure 4 is
qualitatively very similar to the corresponding pictures in Ref. [3].

Next, we compare the displacement over time of the beam tip given by the
generalized Crank-Nicolson scheme, the Houbolt scheme, and the Newmark scheme
(see Table 1). The ALG2 and discretization parameters are the same used for the
results in Fig. 4. Figure 5 shows the x and y components of the displacement for the
three methods. We see that all the schemes are in good agreement, with the Houbolt
scheme giving larger oscillations than the other two schemes.
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Conclusions
We compared three different time discretization schemes (the Houbolt
scheme, a generalized Crank-Nicolson scheme, and a Newmark scheme) in
combination with an augmented Lagrangian method to simulate the motion of
an inextensible beam. While all these schemes are known to be second order
accurate in time for linear problems, for the nonlinear problem considered
here, our numerical simulations for a benchmark problem with analytical
solution indicate that the accuracy increases when they are combined with
an Uzawa-type algorithm to account for inextensibility. Special care has to be
taken in selecting the termination criterion. Our computations suggest that the
stopping tolerance for the Uzawa-type algorithm should be balanced against
the time step size in a rather restrictive manner.
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Multi-value Numerical Methods
for Hamiltonian Systems

Raffaele D’Ambrosio

Abstract We discuss the effectiveness of multi-value numerical methods in the
numerical treatment of Hamiltonian problems. Multi-value (or general linear) meth-
ods extend the well-known families of Runge-Kutta and linear multistep methods
and can be considered as a general framework for the numerical solution of ordinary
differential equations. There are some features that needs to be achieved by reliable
geometric numerical integrators based on multi-value methods: G-symplecticity,
symmetry and boundedness of the parasitic components. In particular, we analyze
the effects of the mentioned features for the long term conservation of the energy
and provide the numerical evidence confirming the theoretical expectations.

1 Hamiltonian Problems

It is the aim of this paper to analyze the effectiveness and the long-term behaviour
of multi-value numerical methods for Hamiltonian problems

Py.t/ D J�1rH.y/; J D


0 I

�I 0

�
; (1)

where the function H , denoted as Hamiltonian or energy of the system, is
exactly preserved along the solution of (1). Geometric numerical integrators for (1)
(compare [16] and references therein) are able to perform an excellent long-time
conservation of the Hamiltonian along the numerical solution: this is classically
the case of symplectic (or canonical) Runge-Kutta (RK) methods [1, 16, 20, 21],
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which are meant to exactly preserve quadratic invariants possessed by (1) along
the numerical solution (within round-off error). Moreover, a symplectic numerical
method is able to preserve any Hamiltonian function over exponentially long times
with an exponentially decreasing error, as proved by Benettin and Giorgilli (see [16],
Theorem 8.1, §IX.8).

Symplecticity is a prerogative of certain RK methods, i.e. those satisfying the
algebraic constraint [1, 16, 18, 21, 22]

biaij C bj aji � bibj D 0: (2)

Indeed, linear multistep methods cannot be symplectic [23] as well as genuine multi-
value methods cannot be symplectic [4, 14, 19].

However, many contributions of the recent literature have been devoted to the
analysis and the construction of both multistep and multi-value methods meant
to guarantee an excellent near conservation of invariants over long time intervals
(compare, for instance, [1–3, 7–9, 15, 16] and references therein). The aim of this
paper is that of analyzing the main results achieved so far in the case of multi-
value methods and applying them to investigate the long-time behaviour of a method
recently developed in [9], both from a theoretical and an experimental point of view.

2 Multi-value Methods

Our attention is focused on the family of multi-value methods, which provides
a wide range of methods including multistage methods (e.g. Runge-Kutta and
multistep Runge-Kutta methods) and multistep methods (compare [1, 17] and
references therein for a complete analysis of known methods regarded as multi-
value methods, extended in [10] to the case of second order ODEs).

The numerical scheme given by a multi-value method for the numerical solution
of the initial value problem

y0 D f .t; y/; t � 0 y.t0/ D y0; (3)

consists in the following three basic steps:

• a starting procedure Sh, yŒ0� D Sh.y0/,
• a forward procedureGh, yŒnC1� D VyŒn� C h˚.h; yŒn�/,
• a finishing procedure Fh, yn D Fh.yŒn�/.
Thus, the method transfers along the grid a whole vector yŒn� containing the
approximations of a set of quantities related to the solution of the problem under
investigation. At each step, one can always get the numerical approximation of the
solution in the current step point by applying the finishing procedure.
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Under some basic hypothesis described in details in [16] (compare Theorem 8.1
in Section XV), one can prove that for any given forward and finishing procedures,
there exist a unique starting procedureS�h .y/ and a unique one-step method ynC1 D
˚�h .yn/, such that

Gh ı S�h D S�h ı ˚�h ; Fh ı S�h D id:

Thus, if the starting vector is computed by Y Œ0� D S�h .y0/, then the numerical
solution obtained by the multi-value method is (formally) equal to that of the one-
step method ˚�h . Hence, ˚�h is called underlying one-step method.

A widely used representation of multi-value methods is usually given by the
family of General Linear Methods (GLMs, compare [1, 10, 17] and references
therein)

8
ˆ̂
<̂

ˆ̂
:̂

Y
Œn�
i D h

sP

jD1
aijf .Y

Œn�
j /C

rP

jD1
uijy

Œn�
j ; i D 1; 2; : : : ; s;

y
ŒnC1�
i D h

sP

jD1
bijf .Y

Œn�
j /C

rP

jD1
vijy

Œn�
j ; i D 1; 2; : : : ; r;

(4)

The formulation (4) is provided in correspondence of the uniform grid ft0 C
ih; i D 0; 1; : : : ; N g, with h D .T � t0/=N . The vector yŒn� D Œy

Œn�
1 ; : : : ; y

Œn�
r �

T

denotes the vector of external approximations containing all the informations we
decide to transfer from step n to step nC 1, Y Œn�i provides an approximation to the
solution of (3) in the internal point tn C cih 2 Œtn; tnC1�, i D 1; 2; : : : ; s, and Fj D
f .Y

Œn�
j /. A compact representation of GLMs collects their coefficient matrices A 2

R
s�s , U 2 R

s�r , B 2 R
r�s , V 2 R

r�r , in the following partitioned .sCr/� .sCr/
matrix

"
A U

B V

#

:

As mentioned in the previous section, even if GLMs cannot be symplectic
(unless they reduce to symplectic one step methods, compare [4, 14, 19]), the
recent literature has emphasized the possibility to effectively employ GLMs for
the numerical treatment of Hamiltonian problem (compare, for instance, [1–3, 7–9]
and references therein). In particular, the state-of-art reveals that some specific
properties have to be satisfied by multi-value methods in order to accurately
approach Hamiltonian problems:

• G-symplecticity (introduced in the first edition of [16], also see [1–3, 5, 7–9]),
which ensures conjugate-symplecticity of the underlying one-step method asso-
ciated to the multivalue method (4);
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• symmetry of the numerical scheme [16], which is a suitable property providing
the discrete counterpart of the reversibility of the exact flow, in case of reversible
dynamical systems;

• boundedness of parasitic components over long times [3, 11, 16], which ensures
that the parasitic components generated by the numerical method remain
bounded over certain time intervals.

The above mentioned features are considered in the remainder of the treatise.

3 G-Symplecticity

As mentioned, the multivalue nature of GLMs does not allow them to be symplectic,
unless they reduce to RK methods. However, a near-conservation property achiev-
able by multivalue methods has been provided and analyzed by the recent literature,
defined as follows. If yTEy is a quadratic first integral of the differential problem
y0 D f .y/, where E is a symmetric matrix, G-symplecticity assures that

yŒnC1�T.G ˝ E/yŒnC1� D yŒn�T.G ˝E/yŒn�; (5)

(compare [12]), beingG a symmetric matrix. Taking into account that any GLM (4)
satisfies the following identity (compare [9] and references therein)

yŒnC1�T.G ˝ E/yŒnC1� D yŒn�T.G ˝ E/yŒn� C
rX

i;jD1
.G � V TGV/ijy

Œn�1�
i

T

y
Œn�1�
j

C 2h
sX

iD1

rX

jD1
.DU � BTGV/ijy

Œn�1�
i

T

F
Œn�1�
j

C h2
sX

i;jD1
.DAC ATD � BTGB/ijF

Œn�1�
i

T

F
Œn�1�
j ;

the G-symplecticity property (5) is achieved if the algebraic constraints

G D V TGV; DU D BTGV; DACATD D BTGB (6)

are satisfied [1, 16].
Condition (5) reveals that G-symplectic multivalue method does not preserve

quadratic first integrals, but a related quadratic form yŒn�
T
.G ˝ E/yŒn�. It was

observed in [12] that the first terms of the expansion in powers of h of the quadratic
form yŒn�

T
.G ˝ E/yŒn� is yTEy (compare [12]): thus, the more h is small, the more
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the two forms are close each other. observe that conditions (6) of G-symplecticity
are equivalent to annihilating the algebraic stability matrix of a GLM (compare
[1, 6, 13, 16]).

There is a strong formal relation between G-symplectic and symplectic maps,
which is highlighted in [11]. We report here the main result.

Theorem 1 Consider a G-symplectic multi-value method (4) of order p. Then, for
every finishing procedure the underlying one-step method is conjugate-symplectic.
More precisely, there exists a change of coordinates �h.y/ D yCO.hp/, such that
�h ı ˚�h ı ��1h is a symplectic transformation.

In other words, this results asserts that a G-symplectic method has the same
behavior of a symplectic one-step method after a global change of coordinates that
is O.hp/ close to the identity [12].

4 Control of Parasitism

One-step methods are the only candidates for symplecticity (compare [16, 23] for
linear multistep methods and [4,15,19] for irreducible multivalue methods). This is
due to the fact the multistep and multivalue methods generate parasitic components
in the numerical solution which destroy the overall long-time accuracy (see [3, 11,
16]). Hence, if one aims to derive non-symplectic methods which are capable of
nearly preserving invariants over the numerical solution, the parasitic behaviour of
such methods has to be taken under control over long time intervals [11].

As announced, due to their multivalue nature, GLMs introduce parasitic compo-
nents in the numerical solution, which have to be controlled in order to achieve a
long-term near conservation of the invariants. Rigorous bounds on parasitic solution
components have recently been obtained in [11], where the authors have proved that,
for carefully constructed methods, the error in the parasitic components typically
grows like hpC4exp.h2Lt/, where p is the order of the method, and L depends on
the problem and on the coefficients of the method.

A basic property of boundedness for the parasitic components of multivalue
methods is achieved by annihilating the so-called growth parameters [11, 16]

�j D ��1j v�jBUvj ; (7)

where �j are the eigenvalues of the matrix V such that �j ¤ 1, vj and v�j are the
right and left eigenvectors, respectively (Vvj D �j vj and v�j V D �j v�j ) satisfying
v�j vj D 1. Examples of methods with zero-growth parameters, in the context of
multivalue methods, have been provided in [2,3,8,9]. In particular, a G-symplectic,
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symmetric (i.e. the underlying one-step method is symmetric, compare [16]), order
4 method (4) with zero growth parameter has been introduced in [9]. Denoted by

	 D 2C
3
p
4

2
C 3
p
2; ı D

�
1C 3
p
2
	2
; ' D 15

4
C 2 3
p
2C 3
p
4;

such a method depends on the following coefficient matrices

"
A U

B V

#

D

2

6
6
6
6
66
6
6
6
4

1
6
	 0 0 1 1

24

1
3
	 � 1

6
ı 0 1 1

24

1
3
	 1

6
ı 1

6
	 1 1

24

1
6
' � 1

4
� 2

3
p
2

3
� 3
p
4
3

1
6
' 1 1

12

1 �2 1 0 �1

3

7
7
7
7
77
7
7
7
5

: (8)

A starting procedure is given in details in [9].

5 Long-Term Behaviour

As explained in the previous section, ideal multi-value methods generate small and
bounded parasitic components over long time intervals. In order to derive sharp
long-term error estimates for multi-value methods, we have suitably applied in
[11] backward error analysis, a powerful tool successfully applied to one-step and
linear multistep methods (compare [15, 16] and references therein) which provides
a crucial ingredient for the study of the long-time behavior of numerical integrators.
In [11], we have derived sharp estimates for the parasitic components and the error
in the Hamiltonian numerically computed by a multi-value method: we realized that,
for carefully constructed methods (i.e. symmetric and with zero growth parameters)
the error in the parasitic components typically grows like hpC4 exp.h2Lt/.

In particular, for the multi-value method (8), the following result holds (compare
[11]).

Theorem 2 If (8) is applied to a Hamiltonian system (1), then the energy is nearly
preserved according to

H.yn/ �H.y0/ D O.h4/CO.th8/CO
�
h8 exp.h2Lt/

�

as long as t D nh D O.h�2/.
Thus, for method (8), parasitic components remain bounded on intervals of
steplength O.h�2/, which is also confirmed by the numerical evidence. We apply
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Fig. 1 Error in the Hamiltonian (9) for the method (8) with stepsizes hD 0:25 (top) and hD 0:125
(bottom)

method (8) to the simple pendulum problem, depending on the Hamiltonian function

H.p; q/ D 1

2
p2 � cos q; (9)

and initial values q.0/ D 3, p.0/ D 0.
Figure 1 shows the Hamiltonian error obtained by using the step sizes h D 0:25

and h D 0:125: confirming the predicted estimate of Theorem 2, the error behaves
like O.h4/ on intervals of length O.h�2/, and then follows an exponential growth.
We observe that method (8) is also able to preserve the symplecticity of the phase
space, as visible from the orbit pattern in Fig. 2.
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Fig. 2 Orbit patterns of the mathematical pendulum (1) obtained by the multi-value method (8)
(left) and the symplectic Runge-Kutta method on two Gaussian points (right)
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Convergence of Parareal for the Navier-Stokes
Equations Depending on the Reynolds Number

Johannes Steiner, Daniel Ruprecht, Robert Speck, and Rolf Krause

Abstract The paper presents first a linear stability analysis for the time-parallel
Parareal method, using an IMEX Euler as coarse and a Runge-Kutta-3 method as
fine propagator, confirming that dominant imaginary eigenvalues negatively affect
Parareal’s convergence. This suggests that when Parareal is applied to the nonlinear
Navier-Stokes equations, problems for small viscosities could arise. Numerical
results for a driven cavity benchmark are presented, confirming that Parareal’s
convergence can indeed deteriorate as viscosity decreases and the flow becomes
increasingly dominated by convection. The effect is found to strongly depend on
the spatial resolution.

1 Introduction

As core counts in modern supercomputers continue to grow, parallel algorithms
are required that can provide concurrency beyond existing approaches parallelizing
in space. In particular, algorithms that parallelize in time “along the steps” have
attracted noticeable interest. Probably the most widely studied algorithm of this type
is Parareal [13], but other important methods exist as well, for example PITA [8] or
PFASST [7].

The applicability of Parareal to the Navier-Stokes equations has been studied
in [10], where it is shown that Parareal can solve the initial value problem arising
from a Finite Element discretization of the Navier-Stokes equations for a Reynolds
number of 200 as well as from a Spectral Element discretization for a problem with
Reynolds number 7,500. A non-Newtonian problem is studied in [2]. In [17, 18],
Parareal is combined with parallelization in space and setups with Reynolds
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numbers up to 1,000 are investigated. While it is confirmed that Parareal can
successfully be applied to flow simulations, the attempt to demonstrate its potential
to provide speedup beyond the saturation of the spatial parallelization was incon-
clusive, as either the pure time or pure space parallel approach provided minimum
runtimes. A successful demonstration that Parareal can speed up simulations after
the spatial parallelization has saturated can be found in [5], where Parareal is used
to simulate a driven cavity flow in a cube with a Reynolds number of 1,000. The
performance of PFASST for a particle-based discretization of the Navier-Stokes
equations on O.100;000/ cores is studied in [15].

It has been noted in multiple works that Parareal as well as PITA have stability
issues for convection-dominated problems, see [1, 8, 12, 14, 16]. This suggests
that Parareal will at some point cease to converge properly for the Navier-Stokes
equations if the Reynolds number increases and the problem becomes more and
more dominated by advection. This paper discusses results from linear stability
analysis and presents a numerical study for two-dimensional driven cavity flow of
how the convergence of Parareal is affected as viscosity decreases.

2 Parareal

Parareal is a method to introduce concurrency in the solution of initial value
problems

ut D f .u.t/; t/; u.0/ D u0; 0 � t � T: (1)

It relies on the introduction of two classical one-step time integration methods,
one computationally expensive and of high accuracy (denoted by F ) and one
computationally cheap method of lower accuracy (denoted by G ). The former is
commonly referred to as the “fine propagator”, the latter as the “coarse propagator”.
Denote by Un the numerical approximation of the exact solution u of (1) at some
point in time tn. Further, denote as

UnC1 D Fıt .Un/ (2)

the result obtained by integrating from an initial value Un given at a time tn
forward in time to a time tnC1 using a time-step ıt and the method indicated
by F . For a decomposition of Œ0; T � into N so-called time-slices Œtn; tnC1�, n D 0;

: : : ; N � 1, solving (2) time-slice after time-slice corresponds to classical time-
marching, running the fine method in serial from t0 D 0 to tN D T . Instead, Parareal
approximately computes the values Un by means of the iteration

U kC1
nC1 D G�t.U

kC1
n /CFıt .U

k
n /� G�t.U

k
n / (3)

where k denotes the iteration counter. For k ! N , iteration (3) converges towards
the serial fine solution, that is U k

n ! Un. Once values U k
n are known, the

evaluation of the computationally expensive terms F .U k
n / in (3) can be done in



Parareal for the Navier-Stokes Equations 197

parallel onN processors. Then, a correction is propagated serially by evaluating the
terms G�t.U kC1

n / and computing U kC1
nC1 . We refer to e.g. [14] for a more in-depth

presentation of the algorithm. The speedup achievable by Parareal concurrently
computing the solution onN time-intervals assigned toN processors is bounded by

s.N / � min



N

Nit
;
CF

CG

�
(4)

where Nit is the number of iterations performed and CF , CG denote the time
required to evaluate Fıt and G�t respectively, see again e.g. [14]. Note that the
two bounds are competing in the sense that using a coarser and cheaper method for
G will usually improve the second bound but might cause Parareal to require more
iterations to converge, thereby reducing the first bound. In contrast, a more accurate
and more expensive G will likely reduce the iteration number but also reduce the
coarse-to-fine runtime ratio CF

CG
.

3 Linear Stability Analysis

In order to illustrate Parareal’s stability properties, we apply it to the test equation

y0.t/ D 
Rey.t/C i
Imy.t/; y.0/ D 0; 0 � t � T: (5)

A linear stability analysis of this kind was first done in [16], using RadauIIA
methods for both F and G . Here, in line with the numerical examples presented
in Sect. 4, the stability analysis is done for an implicit-explicit Euler method for G
and an explicit Runge-Kutta-3 method for F with five time steps of F per two time
steps of G . The IMEX scheme treats the real part (“diffusion”) implicitly and the
imaginary term (“convection”) explicitly. Further, N D 15 concurrent time slices
are used and a time step �t D 1:0 for G , so that T D 15.

Figure 1 shows the resulting stability domains and isolines of accuracy for the
coarse method run serially (a), the fine method run serially (b), and for Parareal
with different numbers of iteration (c)–(f). For Nit D N D 15, the solution from
Parareal is identical to the one provided by F and thus the stability domains also
coincide (not shown). As can be expected because of the stability constraint arising
from the explicitly treated imaginary term, the IMEX method used for G becomes
unstable if the imaginary part of 
 becomes too dominant. Parareal however ceases
to be stable even before reaching the stability limit of the coarse propagator. The
analysis confirms again that for problems with imaginary eigenvalues, Parareal can
develop instabilities although both F and G are stable. Furthermore, the stability
domain of Parareal shrinks from Nit D 1 to Nit D 4 and Nit D 8 before expanding
again for Nit D 12. Note also that for a fixed number of iterations, Parareal
becomes less accurate as 
Im increases (in contrast to the serial fine method),
corresponding to reduced rates of convergence. This means that achieving the
accuracy of the underlying fine method will require more iterations for problems
with larger imaginary eigenvalues, therefore reducing the speedup achievable by
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Fig. 1 Stability and accuracy of Parareal using an implicit-explicit Euler for G , a RK3 method
for F , N D 15 time slices and a ratio of s D 5=2 fine to coarse steps in each time-slice. The
thick gray line indicates where the amplification factor becomes greater than one. The black lines
indicate error levels. Note that in (a) no black lines are visible because the error never drops below
10�1. Note also that s D 5=2 means the fine scheme in serial performs five steps per time-slice and
the coarse scheme two, so that (a) and (b) are not identical to the stability function of the respective
method with only a single time-step. Figures (c)–(f) show the stability domain for Parareal with
Nit D 1; 4; 8; 12 iterations. For comparison, the stability region of G is also sketched again as a
thin dashed gray line

Parareal, cf. the estimate (4). Eventually, as convergence becomes too slow, Parareal
will no longer be able to achieve speedup at all and will no longer be useful. The
mathematical explanation for this behavior is a growing term in the error estimate
for Parareal for imaginary eigenvalues that is only compensated for as the iteration
number approaches the number of time-slices, see the analysis in [12].

4 Numerical Results for Driven Cavity Flow

In order to investigate if and how the results from the linear stability analysis carry
over to the fully nonlinear case, we solve now the non-dimensional, nonlinear,
incompressible Navier-Stokes equations in two dimensions

ut C u � ruCrp D ��u (6)

r � u D 0 (7)
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Fig. 2 Convergence of Parareal against the serial fine solution for�t D 1=200, different numbers
of mesh pointsNx and different values for the viscosity �. (a) Nx D 8. (b) Nx D 16. (c)Nx D 32.
(d) Nx D 64

on a square Œ0; 1�2. A method-of-lines approach is used to first discretize in
space. For the spatial discretization a finite volume method based on a vertex
centered scheme is used. On an unstructured or not necessarily structured triangle
mesh, control volumes are constructed via a dual mesh. This leads to a non-
staggered scheme of velocity and pressure. Therefore, a stabilization based on
upwind differences and an incremental version of the Chorin-Temam method for
the pressure is used [19]. Parareal is then employed to solve the resulting initial
value problem until a final time T D 15withN D 15 time-slices. As in the stability
analysis above, G is an implicit-explicit Euler method while F is an explicit Runge-
Kutta-3 method. The time-step for the coarse method is �t D 1=200, for the fine
method ıt D 1=500, reproducing a rate of s D 5=2 fine per coarse steps. Although
the driven cavity setup is probably not the most ideal here, since, depending on
the viscosity, the solution settles into a steady state rather quickly, its wide use and
comparative simplicity still make for a good first test case. Further tests for a more
complex vortex shedding setups are currently ongoing.

Figure 2 shows the convergence of Parareal against the solution provided by
running F in serial. Shown is the maximum of the relative error at the end of all
time-slices, that is

ek WD max
nD1;:::;N

�
�U k

n � Un
�
�1 = kUnk1 (8)
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where U k
n is the solution at tn provided by Parareal after k iterations and Un the

solution provided by running F in serial. The spatial discretization uses values
of Nx D 8, 16, 32, 64 and the viscosity parameter is set to � D 10�1, 10�2,
10�3, 10�4. For Nx D 64 and � D 10�1 no values are shown, because here the
explicit RK3 method used for F started to show stability problems. On all meshes,
the convergence of Parareal deteriorates as � becomes smaller and this effect is
much more pronounced for finer spatial resolutions, where the mesh is able to better
resolve the features of the more convection dominated flow. On the finest mesh,
there is a clear transition between � D 10�3, for which Parareal still converges
reasonably well, and � D 10�4, where the method first stalls for several iterations
before slowly starting to converge. Requiring a number of iterations close to the
number of time-slices means that only marginal speedup is possible from Parareal,
because the first bound in (4) becomes very small. Note also that the still reasonable
convergence of Parareal for very low viscosity on a very coarse spatial mesh is not
of great practical interest, as the provided solution will be strongly under-resolved.
Figure 3 shows again the convergence of Parareal for a decreased coarse time-step
size �t D 1=400. As can be seen, reducing the coarse time-step again improves
convergence and allows Parareal to converge in fewer iterations. However, it reduces
the second speedup bound in (4) and thus will also at some point prevent Parareal
from achieving speedup. Therefore, the reduced convergence speed of Parareal for
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Fig. 3 Convergence of Parareal against the serial fine solution for�t D 1=400, different numbers
of mesh pointsNx and different values for the viscosity �. (a) Nx D 8. (b) Nx D 16. (c)Nx D 32.
(d) Nx D 64
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small viscosities either necessitates a small time-step in the coarse method or a large
number of iterations and both choices significantly reduce the achievable speedup.
A possible remedy could be the application of stabilization techniques as discussed
in [4, 9] for PITA or [3, 6, 11, 14] for Parareal, but so far none of these have been
tested for the full Navier-Stokes equations.

Conclusions
The paper presents a numerical study of how the Reynolds number
(or, inversely, the viscosity parameter) affects the convergence of the time-
parallel Parareal method when used to solve the Navier-Stokes equations.
From other works it is known that Parareal can develop a mild instability
for problems with dominant imaginary eigenvalues, so it can be expected
that as the viscosity is decreased, Parareal will eventually become unstable
at some point. A linear stability analysis is performed to motivate this
assumption, which is then substantiated by numerical examples, solving a
two-dimensional driven cavity problem for different Reynolds numbers and
different spatial resolutions. It is confirmed that the convergence of Parareal
deteriorates as the viscosity parameter becomes smaller and the flow becomes
more and more dominated by convection. This necessitates either the use of a
very small time-step in the coarse method or many iterations of Parareal, but
both these choices significantly reduce the achievable speedup.
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Splitting in Potential Finite-Difference Schemes
with Discrete Transparent Boundary Conditions
for the Time-Dependent Schrödinger Equation

Alexander Zlotnik, Bernard Ducomet, Ilya Zlotnik, and Alla Romanova

Abstract The time-dependent Schrödinger equation is the key one in many fields.
It should be often solved in unbounded space domains. Several approaches are
known to deal with such problems using approximate transparent boundary con-
ditions (TBCs) on the artificial boundaries. Among them, there exist the so-called
discrete TBCs whose advantages are the complete absence of spurious reflections,
reliable computational stability, clear mathematical background and the correspond-
ing rigorous stability theory. In this paper, the Strang-type splitting with respect to
the potential is applied to three two-level schemes with different discretizations in
space having the approximation order O.�2 C jhjk/, k D 2 or 4. Explicit forms of
the discrete TBCs are given and results on existence, uniqueness and uniform in time
L2-stability of solutions are stated in a unified manner. Due to splitting, an effective
direct algorithm to implement the schemes is presented for general potential.

1 Introduction

The time-dependent Schrödinger equation is important in quantum mechanics,
atomic and nuclear physics, wave physics, quantum waveguides, etc. It should
be often solved in unbounded space domains. Several approaches were developed
to deal with the problems of such kind using approximate transparent boundary
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conditions (TBCs) on the artificial boundaries, see review [1]. Among them, there
exist the so-called discrete TBCs. Their advantages are the complete absence of spu-
rious reflections, reliable computational stability, clear mathematical background
and the corresponding rigorous stability theory, see [2, 3, 5, 7, 9, 12], etc. In this
paper, in order to simplify the implementation of schemes with the discrete TBCs
in n-dimensional semi-infinite parallelepiped, the Strang-type splitting with respect
to the potential is applied to three two-level schemes with different discretizations
in space having the approximation order O.�2 C jhjk/, k D 2 or 4. Theorems on
explicit forms of the discrete TBCs as well as on existence, uniqueness and uniform
in time L2-stability of solutions are stated in a unified manner. An effective direct
algorithm to implement the splitting schemes is presented for general potential. The
corresponding successful 2D numerical results can be found in [4, 6, 11].

2 The Main Results

We consider the multi-dimensional time-dependent Schrödinger equation

i„@ 
@t
D � „

2

2m0

� C V for x D .x1; : : : ; xn/ 2 ˘1; t > 0; (1)

where � is the n-dimensional Laplace operator, n � 2, and ˘1 WD .0;1/ � ˘O1
is the semi-infinite parallelepiped, with ˘O1 WD .0;X2/ � � � � � .0;Xn/. Also i is
the imaginary unit, „ > 0 and m0 > 0 are physical constants,  D  .x; t/ is the
unknown complex-valued wave function and V D V.x/ is the given real potential.
Let c„ WD „ 2

2m0
.

We impose the following boundary condition, the condition at infinity and the
initial condition

 .�; t/j@˘1
D 0; k .�; t/kL2.˘1/ <1; t > 0; (2)

 jtD0 D  0.x/ on ˘1; (3)

where @˘1 is the boundary of ˘1. We also suppose that

V.x/ D V1;  0.x/ D 0 for x 2 ŒX0;1/ �˘O1 (4)

for some (sufficiently large) X0 > 0.
We exploit a uniform mesh !h;1 on ˘1 with nodes xj D .j1h1; : : : ; jnhn/,

where j1 � 0, 0 � j2 � J2; : : : ; 0 � jn � Jn, and steps h1 D X1
J1
; : : : ; hn D Xn

Jn
,

where X1 > X0 and h1 � X1 � X0. Let !h;1 D fxj, j1 � 1, 1 � j2 � J2 � 1;
: : : ; 1 � jn � Jn � 1g and �h;1 WD !h;1n!h;1 be its interior and boundary.
Hereafter h D .h1; : : : ; hn/, jhj is the length of h and j D .j1; : : : ; jn/.
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We define the backward and forward difference quotients N@k and @k and the
Numerov average sNkWj WD 1

12
Wj�1 C 5

6
Wj C 1

12
WjC1 acting in xk .

We also define a non-uniform mesh ! � in time with nodes 0 D t0 < t1 <

� � � < tm < : : : , where tm ! 1 for m ! 1, and steps �m D tm � tm�1. Let
!� WD ! �nf0g and �max D supm�1 �m. We define the backward difference quotient
N@t and the average stY D YC LY

2
in t , where LY m D Y m�1.

We introduce the n-dimensional Numerov-type average operator and the corre-
sponding splitting operator

sN D I C h21
12
@1 N@1 C � � � C h2n

12
@n N@n; sN D sN1 : : : sNn

together with their n � 1-dimensional versions (excepting the direction xk)

s
N Ok D I C

X

1�`�n; `¤k

h2`
12
sN`; sN Ok D

Y

1�`�n; `¤k
sN`:

We also exploit the simplest �h D @1 N@1 C � � � C @n N@n and Numerov-type �hN D
sN O1@1 N@1 C � � � C sN On@n N@n discretizations of the Laplace operator and the latter one
with splitting of the space averages N�hN D sN O1 @1 N@1 C � � � C sN On @n N@n.

We first consider three two-level symmetric in time but different in space
discretizations of the Schrödinger equation (1)

i„sN@t� D �c„�.h/st� C s .V st�/ on !h;1 � !� ; (5)

where s D I (the unit operator), sN or sN as well as �.h/ D �h, �hN or N�hN

respectively for the discretizations A (of the Crank-Nicolson type), B (of the
Numerov-Crank-Nicolson type) and C (the modified one with splitting of the
space averages). The standard discretization A has the second approximation order
O.�2max C jhj2/ whereas the discretizations B and C have the higher approximation
order O.�2max C jhj4/ (for the latter one, this is valid owing to formulas sN D
sN C O.jhj4/ and N�hN D �hN C O.jhj4/). Unfortunately, in the case n D 3, the
operator sN has eigenvalues tending to 0 as h! 0 and moreover, in the case n � 4
and for sufficiently small h, it has the negative ones. Therefore, in the case n � 3,
the discretization B does not possess suitable properties, and below we consider it
only in the case n D 2. Instead the discretization C is constructed for any n � 2.

In order to simplify the implementation, we apply the known Strang-type
splitting in potential [8] and construct the following three-step discretization

i„
M�m � �m�1

�m=2
D ıV

M�m C �m�1

2
on !h;1; (6)

i„s
Q�m � M�m

�m
D �c„�.h/

Q�m C M�m

2
C s

� QV
Q�m C M�m

2

	
C Fm on !h;1; (7)



206 A. Zlotnik et al.

i„ �
m � Q�m

�m=2
D ıV �

m C Q�m

2
on !h;1 (8)

as well as put the boundary and initial conditions

M�mj�h;1 D 0; Q�mj�h;1 D 0; �mj�h;1 D 0; �0 D �0
h on !h;1; (9)

for anym � 1. Hereafter ıV WD V � QV , where the auxiliary 1D potential QV D QV .x1/
is such that QV .x1/ D V1 for x1 � X0 (in particular, QV .x1/ 
 V1). We suppose that
�0
h

ˇ
ˇ
�h;1

D 0. The free term Fm is added into (7) to study stability in more detail
below.

Clearly Eqs. (6) and (8) are reduced to the explicit formulas

M�m D E m�m�1; �m D E m Q�m with E m WD
�
1 � i �m

4„ ıV
	
=
�
1C i �m

4„ ıV
	
:

(10)

The main equation (7) is similar to the original one (5) at mth time level, but it is
simplified by substituting QV for V . M� and Q� are the auxiliary unknown functions
and � is the main one.

It follows from (10) that j M�mj D j�m�1j and j�mj D j Q�mj on !h;1; moreover,
for j1 � J1 � 1, simply M�m

j D �m�1
j and �m

j D Q�m
j .

This splitting of Eq. (5) is symmetric in time due to steps (6) and (8) (and the
symmetry in time of Eq. (7)), therefore it does not reduce the above approximation
orders (that can be checked also more formally).

Let Hh be a Hilbert space of mesh functionsW : !h;1 ! C such that

W j�h;1 D 0; kW k2Hh WD
1X

j1D1

J2�1X

j2D1
: : :

Jn�1X

jnD1

ˇ
ˇWj

ˇ
ˇ2 h1 : : : hn <1:

Theorem 1 Let only the first of conditions (4) be valid. Let Fm;�0
h 2 Hh for any

m � 1. Then there exists a unique solution to the splitting scheme (6)–(9) such that
�m 2 Hh for any m � 0, and the following L2-stability bound holds

max
0�m�M k�

mkHh � k�0
hkHh C

2c0

„
MX

mD1
kFmkHh �m for any M � 1;

where c0 D 1; 6 and
�
3
2

�n
respectively for the discretizations A, B and C .

For F D 0, the following mass conservation law holds k�mk2Hh D k�0
hk2Hh for

anym � 1.

Scheme (6)–(9) can not be used in practice because of the infinite number of
unknowns at each time level. We intend to restrict its solution to a finite space mesh
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!h WD fxj 2 !h;1I 0 � j1 � J1g. Let !h WD fxj 2 !h;1I 1 � j1 � J1 � 1g and
@!h D !hn!h be its interior and boundary as well as �1h WD fxjI j1 D J1; 1 �
j2 � J2 � 1; : : : ; 1 � jn � Jn � 1g and �h D @!hn�1h be the boundary parts.
Let also !h1 WD fj1h1I 1 � j1 � J1 � 1g and !hO1 D f.j2h2; : : : ; jnhn/I 1 � j2 �
J2 � 1; : : : ; jn � Jn � 1g. Given a function W : !h ! C, denote by WJ1 its trace
on �1h.

By definition, the discrete TBC is such a (non-local) boundary condition at
the artificial boundary �1h which allows one to accomplish the above mentioned
restriction. To write down it explicitly, we need the following operators

s�N1Wj D 1

12
Wj�1 C 5

12
Wj ; s

�
N D s�N1 C

h22
24
@2 N@2; sN;b1k WD

Y

2�`�n; `¤k
sN`;

where s�N1 acts in x1. Let also �.h/

O1 WD @2 N@2 C : : : C @n N@n and s
Nb12@2

N@2 C : : : C
s
Nb1n@n

N@n respectively for the discretizations A and C . We define the following
approximations

D1h. Q�; M�/ WD c„ N@1
Q� C M�
2
� h1
2

h
i„
Q� � M�
�
C
�
c„�.h/

O1 � V1I
	 Q� C M�

2

i
;

c„sN2 N@1
Q� C M�
2
� h1

h
i„s�N

Q� � M�
�
C �c„s�N1@2 N@2 � V1s�N

� Q� C M�
2

i
;

c„sN O1 N@1
Q� C M�
2
� h1s�N1

h
i„sN O1

Q� � M�
�
C
�
c„�.h/

O1 � V1sN O1
	 Q� C M�

2

i

for c„ @
@x1

on �1h, respectively for the discretizations A, B and C .
We need the well-known direct and inverse discrete sine Fourier transforms

P .q/ D .FkP /
.q/ WD 2

Jk

Jk�1X

jD1
Pj sin

�qj

Jk
; 1 � q � Jk � 1;

Pj D
�
F�1k P .�/�

j
WD

Jk�1X

qD1
P .q/ sin

�qj

Jk
; 1 � j � Jk � 1;

in xk , 2 � k � n. The eigenvalues of the operators �@k N@k and sNk (under
zero Dirichlet boundary conditions at xk D 0;Xk) equal respectively 
.k/q D
�
2
hk

sin �qhk
2Xk

�2
and �.k/q D 1 � 1

3
sin2 �qhk

2Xk
2 . 2

3
; 1/.

Let the time mesh be uniform with the step � > 0 below. Recall that the
discrete convolution of mesh functions R;Q: ! � ! C is given by .R �Q/m WDPm

pD0 RpQm�p for m � 0.
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Theorem 2 Let Fm D 0 and �0
h D 0 on !h;1n!h for any m � 1 and

�0
h

ˇ
ˇ
j1DJ1�1 D 0. The solution of scheme (6)–(9) such that�m 2 Hh, for anym � 0,

satisfies the following splitting equations on the finite (space) mesh

i„
M�m � �m�1

�=2
D ıV

M�m C �m�1

2
on !h [ �1h; (11)

i„s
Q�m � M�m

�
D �c„�.h/

Q�m C M�m

2
C s

� QV
Q�m C M�m

2

	
C Fm on !h; (12)

i„ �
m � Q�m

�=2
D ıV �

m C Q�m

2
on !h [ �1h; (13)

together with the boundary and initial conditions

M�mj�h D 0; Q�mj�h D 0; �mj�h D 0; (14)

D1h. Q�m; M�m/ D c„S m
ref
Q	m

J1
on �1h; (15)

�0 D �0
h on !h; (16)

for any m � 1; here Q	m

J1
D ˚ Q�0

ˇ
ˇ
j1DJ1 ; : : : ;

Q�m
ˇ
ˇ
j1DJ1

�
is a vector-function.

The operator on the right-hand side of the discrete TBC (15) has the form

S m
ref˚

m WD F�12 : : :F�1n
�
�qRq � ˚q�m (17)

for any ˚: !hO1 � ! � ! C such that ˚0 D 0, with ˚m WD f˚0; : : : ; ˚mg, ˚q WD
.Fn : : : .F2˚/

.q2/ : : : /.qn/ and q D .q2; : : : ; qn/. Here Rq can be computed by the
recurrent formulas

R0q D c1q; R
1
q D �c1q�q�q;

Rmq D
2m� 3
m

�q�qR
m�1
q � m � 3

m
�2qR

m�2
q for m � 2;

with the coefficients defined by

c1q D �j˛qj1=2
2

e�i.arg˛q/=2; �q D �ei arg˛q ; �q D ˇq

j˛qj 2 .�1; 1/;

˛q D 2aq C .1 � 4q/h
2
1a
2
q ¤ 0; ˇq D 2Reaq C .1 � 4q/h

2
1jaqj2;

arg˛q 2 .0; 2�/; aq D V1;q
2c„;q

C i „
�c„;q

; V1;q D V1 C c„ıV1;q:
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Moreover, one has

�q D 1; �.2/q2
"

1C
�h1h2


.2/
q2

12�
.2/
q2

	2
#

; �.2/q2 : : : �
.n/
qn
I

q D 0; 1

12�
.2/
q2

;
1

12
I ıV1;q D 
.2/q2 C � � � C 
.n/qn ;



.2/
q2

�
.2/
q2

;


.2/
q2

�
.2/
q2

C � � � C 

.n/
qn

�
.n/
qn

I

c„;q D c„; c„
"

1C
�h1h2


.2/
q2

12�
.2/
q2

	2
#

; c„

respectively for the discretizations A, B and C .

We introduce the mesh inner product and norms

.U;W /!hO1
WD

J2�1X

j2D1
� � �

Jn�1X

jnD1
Uj2;:::;jnW

�
j2;:::;jn

h2 : : : hn; kU k2!hO1
D .U; U /!hO1

;

kU k2!h WD
J1�1X

kD1
kU jj1Dkk2!hO1

h1; kU k2Q!h WD kU k2!h C kU jj1DJ1k2!hO1
h1:

Lemma 1 The operator S m
ref satisfies the important inequality [3]

Im
MX

mD1

�
S m

ref˚
m; st˚

m
�
!hO1
� � 0 for any M � 1;

for any ˚: !hO1 � ! � ! C such that ˚0 D 0.

By construction, the splitting scheme on the finite mesh (11)–(17) has a solution.
Let us study its uniqueness and stability. For the discretizationsB andC , we impose
the condition j QV .x01/� QV .x1/j � Ljx01�x1j˛ , for any 0 � x1 < x01 � X , with some
˛ 2 Œ0; 1� (see [10]). Clearly L D 0 for QV 
 const.

Theorem 3 Let�0
h

ˇ
ˇ
j1DJ1�1; J1 D 0. The solution of the splitting scheme on the finite

mesh (11)–(17) is unique and satisfies the following stability bound

max
0�m�M k�

mk Q!h � k�0
hk Q!h C

2c0

„
MX

mD1
kFmk!h� for any M � 1

provided that L�h˛1 < Nc„, where Nc D 8 or 16 for the discretizations B or C .

For the discretizationA, the above results are proved by developing the technique
from [3] and can be enlarged to the case of a generalized Schrödinger equation with
variable coefficients and a non-uniform mesh !h. For the discretizations B and C ,
we also apply the approach to stability analysis from [9] as well as the technique for
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constructing the discrete TBCs and schemes’ analysis together with some results
from [5, 10, 12]; the uniqueness result is new and relies upon the chosen operator
form (16) of the discrete TBC.

The splitting scheme on the finite space mesh (11)–(17) can be effectively
implemented. Applying the operator F2 : : :Fn to Eq. (12) (for brevity, in the case
F D 0) and to the discrete TBC (15), we get the collection of disjoint 1D finite-
difference Schrödinger problems in x1 for each function Q�mq

i„sq1

Q�mq � M�mq

�
D �c„@1 N@1

Q�mq C M�mq

2
C sq1

� QVq

Q�mq C M�mq

2

	
on !h1;

(18)

Q�mq
ˇ
ˇ
j1D0 D 0; (19)

h
c„;q N@1

Q�mq C M�mq

2
� h1s�q1

�
i„
Q�mq � M�mq

�
� V1;q

M�mq C Q�mq

2

	iˇ̌
ˇ
j1DJ1

D c„;q
�
Rq � Q	 q

J1

�m
; (20)

where operators sq1Wj WD qWj�1 C .1 � 2q/Wj C qWjC1 and s�q1
Wj WD

qWj�1 C . 12 � q/Wj act in x1 as well as QVq WD QV C c„ıV1;q.
Given �m�1, the direct algorithm for computing �m comprises five steps.

1. To compute M�m D E m�m�1 on !h [ �1h (see (10)).

2. To compute M�mq D �
Fn : : :

�
F2
M�m
�.q2/

: : :
�.qn/ for 1 � q2 � J2 � 1; : : : ;

1 � qn � Jn � 1.
3. To compute Q�mq by solving the 1D problems (18)–(20) for 1 � q2 � J2 � 1;
: : : ; 1 � qn � Jn � 1 (this includes the computation of the discrete convolution
on the right-hand side of (20) so that the functions Q�1q

J1
; : : : ; Q�m�1 q

J1
have to be

stored).
4. To compute Q�m D F�1n : : :F�12 Q�mq.
5. To compute �m D E m Q�m on !h [ �1h (see (10)).

Let J2 D 2k2; : : : ; Jn D 2kn , where k2; : : : ; kn be natural numbers. Using the
fast Fourier transform, it required O ..J1 log2 .J2 : : : Jn/Cm/J2 : : : Jn/ or
O..J1 log2 .J2 : : : Jn/CM/J2 : : : JnM/ arithmetic operations for computing �m

respectively at mth time level or at all time levels m D 1; : : : ;M . It straightfor-
wardly allows for a parallel implementation.

The results for the discretizations A, B and C are presented in more detail
respectively in [6,11,4] including successful results of 2D numerical experiments
in the case of both rectangular and smooth potentials. They can be easily extended
to the case of a problem like (1)–(4) in the infinite parallelepiped R�˘O1 (the values
V˙1 of V as x1 !˙1 can be different).

The study was supported by The National Research University – Higher School
of Economics’ Academic Fund Program in 2014–2015, research grant No. 14-01-
0014.
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Part III
A Posteriori Error Estimation

and Adaptive Methods



Estimates of Constants in Boundary-Mean Trace
Inequalities and Applications to Error Analysis

Sergey Repin

Abstract We discuss Poincaré type inequalities for functions with zero mean
values on the whole boundary of a Lipschitz domain or on a measurable part of the
boundary. For some basic domains (rectangles, quadrilaterals, and right triangles)
exact constants in these inequalities has been found in Nazarov and Repin (ArXiv
Ser Math Anal, 2012, arXiv:1211.2224). We shortly discuss two examples, which
show that the estimates can be helpful for quantitative analysis of PDEs. In the
first example, we deduce estimates of modeling errors generated by simplification
(coarsening) of a boundary value problem. The second example presents a new
form of the functional type a posteriori estimate that provides fully guaranteed and
computable bounds of approximation errors. Constants in Poincaré type inequalities
enter these estimates.

1 Introduction

Let ˝ 2 R
d be a bounded connected domain with Lipschitz continuous boundary

@˝ . By QH1.˝/ we denote a subspace ofH1.˝/ that consist of functions satisfying
the condition fwg˝ D 0 (here and later on fwgS denotes the mean value of w on the
set S ). The classical Poincaré inequality [8, 9] reads

kwk2;˝ � CP .˝/krwk2;˝ 8w 2 QH1.˝/: (1)

It is widely used in analysis of PDEs. The constant in (1) is equal to 
� 12 , where 

is the smallest positive eigenvalue of the problem

��u D
u in ˝;

@nu D0 on @˝:
(2)
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In Payne and Weinberger [6], it was shown that CP .˝/ � diam˝
�

for any convex
˝ 2 R

d (for d > 2 necessary corrections of the proof are presented in Bebendorf
[1]). Numerous publications are concerned with various generalizations of (1) (e.g.,
in [3] sharp constants in some Sobolev type inequalities were found). These results
were used in quantitative analysis of PDEs (in particular, in domain decomposition
methods [2] and a posteriori error estimation [10]).

We consider similar estimates for functions in the space

QH1.˝; � / D ˚w 2 H1.˝/ j fwg� D 0
�
;

where � coincides with @˝ or with a measurable part of it having positive d � 1
measure. For any w 2 QH1.˝; � /, we have the estimates

kwk2;˝ � C1.˝; � /krwk2;˝ ; (3)

kwk2;� � C2.˝; � /krwk2;˝ : (4)

Norm equivalent to the original norm Existence of positive constants C1.˝; � /
and C2.˝; � / independent of w can be proved by standard compactness arguments.
Our first goal is to find exact values of the constants C1.˝; � / and C1.˝; � / for
rectangular domains and also for some classes of triangles. Having these constants
for “basic” domains and using affine mappings it is not difficult to find suitable upper
bounds of C1.˝; � / and C1.˝; � / for arbitrary simplexes and convex rectangles.

Estimates (3) and (4) can be used in various applications, in particular in analysis
of discontinuous Galerkin, finite volume, and mortar type methods (considered
or similar inequalities, with the emphasis on the appearing constants, have also
been studied in [5, 7, 11] and some other papers cited therein). In this note, we
shortly discuss possible applications of (3) and (4) to estimation of modeling and
approximation errors in the context of functional type a posteriori estimates.

2 Reduction to Spectral Problems

Finding the constants leads to the problem of finding minimal positive eigenvalues
of two spectral problems. It is not difficult to show that the extremal function in (3)
is an eigenfunction u 2 QH1.˝; � / of the boundary value problem

��u D 
u in ˝; (5)

@nu D � 


j� j
Z

˝

u dx on �; (6)

@nu D 0 on @˝ n �; (7)
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which corresponds to the smallest 
 > 0. Analogously, the extremal function in (4)
satisfies the system

�u D 0 in ˝; (8)

@nu D 
u on �; (9)

@nu D 0 on @˝ n �: (10)

For rectangles, and right triangles the exact values of minimal positive eigenval-
ues can be found exactly [4]. Below, we shortly summarize these results. In some
cases, the results are obtained fairly easily because the corresponding eigenfunctions
are defined explicitly and form a complete system in the energy space of the
operator. This is true for rectangles (polyhedrons) and functions with zero mean
values on one edge (face) only.

Theorem 1 If d D 2, ˝ D .0; h1/ � .0; h2/, and

� D fx1 D 0; x2 2 Œ0; h2�g;

then

C1 D 1

�
maxf2h1Ih2g and C2 D

�
�

h2
tanh.

�h1

h2
/

�� 12
:

If d D 3, ˝ D .0; h1/ � .0; h2/ � .0; h3/, and

� Dfx1D 0;x2 2 Œ0; h2�;x3 2 Œ0; h3�g;

then

C1 D 1

�
maxf2h1Ih2Ih3g and C2 D

�
�

maxfh2Ih3g tanh.
�h1

maxfh2Ih3g /
�� 12

:

If � D @˝ , then due to the biaxial symmetry all the eigenfunctions are either
even or odd with respect to the axes x1 and x2. Analysis of them leads to the
following result.

Theorem 2 Let d D 2, ˝ D .� h1
2
; h1
2
/ � .� h2

2
; h2
2
/, and � D @˝ .

Then, C1 D 1
�

maxfh1Ih2g and

C2 D
�
2z�.˛0/p
h1h2

tanh.
z�.˛0/
˛0

/

�� 1
2

;
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where ˛0 D
q

maxfh1Ih2g
minfh1Ih2g and z�.˛/ is a unique root of the equation

tanh
� z

˛

	
tan.z˛/ D 1;

such that z�˛ < �
2

.

Finding exact constants for isosceles right triangles requires rather sophisticated
analysis (see [4]). The estimates use the constants �1 	 2:02876, �2 	 2:3650, and
�3 	 0:93755. Here, �1 is the unique root of the equation z cot.z/ C 1 D 0 in the
interval .0; �/ and �2 is the unique root of the equation tan.z/C tanh.z/ D 0 in the
interval .0; �/. The number �3 is the unique root of the equation tanh.z/ tan.z/ D 1;
in .0; �

2
/.

Theorem 3 Let ˝ be the isosceles right triangle. 1. If � coincide with one leg
having the length h, then

C1 D 1

�1
h and C2 D 1

�1
h1=2; �1 D .�2 tanh.�2//

1
2 : (11)

2. If � is the union of two legs (each leg has the length h), then

C1 D h

�
and C2 D 1

�2
h1=2; �2 D .2�3 tanh.�3//

1
2 (12)

3. Let ˝ D f0 < jx2j < x1 < hg and � be the hypotenuse. Then

C1 D 1

2�1
h and C2 D 1p

2
h1=2: (13)

Now, it is not difficult to find the constants associated with an arbitrary
nondegenerate triangle T . First, we note that if T � T 0 and T and T 0 have the same
boundary � (where the mean trace vanishes), then C2.T; � / � C2.T 0; � /. Next, let
T D conv f.0; 0/; .h1; 0/; .h2 cos˛; h2 sin ˛/g and � D fx1 2 Œ0; h1�I x2 D 0g. For
this case, we obtain

kvkT � C1h1 krvkT ; C1 D OC1�1=2.˛; �/; � D h2

h1
; (14)

kvk� � C2h
1=2
1 krvkT C2 D OC2

�
�.˛; �/

� sin ˛

�1=2
; (15)

where �.˛; �/ D 1
2

�
1C �2 C .1C �4 C 2 cos.2˛/�2/1=2

�
, and OC1 and OC2 are the

corresponding constants for the basic right triangle.
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3 Errors Generated by Simplification of a Model

Problems with highly oscillating terms and complicated boundary conditions are
typical objects of numerical analysis. In this context, it is natural to adjust the
initial mesh and accuracy of data representation to the desired tolerance level.
For this purpose, we deduce an estimate, which suggests a way to select suitable
simplifications of the source term and boundary conditions by means of cheap
computations to be performed before solving the boundary value problem.

Consider the problem P: Find u such that

divp C f D 0 in ˝; (16)

p D Aru; in ˝; (17)

u D u0 on � D; (18)

Aru � n D F on � N : (19)

Let f 2 L2.˝/, F 2 L2.� N /, u0 2 H1.˝/, and A� � � � cj�j2, where c is a
positive constant independent of �. The corresponding generalized solution exists

and is a unique in the set V0 C u0, where V0 D
ı
H1.˝/.

Assume that˝ is split into a finite set O of “simple” nonoverlapping subdomains
˝i . Each ˝i belongs to one of the following three subsets:

OD WD f˝i � ˝ j @˝i \ � D DW � D
i 6D ;g;

ON WD f˝i � ˝ j @˝i \ � N DW � N
i 6D ;g;

OI WD O n .OD [ ON /:

Now, instead of P we consider a simplified (coarse) problem OP:

div Op C Of D 0 in ˝; (20)

Op D ArOu; in ˝; (21)

Ou D Ou0 on � D; (22)

ArOu � n D OF on � N : (23)

In this problem, the functions u0, f , and F (which may be rather complicated, e.g.,
oscillating) are replaced by much simpler (e.g., piecewise constant or piecewise
affine functions) Ou0, Of , and OF . It is only required that

fu0 � Ou0g� Di D 0 8� D
i 2 � D; (24)

n
f � Of

o

˝i
D 0 8˝i 2 OI [ ON ; (25)
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n
F � OF

o

� Ni

D 0 8� N
i 2 � N : (26)

Our goal is to deduce an easily computable estimate of the corresponding modeling
error

e2sim D jjj r.u � Ou/ jjj2A WD
Z

˝

Ar.u � Ou/ � r.u � Ou/ dx

generated by data simplification. This estimate can be represented in terms of the
quantities

D2
1 WD

X

˝i2O
C
2
i kf � Of k22;˝i ;

D2
2 WD

X

˝i2ON

C2.˝i ; �
N
i /

2kF � OF k2
2;� Ni

;

where

Ci D


CP .˝i/ if ˝i 2 OI [ ON ;

C1.˝i ; �
D
i / if ˝i 2 OD:

Obviously, they are easily computable provided that the constants CP , C1, and C2
associated with the corresponding subdomains are known.

Theorem 4 Let (24)–(25) hold. Then,

e2sim � �1 C
q
�2 C �21; (27)

where

2�1 D D1 CD2p
c
C jjj � jjj;

�2 D
Z

˝

.f � Of /� dxC
Z

� N

.F � OF / � ds;

and � is an arbitrary function in ˚.˝/ WD ˚
H1.˝/; � D u0 � Ou0 on� D

�
.

H1.˝/ such that � D u0 � Ou0 on � D:

Remark 1 It is worth outlining that the right hand side of (27) is directly computable
and finding �1 and �2 needs a simple integration only. If Ou0 D u0, then this estimate
can be significantly simplified. In this case one can choose � 
 0, and the estimate
is reduced to jjj u � Ou jjj � D1CD2p

c
:
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4 A Posteriori Estimates of Approximation Errors

Let v 2 V0 C u0 (where V0 WD fw 2 H1.˝/ j w D 0 on �N g) be an
approximation of u (cf. (16)–(19)). Then,

Z

˝

A.ru � rv/ � rw dx D
Z

˝

. fw �Arv � rw/dxC
Z

�N

Fwds : (28)

It is well known that this relation yields a guaranteed upper bound of jjj u � v jjj if we
transform the right hand side using a suitable vector valued function y 2 H.˝; div/
(see [10] and references therein). Below we show that the estimates (3) and (4) yield
computable majorants of the error, which operate with y from a space wider than
H.˝; div/. This additional freedom can be used for a more efficient reconstruction
of the dual variable based on local type procedures. As before, ˝ is decomposed
into a collection of nonoverlapping Lipschitz subdomains˝i , �ij WD ˝i \˝j , and
� N
i D ˝i \ �N . The set of all interior edges (faces) is denoted by �int. Define the

space

OH.˝;ON ; div/ WD
n
y 2 L2.˝;Rd / j y D yi 2 H.˝i ; div/; in ˝i;

Z

�ij

.yi � yj / � nij ds D 0 if �ij 2 �int;

Z

� Ni

.yi � ni � F /ds D 0; fdivyi C f g˝i D 0 8i D 1; 2; : : : ; N
o

In general, functions from OH.˝;ON ; div/ do not belong to H.˝; div/ because the
pointwise continuity of the normal flux is replaced by a weak (integral) continuity.

For all w 2 V0 and y 2 OH.˝;ON ; div/ the following identity holds:

NX

iD1

Z

˝i

.y � rwC .divy/w/ dx D

X

�ij��int

Z

�ij

.yi � yj / � nijwds C
X

�Ni��N

Z

�Ni

.yi � ni � F /wds:

By adding this identity to the right hand side of (28), assembling the terms, and
using Hölder estimates, we find that

jjj r.u � v/ jjj2A �
NX

iD1
kfCdivyik˝i kw�fwg˝i k˝iCjjj y �Arv jjjA�1 jjj rw jjjAC
X

�ij��int

	ijkw � fwg�ij
k�ij C

X

� Ni �� N
	i 0kw � fwg� Ni k� Ni ;



222 S. Repin

where

	i 0 D kyi � ni � F k� Ni and 	ij D k.yi � yj / � nijk�ij :

Assume that ˝i is a polygonal domain, which can be represented as a union of non
overlapping simplexes Tik, k D 1; 2; : : : ;Mi and one face of each simplex belongs
to �int or � N . Then, the last two terms can be estimated with the help of (4). Let C2i

be the maximal constant in (4) for all Tis forming ˝i . The quantity 2i WD
MiP

kD0
�2ik;

where �ik D 1
2
	ik if 	ik 2 �int (the factor 1

2
is used because the quantity is related to

two neighboring subdomains) and �ik D 	i0 if 	i0 2 � N characterizes discontinuity
jumps and inconveniences in the Neumann boundary condition associated with ˝i .
Then, the boundary terms related to ˝i are estimated by the quantity C2iikrwk˝i
and the overall sum of two last terms is estimated by the quantity

�.y;ON /krwk˝ where �2.y;ON / D
NX

iD1
C 2
2i 

2
i

Since

NX

iD1

Z

˝i

.f C divyi /w dx �
 

NX

iD1
C 2

Pikf C divyik˝i
!1=2

krwk˝;

we find that

jjj r.u � v/ jjjA � jjj y �Arv jjjA�1 C 1

c1

 

�.y;ON /C
 

NX

iD1

C 2
Pikf C div yik˝i

!!

;

where the term �.y;ON / controls violations of conformity related to y � n.

References

1. M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4),
751–756 (2003)

2. C.R. Dohrmann, A. Klawonn, O.B. Widlund, Domain decomposition for less regular sub-
domains: overlapping Schwarz in two dimensions. SIAM J. Numer. Anal. 46(4), 2153–2168
(2008)

3. V.G. Maz’ja, Classes of domains and imbedding theorems for function spaces. Sov. Math.
Dokl. 1, 882–885 (1960)

4. A. Nazarov, S. Repin, Exact constants in Poincaré type inequalities for functions with zero
mean boundary traces. ArXiv Ser. Math. Anal. (2012). arXiv:1211.2224

5. S. Nicaise, A posteriori error estimations of some cell-centered finite volume methods. SIAM
J. Numer. Anal. 43(4), 1481–1503 (2005)



Estimates of Constants in Boundary-Mean Trace Inequalities 223

6. L.E. Payne, H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch.
Ration. Mech. Anal. 5, 286–292 (1960)

7. G.V. Pencheva, M. Vohralik, M.F. Wheeler, T. Wildey, Robust a posteriori error control and
adaptivity for multiscale, multinumerics, and mortar coupling. SIAM J. Numer. Anal. 51(1),
526–554 (2013)
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Reliable a Posteriori Error Estimation for Plane
Problems in Cosserat Elasticity

Maxim Frolov

Abstract Functional type a posteriori error estimates are proposed for approximate
solutions to plane problems arising in the Cosserat theory of elasticity. Estimates
are reliable under quite general assumptions and are explicitly applicable not only
to approximations possessing the Galerkin orthogonality property. For numerical
justification of the approach, the lowest order Arnold-Boffi-Falk approximation is
implemented.

1 Introduction

Cosserat continuum [3] is one of interesting generalizations of the classical elasticity
theory. Renewed interest to such type of theories appears in the 60s of the twentieth
century and is related to names of many famous experts in the field of continuum
mechanics: Aero, Eringen, Mindlin, Nowacki, Palmov, Truesdell, and others. At
present time, there is a significant amount of publications related to various physical,
experimental, mathematical and computational aspects of the theory. More or less
complete review of the subject can be found in the literature, for instance, in [1,4,6,
7,9,16–18] and other papers and books cited therein. On the other hand, there exists
an essential lack of publications on the construction of guaranteed a posteriori error
estimates for control of accuracy of computed approximations.

The functional approach, which is used here, was formed in the end of 1990s
(see [13]) and has been developed for a wide spectrum of boundary-value problems.
Theoretical as well as some practical aspects of its implementation are described in
monographs [8, 11, 14] and some papers cited therein.

In the present work, the previous result of Repin and Frolov [15] is generalized.
Using the duality theory in the Calculus of Variations for one class of plane
problems in Cosserat elasticity, functional type a posteriori error estimates have
been proposed. In [15], the case of Dirichlet type boundary conditions has been
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Fig. 1 Main fields, volume
and surface loads, and
boundary conditions for plane
problems in Cosserat
elasticity

considered. In the present investigation, the author discusses the case of general
boundary conditions including not only given displacements and rotation, but also
traction and moment over the out-of-plane axis.

The classical statement in linear elasticity under the plane strain assumption is as
follows: find displacements u, stress tensor � and strain tensor " that are related by
the system of equations

8
<

:

Div � C f D 0 in ˝;
� D L" in ˝;
".u/ D 1

2
.ruC .ru/T / in ˝;

where domain ˝ � R
2 is a bounded connected domain with Lipschitz-continuous

boundary, f —volume loads (density),L—the tensor of elastic moduli. This system
is completed by boundary conditions in terms of displacements u D ud on �d and in
terms of stresses �n D t on �s, where �d and �s are two non-intersecting parts of
the boundary � , ud and t—given displacements and surface loads, n—the outward
normal to the surface of a body.

For Cosserat continuum it is necessary to take into account the microrotation
and the couple-stress tensor additionally to the original unknown fields (see Fig. 1).
Microrotation !z in ˝ and !d on �d, volume loads fx; fy; gz, and surface loads
tx; ty;mz are depicted in. It is important that, in general case, stresses and strains
have no symmetry.

In the rest of the paper, we assume

fx; fy; gz 2 L2.˝/I tx; ty; mz 2 L2.�s/I ud 2 H
1=2.�d;R

2/; !d 2 H
1=2.�d/I

Lijks D Lksij D Ljiks; i; j; k; s D 1; 2I

˛1

Z

˝

j� j2 d˝ �
Z

˝

L� W � d˝ � ˛2
Z

˝

j� j2 d˝I

8� 2 L2.˝;M
2�2
sym /; 0 < ˛1 � ˛2:
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Hereafter, standard Lebesgue and Sobolev spaces are denoted by L2, H1=2, and H
1,

respectively.

2 Functional Type a Posteriori Error Estimates

The energy functional for the classical elasticity theory has the following form:

Je.u/ D
R

˝

1

2
L".u/ W ".u/

„ ƒ‚ …
d˝ � R

˝

f � ud˝ � R
�s

t � ud�

�
�

u2x;x C u2y;y C 1
2
.uy;x C ux;y/2

	
C 


2
.ux;x C uy;y/2;

where, for the case of isotropic and homogeneous material (at the macroscopic
level), the integrand of the first term depends only on two material constants—
Lamé parameters � and 
. In the case of Cosserat continuum, the energy functional
includes additional terms representing both body and surface loads from additional
set of variables related to the rotation and moments, namely

J.ux; uy; !z/ D Je.u/�
Z

˝

gz!z d˝ �
Z

�s

mz!z d� C

C
Z

˝

��c
2

�
uy;x � ux;y � 2!z

�2 C 2B
�
!2z;x C !2z;y

		
d˝

where �c and B are constants specifying properties of a microstructure. For
minimization of the energy functional, it is necessary to choose a proper pair of
finite element spaces

inf‡�‚ J.ux; uy; !z/

‡ WD ‡0 C ud; ‡0 WD ˚v0 2 H
1.˝;R2/ j v0 D 0 on �d

� I
‚ WD ‚0 C !d; ‚0 WD ˚0 2 H

1.˝/ j 0 D 0 on �d
�
:

Let us assume that some arbitrary conforming approximation .Qux; Quy/ and Q!z of the
exact solution from‡�‚ is computed. Then, one can introduce the error (deviation
from the exact solution) � WD .�x; �y; �z/, where

�x WD ux � Qux; �y WD uy � Quy; �z WD !z � Q!z:
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This paper is focused on reliable functional type a posteriori error estimates for the
energy norm of the error

jjj�jjj2 WD
Z

˝

�
��2x;x C

�

2
.�y;x C �x;y/2 C ��2y;y C




2
.�x;x C �y;y/2

�
d˝ C

C
Z

˝

��c
2
.�y;x � �x;y � 2�z/

2 C 2Bjr�zj2
	
d˝:

It is quite simple to show that for any approximate solution, the following relation
holds:

jjj�jjj2 D J.Qux; Quy; Q!z/� J.ux; uy; !z/ �
� J.Qux; Quy; Q!z/� J.uref

x ; u
ref
y ; !

ref
z /;

where some reference solution is taken instead of the exact one.
To obtain error estimates, the relations between displacements, generalized

strains 	 and nonsymmetric stress tensor � are considered, namely

	xx D ux;x; 	yy D uy;y; 	xy D uy;x � !z; 	yx D ux;y C !z;

� D .�C �c/	 C .� � �c/	T C 
 tr 	I;

where I is the second-rank identity tensor (see, for example, [10,12]). The respective
fields, computed from an approximate solution, are also marked byQ

Q�xx D .2�C 
/Qux;x C 
Quy;y; Q�xy D �.Qux;y C Quy;x/C Qp;

Qp D �c.Quy;x � Qux;y � 2 Q!z/; : : : QM WD 4Br Q!z:

Further, as a standard trick of the functional approach, a set of free variables is
introduced. It is the set of three variables

Q� WD . Q�1; Q�2/; Qs;

where

Q�1 D
� Q�xx

Q�yx

�
; Q�2 D

� Q�xy

Q�yy

�
; Qs D

�Qsx
Qsy
�
2 Hdiv.˝; �s/

with

Hdiv.˝; �s/ WD
˚
� 2 L2.˝;R

2/ j div � 2 L2.˝/; � � n 2 L2.�s/
�
:
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All of them have clear physical meaning— Q� represents the true nonsymmetric stress
tensor and Qs is an independent approximation of the non-zero components of the
couple-stress tensor.

The following estimate is used as an auxiliary one:

1

C 2
� inf

.v0x;v
0
y ;

0
z /2‡0�‚0

jjj.v0x; v0y; 0z /jjj2
�2.v0x; v

0
y; 

0
z /
;

where

�2.�x; �y; �z/ WD jjc1=2x �x jj2˝ C jjc1=2y �y jj2˝ C jjc1=2z �zjj2˝ C
Cjjd1=2x �x jj2�s

C jjd1=2y �y jj2�s
C jjd1=2z �zjj2�s

with six arbitrary constants of properly selected physical dimensions. For instance,
the set of constants can be chosen as follows:

cx D cy D �

j˝j ; cz D B

j˝j ; dx D cx j�sj; dy D cy j�sj; dz D czj�sj:

Then, a set of guaranteed functional type a posteriori error estimates for plane
problems in Cosserat elasticity has the form

jjj�jjj2 � .1C ˇ/D2. Q�1; Q�2; Qs/C .1C ˇ�1/C 2R2. Q�1; Q�2; Qs/; 8ˇ > 0I (1)

D2 WD
Z

˝

1

2
L�1. Q� � Q�/sym W . Q� � Q�/symd˝ C

C
Z

˝

1

2�c

� Q�xy � Q�yx

2
� Qp

�2
d˝ C

Z

˝

1

8B
j Qs � QM j2 d˝I

R2. Q�1; Q�2; Qs/ D 1

4

�
jjc�1=2x . Q�xx;x C Q�yx;y C fx/jj2˝ C

Cjjc�1=2y . Q�xy;x C Q�yy;y C fy/jj2˝ C jjc�1=2z .div Qs C Q�xy � Q�yx C gz/jj2˝ C
Cjjd�1=2x .tx � Q�xxnx � Q�yxny/jj2�s

C jjd�1=2y .ty � Q�xynx � Q�yyny/jj2�s
C

C jjd�1=2z .mz � Qs � n/jj2�s

	
:

This set admits various selections of approximations and parameters, and, for the
case � D �d, includes as a particular case the result that have been obtained earlier
in [15].
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3 Numerical Results

To implement the error majorant (1) we use suitable mixed finite element pro-
posed by Arnold, Boffi and Falk [2]. The respective space for it has the form
ABF 0. OK / DP2;0. OK /�P0;2. OK /, wherePi;j . OK /—the space of polynomials
over OK of power i or less on Ox1 and j—on Ox2 for the reference square OK D
.�1; 1/� .�1; 1/, where Ox1 and Ox2 are local coordinates of the reference element.

Example 1 (Square domain with a small hole) Let consider a square domain with
a hole (see Fig. 2). For this example, the radius of the hole is comparable with the

Fig. 2 Geometry and material properties [18]: side 16.2 mm, radius 0.216 mm,

D 0.11538e10 N=m2, �D 0.76923e9 N=m2, BD 0.31762e2 N, �cD 0.25638e11 N=m2, loading
1 MPa, size of particles 0.2 mm; Results (left to right and top to bottom): total displacement and
rotation, deviation from the classical solution of ANSYS marked by CL superscript, and regions
of the stress tensor asymmetry (all results are depicted for Mesh 2)
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Table 1 Results for ABF0 approximation in Example 1

MESH 0 1 2 3 REF.a

D.O.F. 504 1,872 7,200 28,224 111,744

ERROR (%) 15.8 11.1 7.3 4.0

Ieff 1.23 1.20 1.21 1.34

ˇ 0.158 0.122 0.087 0.056
aMesh for computation of the reference solution

Table 2 Results for ABF0 approximation in Example 2

MESH 0 1 2 REF.

D.O.F. 140 747 2,811 198,147

ERROR (%) 28.1 15.2 8.6 Deviation from

Ieff 6.9 11.1 13.6 ANSYS

ˇ 1.223 1.396 1.862 0.06 %

size of particles of microstructure. The left edge of the square is fixed and a tensile
loading is applied to the right edge. All parameters of the problem are described in
the caption of the figure.

Results of error estimation for several steps with uniform mesh refinement are
collected in Table 1. The efficiency index as the ratio between the error majorant
and the error is used as the main quality measure. From these results we conclude
that the efficiency index of estimates remains stable and the approach is reliable—
it provides guaranteed upper bounds of the error in the energy norm. Parameter ˇ
tends to zero. Practical experience shows that such a behaviour of the parameter
is necessary for getting satisfactory results. This example summarizes the group of
examples with a significant influence of a microstructure, which produces visible
difference between the Cosserat solution and the classical elastic solution (up to
15 %).

Example 2 (About current limitations of the approach) As the second example,
we consider some Cosserat continuum in the unit square without holes. Material
parameters are selected to get the reference solution with negligible difference from
the classical elastic solution of ANSYS (less than 0.1 %). From the results collected
in Table 2, one can conclude that, in this case, the error estimate (1) yields worse
behaviour of the efficiency index. Reasonable alternative choice can be provided by
the functional type a posteriori error estimate for linear elasticity from [14]. The
results presented in [5] show that usage of ABF0 approximation for it ensures quite
effective approach to compute error estimates.

Finally, we summarize the main conclusions

• Arnold-Boffi-Falk [2] approximation yields good results;
• The proposed method is reliable in any case—estimates are guaranteed (upper)

bounds. This statement follows from the theoretical origins of the functional
approach. By numerical evidence, it is efficient for a wide spectrum of
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problems—efficiency indices are stable, excepting some problems with a
negligible microstructure influence. Nevertheless, theoretical justification of
this fact is an interesting and important open problem for further investigations.
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Residual Based Error Estimate for Higher
Order Trefftz-Like Trial Functions
on Adaptively Refined Polygonal Meshes

Steffen Weißer

Abstract The BEM-based Finite Element Method is one of the promising strate-
gies which are applicable for the approximation of boundary value problems on
general polygonal and polyhedral meshes. The flexibility with respect to meshes
arises from the implicit definition of trial functions in a Trefftz-like manner. These
functions are treated locally by means of Boundary Element Methods (BEM). The
following presentation deals with the formulation of higher order trial functions
and their application in uniform and adaptive mesh refinement strategies. For the
adaptive refinement, a residual based error estimate is used on general polygonal
meshes for the higher order, conforming trial functions. The first numerical results,
in the context of adaptive refinement, show optimal rates of convergence with
respect to the number of degrees of freedom.

1 Introduction

Polygonal and polyhedral meshes attract more and more attention in the discretiza-
tion of boundary value problems. They appear naturally in geological and biological
science and have advantageous properties in several situations.

The BEM-based Finite Element Method is applicable on such general polygonal
and polyhedral meshes, and it admits conforming approximation spaces due to the
implicit definition of trial functions. These functions are defined in the spirit of
Trefftz to fulfil the underlying differential equation locally, and thus they inherit
some properties of the unknown solution. In the case of a diffusion problem,
the lowest order trial functions coincide with harmonic coordinates studied and
applied in computer graphics, see [13, 14]. These functions belong to the class
of generalized barycentric coordinates, which are additionally applied in linear
elasticity for example, see [20].
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Beside the Finite Element Method there are also other strategies for the numerical
approximation of boundary value problems. In this context of polygonal meshes
and special trial functions, the Trefftz-discontinuous Galerkin methods [8] have
to be mentioned. For conforming approximations on such meshes, there are
recent developments in mimetic discretization techniques [3] and within the new
methodology of Virtual Element Methods [1, 2].

The BEM-based FEM was first introduced in 2009, see [4], and analysed
in the following years, see [5, 9, 11, 16]. Since then it has undergone several
developments. This includes residual based error estimates for adaptive mesh
refinement [21], the application for convection–diffusion problems [12], higher
order approximations [18, 23] and mixed formulations with H.div/-conforming
discretization [7] as well as improved generalizations to three dimensional problems
with polyhedral elements [19]. The main results have been gathered in two doctoral
theses [10, 22].

The challenge in this presentation is to combine the results from [21] for the
adaptive Finite Element Method with the higher order trial functions defined in [18]
and extended in [23]. Thus, we aim to give the first results on a higher order adaptive
scheme for the BEM-based Finite Element Method on polygonal meshes.

The outline of the paper is as follows. In Sect. 2, the BEM-based FEM with
higher order trial functions is formulated for the model problem. The residual based
error estimate and the adaptive refinement strategy is given in Sect. 3. And finally, a
numerical example is presented in Sect. 4.

2 BEM-Based FEM for the Model Problem

For the discussion in this presentation, we restrict ourselves to a model problem.
Let ˝ � R

2 be a bounded polygonal domain with boundary � D �D [ �N and
j�Dj > 0. For gD 2 H1=2.�D/, gN 2 L2.�N / and ˛ 2 L1.˝/ with 0 < ˛min �
˛ � ˛max almost everywhere in ˝ , we consider the boundary value problem

� div.˛ru/ D 0 in ˝; u D gD on �D;
@u

@n˝
D gN on �N ; (1)

where n˝ denotes the outer unite normal vector to the boundary of ˝ . The well
known variational formulation reads

Seek u 2 gD C VD W a.u; v/ D .gN ; v/�N 8v 2 VD: (2)

Here, .�; �/�N denotes the L2-scalar products over �N and the bilinear form is given
by

a.u; v/ D
Z

˝

˛ru � rv:
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The trial space is given as VD D H1
D.˝/ D fv 2 H1.˝/ W vj�D D 0g and gD C VD

denotes the affine space, where the same symbol gD is used for the Dirichlet trace
and its extension into V D H1.˝/. We utilize the standard notation for Sobolev
spacesHk.˝/, k 2 N0 and their norms k � kHk.˝/ as well as semi-norms j � jHk.˝/.

For the numerical treatment of (2), the domain˝ has to be discretized. Therefore,
we allow the decomposition of˝ into open and convex polygonal elementsK 2 Kh

such that

˝ D
[

K2Kh

K and K \K 0 D ¿ forK;K 0 2 Kh W K ¤ K 0:

Furthermore, we assume that the aspect ratio of the element diameter hK and the
radius �K of the largest inscribed circle is uniformly bounded from above for the
whole sequence of meshes in the convergence process, i.e. hK=�K < � . An edge
E 2 Eh in the mesh is a straight line which is always situated between two nodes.
The set of all nodes is denoted by Nh. We assume that the edge length hE of each
edge E of an element K is uniformly bounded from below by a constant times the
element diameter, i.e. &hK < hE . Thus, we deal with quite general meshes, where
the assumption on the aspect ratio ensures that the elements do not degenerate and
the assumption on the edge length ensures that the number of nodes per element is
uniformly bounded.

The solution of (2) is approximated by the use of a finite dimensional subspace
V k
h of V , where k gives the order of approximation. To construct this conforming

approximation space, we prescribe its basis. For a first order method it is sufficient
to utilize nodal basis functions which are defined locally as solutions of boundary
value problems. We define for each node z 2 Nh the function z piecewise for each
elementK 2 Kh as unique solution of

�� z D 0 in K;  z.x/ D


1; x D z;
0; x 2 Nh n fzg;  z linear on each E 2 Eh;

and set V 1
h D spanf z W z 2 Nhg. To obtain a higher order approximation space, we

follow the hint in [18]. Thus, we have to add additional basis functions which are
assigned to edges and basis functions which are assigned to elements. The former
ones also fulfil local Laplace problems and the later ones are defined by local
Poisson problems with homogeneous Dirichlet data. Since the source term in (1)
vanishes, it is sufficient to work with piecewise harmonic trial functions, see [23].
Consequently, the element trial functions are leaved out. We define for each edge
E 2 Eh and i D 2; : : : ; k the function  E;i piecewise as unique solution of

�� E;i D 0 in K;  E;i D


pE;i ; on E;
0; on E 0 2 Eh n fEg;
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and set V k
h D spanf z;  E;i W z 2 Nh; E 2 Eh; i D 2; : : : ; kg for k � 2. Here the

Dirichlet data is chosen such that for E D zbze with zb; ze 2 Nh

˚
 zb

ˇ
ˇ
E
;  ze

ˇ
ˇ
E
; pE;i W i D 2; : : : ; k

�

forms a basis of the space of polynomials of degree smaller or equal to k over E .
Due to the continuity of the trial functions across the element boundaries, they are
in H1.˝/, and thus it holds V k

h � V . Furthermore, it is possible to prove that
Pk

harm.K/ � V k
h

ˇ
ˇ
K

, where Pk
harm.K/ is the space of harmonic polynomials of

degree smaller or equal to k overK , see [23].
For simplicity, we restrict ourselves to piecewise constant diffusion coefficients

in (1), which are resolved by the mesh. Otherwise, the coefficient has to be
approximated in a suitable manner for the BEM-based FEM, see [18].

Let us assume that the Dirichlet data in (1) is piecewise polynomial of degree k
such that the extension can be chosen as gD 2 V k

h . Consequently, the discrete
variational formulation of (2) reads

Seek uh 2 gD C V k
h;D W a.uh; vh/ D .gN ; vh/�N 8vh 2 V k

h;D; (3)

where V k
h;D D V k

h \ VD . The approximation uh 2 V k
h fulfils the error estimate

ku � uhkH1.˝/ � chkjujHkC1.˝/

for sufficiently regular u 2 HkC1.˝/ and mesh size h D maxfhK W K 2 Khg,
see [18, 23]. Here, the constant c only depends on k and the mesh parameters �
and & .

The formulation (3) leads to a system of linear equations with a symmetric
positive definite matrix. In the set up of the system matrix the bilinear form a.�; �/
has to be applied to nodal and edge basis functions that results in an integration of
implicit defined functions. However, by the use of Green’s first identity, the bilinear
form can be rewritten as

a. ; �/ D
X

K2Kh

˛K

Z

@K

�
@ 

@nK
for  ; � 2 V k

h ;

because of the piecewise constant diffusion coefficient with ˛.�/ 
 ˛K on K
for K 2 Kh. This representation only involves the Dirichlet trace of the trial
functions on the element boundaries, which is given by definition, and the Neumann
trace. These traces belong to broken Sobolev spaces over element boundaries. The
Dirichlet trace p 2 H1=2.@K/ of a harmonic function overK and its corresponding
Neumann trace t 2 H�1=2.@K/ are connected by

VKt D
�
1
2
ICKK

�
p; (4)
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where the boundary integral operators VK W H�1=2.@K/ ! H1=2.@K/ and
KK W H1=2.@K/! H1=2.@K/ are the well studied single and double layer potential
operators, see [15]. In the realization, these operators have to be approximated.
Therefore, a Galerkin scheme is applied to (4) which results in a Boundary Element
Method on the given, coarse discretization of the polygonal boundary @K , see [17].
Thus, the implicitly defined trial functions can be treated in an efficient way by local
Boundary Element Methods.

3 Residual Based Error Estimate and Adaptivity

In real life applications, the problems often do not meet the regularity requirements
which are needed to achieve the optimal rates of convergence when refining the
mesh uniformly. Thus, it is advantageous to use adaptive mesh refinement strategies
which adapt the mesh to the problem. A standard indicator for the local refinement is
the residual based error estimator, which measures the jumps of the approximation
of the normal flux across the element boundaries, namely

Œuh�E D nK � 	K0 .aKruh/C nK0 � 	K0

0 .aK0ruh/:

Here, 	K0 W H1.K/ ! H1=2.@K/ denotes the usual trace operator with respect to
the element K , and K;K 0 2 Kh are the adjacent elements to E . The results of [21]
carry over to our situation. Thus, we can prove the reliability of the residual based
error estimate for the defined trial space V k

h on polygonal meshes in the energy norm

kvkE D
p
a.v; v/ for v 2 V:

Consequently, it holds

ku � uhkE � cp
˛min

�R

with

�2R D
X

K2Kh

�2K and �2K D
X

E2EhWE�@K
hEkREk2L2.E/;

where

RE D

8
ˆ̂
<

ˆ̂
:

0 for E � �D;
gN � 	K0 .aKruh/ for E � �N with E � @K;
� 1
2
Œuh�E else;

for E 2 Eh and the constant c only depends on the mesh parameters � and & .
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Fig. 1 Initial mesh (left) as well as adaptive refined mesh after ten steps for BEM-based FEM with
linear (middle) and cubic (right) approximation order

The local error indicators �K , which are assigned to elements, can be used to
gauge the accuracy of the approximation over each element. Thus, this information
is utilized in an adaptive Finite Element Method, which follows the steps

SOLVE! ESTIMATE! MARK! REFINE! SOLVE! � � � :

First, we solve the discrete boundary value problem on a given mesh and compute
the error estimator �R and the error indicators �K for all elements. If the desired
accuracy is reached according to �R, we are done. If not, we mark some elements
for refinement using Dörfler’s strategy, see [6]. These elements are chosen on the
basis of the error indicators �K . Next, the marked elements are refined, and thus we
obtain a new mesh, which is adapted to the problem. So, we can solve the boundary
value problem on the refined mesh and continue this procedure until the desired
accuracy is achieved.

In the scenario of local refinements, the use of polygonal meshes is advantageous.
If one element in divided into two new ones, this might create a new node on
a straight line of the boundary of the initial element. Additionally, this means,
that a neighbouring element gets one new node on the boundary, cf. Fig. 1. For
simplicial meshes, the new node would result in a conditional degree of freedom
or in a splitting of the neighbouring element. For polygonal elements, however, this
inserted node appears naturally and is treated as every other node on the boundary
of the element. Consequently, the refinement is kept very local, as we will see in the
numerical experiment.

4 Numerical Experiment

To illustrate the applicability of the residual based error estimate on polygonal
meshes for the BEM-based Finite Element Method, we examine a classical test
problem for adaptive methods on a domain with reentrant corner.
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Thus, let˝ D �.�1; 1/� .�1; 1/�n �Œ0; 1�� Œ0;�1�� and �D D @˝ . Using polar
coordinates .r; '/, the boundary data gD is chosen in such a way that

u.r cos'; r sin '/ D r2=3 sin

�
2'

3

�
; x D .r cos'; r sin '/> 2 R

2

is the solution of the boundary value problem (1) with diffusion coefficient ˛ 
 1.
The derivatives of u have a singularity in the origin of the coordinate system, and
consequently, uniform refinement yields suboptimal rates of convergence. However,
we still expect optimal rates of convergence for the adaptive strategy.

In Fig. 1, the initial mesh is visualized as well as the adaptive meshes after
ten refinements for the BEM-based Finite Element Method with linear and cubic
approximation order. The adaptive strategy obviously detects the singularity and
tunes the refinement towards the origin of the coordinate system. The higher order
method needs less refinements far from the singularity since it approximates the
solution u very well in that region where u is smooth. Furthermore, the true error
is smaller than the residual based error estimate, which is proven by the reliability
and is observed in Fig. 2. The number of degrees of freedom are proportional to
the square of the mesh size h2 in case of uniform refinement. Thus, we recognize
the optimal rates of convergence for the method with first and second order
approximation in Fig. 2. The third order method even converges one order faster
than expected. This might be due to the simplicity of the problem and is part of
further investigations.

Fig. 2 Convergence graph for the adaptive BEM-based FEM with trial space V k
h
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Stopping Criteria Based on Locally
Reconstructed Fluxes

Roland Becker, Daniela Capatina, and Robert Luce

Abstract We propose stopping criteria for the iterative solution of equations result-
ing from discretization by conforming, nonconforming, and total discontinuous
finite element methods. A simple modification of error estimators based on locally
reconstructed fluxes allows to split the estimator into a discretisation-based and an
iteration-based part. Comparison of both then leads to stopping criteria which can
be used in the framework of an adaptive algorithm.

1 Introduction and General Idea

The idea to couple the accuracy of iterative solvers for partial differential equations
to the discretisation error has a long tradition in numerical analysis, and can for
example be found in textbooks on multigrid methods, such as [6], where it is often
shown that a number of fixed iterations on each grid level is sufficient to achieve
optimal convergence of the overall error.

Traditionally, one used in practice an experience-based prescription of iteration
parameters, such as the maximal number of iterations or the tolerance of the residual
in a certain norm. Through the appearance of a posteriori error estimators, it became
possible to replace this by an adaptive stopping criterion, see for example [1].

In recent years, a posteriori error estimators based on locally reconstructed
H.div;˝/-fluxes have gained considerable interest, since they give (nearly)
constant-free upper bounds, see for example [3, 5, 8, 9, 11] and many others. Due to
this property, it seems appropriate to use them also to define stopping criteria for
iterative solution algorithms, see [4, 7] for a finite volume/element approximation.
However, contrarily to residual-based error estimators, these estimators generally
require the discrete equations to be solved exactly, since the reconstruction of
the fluxes is based on a conservation property intrinsic to the considered method.
Therefore the question arises of how to compute them in the case of approximate
solution of the discrete system.
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We propose here a simple correction of the right-hand side, which makes it
possible to evaluate the estimators and separate them into a discretisation part and an
iteration part (the last going to zero as the iterative process converges). This applies
to conforming, nonconforming as well as discontinuous Galerkin finite element
methods; we only focus here on P1-continuous elements. In order to do so, we
use the uniform framework presented in [2] which yields robust estimators different
from those employed in [4, 7]. The proposed algorithm also differs through the
prediction of the adaptive tolerance.

We consider the Poisson problem on a polygonal bounded domain˝ � R
2:

��u D f in ˝; u D 0 on � D;
@u

@n
D g on � N (1)

with boundary @˝ D � D [ � N, f 2 L2.˝/, g 2 L2.� N/. The generalisation to
non-homogeneous Dirichlet condition rises no difficulty.

Let �h 2 H.div;˝/ belong to the Raviart-Thomas space RTmh [10] and verify
div �h D ��hf in ˝ and �h � n˝ D �Nh g on � N where �h, �Nh are the L2.˝/ and
L2.� N / projections on piecewise Pm f.e. spaces. In order to be of practical interest,
such a reconstruction has to be local. Then one has

kr.u � uh/k0;˝ � k�h � ruhk0;˝ C c�h; (2)

which means that �h D �h � ruh can be used as an error estimator with a sharp
upper bound, up to a higher-order term related to data approximation:

�2h D
X

K2Kh

jKj kf � �hf k2K C
X

S��N
jS j ��g � �Nh g

��2
S
:

These reconstructions suppose that the discrete equations are satisfied, which
is no longer true when using an iterative solver. We propose here a generalization
where the local conservation property of H.div;˝/-fluxes is not fulfilled: at each
step n, we look for a flux �nh 2 H.div;˝/ satisfying

�div�nh D �hf C �nh in ˝; �nh � n˝ D �Nh g on �N :

The function �nh is related to the residual of the algebraic linear system to be solved.
Then it follows, with the correction �nh WD �nh � runh at step n, that

kr.u � unh/k20;˝ D< r.u � unh/;ru � �nh >0;˝ C < r.u � unh/; �
n
h >0;˝

� c�hkr.u � unh/k0;˝ C ku � unhk0;˝k�nhk0;˝ C kr.u � unh/k0;˝k�nh k0;˝ ;

which yields the error bound, with C˝ the constant of Poincaré’s inequality,

kr.u � unh/k0;˝ � k�nh k0;˝ C C˝k�nhk0;˝ C c�h:
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Based on this error estimate, a natural stopping criterion for the iterative solver is
to balance the discretization and the iteration errors. The general idea is to stop the
iterative process as soon as k�nhk0;˝ � ˛.k�nh k0;˝ C c�h/ where ˛ is a numerical
constant chosen by the user.

2 A Posteriori Estimator for Fully Solved Equations

First let the discrete equations be fully solved. We focus on the construction of an a
posteriori error estimator based on locally conservative fluxes.

We consider here a P1-conforming approximation but the same approach applies
to nonconforming and discontinuous Galerkin methods of arbitrary degree. The
underlying idea for this uniform approach is to write a hybrid formulation covering
all the previous finite element methods. The Lagrange multipliers compensating for
the weak continuity conditions yield approximations to the normal fluxes. A priori
and a posteriori connections between all these methods have been studied in [2].

A regular triangular mesh consists of cells Kh, such that @˝ D S D
h [S N

h . Let
S int
h the set of interior sides and Sh D S int

h [S D
h . For an interior side S , nS is a

fixed unit vector normal to S . If the side S lies on @˝ , we set nS D n˝ , the outward
unit normal vector. We denote by �1K the L2.K/ orthogonal projection on P1. We
define the following spaces:

Dh D
˚
vh 2 L2.˝/I vhjK 2 P1 8K 2 Kh

�
;

Mh D
˚
vh 2 L2.Sh/I vhjS 2 P1 8S 2 Sh

�
:

Let u 2 Dh. We define for S 2 S int
h and x 2 S : uin

S .x/ WD lim
"&0

u.x � "nS/,
uex
S .x/ D lim

"&0
u.x C "nS/. Next we define the jump and the mean for x 2 S by

Œu�.x/ WD uin
S .x/ � uex

S .x/, fug.x/ WD 1
2

�
uin
S .x/C uex

S .x/
�
. For a boundary side we

set Œu�S D fugS D uin
S .

2.1 Stable Hybrid Formulation

Let the bilinear and linear forms onDh �Dh, Dh �Mh, Mh �Mh andDh:

a.uh; vh/ D
Z

Kh

ruh � rvh �
Z

Sh

f@nuhgŒvh� �
Z

Sh

Œuh�f@nvhg

b.�h; vh/ D
Z

Sh

�hŒvh�; c.h; �h/ D
Z

Sh

jS j h�h; l.vh/ D
Z

˝

f vh C
Z

� N
gvh:
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Noting that the jump satisfies a node-wise identity, we introduce

M �h WD
8
<

:
�h 2Mh W

X

S2SN

˛S.N /�h.N / D 0 8N 2 Nh

9
=

;
: (3)

Here above, SN denotes the set of sides S sharing the node N and ˛S.N / D
jS j sign.nS ;N /, where sign.nS ;N / equals 1 or �1 depending upon the orientation
of nS with respect to the clockwise rotation sense around N . Nh represents the set
of nodes which are interior to the domain or to � D .

We consider the following hybrid problem: Find .uh; h/ in Dh �M �h such that
for all .vh; �h/ 2 Dh �M �h ,

a.uh; vh/C b.h; vh/ D l.vh/
b.�h; uh/ D 0:

(4)

The use of the space M �h instead of Mh ensures uniqueness of the multiplier.
Note that Ker b coincides with the P1 conforming space, hence uh satisfies the

primal conforming formulation. We introduce the norms on Dh and M �h :

kjvhjk WD
�Z

Kh

jrvhj2 C
Z

Sh

jS j�1Œvh�2
�1=2

; k�hkSh
WD ch.�h; �h/1=2:

The only technical point concerning the stability is the inf-sup condition.

Theorem 1 There exists a positive constant ˇ independent of h such that

inf
�h2M�

h

sup
vh2Dh

b.�h; vh/

k�hkSh
kjvhjk � ˇ:

Proof To any �h 2 M �h , we associate vh 2 Dh satisfying Œvh� D jS j�h on S 2 Sh

and kjvhjk � Ck�hkSh
. Its construction is achieved patch-wise: vh D

X

N2Nh

vNh with

vNh defined on !N D supp'N with 'N the P1 -basis function associated to the
node N .

We first write �Sh WD .�h/jS D �Sh .N /'N C �Sh .M/'M on each side S 2 Sh

of vertices N and M . Then we define the jump of vNh on S as follows: ŒvNh �jS DjS j�Sh .N /'N if both N;M belong to Nh and ŒvNh �jS D jS j�Sh if M 2 N� N . Clearly,
the global function vh satisfies Œvh�jS D jS j�Sh such that b.�h; vh/ D k�hk2Sh

. We
still have to define vNh on eachK � !N from its jumps and to bound it.

The linear system from which we compute it, ŒvNh �jS .N / D jS j�Sh .N / for all
S 2 SN , is compatible thanks to (3). Hence we obtain .vNh /jK.N / by fixing one
of the values, for instance equal to zero. Since the numbers of triangles around



Stopping Criteria Based on Locally Reconstructed Fluxes 247

each vertex N is bounded, one finally gets that kjvhjk � ck�hkSh
which ends the

proof. ut
Thus, the hypotheses of the Babuška-Brezzi theorem are uniformly checked,

which implies that the system (4) is uniformly well-posed and that its solution
satisfies the a priori error estimate: kju � uhjk C khkSh

� Chjuj2;˝ .

2.2 Local Computation of Fluxes

A remarkable feature is that the multiplier h can be computed locally, up to an
element of Kerb which has no influence on the definition of the flux. It is useful to
introduce L.�/ D l.�/� a.uh; �/.

To any node N we associate the patch !N D supp'N and we look for local
contributions N associated to each !N . The unknown N lives only on the interior
sides of !N and is null elsewhere. We define .N /jS in P1 for any S 2 SN by
imposing, for all K � !N , M 2 Nh \ @K with M ¤ N :

b.N ; 'N�K/ D
Z

@K

N Œ'N � D L.'N�K/; b.N ; 'M�K/ D
Z

@K

N'M D 0

where �K is the characteristic function of K .
Note that the conforming solution uh satisfies L.'N / D 0 for all N 2 N int

h , so
the previous system is compatible. However, it has a one-dimensional kernel KN

characterized by: sign.nS ;N /
Z

S

N'N D const, for all S 2 SN . In conclusion,

there exists a solution N , unique up to an element of KN .
One can then prove (see also [2]) that Nh D

X

N2Nh

N is equal to the solution h

of (4), up to an element Ker
h 2 Kerb.

We are next interested in defining a flux �h 2 H.div;˝/ from Nh. We use the
space RT1h and we impose the degrees of freedom as below. On the Neumann
boundary, we set �h � nS D �1Sg while on S 2 Sh we impose:

�h � nS D f@nuhg � Nh if S 2 S int
h ; �h � nS D � Nh if S 2 S D

h :

The interior degrees of freedom are given by
Z

K

�h � r D
Z

K

ruh � r; 8r 2 .P 0/2.

Cf. [2], the reconstructed flux satisfies, independently of Ker
h ,

div�hjK D ��1Kf; 8K 2 Kh: (5)

We are interested in the a posteriori error estimator, that is in the correction
�h D �h � ruh. It clearly satisfies Œ�h� � nS D �Œ@nuh� and f�gh � nS D � Nh.
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One can equivalently compute it as the sum of local contributions on patches,
�h D

X

N2Nh

�N with �N � n D 0 on @!N , �N jK 2 RT1 and

Z

K

�N � r D 0; 8r 2 .P 0/2;

Z

S

.�N /jK � nS'N D �
Z

S

.
1

2
Œruh� � nK C Nh/'N ; 8S 2 SN ;

Z

S

.�N /jK � nS'M D 0; 8S 2 SN :

(6)

We have used .�N /jK � nS D 1
2
Œ�N � � nK C f�N g � nS in order to obtain (6). These

relations directly define the d.o.f. of �N by means of the multiplier Nh. In order to
compute N , we impose its orthogonality to the kernel KN .

In [3], the authors proposed a flux also inspired by the hypercircle method, but
their �N is computed as the solution of a local mixed problem.

One can eliminate Nh from (6) and obtain the following system for �N :

Z

S

Œ�N � � nS'N D �
Z

S

Œ@nuh� 'N ;
Z

K

.div�N /'N D �
Z

K

f 'N ;

Z

S

Œ�N � � nS'M D 0;
Z

K

.div�N /'M D 0:
(7)

Note that (6) is equivalent to (7), provided that we impose �N orthogonal to the
one-dimensional kernel of (7).

3 Estimator and Stopping Criterion

Whenever one uses an exact solver, uh is the Galerkin solution so the system (7)
is compatible. This is no longer the case when an iterative solver is employed. In
this case, we modify the righthand-side term as follows, such that the system is still
comptible at each iteration:

Z

S

Œ�nN � � nS'N D �
Z

S

�
@nunh

�
'N ;

Z

K

.div�nN /'N D
Z

K

.�f C �nN /'N

with
Z

!N

�nN'N D
Z

!N

f 'N �
Z

!N

runh � r'N DW rnN :
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We built �nN 2 P1.!N / such that �nN D 0 on @!N , which amounts to impose

�nN .N / D
6

j!N jr
n
N . Then we define the global correction �nh on˝ such that for any

K 2 Kh, .�nh/jK 2 P1 and

Z

K

�nh'N D
Z

K

�nN'N ; 8N 2 Nh [ @K:

This ensures that we finally get �div�nh D �1hf C �nh .
An adaptive mesh refinement algorithm consists of four steps: solve the equa-

tions, estimate the error, mark the cells and refine the mesh.
Here, we employ as iterative solver the conjugate gradient, denoted by

CG.uin; tolI uout; n/ but we could use a black box to solve the linear system
Ax D b, whose stopping criterion is jrnj < tol with rn D Axn � b the residual. We
employ �h as error estimator; we do not detail the last two steps.

Let hk denote the adapted mesh and unkk 2 Vhk the converged solution, with nk
the number of iterations. To compute u

nkC1

kC1 from unkk , we use the next algorithm with
an adaptive tolerance, where k�k2h D

P
K2Kh

h2Kk�k20;K 	 jr j:
2

6
6
6
66
6
6
6
66
6
6
6
6
66
6
6
6
66
6
6
6
4

l WD 0; ulkC1 WD IkC1.unkk /; CONV:= false

while (not CONV) do

if k�.ulkC1/k0;˝ � ˛k�.ulkC1/k0;˝ then

nkC1 WD l; u
nkC1

kC1 WD ulkC1; CONV:=true

else

tol WD ˛k�.ulkC1/k0;˝
2k�.ulkC1/k0;˝

k�.ulkC1/kh; CG.ulkC1; tolI unlkC1; nl /

l WD l C nl ; ulkC1 WD unlkC1
end if

end while

4 Numerical Experiments

We first solve the Poisson equation with Dirichlet condition on ��1; 1Œ2; the data

are such that u.x/ D e�
kx�x0k

ı , where x0 D .0:5; 0:5/ and ı D 0:03, is the
solution. We compare the previous algorithm with a fixed tolerance algorithm, for
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Fig. 1 Convergence w.r.t. h: uniform mesh refinement (smooth solution). (a) Fixed tolerance.
(b) Adaptive tolerance

Fig. 2 Convergence w.r.t. h: adaptive mesh refinement (smooth solution). (a) Fixed tolerance.
(b) Adaptive tolerance

both uniform and adaptive mesh refinement. As expected, one can see in Figs. 1
and 2 that both algorithms yield the expected convergence order w.r.t. h but the
adaptive tolerance allows for an important gain in the number of iterations, for a
similar error and number of unknowns. Furthermore, when looking at the adaptive
tolerance algorithm only, we see that the error for about 262,000 cells and uniform
mesh is attained for only 11,800 cells when using mesh adaptivity, the number of
iterations being comparable.

Finally, we also test a non-smooth exact solution on a slit domain. We carry on
the same comparison and we note in Fig. 3 that the gain is even more important,
only about 4,100 cells and 22 iterations are now needed in the case of adaptive
mesh refinement and adaptive stopping criterion.
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Fig. 3 Adaptive tolerance algorithm with non-smooth exact solution (slit domain). (a) Uniform
mesh refinement. (b) Adaptive mesh refinement
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An a Posteriori Error Estimator for a New
Stabilized Formulation of the Brinkman
Problem

Tomás Barrios, Rommel Bustinza, Galina C. García, and María González

Abstract We present in this work an a posteriori error estimator for a porous media
flow problem that follows the Brinkman model. First, we introduce the pseudostress
as an auxiliary unknown, which let us to eliminate the pressure and thus derive
a dual-mixed formulation in velocity-pseudostress. Next, in order to circumvent
an inf-sup condition for the unique solvability, we stabilize the scheme by adding
some appropriate least squares terms. The existence and uniqueness of solution are
guaranteed and we derive an a posteriori error estimator based on the Ritz projection
of the error, which is reliable and efficient up to high order terms. Finally, we report
one numerical example confirming the good properties of the estimator.

1 Introduction

This note deals with the numerical approximation of the velocity and pressure of
a porous media flow problem defined on a bounded and simply connected domain
˝ in R

2, with polygonal boundary � WD @˝ . Indeed, this boundary value problem
corresponds to the well-known Brinkman model and reads as follows: Given the
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source term f 2 ŒL2.˝/�2 and g 2 ŒH1=2.� /�2, we look for the velocity u and the
pressure p of the fluid occupying the region˝ , such that

˛u � ��uCrp D f in ˝; div.u/ D 0 in ˝; u D g on �; (1)

where � is the kinematic viscosity of the fluid, that we assume constant, ˛ is a
positive parameter related to the permeability of the porous media and the datum
g satisfies the compatibility condition

R
�
g � n D 0, where n stands for the unit

outward normal to � . In addition, in order to guarantee uniqueness, we look for the
pressure p 2 L20.˝/ WD fq 2 L2.˝/ W

R
˝
q D 0g.

Probably the most popular finite element discretization of these equations is
constructed from a variational formulation where the unknowns are the primitive
variables u and p. However, in the last years several studies were made introducing
the pseudostress � WD �ru � pI in ˝ as an additional unknown. Up to the
authors’ knowledge, this was first suggested in the late 1980s in [1], in the context
of anisotropic elasticity. In our case, we can eliminate the pressure from (1),
since p D � 1

2
tr.� /, and thus deduce a formulation in velocity-pseudostress. On

the other hand, it is known also that the unique solvability of a dual formulation
involves the proof of a certain inf-sup condition, which limits the choice of discrete
approximation spaces. Nevertheless, the use of stabilization techniques allows
us to choose a larger class of discretization spaces, and has been the topic of
intensive research. For example, a least squares finite element method based on the
pseudostress was studied in [5] and different conforming mixed methods applied
to the Stokes system in two and three dimensions have been developed in [6, 7, 9].
For related works using the discontinuous Galerkin approach we mention [2] and
the references therein. Finally, a quasi-Newtonian Stokes flow is analysed in [8].
Extensions to the Brinkman model can be found in [3] and [10].

In particular, we consider the scheme introduced recently in Remark 3.1 in [3],
where the velocity-pseudostress formulation is stabilized by adding suitable least
squares terms. Numerical experiments reveal that the scheme is competitive. Then,
our interest now is to develop an a posteriori error estimator and use it in an adaptive
algorithm to obtain improved numerical approximations. The rest of the paper is
organized as follows. In Sect. 2, we recall the velocity-pseudostress formulation
described in Remark 3.1 in [3] and establish a new/more general existence and
uniqueness result as well as the a priori error estimate. Then, in Sect. 3, we give
a brief description of the analysis developed in Section 4 in [4], which let us to
obtain a reliable and quasi-efficient a posteriori error estimator. Finally, a numerical
example is reported in Sect. 4, validating our theoretical results.

We end this section with some notations to be used throughout the article. Given
any Hilbert space H , we denote by H2 the space of vectors of order 2 with entries
in H , and by H2�2 the space of square tensors of order 2 with entries in H . In
particular, given 
 WD .�ij/, � WD .�ij/ 2 R

2�2, we write, as usual, 
t WD .�ji/,
tr.
/ WD �11 C �22, 
d WD 
 � 1

2
tr.
/ I and 
 W � WD P2

i;jD1 �ij �ij, where I is
the identity matrix in R

2�2. We also use the standard notations for Sobolev spaces
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and norms. We denote by H 0 WD f
 2 H.div;˝/ W R˝ tr.
/ D 0g. We recall
that H.div;˝/ D H 0 ˚ R I , that is, for any 
 2 H.div;˝/ there exists a unique

0 2 H 0 and d WD 1

2j˝j
R
˝ tr.
/ 2 R such that 
 D 
0 C d I . Finally, we

use C or c, with or without subscripts, to denote generic constants, independent
of the discretization parameters, which may take different values at different
occurrences.

2 The Discrete Augmented Formulation

In this section we recall the stabilized mixed variational formulation introduced in
Remark 3.1 in [3]: Find .� ;u/ 2 H WD H 0 � ŒH1.˝/�2 such that

a..� ;u/; .
; v// D F.
; v/ 8 .
; v/ 2 H ; (2)

where the bilinear form a W H �H ! R, and the linear functional F W H ! R are
defined by

a..�;w/; .
; v// WD
Z

˝

�d W 
d C �
Z

˝

w � div.
/� �
Z

˝

v � div.�/

C˛�
Z

˝

w � vC �1
Z

˝

.�rw� �d/ W rvC �2
Z

˝

.div.�/ � ˛w/ � div.
/ ;

and F.
; v/ WD �
Z

˝

f �v C �
Z

�

g �
n ��2
Z

˝

f �div.
/ ; for any .�;w/; .
; v/ 2
H , where �1 and �2 are positive parameters at our disposal. Now, for the derivation
of the corresponding Galerkin scheme, we consider finite element subspacesH �

0;h �
H 0 and H u

h � ŒH1.˝/�2. Then, a discrete scheme associated to the variational
problem (2) reads: Find .� h;uh/ 2 H h WD H �

0;h �H u
h such that

a..� h;uh/; .
h; vh// D F.
h; vh/ ; 8 .
h; vh/ 2 H h : (3)

In order to describe a particular finite element subspace H h, we let fThgh>0 be a
regular family of triangulations of N̋ . We assume that N̋ D [ f T W T 2 Th g and,
given a triangle T 2 Th, we denote by hT its diameter and define the mesh size
h WD maxf hT W T 2 Th g. In addition, given an integer ` � 0 and a subset S of R2,
we denote by P`.S/ the space of polynomials in two variables defined in S of total
degree at most `, and for each T 2 Th, we define the local Raviart-Thomas space
of order zero

RT 0.T / WD span


 �
1

0

�
;

�
0

1

�
;

�
x1
x2

��
� ŒP1.T /�

2 ;
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where

�
x1
x2

�
is a generic vector of R2. Then we define

H �
h WD

˚

h 2 H.div;˝/ W 
hjT 2 ŒRT 0.T /

t�2 8 T 2 Th

�
;

H �
0;h WD




h 2 H �

h W
Z

˝

tr.
h/ D 0

�
;

Xh WD
˚

vh 2 C . N̋ / W vhjT 2 P1.T / 8 T 2 Th

�
andH u

h WD Xh �Xh :

2.1 Well-Posedness and a Priori Error Estimate

The proof of the unique solvability of (2) and (3) relies on the application of the well-
known Lax-Milgram lemma. To this end, we consider the usual norms onH.divI˝/
and ŒH1.˝/�2, that is

jj
jj2H.divI˝/ WD jj
jj2ŒL2.˝/�2�2 C jjdiv.
/jj2
ŒL2.˝/�2

8 
 2 H.divI˝/ ;

and

jjvjj2
ŒH1.˝/�2

WD jjrvjj2
ŒL2.˝/�2�2

C jjvjj2
ŒL2.˝/�2

8 v 2 ŒH1.˝/�2 :

In addition, we introduce the global norm on H.divI˝/ � ŒH1.˝/�2

jj.
; v/jj2H WD jj
jj2H.divI˝/ C jjvjj2ŒH1.˝/�2
8 .
; v/ 2 H.divI˝/ � ŒH1.˝/�2 :

Now, proceeding similarly as in the proof of Lemma 3.2 in [3], it is not difficult to
check that when �1 2 .0; 2�/ and �2 2 .0; 2�=˛/, the bilinear form a is elliptic on
H , that is there exists a positive constant Cell such that

a..
; v/; .
; v// � Cell k.
; v/k2H ; 8 .
; v/ 2 H ;

which ensures the well-posedness of problems (2) and (3). The next result estab-
lishes the convergence of the method with the optimal rate, provided the exact
solution of problem is sufficiently regular.

Theorem 1 Let .� ;u/ 2 H and .� h;uh/ 2 H h be the unique solutions of the
continuous and discrete augmented mixed formulations (2) and (3), respectively.
Assuming that � 2 ŒH r.˝/�2�2, div.� / 2 ŒH r.˝/�2 and u 2 ŒH rC1.˝/�2, for
some r 2 .0; 1�, there exists Copt > 0, independent of h, such that

k.� ;u/� .� h;uh/kH
� Copthr

˚k�kŒH r .˝/�2�2 C kdiv.� /kŒH r .˝/�2 C kukŒH rC1.˝/�2

�
:
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Proof Under the assumptions made on the stabilisation parameters �1 and �2, a
Céa-type estimate holds. The rest of the proof is a straightforward application of the
approximation theory in Sobolev spaces.

3 A Ritz Projection-Based a Posteriori Error Analysis

The aim of this section is to summarize the analysis developed in Section 4 in [4].
We omit proofs here and, eventually, could give some comments on them. First, we
consider the Ritz projection of the error with respect to the inner product of H ,
which is defined as the unique . N� ; Nu/ 2 H satisfying

h. N� ; Nu/; .
; v/iH D a..� � � h;u � uh/; .
; v// 8 .
; v/ 2 H : (4)

The existence and uniqueness of . N� ; Nu/ is guaranteed by the Lax-Milgram lemma.
The next result gives us an upper bound for jj. N� ; Nu/jjH , and corresponds to
Lemma 4.1 in [4].

Lemma 1 There exists a positive constant C D C.�1; �2; �/, independent of h,
such that

jj. N� ; Nu/jjH � C
�
jjf C div.� h/� ˛uhjjŒL2.˝/�2 C jj�ruh � � dhjjŒL2.˝/�2�2

C � jjuh � gjjŒH1=2.� /�2

	
:

Motivated by the previous result, we define the estimator  as follows:

2 WD
X

T2Th

�
jjf C div.� h/� ˛uhjj2ŒL2.T /�2 C jj�ruh � � dhjj2ŒL2.T /�2�2

	

C �2 jjuh � gjj2ŒH1=2.� /�2
:

In the next theorem we establish the equivalence between the global error and
the (non local) estimator  (see Theorem 4.1 in [4] for the proof), whose global
efficiency is proved, for simplicity, under the assumptionf is piecewise polynomial
in Th. Otherwise, (high order) data approximation terms need to be considered for
the efficiency of the estimator.

Theorem 2 Let .� ;u/ 2 H and .� h;uh/ 2 H h be the unique solutions of
problems (2) and (3), respectively. Then, there exist positive constants Ceff, Crel,
independent of h, such that

Ceff � k.� � � h;u� uh/kH � Crel:
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Now, in order to obtain a local a posteriori error estimator, we first let Nuh be the
unique continuous piecewise-linear function on Th such that Nuh.x/ D uh.x/ for all
node x of Th in ˝ and Nuh.x/ D g.x/ for all node x of Th on � .

Then, we introduce the a posteriori error estimator N WD
0

@
X

T2Th
N2T

1

A

1=2

, where

for each T 2 Th the local a posteriori error estimator NT is given by

N2T WD kf C div.� h/ � ˛uhk2ŒL2.T /�2 C k�r Nuh � � dhk2ŒL2.T /�2�2

Ckuh � Nuhk2ŒL2.T /�2 C
X

e2E.T /\E�
he

��
�
�

dg

dtT
� d Nuh

dtT

��
�
�

2

ŒL2.e/�2
:

(5)

We conclude this section with our main result in this note. We proved that the a
posteriori error estimator N is reliable and locally efficient in interior triangles. We
refer to Lemma 4.2 and Theorem 4.3 in [4] for further details.

Theorem 3 Assume g 2 ŒH1.� /�2. Then, there exists a constant NCrel > 0,
independent of h, such that k.� � � h;u � uh/kH � NCrel N : If, moreover, f and
g are piecewise polynomials in Th and E� respectively, then there exists a positive
constant, NCeff, independent of h, such that

NCeff NT � k.� �� h;u�uh/kH .T / C �1=2 �.T / kuh� NuhkŒH1.T /�2 8 T 2 Th ;

where k.
; v/k2H .T / WD k
k2H.divIT /Ckvk2ŒH1.T /�2
and �.T / is equal to 1 if @T \� ¤

; and is equal to 0 otherwise.

We remark that, for ˛ large enough, NCrel D O.˛/ and NCeff D O.˛�1/.

4 Numerical Examples

In this section, we show one numerical experiment illustrating the performance of
the augmented mixed scheme (3) and the a posteriori error estimator N , defined
in (5). To this end we remark that, for implementation purposes, it is very hard
to find a suitable basis of H �

0;h due to the null media condition required by their
elements. We circumvent this difficulty by imposing this requirement through a
Lagrange multiplier, which leads to solve the following equivalent discrete scheme
(see Theorem 5.1 in [4]): Find .� h;uh; 'h/ 2 H �

h �H u
h �R such that
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a..� h;uh/; .
; v// C 'h

Z

˝

tr.
/ D F.
; v/ 8 .
; v/ 2 H �
h �H u

h ;

 

Z

˝

tr.� h/ D 0 8 2 R :

(6)

We now specify the data of the example we present here. We take˝ as the square
� � 1; 1Œ2. The data f and g are chosen so that the exact velocity and pressure are,

respectively, u.x/ D �p˛ e�
p
˛.1�x1�x2/2

�
1

�1
�

and p.x/ D 2 ex1 sin.x2/ for all

x D .x1; x2/ 2 ˝ . We emphasize that in this case u 2 ŒH1.˝/�2 has an inner layer
around the line x2 D 1 � x1.

In what follows, DOF stands for the total number of degrees of freedom
(unknowns) of (6), that is, DOF D 2� (Numbers of vertices of Th) + 2� (Number
of edges of Th) + 1, which leads asymptotically to 4 unknowns per triangle, which
reflects the low computational cost, almost the same as the required by considering
the P1�isoP1 elements for the standard velocity-pressure formulation, whose
degrees of freedom are asymptotically 4.5 (unknowns) per triangle. In addition, by
setting ph WD � 12 tr.� h/, we obtain a reasonable piecewise-linear approximation of
the pressure p WD � 1

2
tr.� /.

Hereafter, we denote the individual errors by e.u/ WD ku � uhkŒH1.˝/�2 and

e.� / WD k� � � hkH.div;˝/, the total error by e WD
�
Œe.u/�2 C Œe.� /�2

	1=2
, and

the effectivity index is given by e= N . In addition, if e and Qe stand for the errors
at two consecutive triangulations with N and QN degrees of freedom, respectively,

then the experimental rate of convergence is given by r WD �2 log.e= Qe/
log.N= QN/ . The

definitions of r.u/ and r.� / are analogous. The numerical results shown below
were obtained in a Pentium Xeon computer with a dual processor, using a MATLAB

code. Table 1 contains the convergence history for the adaptive refinement algorithm
based on N , with ˛ D 106, � D 0:5, �1 D � and �2 D �=˛ (in agreement
with the feasible choices described in Sect. 2), when performing the red-blue-
green refinement technique. We notice that, looking at the experimental rates of
convergence, the order O.h/ is observed for all the unknowns. Moreover, the
effectivity index remains bounded, which is in agreement with Theorem 3. From
Fig. 1, we observe that the adaptive refinement algorithm converges faster than the
uniform one. Finally, we recall that the details of the analysis described here, as well
as other numerical experiments, are included in [4].
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Table 1 Errors, experimental convergence rates and effectivity index for the adaptive refinement
algorithm based on N with ˛ D 106 and � D 0:5

DOF e.u/ r.u/ e.� / r.� / e r e= N
19 2.117e+03 – 1.957e+06 – 1.957e+06 – 2.815e-03

51 2.183e+03 – 1.369e+06 0.7242 1.369e+06 0.7242 2.529e-03

139 2.446e+03 – 9.448e+05 0.7397 9.448e+05 0.7397 2.317e-03

339 6.778e+03 – 6.856e+05 0.7193 6.856e+05 0.7192 2.394e-03

763 1.121e+04 – 5.212e+05 0.6758 5.213e+05 0.6754 2.869e-03

2;595 1.117e+04 0.0046 4.216e+05 0.3466 4.217e+05 0.3465 5.602e-03

4;451 7.740e+03 1.3610 2.631e+05 1.7479 2.632e+05 1.7476 1.223e-02

12;859 3.761e+03 1.3605 1.521e+05 1.0334 1.521e+05 1.0336 2.599e-02

15;211 3.396e+03 1.2148 1.482e+05 0.3077 1.482e+05 0.3082 3.767e-02

37;923 1.821e+03 1.3648 9.230e+04 1.0365 9.231e+04 1.0367 6.427e-02

53;867 1.653e+03 0.5509 9.336e+04 – 9.337e+04 – 9.700e-02

147;731 9.076e+02 1.1888 5.674e+04 0.9873 5.674e+04 0.9873 1.507e-01

Fig. 1 Total error e vs DOF for uniform and adaptive refinements, with ˛ D 106 and � D 0:5
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New a Posteriori Error Estimator
for an Augmented Mixed FEM in Linear
Elasticity

Tomás P. Barrios, Edwin M. Behrens, and María González

Abstract We consider an augmented mixed finite element method applied to the
linear elasticity problem with non-homogeneous Dirichlet boundary conditions and
derive an a posteriori error estimator that is simpler and easier to implement than the
one available in the literature. The new a posteriori error estimator is reliable and
locally efficient in interior triangles; in the remaining elements, it satisfies a quasi-
efficiency bound. We provide some numerical results that illustrate the performance
of the corresponding adaptive algorithm.

1 Introduction

In this work, we consider the augmented dual-mixed method introduced in [5] for
the linear elasticity problem with non-homogeneous Dirichlet boundary conditions.
The approach in [5] relies on the mixed method of Hellinger and Reissner, that
provides simultaneous approximations of the displacement u and the stress tensor
� . The symmetry of � is imposed weakly, through the use of a Lagrange multiplier
that can be interpreted as the rotation � WD 1

2
.ru�.ru/t/. Then, suitable Galerkin

least-squares type terms arising from the constitutive and equilibrium equations,
from the relation that defines the rotation in terms of the displacement and from
the Dirichlet boundary condition are added. The bilinear form of the resulting
augmented variational formulation is coercive in the whole space for appropriate
values of the stabilization parameters, with a coercivity constant independent of the
Lamé parameter 
. Therefore, the corresponding Galerkin scheme is well-posed and
free of locking for any choice of finite element subspaces. This fact turns out to be
the main advantage of this method.
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Concerning the a posteriori error analysis of the augmented scheme presented in
[5], an a posteriori error estimator of residual type was introduced and analyzed in
[2]. That a posteriori error estimator is both reliable and efficient, and involves the
computation of 13 residuals per element, including normal and tangential jumps.
In this work, we present a new a posteriori error estimator for the augmented dual-
mixed method proposed in [5]. The analysis is based on the use of a projection of
the error and allows to derive an a posteriori error estimator that only requires the
computation of four residuals per element in the interior triangles, five residuals per
element in the triangles with exactly one node on the boundary and six residuals per
element in the triangles with a side on the boundary. Moreover, it does not involve
the computation of normal nor tangential jumps, which simplifies the numerical
implementation. Besides, we prove that the new a posteriori error estimator is
reliable and locally efficient in the interior elements.

The rest of the paper is organized as follows. In Sect. 2 we recall the main
features of the augmented dual-mixed method introduced in [5] for the linear
elasticity problem with non-homogeneous Dirichlet boundary conditions. In Sect. 3
we introduce the new a posteriori error estimator and study its reliability and
efficiency. Finally, in Sect. 4 we provide some numerical results that illustrate the
performance of the corresponding adaptive algorithm.

2 The Augmented Mixed Finite Element Method

Let ˝ � R
2 be a bounded domain with a Lipschitz-continuous boundary � ,

and let f 2 ŒL2.˝/�2 be a given volume force and g 2 ŒH1=2.� /�2 a prescribed
displacement on � . We denote by C the elasticity operator determined by Hooke’s
law, that is,

C � WD 
 tr.�/ I C 2� � ; 8 � 2 ŒL2.˝/�2�2 ; (1)

where 
; � > 0 are the Lamé parameters and I 2 R
2�2 is the identity matrix. We

look for the displacement u and the stress tensor � of a linear elastic material such
that

8
<

:

�div.� / D f in ˝;

� D C ".u/ in ˝;

u D g on �;
(2)

where ".u/ WD 1
2
.ruC .ru/t/ is the strain tensor of small deformations.

Let �1, �2, �3 and �4 be positive parameters. We denote by H WD H0 �
ŒH1.˝/�2 � ŒL2.˝/�2�2skew, where H0 WD f
 2 H.divI ˝/ W R

˝
tr.
/ D 0g and

ŒL2.˝/�2�2skew WD f � 2 ŒL2.˝/�2�2 W � C �t D 0 g, and define the bilinear form
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A W H �H! R and the linear functional F W H! R as follows:

A..� ;u;�/; .
; v;�// WD
Z

˝

C�1� W 
 C
Z

˝

u � div.
/ C
Z

˝


 W �

�
Z

˝

v � div.� / �
Z

˝

� W � C �1
Z

˝

�
".u/ � C �1�

� W �".v/C C�1

�

C �3
Z

˝

�
� � 1

2
.ru � .ru/t/

�
W
�
�C 1

2
.rv � .rv/t/

�

C �2
Z

˝

div.� / � div.
/ C �4

Z

�

u � v ;

(3)

F.
; v;�/ WD
Z

˝

f � . v � �2 div.
/ / C h
 n; gi� C �4

Z

�

g � v C �1 cg

Z

�

v � n ;
(4)

for any .� ;u;�/, .
; v;�/ 2 H, where n is the unit outward normal to � , h�; �i�
denotes the duality pairing between ŒH�1=2.� /�2 and ŒH1=2.� /�2 with respect to
the ŒL2.� /�2-inner product, and cg WD 1

2 j˝j
R
�

g � n .
Let us denote by k � kH the product norm of H . The augmented variational

formulation introduced in [5] consists in finding .� ;u;�/ 2 H such that

A..� ;u;�/; .
; v;�// D F.
; v;�/ ; 8 .
; v;�/ 2 H : (5)

From now on, we assume that the parameters �1, �2, �3 and �4 are chosen

independently of 
 and such that �1 2 .0; 2 �/, �2 > 0, 0 < �3 <

�
�0

1 � �0
�
�1 if

�0 < 1 or �3 > 0 if �0 � 1, and �4 � �1C�3, where �0 is the constant of a Korn-type
inequality (see [5] for more details). Under these assumptions, there exists a positive
constant ˛, independent of 
, such that

A..
; v;�/; .
; v;�// � ˛ k.
; v;�/k2H ; 8 .
; v;�/ 2 H ; (6)

and the augmented variational formulation (5) is well-posed.
Now, let h be a positive parameter and consider a finite dimensional subspace

Hh � H. The Galerkin scheme associated to problem (5) reads: find .� h;uh;�h/ 2
Hh such that

A..� h;uh;�h/; .
h; vh;�h// D F.
h; vh;�h/ ; 8 .
h; vh;�h/ 2 Hh : (7)

The existence and uniqueness of a solution to problem (7) as well as a
Céa estimate are established in [5] under the assumptions made above on the
stabilization parameters. In order to describe the simplest choice of finite element
subspaces for the Galerkin scheme (7), we assume now that˝ is a polygonal region
and let fThgh>0 be a regular family of triangulations of N̋ such that N̋ D [ f T W
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T 2 Th g. Given an element T 2 Th, we denote by hT its diameter and define
the mesh size h WD maxf hT W T 2 Th g. In addition, given an integer ` � 0 and
a subset S of R2, we denote by P`.S/ the space of polynomials in two variables
defined in S of total degree at most `, and for each T 2 Th, we define the local
Raviart-Thomas space of the lowest order, RT 0.T / WD h e1; e2; x i � ŒP1.T /�

2,
where feig2iD1 is the canonical basis of R2 and x 2 R

2 is a generic vector. Then, we
define the finite element subspaces

H �
h WD

˚

h 2 H0 W 
hjT 2 ŒRT 0.T /

t�2 ; 8T 2 Th

�
(8)

H u
h WD

˚
vh 2 ŒC . N̋ /�2 W vhjT 2 ŒP1.T /�

2 ; 8T 2 Th

�
(9)

H
�

h WD
˚
�h 2 ŒL2.˝/�2�2skew W �hjT 2 ŒP0.T /�

2�2 ; 8T 2 Th

�
: (10)

The simplest choice of finite element subspaces for the Galerkin scheme (7) is
Hh WD H �

h �H u
h �H �

h . In this case, if the solution to problem (5) is sufficiently
smooth, we can expect the following rate of convergence:

k.� ;u;�/� .� h;uh;�h/kH � C1 h
r
�
k�kŒH r .˝/�2�2 C kdiv.� /kŒH r .˝/�2

CkukŒH rC1.˝/�2 C k�kŒH r .˝/�2�2

	
; (11)

where r 2 .0; 1� and C1 > 0 is a constant independent of h and 
.

3 A Posteriori Error Analysis

In this section we present a new a posteriori error estimator for the Galerkin scheme
(7). Given an element T 2 Th, we denote by E.T / the set of its edges; Eh denotes
the set of all the edges of the mesh Th and Eh.� / WD fe 2 Eh W e � � g. Finally,
he stands for the length of edge e 2 Eh. We also assume that problems (5) and (7)
are well-posed.

Let .� ;u;�/ and .� h;uh;�h/ 2 Hh be the unique solutions to problems (5) and
(7), respectively. We define the Ritz projection of the error as the unique element
. N� ; Nu; N�/ 2 H such that

h. N� ; Nu; N�/; .
; v;�/iH D A..� � � h;u � uh;� � �h/; .
; v;�// ; (12)

for all .
; v;�/ 2 H. We recall that the existence and uniqueness of . N� ; Nu; N�/ is
guaranteed by the Lax-Milgram Lemma. Hence, using the coercivity of A.�; �/, we
deduce that

jj.� � � h;u � uh;� � �h/jjH �
1

˛
jj. N� ; Nu; N�/jjH : (13)
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Then, in order to obtain reliable a posteriori error estimates for the discrete scheme
(7), it is enough to bound from above the Ritz projection of the error.

Lemma 1 There exists a constant C2 > 0, independent of h and 
, such that

jj. N� ; Nu; N�/jjH � C2

�
jjfC div.� h/jjŒL2.˝/�2 C

ˇ
ˇ
ˇ
ˇ� h � � th

ˇ
ˇ
ˇ
ˇ
ŒL2.˝/�2�2

Cjjg � uhjjŒH1=2.� /�2 C
ˇ̌ˇ̌
".uh/� C�1� h � cgI

ˇ̌ˇ̌
ŒL2.˝/�2�2

C
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ�h �

1

2
.ruh � .ruh/t/

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ŒL2.˝/�2�2

!

:

(14)

Proof Consider (12) and use that .� ;u;�/ is the solution to problem (5). Then, use
the definitions of the linear functional F and the bilinear form A.�; �/, integrate by
parts and use the Cauchy-Schwarz inequality and the continuity of C�1. It is not
difficult to see that

C2 � C2;max WD max
�
1C �1 .1C

ˇ̌ˇ̌
C �1

ˇ̌ˇ̌
/; 1C �2; 1C 2 �3; 1C �4

�
; (15)

where
ˇ̌ˇ̌
C �1

ˇ̌ˇ̌ WD ˇ̌ˇ̌C�1 ˇ̌ˇ̌
L .ŒL2.˝/�2�2;ŒL2.˝/�2�2/

� 1
�

. ut
Motivated by (13) and Lemma 1, we define

 WD
� X

T2Th
2T C jjg � uhjj2ŒH1=2.� /�2

	1=2
; (16)

where

2T WD jjfC div.� h/jj2ŒL2.T /�2 C
ˇ̌ˇ̌
".uh/ � C�1� h � cgI

ˇ̌ˇ̌2
ŒL2.T /�2�2

C ˇˇˇˇ� h � � th
ˇ
ˇ
ˇ
ˇ2
ŒL2.T /�2�2

C
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ̌�h �

ruh � .ruh/t

2

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ̌
2

ŒL2.T /�2�2
:

(17)

The a posteriori error estimator  is equivalent to the total error. However, the
non-local character of the residual jjg � uhjjŒH1=2.� /�2 makes  unuseful in an
adaptive refinement algorithm.

Let us assume that g 2 ŒH1.� /�2 and that H u
h is defined by (9). Let Nh be the

set of all the vertices of the triangles in Th. We denote by Nuh the unique continuous
piecewise-linear function in Th such that Nuh.x/ D uh.x/8 x 2 Nh\˝ and Nuh.x/ D
g.x/ 8 x 2 Nh \ � . Let us denote by fe1; e2; : : : ; eng the partition of � induced by

Th and define � WD max
n
hei
hej
W ei neighbor of ej

o
. Then, according to Theorem 1

in [4],

jjg � Nuhjj2ŒH1=2.� /�2 � C2
1=2 log.1C �/

X

e2Eh.� /
he

ˇ̌
ˇ
ˇ

ˇ̌
ˇ
ˇ

d

dtT
.g� Nuh/

ˇ̌
ˇ
ˇ

ˇ̌
ˇ
ˇ

2

ŒL2.e/�2
(18)
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where C1=2 is a universal constant and d
dtT

denotes the tangential derivative. We also
have the following Lemma.

Lemma 2 Assume that gjei 2 ŒPl .ei /�
2, for i D 1; : : : ; n and some l � 0. Then,

there exists a constant C3 > 0, independent of h, such that

he

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

d

dtT
.g � Nuh/

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

2

ŒL2.e/�2
� C3 jju� Nuhjj2ŒH1.Te/�2

; 8 e 2 Eh.� / ; (19)

where Te 2 Th is the triangle that has e as an edge.

Proof Apply the inverse inequality (2.1.30) in [1] with � D �1=2 and � D 0, use
the definition of the H�1=2.e/-norm and the continuity of the tangential derivative
operator from ŒH1.Te/�

2 to ŒH�1=2.@Te/�2. ut

At this point, we define N WD
� X

T2Th
N2T
	1=2

, where

N2T WD 2T C jjuh � Nuhjj2ŒH1.T /�2

C log.1C �/
X

e2E.T /\Eh.� /
he

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

d

dtT
.g � Nuh/

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

2

ŒL2.e/�2
:

(20)

Next we establish our main result. Given a triangle T 2 Th, we denote by H.T / WD
H.divIT / � ŒH1.T /�2 � ŒL2.T /�2�2.
Theorem 1 If g 2 ŒH1.� /�2 and H u

h is defined by (9), then there exist
Crel ; Ceff;int > 0 such that

jj.� � � h;u � uh;� � �h/jjH � Crel N (21)

Ceff;int NT � jj.� � � h;u � uh;� � �h/jjH.T / ; 8T 2 Th ; T � ˝ (22)

Moreover, if T 2 Th has exactly one vertex on � , then

C2
eff;int

N2T � jj.� � � h;u � uh;� � �h/jj2H.T / C jjuh � Nuhjj2ŒH1.T /�2 : (23)

Inequality (23) holds for a different constant C2
eff;b in place of C2

eff;int if gjei 2
ŒPl .ei /�

2, for i D 1; : : : ; n and l � 0, and T 2 Th has an edge on � .

Proof The reliability follows from (13), Lemma 1, the triangle inequality, (18) and
the trace Theorem. On the other hand, if T 2 Th is such that T � ˝ or has exactly
one vertex on � , then (22) and (23) follow by using the first equation in (2), the
modified constitutive equation satisfied by � 2 H0 (see [5]), the symmetry of � , the
definition of � , the triangle inequality and the continuity of C �1. If T has a side on
� , apply in addition Lemma 2 and the triangle inequality. ut
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Remark 1 It can be shown that Crel �
p
6
˛
C2;max max.1; C1=2; C� /, where C� is

the constant of the usual trace inequality betweenH1.˝/ and H1=2.� /. Moreover,
it is not difficult to see thatC�1=2eff;int WD 4C2

ˇ
ˇ
ˇ
ˇC �1

ˇ
ˇ
ˇ
ˇ2 andC�2eff;b WD 4C2

ˇ
ˇ
ˇ
ˇC�1

ˇ
ˇ
ˇ
ˇ2C

2C3 log.1C �/.

4 Numerical Experiments

In this section we present some numerical results that illustrate the performance
of the adaptive algorithm based on N for the simplest finite element subspace Hh

defined in Sect. 2. We take the Young modulus E D 1 and the Poisson ratio � D
0:4900. The corresponding Lamé parameters are given by � WD E

2.1C�/ and 
 WD
E �

.1C�/ .1�2 �/ . We fix �1 D �, �2 D 1
2�

, �3 D 1
8
�1 and �4 D �1 C �3. We let ˝ D

� � 0:25; 0:25Œ2nŒ0; 0:25�2 and choose the data f and g so that the exact solution is
u.x1; x2/ WD .u1.x1; x2/; u2.x1; x2//t, with

u1.x1; x2/ D u2.x1; x2/ D x1 x2

.x21 C x22/1=3
C 3 x2 ; 8 .x1; x2/ 2 ˝: (24)

We remark that u has a singularity at the boundary point .0; 0/. In fact, div.� / 2
ŒH1=3.˝/�2, so that the expected rate of convergence for the uniform refinement is
1=3.

In Fig. 1 we represent the total error (measured in the H-norm) vs. the total
number of degrees of freedom for the usual uniform refinement and for the adaptive

102 103 104 105 106
10−1

100

101

102

to
ta

l 
er

ro
r

degrees of freedom (dof)

uniform refinement
adaptive refinement from [2]
adaptive refinement with (20)
dof-1/2

Fig. 1 Total error vs. degrees of freedom
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Fig. 2 Adapted meshes obtained after 10 (left) and 20 (right) iterations, with 1,221 and 15,408
elements, respectively

algorithms based on Q (the a posteriori error estimator introduced in [2]) and on N .
We observe that the errors in the adaptive procedures decrease faster than for the
uniform one. Indeed, the experimental convergence rates for the uniform refinement
algorithm approach 1=3 whereas the adaptive refinement algorithm based on N is
able to recover the linear convergence. In addition, in this example the efficiency
indices for N (defined as the ratio between the total error and N ) are always in a
neighborhood of 0:9.

Finally, we show in Fig. 2 two adapted meshes obtained with the adaptive
algorithm based on N . The adaptive algorithm detects the singularity of the solution,
since the adapted meshes are highly refined around the origin.

For more details and numerical experiments, we refer to [3].
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Adaptive Numerical Simulation of Dynamic
Contact Problems

Mirjam Walloth and Rolf Krause

Abstract We present a new approach for the space-time adaptive solution of
dynamic contact problems. By combining ideas from the recently introduced
residual-type a posteriori error estimator for static contact problems (Krause et al.,
An efficient and reliable residual-type a posteriori error estimator for the Signorini
problem. Numer. Math. (2014), DOI: 10.1007/s00211-014-0655-8) and the novel
discretization scheme with local impact detection (Krause and Walloth, A family of
space-time connecting discretization schemes with local impact detection for elas-
todynamic contact problems. Comput. Methods Appl. Mech. Eng. 200:3425–3438,
2011), a discretization method is constructed which is able to detect and resolve
local nonsmooth effects at the contact boundary in space and time. Numerical results
in 3D illustrate our theoretical findings.

1 Introduction

The simulation of dynamic contact problems provides insight into many complex
processes in, e.g., engineering, engineering mechanics, and biomechanics. The more
complex the considered process, the greater the need for high accuracy. Besides a
good mathematical model and solution method for the arising nonlinear system, the
used discretization method is of crucial importance for the accuracy of the numerical
simulation. For contact problems, a particular challenge are the non-smooth effects
arising at the contact interface, which have to be resolved in space as well as in
time.
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As discussed in preceding works e.g. [2, 3, 5, 9, 11] the discretization in time
of dynamic contact problems is challenging. Due to the non-smoothness of the
displacements and the discontinuity in the velocities in the moment of impact
classical time discretization schemes fail, i.e. energy blow-ups, oscillations in
velocity and contact stresses occur.

Although linear finite elements are widely used for the discretization in space
of contact problems, there are only a few appropriate a posteriori error estimators,
e.g. [4,10,13,14]. However, adaptive mesh refinement is important for the accuracy
of the solution, especially for the resolution of the free boundary, i.e., the region
between the actual and non-actual contact boundary which is a priori unknown.

In this article we combine the recently presented residual-type a posteriori error
estimator for contact problems [10] and a novel discretization scheme with local
impact detection [8]. In contrast to the original work [8] the meshes are different
in subsequent time-steps, which requires a special treatment of the numerically
computed values of the foregoing time step. Further, the a posteriori error estimator
[10] originally designed for static contact problems has to be adapted, to meet the
conditions of time-discrete contact problems.

Thus, this article presents a discretization method for dynamic contact problems
which is able to resolve the local effects at the contact boundary in space and time.
This is due to the adaptive discretization in space and a special time-discretization
which is able to resolve the local impact times of each node implicitly. At the end of
this article numerical results in 3D illustrate the performance of the discretization
method. In particular, we show the adaptively refined meshes, the stability of
contact stresses and velocities and we discuss the course of energy and contact
forces.

2 Dynamic Signorini Contact Problem

Our model problem is the dynamic Signorini contact problem. It describes the time-
dependent contact of a linear elastic body, represented by the domain ˝ � R

d ,
d D 2; 3, with a rigid body. The whole boundary � WD @˝ is divided into three
disjoint parts, the potential contact boundary �C , the Neumann boundary �N and
the Dirichlet boundary �D. Each material particle in N̋ is identified with a point
x D .x1; : : : ;xd /

T . The sought displacements of the linear elastic body are u W
N̋ ! R

d . Velocities and accelerations are given by Pu and Ru.
Throughout this work we denote all quantities which refer to tensors including

vectors by bold symbols. Their components are printed in normal type and are
indicated by subindices, e.g., ui . The Cartesian basis vectors of R

d are denoted
by ei , i D 1; : : : ; d .

As the body is assumed to consist of linear elastic material, the stress tensor �
obeys Hooke’s law and the strain tensor � is linearized.
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For the ease of presentation the direction of constraints at the potential contact
boundary is assumed to be constant and set to e1. In order to avoid penetration of the
two bodies we enforce the linearized non-penetration condition u.x; t/ � e1 � g.x/
where g is the gap function. The non-penetration condition evokes so-called contact
stresses O�1.u/ which is the projection of the boundary stresses O� .u/ WD � .u/n onto
the direction of constraints.

The linear elastic body might be subjected to a volume force density f , to surface
forces , to Dirichlet values uD and to initial values for displacements u0.x/ and
velocities Pu0.x/ at time t D 0.

In the following we state the strong formulation of the dynamic Signorini contact
problem where � > 0 is the density.

� Ru� div� .u/ D f in ˝ � Œ0; T � (1)

O� .u/ D  on �N � Œ0; T � (2)

u D uD on �D � Œ0; T � (3)

u1 � g on �C � Œ0; T � (4)

O�1 � 0 on �C � Œ0; T � (5)

.u1 � g/ O�1 D 0 on �C � Œ0; T � (6)

u.x; 0/ D u0.x/; Pu.x; 0/ D Pu0.x/ in ˝ (7)

Equation (6) is called complementarity condition. It says that the normal stresses
are zero if the bodies are not in contact. If the bodies are in contact we expect the
velocities Pu1 to be zero. This condition

Pu1 O�1 D 0 (8)

is usually referred to as persistency condition. In order to have a clear presentation
we set the Neumann and Dirichlet values to zero,  D 0, uD D 0 and we set
� D 1. The weak formulation of (1)–(7) is given by: For every time t 2 .0; T / find
u.�; t/ 2 K with Ru.�; t/ 2 L2.˝/, such that

h Ru; v � ui C a .u; v � u/ � hf ; v � ui 8v 2 K (9)

where f 2 L2.˝/, a .u; v/ WD R
˝
� .u/ W �.v/ dx and K WD fv 2 H j v1 � g

on �C g is the set of admissible displacements which is a subset of H WD fv 2
H 1.˝/jv D 0 on �Dg. The L2-norm and its scalar product are denoted by k � k
and h�; �i.

We define the so-called contact force density F con.u/ by means of
hF con.u/; �i WD hRu; �i C a .u; �/ � hf ; �i, which can be obtained as linear residual
corresponding to the variational inequality (9). It follows from Green’s formula
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that hF con.u/; �i D h O� .u/; �iL2.�C /. The contact stresses O� .u/ and the contact force
density F con.u/, respectively, are a priori unknown and have to be determined as
part of the solution process.

3 Discretization in Space and Time

For the discretization in space we use linear finite elements. The mesh is denoted
by m and the corresponding space of linear finite elements is denoted by H m.
We denote the set of nodes p by Nm and the subset of nodes at the potential
contact boundary by N C

m and the subset of nodes on N�N by N NN
m . The nodal

basis functions for the finite element spaces are denoted by �p . The constraints
are imposed nodewise, so that the discrete admissible set is given by K m WD fvm 2
H m j vm;1 � gm on �C g where gm is the finite element approximation of g.

In the following, the discrete quantities for displacement, velocity, acceleration
and force have to be understood as vectors of the dimension #Nm � d . The matrices
Mm and Am are the mass matrix and the stiffness matrix representing h�; �i and
a.�; �/ in the basis of linear finite elements and the chosen Cartesian coordinate
system. We assume the mass matrix to be lumped. The given time step size for
the time discretization is denoted by � and the superscript n stands for the n-th time
step, e.g., unm is the displacement computed in time step n on mesh m.

In continuum mechanics the classical Newmark scheme is widely-used because
it is of second order consistency and conserves the energy. Unfortunately, if contact
constraints are imposed the classical Newmark scheme evokes energy blow-ups and
oscillations in the contact stresses and velocities, thus spoiling the overall accuracy.
Several modifications of the Newmark scheme have been developed in order to
overcome this deficiency which can be found in, e.g., [2, 3, 5, 11]. The merits and
drawbacks of the different methods are explained and compared in [9]. In [8] we
introduced the improved contact-stabilized Newmark scheme. The method avoids
energy blow-ups. It is even provable dissipative. The contact stresses are stable and
the behavior of the velocities in normal direction is motivated by the persistency
condition (8).

In [2] an L2-projection PL2 of unm C � Punm onto the admissible set predicts the
contact boundary. This L2-projection is used in the improved contact-stabilized
Newmark scheme in order to predict the local impact time step sizes ��.p/ of
each node, i.e. PL2.u

n
m C � Punm/ DW unC1m;pred D unm C 
� Punm where 
� is a

.#Nm � d/ � .#Nm � d/ diagonal matrix. The d � d diagonal block matrices of

� have the entries

e i .p/ � 
� � ei .p/ D
(
��.p/; if p 2 N C

m and i D 1
�; otherwise :

For the computation of the local impact time step sizes ��.p/ we refer to [8].
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Under the assumption of a fixed mesh for all time steps the improved contact-
stabilized Newmark scheme is given by:

MmunC1m;pred DMmunm C 
�Mm Punm (10)

MmunC1m DMmunC1m;pred

��
2

2

�
1

2
Amunm C

1

2
AmunC1m �MmF con

�
unC1m

��
(11)

Mm PunC1m DMm Punm � �
�
1

2
Amunm C

1

2
AmunC1m

�MmF con
�
unC1m

� � ˛ 2
�2
Mm.


� � 
/ Punm
�
: (12)

We note that F con.unC1m / is a priori unknown. Thus, (11) is a variational inequality
in unC1m andMmF con.unC1m / its linear residual. In contrast to the classical Newmark
scheme unm C � Punm has been replaced by unC1m;pred in the computation of the
displacements (11), thus, avoiding artificial oscillations of the contact stresses. This
method has been primarily used in [2]. In (12) the local impact time step size is used
to correct the velocity. Therefore, a matrix-valued parameter ˛ has to be chosen.
In [8] the choice of the diagonal entries ˛.p/ has to ensure that the algorithm is
dissipative which leads to 0 � ˛.p/ � 1 and is further motivated by the persistency
condition (8) which says that the velocity at the contact boundary in direction of the
constraints has to be zero during a contact phase.

The improved contact-stabilized Newmark scheme enables the localization of
the impact time of each node. The critical zone where contact occurs is the free
boundary zone. Thus, it would be desirable to resolve the free boundary zone by a
finer mesh. Further, a finer resolution of the free boundary should lead to less energy
loss as follows from the proof of dissipativity between two successive time steps
given in [8, Proposition 1]. However, if the mesh is changed between time steps n
and nC 1, dissipativity is no longer guaranteed. For example, let mn be the mesh in
time step n and mnC1 the mesh in time step nC1. The solution unmn

is interpolated on
meshmnC1. However, this interpolated solutionI nC1

n .unmn
/ from the foregoing time

step is not necessarily contained in the admissible set. Therefore, we have to apply
the L2-projection PL2.I

nC1
n .unmn

// DW unmnC1
. Then E .unC1mnC1

/ � E .unmnC1
/ � 0.

In this sense the algorithm is still dissipative, but E .unmnC1
/ ¤ E .I nC1

n .unmn
// in

general. By means of the admissible solution of the old time step we compute the old
acceleration AmnC1

unmnC1
. An important observation is that a simple interpolation

of the old acceleration leads to oscillations in the contact stresses.
For the adaptive mesh generation in each time step an a posteriori error estimator

is required. A posteriori error estimators for contact problems can be found in
[4, 10, 13, 14]. Here, we take the residual-type a posteriori error estimator of [10,12]
which is easy to compute and for which efficiency and reliability is proven in 3D.
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As Eq. (11) is slightly different to the equation of a static contact problem we
have to adapt our residual-type a posteriori error estimator to this equation.

To state the error estimator contributions we need some preliminary defini-
tions. The jump terms are either the difference between the stresses J I .um/ WD
.� jQe.um/ � � je.um//n on two neighboring elements e and Qe where n is the unit
outward normal to the common side s in the interior of˝ or the difference between
the given Neumann data and the boundary stress JN .um/ WD  � O� je.um/ at a
Neumann boundary side s.

As the constraints are solely imposed in direction e1 at the potential contact
boundary, we have homogeneous Neumann conditions in the tangential direction.
The corresponding jump terms are denoted by JCT .um/ WD � O� je.um/. We denote
by !p the interior of the union of all surrounding elements and call it patch. The
corresponding diameter is abbreviated with hp WD diam!p and the union of all
sides of elements belonging to N!p is denoted by 	p. We call the union of all sides in
the interior of !p , not including the boundary of !p , skeleton and denote it by 	p;I .
The intersections of @!p for all p 2 Nm with �C and �N are denoted by 	p;C WD
�C \ @!p and 	p;N WD �N \ @!p .

For Eq. (11) the local estimator contributions �2;p; �3;p; �4;p of [10] change to

�2;p WD1
2
h
1
2
pkJ I .unm/C J I .unC1m /k	p;I 8p 2 Nm

�3;p WD1
2
h
1
2
pkJN .unm/C JN .unC1m /k	p;N 8p 2 N

NN
m

�4;p WD1
2
h
1
2
pkJ CT .unm/C JCT .unC1m /k	p;C 8p 2 N C

m :

The local error estimator contributions �1;p of [10] change to

�1;p WD hp
��
�
�f C

1

2
div� .unm/C

1

2
div� .unC1m /C 2

�2
unC1m;pred

� 2

�2
unC1m

�
�
��
!p

8p 2 Nm:

Further, we need to adapt the classification of contact nodes in full- and semi-contact
nodes which has been given in [10]. The so-called full-contact nodes p 2 N fC

m for
Eq. (11) are those nodes at the potential contact boundary which fulfill the following
two criteria: unC1m;1 D gm and 1

2
O�1.unm/ C 1

2
O�1.unC1m / � 0 on 	p;C . The remaining

actual contact nodes which do not fulfill these conditions constitute the set of semi-
contact nodes N sC

m . The local error estimator contributions corresponding to the
potential contact boundary are given by

�5;p WD1
2
h
1
2
pk O�1.unC1m /C O�.unC1m /1k	p;C 8p 2 N C

m nN fC
m

�6;p WD.spdp/ 12 8p 2 N sC
m
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where sp is the value of F con.unC1m / at the node p and dp is the mean value of the
distance to the obstacle on a strict subset Q	p;C of 	p;C :

dp WD
Z

Q	p;C
.gm � unC1m;1 /�p:

We note that the restriction to the subset of 	p;C is only required for the proof of
efficiency. With these definitions of the error estimator contributions the proofs of
reliability and efficiency follow as in [10] for Eq. (11) with discrete gap function gm.
If the gap function g is not a discrete function and has to be approximated by a linear
finite element function gm we have to consider the same additional contributions as
in the static case.

4 Numerical Results

We consider a linear elastic unit cube which comes into contact with a rigid unit
ball. The elastic modulus is E D 5 � 102 and the Poisson ratio � D 0:3. The time
step size is � D 0:005. The arising variational inequalities are solved by the
monotone multigrid method explained in [6, 7]. The simulation is implemented
in the framework of the finite element toolbox UG [1] and the obstacle toolbox
OBSLIB++ [7]. In each third time step we regenerate the mesh by means of our
residual-type a posteriori estimator presented in the foregoing section. As the free
contact boundary is important for the detection of the local impact times we scale
the estimator contributions �5;p and �6;p so that they are in the some range as
�1;p and �2;p at the beginning. The starting grid consists of hexahedra but due to
adaptive remeshing the final grid after seven refinement steps is an unstructured
mesh consisting of tetrahedra, pyramids and prisms as well. In Fig. 1 we show the
grid of the potential contact boundary. Obviously the free contact boundary is well
resolved. The contact stresses and the velocities in time step 10 can be seen in Fig. 2.
As already mentioned we cannot expect the energy to be dissipative when we use
different meshes for the different time steps. Therefore, we are interested in the
course of energy. It can be seen in Fig. 3a. There are slight increases of the energy
but we do not get an energy blow-up. In Fig. 3b we show the course of the contact
force which is smooth.

Finally, we visualize the error reduction due to adaptive refinement in space.
In order to stress the adaptive procedure we take the first time step with a large
contact force arising from an initially large velocity. For the computation of the
reference solution we add a uniform refinement step to the adaptively refined grid.
In Fig. 3c we show the error in the energy norm plotted against the number of nodes
in logarithmic scales.
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Fig. 1 Adaptively refined grid in different time steps n: potential contact boundary and diagonal
cut through the cube. (a) n D 1. (b) n D 1; 49;296 dof. (c) n D 19. (d) n D 19; 378;315 dof. (e)
n D 31. (f) n D 31; 255;714 dof

Fig. 2 Contact stresses and velocities in time step n D 10. (a) n D 10, contact stresses. (b)
n D 10, velocities
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a b c

Fig. 3 (a) Course of energy; (b) course of total contact force; (c) error reduction due to adaptive
refinement in space
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An Adaptive Finite Element Method
for the Infinity Laplacian

Omar Lakkis and Tristan Pryer

Abstract We construct a finite element method (FEM) for the infinity Laplacian.
Solutions of this problem are well known to be singular in nature so we have taken
the opportunity to conduct an a posteriori analysis of the method deriving residual
based estimators to drive an adaptive algorithm. It is numerically shown that optimal
convergence rates are regained using the adaptive procedure.

1 Introduction

Nonlinear partial differential equations (PDEs) arise in many areas. Their numerical
simulation is extremely important due to the additional difficulties arising in their
classical solution [4]. One such example is that of the infinity Laplace operator�1
defined by

�1u WD
Pd

iD1
Pd

jD1 @iu@ju@ij u
Pd

iD1.@iu/
2

D .ru˝ru/WD2u

jruj2 ; (1)

for a twice-differentiable function u W ˝ ! R, ˝ 2 R
d open, bounded and

connected, where

ru WD

2

6
4

@1u
:::

@du

3

7
5 ; x ˝ y WD xy|; andX WY WD traceX|Y (2)
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denote, respectively, the gradient, the (algebraic) tensor product of x;y 2 R
d , and

the Frobenius inner product of two matrices X ;Y 2 R
d�d . This equation has been

popular in classical studies (e.g. [1, 3]) but is difficult to pose numerical schemes
due to its nondivergence structure and general lack of classical solvability. The
infinity Laplacian, which is in fact a misnomer (homogeneous infinity Laplacian
is more precise), occurs as the weighted formal limit of a variational problem. A
more appropriate terminology would be that of infinite harmonic function u being
one that solves�1u D 0. This is justified, at least heuristically, as being the formal
limit of the p-harmonic functions, up , p � 1, p !1 where

0 D �pup WD div
�ˇ
ˇrup

ˇ
ˇp�2 rup

	
D ˇˇrup

ˇ
ˇp�2 �up C.p � 2/

ˇ
ˇrup

ˇ
ˇp�2 �1up:

(3)

Multiplying by
ˇ
ˇrup

ˇ
ˇ2�p =.p � 2/ and taking the limit as p ! 1 it follows

that a would be limit u D limp!1 up is infinite harmonic. A rigorous treatment
is provided in [6] and is based on the variational observation that the Dirichlet
problem for thep–Laplacian is the Euler–Lagrange equation of the following energy
functional

LpŒu� WD 1

p
kukpLp.˝/ D

Z

˝

1

p
jrujp for p 2 Œ1;1/ (4)

with appropriate Dirichlet boundary conditions. By analogy, setting

L1Œu� WD krukL1.˝/ D ess sup˝ jruj ; (5)

we seek u 2 Lip.˝/ D W11.˝/, the space of Lipschitz continuous functions over
˝ (Rademacher), with u D g on @˝ such that

L1Œu� � L1Œv� 8 v 2 Lip.˝/ and v D g on @˝: (6)

Show that the solution exists and define it to be infinite harmonic. Such a solution is
called absolutely minimising Lipschitz extension of g, we call it infinite harmonic.
The infinity Laplacian is thus considered to be the paradigm of a variational problem
in W11.˝/.

If the solution is smooth, say in C2 and has no internal extrema, it can be shown to
satisfy (3) classically. But an infinite harmonic function is generally not a classical
solution (those in C2.˝/ satisfying (1) everywhere). Therefore solutions of (3)
must be sought in a weaker sense. The notion of viscosity solution, introduced
for second order PDEs in [5] turns out to be the correct setting to seek weaker
solutions. Existence and uniqueness of a viscosity solution to the homogeneous
infinity Laplacian (1) has been studied [11]. If the domain ˝ is bounded, open and
connected then (1) has a unique viscosity solution u 2 C0.˝/. In the case ˝ � R

2

this can be improved to u 2 C1;˛.˝/ [9]. A study of existence and uniqueness of
viscosity solutions to the inhomogeneous infinity Laplacian can be found in [13].
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With ˝ defined as before and in addition if f 2 C0.˝/ and does not change sign,
i.e., inf˝ f > 0 or sup˝ f < 0, one can find a unique viscosity solution.

As to the topic of numerical methods to approximate the infinity Laplacian, to
the authors knowledge only two families of methods exist. The first is based on
finite differences [14]. The scheme involves constructing monotone sequences of
schemes over concurrent lattices by minimising the discrete Lipschitz constant over
each node of the lattice. The second is a finite element scheme named the vanishing
moment method [10] in which the 2nd order nonlinear PDE is approximated via
sequences of biharmonic quasilinear 4th order PDEs.

In this paper we present a finite element method for the infinity Laplacian,
without having to deal with the added complications of approximating a 4th
order operator. It is based on the nonvariational finite element method introduced
in [12]. Roughly, this method involves representing the finite element Hessian
(see Definition 2) as an auxiliary variable in the formulation, to deal with the
nonvariational structure. We also consider the problem as the steady state of an
evolution equation making use of a Laplacian relaxation technique (see Remark 1)
[2, 8] to circumvent the degeneracy of the problem.

The structure of the paper is as follows: In Sect. 2 we examine the linearisation
of the PDE and present the necessary framework for the discretisation and state an a
posteriori error indicator for the discrete problem. The estimator is of residual type
and is used to drive an adaptive algorithm which is studied and used for numerical
experimentation is Sect. 3. We choose our simulations in such a way that they can
be compared with those given in [10, 14].

2 Notation, Linearisation and Discretisation

We consider the heterogeneous Infinity Laplace problem with Dirichlet boundary
conditions on a domain˝ � R

d .

�1u D f in ˝ and u D g on @˝ (7)

with problem data f; g 2 C0.˝/ chosen such that f does not change sign
throughout˝ . In this case there exists a unique viscosity solution to (7) [13].

2.1 Linearisation of the Continuous Problem (1)

The application of a standard fixed point linearisation to (7) results in the following
sequence of linear nondivergence PDEs: Given an initial guess u0, for each n 2 N

find unC1 such that

.run ˝run/

jrunj2 WD2unC1 D f: (8)
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Due to the degeneracy of the problem we introduce a slightly modified problem
which utilises Laplacian relaxation [2, 8], the problem is to find unC1 such that

�run ˝run

jrunj2 C I
�

�
WD2unC1 D f C �un

�
with � 2 R

C: (9)

Remark 1 The discretisation proposed in (9) is nothing but an implicit one stage
discretisation of the following evolution equation

@t.�u/C�1u D f; (10)

where�u is used as shorthand for�2u, the 2–Laplacian.
With that in mind we must take care with our choice of � which can be regarded

as a timestep. We require a � that is large enough to guarantee reaching the steady
state and small enough such that we do not encounter stability problems.

2.2 Discretisation of the Sequence of Linear PDEs (9)

Let T be a conforming, shape regular triangulation of ˝ , namely, T is a finite
family of sets such that

1. K 2 T implies K is an open simplex (segment for d D 1, triangle for d D 2,
tetrahedron for d D 3),

2. For anyK; J 2 T we have that K \ J is a full sub-simplex (i.e., it is either ;, a
vertex, an edge, a face, or the whole of K and J ) of bothK and J and

3.
S
K2T K D ˝.

We also define E to be the skeleton of the triangulation, that is the set of sub-
simplexes of T contained in ˝ but not @˝ . For d D 2, for example, E would
consist of the set of edges of T not on the boundary. We also use the convention
where h.x/ WD maxK3x hK to be the mesh-size function of T .

Definition 1 (continuous and discontinuous FE spaces) Let Pk.T / denote the
space of piecewise polynomials of degree k over the triangulation T of ˝ . We
introduce the finite element spaces

VD.k/ D P
k.T / VC .k/ D P

k.T / \ C0.˝/ (11)

to be the usual spaces of discontinuous and continuous piecewise polynomial
functions over˝ .

Remark 2 (generalised Hessian) Given a function v 2 H1.˝/ and let n W @˝ ! R
d

be the outward pointing normal of˝ then the generalised Hessian of v, D2v satisfies
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the following identity:

˝
D2v j�˛ D �

Z

˝

rv˝r� C
Z

@˝

rv˝ n � 8 � 2 H1.˝/; (12)

where the final term is understood as a duality pairing between H�1=2.@˝/ �
H1=2.@˝/.

Remark 3 (nonconforming generalised Hessian) The test functions applied to
define the generalised Hessian in Remark 2 need not be H1.˝/. Suppose they are
H1.K/ for each K 2 T then it is clear that

˝
D2v j�˛ D

X

K2T

�
�
Z

K

rv˝r� C
Z

@K

rv˝ nK�
�

D
X

K2T
�
Z

K

rv˝r� C
X

e2E

Z

e

ffrv gg ˝ ���C
X

e2@˝

Z

e

rv˝ n �;
(13)

where ��� and ff � gg denote the jump and average, respectively, over an element edge,
that is, suppose e is a.d � 1/ subsimplex shared by two elementsKC andK� with
outward pointing normals nC and n� respectively, then

��� D �ˇˇ
KC
nC C �ˇˇ

K�
n� and ff�gg D 1

2

�
�
ˇ
ˇ
KC
C �ˇˇ

K�

�
: (14)

Definition 2 (finite element Hessian) From Remarks 2 and 3 for V 2 VC .k/ we
define the finite element Hessian,H ŒV � 2 ŒVD.k/�d�d such that we have

Z

˝

H ŒV �� D ˝D2V j�˛ 8 � 2 VD.k/ : (15)

We discretise (9) utilising the nonvariational Galerkin procedure proposed in
[12]. We construct finite element spaces V WD VC .k/ and W which can be taken
as VC .k/, VD.k/ or VD.k � 1/. Then given U 0 D ƒu0, for each n 2 N0 we seek�
UnC1;H ŒU nC1�

� 2 V �ŒW�d�d such that

Z

˝

�rUn ˝rUn

jrUnj2 C I
�

�
WH ŒU nC1�� D

Z

˝

�
f C traceH ŒU n�

�

�
�

Z

˝

H ŒU nC1�˚ D �
Z

˝

rUnC1 ˝r˚ C
X

e2E

Z

e

ffrUnC1gg ˝ �˚�

C
X

e2@˝

Z

e

rUnC1 ˝ n ˚ 8 .�;˚/ 2 V �W:

(16)
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Remark 4 (computational efficiency) Making use of a VD.k/ or VD.k � 1/ space
to represent the finite element Hessian allows us to construct a much faster algorithm
in comparison to using a VC .k/ space for W due to the local representation of the
L2.˝/ projection of discontinuous spaces [7].

Theorem 1 (a posteriori residual upper error bound) Let u be the solution to the
infinity Laplacian (7) and Un be the n-th step in the linearisation defined by (16).
Let

AŒv� WD rv˝rv

jrvj2 C I
�
; (17)

then there exists a C > 0 such that

���
�f C

�Un

�
�AŒU n�WD2U nC1

���
�

H�1.˝/

� C
� X

K2T

hK

�
��RŒU n; U nC1; f �

�
��

L2.K/

C
X

e2E

h
1=2
K

��
�J ŒU n; U nC1�

��
�

L2.e/

�

(18)

where the interior residual, RŒU;A; f �, over a simplex K and jump residual,

J ŒU;A�, over a common wall e D K
C \ K� of two simplexes, KC and K�

are defined as

��RŒU n; U nC1; f �
��2

L2.K/
D
Z

K

�
f �AŒU n�WD2U nC1 C �Un

�

�2
; (19)

�
�J ŒU n; U nC1�

�
�2

L2.e/
D
Z

e

�
�rUn�

�
�AŒU n�W�rUnC1˝�

�2
; (20)

with

��˝� WD �jKC ˝ nC C �jK� ˝ n�; (21)

being defined as a tensor jump.

Remark 5 (on the proof of Theorem 1) The proof of Theorem 1 is based on standard
residual a posteriori arguments.

3 Numerical Experiments

All of the numerical experiments in this section are implemented using FEniCS
and visualised with ParaView . Each of the tests are on the domain ˝ D Œ�1; 1�2,
choosing the finite element spaces V D VC .1/ and W D VD.0/. This is
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N
N

1

dxd

a b

Fig. 1 We benchmark the approximation of a classical solution to the inhomogeneous infinity
Laplacian, plotting the log of the error together with its estimated order of convergence. We
examine both L2.˝/ and H1.˝/ norms of the error together with the residual estimator given
in Theorem 1. The linearisation tolerance is coupled to the mesh-size such that the linearisation is
run until

��Un � Un�1
�� � 10h2 . The convergence rates are optimal, that is,

��u� UN
�� D O.h2/

and
ˇ̌
u� UN

ˇ̌
1
D O.h/. (a) Convergence rates. (b) Finite element approximation

computationally the quickest implementation of the nonvariational finite element
method and the lowest order stable pair of FE spaces for this class of problem.

3.1 Benchmarking and Convergence: Classical Solution

To benchmark the numerical algorithm we choose the data f and g such that the
solution is known and classical. In the first instance we choose f 
 2 and g D jxj2.
It is easily verified that the exact solution is given by u D jxj2. Figure 1 details a
numerical experiment on this problem.

Remark 6 (on the value of �) The optimal values of the timestep parameter or
tuning parameter � depend upon the regularity of the solution. For example, for
a classical solution, one may choose � large. In the numerical experiment above we
took � D 1;000. Since the linearisation is nothing more than seeking the steady state
of the evolution equation (9). The convergence (in n) is extremely quick taking no
more than five iterations.

For the examples below one must be careful choosing � , we will be looking
at viscosity solutions that are not C2.˝/, in this case the lack of regularity of the
solution will lead to an unstable linearisation for large � . In each of the cases below
� 2 Œ1 W 10� was sufficiently small to achieve convergence of the linearisation in at
most 20 iterations.
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3.2 A Known Viscosity Solution to the Homogeneous Problem

To test the convergence of the method applied to a singular solution of the
homogeneous problem we fix

f 
 0 and g D jxj4=3 � jyj4=3 ; (22)

where x D .x; y/|. A viscosity solution of this equation is the Aronsson solution
[1],

u.x/ D jxj4=3 � jyj4=3 : (23)

The function has singular derivatives about the coordinate axis, in fact u 2
C1;1=3.˝/. Figure 2 details a numerical experiment on this problem. In Fig. 3
we conduct an adaptive experiment based on the newest vertex bisection
method.

dxd

N
N

1

a b

Fig. 2 We benchmark problem (22), plotting the log of the error together with its estimated order
of convergence. We examine both L2.˝/ and H1.˝/ norms of the error together with the residual
estimator given in Theorem 1. We choose � D 1 and the linearisation tolerance is coupled to
the mesh-size as in Fig. 1. The convergence rates are suboptimal due to the singularity, that is,��u� UN

�� 	 O.h1:8/ and
ˇ̌
u� UN

ˇ̌
1
	 O.h0:8/. (a) Convergence rates. (b) Finite element

approximation
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Fig. 3 This is an adaptive approximation of the viscosity solution u D jxj4=3 � jyj4=3 from (22).
The estimator tolerance was set at 0:1 to coincide with the final estimate from the benchmark
solution from Fig. 2. The final number of degrees of freedom was 36;325 compared to the uniform
scheme which took 165;125 degrees of freedom to reach the same tolerance. We chose � D 0:1

as the timestep parameter. (a) The finite element approximation viewed from the top. (b) The
underlying mesh
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Anisotropic Adaptive Meshes for Brittle
Fractures: Parameter Sensitivity

Marco Artina, Massimo Fornasier, Stefano Micheletti, and Simona Perotto

Abstract We deal with the Ambrosio-Tortorelli approximation of the well-known
Mumford-Shah functional to model quasi-static crack propagation in brittle mate-
rials. We employ anisotropic mesh adaptation to efficiently capture the crack path.
Aim of this work is to investigate the numerical sensitivity of the crack behavior to
the parameters involved in both the physical model and in the adaptive procedure.

1 Introduction to the Problem

The Mumford-Shah functional plays a key role in many applications, from image
segmentation to mechanical problems [8]. One such application is the fracture
propagation in brittle materials, where no predefined crack path is required. The
Mumford-Shah functional is used for the first time by G. Francfort and J.-J. Marigo
in [6] to model the quasi-static evolution of such a crack along the critical points of
the energy. From a mathematical viewpoint, this leads to minimizing a nonconvex
and nonsmooth functional which involves the displacement function u together
with a lower dimensional set representing the crack � . This is an interesting
challenge for both the theoretical analysis and the numerical computation. In the
two sections below we address a suitable regularization of the functional proposed
by G. Francfort and J.-J. Marigo and a corresponding discrete approximation.
This smoothed model will allow us to tackle the numerical approximation via the
employment of a suitable anisotropic adapted mesh, able to follow tightly the crack
path.
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1.1 The Modified Ambrosio-Tortorelli (MAT) Functional

The functional provided by L. Ambrosio and V.M. Tortorelli is one of the most
popular approach to dealing with the intrinsic irregularity of the functional proposed
by G. Francfort and J.-J. Marigo [1]. It is given by

I.u; v/ D
Z

˝

.v2 C �/jruj2 dxC �
Z

˝


1

4"
.1� v/2 C "jrvj2

�
dx; (1)

where ˝ � IR2 is an open domain, 0 < � � " � 1, � > 0 approximates the
elasticity constant of the material, while u W H1.˝/! IR and v W H1.˝/! Œ0; 1�

represent the displacement and the crack path, respectively. The first integral takes
into account the elastic energy of the material, while the second integral is a fictitious
energy spent in propagating the crack inside the material. Furthermore, when v D
1, the second integral vanishes, indicating the absence of a crack, whereas, when
v D 0, only the fictitious energy does contribute and we are in the presence of an
actual crack. The Ambrosio-Tortorelli functional enjoys the desirable property of
� -converging to the Mumford-Shah functional [1].

To drive the crack evolution, an external load g W ˝ � Œ0; T �! IR is applied on
a subset ˝D˙ D ˝DC [˝D� of ˝ , defined as follows

g.x; t/ D
8
<

:

t if x 2 ˝DC ;

�t if x 2 ˝D� ;

0 elsewhere ;
(2)

with T > 0 the final time of interest and x D .x1; x2/
T . For simplicity, we denote

hereafter g.x; t/ with g.t/. Let us also introduce the space of admissible solutions
A .g.t// D fu 2 H1.˝/ W uj˝

D˙

D g.t/j˝
D˙

g. Associated with the time interval
Œ0; T �, we define a uniform partition 0 D t0 < t1 < : : : < tn D T of step �t .
According to a quasistatic evolution, at any discrete instant tk , with k D 1; : : : ; n,
we solve the following minimization problem

.u".tk/; v".tk// 2 arg min
u 2 A .g.tk//; v 2 H1.˝/

s.t. v.x; tk/D 0; 8x 2 CRk�1

I.u; v/; (3)

with CRk�1 D fx 2 ˝ j v".tk�1/ < CRTOLg, and where CRTOL is a tolerance
controlling somehow the thickness of the crack. At the initial time, we set
CR�1 D ;, i.e., the constraint in (3) is removed since the crack is not yet present.
Convergence results relating the actual continuous model with the current time-
discrete version can be found in [5].
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In [2], we relax the constraints in (3) via suitable penalization terms which allow
us to deal with an unconstrained minimization for the Modified Ambrosio-Tortorelli
(MAT) functional

IMAT
k .u; v/ D

Z

˝


.v2 C �/jruj2 d xC 1

4"
.1 � v/2 C "jrvj2

�
dx

C 1

	A

Z

˝
D˙

.g.tk/� u/2 dxC 1

	B

Z

CRk�1

v2 dx;
(4)

where 	A and 	B are (small) penalty constants and � D 1 is assumed for
convenience. Moreover, as remarked in [2], condition 0 � v � 1 is guaranteed
by the minimization process.

1.2 The Discretized MAT Functional

We consider the discrete counterpart of the functional (4) via a finite element
approximation. For this purpose, we introduce a family of meshes fThgh of ˝ ,
with h > 0 the discretization parameter, and denote by Eh the skeleton of Th.
Moreover, we associate with Th the space Xh consisting of continuous piecewise
linear functions.

The discretization of the MAT functional based on Xh is

IMAT
k;h .uh; vh/D

Z

˝

h �
Ph.v

2
h/C �

� jruhj2 dxC 1

4"
Ph..1 � vh/

2/C "jrvhj2
i
dx

C 1

	A

Z

˝
D˙

Ph
�
.gh.tk/� uh/

2
�
dxC 1

	B

Z

CRk�1

Ph
�
v2h
�
dx;

where Ph W C0.˝/ ! Xh is the Lagrange interpolant onto Xh, and gh.tk/ is the
L2.˝D˙/-projection of g.tk/ onto Xh. In practice, the minimization problem (3) is
replaced by the following one

.uh.tk/; vh.tk// 2 arg min
.Ouh; Ovh/ 2 Xh �Xh

IMAT
k;h .Ouh; Ovh/:
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The critical points of IMAT
k;h satisfy relation .IMAT

k;h /0.uh; vhI'h;  h/ D 0, where
.IMAT
k;h /0 denotes the Gâteaux derivative of the discrete MAT functional given, for

any .'h;  h/ 2 Xh �Xh, by

.IMAT
k;h /0.uh; vhI'h;  h/
D 2

 Z

˝

.Ph.v
2
h/C �/ruh � r'h dxC 1

	A

Z

˝
D˙

Ph ..uh � gh.tk//'h/ dx

!

C2
�Z

˝

h
Ph.vh h/jruhj2 C 1

4"
Ph..vh � 1/ h/C "rvh � r h

i
dx

C 1

	B

Z

CRk�1

Ph .vh h/ dx
�
:

The proof that the condition 0 � vh � 1 is automatically satisfied also in the discrete
case can be found in [2].

2 The Anisotropic a Posteriori Error Estimator

We introduce now the basic setting that we use to enrich the discretization above
with mesh adaptation. In particular, we adopt an anisotropic approach due to
the highly directional nature of the crack propagation as well as to the expected
computational saving led by the employment of anisotropic meshes.
Following, e.g., [7], the geometric information describing a generic stretched
element K 2 Th are based on the spectral properties of the affine map TK between
the reference element OK and the actual triangle K , whose diameter and area are
denoted by hK and jKj, respectively. In practice, we use the unit vectors r1;K and
r2;K along the directions of the semiaxes of the ellipse, image of the circumscribed
circle to OK, and the positive scalars 
1;K , 
2;K , with 
1;K � 
2;K , that measure the
length of these semiaxes.

Before stating the theoretical tool driving the adaptive procedure in Sect. 3, we
anticipate some notation. We introduce the residuals

�AK.vh; uh/ D k2vhrvh � ruhk2;K C 1
2
kŒŒruh��k1;@Kkv2h C �k2;@K

�
hK


1;K
2;K

	1
2

C
ı
K;˝˙

D

	A

�kuh � gh.tk/k2;K C kgh.tk/� g.tk/k2;K
�

C 1

2;K

h
kv2h � Ph.v2h/k1;K kruhk2;K C jKj

1=2 h2K
	A

juh � gh.tk/j1;1;K
i
;

�BK.uh; vh/ D k.jruhj2 C 1
4"
/vh � 1

4"
k2;K C "

2
kŒŒrvh��k2;@K

�
hK


1;K
2;K

	1
2

C ıK;crk�1

	B
kvhk2;K C h2K


2;K

h
k jruhj2 C 1

4"
k2;K C jKj

1
2 ıK;crk�1

	B

i
jvhj1;1;K ;



Anisotropic Meshes for Brittle Fracture: Parameter Sensitivity 297

and the weight

!K.w/ D
hP2

iD1 
2i;K.rTi;KG�K .w/ri;K/
i1=2 8w 2 H1.˝/;

where ıK;$ is the Kronecker symbol associated with $ , such that ıK;$ D 1 if
K \ $ ¤ ; and ıK;$ D 0 otherwise; G�K 2 IR2�2 is the symmetric positive
semidefinite matrix with entries ŒG�K .w/�i;j D

R
�K

�
@w=@xi

� �
@w=@xj

�
dx, i D

1; 2, and with �K D fK 0 2 Th W K 0 \ K ¤ ;g the patch of elements associated
with K; ŒŒwh�� D Œ@wh=@n� on Eh \˝ and ŒŒwh�� D @wh=@n on Eh \ @˝ is the jump
of the normal derivative of wh 2 Xh.
The standard notation k � kk;p;$ is adopted to denote the norm in the Sobolev space
W k;p.$/, with $ � IRd for d D 1; 2 and where k is omitted when zero.

Proposition 1 Let .uh; vh/ 2 Xh �Xh be the critical point of IMAT
k;h . Let us assume

that #�K � N and that diam.T �1K .�K// � C�. Then, for all '; 2 H1.˝/,
there exists a constant C D C.N ; C�/ such that

j.IMAT
k;h /0.uh; vhI'; /j � C

X

K2Th

˚
�AK.vh; uh/ !K.'/C �BK.uh; vh/ !K. /

�
: (5)

For the proof of this proposition, we refer to [2]. We just observe that an
important role is played by the anisotropic estimates for the Clément quasi-
interpolant [7]. The actual a posteriori error estimator, say �MAT, involved in the
adaptive procedure coincides with the right-hand side of (5) after replacing ' and  
with uh and vh, respectively, and taking C D 1.

3 An Optimize-and-Adapt Algorithm

The minimization of the functional IMAT
k;h is not a trivial task since the functional is

not convex. However, in [3] a first strategy to deal with it is proposed and further
analyzed in [4]. The idea is to resort to a Gauss-Seidel-like algorithm consisting
of a two-step procedure, first minimizing with respect to uh for a fixed vh, and
then to minimize also with respect to vh using the updated uh. Moving from this
idea, in [2] we couple this optimization step with an anisotropic mesh adaptation
procedure in two different ways. In particular, following [7], we employ a metric-
based approach relying on estimate (5) with the aim of minimizing the number of
mesh elements for a fixed tolerance REFTOL� 1 on �MAT. The first algorithm,
optimize-then-adapt, in [2], which is a variant of ALGORITHM 1 in [4], applies
the mesh adaptation after convergence of the minimization algorithm on both uh
and vh. Since the coupling between optimization and adaptation is not so tight, this
algorithm is weak in the presence of a fast evolution of a crack. As a remedy, in
the second algorithm, optimize-and-adapt, we introduce a closer alternation of the
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optimization and mesh adaptation phases, by adapting the mesh just after two steps
of the Gauss-Seidel algorithm without waiting for convergence.

In more detail, after fixing a termination tolerance VTOL� 1 for the mini-
mization algorithm, a relative tolerance MESHTOL� 1 on the change of the mesh
cardinality, the optimize-and-adapt algorithm is the following:

Algorithm 3.1: Optimize-and-adapt algorithm

1. Set k D 0, T .1/

h D Th ;
2. If k D 0, set v1h D 1; else v1h D vh.tk�1/;
3. Set i D 1; errmesh D 1; errD 1;
while errmesh � & err � do

4. uih D arg min
zh2X

.i/
h

IMAT
k;h .zh; vih/;

5. viC1
h D arg min

zh2X
.i/
h

IMAT
k;h .uih; zh/;

6. Build the metric-based adapted mesh T
.iC1/

h with tolerance ;

7. errD kviC1
h � vihk1;˝ ;

8. errmesh D j#T .iC1/

h � #T .i/

h j=#T .i/

h ;

9. Set v1h D ˘i!iC1.v
iC1
h /;

10. i  i C 1;
end while
11. uh.tk/ D ˘i�1!i .ui�1

h /; vh.tk/ D v1h; T k
h D T

.i/

h ;

12. Set T .1/

h D T k
h ;

13. k k C 1;
14. if k > n, stop; else goto 2.

An interpolation step between two successive adapted meshes is employed before
restarting any new optimization or time loop. This is carried out by a suitable
interpolation operator, ˘j!jC1.wh/, which maps a finite element function wh
defined on T

j

h onto the new mesh T
jC1
h . The convergence of the mesh adaptivity is

checked by monitoring the change of the number of elements, which is an effective
stopping criterion though not rigorously sound.

4 Sensitivity Assessment

In this section we carry out a sensitivity analysis of the optimize-and-adapt
algorithm to its main parameters. The test case used for this purpose is the curved
crack configuration studied in [2, 4].
We consider a rectangle ˝ D .0; 2/ � .0; 2:2/ including the slit f1g � Œ1:5; 2:2�,
2 � 10�5 wide, and a circular hole of radius 0:2 and center at .0:3; 0:3/ (see Fig. 1
(left)). In (2) we choose˝D� D .0; 1/� .2; 2:2/ and˝DC D .1; 2/� .2; 2:2/. The
default values for the parameters are " D 2 � 10�2, � D 10�5, 	A D 	B D 10�5,
�t D 10�2, CRTOL D 3 � 10�4, VTOL D 2 � 10�3, ADAPTOL D 10�2, and
REFTOL D 10�2. In Fig. 1 we show the anisotropic mesh yielded by the algorithm
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ΓD

Ω

ΩD− ΩD+

Fig. 1 Computational domain (left), final anisotropic adapted mesh (center), zoom in (right) for
the default parameters

Fig. 2 Sensitivity to the penalty constants: colour plot of the vh-field for 	A D 	B D 10�4 (left),
	A D 	B D 5 � 10�5 (center), 	A D 	B D 10�5 (right)

at the final time T D 1:43 along with a detail around the crack. The number of
the elements and the maximum aspect ratio maxK2Th 
1;K=
2;K are 15;987 and
3:06 �103, respectively. The first series of tests check on the sensitivity to the penalty
constants 	A D 	B , by choosing three pairs of values, i.e., 10�4, 5 � 10�5, 10�5.
From Fig. 2, it is evident that the higher the values of these constants, the larger
is the deviation of the crack path with respect to the one assumed as default. In
particular, with the first two choices the crack even misses the hole. The two meshes
yielding the straight path consist of fewer elements (12;027 and 12;628) than the
default mesh in Fig. 1.

The second trial of checks deals with the sensitivity to the tolerance REFTOL
involved in the mesh adaptation procedure. We choose both a larger and a smaller
value with respect to the default, namely REFTOLD 10�1 and REFTOLD 8 � 10�3.
The associated vh-field are displayed in Fig. 3. The largest value leads to a wrong
path detection with only 8;547 triangles, whereas the choice REFTOLD 8 � 10�3
identifies essentially the same path as the default one, but with an excessive number
of elements (23;521). Thus, it seems that too small a tolerance just increases the
computational effort without improving the crack path tracking.
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Fig. 3 Sensitivity to REFTOL: plot of the vh-field for REFTOLD 10�1 (left), REFTOLD 10�2

(center), REFTOLD 8 � 10�3 (right)

Fig. 4 Plot of the vh-field for REFTOLD 10�1 (left), REFTOLD 10�2 (center), and adapted mesh
for t D 1:43 and REFTOLD 10�2 (right)

The last batch of tests assesses the behaviour of the optimize-and-adapt algorithm
for a different value of ", i.e., " D 5�10�2. We observe that " controls the width of the
crack. As expected, the larger value of " widens the crack boundaries (compare the
thickness of the crack in Figs. 3 and 4). Moreover, also the crack trajectory changes
considerably. For " D 5 � 10�2 the crack suddenly turns left entering directly the
hole, independently of the two chosen tolerances REFTOLD 10�1, 10�2. Although
from a physical viewpoint the behavior seems correct, the bending of the actual path
occurs too early and the crack leaves the hole downward instead to the left. A cross-
comparison between Figs. 3 and 4 leads to argue that for " D 5 � 10�2 the value of
REFTOL is not so crucial in identifying the actual path of the crack.

The assessment above seems to confirm that there is an actual sensitivity of the
crack behaviour to the parameters involved in both the MAT functional and in the
optimize-and-adapt algorithm. The employment of an anisotropic mesh adaptation
seems strategical to explore the possible scenarios to single out the most reliable
one, thanks to the computational saving due to an anisotropic grid.
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Variational Principles for Eigenvalues
of Nonlinear Eigenproblems

Heinrich Voss

Abstract Variational principles are very powerful tools when studying self-adjoint
linear operators on a Hilbert space H . Bounds for eigenvalues, comparison
theorems, interlacing results and monotonicity of eigenvalues can be proved easily
with these characterizations, to name just a few. In this paper we consider gener-
alization of these principles to families of linear, self-adjoint operators depending
continuously on a scalar in a real interval.

1 Introduction

Let A be a self-adjoint operator on a Hilbert space H with scalar product h�; �i,
and denote by 
1 � 
2 � : : : those eigenvalues of A (if there are any), which are
smaller than the minimum of the essential spectrum �ess.A/, each counted according
to its multiplicity. Then 
j can be characterized by three fundamental variational
principles [28], namely by Rayleigh’s principle [19]


j D minfR.x/ W hx; xi i D 0; i D 1; : : : ; j � 1g (1)

where R.x/ WD hAx; xi=hx; xi is the Rayleigh quotient and x1; : : : ; xj�1 is a set of
orthogonal eigenvectors of A (xi corresponding to 
i ), the minmax characterization
by Poincaré [18]


j D min
dimVDj max

x2V;x¤0
R.x/; (2)
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e-mail: voss@tuhh.de

© Springer International Publishing Switzerland 2015
A. Abdulle et al. (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2013, Lecture Notes in Computational Science and Engineering 103,
DOI 10.1007/978-3-319-10705-9_30

305

mailto:voss@tuhh.de


306 H. Voss

and the maxmin principle due to Courant [5], Fischer [9] and Weyl [30]


j D max
dimVDj�1 min

x2V?;x¤0
R.x/ (3)

where V ? WD fx 2H W hv; xi D 0 for every v 2 V g.
The purpose of this paper is to survey generalizations of these principles to the

nonlinear eigenvalue problem

T .
/x D 0 (4)

and to trace the history of these generalizations. Here T .
/, 
 2 J , is a family
of linear self-adjoint and bounded operator on H , and J is a real open interval
which may be unbounded. As in the linear case T .
/ WD 
I � A we call 
 2 J an
eigenvalue of T .�/ if Eq. (4) has a nontrivial solution x ¤ 0 and the solution x is
called a corresponding eigenelement.

We stress the fact that we are only concerned with real eigenvalues in J

although T .�/may be defined on a larger subset of C, and T .�/may have additional
eigenvalues in C n J .

2 Overdamped Problems

To receive generalizations of the variational principles to the nonlinear eigenvalue
problem (4) the Rayleigh quotient R.x/ of a linear problem Ax D 
x has to be
replaced with some functional. We assume that for every x 2 J , x ¤ 0 the real
equation f .
I x/ WD hT .
/x; xi D 0 has at most one solution in J denoted by
p.x/. This defines the so called Rayleigh functional p which obviously generalizes
the Rayleigh quotient for the linear case.

If the Rayleigh functional p is defined on the entire space H n f0g then
the eigenproblem (4) is called overdamped. This term is motivated by the finite
dimensional quadratic eigenvalue problem

T .
/x D 
2MxC 
CxC Kx D 0 (5)

governing the damped free vibrations of a system where M;C;K 2 R
n�n are

symmetric and positive definite matrices corresponding to the mass, the damping
and the stiffness of the system, respectively.

Assume that the damping C D ˛ QC depends on a parameter ˛ � 0. Then for
˛ D 0 the system has purely imaginary eigenvalues corresponding to harmonic
vibrations of the system. Increasing ˛ the eigenvalues move into the left half plane
as conjugate complex pairs corresponding to damped vibrations. Finally they reach
the negative real axis as double eigenvalues where they immediately split and move
into opposite directions.
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When eventually all eigenvalues have become real, and all eigenvalues going
to the right are right of all eigenvalues moving to the left the system is called
overdamped. In this case the two solutions

p˙.x/ D .�˛h QCx; xi ˙
q
˛2h QCx; xi2 � 4hMx; xihKx; xi/=.2hMx; xi/:

of the quadratic equation

hT .
/x; xi D 
2hMx; xi C 
˛h QCx; xi C hKx; xi D 0 (6)

are real, and they satisfy supx¤0 p�.x/ < infx¤0 pC.x/:
Hence, for J� WD .�1; infx¤0 pC.x// Eq. (6) defines the Rayleigh functional

p�, and for JC WD .supx¤0 p�.x/; 0/ it defines the Rayleigh functional pC.
Duffin [6] proved that all eigenvalues 
�1 � : : : 
�n and 
C1 � � � � � 
Cn

are maxmin values of the functionals p� and pC, respectively, and Rogers [20]
generalized it to the finite dimensional overdamped case.

Theorem 1 Let T .
/ 2 R
n�n, 
 2 J be an overdamped family of symmetric matri-

ces depending continuously differentiable on 
 2 J such that hT 0.p.x//x; xi > 0

for every x ¤ 0. Then there are exactly n eigenvalues 
1 � � � � � 
n of T .
/x D 0
in J , and it holds


j D min
dim VDj max

x2V;x¤0
p.x/; j D 1; : : : ; n: (7)

Infinite dimensional overdamped problems were considered first for quadratic
problems .A � 
2B � 
I/x D 0 where A and B are bounded, positive definite
and compact by Turner [22] and Weinberger [27] who proved all three types of
variational characterization by linearization (i.e. taking advantage of the fact that
the quadratic problem is equivalent to a linear self-adjoint eigenproblem), and by
Langer [15] who proved minmax and maxmin characterizations for the quadratic
problem .
2A C 
B C C/x D 0 taking advantage of the theory of J -self-adjoint
operators.

The general overdamped problem was considered by Hadeler [11] who proved
the following minmax and maxmin theorem:

Theorem 2 Let T .
/ W H ! H , 
 2 J be a family of linear self-adjoint and
bounded operators such that (4) is over-damped, and assume that for 
 2 J there
exists �.
/ > 0 such that T .
/C �.
/I is compact.

Let T .�/ be continuously differentiable and suppose that

hT 0.p.x//x; xi > 0 for ever x ¤ 0: (8)
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Let the eigenvalues 
n of T .
/x D 0 be numbered in non-decreasing order
regarding their multiplicities. Then they can be characterized by the following two
variational principles


n D min
dim VDn max

x2V; x¤0
p.x/

D max
dim VDn�1 min

x2V?; x¤0
p.x/:

Moreover, Hadeler [11] generalized Rayleigh’s principle for overdamped problems
proving that the eigenvectors are orthogonal with respect to the generalized scalar
product

Œx; y� WD
8
<

:

h.T .p.x//� T .p.y///x; yi
p.x/ � p.y/ ; if p.x/ ¤ p.y/

hT 0.p.x//x; yi; if p.x/ D p.y/
(9)

which is symmetric, definite and homogeneous, but in general it is not bilinear.
Further generalizations of the minmax and maxmin characterizations were

proved for certain overdamped polynomial eigenproblems by Turner [23], and for
general overdamped problems by Rogers [21], Werner [29], Abramov [1], and
Hadeler [12] who relaxed the compactness conditions on T .�/.

Markus [16] and Hasanov [13] (with a completely different proof) considered
nonoverdamped problems which depended only continuously on the parameter and
they replaced assumption (8) with the condition that hT .
/x; xi is increasing at the
point p.x/ given in condition (A2) of the next section

3 Nonoverdamped Problems

We consider the nonlinear eigenvalue problem (4), where T .
/ W H !H , 
 2 J ,
is a family of self-adjoint and bounded operators depending continuously on the
parameter 
.

We assume that

(A1) For every fixed x 2H , x ¤ 0 the real equation

f .
I x/ WD hT .
/x; xi D 0 (10)

has at most one solution 
 DW p.x/ 2 J .

which defines the Rayleigh functional p of (4) with respect to J , and we denote by
D.p/ �H the domain of definition of p.
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Generalizing the definiteness requirement for linear pencils T .
/ D 
B �A we
further assume that hT .
/x; xi is increasing at the point p.x/, i.e.

(A2) For every x 2 D.p/ and every 
 2 J with 
 ¤ p.x/ it holds that

.
 � p.x//f .
I x/ > 0: (11)

The key to the variational principle in the nonoverdamped case is an appropriate
enumeration of the eigenvalues. In general, the natural enumeration i.e. the first
eigenvalue is the smallest one, followed by the second smallest one etc. is not
reasonable. Instead, the number of an eigenvalue 
 of the nonlinear problem (4)
is inherited from the location of the eigenvalue 0 in the spectrum of the operator
T .
/ based on the following consideration (cf. [26]).

For j 2 N and 
 2 J let

�j .
/ WD sup
V2Sj

min
v2V;v¤0

hT .
/v; vi
hv; vi (12)

where Sj is the set of all j dimensional subspaces of H . We assume that

(A3) If �n.
/ D 0 for some n 2 N and some 
 2 J , then for j D 1; : : : ; n

the supremum in �j .
/ is attained, and �1.
/ � �2.
/ � � � � � �n.
/ are the
n largest eigenvalues of the linear operator T .
/. Conversely, if � D 0 is an
eigenvalue of the operator T .
/, then �n.
/ D 0 for some n 2 N.

Definition 1 
 2 J is an nth eigenvalue of T .�/ if �n.
/ D 0 for n 2 N.

Condition (A3) is satisfied for example if for every 
 2 J the supremum of the
essential spectrum of T .
/ is less than 0. The following stronger condition that for
every 
 2 J there exists �.
/ > 0 such that T .
/ C �.
/I is a compact operator
was used in [11].

The following Lemma proved in [25] (and in [26] for T .
/ depending differen-
tiable on 
) relates the supremum of p on a subspace V to the sign of the Rayleigh
quotient of T .
/ on V .

Lemma 1 Under the conditions .A1/, .A2/ and .A3/ let 
 2 J , and assume that V
is a finite dimensional subspace of H such that V \D.p/ ¤ ;. Then




8
<

:

<

D
>

9
=

;
sup

x2V\D.p/
p.x/ , min

x2V hT .
/x; xi
8
<

:

<

D
>

9
=

;
0 (13)

Proof [25], Lemma 2.4
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Theorem 3 Assume that the conditions (A1), (A2) and (A3) are satisfied. Then the
nonlinear eigenvalue problem T .
/x D 0 has at most a countable set of eigenvalues
in J, and it holds that:

(i) For every n 2 N there exists at most one nth eigenvalue, and the following
characterization holds:


n D min
V2Sn

V\D.p/¤;

sup
v2V\D.p/

p.v/: (14)

(ii) If


n WD inf
V2Sn

V\D.p/¤;

sup
v2V\D.p/

p.v/ 2 J; (15)

then 
n is an nth eigenvalue of (4), and the infimum is attained, i.e. the
characterization (14) holds.

(iii) If there is an m-th and an n-th eigenvalue 
m and 
n in J with m < n, then J
contains a k-th eigenvalue 
k , m < k < n as well, and

infJ < 
m � 
mC1 � � � � � 
n < supJ:

Proof (i) If 
n is an n-th eigenvalue, then �n.
n/ D 0, and

�n.
n/ D max
dimVDn min

x2V; kxkD1
hT .
n/x; xi D min

x2 QV ; kxkD1
hT .
n/x; xi

for the invariant subspace QV corresponding to the n largest eigenvalues of
T .
n/

Hence, minx2V;kxkD1hT .
n/x; xi � 0 for every V with dimV D n, and
(13) implies

sup
x2V\D

p.x/ � 
n D sup
x2 QV\D

p.x/:

Hence, 
n is a minmax value of p.
(ii) Was proved in [26] under the condition that T .
/ depends differentiable on 
.

But the proof uses only the fact that D.p/ is an open set (which follows also
from .A1/ and .A2/ considered here; cf. Lemma 2.3 in [25]) and the analogue
of Lemma 1. So the proof holds also for the continuous case considered here.

(iii) Follows from the continuity of �k.
/ in J (cf. [7]).

Remark 1 We only considered the case that for every 
 2 J the supremum of the
essential spectrum of T .
/ is less than 0. In the same way we obtain for the case
that for every 
 2 J the infimum of T .
/ exceeds 0 a maxinf characterization of
the eigenvalues of T .�/ in J if we replace .A2/ with

(A02) .
 � p.x//f .
I x/ < 0 for every x 2 D.p/ and 
 2 J such that 
 ¤
p.x/.p/
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and .A3/ with

(A03) If �m.
/ WD infV 2Sm maxx2V;x¤0hT .
/x; xi=hx; xi D 0 for some m 2 N

and some 
 2 J , then for j D 1; : : : ; m the supremum in �j .
/ is attained,
and �1.
/ � �2.
/ � � � � � �m.
/ are the m smallest eigenvalues of the linear
operator T .
/. Conversely, if � D 0 is an eigenvalue of the operator T .
/, then
�m.
/ D 0 for some m 2 N.

If the eigenvalues of T .�/ are now enumerated in decreasing order, i.e. 
 2 J is an
mth eigenvalue of T .�/ if �m.
/ D 0 for m 2 N, then 
m can be characterized as


m D max
V2Sm

V\D.p/¤;

inf
v2V\D.p/ p.v/:

In the following we consider only problem (4) under the conditions .A1/, .A2/
and .A3/, although the analogue results also hold under the conditions .A1/, .A02/
and .A03/ with the modified enumeration given above.

If the extreme eigenvalue
1 is contained in J , then the enumeration based on .A3/ is
the natural ordering. For this case Barston [3] proved the minmax characterization
for some extreme real eigenvalues for the finite dimensional quadratic eigenvalue
problem. Abramov [2] and Hasanov [14] derived the minmax and maxmin char-
acterizations for the extreme eigenvalues for pencils of waveguide type, which are
certain quadratic eigenvalues problems depending on two parameters.

For the general T .�/ it can be shown that the eigenspaces corresponding to
eigenvalues in J are contained in D.p/ [ f0g. Hence the minmax characterization
obtains the following form:

Theorem 4 Let the conditions (A1), (A2) and (A3) be satisfied, and assume that

1 D infx2D.p/ p.x/ 2 J; and 
n 2 J for some n 2 N.

If j 2 f1; : : : ; ng and V 2 Sj such that 
j D supx2V\D.p/ p.x/, then V �
D.p/[ f0g, and the characterization of 
j can be replaced with


n D min
V2Sj

V�D.p/[f0g

sup
v2V\D.p/

p.v/: (16)

The generalization of the maxmin characterization of Courant, Fischer and Weyl
is based on the following Lemma which was proved in [24]:

Lemma 2 Let 
 2 J , and let V be a finite dimensional subspace of H such that
V ? \D ¤ ;. Then it holds that




8
<

:

<

D
>

9
=

;
inf

x2V?\D.p/
p.x/ , max

x2V?; kxkD1
hT .
/x; xi

8
<

:

<

D
>

9
=

;
0
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Theorem 5 Assume that the conditions (A1), (A2) and (A3) are satisfied. If there
exists an n-th eigenvalue 
n 2 J of T .
/x D 0, then


n D max
V2Sn�1

V?
\D¤;

inf
v2V?\D

p.v/;

and the maximum is attained by W WD spanfu1; : : : ; un�1g where uj denotes an
eigenvector corresponding to the j -largest eigenvalue �j .
n/ of T .
n/.

Essentially the same variational characterizations of Poincaré and of Courant-
Fischer-Weyl type were derived by Mel’nik and Nazarov [17], where T .
/ is a set
of bounded self-adjoint operators depending continuously differentiable on 
, by
Griniv and Mel’nik [10] for T .
/ D A.
/ � I , where A.
/ is self-adjoint, and
compact, and by Binding, Eschwé and H. Langer [4] for general bounded and self-
adjoint T .
/ depending continuously on 
. Eschwé and M. Langer [8] obtained
these variational characterizations for unbounded operators. In all of these papers
the natural enumeration of the eigenvalues is used, but the dimension of the subspace
in the characterizations is shifted by the number of the largest eigenvalue of T .
1/.

Hadeler [11] proved Rayleigh’s principle for differentiable overdamped prob-
lems. For the continuous case the generalized scalar product (9) has to be modified
for the case p.x/ D p.y/ setting Œx; y� WD hx; yi. Then the generalized scalar
product Œ�; �� becomes discontinuous for p.x/ D p.y/, but the continuity is not
needed in the proof of Rayleigh’s principle which obtains the following form:

Theorem 6 Under the conditions .A1/, .A2/, .A3/ assume that J contains n � 1
eigenvalues 
1 � � � � � 
n (where 
i is an i th eigenvalue) with corresponding Œ�; ��
orthogonal eigenvectors x1; : : : ; xn.

If there exists x 2 D.p/ with Œxi ; x� D 0 for i D 1; : : : ; n then J contains an
.nC 1/th eigenvalue, and


nC1 D inffp.x/ W Œxj ; x� D 0; i D 1; : : : ; ng: (17)
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Tensor Formats Based on Subspaces
are Positively Invariant Sets for Laplacian-Like
Dynamical Systems

Antonio Falcó

Abstract In this note, we show that the set of tensors with bounded rank are
positively invariant sets for linear evolution equations defined by Laplacian-like
operators. In consequence, once a trajectory of the system enters to this class of
set, it will never leave it again.

1 Introduction

The Proper Generalized Decomposition or, in short, PGD is a technique that reduces
calculation and storage cost drastically and presents some similarities with the
Proper Orthogonal Decomposition, in short POD. It was initially introduced for
the analysis and reduction of statistical and experimental data, the a posteriori
decomposition techniques, also known as Karhunen-Loève Expansion, Singular
Value decomposition or Principal Component Analysis, are now used in the context
of model reduction. It is also related with the so-called n-best term approximation
problem. This is one of the main ingredients of PGD framework: the existence of a
best approximation by using a tensor decomposition. We would to point out that this
result is true only for tensors of order two, because the milestone of the proof is the
existence of a best rank-n approximation for this class of tensors. Unfortunately, in
[10], it has been proved that tensors of order 3 or higher can fail to have best rank-n
approximation, that is, it is an ill-posed problem. In consequence, as shown in [6]
only rank-one approximations are available.

On the other hand, it is possible to use a wide class of tensor representations.
In particular, Falcó and Hackbusch [3] have proved the existence of a best
approximation for tensor representations based in subspaces (see also [8] and [4]).
This fact allows to extend the PGD to other type of tensor decompositions.

Mainly, to prove the convergence of a PGD-based algorithm we need to combine
the existence of a best approximation and a greedy algorithm. The idea of using
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greedy algorithms was introduced by Ammar, Mokdad, Chinesta and Keunings [1],
in the context of high-dimensional PDEs. It can be applied to several problems
including, among others, the stationary Fokker-Planck equation of the FENE
bead-spring chain model [9]. Later on, Ammar, Mokdad, Chinesta and Keunings [2]
extend this framework to time-dependent problems. So it seems natural the use of
this methodology to solve dynamical problems despite the fact that its convergence,
in general, is not guaranteed (a recent result in this approach is given in the paper of
Figueroa and Süli [7]).

In order to understand the role of these tensor formats in the dynamical case,
the main goal of this paper is to prove, in a tensor Banach space framework, that
tensor representations based in subspaces constitute sets which are positively time
invariant for a class of dynamical systems related with Laplacian-like operators.

The note is organized as follows. In the next section we introduce some
preliminary definitions and results. Finally, Sect. 3 is devoted to the statement and
proof of the main result.

2 Preliminary Definitions and Results

In the following,X is a Banach space with norm k�k : The dual norm k�k� of X� is

k'k� D sup fj'.x/j W x 2 X with kxk � 1g
D sup fj'.x/j = kxk W 0 ¤ x 2 Xg :

By L .Y;Z/ we denote the space of continuous linear mappings from Y into
Z: The corresponding operator norm is written as k�kZ Y : Let X be a (complex
or) real Banach space and consider one–parameter semigroups of bounded linear
operators T .t/ onX: By this we understand a subset fT .t/ W t 2 R�0g of L .X;X/;

that we usually write by fT .t/gt�0 such that

1. T .0/ D id;
2. T .s C t/ D T .s/ ı T .t/ for all s; t 2 R�0:

Indeed, the map t 7! T .t/ is a homomorphism from the additive semigroup
.R�0;C/ into the multiplicative semigroup .L .X;X/; ı/:

A one–parameter semigroup fT .t/gt�0 is called strongly continuous if the map
t 7! T .t/ is continuous for the strong operator topology on L .X;X/; that is,

lim
t!t0
kT .t/x � T .t0/xk D 0;

holds for all x 2 X and t; t0 2 R�: A one–parameter semigroup fT .t/gt�0 is
strongly continuous if and only if limt!0C T .t/x D x:
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The most important objects associated to a strongly continuous semigroup
fT .t/gt�0 is its infinitesimal generator, which is obtained as follows. Let A 2
L.X;X/ a linear (not necessarily bounded) operator defined by

Ax WD lim
h!0C

T .h/x � x
h

;

if the limit exists and consider its domain

D.A/ WD


x 2 X W lim

h!0C

T .h/x � x
h

exists :

�

ClearlyD.A/ is a linear subspace of X and A W D.A/! X is linear. The following
well-known theorem will be useful.

Theorem 1 Let X be a Banach space. Let A be the generator of a strongly
continuous semigroup fT .t/gt�0 on X: Then the abstract Cauchy problem

d

dt
x.t/ D Ax.t/ x.0/ D x0; (1)

has a unique solution x 2 C 1.R�; X/ for every x0 2 X: Indeed, this solution is
given by

x.t/ D T .t/x0: (2)

Let X be a Banach space. An operatorA 2 L.X;X/ with domainD.A/ is called
closed if D.A/ endowed with the graph norm

kxkA WD kxk C kAxk

becomes a Banach space. Thus, A 2 L.X;X/ is closed if and only if f.x;Ax/ 2
X � X W x 2 D.A/g is closed in X � X; i.e. fxngn2N � D.A/ where xn ! x and
Axn ! y as n ! 1; implies x 2 D.A/ and y D Ax: Let A 2 L.X;X/; we say
that A is closable if the closure of its graph in X �X is the graph of some operator
A 2 L.X;X/: The operator A is called the closure of A: Hence, A is closed if and
only if A D A: It follows easily that A is the restriction of A to D.A/: A core of a
closable operator A is a subset C ofD.A/ such that the closure of the restriction of
A to C is A:

We will say that a set � � X is said to be positively invariant for the dynamical
system (1) if x0 2 � implies that x.t/ 2 � for all time t 2 R�: This means that
once a trajectory of the system enters, it will never leave it again.

Concerning the definition of the algebraic tensor space a

Nd
jD1 Vj gene–rated

from vector spaces Vj .1 � j � d/, we refer to [8]. As the underlying field we
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choose R; but the results hold also for C. The suffix ‘a’ in a

Nd
jD1 Vj refers to the

‘algebraic’ nature. By definition, all elements of

V WD a

dO

jD1
Vj

are finite linear combinations of elementary tensors v DNd
jD1 vj

�
vj 2 Vj

�
: Next,

we introduce the following class of Hilbert spaces.

Definition 1 We say that Vk�k is a Banach tensor space if there exists an algebraic
tensor space V and a norm k�k on V such that Vk�k is the completion of V with
respect a given norm k�k, i.e.,

Vk�k WD k�k
dO

jD1
Vj D a

Od

jD1 Vj
k�k
:

The following notation and definitions, introduced in [3], will be useful. Let
I WD f1; : : : ; d g be the index set of the ‘spatial directions’. In the sequel, the index
sets I nfj g will appear. Here, we use the abbreviations

VŒj � WD a

O

k¤j
Vk , where

O

k¤j
means

O

k2I nfj g
; (3)

Similarly, elementary tensors
N

k¤j v.j / are denoted by vŒj �:
The PGD-Galerkin Method [5] is based in the fact that in a tensor space a typical

representation format is the tensor subspace or Tucker format

u D
X

i2I

ai

dO

jD1
b
.j /
ij
; (4)

where I D I1 � : : : � Id is a multi-index set with Ij D f1; : : : ; rj g; rj � dim.Vj /;

b
.j /
ij
2 Vj

�
ij 2 Ij

�
are basis vectors, and ai 2 R. Here, ij are the components of

i D .i1; : : : ; id /. The data size is determined by the numbers rj collected in the tuple
r WD .r1; : : : ; rd /. The set of all tensors representable by (4) with fixed r is

Tr.V/ WD
(

v 2 V W there are subspaces Uj � Vj such that
dim.Uj / D rj and v 2 U WD a

Nd
jD1 Uj :

)

(5)

Here, it is important that the description (4) with the vectors b.j /i can be replaced

by the generated subspace Uj D spanfb.j /i W i 2 Ij g. By using the definition
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of minimal subspaces in tensor representations [3], it is possible to show for each
v 2 V there exist subspaces Umin

j .v/ � Vj ; where 1 � j � d; satisfying:

(a) v 2 a

Nd
jD1 Umin

j .v/ and

(b) If v 2 a

Nd
jD1 Uj for some subspace Uj � Vj ; where 1 � j � d; then

Umin
j .v/ � Uj for 1 � j � d:

Define rankj v WD dimUmin
j .v/ for 1 � j � d: It allows to introduce the tensor

rank of v 2 V by

rank v WD .rank1 v; : : : ; rankd v/ 2 N
d :

It is possible to extend this definition for every v 2 Vk�k (see [3]). However, for
v 2 Vk�k n V the property that v 2 k�k

Nd
jD1 Umin

j .v/ can be shown only when
Umin
j .v/ belongs to the Grassmannian of Vj for 1 � j � d and the norm k � k is a

uniform cross norm (see Theorem 6.29 in [8]).
Now, we recall the definition of uniform cross norm. Any norm k�k on

a

Nd
jD1 Vj satisfying

�
�
�
Od

jD1 v.j /
�
�
� D

Yd

jD1 kv
.j /kj for all v.j / 2 Vj .1 � j � d/ (6)

is called a cross norm. As usual, the dual norm to k�k is denoted by k�k�. If k�k is a
cross norm and also k�k� is a cross norm on a

Nd
jD1 V �j , i.e.,

�
�
�
Od

jD1 '
.j /
�
�
�
� D

Yd

jD1 k'
.j /k�j for all '.j / 2 V �j .1 � j � d/ ; (7)

k�k is called a reasonable cross norm. A norm k�k is a uniform cross norm if it is a
cross norm (cf. (6)) and satisfies

�
�
�
��

� dO

jD1
Aj

�
.v/

�
�
�
��
�
� dY

jD1
kAj kVj Vj

�
kvk (8)

for all Aj 2 L .Vj ; Vj / .1 � j � d/ and all v 2 a

Nd
jD1 Vj :

3 Statement and Proof of the Main Result

Before state the main result of this note, we introduce the definition of
Laplacian-like operator.
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Definition 2 Let Vj be a Banach space for 1 � j � d: We will say that �A 2
L.V;V/ is a Laplacian-like operator if

�A D
dX

jD1
id1 ˝ idj�1 ˝ Aj ˝ idjC1 ˝ � � � ˝ idd

where Aj 2 L.Vj ; Vj / for 1 � j � d:
Observe that if�A is a Laplacian-like operator, from Lemma 6.11 in [8], we have

D.�A/ D
d\

jD1
D.Aj /˝a VŒj � D a

dO

jD1
D.Aj / :

From now one, we will denote 1 WD .1; : : : ; 1/ 2 N
d : Moreover, we will say that

r � s for r; s 2 N
d if and only if rj � sj for 1 � j � d: The main result of this

paper is the following theorem.

Theorem 2 Assume that Vk�k is a Banach tensor space with a uniform cross norm
k�k and �A 2 L.V;V/ is a Laplacian-like operator such that Aj 2 L.Vj ; Vj / is
the infinitesimal generator of a strongly continuous semigroup fTj .t/gt�0 on the
Banach space Vj ; for 1 � j � d: Then �A is the infinitesimal generator of a
strongly continuous semigroup on Vk�k:Moreover, for each r � 1 the set Tr.V/ is a
positively invariant set for the dynamical system:

d

dt
u.t/ D �Au.t/; u.0/ D u0: (9)

Proof Is a consequence of two lemmas given below.

Lemma 1 Assume that Vk�k D k�k
Nd

jD1 Vj is a Banach tensor space. Let A be
the generator of a strongly continuous semigroup fT .t/gt�0 on Vk�k; and consider
the following abstract Cauchy problem

d

dt
u.t/ D Au.t/; u.0/ D u0: (10)

Assume that T1.V/ is a positively invariant set for the dynamical system (10). Then

rank u.t/ � rank u.0/; (11)

holds for all time t 2 R�; and hence for each r � 1 the set Tr.V/ is also a positively
invariant set for the dynamical system (10).
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Proof Since T1.V/ is positively invariant for the dynamical system (10), if u0 DNd
jD1 u0j 2 T1.V/ then, by Theorem 1, u.t/ D T .t/˝djD1 u0j D ˝djD1uj .t/; for all

time t 2 R�: Now, assume that rank u.0/ D .r1; : : : ; rd /: Then, we can write

u.0/ D
r1X

i1D1
� � �

rdX

idD1
u.0/i1���id

dO

kD1
vik

where u.0/i1���id 2 R for each 1 � i1 � r1; : : : ; 1 � id � rd ; and vik 2 Vk for
1 � k � d: Thus,

u.t/ D T .t/u.0/ D
r1X

i1D1
� � �

rdX

idD1
u.0/i1���id T .t/

 
dO

kD1
vik

!

;

and hence rankj u.t/ � rj ; because rankj T .t/
�Nd

kD1 vik
	
� 1 for 1 � j � d:

Definition 3 Let X be a Banach space and k � k be a norm defined over V: For each
A 2 L .V; X/ we will denote by A 2 L

�
Vk�k; X

�
its unique extension. Recall that

AjV D A:
Observe that if k � k is a uniform cross norm then for all Aj 2 L .Vj ; Vj /

.1 � j � d/ the map
Nd

jD1 Aj belongs to L .Vk�k;Vk�k/.

Lemma 2 Assume that Vk�k D k�k
Nd

jD1 Vj is a Banach tensor space with a uni-
form cross norm k�k and�A be a Laplacian-like operator such thatAj 2 L.Vj ; Vj /
is the infinitesimal generator of a strongly continuous semigroup fTj .t/gt�0 on the
Banach space Vj ; for 1 � j � d: Let us consider

Td .t/ WD
dO

jD1
Tj .t/ 2 L .Vk�k;Vk�k/:

Then fTd .t/gt�0 is a strongly continuous semigroup on Vk�k and the closure of �A

defined on a

Nd
jD1 D.Aj / is its infinitesimal generator.

Proof The proof is by induction on d: Assume first that d D 2: Then it is easy to
verify that fT1.t/˝ T2.t/gt�0 is a semigroup of operators on V1˝k�k V2: The strong
continuity needs to be only verified at t D 0 for an elementary tensor, namely
v1 ˝ v2 2 V1 ˝a V2: To this end observe

kT1.t/v1 ˝ T2.t/v2 � v1 ˝ v2k
� kT1.t/v1 ˝ .T2.t/v2 � v2/k C k.T1.t/v1 � v1/˝ v2k
D kT1.t/v1k1kT2.t/v2 � v2k2 C kT1.t/v1 � v1k1kv2k2:



322 A. Falcó

It implies that limt!0C kT1.t/v1˝T2.t/v2�v1˝v2k D 0; and the strong continuity
holds. Now it remains to show that the infinitesimal generator of fT1.t/˝ T2.t/gt�0
is obtained as the closure of A1˝ id2C id1˝A2 onD.A1/˝a D.A2/: To this end,
take v1 2 D.A1/ and v2 2 D.A2/; then

lim
h!0C

1

h
.T1.t/v1 ˝ T2.t/v2 � v1 ˝ v2/

D lim
h!0C

1

h
.T1.t/v1 ˝ .T2.t/v2 � v2/C .T1.t/v1 � v1/˝ v2/

D v1 ˝ A2v2 C A1v1 ˝ v2:

Since spanfv1 ˝ v2 W v1 2 D.A1/ and v2 2 D.A2/g generates the linear subspace
D.A1/ ˝a D.A2/ of V1 ˝k�k V2 and D.Ai / is dense in Vi for i D 1; 2 we obtain
thatD.A1/˝a D.A2/ is dense in V1˝k�kV2 and invariant under fT1.t/˝ T2.t/gt�0:
Hence it is the core of id1 ˝ A2 C A1 ˝ id2:

Next we proceed inductively. Assume that the theorem is true for d � 1.� 2/;

now we need to show that it is also true for d.� 3/: The strong continuity for t D 0
is not difficult to show. To prove that the infinitesimal generator of fTd .t/gt�0 is
obtained as the closure of �A on a

Nd
jD1 D.Aj / we will use Lemma 3.17 of [3].

To this end write VŒd � WD a

Nd�1
jD1 Vj and consider on VŒd � the uniform cross norm

k � kŒd � given by

kvŒd �kŒd � WD kvŒd � ˝ vdk for some fixed vd 2 Vd ; kvdkd D 1:

Thus fTd�1.t/gt�0 is a strongly continuous semigroup on k�kŒd �
Nd�1

jD1 Vj and the

closure of �.d�1/
A D Pd�1

jD1 id1 ˝ idj�1 ˝ Aj ˝ idjC1 ˝ � � � ˝ idd�1 defined

on a

Nd�1
jD1 D.Aj / is its infinitesimal generator. Since k � k is a uniform cross

norm on VŒd � ˝a Vd we obtain that fTd�1.t/˝ Td .t/gt�0 is a strongly continuous

semigroup on Vk�k and the closure of�.d�1/
A ˝ idd C idŒd � ˝Ad D �A; defined on

a

Nd
jD1 D.Aj / ; is its infinitesimal generator. Since Td�1.t/˝ Td .t/ D Td .t/ the

theorem follows. ut
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Accurate Computations for Some Classes
of Matrices

Juan M. Peña

Abstract A square matrix is called a P -matrix if all its principal minors are
positive. Subclasses of P -matrices with many applications are the nonsingular
totally positive matrices and the nonsingularM -matrices. For diagonally dominant
M -matrices and some subclasses of nonsingular totally nonnegative matrices,
accurate methods for computing their singular values, eigenvalues or inverses
have been obtained, assuming that adequate natural parameters are provided. The
adequate parameters for diagonally dominantM -matrices are the row sums and the
off-diagonal entries, and for nonsingular totally nonnegative matrices are the entries
of their bidiagonal factorization. In this paper we survey some recent extensions of
these methods to other related classes of matrices.

1 Introduction

Recent research in Numerical Linear Algebra has shown that certain classes
of matrices allow us to perform many computations to high relative accuracy,
independently of the size of the condition number. For instance, the computation of
their singular values, eigenvalues or inverses. These classes of matrices are defined
by special sign or other structure and require to know some natural parameters
to high relative accuracy, and they are related to some subclasses of P -matrices.
Let us recall that a square matrix is called a P -matrix if all its principal minors
are positive. Subclasses of P -matrices with many applications are the nonsingular
totally nonnegative matrices and the nonsingular M -matrices. Usually, accurate
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spectral computation (eigenvalues, singular values) or accurate inversion is assured
when an accurate matrix factorization with a suitable pivoting is provided. For
instance, the bidiagonal decomposition in the case of totally nonnegative matrices
(see [17]) or an LDU factorization after a symmetric pivoting in the case of
diagonally dominant matrices (cf. [9, 20]).

In Sect. 2, we survey accurate computations for diagonally dominantM -matrices
and other related classes of matrices. In Sect. 3, we survey accurate computations
for nonsingular totally positive matrices and other related classes of matrices
parametrized by a bidiagonal decomposition.

2 M -Matrices and Diagonal Dominance

Let us start by introducing some classes of matrices used in this section. A real
matrix with nonpositive off–diagonal elements is called a Z–matrix. We say that
a matrix A D .aij/1�i;j�n is row diagonally dominant if, for each i D 1; : : : ; n,
jaiij �Pj¤i jaijj. If AT is row diagonally dominant, then we say that A is column
diagonally dominant. Given a matrix A D .aij/1�i;j�n, its comparison matrix
M .A/ D .mij/1�i;j�n is the Z–matrix defined by mii WD jaiij and mij WD �jaijj
if i ¤ j , 1 � i; j � n. Let us recall that if a Z–matrix A can be expressed
as A D sI � B , with B � 0 and s � �.B/ (where �.B/ is the spectral radius
of B), then it is called an M –matrix. Let us also recall that a Z–matrix A is a
nonsingularM –matrix if and only if A�1 is nonnegative. NonsingularM –matrices
present applications to many fields.

Given an algorithm using only additions of numbers of the same sign, multipli-
cations and divisions, and assuming that each initial real datum is known to high
relative accuracy, then it is well–known that the output of that algorithm can be
computed to high relative accuracy (cf. [8, p. 52]). Moreover, in (well–implemented)
floating point arithmetic high relative accuracy is also preserved even when we
perform true subtractions when the operands are original (and so, exact) data (cf.
p. 53 of [8]).

A crucial tool to derive accurate algorithms for the computation of the singular
values of a matrix is provided by the concept of rank revealing decomposition. Let
us recall that a rank revealing decomposition of a matrix A is defined in [8] as a
decomposition A D XDYT , where X; Y are well conditioned and D is a diagonal
matrix. In [8] Demmel et al. showed that the singular value decomposition can be
computed accurately and efficiently for matrices possessing accurate rank revealing
decompositions.

Let us also recall that an idea that has played a crucial role in some recent works
on accurate computations has been the need to reparametrize matrices belonging
to some special classes. In the class of M –matrices, the natural parameters that
permit obtaining accurate and efficient algorithms are the off–diagonal entries and
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the row sums (or the column sums): see [1,2] and [9], where the class ofM –matrices
row diagonally dominant was considered. Furthermore, the parameters can have a
meaningful interpretation when the matrix arises in a “real” problem. In the field
of digital electrical circuits, the column sums are given by the quotient between the
conductance and capacitance of each node (see [1]).

An algorithm of [2] computed to high relative accuracy the LDU factorization
of an n � n row diagonally dominant M –matrix A when the off–diagonal entries
and the row sums are given. The trick was to modify Gaussian elimination to
compute the off–diagonal entries and the row sums of each Schur complement
without performing subtractions. On the other hand, let us recall that a symmetric
pivoting leading to an LDU-decomposition of A is equivalent to the following
factorization of A: PAPT D LDU, where P is the permutation matrix associated
to the pivoting strategy. Symmetric complete pivoting was used in [9] in order to
obtain well conditionedL and U factors because U is row diagonally dominant and
the off-diagonal entries of L have absolute value less than 1. This factorization is a
special case of a rank revealing decomposition. To implement symmetric complete
pivoting, the algorithm in [9] computes all the diagonal entries and all Schur
complements and this increases the cost in O.n3/ flops with respect to standard
Gaussian elimination. In [20] another symmetric pivoting strategy (called diagonally
dominant pivoting) was used, also with a subtraction-free implementation and
a similar computational cost, but leading to both triangular matrices L and U

column and row diagonally dominant, respectively. In [4], an accurate algorithm for
the same LDU-decomposition of [20], but requiring O.n2/ elementary operations
beyond the cost of Gaussian elimination, is presented. This method is also valid
for diagonally dominant matrices satisfying certain sign patterns: with off–diagonal
entries of the same sign or satisfying a chessboard pattern. The problem of
computing an accurate LDU decomposition of diagonally dominant matrices has
been solved by Ye in [22] (see also [11]). Finally, for a class of n � n nonsingular
almost row diagonally dominant Z-matrices and given adequate parameters, an
efficient method to compute its LDU decomposition with high relative accuracy
is provided in [6]. It adds an additional cost of O.n2/ elementary operations over
the computational cost of Gaussian elimination.

3 Totally Positive Matrices and Bidiagonal Factorizations

Totally positive matrices have all minors nonnegative. They are also called totally
nonnegative matrices and they present many applications in many fields. The
bidiagonal factorizations of these matrices have played a crucial role in their study
and applications since several decades ago (cf. [12] or [21]). More recently, the
bidiagonal factorization has been used to perform accurately many computations
with these matrices (see [17]).
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Let us define bidiagonal matrices L.k/, U .k/ by

L.k/ D

0

B
BB
B
B
B
B
BB
B
B
@

1

0 1
: : :

: : :

0 1

l
.k/

n�k 1
: : :

: : :

l
.k/
n�1 1

1

C
CC
C
C
C
C
CC
C
C
A

; U .k/ D

0

B
BB
B
B
B
B
BB
B
B
@

1 0
: : :

: : :

1 0

1 u.k/n�k
: : :

: : :

1 u.k/n�1
1

1

C
CC
C
C
C
C
CC
C
C
A

;

where k D 1; : : : ; n � 1.
In this section we shall consider matrices with bidiagonal decompositions of the

form presented in the following definition.

Definition 1 Let A be a nonsingular n � n matrix. Suppose that we can write A as
a product of bidiagonal matrices

A D L.1/ � � �L.n�1/DU .n�1/ � � �U .1/; (1)

whereD D diag.d1; : : : ; dn/, and, for k D 1; : : : ; n�1,L.k/ andU .k/ are lower and
upper bidiagonal matrices with unit diagonal respectively, with off-diagonal entries
l
.k/
i WD .L.k//iC1;i and u.k/i WD .U .k//i;iC1, .i D 1; : : : ; n � 1/ satisfying

1. di ¤ 0 for all i ,
2. l .k/i D u.k/i D 0 for i < n � k,

3. l .k/i D 0) l
.k�s/
iCs D 0 for s D 1; : : : ; k � 1 and

u.k/i D 0) u.k�s/iCs D 0 for s D 1; : : : ; k � 1.

Then we denote (1) by BD.A/, a bidiagonal decomposition of A satisfying the
conditions of this definition.

A matrix that can be decomposed in terms of bidiagonal matrices can also admit
many other bidiagonal factorizations (cf. Chapter 6 of [21]). But the next result of
[5] shows that a bidiagonal factorization as in Definition 2.1 is unique.

Theorem 1 If a BD.A/ exists for some matrix A, then it is unique.

The following result provides the unique bidiagonal decomposition of a nonsin-
gular totally positive matrix and it is a consequence of Theorem 4.2 of [15].

Theorem 2 A nonsingular n � n matrix A is totally positive if and only if there
exists a (unique) BD.A/ such that

1. di > 0 for all i ,
2. l .k/i � 0, u.k/i � 0 for 1 � k � n � 1 and n � k � i � n � 1.
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It is well known that, if we have the BD.A/ of a totally positive matrix with
high relative accuracy, then we can perform many computations of A with high
relative accuracy, such as computing its inverse or computing its eigenvalues or
its singular values (cf. [17]). Therefore, the entries of the bidiagonal factorization
(1) are the adequate parameters for nonsingular totally positive matrices. There
are several subclasses of nonsingular totally positive matrices for which this
factorization can be obtained to high relative accuracy (and so, the computations
mentioned previously, too). For instance, Vandermonde positive matrices [10],
Bernstein-Vandermond matrices [18], Said-Ball-Vandermonde matrices [19], Pas-
cal matrices [3] or some rational collocation matrices [7]. The factorization is
obtained through an elimination procedure called Neville elimination and described
below.

Now let us denote by " the vector " D ."1; : : : ; "m/ with "j 2 f˙1g for j D 1;

: : : ; m, which will be called a signature.

Definition 2 Given a signature " D ."1; : : : ; "n�1/ and a nonsingularn�nmatrixA,
we say that A has a signed bidiagonal decomposition with signature " if there exists
a BD.A/ (unique by Theorem 3.2) such that

1. di > 0 for all i ,
2. l .k/i "i � 0, u.k/i "i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

Bidiagonal decompositions satisfying the properties of Definition 2.1 have been
considered in [5] and it was proved that the class of matrices satisfying this definition
contains nonsingular totally positive matrices and their inverses. Moreover, in [5] it
has been shown that if we have the BD.A/ of a matrix with high relative accuracy,
then we can perform many computations ofAwith high relative accuracy, assuming
that A belongs to the class of matrices satisfying the previous definition.

We now present Neville elimination, which provides a constructive way of
obtaining bidiagonal factorizations. Neville elimination is an alternative procedure
to Gaussian elimination to eliminate nonzeros in a column of a matrix by adding to
each row a multiple of the previous one (see [13]). If A is a square matrix of order
n, A D .aij/1�i;j�n this elimination procedure consists of at most n � 1 successive
major steps, resulting in a sequence of matrices as follows:

A D A.1/ ! QA.1/ ! A.2/ ! QA.2/ ! � � � ! A.n/ D QA.n/ D U; (2)

where U is an upper triangular matrix.
On the one hand, QA.t/ can be obtained by a reordering of the rows of the matrix

A.t/, moving the rows with a zero entry in column t to the bottom such that Qa.t/i t D 0
for i � t implies that Qa.t/ht D 0 for 8 h � i . On the other hand, A.tC1/ is obtained
from QA.t/ eliminating nonzeros in the column t below the main diagonal by adding
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an adequate multiple of the i th row to the .i C 1/th for i D n � 1; n � 2; : : : ; t
according to the following formula

a
.tC1/
ij D

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

Qa.t/ij ; if 1 � i � j � t;

Qa.t/ij �
Qa.t/i t
Qa.t/i�1;t

Qa.t/i�1;j ; if t C 1 � i; j � n and Qa.t/i�1;t ¤ 0;

Qa.t/ij ; if t C 1 � i � n and Qa.t/i�1;t D 0;

(3)

for all t 2 f1; : : : ; n � 1g.
The element

pij D Qa.j /ij ; 1 � j � i � n; (4)

is called the .i; j / pivot of Neville elimination of A. The Neville elimination can be
performed without row exchanges if all the pivots are nonzero. The pivots pii are
called diagonal pivots. If all the pivots pij are nonzero then, by Lemma 2.6 of [13],
pi1 D ai1 for 1 � i � n and

pij D detAŒi � j C 1; : : : ; i j1; : : : ; j �
detAŒi � j C 1; : : : ; i � 1j1; : : : ; j � 1� (5)

for 1 � j � i � n. The element

mij D

8
ˆ̂
<

ˆ̂
:

Qa.j /ij

Qa.j /i�1;j
D pij

pi�1;j
; if Qa.j /i�1;j ¤ 0;

0; if Qa.j /i�1;j D 0;
(6)

is called the .i; j / multiplier of Neville elimination of A, where 1 � j < i � n.
Neville elimination characterizes nonsingular totally positive matrices, as the

following result shows. It follows from Theorem 4.2 and p. 116 of [15].

Theorem 3 A matrix A is nonsingular totally positive if and only if the Neville
elimination ofA andAT can be performed without row exchanges, all the mutipliers
of the Neville elimination of A and AT are nonnegative and all the diagonal pivots
of the Neville elimination of A are positive.

Using the previous result as well as results of results of [14] and [15], we
can describe bidiagonal decompositions of nonsingular totally positive matrices
and their inverses in terms of the diagonal pivots and multipliers of their Neville
elimination and the multipliers of the Neville elimination of their transposes.
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Theorem 4 Let A be a nonsingular totally positive matrix. Then A and A�1 admit
factorizations in the form

A�1 D G1G2 � � �Gn�1D�1Fn�1 � � �F1 and A D F n�1 � � �F 1DG1 � � �Gn�1;
(7)

respectively, where Fi and F i , i 2 f1; : : : ; n � 1g, are the lower triangular
bidiagonal matrices given by

Fi D

0

B
B
B
B
BB
B
B
B
BB
B
B
@

1

0 1

: : :
: : :

0 1

�miC1;i 1

�miC2;i 1
: : :

: : :

�mn;i 1

1

C
C
C
C
CC
C
C
C
CC
C
C
A

and

F i D

0

B
B
BB
B
B
B
BB
B
B
B
B
@

1

0 1
: : :

: : :

0 1

miC1;1 1

miC2;2 1

: : :
: : :

mn;n�i 1

1

C
C
CC
C
C
C
CC
C
C
C
C
A

;

Gi and Gi , i 2 f1; : : : ; n � 1g, are the upper triangular bidiagonal matrices whose
trasposes are given by

GT
i D

0

B
B
B
B
BB
B
B
B
B
BB
B
@

1

0 1
: : :

: : :

0 1

� QmiC1;i 1

� QmiC2;i 1
: : :

: : :

� Qmn;i 1

1

C
C
C
C
CC
C
C
C
C
CC
C
A
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and

G
T

i D

0

B
B
B
B
BB
B
B
B
B
BB
B
@

1

0 1
: : :

: : :

0 1

QmiC1;1 1

QmiC2;2 1
: : :

: : :

Qmn;n�i 1

1

C
C
C
C
CC
C
C
C
C
CC
C
A

;

andD the diagonal matrix diag.p11 : : : ; pnn/. The entriesmij, Qmij are the multipliers
of the Neville elimination of A and AT , respectively, and the entries pii are the
diagonal pivots of A.

The results obtained until now assuring accurate computations with some sub-
classes of totally positive matrices have used the multipliers of Neville elimination
as a natural parametrization of the matrices (cf. [3, 7, 10, 16–19]).
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Corrected One-Site Density Matrix
Renormalization Group and Alternating
Minimal Energy Algorithm

Sergey V. Dolgov and Dmitry V. Savostyanov

Abstract Given in the title are two algorithms to compute the extreme eigenstate
of a high-dimensional Hermitian matrix using the tensor train (TT)/matrix product
states (MPS) representation. Both methods empower the traditional alternating
direction scheme with the auxiliary (e.g. gradient) information, which substantially
improves the convergence in many difficult cases. Being conceptually close,
these methods have different derivation, implementation, theoretical and practical
properties. We emphasize the differences, and reproduce the numerical example to
compare the performance of two algorithms.

1 Introduction

Actual problems of science, engineering and society can be so complex that their
mathematical portrait requires more than three dimensions. Quantum world gives
us a perfect example of essentially high–dimensional systems, described by a joint
wavefunction (or density matrix) of all particles. A simple system of d spin- 1

2

particles is an entanglement of O.2d / possible states, and should be described by
the same amount of numbers, that exceeds the capacity of a typical workstation for
d & 30: Even with a brute force of modern supercomputers, standard numerical
methods can not honestly simulate protein–size molecules (d  103–104), since the
complexity and storage explode exponentially with d .

To overcome this problem, known as the curse of dimensionality, we use data-
sparse representations for high-dimensional vectors and matrices, and develop
special algorithms to work with them. Proposed in 1992, the density matrix
renormalization group (DMRG) algorithm [8] and the matrix product states (MPS)
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formalism [2] suggest to represent a wavefunction x in the following tensor-product
form

x D �.x.1/; : : : ; x.d// D
r1X

˛1D1
� � �

rd�1X

˛d�1D1
x.1/˛1 ˝ x.2/˛1˛2 ˝ : : :˝ x.d/˛d�1

; i.e.

x.i1; : : : ; id / D
r1X

˛1D1
� � �

rd�1X

˛d�1D1
x.1/˛1 .i1/x

.2/
˛1˛2

.i2/ : : : x
.d/
˛d�1

.id /:

(1)

In numerical linear algebra this format was re-discovered as the tensor train (TT)
decomposition [5]. A single TT core (or site) x.k/ D Œx

.k/
˛k�1˛k .ik/� is described by

rk�1nkrk numbers, where nk denotes the number of possible states for the k–th
particle (the mode size), and rk is the TT rank (or bond dimension). The total number
of representation parameters scales as O.dnr2/; n  nk; r  rk; and is feasible for
computations with d; n; r . 103:

The DMRG algorithm was originally proposed to find the ground state, i.e.
the minimal eigenpair of a Hermitian matrix A: This problem is equivalent to
the minimization of the Rayleigh quotient QA.x/ D .x;Ax/=.x; x/: Substituting
QA.x/ with JA;b.x/ D .x;Ax/ � 2<.x; b/; and applying the same algorithm, we
can solve linear systems Ax D b with Hermitian positive definite matrices [3]. This
framework can be extended to a broad class of problems.

Since x is a huge high-dimensional vector, the solution is sought in the structured
format (1) with some TT ranks rk; defined a priori or chosen adaptively. The
simultaneous optimization over all sites is a highly nonlinear and difficult problem.
As it is usual in high-dimensional optimization, we substitute it by a sequence of
partial optimizations, each over a particular (small) group of variables. For our
problem, it is natural to group the variables according to the tensor format (1), e.g.
optimize over the components of a single site x.k/ at a time.

The TT format is linear in each site, i.e. x D �.x.1/; : : : ; x.d// D X¤kx.k/;where
X¤k is the .n1 : : : nd /� .rk�1nkrk/ frame matrix, which linearly maps the elements
of x.k/ to the full vector x: This turns every partial optimization into a local problem
of the same type, as the original one,

x.k/? D arg min
x.k/

QA.�.x
.1/; : : : ; x.k/; : : : ; x.d/// D arg min

x.k/
QAk.x

.k//; (2)

whereAk D X�¤kAX¤k is the .rk�1nkrk/�.rk�1nkrk/ reduced matrix, which inher-
its the properties ofA; i.e. is Hermitian. Since the frame matrixX¤k has a structured
TT representation (which is the same as (1) with x.k/ substituted by the identity
matrix), the reduced matrix Ak can be assembled avoiding the exponential costs.
Finally, introducing simple orthogonality conditions for all sites but x.k/; we can
make the whole matrix X¤k orthogonal [7]. As a consequence, Ak becomes better
conditioned than A; and the reduced functional writes QAk.x/ D .x; Akx/=.x; x/

for the ground state problem, and JAk;X�

¤k
b.x/ D .x; Akx/ � 2<.x;X�¤kb/ for the
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Fig. 1 Sequence of low-dimensional optimizations in subspaces X1;X2;X3; : : : (left), and X1;2;

X2;3;X3;4; : : : (right)

linear system. Each local optimization (2) is now a simple problem of tractable size,
that can be solved by classical algorithms of numerical linear algebra.

Each step (2) finds minx2Xk
QA.x/; where the subspace Xk D spanX¤k is

of dimension rk�1nkrk , see Fig. 1 (left). Here and later by spanX we denote the
subspace of columns of a matrix X: If TT ranks are fixed, the local convergence of
such scheme can be analysed using standard methods of multivariate analysis [6].
However, in numerical practice the tensor ranks of the solution are not known in
advance, and fixed-rank optimization with wrong ranks would not be efficient. The
DMRG scheme with variable TT ranks is more advantageous, but the theoretical
analysis is even more difficult.

When we allow TT ranks to grow, the dimensions of subspaces Xk grow as well,
and we can use different strategies to expand the subspaces. Originally, the one-site
DMRG scheme (DMRG1) increased the rank rk by adding (random) orthogonal
vectors to Xk , but this algorithm often got stuck far from the ground state. The
problem was solved using two sites instead of one in the optimization step [8]. The
two-site DMRG algorithm (DMRG2) merges blocks x.k/ and x.kC1/; and solves
the local optimization problem in Xk;kC1 D spanX¤fk;kC1g; see Fig. 1 (right).
Here X¤k;kC1 is the .n1 : : : nd / � .rk�1nknkC1rkC1/ matrix, which has the same
TT representation as (1) with blocks x.k/ and x.kC1/ replaced by the identities.
The DMRG2 converges remarkably well (and is in fact a method of choice) for 1D
systems with short–range interactions, but the cost is approximately n times larger
than in the DMRG1. For systems with long-range interactions two neighboring sites
do not provide sufficient information, and DMRG2 can stagnate as well. To simulate
such systems faster and more accurately, better methods to choose search subspaces
are required.

The gradient direction is central in the theory of optimization methods, and
many algorithms use the gradient or its approximate surrogates. In [9], S. White
proposed the corrected one-site DMRG algorithm (DMRG1c), which adds auxiliary
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direction to improve the convergence and reduce the computational cost, see [9] and
[7, Sect. 6.3] for more details. In this paper we compare the DMRG1c with the
alternating minimal energy (AMEn) algorithm. The AMEn algorithm was recently
proposed in [1] for the solution of linear equations, and the version for the ground
state problem appears immediately when we choose QA.x/ as a target function.
In the next section we compare the ideas and implementation aspects of both
methods and explain the motivation behind AMEn from numerical linear algebra
perspective. In Sect. 3 we reproduce a numerical experiment of S. White from [9],
and demonstrate that AMEn can solve it better than DMRG1c.

2 Comparison of Methods

Both DMRG1c and AMEn combine the local optimization (2) with the step that
injects the auxiliary information. Both algorithms are local, i.e. modify only one
block x.k/ at a time (cf. the non-local “ALS.t C z/” algorithm in [1]). Both methods
sequentially cycle over TT blocks (1; 2; : : : ; d; d � 1; : : :). In the following we
assume that (2) was just solved for x.k/; and consider the step that corrects x.k/

before the optimization passes to the next block x.kC1/: This step does not change
the vector x D �.x.1/; : : : ; x.d// (for AMEn), or perturbs it slightly (for DMRG1c),
and therefore has a minor direct effect on QA.x/: However, it inserts additional
directions to spanX¤kC1; that improves the convergence of QA.x/ to its global
minimum.

It is crucial how exactly the block x.k/ is modified, and which vectors end up in
spanX¤kC1 after that. In the following we discuss these details, which constitute
the main difference between the DMRG1c and the AMEn.

2.1 Which Vector is Targeted: p D Ax vs. z D Ax �QA.x/x

Following the power iteration method, the DMRG1c algorithm of S. White targets
in addition to the solution x the first Krylov vector p D Ax: The AMEn algorithm
uses the gradient direction z D Ax � QA.x/x: In exact arithmetics this makes no
difference, since spanfx; pg D spanfx; zg: In practical computations both p and
z are perturbed by inevitable machine rounding errors, errors of approximation to
the tensor format (1), and additional errors that appear when a surrogate formula
(like [9, Eq. (14)]) is used to speed up the computations. The DMRG1c algorithm
is derived from perturbation arguments, valid in the vicinity of the minimum of
QA.x/: When x approaches the ground state, the angle between x and p D Ax
vanishes, and any perturbation in Ax yields a random new direction. This creates a
certain gap between the theory supporting the DMRG1c, and the practice.

Following the steepest descent algorithm, the AMEn uses orthogonal vectors z
and x; and spanfx; zg is much more stable to perturbations of z: In general, the
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Krylov vectors fx;Ax; A2x; : : :g form an extremely unstable basis, and orthogonal-
ization is crucial. The steepest descent algorithm with z substituted by Qz converges
as long as .Qz; z/ > 0: For the linear systems this fact is elegantly proven in [4], and
the convergence rate of perturbed method is estimated. An eigenvalue counterpart
follows similarly, and the rate of convergence in spanfx; Qzg can be estimated from
the spectral range of A: This makes the approach implemented in the AMEn
algorithm preferable both theoretically and in practice.

2.2 What Is Approximated: Subspace QP vs. Vector Qz

The computation of full vectors p D Ax and z D Ax �QA.x/x is not possible due
to their exponentially large size. Since x and A are both in the TT format, we can
avoid the curse of dimensionality keeping p D Ax and z D Ax�QA.x/x in the TT
format. However, the TT ranks of Ax can be as large as the product of TT ranks of
A and x; that slows down the calculations.

To reduce these costs, S. White suggests in the DMRG1c the following scheme.
The TT format (1) is divided in two parts: left blocks (number 1; : : : ; k) are referred
to as system, and right blocks (kC 1; : : : ; d ) as environment. The TT format for the
matrix A is written accordingly,

A D
X

	1:::	d�1

A.1/	1 ˝ : : :˝ A.k/	k�1	k„ ƒ‚ …
system

˝A.kC1/	k	kC1
˝ : : :˝ A.d/	d�1„ ƒ‚ …

environment

; (3)

or shortly A DP
	 A

<
	 ˝ A>	 : Similarly, Eq. (1) reduces to x DP

˛ x
<
˛ ˝ x>˛ : The

targeting of p D Ax is substituted by the targeting of all p	 D .A<	 ˝ I /x:
Although in general p … [	 spanp	 ; it can be argued that the set fp	g contains

a sufficient subspace information. To show this, we write

p D
X

˛;	

�
A<	 x

<
˛

	
˝
�
A>	 x

>
˛

	
; p	 D

X

˛

�
A<	 x

<
˛

	
˝ x>˛ ; (4)

and consider vectors p and p	 as system-by-environment matrices P and P	 of size
.n1 : : : nk/�.nkC1 : : : nd /:Now spanP � [	 spanP	 DP;whereA>	 contains the
coefficients of the required linear combination—in the exact arithmetics the system-
related components of p belong to P : Each p	 is easier to compute than p; because
it does not depend on the environment part A>	 :

The total dimension of P grows in each step, and to keep TT ranks and
storage moderate, we have to truncate it. The approximation step in the DMRG1c
replaces P with a subspace QP of a smaller dimension, using the classical
singular value decomposition (SVD), or Schmidt decomposition technique. The
dominant subspace QP is spanned by the first singular vectors of the matrix�
X
p
a1P1

p
a2P2 : : :

�
; where all target vectors are concatenated with empirically
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chosen weighting coefficients a	 . The method assumes that the vector p D Ax is
likely to belong to QP :

This assumption makes perfect sense if p is a random sample from P—for a
random u,Xu is more likely to end up in the dominant subspace ofX: However, the
target vector p D Ax does not belong to QP in general, for any choice of weightsp
a	 : The reason is that p depends crucially on A>	 ; whereas this information is

dropped for the sake of faster computations in p	 and hence P and QP . Selecting
A>	 in (4), we may come across any vector in P , even the smallest singular vector.
That is, for each choice of

p
a	 and x there is a counterexample of a Hamiltonian,

for which the slightest truncation of P loses the system-related part of the target
vector p D Ax:

The AMEn approximates z D Ax � QA.x/x into its own TT format using
any compression tool. Either the SVD–based technique, which computes the
approximation Qz 	 z up to any prescribed tolerance ", or a faster (but heuristic)
alternating least squares (ALS) method may be used. In any case, we may generate
an approximation Qz with a desired accuracy, which guarantees the convergence of
the steepest descent method with the imperfect direction Qz: This fact provides the
theoretical bounds for the global convergence rate of the whole AMEn scheme,
similarly to [1].

2.3 How the New Direction Is Used: Averaging vs. Enrichment

The last but not the least detail is how exactly the information about the auxiliary
direction is injected in the algorithm. To show this in isolation from the other
dissimilarities outlined above, we assume that in both methods we target in addition
to x only one vector s: To simplify the presentation we also consider the d D 2

case, and write x DPrx
˛D1 x<˛ x>˛ ; and s DPrs

ˇD1 s<ˇ s>ˇ ; where “<” and “>” denote
the first and the second blocks, respectively.

The DMRG1c algorithm averages the subspaces X D �
x<1 : : : x

<
rx

�
and S D

�
s<1 : : : s

<
rs

�
by computing the dominant subspace spanU of the Gram matrix as

follows, G D XX� C aSS� 	 UU�; where U D �
u<1 : : : u

<
ru

�
: As shown in

the previous subsection, this procedure does not guarantee that x or s ends up
in span.U ˝ I /; unless spanU D span

�
X S

�
: The TT core x< is replaced by

the vectors of U; that introduces a O.
p
a/ perturbation to x and probably worsen

QA.x/: It is clear though that a should vanish when we approach the exact solution,
but the general recipe is not known.

The AMEn avoids the outlined difficulties by merging U D �
X S

�
and zero-

padding the second block. Values of x and QA.x/ are preserved, no rescaling is
required, and both fx; sg 2 span.U ˝ I /: The downside is that we choose ru D
rxC rs each time we expand the subspaces. However, when we use the approximate
gradient direction s D Qz 	 z D Ax � QA.x/x the low-rank Qz usually suffice, e.g.
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with rs 	 rx=2: We can also truncate the TT-ranks at the end of each iteration and
control the perturbation to QA.x/:

3 Numerical Example

Following S. White [9], we consider the spin-1 periodic Heisenberg chain,

A D H1 �H2 CH2 �H3 C : : :CHd�1 �Hd CHd �H1;

Hi D .Hx
i ;H

y
i ;H

z
i /
>; Hi �Hj D Hx

i H
x
j CHy

i H
y
j CH z

i H
z
j ;

H
fx;y;zg
i D I ˝ � � � ˝ I ˝ Sfx;y;zg ˝ I ˝ � � � ˝ I; S in position i;

(5)

where Sfx;y;zg, are the 3� 3 Pauli matrices for spin-1 particles. The number of spins
d is set to 100, i.e. the wavefunction belongs to the 3100-dimensional Hilbert space.
This example is particularly illustrating, since the mismatch between the linear TT
model (1) and the cycle structure of (5) complicates the problem—the solution has
large TT ranks, and both the one– and two–site DMRG converge slowly.

The way how the TT ranks are chosen during the algorithm is also very important.
We first adopt the rank selection strategy from [9], and compare the DMRG2,
the DMRG1c and the AMEn algorithms. The results are shown in Fig. 2 (top
left), which overlays [9, Fig. 3] with the AMEn behavior. In Fig. 2 (top right) the
convergence of 
 D QA.x/ to the reference value 
? D �140:14840390392
(computed in [9] by the DMRG1c with TT ranks 4;000) is given w.r.t. the cumulative
CPU time.

We see that both DMRG methods correctly reproduce the experiment from [9]:
the two-site DMRG stagnates at a high error level, while the corrected DMRG
converges significantly faster. The AMEn method manifests practically the same
efficiency. Since it searches in a larger subspace, it is even more accurate w.r.t.
iterations, but becomes slightly slower during the optimization of inner TT blocks.
However, letting it to increase the ranks (each fourth iteration) yields sharper error
decays.

To release the algorithm from tuning parameter, we prefer to choose the ranks
adaptively to the desired accuracy. With this we also avoid artificial rank limitation,
which pollutes the convergence. Therefore, in the second experiment we use the
same algorithms but perform the truncation of TT blocks via the SVD using the
relative Frobenius-norm accuracies " D 10�3 and " D 10�4. The results are shown
in Fig. 2 (bottom).

We see that when ranks are chosen adaptively, the AMEn rapidly becomes faster
than the other algorithms. Even the DMRG1c stagnates relatively early, since the
correction p	 (4) contaminates the dominant basis of the ground state. Moreover,
since the "-truncation eliminates the correction if a . "2, it is worthless to decrease
the scale a (cf. Fig. 2, top left). Both the adaptivity and speed speak in favour of
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Fig. 2 Error in the eigenvalue vs. iteration (left) and CPU time (right). Methods: AMEn [1],
DMRG1c [9], DMRG2 [8]. Top: parameters depend on iteration as shown on top of the left figure
(ranks and log10.1=a/, resp.). Bottom: a D 10�4, ranks depend on accuracies: " D 10�3 (dashed
lines), "D 10�4 (solid lines)

such truncation: the same accuracy levels are achieved several times faster than in
the fixed-rank experiment (e.g. 10 vs. 100 s. for 
 � 
? 	 10�2 and " D 10�3).
Larger time spent by AMEn in the latter iterations is compensated by a significantly
better accuracy, which is close to the optimal level O."2/.
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Approximating the Matrix Exponential
of an Advection-Diffusion Operator Using
the Incomplete Orthogonalization Method

Antti Koskela

Abstract In this paper we give first results for the approximation of eAb, i.e. the
matrix exponential times a vector, using the incomplete orthogonalization method.
The benefits compared to the Arnoldi iteration are clear: shorter orthogonalization
lengths make the algorithm faster and a large memory saving is also possible. For
the case of three term orthogonalization recursions, simple error bounds are derived
using the norm and the field of values of the projected operator. In addition, an a
posteriori error estimate is given which in numerical examples is shown to work well
for the approximation. In the numerical examples we particularly consider the case
where the operator A arises from spatial discretization of an advection-diffusion
operator.

1 Introduction

An efficient numerical computation of the product eAb for a matrix A 2 C
n�n and a

vector b 2 C
n is of importance in several fields of applied mathematics. For various

applications and numerical methods, see [3].
One large source of problems of this form comes from the implementation of

exponential integrators [5]. These integrators have been shown to be particularly
efficient for ODEs coming from a spatial semidiscretization of semilinear PDEs. In
this case A is usually sparse and has a large norm and dimension. A widely used
approach in this case are Krylov subspace methods, see e.g. [4] and [9].

Krylov subspace methods are based on the idea of projecting a matrix A 2 C
n�n

and a vector b 2 C
n onto a lower dimensional subspace Kk.A; b/ defined by

Kk.A; b/ D spanfb;Ab;A2b; : : : ; Ak�1bg:
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The Arnoldi iteration performs a Gram–Schmidt orthogonalization for this subspace
and gives an orthonormal matrix Qk D Œq1; : : : ; qk� 2 C

n�k which provides a basis
of Kk.A; b/, and a Hessenberg matrix Hk D Q�kAQk 2 C

k�k , which represents
the action of A in the subspace Kk.A; b/. If A is Hermitian or skew-Hermitian,Hk

will be tridiagonal and we get the Lanczos iteration. Moreover, the recursion

AQk D QkHk C hkC1;kqkC1eT
k

holds, where hkC1;k denotes the corresponding entry in HkC1 and ek is the kth
standard basis vector in C

k .
Using the basis Qk and the Hessenberg matrix Hk , the product eAb can be then

approximated as (see e.g. [9])

eAb 	 QkeHke1kbk:

In case that A is not (skew-)Hermitian the Arnoldi iteration has to be used. The
drawback of this approach is that the orthogonalization recursions grow longer
which slows down the iteration, and that it needs increasingly memory as k grows.
As a remedy for this the restarted Krylov subspace method has been proposed [2].

The objective of this paper is to show that the incomplete orthogonalization
method is a good alternative for approximating the product eAb for nonnormal
matrices A when long orthogonalization recursions should be avoided. The method
has been considered before for eigenvalue problems [7] and for solving linear
systems [8]. As the numerical experiments and the short analysis of this paper show,
it also provides a good alternative for approximating the matrix exponential.

1.1 Class of Test Problems

A reasonable example of nonnormal large and sparse matrices is obtained from the
spatial discretization of the 1-d advection-diffusion equation

@tu D �@xxuC ˛@xu: (1)

Choosing Dirichlet boundary conditions on the interval Œ0; 1� and performing the
discretization using central finite differences gives the ordinary differential equation
y0 D Ay, where the operator is the form A D ��n C ˛rn 2 R

n�n with

�n D 1

.�x/2

2

6
6
6
6
6
4

�2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

3

7
7
7
7
7
5
; rn D 1

2�x

2

6
6
6
6
6
4

�1
1 �1
: : :

: : :
: : :

1 �1
1

3

7
7
7
7
7
5
; (2)
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where�x D 1=.nC 1/. We define the grid Péclet number

Pe D ˛�x

2�

as in the numerical comparisons of [1]. By the Péclet number the nonnormality of
A can be controlled.

Throughout the paper, h�; �i denotes the Euclidean inner product and k�k denotes
the corresponding norm or its induced matrix norm. The Hermitian part of a matrix
A is defined asAH D .A�CA/=2, and the skew-Hermitian part asAS D .A��A/=2.

2 The Incomplete Orthogonalization Method

In the incomplete orthogonalization method (IOM) (see e.g. [7]), Aqi is orthog-
onalized at step i only against m previous vectors fqi�mC1; : : : ; qi g instead of
all the previous basis vectors. The coefficients hij are collected as in the Arnoldi
iteration. The incomplete orthogonalization method with orthogonalization length
m is denoted as IOM(m) for the rest of the paper. As a result of k steps of IOM(m)
we get the matrix

Qk;m D
�
q1 : : : qk

�

giving the basis of Kk.A; b/, where q1 D b=kbk, and the vectors qi are orthogonal
locally, i.e.,

hqi ; qi i D 1;
hqi ; qj i D 0; if ji � j j � m; i ¤ j:

The iteration also gives a Hessenberg matrix with an upper bandwidth lengthm,

Hk;m WD

2

6
6
6
6
66
6
4

h11 : : : h1m 0

h21
: : :

: : :

: : :
: : : hk�mC1;k
: : :

: : :
:::

0 hk;k�1 hkk

3

7
7
7
7
77
7
5

; (3)

where the nonzero elements are given as

hij D hAqj ; qi i:
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We can see that by construction the following relation holds

AQk;m D Qk;mHk;m C hkC1;kqkC1eT
k : (4)

It is easy to verify that if dimKk.A; b/ D k, then Kk.A; b/ � R.Qk;m/, where
R.Qk;m/ denotes the range of Qk;m. However, if it happens that R.QkC1/ D
R.Qk/, the subdiagonal element hk;kC1 will not necessarily be zero like in the case
of the Arnoldi iteration.

2.1 Polynomial Approximation Property

Using (4) recursively we see that for 0 � j � k � 1

AjQk;m D Qk;mH
j

k;m C
j�1X

iD0
ci e

T
k�i

for some vectors ci . Multiplying this by e1 from the right side, we see that for
0 � j � k � 1 it holds

Aj b D Qk;mH
j

k;me1kbk:

This results as the following lemma.

Lemma 1 Let A 2 C
n�n and let Qk;m, Hk;m be the results of k steps of IOM(m)

applied to A with starting vector b. Then for any polynomial pk�1 of degree up to
k � 1 the following equality holds:

pk�1.A/b D Qk;mpk�1.Hk;m/e1kbk:

This leads us to make the approximation

eAb 	 Qk;meHk;me1kbk: (5)

By Lemma 1, the error �k of this approximation is given as

�k D
1X

`Dk

A`

`Š
b �Qk;m

1X

`Dk

H`
k;m

`Š
e1kbk: (6)
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3 Bounds for the Error

To bound the error (6), we consider bounds using the norm and the field of values
of the Hessenberg matrix Hk;2.

Using the representation (see also the analysis of [9])

1X

`Dk

x`

`Š
D xk

1Z

0

e .1�/x
k�1

.k � 1/Š d

and the bound keAk � e�.A/, where �.A/ is the numerical abscissa of A, i.e., the
largest eigenvalue of AH (see [3, Thm. 10.11]), we get the bound

k�kk � e�.A/kAkk C e�.Hk;m/kQk;mkkHk;mkk
kŠ

kbk: (7)

Note that in the case of the advection-diffusion operator (2), �.A/ � 0.
In (7) the norm kQk;mk cannot be bounded, in general. In numerical experiments

kQk;mk was found to stay of order 1 for advection-diffusion operators of the form
(2) for all values of n, Pe, k andm. A discussion on the effect of the parameterm to
the size of kQk;mk can be found in [8].

In the same way as in the analysis of [9], it can be shown that

Qk;meHk;me1kbk D p.A/b;

where p is the unique polynomial that interpolates the exponential function in the
Hermite sense at the eigenvalues of Hk;m. Then, if the field of values F .Hk;m/ can
be bounded with respect to F .A/, the superlinear convergence of the approximation
can be shown in the same way as in the proof of [2, Thm. 4.2] for the case of the
restarted Krylov method.

When viewing the incomplete orthogonalization method as an oblique projection
method [8], also the results [4, Lemma 7 and 8] can be applied.

3.1 Bounds for the Field of Values and the Norm of Hk;2

In this subsection we show how to bound the norm and the field of values of the
Hessenberg matrixHk;2, i.e., for the case of IOM(2). The field of values of a matrix
A 2 C

n�n is defined as

F .A/ D fx�Ax W x 2 C
n; kxk2 D 1g:

We first give the following auxiliary lemma.
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Lemma 2 Let A 2 C
n�n be normal, and let the 0-field of values be defined as

F0.A/ D fhx;Ayi W hx; yi D 0 ; kxk D kyk D 1g:

Then,

F0.A/ D fz 2 C W jzj � rg; where r D 1

2
max


i ;
j2�.A/
ˇ
ˇ
i � 
j

ˇ
ˇ :

Proof Since A is normal, it is unitary similar to a diagonal matrix with the
eigenvalues of A on the diagonal, A D U�U �. Let x; y 2 C

n�n such that
hx; yi D 0 ; kxk D kyk D 1. Then hx;Ayi D hU �x; .� � cI /U �yi for all
c 2 C. By choosing c to be the center of the smallest disc containing �.A/, and by
using the Cauchy–Schwartz inequality, we see that

jhx;Ayij � k� � cIk � 1

2
max


i ;
j 2�.A/
ˇ
ˇ
i � 
j

ˇ
ˇ :

By choosing x D ui =
p
2C uj =

p
2 and y D ui =

p
2 � uj =

p
2, where ui and uj are

eigenvectors of A corresponding to eigenvalues 
i and 
j , we see that

hx;Ayi D 1

2
.
i � 
j /:

Thus, the inequality above is sharp. Since F0.A/ is a disc centered at the origin [6],
the claim follows. ut
Using Lemma 2, we may now obtain a bound for the field of values of Hk;2.

Theorem 1 Let A 2 C
n�n and let Hk;2 be the Hessenberg matrix obtained after k

steps of IOM(2) applied to A. Then it holds that

F .Hk;2/ � f z 2 C W d.z;F .A// � 1
2
.kAHk C kASk/ g:

Proof First, we extend Hk;2 to a matrix QH 2 C
.kC2/�.kC2/ by adding zeros such

that

QH D

2

6
4

0 : : : 0
::: Hk;2

:::

0 : : : 0

3

7
5

and set q0 D qkC1 D 0. It clearly holds that F .Hk;2/ � F . QH/.
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Let x D �x0 : : : xkC1
�T 2 C

kC2, kxk D 1. Then, by inspecting (3), we see that

x� QHx D 1

2

kX

iD0


xi
xiC1

��  hAqi ; qi i hAqiC1; qi i
hAqi ; qiC1i hAqiC1; qiC1i

� 
xi
xiC1

�

C 1

2

k�1X

iD1


xi
xiC1

�� 
0 hAqiC1; qi i

hAqi ; qiC1i 0

� 
xi
xiC1

�
:

(8)

Due to the local orthogonality of the basis vectors fqig and the convexity of F .A/,
we see that the first term of (8) is in F .A/. For the second term, we split A D
AH C AS and use the Lemma 2 to see that

ˇ̌
ˇ
ˇ
ˇ


xi
xiC1

�� 
0 hAqiC1; qi i

hAqi ; qiC1i 0

� 
xi
xiC1

�ˇ̌
ˇ
ˇ
ˇ
� jxi j jxiC1j .kAHk C kASk/:

By the inequality
Pk�1

iD1 jxi j jxiC1j �
Pk

iD1 jxi j2, the claim follows. ut
Using Lemma 2 we now obtain also a bound for kHk;2k.
Theorem 2 Let A 2 C

n�n and let Hk;2 be the Hessenberg matrix obtained after k
steps of IOM(2) applied to A. Then it holds that

kHk;2k � r.A/C 1
2
.kAHk C kASk/;

where r.A/ D max
z2F .A/

jzj.

Proof Let x 2 C
n, kxk D 1. Then for 1 < i < k it holds that

.Hk;2x/i D xi hAqi ; qi i C hAqi ; .xi�1qi�1 C xiC1qiC1/i:

By using the triangle inequality, splitting A D AH C AS, local orthogonality of the
vectors fqi g and Lemma 2, the claim follows. ut
Although we consider in the analysis of F .Hk;m/ and kHk;mk, and also in the
numerical comparisons only the casem D 2, we note that in numerical experiments
the approximation (5) was found to improve for increasingm.

4 A Posteriori Error Estimate

An a posteriori error estimate follows from the relation (4) and can be derived in the
same way as the estimate for the Arnoldi iteration, see [9, Thm. 5.1].
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Theorem 3 The error produced by the incomplete orthogonalization method
of eAb satisfies the expansion

eAb �Qk;m exp.Hk;m/e1 D hkC1;k
1X

`D1
eT
k '`.Hk;m/e1A

`�1qkC1;

where '`.z/ D P1
kD0 zk

.kC`/Š . In numerical experiments we estimate the error using
the norm of the first term, i.e. by using the estimate

k�kk 	 hkC1;k
ˇ
ˇeT
k'1.Hk;m/e1

ˇ
ˇ ; (9)

which can be obtained with small computational cost by computing the exponential
of

QHm D

Hk;m e1

0 0

�
; since e QHm D


eHk;m '1.Hk;m/e1

0 1

�
:

5 Numerical Examples

For the first example, we take A D ��n C ˛rn 2 R
n�n, where �n and rn are as

in (2). The vector b is taken as a discretization of the function u0.x/ D 16..1 �
x/x/2; x 2 Œ0; 1�. We set n D 400 and � D 1, and consider the cases of a weak
advection and a strong advection. We approximate the product ehAb using IOM(2)
and compare it with the standard Arnoldi iteration and the restarted Krylov method
with restarting interval 3. We also compute the estimate (9) for IOM. Figure 1 shows
the convergence of the three methods.
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Fig. 1 Left: hD 3 � 10�4, PeD 6:2 � 10�3. Right: hD 2 � 10�4, PeD 10:0
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Fig. 2 Left: hD 1 � 10�3, PeD 6:2 � 10�3. Right: hD 6 � 10�4, PeD 1:3 � 10�1

In the second example, A, n and � are as above, and b is taken randomly. We
compare the methods using larger h for the cases of a weak advection and a mild
advection. Figure 2 shows the convergence of the three methods.

The differences in the computational costs come mainly from the differences in
the lengths of the orthogonalization recursions, the Arnoldi iteration taking O.k2/
and the other two methods O.k/ inner products. In these numerical examples, the
Arnoldi iteration was for k D 50 about 4 times slower and for k D 100 about 8
times slower than the other two methods.
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On the Convergence of Inexact Newton Methods

Reijer Idema, Domenico Lahaye, and Cornelis Vuik

Abstract A solid understanding of convergence behaviour is essential to the design
and analysis of iterative methods. In this paper we explore the convergence of
inexact iterative methods in general, and inexact Newton methods in particular. A
direct relationship between the convergence of inexact Newton methods and the
forcing terms is presented in both theory and numerical experiments.

1 Introduction

Inexact Newton methods [1] are Newton-Raphson methods in which the Jacobian
system �J .xi / si D F .xi / is not solved to full accuracy. Instead, in each Newton
iteration the Jacobian system is solved such that

krik
kF .xi /k � �i ; (1)

where ri is the residual vector:

ri D F .xi /C J .xi / si : (2)

The values �i are called the forcing terms. Over the years a great deal of research
has gone into finding good values for �i , such that convergence is reached with the
least amount of computational work. One of the most frequently used methods to
calculate �i is that of Eisenstat and Walker [3].

In this paper, we further study the relationship between the convergence of
inexact Newton methods and the choice of forcing terms. We show, both in theory
and numerical experiments, that if the iterate xi is close enough to the solution, in
iteration i the Newton method converges in some norm with a factor .1C ˛/ �i , for
arbitrarily small ˛ > 0.
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2 Convergence of Inexact Iterative Methods

Assume an iterative method that, given current iterate xi , has some way to determine
a unique new iterate OxiC1. If instead an approximation xiC1 of the exact iterate OxiC1
is used to continue the process, we speak of an inexact iterative method. Inexact
Newton methods are examples of inexact iterative methods. Figure 1 illustrates a
single step of an inexact iterative method.

Assume that the solution x�, and the distances "c , "n, and O" to the solution are
unknown, but that the ratio ın

ıc
can be controlled. In inexact Newton methods this

ratio is controlled using the forcing terms. The aim is then to have an improvement
of the controllable error impose a similar improvement on the distance to the
solution, i.e., that for some reasonably small ˛ > 0

"n

"c
� .1C ˛/ ı

n

ıc
: (3)

Define 	 D O"
ıc
> 0, then we can write

max
"n

"c
D ın C O"
jıc � O"j D

ın C 	ıc
j1 � 	 j ıc D

1

j1 � 	 j
ın

ıc
C 	

j1 � 	 j : (4)

Therefore, to guarantee that xiC1 is closer to the solution than xi , it is required that

1

j1 � 	 j
ın

ıc
C 	

j1 � 	 j < 1,
ın

ıc
C 	 < j1 � 	 j , ın

ıc
< j1 � 	 j � 	: (5)

If 	 � 1 this would mean that ı
n

ıc
< �1, which is impossible. Therefore, to guarantee

a reduction of the distance to the solution, we need

ın

ıc
< 1 � 2	 , 2	 < 1 � ı

n

ıc
, 	 <

1

2
� 1
2

ın

ıc
: (6)

Equation (4) implies that as 	 goes to 0, max "n

"c
more and more resembles ın

ıc
.

Figure 2 clearly shows that making ın

ıc
too small leads to oversolving, as there is

hardly any return of investment any more. Note that if the iterative method converges
to the solution superlinearly, then 	 goes to 0 with the same rate of convergence.
Thus, for such a method ın

ıc
can be made smaller and smaller in later iterations

Fig. 1 Inexact iterative step
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Fig. 2 Plots of equation (4) on a logarithmic scale, for several values of 	 . The horizontal axis
shows the number of digits improvement in the distance to the exact iterate, and the vertical
axis depicts the resulting minimum digits improvement in the distance to the solution, i.e.,
dı D � log ın

ıc
and d" D � log

�
max "n

"c

�

without significant oversolving, This is in particular the case for inexact Newton
methods, as convergence is quadratic once the iterate is close enough to the solution.

When using an inexact Newton method ın

ıc
D kxiC1�OxiC1k

kxi�OxiC1k is not known, but the

relative residual error krik
kF.xi /k D

kJ .xi /.xiC1�OxiC1/k
kJ .xi /.xi�OxiC1/k , which is controlled by the forcing

terms �i , can be used as a measure for it. In the next section, this idea is formalized
in a theorem that is a variation on Eq. (3).

3 Convergence of Inexact Newton Methods

Consider the nonlinear system of equations F .x/ D 0, where:

• There is a solution x� such that F .x�/ D 0,
• The Jacobian matrix J of F exists in a neighbourhood of x�,
• J .x�/ is continuous and nonsingular.

In this section, theory is presented that relates the convergence of the inexact
Newton method for a problem of the above form directly to the chosen forcing
terms. The following theorem is a variation on both Eq. (3), and on the inexact
Newton convergence theorem presented in [1, Thm. 2.3].

Theorem 1 Let �i 2 .0; 1/ and choose ˛ > 0 such that .1C ˛/ �i < 1. Then there
exists an " > 0 such that, if kx0 � x�k < ", the sequence of inexact Newton iterates
xi converges to x�, with

kJ �x�� �xiC1 � x��k < .1C ˛/ �ikJ
�
x�� �xi � x��k: (7)
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Proof Define

� D maxŒkJ �x��k; kJ �x���1k� � 1: (8)

Recall that J .x�/ is nonsingular. Thus � is well-defined and we can write

1

�
kyk � kJ �x�� yk � �kyk: (9)

Note that � � 1 because the induced matrix norm is submultiplicative.
Let

	 2
�
0;
˛�i

5�

�
(10)

and choose " > 0 sufficiently small such that if ky � x�k � �2" then

kJ .y/� J �x��k � 	; (11)

kJ .y/�1 � J �x���1k � 	; (12)

kF .y/� F
�
x�� � J �x�� �y � x��k � 	ky � x�k: (13)

That such an " exists follows from [6, Thm. 2.3.3 & 3.1.5].
First we show that if kxi � x�k < �2", then Eq. (7) holds. Write

J
�
x�� �xiC1 � x�� D

h
I C J �x��

�
J .xi /

�1�J �x���1
	i
� Œri C

�
J .xi /�J

�
x��� �xi�x�� � �F .xi /�F

�
x���J �x�� �xi�x���� : (14)

Taking norms gives

kJ �x�� �xiC1 � x��k �
h
1C kJ �x��kkJ .xi /�1�J

�
x���1k

i
� ŒkrikC

kJ .xi /�J
�
x��kkxi�x�k C kF .xi /�F

�
x���J �x�� �xi�x��k� ;

� Œ1C �	� � �krik C 	kxi � x�k C 	kxi � x�k� ;
� Œ1C �	� � ��ikF .xi /k C 2	kxi � x�k� : (15)

Here the definitions of �i and � were used, together with Eqs. (11)–(13).
Further write, using that by definition F .x�/ D 0,

F .xi / D
�
J
�
x�� �xi � x���C �F .xi /� F

�
x��� J �x�� �xi � x��� : (16)
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Again taking norms gives

kF .xi /k � kJ
�
x�� �xi � x��k C kF .xi / � F

�
x�� � J �x�� �xi � x��k

� kJ �x�� �xi � x��k C 	kxi � x�k: (17)

Substituting Eq. (17) into Eq. (15) then leads to

kJ �x�� �xiC1 � x��k
� .1C �	/ ��i

�kJ �x�� �xi � x��k C 	kxi � x�k�C 2	kxi � x�k�

� .1C �	/ Œ�i .1C �	/C 2�	� kJ
�
x�� �xi � x��k: (18)

Here Eq. (9) was used to write kxi � x�k � �kJ .x�/ .xi � x�/k.
Finally, using that 	 2

�
0;

˛�i
5�

	
, and that both �i < 1 and ˛�i < 1—the latter

being a result from the requirement that .1C ˛/ �i < 1—gives

.1C �	/ Œ�i .1C �	/C 2�	� �
�
1C ˛�i

5

	 
�i

�
1C ˛�i

5

	
C 2˛�i

5

�

D

1C 2˛�i

5
C ˛2�2i

25
C 2˛

5
C 2˛2�i

25

�
�i

<


1C 2˛

5
C ˛

25
C 2˛

5
C 2˛

25

�
�i

< .1C ˛/ �i : (19)

Equation (7) follows by substituting Eq. (19) into Eq. (18).
Given that Eq. (7) holds if kxi � x�k < �2", we now proceed to prove Theorem 1

by induction.
For the base case

kx0 � x�k < " � �2": (20)

Thus Eq. (7) holds for i D 0.
The induction hypothesis that Eq. (7) holds for i D 0; : : : ; k � 1 then gives

kxk � x�k � �kJ �x�� �xk � x��k
< �.1C ˛/k �k�1 � � ��0kJ

�
x�� �x0 � x��k

< �kJ �x�� �x0 � x��k
� �2kx0 � x�k
< �2": (21)

Thus Eq. (7) also holds for i D k, completing the proof. ut
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In words, Theorem 1 states that for arbitrarily small ˛ > 0, and any choice of
forcing terms �i 2 .0; 1/, Eq. (7) holds if the current iterate is close enough to the
solution. This does not mean that for a certain iterate xi , one can choose ˛ and �i
arbitrarily small and expect Eq. (7) to hold, as " depends on the choice of ˛ and �i .

If we define oversolving as using forcing terms �i that are too small for the
iterate, in the context of Theorem 1, then the theorem can be characterised by saying
that a convergence factor .1C ˛/ �i is attained if �i is chosen such that there is no
oversolving. Using Eq. (10), �i >

5�	

˛
can then be seen as a theoretical bound on

the forcing terms that guards against oversolving.
A note on preconditioning is in order. Right preconditioning does not change

the residual, and thus it does not change the interpretation of the forcing term �i in
Theorem 1. However, left preconditioning changes the residual such that �i is closer
to the ratio ın

ıc
. As a result, a theoretical relation closer to Eq. (3) is expected. Indeed,

following the proof of Theorem 1 for a left-preconditioned problem, we get

kM�1J �x�� �xiC1 � x��k < .1C ˛/ �ikM�1J
�
x�� �xi � x��k; (22)

where norms of the form kM�1J .x�/ .y � x�/k are close to ky � x�k for a good
preconditionerM .

A relation between the nonlinear residual norm kF .xi /k and the error norm
kJ .x�/ .xi � x�/k can also be derived within the neighbourhood of the solution
where Theorem 1 holds. This shows that the nonlinear residual norm is indeed a
good measure of convergence of the Newton method.

Theorem 2 Let �i 2 .0; 1/ and choose ˛ > 0 such that .1C ˛/ �i < 1. Then there
exists an " > 0 such that, if kx0 � x�k < ", then

�
1 � ˛�i

5

	
kJ �x�� �xi � x��k < kF .xi /k <

�
1C ˛�i

5

	
kJ �x�� �xi � x��k:

(23)

Proof Using that F .x�/ D 0 by definition, again write

F .xi / D
�
J
�
x�� �xi � x���C �F .xi /� F

�
x��� J �x�� �xi � x��� : (24)

Taking norms, and using Eqs. (13) and (9), gives

kF .xi /k � kJ
�
x�� �xi � x��k C kF .xi / � F

�
x�� � J �x�� �xi � x��k

� kJ �x�� �xi � x��k C 	kxi � x�k
� kJ �x�� �xi � x��k C �	kJ �x�� xi � x�k
D .1C �	/ kJ �x�� �xi � x��k: (25)
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Similarly, it holds that

kF .xi /k � kJ
�
x�� �xi � x��k � kF .xi / � F

�
x�� � J �x�� �xi � x��k

� kJ �x�� �xi � x��k � 	kxi � x�k
� kJ �x�� �xi � x��k � �	kJ �x�� xi � x�k
D .1 � �	/ kJ �x�� �xi � x��k: (26)

The theorem now follows from (10). ut

4 Numerical Experiments

Both classical Newton-Raphson convergence theory [2, 6], and the inexact Newton
convergence theory by Dembo et al. [1], require the current iterate to be close
enough to the solution. What exactly is “close enough” depends on the problem, and
is in practice generally too difficult to calculate. Decades of practice have shown that
the theoretical convergence is reached within a few Newton steps for most problems.
Thus the theory is not just of theoretical, but also of practical importance.

In this section, experiments are presented to illustrate the practical merit of
Theorem 1. For simplicity, we test an idealised version of relation (7):

kxiC1 � x�k < �ikxi � x�k: (27)

The experiments in this section are performed on a power flow problem [4, 5]
that results in a nonlinear system of approximately 256k equations, with a Jacobian
matrix that has around 2M nonzeros. The linear Jacobian systems are solved using
GMRES [7], preconditioned with a high quality ILU factorisation of the Jacobian.

In Figs. 3–5, the results are shown for different amounts of GMRES iterations
per Newton step. In all cases two Newton steps with just a single GMRES iteration
were performed at the start but omitted from the figure.

Figure 3 has a distribution of GMRES iterations that leads to a fast solution of
the problem. Practical convergence nicely follows theory. This suggests that x2 is
close enough to the solution to use the chosen forcing terms without oversolving.

Figure 4 shows the convergence for a more exotic distribution of GMRES
iterations, illustrating that practice can also follow theory for such a scenario.
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Fig. 3 GMRES iteration distribution 1; 1; 4; 6; 10; 14
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Fig. 4 GMRES iteration distribution 1; 1; 3; 4; 6; 3; 11; 3

Figure 5 illustrates the impact of oversolving. Practical convergence is nowhere
near the idealised theory because extra GMRES iterations are performed that do not
further improve the Newton error. In terms of Theorem 1 this means that the iterates
xi are not close enough to the solution to be able to take the forcing terms �i as
small as they were in this example.
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Fig. 5 GMRES iteration distribution 1; 1; 9; 19; 30

Conclusions
A proper choice of tolerances in inexact iterative methods is very important to
minimize computational work. In the case of inexact Newton methods these
tolerances are called the forcing terms.

In this paper we explored the relation between the choice of tolerances and
the convergence of inexact iterative methods, and in particular the relation
between the forcing terms and the convergence of inexact Newton methods.
We proved that, under certain conditions, in each iteration an inexact Newton
method converges with a factor near equal to the forcing term of that iteration,
and numerical experiments were used to illustrate the results.
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Multiscale Adaptive Method for Stokes Flow
in Heterogenenous Media

Assyr Abdulle and Ondrej Budáč

Abstract We present a multiscale micro-macro method for the Stokes problem in
heterogeneous media. The macroscopic method discretizes a Darcy problem on a
coarse mesh with permeability data recovered from solutions of Stokes problems
around quadrature points. The accuracy of both the macro and the micro solvers is
controlled by appropriately coupled a posteriori error indicators, while the total cost
of the multiscale method is independent of the pore size. Two and three-dimensional
numerical experiments illustrate the capabilities of the adaptive method.

1 Introduction

Fluid flow in porous media is a basic problem in science and engineering. It enters
the modeling of geothermal and petroleum reservoirs, subsurface contamination,
textile modeling or biomedical materials. Since the pore size is usually much smaller
than the considered porous material, global discretization that resolves the pore
geometry and standard single-scale techniques such as finite element method (FEM)
are extremely expensive.

Averaging techniques such as homogenization of Stokes flow in porous media are
thus required in many applications. The homogenization method has been studied
by various authors in the past several decades assuming periodic porosity [7, 15,
19, 21]. The effective solution is shown to be given by a Darcy equation where the
permeability tensor can be computed from so-called micro problems.

Various multiscale methods have been recently proposed for the numerical
approximation of Stokes (or Navier-Stokes) equations in porous media that rely
on a Darcy macro problem, recovering the effective permeability from local pore
geometries by numerically solving appropriate micro problems. We mention a
hierarchical multiscale FEM derived in [10], a two-scale finite element method
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proposed in [20], and a control volume heterogeneous multiscale method described
in [8].

Most of the aforementioned works discuss a priori convergence rates and assume
regularity of the micro problems that might not always hold. Indeed, complicated
pore structures in typical applications and non-convexity of microscopic fluid
domains result in sub-optimal a priori convergence rates. In this contribution, we
give a concise description and illustrate numerically a new adaptive numerical
homogenization methods for Stokes flow proposed in [3]. The method is built
using the framework of the finite element heterogeneous multiscale method (FE-
HMM) [1, 4, 12]. Adaptive FE-HMMs for elliptic problems have been studied in
[2, 5, 17]. Our new method relies on adaptive mesh refinement on macro and micro
problems and on rigorous residual-based a posteriori error estimates derived in [3].
One challenge is to adequately couple macro and micro error indicators as to achieve
optimal accuracy with minimal computational cost.

The paper is organized as follows. We first review the model problem in Sect. 2.
We then describe the FE-HMM for Stokes flow in Sect. 3 and the adaptive method
in Sect. 4. In Sect. 5 we provide 2D and 3D numerical experiments to test the
capabilities of the adaptive method.

2 Model Problem

Let˝ � R
d be a bounded connected domain, where d 2 N and d > 1. Denote by Y

the d -dimensional unit cube .�1=2; 1=2/d . For any x 2 ˝ let Y xS � Y and denote
Y xF D Y nY xS . The sets Y xF and Y xS represent the local fluid and solid geometry,
respectively. Given a pore size " > 0, we define the locally periodic porous medium
by

˝" D ˝n
�
"
[

m2Zd
.1=2CmC Y ".1=2Cm/S /

	

and consider the following Stokes problem

��u" Crp" D f in ˝";

div u" D 0 in ˝";

u" D 0 on @˝";

for the velocity field u" and pressure p", where f is a given force field.
In case of periodic porous media (Y xS does not depend on x), the asymptotic

behavior of p", u" as " ! 0 is studied in [7, 21]. An extension of p" and u" from
˝" to ˝ is constructed, such that (while keeping the notation for the extensions)
kp" � p0kL2.˝/=R ! 0 and u"="2! u0 weakly in L2.˝/ for "! 0, where p0 and
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u0 are given as follows. Find p0 such that

ra0.f � rp0/ D 0 in ˝;

a0.f � rp0/ � n D 0 on @˝;
(1)

where the homogenized tensor a0.x/ is given by the micro problems: Solve

��ui;x Crpi;x D ei in Y xF ; ui;x D 0 on @Y xS � @Y;
div ui;x D 0 in Y xF ; ui;x and pi;x are Y -periodic;

(2)

for i 2 f1; : : : ; d g, where ei is the i -th canonical basis vector in R
d , and define

a0.x/ D
Z

Y xF

Œu1;x ;u2;x ; : : : ;ud;x� dy: (3)

The effective velocity is then defined as u0 D a0.f � rp0/.
Well-posedness of the model problem (1)–(3) depends on the geometric proper-

ties of the micro domains Y xF and is examined in [3].

3 FE-HMM for Flow in Porous Media

We apply the FE-HMM framework [1,13] to the problem (1)–(3) following [3]. Let
˝ and˝" be open, connected, bounded, and polygonal subsets of Rd with˝" � ˝ .
Let TH be a family of conformal, shape-regular triangulations of ˝ parametrized
by the mesh size H D maxK2TH HK , whereHK D diam.K/. Define the macro FE
space

Sl.˝;TH/ D fqH 2 H1.˝/ W qH jK 2P l .K/; 8K 2 TH g;

where P l .K/ is the space of polynomials on K of degree l 2 N.
For each element K 2 TH , consider a quadrature formula (QF) with interior

quadrature nodes fxKj gJjD1 and positive weights f!Kj gJjD1, where J 2 N. To
guarantee the optimal order of accuracy (see [11, Chap. 4.1]), we assume that the
QF is exact for polynomials up to order max.2l � 2; l/. Define QK D fxKj gJjD1
andQH D [K2THQK .

Let ı � ". For each x 2 QH we define the local geometry snapshot by

Y
x;ı

S D ..Rd �˝"/\ .x C ıY /� x/="; Y
x;ı

F D .ı="/Y � Y x;ıS :

Let T x
h be a family of conformal, shape-regular triangulations of Y x;ıF parametrized

by the mesh size h D maxT2T x
h
hT , where hT D diam.T /. We consider the
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Taylor-Hood PkC1=Pk FE space with k 2 N and periodic coupling for the micro
problems (for other micro FE spaces or couplings see [3]) and define

M.Y
x;ı

F ;T x
h / D H1

per.Y
x;ı

F /d \ Sk.Y x;ıF ;T x
h /;

X.Y
x;ı

F ;T x
h / D fv 2 H1

per.Y
x;ı

F /d W v D 0 on @Y x;ıS g \ SkC1.Y x;ıF ;T x
h /

d :

The FE-HMM for Stokes flow reads as follows: find pH 2 Sl.˝;TH/=R such
that

BH.p
H ; qH / D LH.qH / 8qH 2 Sl.˝;TH/=R; (4)

where

BH.p
H ; qH / D

X

K2TH

JX

jD1
!Kj a

h.xKj /rpH.xKj / � rqH.xKj /;

LH .q
H / D

X

K2TH

JX

jD1
!Kj a

h.xKj /f
H.xKj / � rqH .xKj /:

We observe that the precise knowledge of " > 0 is not necessary to apply the above
method. Here, fH is a suitable interpolation of the force field f 2 L2.˝/d and
ah.xKj / is a numerical approximation of the tensor a0.xKj / computed by the micro

Stokes problems: For any i 2 f1; : : : ; d g and x 2 QH find ui;x;h 2 X.Y x;ıF ;T x
h /

and pi;x;h 2M.Y x;ıF ;T x
h /=R such that1

.rui;x;h;rv/� .rv; pi;x;h/ D .ei ; v/ 8v 2 X.Y x;ıF ;T x
h /

.rui;x;h; q/ D 0 8q 2M.Y x;ıF ;T x
h /=R

(5)

and set

ah.x/ D "d

ıd

Z

Y
x;ı

F

Œu1;x;h; : : : ;ud;x;h� dy:

A velocity field approximation can be obtained by interpolation from quadrature
points. If the QF has the minimal number of nodes (J D �lCd�1

d

�
), we know [6] that

any tensor A.x/ W QH ! R
d uniquely defines an operator˘A W Sl�1D .˝;TH/

d !
Sl�1D .˝;TH/

d such that

˘A.v/.x/ D A.x/v.x/; 8x 2 QH;

1We use .�; �/ for the standard scalar product in L2.Y x;ıF /m for any m 2 N.
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where the space Sl�1D .˝;TH/ is a space of functions qH W ˝ ! R such that
qH 2 P l�1.K/ for every K 2 TH . We define the reconstructed velocity field by
uH D ˘ah.f

H � rpH/.
Assuming sufficient regularity, a priori estimates derived in [3] yield

jp0 � pH jH1.˝/ � CHl C rmic C rmod; (6)

where j�jH1.˝/ denotes the standard H1 seminorm, rmod is a modeling error

(vanishing if Y x;ıF D Y xF is used), and rmic is a micro error. In practice, we expect
rmic � Ch with  < 2 instead of the ideal  D k C 2 (see Sect. 5).

4 Adaptive Method

Suboptimal a priori error estimates (for non-convex microscopic fluid domain)
suggest to use an adaptive method. In [3], the residual-based FE-HMM error
analysis developed in [2, 6] was coupled with an a posteriori error bound for the
micro Stokes flow (5) based on [22]. This result is summarized in Theorem 1 and
uses the following. Define the macro residual �K by

�2K DH2
Kkr �˘ah.f

H � rpH/k2
L2.K/

CPe2@K 1
2
HekŒ˘ah .f

H � rpH/ � n�ek2L2.e/;

the data approximation error �data;K by

�2data;K D ka0.f � rpH/ �˘a.fH � rpH/k2L2.K/;

where a.x/ D limh!0 ah.x/ and the micro residual �mic;K by

�2mic;K DkfH � rpH k2L2.K/ max
x2QK

dX

iD1
�2stokes;x;i ;

�2stokes;x;i D
X

T2T x
h

0

B
@

X

e2@T n@Y x;ıF

he

2

�
�
�
�


@ui;x;h

@n
� pi;x;hn

�

e

�
�
�
�

2

L2.e/

C h2T k�ui;x;h � rpi;x;h C eik2
L2.T /

C kr � ui;x;hk2
L2.T /

	
:

Theorem 1 Assume that a0.x/� � � � 
j�j2 and ja0.x/�j � �j�j for each � 2 R
d

and a.e. x 2 ˝ . Then, there exists a constant C depending only on ˝ , 
, �, on
the shape-regularity of TH and T x

h , and on the Poincaré-Friedrichs and inf-sup
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constants related to (5), such that

jp0 � pH j2
H1.˝/

� C
X

K2TH
.�2K C �2mic;K C �2data;K/:

Moreover, if Y x;ıF D Y xF , then �data;K D 0.

Theorem 1 gives a foundation for an adaptive refinement algorithm on both
macro and micro problems using the indicators �K and �mic;K . The usual refinement
cycle solve! estimate! mark! refine is implemented on both scales.

The stopping criterion in the adaptive solution of the micro problems is

�2stokes;x;i � �d�1�2KkfH � rpHk�2L2.K/ 8K 2 TH ; (7)

where � > 0 is a problem dependent constant and can be calibrated as described in
[3]. The inequality (7) implies �2mic;K � ��2K , i.e., the micro error is dominated by
the macro error.

4.1 Algorithm

Assume that the user provides˝ , ˝", and ı. Then repeat:

(a) Solve. For each quadrature point x 2 QH solve the micro problems (5)
adaptively using the stopping criteria (7).2 Then, find pH by solving (4).

(b) Estimate. Compute �K and �mic;K . If (7) is not true, go to (a).
(c) Mark. Using the indicator �K and the Döfler’s bulk-chasing marking strategy

E, mark a subset of elements of TH .
(d) Refine. Refine the marked elements while maintaining conformity [9].

5 Numerical Experiments

In this section we test our adaptive algorithm by presenting two numerical experi-
ments. The implementation is done in Matlab and makes use of gmsh [14]. Sparse
saddle point linear systems arising from the micro problems were solved using
the Matlab’s mldivide in two dimensions (2D) and an Uzawa method [18] with
algebraic multigrid preconditioning by AGMG [16] in three dimensions (3D).

2Since the right hand side of (7) is not known beforehand we use an approximation from the
previous solution.
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In both experiments we took P2=P1 Taylor-Hood micro FE and P1 macro FE. We
set ı D " (eliminating the modeling error) for the micro domains Y x;ıF . Variation of
Y xF for both examples is depicted in Fig. 1.

5.1 2D Experiment

Let ˝ D ..0; 2/ � .0; 3//n.Œ1; 2� � Œ1; 2�/ with periodic boundary conditions
between the edges .0; 2/ � f0g and .0; 2/ � f3g and let f 
 fH 
 .0;�1/. Setting
ı D " D 10�4, we performed the adaptive FE-HMM method. Convergence rates
and examples of solutions and meshes are displayed in Fig. 2. The global error
estimator �˝ D .PK2TH �

2
K/
�1=2 and the error jpH � p0jH1.˝/ are both following

p1/4 p1/8 p1/16

−0.8 −1

0.8

0 p1/4 0

1

Fig. 1 Plots of p" for the 2D (left) and 3D (right) experiment
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|pH − p0|H1(Ω) ηΩ ηmic,Ω

Fig. 2 FE-HMM in 2D: pH in different stages of refinement (upper left); corresponding meshes
(lower left); p0 (upper right); error and indicators (lower right)
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Fig. 3 FE-HMM in 3D: initial and final solution pH (left) and p0 (middle) displayed on a cut
domain ˝n..0:5; 2/ � .0:5; 2/ � .0; 3//; the error indicator (right)

the expected rateO.N�1=2mac /, whereNmac is the number of degrees of freedom of the
macro problem (4). The micro error estimator �2mic;˝ D

P
K2TH �

2
mic;K is dominated

by �2˝ .

5.2 3D Experiment

Let ˝ be a subset of .0; 2/ � .0; 2/ � .0; 3/ for which .x3 � 2/.x3 � 1/ > 0

or max.x1; x2/ < 1 and let f 
 fH 
 .0; 0;�1/. Consider periodic boundary
conditions on˝ that connect the faces .0; 2/� .0; 2/� f0g and .0; 2/� .0; 2/� f3g.
The adaptive FE-HMM with ı D " D 10�2 yields a global error estimate �˝ that
seems to follow the right convergence rate O.N�1=3mac /, which is displayed in Fig. 3
along with plots of pH and p0.
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Homogenization of the One-Dimensional Wave
Equation

Thi Trang Nguyen, Michel Lenczner, and Matthieu Brassart

Abstract We present a method for two-scale model derivation of the periodic
homogenization of the one-dimensional wave equation in a bounded domain. It
allows for analyzing the oscillations occurring on both microscopic and macro-
scopic scales. The novelty reported here is on the asymptotic behavior of high
frequency waves and especially on the boundary conditions of the homogenized
equation. Numerical simulations are reported.

1 Introduction

The paper is devoted to the periodic homogenization of the wave equation in a
one-dimensional open bounded domain where the time-independent coefficients are
"�periodic with small period " > 0. Corrector results for the low frequency waves
have been published in [2, 7]. These works were not taking into account fast time
oscillations, so the models reflect only a part of the physical solution. In [3], an
homogenized model has been developed to cover the time and space oscillations
occurring both at low and high frequencies. It is comprised with a second order
microscopic equation with quasi-periodic boundary conditions but also with a first
order macroscopic equation which boundary condition was missing. Therefore,
establishing the boundary conditions of the homogenized model is critical and is
the goal of the present work. A generalization of the wave equation posed in R

n has
also been considered in [4] but taking into account only "-periodic oscillations in the
space variables resulting in periodic conditions in the microscopic problem. Periodic
homogenization of the wave equation have been derived for other asymptotic
regime, for instance for long time in [5, 6, 8, 10].
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To this end, the wave equation is written under the form of a first order
formulation and the modulated two-scale transform W "

k is applied to the solution
U " as in [3]. For n 2 N

� and k 2 R; the nth eigenvalue 
kn of the Bloch wave
problem with k-quasi-periodic boundary conditions satisfies 
kn D 
�kn , in addition

km D 
kn for k 2 Z=2, so the corresponding waves are oscillating with the same
frequency. The homogenized model is thus derived for pairs of fibers f�k; kg if
k ¤ 0 and for fiber f0g otherwise which allows to derive the expected boundary
conditions. The weak limit of

P
�2I k W "

� U
" includes low and high frequency waves,

the former being solution of the homogenized model derived in [2, 7] and the latter
are associated to Bloch wave expansions. Numerical results comparing solutions of
the wave equation with solution of the two-scale model for fixed " and k are reported
in the last section.

2 The Physical Problem and Elementary Properties

The physical problem We consider I D .0; T / � R
C a finite time interval and

˝ D .0; ˛/ � R
C a space interval, which boundary is denoted by @˝ . Here,

as usual " > 0 denotes a small parameter intended to go to zero. Two functions
.a"; �"/ are assumed to obey a prescribed profile a" WD a � x

"

�
and �" WD � � x

"

�
where

� 2 L1 .R/, a 2 W 1;1 .R/ are both Y�periodic where Y D .0; 1/. Moreover, they
are required to satisfy the standard uniform positivity and ellipticity conditions, 0 <
�0 � � � �1 and 0 < a0 � a � a1; for some given strictly positive numbers �0, �1,
a0 and a1. We consider u" .t; x/ solution to the wave equation with the source term
f " 2 L2 .I �˝/, initial conditions u"0 2 H1.˝/; v"0 2 L2 .˝/ and homogeneous
Dirichlet boundary conditions,

�"@ttu" � @x .a"@xu"/ D f " in I �˝;
u" .t D 0; :/ D u"0 and @tu" .t D 0; :/ D v"0 in ˝;
u" D 0 on I � @˝:

(1)

By setting: U " WD .
p
a"@xu";

p
�"@tu"/; A" D

0

@ 0
p
a"@x

�
1p
�"
:
	

1p
�"
@x
�p
a":
�

0

1

A ;

U "
0 WD .

p
a"@xu"0;

p
�"v"0/ and F " WD .0; f "=

p
�"/, we reformulate the wave

equation (1) as an equivalent system: .@t �A"/U " D F " in I � ˝;U " .t D 0/ D
U "
0 in ˝ and U "

2 D 0 on I � @˝ where U "
2 is the second component of U ". From

now on, this system will be referred to as the physical problem and taken in the
distributional sense,

Z

I�˝
F " � � C U " � .@t � A"/ �dtdxC

Z

˝

U "
0 � � .t D 0/ dx D 0; (2)
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for all the admissible test functions � 2 H1.I �˝/2 such that � .t; :/ 2 D .A"/

for a.e. t 2 I where the domain D.A"/ WD f.'; �/ 2 L2 .˝/2jpa"' 2 H1 .˝/ ;

�=� 2 H1
0 .˝/g. As proved in [3], the operator iA" with the domain D.A"/ is

self-adjoint on L2.˝/2. We assume that the data are bounded kf "kL2.I�˝/ C�
�@xu"0

�
�
L2.˝/

C ��v"0
�
�
L2.˝/

� c0, then U " is uniformly bounded in L2 .I �˝/ :
Bloch waves We introduce the dual Y � D �� 1

2
; 1
2

�
of Y . For any k 2 Y �,

we define the space of k�quasi-periodic functions L2k WD fu 2 L2loc.R/ j
u.x C `/ D u.x/e2i�k` a.e. in R for all ` 2 Zg and set Hs

k WD L2k \ Hs
loc .R/

for s � 0: The periodic functions correspond to k D 0. For a given k 2 Y �,
we denote by .
kn; �

k
n /n2N� the Bloch wave eigenelements that are solution to

P.k/ W �@y
�
a@y�

k
n

� D 
kn��
k
n in Y with �kn 2 H2

k .Y / and
�
��kn

�
�
L2.Y /

D 1:

The asymptotic spectral problem P.k/ is also restated as a first order system by

setting Ak WD
0

@ 0
p
a@y

�
1p
�
:
	

1p
�
@y
�p
a:
�

0

1

A, nAk D 1p
�

�
0
p
anYp

anY 0

�
and

ekn WD 1p
2

 
�isn=

q

kjnj
p
a@y

�
�kjnj

	

p
��kjnj

!

where sn and nY denote the sign of n 2 Z
�

and the outer unit normal of @Y respectively. As proved in [3], iAk is self-adjoint
on the domainD .Ak/ WD f.'; �/ 2 L2 .Y /2 jpa' 2 H1

k .Y / ; �=
p
� 2 H1

k .Y / �
L2 .Y /2g: The Bloch wave spectral problem P.k/ is equivalent to finding pairs�

kjnj; e

k
n

	
indexed by n 2 Z

� solution to Q.k/ W Akekn D isn
q

kjnje

k
n in

Y with ekn 2 H1
k .Y /

2. We pose Mk
n WD fm2 Z

�j
kjmjD
kjnj and sm D sng
and introduce the coefficients b.k; n;m/ D R

Y
��kjnj � �kjmjdy and c.k; n;m/ D

isn=
�
2
q

kjnj

	 R
Y
�kjnj � a@y�kjmj � a@y�kjnj � �kjmjdy for n;m 2Mk

n :

The modulated two-scale transform Let us assume from now that the domain
˝ is the union of a finite number of entire cells of size " or equivalently that the
sequence " is exactly "n D ˛

n
for n 2 N

�. For any k 2 Y �, we define I k D f�k; kg
if k ¤ 0 and I 0 D f0g. By choosing � D .0; 1/ as a time unit cell, we introduce
the operator W "

k W L2 .I �˝/2 ! L2 .I �� �˝ � Y /2 acting in all time and

space variables, W "
k WD

�
1 �Pn2Z� ˘k

n

�
S"k C

P
n2Z� T "˛

k
n˘

k

nS
"
k where the time

and space two-scale transforms T "˛
k
n and S"k , and the orthogonal projector˘k

n onto

ekn are defined in [3], see pages 11, 15 and 17, with ˛kn D 2�=
q

kjnj, and where it is

proved that
�
�W "

k u
�
�2
L2.I���˝�Y / D kuk2L2.I�˝/ :

We define .Bk
nv/.t; x/ D v.t; t

"˛kn
; x; x

"
/ the operator that operates on functions

v.t; �; x; y/ defined in I � R�˝ � R. The notation O ."/ refers to numbers or
functions tending to zero when " ! 0 in a sense made precise in each case. The
next lemma shows that Bk

n is an approximation of T "˛
k
n�S"�k for a function which is

periodic in � and k�quasi-periodic in y, where T "˛
k
n� W L2 .I ��/ ! L2 .I / and

S"�k W L2 .˝ � Y /! L2 .˝/ are adjoint of T "˛
k
n and S"k respectively.
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Lemma 1 Let v 2 C1 .I �� �˝ � Y / a periodic function in � and
k�quasi-periodic in y, then T "˛

k
n�S"�k v D Bk

nv C O ."/ in the L2 .I �˝/ sense.

Consequently, for any sequence u" bounded in L2 .I �˝/ such that T "˛
k
n S"ku"

converges to u in L2.I �� �˝ � Y / weakly when "! 0,

Z

I�˝
u" �Bk

nv dtdx!
Z

I���˝�Y
u � v dtd�dxdy when "! 0: (3)

Note that for k D 0, the convergence (3) regarding each variable corresponds to the
definition of two-scale convergence in [1]. The proof is carried out in three steps.
First the explicit expression of T "˛

k
n�S"�k v is derived, second the approximation

of T "˛
k
n�S"�k v is deduced, finally the convergence (3) follows. For a function

v .t; �; x; y/ defined in I �� �˝ � Y; we observe that

A"Bk
nv D Bk

n

��
Ak

"
C B

�
v

�
and @t

�
Bk
nv
� D Bk

n

��
@�

"˛kn
C @t

�
v

�
, (4)

where the operator B is defined as the result of the formal substitution of
x�derivatives by y�derivatives in Ak .

3 Homogenized Results and Their Proof

For k 2 Y �, we decompose

˛k

"
D hk" C lk" with hk" D


˛k

"

�
and lk" 2 Œ0; 1/ ; (5)

and assume that the sequence " is varying in a set Ek � R
C� so that

lk" ! lk when "! 0 and " 2 Ek with lk 2 Œ0; 1/ : (6)

After extraction of a subsequence, we introduce the weak limits of the relevant
projections along ekn for any n 2 Z

�,

F k
n WD lim

"!0

Z

��Y
T "˛

k
n S"kF

" � e2i�sn� ekndyd� and U k
0;n WD lim

"!0

Z

Y

S"kU
"
0 � ekndy:

(7)

The next lemmas state the microscopic equation for each mode and the correspond-
ing macroscopic equation.

Lemma 2 For k 2 Y � and n 2 Z
�, let U " be a bounded solution of (2), there

exists at least a subsequence of T "˛
k
nS"kU

" converging weakly towards a limit U k
n
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in L2.I � � � ˝ � Y /2 when " tends to zero. Then U k
n is a solution of the weak

formulation of the microscopic equation
�
@�

˛kn
�Ak

�
U k
n D 0 in I �� �˝ � Y (8)

and is periodic in � and k�quasi-periodic in y. Moreover, it can be decomposed as

U k
n .t; �; x; y/ D

X

p2Mk
n

ukp .t; x/ e
2i�sp� ekp .y/ with ukp 2 L2 .I �˝/ : (9)

Lemma 3 In the condition of Lemma 2, for each k 2 Y �, n 2 Z
�; " 2 Ek , for each

� 2 I k and q 2M�
n , the macroscopic equation is stated by

P
p2M�

n

�
b .�; p; q/ @tu�p � c .�; p; q/ @xu�p

	
D F �

q in I �˝;
P

p2M�
n
b .�; p; q/ u�p .t D 0/ D U �

0;q in ˝;
(10)

with the boundary conditions in case where there exists p 2 Mk
n such that

c .k; p; q/ ¤ 0 and �kjpj.0/ ¤ 0,

X

�2I k;p2M�
n

u�p�
�
jpj .0/ e

sign.�/2i� lkx
˛ D 0 on I � @˝: (11)

The low frequency part U 0
H relates to the weak limit in L2 .I �˝ � Y /2 of the

kernel part of S"k in the definition of W "
k . It has been treated completely, in [2,

3]. Here, we focus on the non-kernel part of S"k , it relates to the high frequency
waves and microscopic and macroscopic scales. In order to obtain the solution of
the model, we analyze the asymptotic behaviour of each mode through T "˛

k
n S"k as in

Lemmas 2 and 3. Then the full solution is the sum of all modes. The main Theorem
states as follows.

Theorem 1 For a given k 2 Y �, letU " be a solution of (2) bounded inL2 .I �˝/,
for " 2 Ek; as in (5,6), the limitGk of any weakly converging extracted subsequence
of
P

�2I k W "
� U

" in L2 .I �� �˝ � Y /2 can be decomposed as

Gk .t; �; x; y/ D �0 .k/ U 0
H .t; x; y/C

X

�2I k ;n2Z�

u�n .t; x/ e
2i�sn� e�n .y/ (12)

where
�
u�n
�
n;�

are solutions of the macroscopic equation, and the characteristic
function �0 .k/ D 1 if k D 0 andD 0 otherwise.

Thus, the physical solution U " is approximated by two-scale modes

U " .t; x/ ' �0 .k/ U k
H

�
t; x;

x

"

	
C

X

�2I k;n2Z�

u�n .t; x/ e
isn
p

�n t="e�n

�x
"

	
: (13)

The remain of this section provides the proofs of results.
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Proof of Lemma 2 The test functions of the weak formulation (2) are chosen as
�" D Bk

n� .t; x/ for k 2 Y �, n 2 Z
� where � 2 C1 .I �� �˝ � Y /2

is periodic in � and k�quasi-periodic in y. From (4) multiplied by ", since�
@�
˛kn
�Ak

	
� is periodic in � and k�quasi-periodic in y and T "˛

k
n S"kU

" ! U
k

n

in L2 .I �� �˝ � Y /2 weakly, Lemma 1 allows to pass to the limit in

the weak formulation,
R
I���˝�Y U

k
n �
�
@�
˛kn
�Ak

	
�dtd�dxdy D 0. Using the

assumption U k
n 2 D .Ak/ \ L2

�
I �˝ � Y IH1 .�/

�
and applying an integration

by parts,
R
I���˝�Y

�
� @�
˛kn
C Ak

	
U k
n ��dtd�dxdyC RI�@��˝�Y U k

n ��dtd�dxdy �
R
I���˝�@Y U

k
n � nAk�dtd�dxdy D 0: Choosing � 2 L2.I �˝IH1

0� � Y / comes
the strong form (8). Since the product of a periodic function by a k�quasi-periodic
function is k�quasi-periodic then nAk� is k�quasi-periodic in y. Therefore, U k

n is
periodic in � and k�quasi-periodic in y: Moreover, (9) is obtained, by projection.

Proof of Lemma 3 For k 2 Y �, let
�

�jpj; e

�
p

	

p2M�
n ;�2I k

be the Bloch eigenmodes

of the spectral equation Q .�/ corresponding to the eigenvalue 
kjnj. We pose

�" .t; x/ D P
�2I k B�

n�
�
" 2 H1 .I �˝/2 as a test function in the weak formu-

lation (2) with each ��
" .t; �; x; y/ D

P
q2Mk

n
'�q;" .t; x/ e

2i�sq� e�q .y/ where '�q;" 2
H1 .I �˝/ and satisfies the boundary conditions

P
�2I k;q2M�

n
e2i�sq t=."˛

�
q /'�q;" .t; x/

��jqj
�
x
"

� D O ."/ on I � @˝: Note that this condition is related to the second

component of �" only. Since ˛�q D ˛kn and sq D sn for all q 2 M�
n and � 2 I k ,

so e2i�sq t=."˛
�
q / ¤ 0 can be eliminated. Extracting a subsequence " 2 Ek , using

the ��quasi-periodicity of ��jqj and (5,6), '�q;" converges strongly to some '�q in

H1 .I �˝/, then the boundary conditions are

X

�2I k;q2M�
n

'�q .t; x/ �
�
jqj .0/ e

sign.�/2i� lkx
˛ D 0 on I � @˝: (14)

Applying (4) and since
�
@�
˛�n
�A�

	
��D0 for � 2 I k , then in the weak

formulation it remains
P

�2I k
R
I�˝ F

" �B�
n�

�
" C U " �B�

n.@t � B/��
" dtdx �

R
˝
U "
0 �B�

n�
�
" .t D 0/ dx D 0: Since .@t � B/��

" is ��quasi-periodic, so passing
to the limit thanks to Lemma 1, after using (7) and replacing the decomposition of
U �
n ,

P

�2I k ;fp;qg2M�
n

� R
I�˝ b .�; p; q/ u�p �@t'�q �c .�; p; q/ u�p � @x'�q � F �

q �'�q dtdx�
R
˝
U �
0;q �'�q .t D 0/ dx

�D 0 for all '�q 2H1 .I �˝/ fulfilling (14).
Moreover, if u�q2H1 .I �˝/ then it satisfies the strong form of the inter-

nal equations (10) for each � 2 I k , q 2 M�
n and the boundary conditionsP

�;p;q c .�; p; q/ u�p'
�
q D 0 on I � @˝ for '�q satisfies (14):

In order to find the boundary conditions of
�

u�p

	

�;p
, we distinguish between the

two cases k ¤ 0 and k D 0. First, for k ¤ 0, 
kjnj is simple so Mk
n D fng.
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Introducing C D diag .c .�; n; n//� , B D diag .b .�; n; n//� , U D �
u�n
�
�
, F D

�
F �
n

�
�
, U0 D

�
U �
0;n

�
�
, � D �

'�n
�
�
, ˚ D

�
��jnj .0/ e

sign.�/2i�lkx=˛
	

�
, Eq. (10) states

under matrix formB@tUCC@xU D F in I�˝ and BU .t D 0/ D U0 in ˝ which
the boundary condition is rewritten as CU .t; x/ :� .t; x/ D 0 on I � @˝ for all �
such that ˚.x/:�.t; x/ D 0 on I � @˝: Equivalently, CU .t; x/ is collinear with

˚.x/ yielding the boundary condition ukn�
k
jnj .0/ e

2i� lkx
˛ C u�kn ��kjnj .0/ e

�2i� lkx
˛ D 0

on I � @˝ after remarking that c .k; n; n/ ¤ 0 and c .k; n; n/ D �c .�k; n; n/.
Second, for k D 0, 
0jnj is double 
0jnj D 
0jmj so Mk

n D fn;mg. With C D
.c .0; p; q//p;q , B D .b .0; p; q//p;q , U D

�
u0p
	

p
, F D

�
F 0
q

	

q
, U0 D

�
U 0
0;q

	

q
,

� D
�
'0q

	

q
, ˚ D

�
�0jqj .0/

	

q
, the matrix form is still stated as above which the

boundary condition is u0n�
0
jnj .0/Cu0m�

0
jmj .0/ D 0 on I � @˝ after remarking that

c .0; p; p/ D 0 and c .0; n;m/ ¤ 0.

Proof of Theorem For a given k 2 Y �, let U " be solution of (2) which is
bounded in L2.I � ˝/, then kW "

� U
"kL2.I���˝�Y / is bounded for � 2 I k . So

there exists Gk 2 L2 .I �� �˝ � Y /2 such that, up to the extraction of a
subsequence,

P
�2I k W "

� U
" tends weakly to Gk D �0 .k/ U

0
H C

P
�2I k ;n2Z� U k

n

in L2 .I �� �˝ � Y /2. The high frequency part is based on the decomposition
(9) and Lemma 3.

Remark 1 This method allows to complete the homogenized model of the wave
equation in [3] for the one-dimensional case. Let K 2 N

�, we decompose ˛
"K
D�

˛
"K

�C l1" with l1" 2 Œ0; 1/ and assume that the sequence " is varying in a set EK �
R
C� so that l1" ! l1 when "! 0 with l1 2 Œ0; 1/. For any k 2 L�K , defined in [3],

we denote pk D kK 2 N, so ˛pk
"K
D pk

�
˛
"K

�C pkl1" and pkl1" ! lk WD pkl
1 when

"! 0 with the same sequence of " 2 EK .

4 Numerical Examples

We report simulations regarding comparison of physical solution and its approxima-
tion for I D .0; 1/ ; ˝ D .0; 1/, � D 1, a D 1

3
.sin .2�y/C 2/, f " D 0, v"0 D 0,

" D 1
10

and k D 0:16. Since k ¤ 0, so the approximation (13) comes

U " .t; x/ '
X

�2I k;n2Z�

u�n .t; x/ e
isn
p

�

jnj
="
e�n

�x
"

	
: (15)

The validation of the approximation is based on the modal decomposition of any
solutionU " DPl2Z� R"l .t/ V

"
l .x/where the modesV "

l are built from the solutions
v"l of the spectral problem @x

�
a"@xv"l

� D 
"l v
"
l in ˝ with v"l D 0 on @˝ . Moreover,

in [9], two-scale approximations of modes have been derived on the form of linear
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Fig. 1 Numerical results

combinations
P

�2I k �n .x/ ��jnj
�
x
"

�
of Bloch modes, so the initial conditions of

the physical problem are taken on the form u"0 .x/ D
P

n2N�;�2I k �n .x/ ��n
�
x
"

�
:

Two simulations are reported, one for an initial condition u"0 spanned by the pair
of Bloch modes corresponding to n D 2 when the other is spanned by three pairs
n 2 f2; 3; 4g. In the first case, the first component of U "

0 approximates the first
component of a single eigenvector V "

l approximated by (15) where all coefficients
u�n D 0 for n ¤ ˙2. Figure 1a shows the initial condition u"0. Figure 1b presents the
real part (solid line) and the imaginary part (dashed-dotted line) of the macroscopic
solution ukn and also the real part (dotted line) and the imaginary part (dashed line) of
u�kn at space step x D 0:699 when Fig. 1c, d plot the real part of the first component
U "
1 of physical solution and the relative error vector of U "

1 with its approximation
which L2.˝/-norm is equal to 7e�3 at t D 0:466. For the second case where
u�n D 0 for n … f˙2;˙3;˙4g, the first component U "

1 and the relative error vector
of U "

1 with its approximation which L2.˝/-norm is 3.8e�3 are plotted in Fig. 1e,
f. Finally, for the two cases the L2.I /-relative errors at x D 0:699 on the first
component are 8e�3 and 3.5e�3 respectively.
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High-Order Asymptotic-Preserving Projective
Integration Schemes for Kinetic Equations

Pauline Lafitte, Annelies Lejon, Ward Melis, Dirk Roose,
and Giovanni Samaey

Abstract We study a projective integration scheme for a kinetic equation in
both the diffusive and hydrodynamic scaling, on which a limiting diffusion or
advection equation exists. The scheme first takes a few small steps with a simple,
explicit method, such as a spatial centered flux/forward Euler time integration, and
subsequently projects the results forward in time over a large, macroscopic time
step. With an appropriate choice of the inner step size, the time-step restriction on
the outer time step is similar to the stability condition for the limiting equation,
whereas the required number of inner steps does not depend on the small-scale
parameter. The presented method is asymptotic-preserving, in the sense that the
method converges to a standard finite volume scheme for the limiting equation in the
limit of vanishing small parameter. We show how to obtain arbitrary-order, general,
explicit schemes for kinetic equations as well as for systems of nonlinear hyperbolic
conservation laws, and provide numerical results.

1 Introduction

We study kinetic equations of the form

@tf C v

"s
@xf D Q.f /

"sC1
; (1)

describing the evolution of the probability density function f .x; v; t/ of a particle
being at position x, moving with velocity v at time t , and s corresponds to the
scaling, which can be either hyperbolic (s D 0) or parabolic (s D 1). Such
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models frequently arise in the modeling of phenomena in various applications (such
as biological systems or traffic flow). The collision kernel Q.f / describes the
interactions between particles, which causes a diffusive behavior on longer time
scales. The left hand side of the equation represents the advective motion of the
particles.

When we are dealing with systems with a large time scale separation (i.e. 0 <
"� 1), Eq. (1) becomes stiff, with a time step constraint of order "sC1 for classical
explicit schemes. Clearly, such a time step restriction is prohibitive when taking the
limit of " going to zero.

In this paper, we propose a numerical scheme that is asymptotic-preserving in
the sense that was introduced by Jin [9]. Specifically, we describe a higher-order
extension of the projective integration algorithm, developed by Gear and Kevrekidis
in [7] and applied to kinetic equations in [12]. The idea of this algorithm is to
perform a few small steps with a naive inner integrator, which is subject to the
time step constraint induced by the stiffness of the problem. In a next step, we then
take a large time step with an outer integrator.

In the literature, several other possibilities are described to achieve an
asymptotic-preserving scheme. For instance, an IMEX scheme [2, 5, 6] relies on
a combination of an explicit discretization of the advective term, while the stiff
collision kernel is treated implicitly. Recently, the method was adapted by Dimarco
et al. [4] to deal with nonlinear collision kernels. To do this, the authors used a
penalization with a simpler collision kernel, reducing the complexity of the part that
has to be treated implicitly. Furthermore, in [3] Boscarino et al. extended the IMEX
scheme to handle hyperbolic systems in a diffusive scaling. Alternative explicit
techniques for stiff problems based on state extrapolation have been proposed in
[13].

The remainder of the paper is organized as follows. First we introduce the
model problems in Sect. 2 that we will consider for the analysis and the numerical
experiments. Next, in Sect. 3 we give a description of the general scheme and its
stability followed by some numerical experiments in Sect. 4. More details, proofs
and a consistency result are in [10, 11].

2 Model Problems

2.1 Simple Linear Kinetic Equations

We study a linear kinetic equation of the form

@tf
" C v

"s
@xf

" D M .u"/ � f "

"sC1
; (2)

describing the evolution of the particle distribution function f ".x; v; t/, that gives
the probability of a particle being at position x 2 Œ�1; 1/, moving with velocity
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v 2 R at time t > 0. The superscript " denotes the dependence on the small scale
parameter ". The right hand side of Eq. (2) represents a BGK collision operator
modeling a linear relaxation of f " towards a Maxwellian equilibrium distribution
M .u"/, in which u".x; t/ D hf ".x; v; t/i, where h�i denotes the average over
velocity space. Throughout the paper, we require the measured velocity space .V; �/
to be discrete:

V WD fvj gJjD1; d�.v/ D
JX

jD1
wj ı.v � vj /; (3)

where J is assumed to be even and V is an odd symmetric velocity space
corresponding to : vj D �vJ�jC1; j D 1; : : : J=2. The Maxwellian operator M
is supposed to satisfy the following conditions:

(
hM .u/i D u;

hvM .u/i D "sA.u/: (4)

Here, we will consider M .u/ D u C "sA.u/=v as a prototypical example (see
[1]). It can be proved via a Chapman-Enskog expansion that the evolution of the
system tends to the advection-diffusion equation in the limit of "! 0:

@tu
" C @x.A.u"// D "1�sd@xxu" CO."2/ (5)

in which the constant d D hv2i is the diffusion coefficient.

2.2 A Kinetic Semiconductor Equation

Although the numerical analysis of the presented algorithms is restricted to Eq. (2)
with A.u/ linear, we also provide numerical results for a problem in which
macroscopic advection does not originate from the Maxwellian in the collision
operator, but from an external force field F . To this end, we consider a kinetic
equation inspired by the semiconductor equation [8],

@tf
" C 1

"
.v@xf

" C F@vf
"/ D u" � f "

"2
; (6)

F D �r˚; �˚ D u": (7)

In this equation, an acceleration term appears due to an electric force F result-
ing from a coupled Poisson equation for the electric potential ˚ . The velocity
space is given by V D R endowed with the Gaussian measure d�.v/ D
.2�/�1=2 exp.�v2=2/dv.
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2.3 Euler Equations

In the two previous examples, the interest was in simulating a kinetic equation in
a regime close to its macroscopic limit. A second situation in which the proposed
methods will prove to be useful is when building a numerical method for nonlinear
hyperbolic conservation laws based on the idea of relaxation [9]. In that setting,
one starts from a hyperbolic conservation law, and constructs a kinetic equation
such that its macroscopic limit corresponds to the given conservation law. Then, one
simulates the kinetic equation instead of the original hyperbolic law. The advantage
is that the advection term in the kinetic equation has become linear, avoiding the
need for specialized (approximate) Riemann solvers. The price to pay is an increase
in dimension, as well as the introduction of a stiff source term. It is precisely this
stiff term that will be treated by the projective integration method.

As an example, we consider the Euler equations in one space dimension,

8
ˆ̂
<

ˆ̂
:

@t�C @x.�Nv/ D 0;
@t .�Nv/C @x.�Nv2 C P/ D 0;
@tE C @x.E C P Nv/ D 0;

(8)

where � denotes the density, P the pressure, E the energy and Nv is the macroscopic
velocity of the modeled fluid.

3 Higher Order Projective Integration

The projective integration algorithm we will discuss in this paper is a higher order
extension of the projective integration method described in [7, 12]. The resulting
algorithms are fully explicit, and will turn out to be asymptotic-preserving, which
implies that the system can be stably integrated with a computational cost that is
independent of ". The algorithm relies on a combination of a few small steps with
a classical inner time-stepping method and a much larger (projective or outer) time
step.

3.1 Inner Integrator

The first part of a projective integration algorithm consists ofKC 1 time steps with
an inner integrator, which is described as:

f n;kC1 D f n;k C ıtDt .f
n;k/ 8k D 0; : : : K (9)
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where f n;k denotes the numerical solution at time tn;k D n�t C kıt . In case of a
large time scale separation (i.e. " very small) the fast modes will have converged to
their equilibrium at this stage of the algorithm.

3.2 Outer Integrator

The approach we pursue to achieve a fast higher order numerical scheme is to
implement a Runge-Kutta version with S stages, nodes cs.s D 1 : : : S/ and Runge-
Kutta coefficients asl.l D 1; : : : s � 1; s D 1 : : : S/ as outer integrator. This is
typically represented by a Butcher tableau, as illustrated in Fig. 1 for a few classical
choices.

These Runge-Kutta methods need to be modified to take into account the
presence of the K C 1 inner steps. Specifically, the only modification lies in the
calculation of the internal stages of the Runge-Kutta method. For the first Runge-
Kutta stage, we have

8
<

:

f n;k D f n;k�1 C ıtDt .f
n;k�1/ 81 � k � K C 1;

k1 D f n;KC1 � f n;K

ıt
;

(10)

whereas the remaining stages are obtained via

8
ˆ̂
<̂

ˆ̂
:̂

f nCcs D f n;KC1 C .cs�t � .K C 1/ı; t/Ps�1
lD1

asl

cs
kl ;

f nCcs;k D f nCcs;k�1 C ıtDt

�
f nCcs;k�1� ;

ks D f nCcs;KC1 � f nCcs;K

ıt
:

(11)

The stages are combined to obtain

f nC1 D f n;KC1 C .�t � .K C 1/ıt/
SX

sD1
bsks; (12)

Fig. 1 Butcher tableaux for
the Runge-Kutta methods
used in Sect. 4

c A

bT

0
1/2 1/2

0 1 1/6 1/3 1/3 1/6
0 0 1
0 1/2

1/2

1
1/2
1/2
0
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3.3 Stability Analysis

Typically, systems with a large time scale separation (in which case " is small)
have a large gap in their eigenvalue spectrum. Projective integration schemes [7] are
designed to capture all the eigenvalues with a time step constraint independent of
the stiffness parameter ". For projective integration methods, stability is expressed
in terms of the amplification factors �ıt of the inner integrator. The inner integrator
is stable when all amplification factors satisfy j�ıt j � 1 or ıt  O."sC1/ for Eq. (2).
The projective integration method is stable for a subset of these values, of which
the size depends on the ratio �t=ıt and the number K of inner steps. In [7], it was
shown that the stability regions can be described by two discs which are of the form
D.center; radius/:

DPFE
1 D D

�
1 � ıt

�t
;
ıt

�t

�
and DPFE

2 D D

 

0;

�
ıt

�t

�1=K!

; (13)

where the superscript PFE indicates that those are the stability regions for the Pro-
jective Forward Euler method. We have extended this result to the above-described
Runge-Kutta generalization:

Theorem 1 (Stability of projective Runge-Kutta) Consider a projective
Runge-Kutta scheme with S stages with S � 1, then the stability regions of the
scheme contains the stability regions of schemes with L stages with L � S .

A proof of this result can be found in [10]. Once the stability regions of the projective
Runge-Kutta methods are known, we need to localize the spectrum of the inner
integrator (9). We have the following theorem, that is also proved in [10].

Theorem 2 (Spectrum of inner integrator) The spectrum of the inner integrator
(9) is located in two clusters:

D1

�
1 � ıt

"sC1
;
ıt

J"s
max
j2J .j˛j j C ˇj j/

�
[ f�ıt g

The dominant eigenvalue �ıt is simple and can be expanded as

�ıt D
�
1 � ıt

"sC1

�
C ı

"sC1

�
1C "h˛i C "2

�
h.h˛i � ˛/2i � hˇ2i C ıs

Dˇ
v

E2��

C{ ıt

"sC1

 

"ıs

Dˇ
v

E
C "2

 

ıs

*�Dˇ
v

E
� ˇ

�
.h˛i � ˛/

+

C ıs�1
Dˇ

v

E
!!

;

where the coefficients ˛ and ˇ depend on the chosen spatial discretization.

As a consequence, one can choose the parameters K and �t independently of
". Specifically, the PRK-scheme yields a CFL-like time step constraint – i.e.
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Fig. 2 Left: Stability regions corresponding to �t D 1� 10�2, ıt D 1� 10�4, J D 10, �x D
1� 10�1, K D 3 (solid) and K D 2 (dash dotted). Right: Illustration that the stability regions of
schemes with more Runge-Kutta stages contain the stability regions of schemes with less stages

�t � C�xsC1, where C is a constant dependent on the characteristics of the inner
integrator of choice. We refer to [10] for more details (Fig. 2).

4 Numerical Experiments

In the first numerical experiment, we consider a diffusive scaling. We apply the
scheme on the semiconductor equation (6), with initial condition

f .x; vj ; t/ D exp.�v2j =T / exp.�x2=0:1/ (14)

and periodic boundary conditions on the spatial domain. In the discrete velocity
space (3) we use Hermitian quadrature points and use no-flux boundary conditions.
Figure 3 shows the density evolution. The method parameters are given in the
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Fig. 3 Long term performance illustrated on semiconductor equation. Left: Density calculated
with PRK4 scheme, after 400 steps (solid), 600 steps (triangles) and 800 steps (squares). Right:
Absolute error on the calculated density after 400 steps. Parameters: " D 1� 10�2, �t D
1� 10�3, K D 3, �.�1; t/D 20 and �.1; t/D 0
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Fig. 4 Evolution of several fluid properties in Sod’s shock tube problem obtained with PRK4
with FE as inner integrator and a third order ENO scheme to discretize the spatial derivative. The
parameters are chosen as follows: �x D 5� 10�3, " D 1� 10�8, ıt D ", K D 2, J D 4 and
�t D 0:5. The solid line indicates the analytical solution, while the numerical approximation is
denoted by triangles

caption. We clearly see stable and accurate results that are obtained with a
computational effort that is independent of ". More information and additional
experiments including convergence as a function " can be found in [10].

In the second numerical experiment, we consider a kinetic equation that results as
the relaxation of the Euler equations. We perform Sod’s shock tube problem, which
is a classical test to check whether the method can deal with shock waves. As initial
condition, we have

�.x; 0/ D
(
1 x � L=2
0:125 x > L > 2;

P.x; 0/ D
(
1 x � L=2
0:1 x > L=2;

(15)

and the initial macroscopic velocity is defined as Nv.x; 0/ D 0. We impose outflow
boundary conditions (Fig. 4). Again, the method is shown to capture the expected
behavior at a computational cost that is independent of ". More details can be found
in [11].
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Reduced Basis Numerical Homogenization
Method for the Multiscale Wave Equation

Assyr Abdulle, Yun Bai, and Timothée Pouchon

Abstract A reduced basis numerical homogenization method for the wave equation
in heterogeneous media is presented. The method is based on a macroscopic
discretization of the physical domain with input data recovered from microscopic
problems solved by using reduced basis techniques. A priori error analysis is
discussed and the convergence rates are verified by numerical experiments that also
illustrate the performance of the method.

1 Introduction

Consider the wave equation in a polygonal domain˝ � R
d

@2t u
".t; x/ � r � .a".x/ru".t; x// D f .t; x/ in .0; T / �˝; (1)

where the tensor a" has rapid oscillations on a small scale " � diam.˝/. This
equation enters the modeling of various applications such as wave propagation in
composite material, seismic imaging or medical ultrasound imaging. Together with
(1), we set zero Dirichlet boundary condition and initial conditions u".0; �/ D g0,

@tu".0; �/ D g1. Furthermore, assume that a" is in
�
L1.˝/

�d�d
, symmetric,

uniformly elliptic and bounded. It follows from [13] that the problem (1) is well-
posed, provided sufficient regularity of the functions f , g0 and g1.

It is well-known that standard numerical methods based on scale resolution for
(1) are prohibitively expensive if " is small. Fortunately, there is a well-developed
mathematical theory, the homogenization theory, that describes an effective equation
that captures the macroscopic behavior [7, 12]. In particular for the wave equation,
the notions of G or H -convergence [14] have been used in [9] to show that fu"g
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converges in a weak sense as "! 0 to the homogenized solution u0 which satisfies
the homogenized equation

@2t u
0.t; x/ � r � .a0.x/ru0.t; x// D f .t; x/ in .0; T / �˝: (2)

We note that a0.x/ is obtained via micro problems that are usually not explicitly
known and various numerical strategies have been proposed in the past several years
to compute an approximation of u" or u0 (we refer to [5] for a literature review on
such numerical strategies for wave equations). Here we focus on the finite element
heterogeneous multiscale method (FE-HMM) introduced in [11] and first proposed
for the wave equation in [5].

The basic FE-HMM can be summarized as follows: at the micro scale an effective
solver based on numerical quadrature is defined. This solver relies on effective data
(located at quadrature points) that needs to be recovered by micro cell problems,
based on the heterogeneous tensor a". A complete numerical analysis of this method
including the contribution of micro errors, modeling error and macro error has
been given in [5]. We note that the complexity of this method is independent of
" as the macro partition is independent of this small scale. However the issue for
the FE-HMM is the large amount of repeated micro computations that need to be
performed. This is a consequence of the fact that these micro problems are located
around macroscopic quadrature points. Thus for optimal convergence, as shown in
the a priori error analysis in [1, 2, 5], both the number of the micro problems and
their complexity increase simultaneously as the macro mesh is refined.

The aforementioned issue triggered the development of a reduced order modeling
for the FE-HMM [3, 4]. The main idea for these new methods, called reduced
basis finite element heterogeneous multiscale method (RB-FE-HMM), is to com-
bine numerical homogenization method with reduced basis techniques for the
micro-problems. The reduced basis method (see [15] and the references therein)
gives a methodology to construct low dimensional subspaces of the solutions of
parametrized partial differential equations. This can be exploited in numerical
homogenization in an offline stage to construct a low dimensional approximation
for the micro problems [3, 8]. The approximation of the effective data in the macro
RB-FE-HMM (the online stage) is then computed in this low dimensional subspace
at a cost comparable to a standard FEM with numerical quadrature for single-scale
problems. In this paper, we discuss the use of reduced basis for the numerical
homogenization of the wave equation. The paper is organized as follows: the RB-
FE-HMM is introduced and discussed in Sect. 2. Numerical experiments confirming
the theoretical convergence rates and comparison with the FE-HMM are reported in
Sect. 3.
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2 RB-FE-HMM for the Wave Equation

The starting point of our numerical method is the FEM with numerical integration
for the wave equation. We denote TH a macro partition of ˝ in simplicial
or quadrilateral elements K, where the meshsize H WD maxK2TH diam.K/ is
independent of " and in particular H � " is allowed. For an integer ` � 1, we
define the macro FE space on TH ,

S`0 .˝;TH/ D fvH 2 H1
0 .˝/ W vH jK 2 R`.K/ 8K 2 TH g; (3)

where R`.K/ is chosen either as P`.K/ the space of polynomials of degree at
most ` for simplicial elements, or as Q`.K/ the space of polynomials of degree at
most ` in each variable for quadrilateral elements. For each K 2 TH , we define
a quadrature formula (QF) f!Kj ; xKj gJjD1 and assume that the QF satisfies the
standard hypotheses ensuring optimal convergence rates of the FEM in elliptic
problems (see [10]). The FEM with numerical integration for the wave equation
reads: find uH W Œ0; T �! S`0 .˝;TH/, such that

.@2t u
H.t/; vH/C BH.uH.t/; vH/ D fH.t I vH/ 8vH 2 S`0 .˝;TH/; (4)

where the bilinear form BH.�; �/ is defined, for vH ;wH 2 S`0 .˝;TH/, as

BH.v
H ;wH / D

X

K2TH

X

1�j�J
!Kj a

0.xKj /rvH.xKj / � rwH.xKj /: (5)

Here fH .t I vH/ is an approximation of
R
˝ f .t; x/v

H.x/ dx and the initial condi-
tions are appropriate FE approximations of g0; g1.

The method above is however of no practical use in general as a0.xKj /
is unknown. In the FE-HMM presented in [5], a0.xKj / are computed at each
quadrature point by solving appropriate micro FEM on a sampling domain Kıj

centered in xKj . Repeated micro FEM computations can however be expensive
as the macro mesh is refined. To address this issue, following [3, 4], we introduce
in what follows a low dimensional space spanned by appropriately chosen reduced
basis to compute an approximation of each a0.xKj /. The RB algorithm is divided in
an offline and online stage. While the offline stage is usually only performed once,
the output of this process can be used repeatedly in different online procedures,
e.g.,

• For adaptive macro mesh refinement [4];
• For different macro solvers (FEMs, finite difference methods, etc.);
• For different source terms, boundary conditions, or initial conditions;
• For different model equations with the same multiscale tensor (stationary or time-

dependent problems).
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2.1 RB-FE-HMM: Online Stage

We first assume that a set of RB functions f�1; � � � ; �N g and the corresponding RB
space

SN .Y / WD spanf�1; � � � ; �N g;

are already obtained from an offline stage (described in the next subsection)
and describe the corresponding macroscopic approximation. We first recall that a
fundamental condition for the efficiency of the RB-FE-HMM is that the tensor a"

has the following affine representation,

ax.y/ D
X

1�p�P
�p.x/ap.y/; 8y 2 Y; (6)

where y WD x
"
2 Y D .�1=2; 1=2/d . We note that when (6) is not readily available,

one can use the so-called empirical interpolation method (EIM) [6] to provide an
affine approximation of the tensor a".

In order to compute an approximation a0N .x/ of a0.xKj / at a given quadrature
point xKj , we consider the RB-FE-HMM online cell problems: find  N;� .y/ DPN

jD1 ˛�;j �j 2 SN .Y / for ˛� D .˛�;1; � � � ; ˛�;N / 2 R
N , such that

Z

Y

ax.y/r N;� .y/ � rzN dy D �
Z

Y

ax.y/em � rzN dy; 8zN 2 SN .Y /; (7)

where femgdmD1 is the canonical basis ofRd and � is the parameter index � D .x;m/.
We see that the cell problems are parametrized by the location x 2 ˝ where we want
an approximation of a0.x/ and the index m of the canonical basis in em 2 R

d .1

For problems with multiscale tensors of form a".x; t/, the micro problems can be
similarly parametrized by .x; t/. In this case, the �p functions in (6) are of form
�p.x; t/ and the parameter index in (7) is modified as � D .x; t;m/.

Using (6), we can write (7) as the following linear system

� X

1�p�P
�p.x/Ap

	
˛� D �

X

1�p�P
�p.x/Fp;m; (8)

where

.Ap/mn D
Z

Y

ap.y/r�m.y/ � r�n.y/dy; .Fp;m/i D
Z

Y

ap.y/em � r�i .y/dy;

1We recall that for classical homogenization (e.g., for periodic tensors) the homogenized tensor a0

relies on the solution of d cell problems with a right-hand side of the form a.y/em [7].
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are precomputed and stored in the offline stage. The unknown tensor a0.x/ is then
estimated from the micro solution  N;� as

�
a0N .x/

�
mn
D
Z

Y

ax.y/ .r N;� .y/C em/ � endy;

D
X

1�p�P
�q.x/

�
˛� � Fp;n C .Gp/mn

�
; m; n D 1; � � � ; d; (9)

where .Gp/mn D
R
Y .ap.y//mndy is also precomputed in the offline stage.

Comparison with the FE-HMM In the FE-HMM, the micro problems (7) are
solved in a micro FE space Sq.Kıj ;Th/ coupled with periodic or Dirichlet boundary
conditions. The FE space Sq.Kıj ;Th/ is defined on the cell domainKıj WD xKj C
ıY; ı � ";8K 2 TH equipped with a micro mesh size h=" D Oh and a FEM with
piecewise polynomials of degree q. Hence solving a micro cell problem in the FE-
HMM is equivalent to solving a linear system with DOF O. Oh�d /, where Oh must
be refined simultaneously to the macro meshsize H for optimal accuracy [1, 2]. In
contrast, we note that (7) only involves the solution of N � N linear system (8)
with N fixed and usually small [3,4]. As can be seen in our numerical experiments,
the online solver of the RB-FE-HMM for the wave equation is much faster than the
FE-HMM.

2.2 RB-FE-HMM: Offline Stage

The RB space is constructed in an offline stage, where a small number of
representative micro problems which are parametrized by the macro locations and
the canonical basis em, are selected by a greedy algorithm with accuracy controlled
by an a posteriori error estimator. The key steps of the offline procedure are the
following.

1. Initial step: For a given offline tolerance tol and a natural number Ntrain we
consider a randomly chosen training set

�train D f.xn; e�/I xn 2 ˝;n D 1; � � � ; Ntrain; � D 1; � � � ; d g:

2. Iteration step: Assuming that the basis functions f�1; � � � ; �l�1g are already
computed we compute the next RB function �l as described below.

(a) Select the next target cell problem by an a posteriori estimator��

l�1;n:

.xl ; el / D argmax.xn;e�/2�train
�
�

l�1;n:

If max.xn;e�/ �
�

l�1;n � tol then go to step 3.



402 A. Abdulle et al.

(b) Compute the cell problem (7) located at xl with right-hand side based on
el with an accurate FE solver in order to have a negligible offline FE
discretization error. Add the cell solution to the RB basis f�1; � � � ; �l�1g after
an orthogonalization process.

3. Store the offline output: Ap; Fp;m;Gp , see (8) and (9).

An appropriate a posteriori estimator is crucial for the offline process and we refer to
[3] for details. The accuracy of the RB-FE-HMM for the wave equation is described
in the following theorem that can be proved by combining the a priori analyses in
[5] and [3].

Theorem 1 Under appropriate regularity assumptions for the homogenized solu-
tion u0, the following estimate for the RB-FE-HMM solution uH holds,

kuH � u0kL1.0;T IH1��.˝// � C.H`C� C errRB C errmod /; � D 0; 1;

where H0.˝/ WD L2.˝/, errmod is the HMM modeling error analyzed in [5] and
errRB � C. 1

N q C rRB/; where N is the DOF of the offline FEM used to compute
the RB.

As analyzed in [3], provided an exponential Kolmogorov N -width decay for the
best N -dimensional approximation subspace of the infinite dimensional space of
“cell solutions”, the RB a priori error rRB can be bounded as rRB � Ce�sN , where s
is a positive constant and N D dim.SN .Y //. As can be seen in our numerical tests
the offline error errRB is often negligible compared to the macro error O.H`C�/.
Finally we note that the RB error rRB can also be controlled by the a posteriori error
estimator [3, 8, 15].

3 Numerical Examples

In this section, we consider the model equation (1) in ˝ � Œ0; T � D Œ0; 1�2 � Œ0; 1�
and show two numerical examples to verify the performance of the RB-FE-HMM
for wave problems in heterogeneous media. In the following, we choose " D 10�3
and fix the micro sampling domain size ı D ". We set f D 0 in (1) and choose
initial conditions as g0.x/ D 0:1 exp

� jx�cj2
�2

�
; g1.x/ D 0; � D 0:1; c D

.0:5; 0:5/: We apply the P1 FEM for the space discretization (for both the offline
and the online procedures) and the leap frog scheme for the time discretization. The
implementation is done in Matlab 2012a without using a parallel implementation.

2D problem with a continuous tensor We consider the following diagonal tensor
applied to (1) (also used for the elliptic test problem in [3])

a"11.x/ D x21 C 0:2C .x2 C 1/.sin.2�x1="/C 2/
a"22.x/ D x22 C 0:05C .x1x2 C 1/.sin.2�x2="/C 2/: (10)
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Fig. 1 The decay of the a
posteriori error versus
reduced basis numbers [3]
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Table 1 Comparison between RB-FE-HMM and FE-HMM (the micro DOF NMIC is set to
NMIC D NMAC)

RB-FE-HMM FE-HMM

NMAC H1 error L2 error CPU (s) H1 error L2 error CPU (s)

16 0.181 8.8e�3 0:4 0.182 8.8e�3 2:6

32 0.112 4.2e�3 1:1 0.112 4.2e�3 25:1

64 0.041 1.1e�4 8:9 0.041 1.1e�4 412:3

128 0.015 0.3e�4 90:8 0.015 0.3e�4 7;671:5

As we noticed before, the same offline data can be used for different model
equations. Therefore we reuse the offline output from the first example in [3,
Section 5] for our wave equation. The details of the offline stage can be seen in
[3, Section 5] and we just mention here that 10 reduced bases are obtained in the
end of the offline stage which are solved on a 1;500� 1;500mesh. The offline CPU
time is 1;045 s. The fast decay of the a posteriori error in the offline stage is shown
in Fig. 1.

In the online stage, we set the time step �t D 0:1H to ensure stability of the
time integrator, where H D 1=NMAC and NMAC denotes the DOF in each space
direction. We test the error kuH � urefk in H1 and L2 norms as well as the CPU
time for both the RB-FE-HMM online stage and the FE-HMM. A reference solution
uref is computed from the homogenized equation with tensor a0 by P1 FEM on a
256�256 uniform mesh. As shown in Table 1, the RB-FE-HMM and the FE-HMM
have almost the same accuracy but the CPU time comparison shows great efficiency
advantage using the RB-FE-HMM.

2D problem with a discontinuous tensor In this test, we use a discontinuous
multiscale tensor as shown in Fig. 2a for the multiscale wave equation. This tensor
is also considered for elliptic equation in [3, Section 5]. As we can see in Fig. 2b,
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Fig. 2 (a) shows a"11. Nx; �/, in reference sampling domain Y . (b) shows H1 and L2 errors with
uref computed by the FE-HMM (NMAC D NMIC D 256)

the H1 and L2 errors converge with the rate O.H/ and O.H2/ respectively. The
RB error errRB is negligible here and cannot be observed as the macro discretization
error dominates. The convergence rates corroborate the a priori error estimate given
in Theorem 1.
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Reduced Order Optimal Control Using Proper
Orthogonal Decomposition Sensitivities

Tuğba Akman and Bülent Karasözen

Abstract In general, reduced-order model (ROM) solutions obtained using proper
orthogonal decomposition (POD) at a single parameter cannot approximate the
solutions at other parameter values accurately. In this paper, parameter sensitivity
analysis is performed for POD reduced order optimal control problems (OCPs)
governed by linear diffusion-convection-reaction equations. The OCP is discretized
in space and time by discontinuous Galerkin (dG) finite elements. We apply two
techniques, extrapolating and expanding the POD basis, to assess the accuracy of
the reduced solutions for a range of parameters. Numerical results are presented to
demonstrate the performance of these techniques to analyze the sensitivity of the
OCP with respect to the ratio of the convection to the diffusion terms.

1 Introduction

Optimal control problems for nonlinear and time-dependent partial differential
equations (PDEs) depending on a set of parameters are very time consuming.
To overcome this, in the last years, POD-ROMs are applied to optimal control
of PDEs (see for example [4]). The POD is based on projecting the dynamical
system onto subspaces of basis elements using the snapshots computed by finite
elements. The finite element solutions are not correlated to the physical properties
of the system they approximate, whereas the POD bases express the characteristics
of the solutions better. Besides POD, reduced basis methods are also used to
obtain efficient ROM solutions for parameterized PDEs (see for example [6]).
When ROMs should approximate solutions for a wide range of parameters, the
cost of basis selection increases because full data are required. In recent years,
sensitivity analysis has been used in the POD basis selection process for fluid
dynamics [3]. They rely on the continuous or discrete sensitivities, baseline or
reference POD modes and their derivatives with respect to parameters. In this
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work, we extend the parameter sensitivity analysis in [3] to time dependent OCPs
constrained by linear diffusion-convection-reaction equations. We compute two
new POD bases by extrapolating and expanding the baseline POD basis to assess
the accuracy of the reduced solutions for a range of parameters. The optimality
system is discretized using space-time dG method. DG time discretization schemes
combined with the symmetric interior penalty (SIPG) method in space have the
pleasant property that discretization and optimization commute. In addition, dG
time-stepping methods require less regularity compared to the finite difference
schemes in time [7, Chap. 7].

The paper is organized as follows: In Sect. 2, we give the optimality system for
the OCP governed by the unsteady diffusion-convection equation. The fully-discrete
optimality system using the space-time dG is given in Sect. 3. The POD-ROM for
the OCP and the derivation of POD sensitivities are presented in Sect. 4. Numerical
results for an OCP with interior and boundary layers are discussed in Sect. 5.

2 The Optimal Control Problem

We consider the following distributed OCP by the unsteady diffusion-convection-
reaction equation without control constraints

minimize
u2L2.0;T IL2.˝//

J.y; u/ WD 1

2

Z T

0

� ky � ydk2L2.˝/ C ˛ kuk2L2.˝/
�

dt;

subject to @ty � ��y C ˇ � ry C ry D f C u .x; t/ 2 ˝ � .0; T �;
y.x; t/ D 0 .x; t/ 2 @˝ � Œ0; T �; (1)

y.x; 0/ D y0.x/ x 2 ˝;
where ˝ is a bounded open, convex domain in R

2 with a Lipschitz boundary @˝
and I D .0; T � is the time interval, f; yd 2 L2.0; T IL2.˝//; y0.x/ 2 H1

0 .˝/; r 2
L1.˝/;ˇ 2 .W 1;1.˝//2 are given functions and �; ˛ > 0 are given scalars.
The velocity field ˇ does not depend on time and satisfies the incompressibility
condition, i.e. r � ˇ D 0.

In order to write the variational formulation of the problem, we define the bilinear
forms a.y; v/ D R

˝
.�ry �rvCˇ �ryvCryv/ dx, .u; v/ D R

˝
uv dx, the state and the

test space as Y D V D H1
0 .˝/;8t 2 .0; T �. It is well known that the pair .y; u/ 2

H1.0; T IL2.˝// \ L2.0; T IH1
0 .˝// � L2.0; T IL2.˝// is the unique solution of

the optimal control problem if and only if there is an adjointp 2 H1.0; T IL2.˝//\
L2.0; T IH1

0 .˝// such that .y; u; p/ satisfy the following optimality system [8]

.@ty; v/C a.y; v/ D .f C u; v/ 8v 2 V; y.x; 0/ D y0;
�.@tp;  /C a. ; p/ D �.y � yd ;  / 8 2 V; p.x; T / D 0; (2)

˛u D p:
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3 Space-Time Discretization of the Optimal Control Problem

Let fThgh be a family of shape regular meshes such that˝ D [K2ThK,Ki \Kj D
; for Ki ;Kj 2 Th, i 6D j . We use discontinuous piecewise finite element space
Vh D

˚
y 2 L2.˝/ W y jK2 P

1.K/ 8K 2 Th

�
for the control, state and adjoint.

Here, P1.K/ denotes the set of all polynomials onK 2 Th of degree 1. The diffusion
term is discretized by the SIPG method and the convection term is discretized by
upwinding [2]. Then, the semi-discrete state equation is given as in the study [1]

.@t yh; vh/C ah.yh; vh/C bh.uh; vh/ D .fh; vh/ 8vh 2 Vh; t 2 .0; T �:

For time discretization, we also use dG method. Let 0 D t0 < t1 < � � � < tN D T
be a subdivision of I D .0; T / with time intervals In D .tn�1; tn� and time steps
kn D tn � tn�1 for n D 1; : : : ; N and k D max1�n�N kn. We define the space-time
finite element space of piecewise discontinuous functions for test function, state,
control and adjoint as

V k
h D

(

v 2 L2.0; T IL2.˝// W vjIm D
qX

sD0
t s�s; t 2 Im; �s 2 Vh;m D 1; : : : ; N

)

:

We use dG(0) method, i.e. q D 0, where the approximating polynomials are
piecewise constant in time. We define yn D yhkjIn , pn D phkjIn , un D uhkjIn for
n D 1; � � � ; N , y�hk;0 D y0, pChk;N D 0. Then, the fully-discrete state and the adjoint
equation are written as

.M C kAs/yn D Myn�1 C
k

2
.fn C fn�1/C k

2
M.un C un�1/;

.M C kAa/pn�1 D Mpn �
k

2
M.yn C yn�1/C k

2
.ydn C ydn�1/;

where M is the mass matrix and As , Aa are the stiffness matrices for the state
ah.yh; vh/ and adjoint equations ah.vh; ph/, respectively. We note that the resulting
scheme is a variant of the backward Euler method where the temporal terms on the
right-hand side of (2) are computed by trapezoidal rule [7, Chap. 7].

4 Reduced-Order Modelling Using POD

In this section, we briefly explain the POD method. Let the matrix W be a real-
valued M � N matrix of rank d � min.M;N / representing the snapshot data. We
introduce the correlation matrixK D QW T QW with QW D M1=2W . Then, we compute



412 T. Akman and B. Karasözen

the coefficients of a POD basis of rank l using the eigenvalue decomposition (EVD)
of K as follows

�W;j D W QVW;j =
q

j ; j D 1; � � � ; l;

where QVW;j is the j -th eigenvector of K and 
j is the associated eigenvalue. On the
other hand, the singular value decomposition (SVD) of the matrix QW D U˙V T can
also be used. The POD basis coefficients are computed by solving the linear system
.M1=2/T �W;l D U l , with the first l columns of U , for �W;l . Then, the l POD basis
functions are written as a linear combination of the finite element basis functions,

 j .x/ D
MP

iD1
�ij'i.x/; j D 1; : : : ; l:

In general, the POD basis generated via the snapshots depending on a parameter
�0 cannot capture the dynamics of the perturbed problem associated to � D
�0 C ��. Motivated by the study of fluid flow equations using POD-ROMs [3],
POD sensitivities can be used to enrich the low-dimensional space for a wider
range of parameters. In order to derive POD sensitivities, the sensitivity of the
snapshot set is required. The sensitivity of a term is defined as the derivative of
that term with respect to a quantity of interest. In this study, we are interested in the
sensitivities with respect to � corresponding to the ratio � Dj ˇ j =� in the OCP (1).
For the computation of the sensitivities, we compare two different approaches: the
continuous sensitivity equation (CSE) and finite-difference (FD) approximation.
In CSE approach, state, adjoint and control are assumed to be differentiable with
respect to �. The subscript � denotes the derivative with respect to �. Then, with
the sensitivities s D y�; q D p�; � D u�; we derive another optimality system
depending on s; q and �,

.@t s; v/C a.s; v/ D .f� C �; v/ � .ry;rv/; s.x; 0/ D .y0/�;
�.@tq;  /C a. ; q/ D �.s � yd�;  / � .rp;r /; q.x; T / D 0; (3)

˛� D q:

We note that the sensitivity equations are always linear, so CSE method would be
especially promising for nonlinear problems. The sensitivities s; q and � can be
computed either by inserting the solution of the state and adjoint to the right-hand
side of (3) or solving the systems arising from (2) and (3) simultaneously. We use
the second approach. In FD method, particularly for the centred difference scheme,
the solution of the perturbed optimal control problem is required, i.e. depending on
� D �0 ˙ ��. Then, the sensitivity of the state can be computed via the centred
difference as follows

y�.�0/ 	 y.�0 C��/� y.�0 ���/
2��

: (4)



Reduced Order Optimal Control Using POD Sensitivities 413

We treat each POD mode as a function of both space and the parameter, i.e.  D
 .x; �/. In order to find POD sensitivities, we differentiate .M1=2/T � D U l with
respect to � and then solve the resulting equation for ��. Then, the sensitivities of
the l POD basis functions, namely  �, are written as a linear combination of the

finite element basis functions, . j /� D
MP

iD1
.�ij/�'i .x/; j D 1; : : : ; l .

We have taken the same range of parameters as in [3]. For larger parameter
variations, the applicability of this approach might not be useful, because the
sensitivities are based on the asymptotic expansion of � in (4).

The connection between the state and the POD sensitivities is realised through
the relation

U l
� D . QW V l˙#/� D QW�V

l˙# C QW V l
�˙

# C QW V l˙#
�:

For the computation of V l
� and˙#

�, we consider the equationB D ATAwhich leads

to the following eigenvalue problem BVk D V k
k with the kth column of V .
After differentiation, one obtains

.V k/T .B� � 
k�I /V k D 0: (5)

Equation (5) is solved in the least-squares sense and we denote one particular
solution by sk . ˙#

� is computed using the relation �2 D 
. For details, we refer
to [3, Sec. 3.2].

We use the sensitivity information in two ways, i.e. extrapolating POD (ExtPOD)
and expanding POD (ExpPOD) basis. In ExtPOD, the POD basis depending on �
is written using the first-order Taylors expansion as follows

 .x; �/ D  .x; �0/C��@ 
@�
.x; �0/C O.��2/:

In ExpPOD, the POD basis sensitivities are also added to the original POD basis as
Œ 1; : : : ;  l ; . 1/�; : : : ; . l /�� and the reduced order solution is written as

yrh.x; t/ D
lX

jD1
yrj .t/ j .x/C

2lX

jDlC1
yrj .t/. j .x//�;

where the dimension of the reduced basis is doubled.
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5 Numerical Results

We consider the optimal control problem with

Q D .0; 1� �˝; ˝ D .0; 1/2; � D 10�2; ˇ D 1p
2
.1; 1/T ; r D 1; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from the optimality system (2) using the following exact solutions of the state and
control, respectively,

y.x; t/ D .1 � e�t /xye�
1�x
� �1e�

1�y
� �1;

u.x; t/ D .1 � t/xy.1� x/.1 � y/ arctan
�x � y

�

	
:

We observe that the state contains boundary layers along x D 1 and y D 1, while
the control exhibit an interior layer along x D y of the width �. The full problem is
solved for �x D 1=40;�t D 1=60. The conjugate gradient method is used in the
optimization step. The error between the full and reduced solution of the control is
measured with respect to L2.0; T IL2.˝//.

We choose the parameter range for the ratio � Dj ˇ j =� as 1=� D 80 W 5 W 120.
We compute l POD basis functions associated to the nominal diffusion parameter,
i.e. � D 1=100, and compare the resulting error with the ExtPOD and ExpPOD
basis. Three different snapshot sets for W are used to generate the POD basis
functions, namely state Y , adjoint P and the combination of them Y [ P , as in
[5]. The state, adjoint and the control are written in terms of the same POD basis
functions associated to W and then the optimality system is projected onto the low-
dimensional subspace.

We choose the number of POD basis functions, namely l , according to the
relative information content, that is, the ratio of the modelled energy to the total

energy contained in the system E .l/ D
lP

iD1

i=

dP

iD1

i . It is fixed up to 100.1� 	/%

by keeping the most energetic POD modes. In this study, we choose 10 POD basis
functions setting 	 D 10�2.

Because the velocity field is constant in our example, we proceed with the
diffusion term to calculate the sensitivities. In Fig. 1, we present the decrease of
the first 15 eigenvalues of the snapshot ensemble Y;P; Y [ P on the left and their
sensitivities Y�; P�; Y� [ P� on the right. The sensitivities are computed using the
centered FD quotient and CSE method. We observe that FD and CSE methods yield
almost the same eigenvalues. We note that the eigenvalues and their sensitivities are
decreasing.



Reduced Order Optimal Control Using POD Sensitivities 415

0 5 10 15

10
−5

10
5

10
0

10
−10

10
−15

10
−20

l

λ

Y
P
YP

10
−5

10
5

10
0

10
−10

10
−15

0 5 10 15

l

λ ε

Y−FD
P−FD
YP−FD
Y−CSE
P−CSE
YP−CSE

Fig. 1 Eigenvalues(left) and their sensitivities(right)
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Fig. 2 Error versus parameter for 10 POD basis functions generated with the snapshot set Y (left),
P (middle) and Y [ P (right)

In Fig. 2, we present the error for the control with respect to � with 10 POD
bases functions. The control approximated with the POD bases generated from the
state solution is poor because the characteristics of the control are totally different
from the state solution. The inclusion of the adjoint information in W improves
the performance of the method, because the relation between the adjoint and the
control is determined through the optimality condition (2). In addition, a good
approximation to the control influences the state solution directly due to acting on
the right-hand side of the state equation. The figures on the left and in the middle
indicate that the snapshot sets Y and P cannot reveal the sensitivity of the control
with respect to �. Although ExpPOD gives the smallest error, it is too large for the
reduced solution to be accepted. The solution plotted in the right of Fig. 2 is obtained
using the snapshot set Y [P and it reveals the sensitivity of the problem with respect
to �. As we move away the parameter, the error in the reduced solution increases.
For the reduced solution of the perturbed problem, ExpPOD basis generated with
the snapshot ensemble Y [P is the most promising basis among POD and ExtPOD.

In Fig. 3, we present the error for the control with respect to increasing number of
POD basis functions by taking � D 1=120. The figure on the left has been obtained
with the state snapshots Y and shows that the error decays slowly and is oscillating
due to a poor approximation to the control is used. The figure in the middle depicts
the error obtained by the POD basis generated with the adjoint snapshot set P .
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Fig. 3 Error versus the number of POD basis functions for � D 1=120 generated with the snapshot
set Y (left), P (middle) and Y [ P (right)

Although the error for the first POD mode is around 10�4, error increases up to
10�2, which is not usual when the number POD basis functions are increased.
The figure on the right shows that snapshot ensemble Y [ P leads to the smallest
error. Moreover, the error for ExtPOD oscillates until the 6th POD mode and then
surpasses the error in the nominal POD. However, the benefit of using ExpPOD is
revealed at the most, because the error in the nominal POD basis is improved almost
2 digits. In addition, the decay of the errors for Y [ P is much faster than the one
obtained with Y or P using a smaller number of POD basis functions.

We observe that although the eigenvalues of the snapshot sets Y and P decreases
as shown in Fig. 1, the quality of the reduced-order control obtained using Y or P is
not sufficient. The state and adjoint snapshots might be a good choice if associated
POD basis is used to approximate the state and adjoint independently. The POD
basis generated via the snapshot ensemble Y [ P , containing information about
both state and adjoint, give more accurate reduced order solutions and capture the
sensitivity of the problem better. For the perturbed problem, expanding the POD
basis increases accuracy without solving the nominal problem for each parameter.
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Reduced Basis Approximation of Parametrized
Advection-Diffusion PDEs with High Péclet
Number

Paolo Pacciarini and Gianluigi Rozza

Abstract In this work we show some results about the reduced basis approximation
of advection dominated parametrized problems, i.e. advection-diffusion problems
with high Péclet number. These problems are of great importance in several
engineering applications and it is well known that their numerical approximation
can be affected by instability phenomena. In this work we compare two possible
stabilization strategies in the framework of the reduced basis method, by showing
numerical results obtained for a steady advection-diffusion problem.

1 Introduction

We show here some recent results about stabilized reduced basis methods for
the approximation of parametrized advection-diffusion problems with high Péclet
number, which expresses the ratio between the advection term and the diffusion
one.

Advection-diffusion problems are effectively employed to model a wide range of
physical phenomena. Just to give an example, we can recall heat transfer phenomena
(with conducion and convection) [11] or diffusion of pollutants in the atmosphere [2,
9]. These equations can depend on several parameters, typically the Péclet number,
the advection field direction and the geometry of the domain.

Moreover, parametrized advection-diffusion equations are often used in engi-
neering applications which require very fast evaluations of the solution, given
particular values of the parameters. The reduced basis method [8,12] can effectively
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provide a rapid approximation of the solution, as well as rigorous error bounds,
which guarantee the reliability of the solution. A very important feature of the
reduced basis method is its decomposition in two computational stages. In the first
expensive stage, called Offline stage, some high-fidelity solutions of the problems
are computed, which will become the basis functions for the Galerkin projection
performed in the second inexpensive stage, called Online stage.

Some applications of the reduced basis method to advection-diffusion problems,
such as the Graetz problem or the “thermal fin” problem, can be found in literature,
especially the case in which the Péclet number is moderate (i.e.102) [3,5,8,11,13].

When the Péclet number takes higher values, the finite elements (FE) approxi-
mation of advection-diffusion problems can show significant instability phenomena
(see e.g. [10]). To overcome this problem, one can resort to some classical stabi-
lization methods, like the Streamline/Upwind Petrov Galerkin (SUPG) method [1].
In this way, it is possible to compute a stable approximated solution suitable to
be considered as the truth one, i.e, the reference high-fidelity solution for the RB
method. A first investigation of the coupling between the stabilized FE formulation
and the RB method has been done in [2, 9]. We now base our work on some
more recent results given in [6]. Following the latter work, we want to compare
two possible strategies of stabilization, by comparing some numerical results in the
steady case. The first one, that we will call Offline-online stabilized method consists
in “stabilize” both the Offline and the Online stages, i.e. using the same stabilized
bilinear form in both stages. This method has been actually applied in [2, 9]. The
other method, called Offline-only consists in “stabilize” only the Offline stage and
then perform the Online stage using the standard advection-diffusion operator. To
explain the underlying idea, first of all we recall that the RB solution is actually a
linear combination of few reduced basis (i.e. the high-fidelity solutions computed
during the Offline stage) [12]. It can then be reasonable to expect that if our reduced
basis are stable, the reduced solution obtained using the non-stabilized advection-
diffusion operator will be stable too. After this brief introduction, in Sect. 2 we recall
the stabilized reduced basis method, in Sect. 3 we show some numerical tests and,
finally, we draw some conclusions.

2 Stabilized Reduced Basis Method

We take now into account a general parametric advection diffusion problem:

� ".�/�u.�/C ˇ.�/ � ru.�/ D 0 on ˝: (1)

given a parameter value� in the parameter domain D and suitably chosen Dirichlet,
Neumann or mixed boundary conditions. We consider a domain˝ which is an open
subset of R2. As regards the coefficients, we consider sufficiently regular functions
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".�/W˝ ! R and ˇ.�/W˝ ! R
2. The bilinear form associated with the advection-

diffusion problem is:

a.u; vI�/ D
Z

˝

".�/ru � rvC ˇ.�/ � ru v 8u; v 2 H1.˝/: (2)

Given a triangulation Th defined on ˝ , with maximum element diameter h, we can
set up a FE approximation of the advection-diffusion problem [7]. We denote with
XN the space of piecewise-linear finite elements. It is very well known in literature
(see e.g. [7, 10]) that the FE approximation can show instability phenomena when
the advective terms dominates the diffusive one. More precisely, we say that a
problem is advection dominated in K � ˝ if the following condition holds:

PeK.�/.x/ WD jˇ.�/.x/jhK
2".�/.x/

> 1 8x 2 K 8� 2 D ; (3)

where hK is the diameter ofK .
In order to obtain an approximated solution which does not show instabilities,

we can resort to some stabilization method. We decided to exploit the classical
SUPG method [1]. This consists in substituting, in the FE formulation, the standard
advection-diffusion bilinear form (2) with the following one

astab.w
N ; vN I�/ D

Z

˝

".�/rwN � rvN C .ˇ.�/ � rwN /vN

C
X

K2Th
ıK

Z

K

L�vN
�

hK

jˇ.�/jL
�
SSvN

� (4)

with wN ; vN chosen inXN . In (4)L� is the advection-diffusion operatorL�vN D
�".�/�vN C ˇ.�/ � rvN , while L�SS is its skew-symmetric part. Note that in
the case of a divergence free advection field ˇ.�/, it holds that L�SS D ˇ.�/ �
rvN [10]. The weights ıK have to be properly chosen in order to ensure the stability
and convergence of the SUPG method [7, 10].

We can now consider the RB approximation of the problem (1). As regards the
Offline stage, we decided to consider only the stabilized bilinear form (4) and thus
we considered as truth solution the SUPG stabilized one, that is to find usN .�/ 2
XN such that

astab.u
sN ; vN I�/ D fstab.v

N I�/ 8 vN 2 XN : (5)

where the right-hand side functional f can be a forcing term or can depend on
the imposition of boundary conditions. Considering problem (5), we can set up the
Offline stage of the RB method, which produces a reduced space XN

N � XN with
dimension N such that N � N .
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For the Online stage, we propose two different strategies. The first one, which
correspond to the Offline-Online stabilized method, consists in using the stabilized
bilinear form also during the Online stage. Then the Online problem turns out to be:
find usN .�/ 2 XN

N such that

astab.u
s
N .�/; vN I�/ D fstab.vN I�/ 8 vN 2 XN

N : (6)

On the contrary in the second method we propose, the Offline-only stabilized
method, the Online stage is performed using the original advection-diffusion
bilinear form (2). The Online problem is then: find uN .�/ 2 XN

N such that

a.uN .�; vN I�/ D f .vN I�/ 8 vN 2 XN
N : (7)

The right-hand side functional f can in general be different from the one of the
stabilized problem, because it does not contain, for example, contributions given by
the stabilization term and the lifting of Dirichlet boundary conditions.

3 Numerical Test: Advection-Diffusion Problem
with a Boundary Layer

We consider now the following advection-diffusion problem, whose domain˝o.�/

is sketched in Fig. 1,

8
ˆ̂̂
<

ˆ̂
:̂

� 1
�1
�u.�/C ˇ � ru.�/ D 0 in ˝o.�/

u.�/ D 0 on �o;1.�/ [ �o;2.�/
1
�1

@u
@n
.�/ D 0 on �o;3.�/

1
�1

@u
@n
.�/ D 1 on �o;4.�/

(8)

where� D .�1; �2/ belongs to D D Œ100; 1000��Œ2; 6�. We chooseˇ D .y;�0:1/.
In order to effectively perform a RB approach, we need to choose a reference domain
˝ , as described [8, 12]. We thus set ˝ D ˝o.�2 D 3/ on which we define the FE
triangulation. We also define an affine transformation T �W˝ ! ˝o.�/which maps
the reference domain onto the parametrized one, which is T �.x; y/ D .�2 x=3; y/.

Fig. 1 Domain of
problem (8). The boundary
conditions are: homogeneous
Dirichlet on the bold sides,
homogeneous Neumann on
the dotted side and
non-homogeneous Neumann
on the dashed side

(0, 1)

(0, 0) (μ2, 0)

(μ2, 1)

Ωo(µ)

Γo,2

Γo,4

Γo,3Γo,1
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Using the transformation T � we can track back to the reference domain
all the bilinear forms defined on the parametrized domain. The transformed
advection-diffusion bilinear forms turns out to be:

a.wN ; vN I�/ D 3

�1 �2

Z

˝

@xwN @xvN C �2

3�1

Z

˝

@ywN @yvN

C
Z

˝

y @xwN vN � �2
30

Z

˝

@ywN vN ;

(9)

for all wN , vN in XN . Note that the bilinear form (9), satisfies the affinity
assumption

a.wN ; vN I�/ D
QaX

qD1
�q
a.�/a

q.wN ; vN / 8� 2 D ; (10)

where �q
a , q D 1; : : : ;Qa, are functions D ! R while aq , q D 1; : : : ;Qa, are

�-independent bilinear forms on XN . Assumption (10) is crucial for the efficiency
of the Offline/Online decomposition of the RB method [8, 12].

As regards the stabilization term, we point out that for piecewise linear approx-
imation we do not have particular restriction on the choice of the weights ıK [10].
We then set ıK D 1 for each element K . As piecewise linear functions have null
Laplacian inside each element, the stabilization term becomes:

s.wN ; vN I�/ D
s
1C �22
10

"
3

�2

X

K2Th
hK

Z

K

y2@xwN @xvN

C
X

K2Th
hK

Z

K

2 y .@xwN @yvN C @ywN @xvN /

C �2

3

X

K2Th
hK

Z

K

@ywN @yvN
#

:

(11)

for all wN , vN in XN . The term
q
.1C �22/=10 has been inserted to keep into

account the transformation of the element diameter. In order to ensure the affinity
assumption (10) also for the stabilization term, with Qa � N , we assumed that
each element diameter transforms as the diameter of the whole domain. Considering
the exact transformation for each element diameter would have implied a number of
affine terms of the order of N (one affine term per element).

Having defined forms (9) and (11), we can define the stabilized bilinear form
astab D a C s. Now we can set up the Offline stage of the RB method, to
be performed with respect to the stabilized bilinear form astab. We applied the
Successive Constraint Method (SCM) [4, 12] to build computationally inexpensive
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lower bounds for the parametric coercivity constants and then we applied the
standard RB Greedy algorithm [8, 12].

In our computations, the Offline stage required 311 s (237 s for the SCM) and
produced a reduced space with N D 26 basis. The tolerance on the Greedy
algorithm was "�tol D 10�3. This means that we can guarantee that

jjjusN .�/� usN .�/jjj�;stab � "�tol 8� 2 � (12)

where� is a sufficiently large subset of D with finite cardinality (see [12]). In (12),
jjj � jjj�;stab is the norm induced by the symmetric part of the bilinear form astab.

We can now compare the Offline-Online stabilized method and the Offline-only
stabilized method. In Fig. 2 we show some Offline-Online approximated solutions,
while in Fig. 3 we show some Offline-only approximated solutions. It is evident that
the solutions produced with the Offline-only stabilized method can show significant
instabilities, as shown in Fig. 3b. We have actually shown that a Galerkin projection
on a subspace spanned by stable functions does not guarantee that the solution does
not show instability phenomena. On the contrary, we observe that the Offline-Online
stabilized method always produces stable solutions.

In order to understand the bad behaviour of the Offline-only stabilized method for
our problem, the following upper bound can been proven using the same arguments
of [6],

Fig. 2 Offline-Online stabilized method. Solutions for some representative values of the parame-
ter. (a) �D .200; 3/. (b) � D .900; 3/

Fig. 3 Offline-only stabilized method. Solutions for some representative values of the parameter.
(a) �D .200; 3/. (b) �D .900; 3/
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Fig. 4 Approximation errors
and upper bound as functions
of �1, for �2 D 3 fixed

Proposition 1 (Upper bound for the Offline-only method) The following esti-
mate of the error between the Offline-only stabilized approximation uN .�/ and the
stabilized FE approximation usN .�/ holds:

jjjuN .�/� usN .�/jjj� � jjjusN .�/� usN .�/jjj

C hmax

q
�1

1C�22
10
kˇ � r.usN .�/C gh/kL2.˝o.�//

(13)

where usN .�/ is the Offline-Online stabilized solution, gh is the lifting of the
Dirichlet boundary condition and jjj � jjj� is the norm induced by the symmetric
part of the bilinear form a. The value hmax is the maximum element diameter of the
reference mesh Th.

In Fig. 4 we show a comparison between the Offline-Online approximation error,
the Offline-Online approximation error and the upper bound (13), having fixed�2 D
3. The reasonable sharpness shown by the upper bound suggests that in general the
Offline-Only stabilized method is not a good approximation strategy. We can also
highlight that a major component of the Offline-only error can be the streamline
derivative term in (13). This is also suggested by the fact that, when the streamline
derivative term in (13) is “small”, e.g. when the advection field and the boundary
layer are almost parallel and both the advection field and the gradient of the solution
have relatively small modulus, then the Offline-only stabilized method can produce
satisfactory results too, as shown in [6] for a Graetz problem.

Conclusions
We have investigated the RB approximation of advection dominated RB
problems, comparing two possible strategies an Offline-Online stabilized
method and an Offline-only stabilized one. Numerical results have shown that

(continued)
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the former gives better results, while the latter produces reduced solutions
with strong instability effects, even if the reduced basis functions are stable.
We have shown that the numerical results obtained are in accordance with the
theoretical estimates proven in [6].
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Reduced-Order Modeling and ROM-Based
Optimization of Batch Chromatography

Peter Benner, Lihong Feng, Suzhou Li, and Yongjin Zhang

Abstract A reduced basis method is applied to batch chromatography and the
underlying optimization problem is solved efficiently based on the resulting reduced
model. A technique of adaptive snapshot selection is proposed to reduce the
complexity and runtime of generating the reduced basis. With the help of an
output-oriented error bound, the construction of the reduced model is managed
automatically. Numerical examples demonstrate the performance of the adaptive
technique in reducing the offline time. The ROM-based optimization is successful
in terms of the accuracy and the runtime for getting the optimal solution.

1 Introduction

Reduced basis methods (RBMs) have been proved to be powerful tools for rapid
and reliable evaluation of the output response associated with parameterized partial
differential equations (PDEs) [1, 5, 9, 11, 12]. The reduced basis (RB), used to
construct the reduced-order model (ROM), is computed from snapshots, that is, the
solutions to the PDEs at certain selected samples of parameters and/or chosen time
steps. An efficient and rigorous a posteriori error estimation is crucial for RBMs
because it enables automatic generation of the RB, and in turn a reliable ROM, with
the help of a greedy algorithm.

The efficiency of RBMs is ensured by the strategy of offline-online decom-
position. During the offline stage, all full-dimension dependent and parameter-
independent terms can be precomputed and a (parametric) ROM is obtained a priori;
during the online stage, a reliable output response can be obtained rapidly from the
ROM for any given feasible parameter. Although the offline cost is usually not taken
into consideration, it is typically high, especially for time-dependent PDEs.
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To reduce the cost and complexity of the offline stage, we propose a technique of
adaptive snapshot selection (ASS) for the generation of the RB. For time-dependent
problems, if the dynamics (rather than the solution at the final time) is of interest,
the solution at the time instances in the evolution process should be collected as
snapshots. However, the trajectory for a given parameter might contain a large
number of time steps, e.g. in the simulation of batch chromatography. In such a case,
if the solutions at all time steps are taken as snapshots, the subsequent computation
will be very expensive because the number of snapshots is too large; if one just
trivially selects part of the solutions, i.e. solutions at parts of the time instances
(e.g. every two or several time steps), the final RB approximation might be of low
accuracy because important information may have been lost due to such a naive
snapshot selection. We propose to select the snapshot adaptively according to the
variation of the solution in the evolution process. The idea is to make full use
of the behavior of the trajectory and discard the redundant (linearly dependent)
information adaptively. It enables the generation of the RB with a small number of
snapshots but including only “useful” information. In addition, it is easily combined
with other algorithms for the generation of RB, e.g. the POD-Greedy algorithm [9].

Batch chromatography is a very important chemical process and widely used in
industries. Many efforts have been made for the optimization of batch chromatog-
raphy over the last decades [4, 6, 7]. Notably, all these studies are based on the
finely discretized full-order model (FOM), which must be repeatedly solved in the
optimization process, making the runtime of obtaining the optimal solution too long.

In this paper, a RB method is introduced to generate a surrogate ROM for batch
chromatography. The nonlinear terms in the FOM are treated by empirical operator
interpolation [1, 2]. With the help of the ASS and an output error bound derived in
vector space in [13], the ROM is efficiently constructed in a goal-oriented fashion.
The resulting ROM is used for the rapid evaluation of the output response during
the optimization process.

This paper is organized as follows. A brief review of the RBM is given in
Sect. 2. The ASS technique is presented in detail for the construction of the
ROM in Sect. 3. Section 4 shows the numerical results. Conclusions are drawn in
section “Conclusions and Perspective”.

2 Reduced Basis Method and Empirical Interpolation

Consider a parametrized evolution problem defined over the spatial domain˝ � R
d

and the parameter domain P � R
p,

@tu.t; xI�/CL Œu.t; xI�/� D 0; t 2 Œ0; T �; x 2 ˝; � 2P; (1)

where L Œ�� is a spatial differential operator. Let W N � L2.˝/ be an N -
dimensional discrete space in which an approximate numerical solution to Eq. (1) is
sought. Let 0 D t0 < t1 < : : : < tK D T be K C 1 time instants in Œ0; T �. Given
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� 2 P with suitable initial and boundary conditions, the numerical solution at the
time t D tn, un.�/, can be obtained by using suitable numerical methods, e.g. the
finite volume method. Assume that un.�/ 2 W N satisfies the following form,

LI .t
n/ŒunC1.�/� D LE.tn/Œun.�/�C g.un.�/; �/; (2)

where LI .tn/Œ��; LE.tn/Œ�� are linear implicit and explicit operators, respectively,
and g.�/ is a nonlinear�-dependent operator. To make the RBM feasible, we assume
thatLI .tn/; LE.tn/ are time-independent. By convention, un.�/ is considered as the
“true” solution by assuming that the numerical solution is a faithful approximation
of the exact (analytical) solution u.tn; xI�/.

RBMs aim to find a suitable low dimensional subspace W N � W N and solve
the resulting ROM to get the RB approximation Oun.�/ 2 W N . In addition or
alternatively to the field variable itself, the approximation of outputs of interest can
also be obtained cheaply by Oy.�/ D y.Ou.�//. More precisely, given a RB matrix
V WD ŒV1; : : : ; VN �, Galerkin projection is employed to generate the ROM:

V TLI .t
n/ŒVanC1.�/� D V TLE.t

n/ŒVan.�/�C V T g.Van.�//; (3)

where an.�/ D .an1 .�/; : : : ; a
n
N .�//

T 2 R
N is the vector of the weights in the

expression Oun.�/ WD Van.�/ DPN
iD1 ani .�/Vi , and it is the vector of unknowns in

the ROM. Thanks to the linearity of the operators LI and LE , the ROM (3) can be
rewritten as

V TLI .t
n/V ŒanC1.�/� D V TLE.t

n/V Œan.�/�C V T g.Van.�//; (4)

where V TLI .t
n/V and V TLE.t

n/V can be precomputed and stored for the
construction of the ROM. However, the computation of the last term in (4),
V T g.Van.�//, cannot be done analogously because of the nonlinearity of g. This
can be tackled by using a technique of empirical (operator) interpolation (EI), see
e.g. [1, 2] for details.

The POD-Greedy algorithm [9], shown in Algorithm 2.1, is often used for
the generation of the RB for time-dependent problems. Note that �N .�max/ is an
indicator of the error of the ROM. As aforementioned, an efficient and rigorous a
posteriori error estimator is desired for efficient construction of the ROM. In this
paper, we use an output error bound to compute the error indicator �N .�max/. Due
to space limitations, the derivation of the output error bound will be given in a more
detailed paper [13]. For some problems, like the batch chromatographic model
under consideration, the implementation of Step 4 in Algorithm 2.1 is costly because
the number of time stepsK is very large. In this work, we propose to use a technique
we call ASS to reduce the cost, which is addressed in Sect. 3.
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Algorithm 2.1: RB generation using POD-Greedy
Require: Ptrain; �0; tolRB.< 1/

Ensure: RB V D ŒV1; : : : ; VN �

1: Initialization: N D 0, V D Œ �, �max D �0, �N .�max/ D 1

2: while the error �N .�max/ > tolRB do
3: Compute the trajectory Smax WD fun.�max/gKnD0.
4: Enrich the RB, e.g. V WD ŒV; VNC1�, where VNC1 is the first POD mode of the matrixNU D ŒNu0; : : : ; NuK� with Nun WD un.�max/�˘W N Œun.�max/�; n D 0; : : : ; K .˘W N Œu�

is the projection of u onto the current space W N WD spanfV1; : : : ; VN g.
5: N D N C 1
6: Find �max WD arg max�2Ptrain �N .�/.
7: end while

3 Adaptive Snapshot Selection

For the generation of the RB, a training set Ptrain of parameters must be determined.
On the one hand, the training set is desired to include the information of the
parametric system as much as possible. On the other hand, the RB should be
efficiently generated.

To construct the RB efficiently, many efforts have been made on adaptively
choosing the training set [3,8] in the past years. The authors tried to get an “optimal”
training set in the sense that the original manifold M D fu.�/j� 2Pg can be well
represented by the submanifold OM D fu.�/j� 2Ptraing induced by the sample set
with its size as small as possible.

For time-dependent problems, in spite of an “optimal” training set, the number
of snapshots can be huge if the total number of time steps for a single parameter is
large. A large number of snapshots means that it is time-consuming to generate the
RB because the POD mode in Step 4 in Algorithm 2.1 is hard to compute from the
singular value decomposition of NU , due to the large size of NU . As a straightforward
way to avoid using the solutions at all time instances as snapshots, one can simply
pick out the solutions at certain time instances (e.g. every two or several time steps)
as snapshots. However, the results might be of low accuracy because some important
information may have been lost during such a trivial snapshot selection.

For an “optimal” or a selected training set, we propose to select the snapshots
adaptively according to the variation of the trajectory of the solution, fun.�/gKnD0.
The idea is to discard the redundant ((almost) linearly dependent) information from
the trajectory. In fact, the linear dependency of two non-zero vectors v1 and v2 can be
reflected by the angle  between them. More precisely, they are linearly dependent
if and only if j cos./j D 1 . D 0 or �/. In other words, the value 1 � j cos./j is
large if the linear relevance between the two vectors is weak. This implies that the
quantity 1� jhv1;v2ijkv1kkv2k .cos./ D hv1;v2i

kv1kkv2k / is a good indicator for the linear dependency
of v1 and v2.

Given a parameter � and the initial vector u0.�/, the numerical solution
un.�/ .n D 1; : : : ; K/ can be obtained, e.g. by using the evolution scheme (2).
Define an indicator Ind.un.�/; um.�// D 1 � jhun.�/; um.�/ij

kun.�/kkum.�/k ; which is used to
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Algorithm 3.1: Adaptive snapshot selection (ASS)

Require: Initial vector u0.�/, tolASS

Ensure: Selected snapshot matrix SA D Œun1 .�/; un2 .�/; : : : ; un` .�/�
1: Initialization: j D 1; nj D 0; SA D Œunj .�/�
2: for n D 1; : : : ; K do
3: Compute the vector un.�/.
4: if Ind.un.�/; unj .�// > tolASS then
5: j D j C 1
6: nj D n

7: SA D ŒSA; unj .�/�
8: end if
9: end for

Algorithm 3.2: RB generation using ASS-POD-Greedy
Require: Ptrain; �0; tolRB.< 1/

Ensure: RB V D ŒV1; : : : ; VN �

1: Initialization: N D 0, V D Œ �, �max D �0, �.�max/ D 1

2: while the error �N .�max/ > tolRB do
3: Compute the trajectory Smax WD fun.�max/gKnD0 and adaptively select snapshots using

Algorithm 3.1 to get SAmax WD fun1 .�max/; : : : ; un` .�max/g.
4: Enrich the RB, e.g. V WD ŒV; VNC1�, where VNC1 is the first POD mode of the matrixNUA D ŒNun1 ; : : : ; Nun` � with Nuns WD uns .�max/�˘W N Œuns .�max/�; s D 1; : : : ; `; `
 K .

˘W N Œu� is the projection of u onto the space W N WD spanfV1; : : : ; VN g.
5: N D N C 1
6: Find �max WD arg max�2Ptrain �N .�/.
7: end while

measure the linear dependency of the two vectors. When Ind.un.�/; um.�// is
large, the linear relevance between un.�/ and um.�/ is weak. Algorithm 3.1
shows the realization of the ASS, un.�/ is taken as a new snapshot only when
un.�/ and unj .�/ are “sufficiently” linearly independent, by checking whether
Ind.un.�/; unj .�// is large enough or not. Here, unj .�/ is the last selected snapshot.
Note that the inner product h�; �i W W N �W N ! R used above is properly defined
according to the solution space, and the norm k � k is induced by the inner product.

Remark 1 For the linear dependency, it is also possible to check the angle between
the tested vector un.�/ and the subspace spanned by the selected snapshots SA.
More redundant information can be discarded but at more cost. However, the data
will be compressed further, e.g. by using the POD-Greedy algorithm, we simply
choose the economical case shown in Algorithm 3.1. Note that the tolerance tolASS

is prespecified and problem-dependent, and the value atO.10�4/ gives good results
for the numerical examples studied in Sect. 4 based on our observation.

The ASS technique can be easily combined with other algorithms for the
generation of the RB and/or the collateral reduced basis (CRB) for EI. For
example, Algorithm 3.2 shows the combination with the POD-Greedy algorithm
(Algorithm 2.1).
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4 Numerical Experiments

In this paper, we use the RBM and ASS presented in the previous sections to
generate a surrogate ROM for batch chromatography. The governing equations for
batch chromatography can be described as follows,

8
<

:

@cz
@t
C 1��

�

@qz
@t
D � @cz

@x
C 1

Pe
@2cz

@x2
; 0 < x < 1;

@qz
@t
D L

Q=.�Ac/
�z.q

Eq
z � qz/; 0 � x � 1:

(5)

Here cz; qz .z D a;b/ are the unknowns in the system, and qEq
z is a nonlinear

function of ca and cb. A detailed description of model parameters, and the initial and
boundary conditions can be found in [13]. The feed flow rate Q and the injection
period tin (in the boundary conditions) are considered as the operating variables,
denoted as � WD .Q; tin/.

In this section, we first illustrate the performance of the ASS for the construction
of the ROM, and then show the results of ROM-based optimization. The parameter
domain of � is P D Œ0:0667; 0:1667� � Œ0:5; 2:0�, and N D 1;000 for the FOM.
We employ the tolerance tolRB D 1:0 � 10�6 and tolASS D 5:0 � 10�4 unless stated
otherwise. All the computations were done on a PC with Intel Core(TM)2 Quad
CPU 2.83 GHz and RAM 4.00 GB.

4.1 Performance of the Adaptive Snapshot Selection

To investigate the performance of the ASS, we compare the runtime of the genera-
tion of the RB with different threshold values tolASS. As is shown in Algorithm 3.2,
the ASS can be combined with the POD-Greedy algorithm for the generation of
the RB. For the computation of the error indicator �N .�max/ in Algorithm 3.2, EI
is involved for an efficient offline-online decomposition. To efficiently generate a
CRB, the ASS is also employed. The training set for the generation of the CRB is
PCRB

train � P , with 25 uniform sample points. For each � 2 PCRB
train , Algorithm 3.1

is used to choose the snapshots adaptively. Table 1 shows the results. It is seen
that, the larger tolerance is used, the more runtime is saved. Particularly, when
tolASS D 5:0 � 10�4, the runtime is reduced by 93:1% compared to that without
ASS.

Table 1 Runtime for the generation of the CRB with different tolASS

No ASS ASS ASS ASS

tolASS – 1:0� 10�4 5:0 � 10�4 1:0� 10�3

Runtime (h) 25:30 (–) 2.56 .�89:9%/ 1.74 .�93:1%/ 1.04 .�95:9%/
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Table 2 Comparison of the detailed and reduced simulations over a validation set Pval with 400
random sample points. FOM: N D 1;000; ROM: N D 43

Simulations FOM ROM (POD-Greedy) ROM (ASS-POD-Greedy)

Max. error – 4:0� 10�7 7:7� 10�7

Aver-runtime (s)/SpF 91.65/- 3.45/27 3.45/27

With the precomputed CRB (tolASS D 5:0 � 10�4), we perform Algorithms 2.1
and 3.2 to generate the RB with the same tolerance tolRB, respectively. The runtime
for the former (using Algorithm 2.1) is 5.24 h, while it is only 3.10 h for the latter
(using Algorithm 3.2). The runtime of the RB construction with the ASS is reduced
by 40:9%. Notice that the CRB is obtained a priori, the runtime of it is not included
here. The training set is Ptrain �P , with 64 uniform sample points. Moreover, the
resulting ROM with ASS is almost as accurate as that without ASS, as is shown in
Table 2.

4.2 ROM-Based Optimization

The optimization of batch chromatography aims to find �opt 2P such that

�opt WD arg min
�2Pf�Pr.cz.�/; qz.�//g;

s.t. Recmin � Rec.cz.�/; qz.�// � 0; � 2P

cz.�/; qz.�/ are the solutions to the system (5); z D a;b:

More details about the optimization problem, e.g. the definition of the production
rate Pr and the recovery yield Rec, can be found in [13].

Before solving the ROM-based optimization, we first assess the reliability of
the resulting ROM. We performed the detailed and reduced simulations over a
validation set Pval � P with 400 random sample points. From Table 2, it is seen
that the average runtime of the detailed simulation is sped up by a factor of 27, and
the maximal true error is below the prespecified tolerance.

The global optimizer NLOPT_GN_DIRECT_L [10] is employed to solve the
optimization problems. Let �k be the vector of parameters determined by the
optimizer at the k-th iteration. When k�kC1 � �kk < �opt, the iteration is stopped
and the optimal solution is obtained. Table 3 shows the results. It is seen that the
optimal solution to the ROM-based optimization converges to the FOM-based one.
Moreover, the runtime of getting the optimal solution is largely reduced. The speed-
up factor (SpF) is 29.
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Table 3 Optimization results based on the ROM and FOM, �opt D 1:0 � 10�4

Simulations Obj. .Pr/ Opt. solution .�/ #Iterations Runtime (h)/SpF

FOM-based Opt. 0.020271 .0:07969; 1:05514/ 211 10.60/-

ROM-based Opt. 0.020276 .0:07969; 1:05514/ 211 0.36/29

Conclusions and Perspective
We present a reduced basis method for batch chromatography and solve the
underlying optimization efficiently based on a surrogate ROM. The technique
ASS is presented for efficient construction of the ROM. Numerical examples
demonstrate that it significantly reduces the offline time while not sacrificing
the accuracy of the ROM. In addition, the ASS might be applied to other
snapshot-based model reduction methods.
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Output Error Bounds
for the Dirichlet-Neumann
Reduced Basis Method

Immanuel Martini and Bernard Haasdonk

Abstract The Dirichlet-Neumann reduced basis method is a model order reduction
method for homogeneous domain decomposition of elliptic PDEs on a-priori known
geometries. It is based on an iterative scheme with full offline-online decomposition
and rigorous a-posteriori error estimates. We show that the primal-dual framework
for non-compliant output quantities can be transferred to this method. The results
are validated by numerical experiments with a thermal block model.

1 Introduction

Recently, several approaches combining the reduced basis (RB) method—a
model reduction method for efficient treatment of parametrized partial differential
equations (PDEs)—and domain decomposition—a technique for coupling PDEs
on adjacent computational domains—have been developed [1–4]. A standard
RB approach consists in approximating the solution manifold of a parametrized
PDE by a low-dimensional linear space spanned by so-called snapshots—highly
accurate solutions computed with Finite Elements (FE) for example—and a
Galerkin-projection on this space. In a domain decomposition framework it is no
longer necessary to compute detailed solutions on the whole domain. Furthermore,
the dimensions of RB approximation spaces on subdomains may be lower than in
the monolithic approach.

The Dirichlet-Neumann RB method [4] is based on the Dirichlet-Neumann FE
procedure. It represents a well-known iterative domain decomposition method for
linear elliptic problems with an offline/online decomposition, which allows solving
the PDE in a very fast online-stage. All high-dimensional FE computations are done
in the offline-stage. It also includes effective a-posteriori error estimation for RB
approximations, that possibly are discontinuous over the internal boundary.
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In this contribution we provide an extension of the method regarding compu-
tation and error estimation of output quantities. We make use of the primal-dual
framework, which is commonly known to produce good output error bounds for
non-compliant problems. We refer to [5] and [6] for an introduction into output
error estimation for standard RB methods.

2 Problem Definition

Let ˝ � R
2 be a domain with Lipschitz–boundary @˝ and x 2 ˝ the space

variable. We introduce a Hilbert space X � H1
0 .˝/ with the norm kvkX WD

kvkH1.˝/ which can be either finite or infinite dimensional. We now consider a
decomposition of ˝ into 2 subdomains, i.e. ˝ D ˝1 [ ˝2 and ˝1 \ ˝2 D ;.
The interface � is defined as � WD @˝1 \ @˝2. We assume that ˝1 and ˝2

have Lipschitz–boundaries and that � , @˝1 n � and @˝2 n � have a nonvanishing
.n � 1/-dimensional measure. Several function spaces are defined according to the
domain decomposition,

Xk WD
˚
vj˝k jv 2 X

�
;

X0
k WD fv 2 Xkj	v D 0g ;

X� WD 	.X1/ D 	.X2/;
where k D 1; 2. The operator 	 denotes the trace operator on � , where we do not
notationally discriminate between the spaces X1 or X2, as it will always be clear
from the context. It holds X1 � H1.˝1/, X2 � H1.˝2/ and X� � H1=2

00 .� /. We
equip the Hilbert spaces Xk , k D 1; 2 with the norms kvkXk WD kvkH1.˝k/ and X�
with kgkX� WD kgkL2.� /.

Now let P � R
P , P 2 N be the domain of the parameter � 2P . We introduce

the parametric elliptic variational problem for defining the parameter-dependent
primal solution u.�/ 2 X and the output s.�/ 2 R:

a.u.�/; vI�/ D f .vI�/; 8v 2 X; (1)

s.�/ D l.u.�/I�/; (2)

with a parametric bilinear form a W X � X �P ! R and parametric linear forms
f; l W X �P ! R. We do not assume symmetry in a. Furthermore, the so-called
dual problem for defining the dual solution  .�/ reads

a.v;  .�/I�/ D �l.vI�/; 8v 2 X: (3)

The approximation of  .�/ in the RB scheme helps to get good output approxi-
mations, although the dual problem is not strictly necessary for the computation of
s.�/.
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2.1 Assumptions

We assume that, for all � 2 P , a is continuous on X and coercive on X with
coercivity constant

˛X.�/ WD inf
v2Xnf0g

a.v; vI�/
kvk2X

> 0:

We also assume that f and l are continuous and that a, f and l are parameter
separable, i.e. for all of them exist decompositions of the following type:

a.v;wI�/ D
QaX

qD1
�q
a.�/a

q.v;w/; 8v;w 2 X;� 2P;

with preferably small integer Qa and �–independent continuous bilinear forms aq .
We assume that the solution u.�/ of (1) is approximated with an iterative domain

decomposition procedure. To this end, symmetric bilinear forms ak.v;wI�/ W Xk �
Xk �P ! R (“aj˝k”) and linear forms fk.vI�/ W Xk �P ! R (“f j˝k”) are
given on the subdomains. This enables us also to define a and f on

W WD X1 ˚X2;

which can be identified with a superset of X . For details we refer the reader to [4].
To complete the notational framework we introduce the continuity constant

MW .�/ WD sup
v2W nf0g

sup
w2W nf0g

a.v;wI�/
kvkW kwkW <1:

3 Reduced Basis Scheme

The approximation of the output s.�/ defined in (2) for a parameter� 2P consists
in an offline-stage, which is done once, and an online-stage, which is performed for
every output evaluation. In the offline-stage bases for the RB approximation spaces
on the subdomains are generated. This is done in a Greedy-algorithm, using a fastly
evaluable a-posteriori error estimate to get the “worst-error” parameter. The bases
are extended stepwise by a specific routine, yielding partly orthonormalized bases.
For more details we refer the reader to [4]. The primal and dual problem are treated
equally in this step, yielding separate primal and dual RB spaces. We concentrate
now on the explanation of the online-stage, where the approximations to s.�/ are
actually computed.
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We introduce RB spaces XN;k � Xk , X0
N;k � X0

k and X�
N;k � Xk for k D

1; 2 with dimensions Nk WD dim.XN;k/ < 1, N0
k WD dim.X0

N;k/ < 1, N�
k WD

dim.X�
N;k/ <1 for k D 1; 2 and the following relations:

XN;k Š X0
N;k ˚X�

N;k; k D 1; 2
X0
N;k D XN;k \H1

0 .˝k/; k D 1; 2;
	.X�

N;1/ D 	.X�
N;2/;

Consequently, it holds Nk D N0
k C N�

k for k D 1; 2 and N� WD N�
1 D N�

2 .
Further we define XN;� WD 	.X�

N;1/ D 	.X�
N;2/. This one-to-one correspondence

on the interface allows us to transmit values without evaluating traces inXN;k online.
It also enables us to define a lifting operator in the following way:

RXN;1 W XN;� ! XN;1 W g 7! .	 jX�N;1/
�1g:

We assume that those spaces were built for the approximation of the primal
solution. For the approximation of the dual solution we introduce RB spaces
YN;k � Xk , Y 0N;k � X0

k , Y �N;k � Xk for k D 1; 2 and YN;� � X� with exactly
the same properties. The corresponding dimensions are denoted Mk , M0

k and M�

and the lifting operator RYN;1 WD .	 jY �N;1 /�1.
Definition 1 (Primal and dual iteration) Given � 2 P , g0N .�/ D 0 2 XN;� ,

0N .�/ D 0 2 YN;� and nN .�/, �

n
N .�/ 2 Œ0; 1� for n � 1. We construct sequences

unN;1.�/ 2 XN;1, unN;2.�/ 2 XN;2 and gnN .�/ 2 XN;� for n � 1 satisfying

a1.u
n
N;1.�/; vI�/ D f1.vI�/; 8v 2 X0

N;1;

	unN;1.�/ D gn�1N .�/;

a2.u
n
N;2.�/; vI�/ D f2.vI�/C f1.RXN;1	vI�/

�a1.unN;1.�/;RXN;1	vI�/; 8v 2 XN;2;
gnN .�/ D

�
1 � nN .�/

�
gn�1N .�/C nN .�/	unN;2.�/

and sequences  nN;1.�/ 2 YN;1,  nN;2.�/ 2 YN;2 and 
nN .�/ 2 YN;� for n � 1

satisfying

a1.v;  
n
N;1.�/I�/ D �l1.vI�/; 8v 2 Y 0N;1;
	 nN;1.�/ D 
n�1N .�/;

a2.v;  
n
N;2.�/I�/ D �l2.vI�/� l1.RYN;1	vI�/

�a1.RYN;1	v;  nN;1.�/I�/; 8v 2 YN;2;

nN .�/ D

�
1 � �nN .�/

�

n�1N .�/C �nN .�/	 nN;2.�/:
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Remark 1 Those infinite sequences are terminated as soon as

kunN;1.�/ � un�1N;1 .�/k21;� C kunN;2.�/ � un�1N;2 .�/k22;� � �tol;

k nN;1.�/ �  n�1N;1 .�/k21;� C k nN;2.�/ �  n�1N;2 .�/k22;� � �tol;

for some �tol > 0 where kvkk;� WD
p
ak.v; vI�/ for all v 2 Xk. The numbers

of actually accomplished iterations are denoted by nu;acc.�/ and n ;acc.�/, respec-
tively.

3.1 Smoothed Solutions

For n � 1 we define unN .�/ WD .unN;1.�/; unN;2.�// 2 W . In general unN .�/ 62 X and
so we define OunN .�/ 2 W via

OunN .�/ D
(
OunN;1.�/ WD R1.	unN;1.�/ � 	unN;2.�// in ˝1;

OunN;2.�/ WD 0 in ˝2;

where R1 W X� ! X1 is an arbitrary but linear lifting operator, that is 	R1g D g

for all g 2 X� . We get the following representation:

unN .�/ D OunN .�/C NunN .�/;

with a smoothed solution NunN .�/ WD unN .�/ � OunN .�/ 2 X and a part OunN .�/
compensating for the jump on the interface. For n ! 1 the solution unN .�/
converges to a smooth function [4], so OunN .�/ tends to zero.

Analogously, we define  nN .�/ WD . nN;1.�/;  
n
N;2.�// 2 W , O nN;1.�/ WD 0,

O nN;2.�/ WD R2.	 
n
N;2.�/ � 	 nN;1.�//, where R2 W X� ! X2 is an arbitrary but

linear lifting operator, and N nN .�/ D  nN .�/ � O nN .�/ 2 X . As a result, it holds
N nN .�/j˝1 D  nN;1.�/ in contrast to NunN .�/j˝2 D unN;2.�/. This observation will

simplify the offline/online-decomposition of our output approximation.

Definition 2 (Output approximation) Given � 2 P and corresponding primal
and dual solutions unu

N .�/, nu � 1 and 
n 
N .�/, n � 1 we define the corresponding

output approximation

s
.nu;n /

N .�/ WD l.Nunu
n .�/I�/ � f . N n N .�/I�/C a.Nunu

N .�/;
N n N .�/I�/: (4)



442 I. Martini and B. Haasdonk

4 Error Estimation

The a-posteriori error estimate of the linear output relies on a-posteriori estimates
for the primal and dual solutions. To be more precise, we use estimates for the
above defined smoothed solutions NunN .�/ and N nN .�/. To that, we define residuals
rnu .�I�/ 2 X 0 and rn .�I�/ 2 X 0 for n � 1 and � 2P through:

rnu .vI�/ WD f .vI�/ � a.unN .�/; vI�/; 8v 2 X;
rn .vI�/ WD �l.vI�/ � a.v;  nN .�/I�/; 8v 2 X:

Proposition 1 Given n � 1 and � 2 P , the errors u.�/ � NunN .�/ and  .�/ �
N nN .�/ can be estimated in the energy-norm kj � kj� D

p
a.�; �I�/ via

kju.�/ � NunN .�/kj� � �n
u.�/; kj .�/ � N nN .�/kj� � �n

 .�/;

where

�n
u.�/ WD

1
q
˛LB
X .�/

krnu .�I�/kX 0 C MUB
W .�/

q
˛LB
X .�/

�
�OunN;1.�/

�
�
X1
; (5)

�n
 .�/ WD

1
q
˛LB
X .�/

krn .�I�/kX 0 C MUB
W .�/

q
˛LB
X .�/

��
� O nN;2.�/

��
�
X2
: (6)

Here ˛LB
X .�/ denotes a computable lower bound for the constant ˛X.�/ and

MUB
W .�/ a computable upper bound for MW .�/.

The Proposition 1 for the primal variable was proven in [4]. The proof for the
dual variable follows the same lines.

Corollary 1 Given nu, n � 1 and � 2 P , the error js.�/ � s.nu;n /

N .�/j can be
estimated via

js.�/ � s.nu;n /

N .�/j � �.nu;n /
s .�/;

where

�
.nu;n /
s .�/ D �nu

u .�/�
n 
 .�/

D 1

˛LB
X .�/

�krnu
u .�I�/kX 0 CMUB

W .�/kOunu
N;1.�/kX1

�

�
krn  .�I�/kX 0 CMUB

W .�/k O n N;2.�/kX2
	
:

Thanks to the smoothness of the solutions in the output approximation, the proof
of Corollary 1 is analogue to the proof for the standard RB method [5, 6].
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4.1 Offline/Online Decomposition

As already mentioned, an efficient offline/online decomposition is essential for our
method. The parameter separability (4) is the main ingredient for obtaining such
a decomposition. Again we refer to [4] for a detailed explanation of the routine for
the primal iteration. Offline/online decomposition of the dual iteration is achieved in
the same way. For a decomposition of the output approximation (4) into parameter-
dependent coefficients and parameter-independent components we exploit

s
.nu;n /

N .�/ D l.Nunu
n .�// � f . N n N .�/I�/C a.Nunu

N .�/;
N n N .�/I�/

D l.unu
N .�/I�/ � l1.R1	unu

N;1.�/I�/C l1.R1	unu
N;2.�/I�/

�f . n N .�/I�/C f2.R2	 n N;2.�/I�/ � f2.R2	 n N;1.�/I�/
Ca.unu

N .�/;  
n 
N .�/I�/

�a1.R1	unu
N;1.�/;  

n 
N;1.�/I�/C a1.R1	unu

N;2.�/;  
n 
N;1.�/I�/

�a2.unu
N;2.�/;R2	 

n 
N;2.�/I�/C a2.unu

N;2.�/;R2	 
n 
N;1.�/I�/:

Details on the offline/online decomposition of the error estimate (5), respectively (6)
can also be found in [4].

5 Numerical Results

We consider the static heat equation on the unit square in R
2 with a decomposition

of the domain into two parts. The heat coefficient �.xI�/ is piecewise constant and
depends on three parameters: k.�I�/jBi D �i for i D 1; : : : ; 3 and k.�I�/jB4 D 1.
Figure 1 shows the blocks B1; : : : ; B4 and the domain decomposition. This model
leads to a weak form with

a.v;wI�/ D
Z

˝

�.�/rv � rw dx; v;w 2 X;� 2P :

The source consists of two exponential bubbles, with peaks in ˝1 and ˝2 and a
fourth parameter as a weight between them:

f .vI�/ D
Z

˝

h.�/v dx; v 2 X;� 2P;

h.xI�/ D 80�4 exp
��20jx � z1j2

�C 80.1� �4/ exp
��20jx � z2j2

�
;
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Fig. 1 Left: blocks, where �.�/ is constant in space, right: domain decomposition of˝ D .0; 1/2
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Fig. 2 Left: output values s.�/ on a parameter set of 100 randomly generated parameters. Right:
investigation of the output error and corresponding estimate on the same parameter set with RB
spaces of dimensions N D 80, M D 28

for x 2 ˝ , � 2 P with z1 D .0:5; 0:5/T and z2 D .0:875; 0:875/T . So the
parameter vector is 4-dimensional; P � R

4. The linear output is defined as the
mean value of u.�/ on ˝s D Œ0; 0:25� � Œ0:75; 1�:

s.�/ D l.u.�// D 1

j˝sj
Z

˝s

u.�/ dx; � 2P :

The left-hand side of Fig. 2 shows values of s.�/ for 100 randomly generated
parameters. Our basis generation procedure yields bases of different sizes N D
N1 C N2 and M D M1 C M2 for the primal and the dual approximation space.
We define the error e

nu;n 
s .�/ D js.�/ � snu;n 

N .�/j and the effectivity �
nu;n 
s .�/ D

�
nu;n 
s .�/=e

nu;n 
s .�/, where in the following nu D nu;acc.�/ and n D n ;acc.�/

for the respective parameter. The right-hand side of Fig. 2 shows that we obtain
fairly good approximations and that the estimate is clearly related to the error. The
effectivity is at the range of 102. Exemplary values of the effectivity are shown in
Table 1.
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Table 1 Output error e
nu;n 
s .�/, estimate �

nu;n 
s .�/ and effectivity �

nu;n 
s .�/ for one randomly

generated parameter and different bases sizes

Bases sizes .N;M/ Output error Estimate Effectivity

.61; 13/ 7:65 � 10�7 7:23 � 10�5 94.55

.80; 28/ 4:31 � 10�11 3:84 � 10�9 89.18

.85; 40/ 6:94 � 10�15 2:78 � 10�13 40.06

To conclude, the primal-dual framework has been successfully transferred to
the Dirichlet-Neumann RB method. The introduction of smoothed solutions in
the output approximation allows a-posteriori error estimation in a straight-forward
manner. The results meet the expectations to the method.
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One-Dimensional Surrogate Models
for Advection-Diffusion Problems

Matteo Aletti, Andrea Bortolossi, Simona Perotto, and Alessandro Veneziani

Abstract Numerical solution of partial differential equations can be made more
tractable by model reduction techniques. For instance, when the problem at hand
presents a main direction of the dynamics (such as blood flow in arteries), it may
be conveniently reduced to a 1D model. Here we compare two strategies to obtain
this model reduction, applied to classical advection-diffusion equations in domains
where one dimension dominates the others.

1 Introduction

Many applications in scientific computing demand for surrogate models, i.e., simpli-
fied models which are expected to be computationally affordable and reliable from a
modeling viewpoint. Problems presenting an evident main direction, such as blood
flow in arteries, gas dynamics in internal combustion engines, etc., are naturally
reduced to 1D equations along the coordinate of the main (or “axial” as opposed
to “transverse”) direction. Here we consider and compare two different strategies
to get surrogate models for this kind of problems. The first procedure stems from
an appropriate average of the equation along the transverse direction, combined
with (plausible) problem-dependent simplifying assumptions. The second approach
comes from a different representation of the axial and of the transverse dynamics,
according to what has been called a Hierarchical Model (Hi-Mod) reduction [4].
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In particular, transverse dynamics are represented by a modal expansion, that is
supposed to require just a few modes for the nature of the problem. This leads to
solve a system of 1D coupled equations. At the bottom line, when using just one
transverse mode, this leads to a genuinely 1D model. For the sake of comparison,
these two reduction procedures are applied to the following two-dimensional
advection-diffusion problem

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
:̂

���uC b � ru D f in ˝ 
 .0; L/ � .�R0;R0/
u D g on �in 
 f0g � .�R0;R0/

�
@u

@n
D 0 on �out 
 fLg � .�R0;R0/

�
@u

@n
C �u D uext on �lat 
 @˝n.�in [ �out/;

(1)

where x is the main direction, y is the transverse one, and with � 2 L1.˝/,
b D .b1; b2/

T 2 ŒW 1;1.˝/�2, f 2 L2.˝/, g 2 H1=2.�in/, � 2 L1.˝/, uext 2
L2.�lat/, �@u=@n the conormal derivative of u. Standard notation are adopted for
the Sobolev spaces. We distinguish in the domain˝ a supporting fiber˝1D aligned
with the main stream and a set of transverse fibers 	x, with x 2 ˝1D , parallel to
the secondary transverse dynamics. Since˝ coincides with a rectangle, 	x D 	 , for
each x.
We assume suitable assumptions on the data to guarantee the well-posedness of the
weak form of (1), i.e.,

find u 2 V 
 H1
�in
.˝/ s.t. a.u; v/ D F.v/ 8v 2 V; (2)

with a.u; v/ D R
˝
Œ�ru �rvCb �ruv� d˝CR

�lat
�uv d� and F.v/ D R

˝
f v d˝CR

�lat
uextv d� � a.�g; v/, �g denoting a lifting of g on �in. Problem (1) models, for

instance, the oxygen transport inside an artery. In this case, u represents the oxygen
partial pressure, � denotes the diffusivity of oxygen in blood, field b takes into
account the blood dynamics, f is a generic sink or source term, g usually coincides
with a concentration profile, the Robin boundary conditions model the absorption of
the oxygen through the vessel walls, with � depending on the absorption properties
of the wall and uext measuring the oxygen partial pressure outside the vessel. For
simplicity, we assume � and � constant.

When comparing the two approaches mentioned above, we address in particular
the combination of models with different accuracy. For the first approach, this leads
to what has been called a geometrical multiscale formulation [2]. For Hi-Mod
reduction, this is obtained by selecting a different number of modes in different
regions of the domain [4, 5].
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2 A Transverse Average Model

We particularize the approach in [3] for modeling the transport of solutes in arteries
with bifurcations to an elliptic setting. Let us introduce the transverse profile of the
solution, given by

p.x; y/ D u.x; y/

U.x/
with U.x/ D 1

j	 j
Z

	

u.x; y/ dy;

U.x/ denoting the mean of the solution along the transverse (constant) section 	 of
˝ . As first modeling hypothesis, we assume that the profile p does not depend on
x, i.e., only the mean of the solution may vary along the x-direction. Thus, after
separation of variables, the solution u can be regarded as a certain profile varying in
y tuned by a function varying along x, i.e., u.x; y/ D U.x/p.y/. By exploiting this
representation of u in the assignment of the boundary conditions on �lat, i.e., on the
boundary of 	 , we get

�
˙ �@p.y/

@y

	ˇˇ
ˇ
yD˙R0

D
�
� �p.y/C uext.x/

U.x/

	ˇˇ
ˇ
yD˙R0

:

Consistently with the previous assumption on p, we postulate that the ratio
uext.x/=U.x/ is constant along the whole length of the domain. Finally, we constrain
the advective field, by assumingr �b D 0 and bj�lat D 0. Since b is divergence-free,
we can rewrite the full model (1) in a conservative form, as ���uCr � �bu

� D f .
Now, integrating with respect to y along 	 , we obtain

� � @2

@x2

Z

	

u.x; y/ dy � �@u.x; y/

@y

ˇ
ˇ
ˇ
yDR0
yD�R0

C @

@x

Z

	

h
b1.x; y/u.x; y/

i
dy

C �
b2.x; y/u.x; y/

�ˇ̌
ˇ
yDR0
yD�R0

D
Z

	

f .x; y/ dy:

By exploiting the Robin conditions and the hypothesis on bj�lat , we have

� � @2

@x2

Z

	

u.x; y/ dyC ��u.x;R0/C u.x;�R0/
�C @

@x

Z

	

h
b1.x; y/u.x; y/

i
dy

D
Z

	

f .x; y/ dyC uext.x;R0/C uext.x;�R0/:

Now, we exploit the factorization u.x; y/ D U.x/p.y/ assumed for the solution u
together with the fact that, by definition, the mean of p along 	 is equal to one, to
get the desired averaged 1D model (the primes denoting x-differentiation)

� �U 00.x/C .U.x/wr .x//0 C �rU.x/ D fr.x/ for x 2 .0; L/; (3)
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with

wr .x/ D 1

j	 j
Z

	

b1.x; y/p.y/ dy; �r D �p.R0/C p.�R0/j	 j ;

fr .x/ D 1

j	 j
Z

	

f .x; y/ dyC uext.x;R0/C uext.x;�R0/
j	 j :

(4)

The reduction procedure leads from a 2D advection-diffusion problem to a 1D
advection-diffusion-reaction problem. To close the model we need to select a
profile p in (4). For simplicity, it may be assumed constant or, more in general,
it is suggested by physical considerations. It could be advantageous an automatic
criterion to select p. A strategy in such a direction is proposed in the next section.

Remark 1 From a physical viewpoint, the most restrictive hypothesis for deriving
model (3) is the independence of p on x. Nevertheless, the numerical validation
shows that this surrogate model provides reliable results even when this hypothesis
is not strictly guaranteed. The second assumption is reasonable, at least in haemody-
namics, since the ratio uext.x/=U.x/ may be reliably considered constant. The two
requirements on b are standard in a haemodynamic context. Hypothesis r � b D 0

ensures the incompressibility of the blood, while assumption bj�lat D 0 imposes a
no-slip condition on �lat.

2.1 A Geometrical Multiscale Approach

A geometrical multiscale formulation consists of coupling dimensionally hetero-
geneous models. The idea is to alternate a full-dimensional model with suitable
downscaled models to be associated with the areas characterized by the most
complex and by the simplest dynamics, respectively (see, e.g., [2, Chapter 11]). The
identification of appropriate matching conditions and the location of the interface
between the two models represent the main issues of this approach. We identify
the full model with (1) and the downscaled model with (3). We choose ˝ D
.0; 10/� .0; 1/, � D 1, b D .20; 0/T , f D 10�.x � 1:5/2C 0:4.y � 0:5/2 < 0:01�,
� D 1 and uext D 0:02. We assign a homogeneous Neumann condition on
�out D f10g � .0; 1/ and a profile compatible with the conditions along �lat on �in.
In Fig. 1 (top-left), we provide the contour plots of the full solution approximated
via linear finite elements on a uniform unstructured grid of 8;918 elements. The
solution exhibits more significant transverse dynamics in the leftmost part of the
domain, where the source term is localized. Conversely, the solution profile is less
fluctuating in the rightmost part of ˝ , as assumed in the derivation of model (3).
This suggests to split˝ into two subdomains,˝1 and˝2, such that˝ D ˝1[˝2.
On ˝1 we solve problem (1), while we resort to (3) in ˝2. Both the problems are
discretized via linear finite elements on uniform meshes. The coupling between
the two models is performed via a relaxed Neumann/Dirichlet scheme. In more
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Fig. 1 Geometrical multiscale: full solution (top-left); graph of �r (top-right); coupled solution
for �4 (bottom-left) and �2:5 (bottom-right)

detail, we exploit the derivative of the 1D surrogate solution u2 to assign a constant
Neumann condition on˝1 as�@u1=@n.xi ; y/ D u02.xi /, where u1 is the full solution
defined on˝1 and �xi D fxi g� .0; 1/ identifies the interface˝1\˝2. To correctly
define the problem on ˝2, we have to properly select the boundary condition at xi
and the solution profile. As Dirichlet data we assign u2.xi / D j	 j�1

R
	 u1.xi ; y/ dy,

while we follow a new approach to select p.y/ at xi . The idea is to exploit
the problem in ˝1 instead of resorting to an a priori selection. Thus, we pick
p.y/ D j	 ju1.xi ; y/=

R
	 u1.xi ; y/ dy. This definition justifies the prescription of

a Neumann condition on the left hand side of �xi to allow the solution profile
to develop freely. Indeed, the adoption of the surrogate model in ˝2, implicitly
assumes that p is completely developed at �xi . Figure 1 (bottom) compares two
couplings associated with different interfaces, i.e., �4 and �2:5, respectively. The
second choice introduces the interface where the transverse dynamics are still too
significant, thus violating the hypothesis on a fully developed profile. We provide
a bidimensional visualization also for the surrogate model simply by using relation
u.x; y/ D U.x/p.y/. In Fig. 1 (top-right) we show the reactive coefficient in (4),
computed via the profile of the full solution. Since �r strongly depends on p, we
argue that when the profile stabilizes, �r reaches a constant value. So a possible
heuristic way to select �xi is to locate it in a region where �r is constant.

3 Hi-Mod Reduction

Hi-Mod reduction is an alternative approach to “compress” high dimensional
problems. In this case, a full 2D (or even 3D) model is reduced to a system of
1D coupled differential problems associated with the dominant dynamics [4]. In the
geometric setting of a Hi-Mod formulation, for any x 2 ˝1D, we introduce a map
 x between the generic fiber 	x and a reference fiber O	 , so that the computational
domain ˝ is mapped into the reference domain Ő D ˝1D � O	 via the map
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� , given by �.z/ D Oz, where z D .x; y/ 2 ˝ , Oz D . Ox; Oy/ 2 Ő , with
Ox D x and Oy D  x.y/. In particular, for the domain ˝ in (1) a unique map
 can be used for each point x 2 ˝1D . The Hi-Mod approach strongly relies
upon the fiber structure postulated on ˝ . The idea is to differently tackle the
dependence of the full solution on the dominant and on the transverse directions.
We perform a modal approximation of the transverse dynamics coupled with a
Galerkin representation along the axial direction. The rationale driving this approach
is that the transverse dynamics can be suitably described with a few degrees of
(modal) freedom, resulting in a hierarchy of one-dimensional models which differ
each other according to the number of included transverse modes. To state the
Hi-Mod reduced formulation for problem (1), we move from the weak form (2).
Now, let V1D be a space spanned by functions defined on ˝1D which properly
includes the boundary conditions assigned along �in and �out, and let f'kgk2NC be
a modal basis of functions in H1. O	/, orthonormal with respect to the L2. O	/-scalar
product and compatible with the boundary conditions along �lat. As a consequence,
we look for a reduced solution um which belongs to the Hi-Mod reduced space
Vm D

˚
vm.x; y/ D Pm

kD1 Qvk.x/ 'k. .y//;with Qvk 2 V1D; x 2 ˝1D; y 2 	
�
.

A conformity and a spectral approximability hypothesis are introduced on Vm to
guarantee the well-posedness and the convergence of um to u [4]. We identify
the Galerkin representation along ˝1D with a finite element discretization, so that
the modal coefficients belong to a finite element space V h

1D � V1D associated
with a partition Th of ˝1D. Thus, the Hi-Mod reduced form for (2) is: for a
certain modal index m 2 NC, find Qu hk 2 V h

1D , with k D 1; : : : ; m, such
that

Pm
kD1 a.Qu hk 'k; i'j / D F.i'j /, with j D 1; : : : ; m and i D 1; : : : ; Nh,

where i denotes the generic finite element basis function in V h
1D and with Nh D

dim.V h
1D/ < C1. From a computational viewpoint, the Hi-Mod formulation leads

to solve a system ofm coupled 1D advection-diffusion-reaction problems instead of
problem (1). As in the derivation of the surrogate model (3), the Hi-Mod reduction
procedure yields reactive terms, while no reactive contribution is included in the full
model. The system is characterized by an m � m block matrix, where each block
is an Nh � Nh matrix exhibiting the sparsity pattern typical of the selected finite
element space.

The modal index m can be selected a priori moving from some preliminary
knowledge of the phenomenon at hand [4] or automatically, driven by an a posteriori
modeling error analysis [5]. Another important issue is the choice of the modal
basis, in particular when Robin boundary conditions are assigned on �lat as in (1).
We build a specific modal basis able to automatically include these conditions.
The idea proposed in [1] is to solve on O	 an auxiliary Sturm-Liouville eigenvalue
problem, with conditions on @ O	 coinciding with the conditions assigned on �lat. We
call this modal basis educated basis.
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3.1 Piecewise Hi-Mod Reduction

Now, the idea is to properly exploit the hierarchy of models provided by the Hi-
Mod reduced space to couple models with a different accuracy. A different choice
for the modal index m identifies a reduced model with a certain level of detail in
describing the phenomenon at hand. As a consequence, by properly tuning m over
different regions of ˝ , we are able to capture the local significant features of the
solution with a relatively low number of degrees of freedom. Following [4], we
denote this approach by piecewise Hi-Mod reduction. This leads to dimensionally
homogeneous models (yet with a locally varying level of accuracy), as opposed
to the geometrical multiscale approach. For instance, with reference to the test
case in Fig. 1, we can preserve the two splittings of the domain identified by �4
and �2:5 and employ a number of modes in ˝1 higher than in ˝2, e.g., 5 and 2,
respectively. This choice is motivated by the fact that the most complex dynamics
are localized in ˝1 and, consequently, more modes are demanded in this area. To
glue the two models we employ a relaxed Neumann/Dirichlet scheme as in the
geometrical multiscale formulation. At each iteration of this scheme, we apply a
uniform Hi-Mod reduction on ˝1 and ˝2, separately, i.e., we solve two systems of
coupled 1D problems with a block matrix of order 5N 1

h and 2N 2
h , respectively N i

h

denoting the dimension of the one dimensional finite element space introduced on
˝1D \ ˝i , for i D 1; 2. As detailed in [5], to rigorously formalize the piecewise
Hi-Mod approach, we introduce a suitable broken Sobolev space, endowed with an
integral condition which weakly enforces the continuity of the reduced solution in
correspondence with the minimum number of modes common on the whole˝ . This
does not necessarily guarantee the conformity of the piecewise reduced solution.
This is evident in Fig. 2. The loss of conformity is particularly significant when the
interface is located in an area involved by strong transverse dynamics. The reduced
solution in Fig. 2 (left) is in good agreement with the full one in Fig. 1 (top-left) and
it is very similar to the one in Fig. 1 (bottom-left).

Fig. 2 Piecewise Hi-Mod reduction: reduced solutions associated with f5; 2gmodes, the interface
is �4 (on the left) and �2:5 (on the right); h D 0:05 on ˝1D
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4 A Numerical Comparison

For a fair comparison between the two approaches, we consider here a test case
where the “low-fidelity” model (the genuine 1D in the geometrical multiscale and
a low-mode approximation in the Hi-Mod) are straightforwardly comparable. This
means that we employ a single mode in the Hi-Mod approximation. In particular,
we consider problem (1) with ˝ D .0; 6/ � .0; 1/, � D 1, b D .20; 0/T ,
f D 10�Œ.x�1:5/2C0:4.y�0:75/2 < 0:01�CŒ.x�1:5/2C0:4.y�0:25/2 < 0:01��,
� D 3 and uext D 0:05. The boundary conditions are as in Sect. 2.1 and the
interface is located at x D 3. Numerical results are provided in Fig. 3. The top-
left panel displays the full solution discretized via standard linear finite elements
on a uniform unstructured grid of 5;084 triangles. The top-right panel shows the
geometrical multiscale solution. This is fairly accurate even though it suffers from
an underestimation of the reactive term induced by the 1D average. This is evident
in the contour line associated with the value 0.09. The bottom panels display the Hi-
Mod solution, having a “low-fidelity” model with m D 1 and two different models
for the “high-fidelity” part. In particular, on the left we take m D 3 which is clearly
not enough to capture reliably the solution in the leftmost domain. In the right-panel,
with m D 5 we have a pretty accurate solution, where the inaccuracy present in the
geometrical multiscale solution as well as the model non-conformity do not pollute
significantly the results.

An extensive comparison between the two approaches cannot be clearly com-
pleted by these preliminary results. As a matter of fact, the computational advan-
tages of the one approach over the other must be evaluated on 3D more realistic test
cases, solved with compiled softwares. However, we may notice that, even though
the Hi-Mod approach relies entirely on a “psychologically” 1D representation of the
solution within a dimensionally heterogeneous framework, it may provide accurate
solution also in presence of significant transverse components. For this reason,
we do expect it may lead to easily implemented and manageable solvers, with

Fig. 3 Full solution (top-left); geometrical multiscale solution (top-right) and Hi-Mod solution
with f3; 1g (bottom-left) and f5; 1g (right) modes
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competitive performances in terms of both accuracy and efficiency. A framework
of investigation of practical interest is the blood flow simulation in a network of
arteries.
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Flag Manifolds for the Characterization
of Geometric Structure in Large Data Sets

Tim Marrinan, J. Ross Beveridge, Bruce Draper, Michael Kirby,
and Chris Peterson

Abstract We propose a flag manifold representation as a framework for exposing
geometric structure in a large data set. We illustrate the approach by building pose
flags for pose identification in digital images of faces and action flags for action
recognition in video sequences. These examples illustrate that the flag manifold has
the potential to identify common features in noisy and complex datasets.

1 The Mathematical Challenges of Large Data Sets

Some very intriguing problems faced by scientists today have hints, suggestions,
and solutions hidden within large collections of data. Mathematicians, computer
scientists and statisticians have a fundamental role to play in developing the theory,
tools, and algorithms needed by the general researcher in their quest to extract
meaningful information from such data sets. While the type of data can vary
drastically, one seeks a range of sufficiently robust tools that can be applied across
multiple disciplines.

Finding ways to compactly represent a complicated object (such as a data cloud
or a high dimensional array) has allowed for knowledge discovery within massive
data sets (e.g. a data set consisting of many data clouds or many high dimensional
arrays) [2, 4]. As an example, suppose a data cloud in R

n clusters along a k-
dimensional linear space then, for comparison against other data clouds, one could
identify the cloud with this k-dimensional linear space. One could then associate
a single point to the data by identifying the k-dimensional linear space with a
point on an appropriate Grassmann manifold. Such a map transforms the problem
of comparing data clouds in one setting to comparison of points on a Grassmann
manifold.

Building on the theme of the previous paragraph, suppose one identifies a portion
of the information in a collection of data with a nested sequence of vector spaces.
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This could be natural in settings involving an ordered sequence of data or as the
result of a singular value decomposition. Examples might include the spectral sheets
in a hyper-spectral digital image, the frames in a video stream, or the output of a
singular value decomposition applied to a data set collected under a variation of
state. A nested sequence of vector spaces is known as a flag. One could associate
a single point to the data by identifying the nested sequence of vector spaces with
a point on a flag manifold. Through this representation, comparisons of multiple
instances of data can be transformed to comparisons of points on a flag manifold.
For both the Grassmann and flag manifolds, there is a rich collection of metrics that
can be considered for purposes of comparison.

One goal of the machine learning community is to create algorithms for
automated processing and interpretation of the output obtained from a collection
of sensors. For example, one may be interested in detecting anomalies in human
behavior such as fall detection as an aid for assisted living [8]. Another example, is
concerned with automated action recognition in video sequences towards the goal
of automated video-to-text algorithms [6]. This paper develops an approach based
on the geometry of the flag manifold for exploiting structure and correlations within
large data sets.

The paper is structured as follows. Section 2 gives the mathematical background.
Section 3 describes an algorithm for producing points on flag manifolds from
collections of subspaces. Section 4 provides examples illustrating the flag approach.
Section “Conclusions” consists of concluding remarks.

2 Grassmann, Stiefel and Flag Manifolds

A flag is a strictly ascending sequence of subspaces of a fixed n-dimensional
vector space, V . Given a flag, V1 � V2 � � � � � Vr � V , the signature of
the flag is the data .d1; d2; : : : ; dr ; n/ where di denotes the dimension of Vi . The
flag manifold FL.d1; d2; : : : ; dr In/ is a manifold whose points parameterize all
flags with signature .d1; d2; : : : ; dr ; n/. A flag is called complete if its signature is
.1; 2; 3; : : : ; n� 1; n/. An ordered basis, v1; v2; : : : ; vn of V gives rise to a complete
flag by setting Vi equal to the span of v1; v2; : : : ; vi . A complete flag in R

n or Cn

can be used to build an orthonormal basis (unique up to multiplication by a unit
length scalar at each step). The general linear group acts transitively on the set
of all complete flags in a fixed vector space. A Grassmann manifold G.k; n/ is a
flag manifold with signature .k; n/. The projective space P

n�1 is the Grassmann
manifold G.1; n/. Thus, flag manifolds generalize Grassmann manifolds which
generalize projective space.

The Stiefel Manifold, S.k; n/, parametrizes orthonormal k-frames in a fixed n
dimensional inner product space V [7]. It can be viewed as a homogeneous space
for the action of a matrix group. There is a natural projection, F W S.k; n/ !
G.k; n/ where an orthonormal k-frame is sent to its span. The fiber of F over a
point P 2 G.k; n/ is the set of k-frames in the k-dimensional space determined
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by P . Similarly, there are projection maps from S.k; n/ to any flag manifold
FL.d1; d2; : : : ; dr In/ with dr � k.

If V D R
n, then S.1; n/ corresponds to the unit hypersphere Sn�1 and

S.2; n/ corresponds to the unit tangent bundle on the unit hypersphere. In general,
S.k; n/ can be identified with O.n/=O.n � k/, S.n; n/ corresponds to O.n/,
and S.n � 1; n/ corresponds to SO.n/. In a similar manner, Gr.k; n/ can be
identified with O.n/=O.k/ � O.n � k/ and FL.d1; d2; : : : ; dr In/ can be identified
with O.n/=O.d1/ � O.d2 � d1/ � � � � � O.dr � dr�1/ � O.n � dr/. Through
these identifications, concrete descriptions of the tangent and normal bundles to
Grassmann, flag and Stiefel manifolds are available [1, 12].

3 Flag Manifolds from Data

There are many approaches for encoding and representing the structure in a data
matrix as a point on a Grassmann or flag manifold. At a higher level, what kinds
of statistical tools should be developed for the purpose of analyzing or representing
a data cloud consisting of points on multiple Grassmann manifolds? An important
early step is to find algorithms that produce single points on a flag manifold that
represents common structure in such a data cloud. For additional details concerning
special manifold statistics, see [9, 11].

3.1 An Algorithm for Computing a Flag from a Collection
of Subspaces

Let ŒX� denote the column space of a matrixX . From a collection of subspacesD D
fŒX1�; : : : ; ŒXN �g of an n-dimensional vector space V , we utilize an optimization
algorithm to associate a point on a flag manifold to D . A full description of the
optimization algorithm and its properties is found in [5]. The algorithm finds an
ordered collection of orthonormal vectors, uj , by solving

Œu.j /� WD arg min
Œu�2Gr.1;n/

X

ŒXi �2D
dpF .Œu�; ŒXi �/

2

subject to Œu.j /� ? Œu.l/� for l < j;

(1)

where dpF .Œu�; ŒXi �/ is the projection Frobenius norm (which can be written in terms
of the principal angles between the two subspaces Œu� and ŒXi �). As illustrated by
Björck and Golub, the vector of principal angles,�, between the subspaces ŒX� and
ŒY � can be found as the inverse sines of the singular values of the matrix QT

XQY ,
whereQX and QY are unitary bases for ŒX� and ŒY � respectively [3].
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Solving Eq. 1 leads to the set fŒu.1/�; Œu.2/�; : : : ; Œu.r/�g where r is the dimension
of the span of the elements in D . Recalling that dpF .ŒX�; ŒY �/ D k sin�k2, the
sequence of optimizers can be found analytically as is shown in [5]. From these
one-dimensional subspaces, the point P 2 FL.1; 2; : : : ; r; n/ associated with D is
then,

P D �u.1/� � �u.1/ju.2/� � : : : � �u.1/j : : : ju.r/� � V: (2)

Principal angles have been widely used for comparing points on Grassmannians.
We propose using them to compare points on flag manifolds obtained from the
approach above. If individual elements of a flag are of interest, the distance between
subspaces can be measured using a variety of metrics, such as the geodesic distance
based on arc length, i.e. d.ŒX�; ŒY �/ D k�k2. Similarly, we can define metrics
between flags with the same signature by taking functions of the principal angles
between each of their elements of the appropriate size, such as the sum of the
geodesic distances between matching elements.

4 Numerical Experiments

The experiments in this paper are meant to illustrate the ability of the flag
representation to organize data with multiple semantically meaningful forms of
variation. To this end, we will explore three sets of image and video data. Each
experiment will look to isolate one simple form of variation. Success in the task
will be measured by percentage of test samples that correctly identified with a flag
containing the intended information. A concise description of each data set can be
seen in Table 1.

Table 1 Descriptions of the three data sets used for experiments

Data set Sample size Number of samples Classes

Mind’s Eye 32� 32� 48 308 tracklets ‘carry’, ‘gesture’, ‘leg-motion’, ‘loiter’

tracklets ‘loiter-group’, ‘turn’, ‘walk’, ‘walk-group’

Images of 45� 45 60 images ‘a’, ‘f’, ‘w’, ‘x’

letters each in 15 fonts

PIE faces 277 � 299 15;288 images 56 subjects,

21 illuminations, 13 poses
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Fig. 1 Four sets of images each with one common feature. Each image is the superposition of two
letters and noise, and each column of images is used to create a point on Gr.2; 2025/ that spans
two letters. Below the sets are the first three images from the associated flag. (a) The letter ‘a’. (b)
The letter ‘f’. (c) The letter ‘w’. (d) The letter ‘x’

4.1 Illustrative Example

The first data set consists of 60 images of the letters ‘a’, ‘f’, ‘w’, and ‘x’ depicted in
15 fonts. The flag representation will isolate a common letter in a set that contains
other distracting letters and noise.

For each letter we randomly choose 6 images from our set of 60; 3 images of one
letter and 1 image of each of the other 3 letters. The images are raster-scanned to
create vectors in R

2025. Three 2-dimensional subspaces of R2025 are produced from
the 6 images. Each 2-dimensional subspace is formed as the span of two random
linear combinations of an image of the main letter, an image of a different letter,
and added Gaussian noise. Thus the 6 images in a set create 3 points on Gr.2; 2025/
such that the main letter is a common feature in each Grassmann point. For each set
of 3 Grassmann points, we create a flag that helps to expose the similarity between
the points. Examples of the four sets and the first three vectors from their associated
flags can be seen in Fig. 1.

The flags created from subspaces containing each letter can be used to identify
instances of the same letter in fonts that were not used to create the flags. In fact,
calculating the closest flag to a test sample did a better job of classifying novel
instances of a letter than using a nearest neighbor classifier with the raw images
that were used to train the flags. Over 10 trials, classification using the flags had an
average success rate of 	83%, while classification using the nearest image had a
success rate of	65%.

4.2 Video Sequences

The second example uses portions of video clips, called tracklets, that were
extracted from larger and longer videos filmed as part of DARPA’s Mind’s Eye
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Fig. 2 Mind’s Eye video sequences illustrating six frames of eight doubly labeled actions.
From left-to-right, top-to-bottom the labels are: ‘carry/walk’, ‘gesture/sit-up’, ‘leg-motion/walk’,
‘loiter/walk’, ‘loiter/group-patdown’, ‘turn/ride-bike’, ‘walk/turn’, and ‘walk-group/bend’

program. The tracklets have been automatically cropped and registered to focus
on an action of short duration (48 frames). The goal of this experiment is to
automatically recognize a single action contained in a tracklet that depicts two
actions being performed simultaneously. The tracklets have been hand labeled with
the actions they contain. Examples of frames from some of these tracklets can be
seen in Fig. 2. Each video contains at least one of the labels listed in Table 1.

In order to demonstrate the flag’s ability to model the dominant form of variation
in a set of subspaces, we compare classification accuracy using flags versus a nearest
neighbor approach. To begin, each 3-way array is unfolded into a matrix of size
1;024 � 48 with each column representing a frame of the video. The column space
of each matrix is used to represent the tracklet. From the 308 available tracklets, we
selectK training samples from each action class. It is important to note that some of
the training samples for one class may share their second label with another one of
the classes being modeled. For example, a video labeled ‘walk/turn’ could be used
as a training sample for either class ‘walk’ or ‘turn’, but not both.

Using the K training samples from each of the eight classes, we create a flag for
each class. The tracklets that are not used for training make up the test set. Each
test video is compared to the 48-dimensional component in each flag. Using the
geodesic distance based on arc length, a test sample is given the label of the nearest
flag. The classification is considered a success if the label matches one of its given
labels. Similarly, each test video is compared to the 8 � K videos that were used
to create the flags. In this case a test sample is given the label of the class that
contained the nearest video. The results of this experiment can be seen in Fig. 3.
The left graph in Fig. 3 shows the accuracy for the classification as the number of
training samples, K , increases. Surprisingly, the accuracy is comparable for each
method. One would expect superior performance using nearest neighbors given the
amount of data required. The graph on the right side of Fig. 3 shows the precision
rate for the individual classes. We can see that some classes do much better than
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Fig. 3 Mind’s Eye data classification: The figure on the left shows overall accuracy vs. number of
training samples used per class. The figure on the right shows the precision for each class when
four training samples were used

Fig. 4 Mind’s Eye flags left-to-right, top-to-bottom: ‘carry’, ‘gesture’, ‘leg-motion’, ‘loiter’,
‘turn’, ‘walk’, ‘walk-group’

others, which is partially a product of the number of samples available from each
class. The resulting flags for these actions are shown in Fig. 4.

4.3 Pose Flags

In the final example we create flags to represent poses from a subset of images in
the CMU-PIE database [10]. The subset of images used is described in Table 1. The
example focuses on the images that have ambient lighting turned on with neutral
expressions. By grouping the remaining images in a structured way, we create a flag
that represents a single pose.

We find a basis for a collection of vectorized images that share a single pose,
a single subject, and whose lighting conditions differ. The span of this basis
approximates an illumination subspace. If we then create a flag out of subspaces
that share a pose, but contain different subjects, we get a model for that pose
that appears independent of subject or illumination. We refer to such a flag as a
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Fig. 5 An example of a PS/I-flag created from 34 sets of PIE images. (a) Two data points used to
create the PS/I flag. (b) The PS/I flag

PS/I-flag to indicate the ordering of the variation. That is, the pose is consistent
across all subspaces, the subject is consistent within each subspace, and the lighting
varies within each subspace. An example of a PS/I-flag can be seen in Fig. 5b.
Images from two of the subspaces used to create the flag are shown in Fig. 5a. If
we train a flag for each of the 13 poses in the PIE database using half of the subjects
and illumination conditions, we can recognize the pose of the remaining images
with near perfect accuracy. This organization is one way to create flags from the
PIE images. A similar technique can be employed to recognize the other forms of
variation as well.

Conclusions
In this paper we investigated the representation of several data sets in terms
of flag manifolds. The flag manifolds were used to classify unlabeled patterns
and did so with an accuracy comparable to nearest neighbor classification. We
infer that the geometric structure characterized by the flag captures informa-
tion inherent in the data. We note that, in general, nearest neighbor classifiers
perform very well, use all the available data, and grow in complexity as more
data is collected. In contrast, flags also perform well, serve as prototypes and,
as we have seen, have significant representational differences.
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Distributed Optimal Control Problems
Governed by Coupled Convection Dominated
PDEs with Control Constraints

Hamdullah Yücel and Peter Benner

Abstract We study the numerical solution of control constrained optimal control
problems governed by a system of convection diffusion equations with nonlinear
reaction terms, arising from chemical processes. Control constraints are handled
by using the primal-dual active set algorithm as a semi-smooth Newton method
or by adding a Moreau-Yosida-type penalty function to the cost functional. An
adaptive mesh refinement indicated by a posteriori error estimates is applied for
both approaches.

1 Introduction

We investigate a class of distributed optimal control problems governed by a
system of convection diffusion partial differential equations (PDEs), arising from
chemical processes [1, 3, 6, 13]. In these problems, the constraints are strongly
coupled such that inaccuracies in one unknown directly affect all other unknowns.
Therefore, prediction of these unknowns is very important for the safe and
economical operation of biochemical and chemical engineering processes. Such
coupled constraints in large chemical systems have two main issues. One of them is
that the reaction terms are assumed to be expressions which are products of some
functions of the concentrations of the chemical components and an exponential
function of the temperature, called Arrhenius kinetics expression. Therefore, the
PDE constraints in our formulation are nonlinear PDEs. The other issue is that the
sizes of the diffusion parameters are small compared to the sizes of the velocity
fields. Then, such a convection diffusion system exhibits boundary and/or interior
layers, localized regions where the derivative of the PDE solution is large. In order to
eliminate spurious oscillations emerging from the layers, adaptive mesh refinement
is particularly attractive as it usually yields a small number of degrees of freedom.
Discontinuous Galerkin methods exhibit better convergence for optimal control
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problems governed by convection dominated equations. The reason is that the errors
in the layers do not propagate into the entire domain [4]. Adaptive discontinuous
Galerkin methods are studied in [9–11,13] for convection dominated optimal control
problems.

The goal of this paper is to study control constraint optimal control problems gov-
erned by coupled convection dominated equations. To handle control constraints,
we apply two different approaches. One of them is the primal-dual active set
algorithm as a semi-smooth Newton method [2]. The other one is Moreau-Yosida
regularization. Although this technique has been used very successfully for state
constrained optimization problems, it has also been applied to control constrained
problems [6, 8]. For both cases, residual-type error indicators are proposed and
applied to a numerical example.

2 The Optimal Control Problem

Let ˝ be an open, bounded polygonal domain in R
2 with boundary � D @˝ , let

fi , ˇi , ˛i , ud , vd , gi be given functions and let �i ; 	i ; ! > 0 be given diffusion,
nonlinear reaction, and regularization parameters, respectively, for i D 1; 2. We
consider a class of distributed optimal control problems governed by a system of
convection diffusion PDEs

min J.u; v; c/ D 1

2
ku � udk2L2.˝/ C

1

2
kv � vdk2L2.˝/ C

!

2
kc � cdk2L2.˝/; (1)

subject to

� �1�uC ˇ1 � ruC ˛1uC 	1uv D f1 C c in ˝; (2a)

� �2�vC ˇ2 � rvC ˛2vC 	2uv D f2 in ˝; (2b)

u D g1 on �; v D g2 on �; (2c)

and the control is constraint to a closed convex set C ad

C ad WD fc 2 L2.˝/ W ca � c � cb a.e. in ˝g (3)

with the constant bounds ca; cb 2 R [ f˙1g satisfying ca < cb . We refer to u and
v as the state variables, to c as the control variable and to (2) as the state system.
Further, we assume that there exist constants �i > 0 such that ˛i � 1

2
r �ˇi � �i > 0

for i D 1; 2.
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The optimality conditions of the problem (1)–(3) consist of the coupled state
system (2), the coupled adjoint system

� �1�p � ˇ1 � rp C .˛1 � r � ˇ1/p C 	1pvC 	2qv D �.u � ud / in ˝;
(4a)

� �2�q � ˇ2 � rq C .˛2 � r � ˇ2/q C 	1puC 	2qu D �.v � vd / in ˝;
(4b)

p D 0 on �; q D 0 on �; (4c)

the gradient equation and complementary conditions with Lagrange multipliers


a; 
b 2 L2.˝/

!.c � cd /� p � 
a C 
b D 0; a.e. in ˝; (5a)


a � 0; ca � c � 0; 
a.c � ua/ D 0 a.e. in ˝; (5b)


b � 0; c � cb � 0; 
b.cb � c/ D 0 a.e. in ˝: (5c)

3 Discontinuous Galerkin Discretization

We choose the symmetric interior penalty Galerkin (SIPG) method for the dis-
cretization of the problem (1)–(3) due to its symmetric property. It guarantees that
“discretize-then-optimize” and “optimize-then-discretize” lead to the same result,
see e.g., [12]. We use the notation in [7] and for the spaces of the state, adjoint, con-
trol variables and test functions we use piecewise linear functions on the discretized
mesh Th, i.e., Wh D Yh D Ch D

˚
y 2 L2.˝/ W y jK2 P

1.K/ 8K 2 Th

�
. Note

that the space of state variables Yh and the space of test functions Wh are identical
since DG methods impose boundary conditions weakly.

We now give the upwind SIPG discretization of the state variables u; v in (2) for
a fixed distributed control c. This leads to the following formulation

a1h.uh;wh/C 	1
X

K2Th

Z

K

uhvhwh dx D l1h.wh/C .ch;wh/; (6)

a2h.vh;wh/C 	2
X

K2Th

Z

K

uhvhwh dx D l2h.wh/; (7)
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where for i D 1; 2 and 8w 2 Wh, the (bi)-linear forms are defined as

aih.z;w/ D
X

K2Th

Z

K

�irz � rw dx �
X

E2Eh

Z

E

ff�irzgg � ŒŒw��C ff�irwgg � ŒŒz�� ds

C
X

E2Eh

��i

hE

Z

E

ŒŒz�� � ŒŒw�� dsC
X

K2Th

Z

K

ˇi � rzwC ˛i zw dx

C
X

K2Th

Z

@K�n�
ˇi � n.ze � z/w ds�

X

K2Th

Z

@K�\��

ˇi � nzw ds; (8a)

l ih.w/ D
X

K2Th

Z

K

fiw dxC
X

E2E @h

��i

hE

Z

E

gin � ŒŒw�� ds �
X

E2E @h

Z

E

gi ff�irwgg ds

�
X

K2Th

Z

@K�\��

ˇi � n giw ds; (8b)

where the jump and average functions across an edge E 2 Eh are denoted by ŒŒ���
and ff�gg, respectively. We refer to [9–11,13] for the definition of inflow boundaries
� �; @K�. The parameter � is called the interior penalty parameter which should be
sufficiently large independently of the mesh size and the diffusion coefficients �i to
ensure the stability of the SIPG discretization.

4 Primal-Dual Active Set (PDAS) Strategy

We describe the optimality system consisting of a set of nonlinear equations with
the notation ˚.x/ D 0. Our first approach to solve the system ˚

0

.x/s D �˚.x/
is to use the semi-smooth Newton approach in terms of an active set strategy [2].
For a Newton step, the active and inactive sets are determined by A C D fx 2 ˝ W
p � !.cb � cd / > 0g; A � D fx 2 ˝ W p � !.ca � cd / < 0g with I D
˝n.A C [A �/: Then the discretized Newton system is given by


A C
B 0

�

2

6
6
6
66
4

�u
�v
�c

�p

�q

3

7
7
7
77
5
D �

2

6
6
6
66
4

ATu p C 	1Fp;v C 	2Fq;v CMu � l.ud /
ATv q C 	1Fp;u C 	2Fq;u CMv � l.vd /

!
�

Mc � �I l.cd /�M
�
�A �ca C �A Ccb

�	� �I Mp

AuuC 	1Fu;v �Mc � lu
AvvC 	2Fu;v � lv

3

7
7
7
77
5
;
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where

AD
2

4
M 	1MpC 	2Mq 0

	1MpC 	2Mq M 0

0 0 !M

3

5 ; CD
2

4
ATu C 	1Mv 	2Mv

	1Mu ATv C 	2Mu

��IM 0

3

5 ;

B D

Au C 	1Mv 	1Mu �M
	2Mv Av C 	2Mu 0

�
:

Au; Av correspond to the bilinear forms a1h.u;w/ and a2h.v;w/, whereas lu; lv
correspond to the linear forms l1h.w/ and l2h.w/. Further, li .z/ D

R
˝

z'idx, F i
y;z DR

˝
yz'i dx, Mij D

R
˝
'i'j dx andMi;j

z D R
˝

z'i'j dx.
For each element K 2 Th, our a posteriori error indicators for the states �u

K; �
v
K

and the adjoints �pK; �
q
K are

.�z
K/

2 D �.�z
RK
/2 C .�z

EK
/2
�
; z 2 fu; v; p; qg; (9)

where the interior residual terms are defined by

�u
RK
D �K;1kf 1

h C ch C �1�uh � ˇ1h � ruh � ˛1huh � 	1uhvhkL2.K/;
�v
RK
D �K;2kf 2

h C �2�vh � ˇ2h � rvh � ˛2hvh � 	2uhvhkL2.K/;
�
p
RK
D �K;1kudh � uh C �1�ph C ˇ1h � rph

�.˛1h � r � ˇ1h/ph � vh .	1ph C 	2qh/ kL2.K/;
�
q
RK
D �K;2kvdh � vh C �2�qh C ˇ2h � rqh

�.˛2h � r � ˇ2h/qh � uh .	1ph C 	2qh/ kL2.K/;

and for z 2 fu; pg, i D 1 and z 2 fv; qg, i D 2, the term measuring the jumps on
the edge is defined by

.�z
EK
/2 D1

2

X

E2@Kn�
�
� 12
i �E;ikŒŒ�irzh��k2L2.E/ C

���i
hE
C �ihE C hE

�i

�kŒŒzh��k2L2.E/

C
X

E2@K\�

���i
hE
C �ihE C hE

�i

�kŒŒzh��k2L2.E/

with the weights �K;i D minfhK��
1
2

i ; �
� 12
i g, �E;i D minfhE��

1
2

i ; �
� 12
i g for i D 1; 2.

When �i D 0, �K;i D hK��
1
2

i and �E;i D hE��
1
2

i are taken.
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To obtain a sharp estimator for the control, we divide the domain ˝ into the
coincidence (contact) set and noncoincidence (non-contact) set, see, e.g., [5] for
details. Then, for K 2 fThgh the control estimator is defined by

�cK D hKkr.!.ch � cdh /� ph/�˝C

c;h
kL2.˝/; (10)

where ˝Cc;h D ˝n˝�c;h; ˝�c;h D f[ NK W cjK D cag [ f[ NK W cjK D cbg.
The computation of the characteristic function �

˝
C

c;h
is not straightforward since

we usually do not know the position of the free boundary. It can be approximated
by the finite element solution as suggested in [5]. For � > 0, we thus use

�
˝

C

c;h
D .ch � ca/.cb � ch/
h� C .ch � ca/.cb � ch/ : (11)

5 Moreau-Yosida (MY) Regularization Approach

Our second approach to solve the constrained optimization problem (1)–(3) is
to penalize the control constraints with a MY-based technique by modifying the
objective functional J.u; v; c/ (1). Now, we wish to minimize

J.u; v; c/C 1

2ı
kmaxf0; c � cbgk2L2.˝/ C

1

2ı
kminf0; c � cagk2L2.˝/

subject to the state system (2). Here, ı is the regularization parameter. Then, a
Newton step reads


A BT

B 0

�
s D �

2

6
6
6
6
6
4

ATu p C 	1Fp;v C 	2Fq;v CMu � l.ud /
ATv q C 	1Fp;u C 	2Fq;u CMv � l.vd /

!Mc � !l.cd /�Mp �G.c/
AuuC 	1Fu;v �Mc � lu
AvvC 	2Fu;v � lv

3

7
7
7
7
7
5
;

where

A D
2

4
M 	1Mp C 	2Mq 0

	1Mp C 	2Mq M 0

0 0 !M C 1
ı
�AM�A

3

5 ;

B D

Au C 	1Mv 	1Mu �M
	2Mv Av C 	2Mu 0

�
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with G.c/ D ı�1 .�AM�A c � �A �M�A �ca � �A CM�A Ccb/, A C D fx 2 ˝ W
c � cb > 0g; A � D fx 2 ˝ W c � ca < 0g, and A D A C [A �.

The error estimators of the MY approach are the same as in (9) except for the
control indicator. The modified control estimator N�c is given by

N�cK D hKkr.!.ch � cdh / � ph/C
1

ı
�A rchkL2.˝/ (12)

for any K . The unknown �A is computed similarly as described in (11).

6 Implementation Details

The adaptive procedure consists of successive execution of the steps SOLVE !
ESTIMATE ! MARK! REFINE. The SOLVE step is the numerical solution
of the optimal control problem with respect to the given triangulation Th using
the SIPG discretization. For the ESTIMATE step, the residual error indicators
are defined in (9), (10) and (12). In the MARK step, the edges and elements
are specified for the refinement by using the a posteriori error indicators and by
choosing subsets MK � Th such that the bulk criterion is satisfied for the given
marking parameter  . Finally, in the REFINE step, the marked elements are refined
by longest edge bisection, whereas the elements of the marked edges are refined by
bisection.

We use linear polynomials for the discretization of the state, adjoint and control
variables. The penalty parameter in the SIPG method is chosen as � D 6 on interior
edges and 12 on boundary edges.

Consider the following optimal control problem governed by coupled convection
dominated equations. Let �i D 10�6; ˇi D .2; 3/T ; ˛i D 1; 	i D 0:1, ı D 10�6 and
! D 1 in ˝ D .0; 1/2 for i D 1; 2. The functions f1; f2; ud and vd and Dirichlet
boundary conditions g1; g2 are chosen in order to obtain the exact state solutions

u.x1; x2/ D 4e
�1

p

�1

�
.x�0:5/2C3.y�0:5/2

�
sin.x�/ cos.y�/;

v.x1; x2/ D 2

�
arctan

�
1p
�2


�1
2
x1 C x2 � 1

4

��

the exact adjoint solutions

p.x1; x2/ D e
�1

p

�1

�
.x�0:5/2C3.y�0:5/2

�
sin.x�/ cos.y�/;

q.x1; x2/ D 16x1.1 � x1/x2.1 � x2/

�
 
1

2
C 1

�
arctan

"
2p
�2

 
1

16
�
�
x1 � 1

2

�2
�
�
x2 � 1

2

�2!#!
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and the exact control function

c.x1; x2/ D maxf0; 2 cos.�x1/cos.�x2/ � 1g:

We have tested both approaches using this example, i.e., the PDAS strategy and
MY regularization. The adaptively refined meshes are shown in Fig. 1. We observe
that the error indicator N�u (12) picks out the layers of control better than the error
indicator �u (10) using the almost same number of vertices. Therefore, we obtain
a better convergence result for the adaptive implementation of the MY approach as
shown in Fig. 2. For both approaches, the global errors in L2 norm on adaptively
refined meshes are decreasing faster than the errors on uniformly refined meshes.

Figure 3 shows the computed solutions for the control on adaptively refined
meshes by using the PDAS strategy and Moreau-Yosida regularization. We conclude
that substantial computing work can be saved by using efficient adaptive meshes for
both approaches and the MY technique captures the errors of the control better than
the PDAS strategy.

[level, vertices]=[7,3901][level,vertices]=[8,3815]

Fig. 1 Adaptively refined meshes for the PDAS and MY approaches, respectively
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Fig. 2 Global errors with L2 norm for the control c

Fig. 3 The computed solutions for the control c obtained by the PDAS on an adaptively refined
mesh (3,968 vertices, left) and by the MY on an adaptively refined mesh (3,901 vertices, right)
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Efficient Preconditioning for an Optimal Control
Problem with the Time-Periodic Stokes
Equations

Wolfgang Krendl, Valeria Simoncini, and Walter Zulehner

Abstract For the optimal control problem with time-periodic Stokes equations a
practical robust preconditioner is presented. The discretization of the corresponding
optimality system leads to a linear system with a large, sparse and complex 4-
by-4 block matrix in saddle point form. We present a decoupling strategy, which
reduces the system to two linear systems with a real 4-by-4 block matrix. Based on
analytic results on preconditioners for time-harmonic control problems in Krendl et
al. (Numer Math 124(1):183–213, 2013), a practical preconditioner is constructed,
which is robust with respect to the mesh size h, the frequency ! and the control
parameter �. The result is illustrated by numerical examples with the preconditioned
minimal residual method. Finally we discuss alternative stopping criteria.

1 The Model Problem

We consider the following problem: Find the velocity u.x; t/, the pressure p.x; t/,
and the force f.x; t/ that minimize the cost functional

J.u; f/ D 1

2

Z T

0

Z

˝

ju.x; t/ � ud .x; t/j2 dx dtC �

2

Z T

0

Z

˝

jf.x; t/j2 dx dt
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subject to the time-dependent Stokes problem

@

@t
u.x; t/ ��u.x; t/Crp.x; t/ D f.x; t/ in ˝ � .0; T /;

r � u.x; t/ D 0 in ˝ � .0; T /;
u.x; t/ D 0 on � � .0; T /;

with time-periodic conditions

u.x; 0/ D u.x; T /; p.x; 0/ D p.x; T /; f.x; 0/ D f.x; T / on˝:

Here ˝ � R
d , d 2 f2; 3g is an open and bounded domain with Lipschitz boundary

� , ud .x; t/ is a given target velocity, � > 0 is a cost or regularization parameter,
and j:j denotes the Euclidean norm in R

d . We assume that ud .x; t/ is time-periodic.
For time discretization a truncated Fourier series expansion is used and for space

discretization we choose appropriate finite element spaces Vh of dimension n and
Qh of dimensionm for u and p, respectively, and the same finite element space Vh

for f as well. The fully discretized problem can then be decoupled in systems, which
only depend on one Fourier coefficient. For the Fourier coefficient corresponding to
the frequency ! the system reads as follows:

J.u; f/ D 1

2
.u� ud /

�M.u � ud /C
�

2
f�Mf (1)

subject to

i!M uCKu �DT p D Mf;

Du D 0:

Here the symbol � denotes the conjugate transpose of a vector or a matrix and the
real matrices M, K, and D are the mass matrix, representing the L2-inner product
in Vh, the discretized negative vector Laplacian, and the discretized divergence,
respectively. The underlined quantities denote the coefficient vectors of finite
element functions relative to a chosen basis.

The Lagrangian functional for this constrained optimization problem is given by

L .u; p; f ;w; r/ D J.u; f/C w�
�
i! M uCKu �DT p �Mf

	
C r�Du;
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where w; r denote the Lagrangian multipliers associated with the constraints. The
first-order optimality conditions are rL .u; p; f / D 0, and read in details:

2

6
6
66
6
4

M 0 0 K � i! M �DT

0 0 0 �D 0

0 0 � M �M 0

K C i! M �DT �M 0 0

�D 0 0 0 0

3

7
7
77
7
5

2

6
6
66
6
4

u
p

f

w
r

3

7
7
77
7
5
D

2

6
6
66
6
4

M ud
0

0

0

0

3

7
7
77
7
5
: (2)

From the third row it follows that f D ��1w. So the control f can be eliminated.
After reordering we obtain the reduced optimality system:

Mx D b; (3)

where

M D

A BT

B 0

�
; x D

2

6
66
4

u
w
p

r

3

7
77
5

and b D

2

66
4

M ud
0

0

0

3

77
5 ;

with

A D


M
p
� .K � i!M/p

� .KC i!M/ � 1
�

M

�
and B D


0 �D
�D 0

�
:

2 Transformation to Two Systems with a Real Matrix

Elementary calculations show that:

M D T�MTT; (4)

where

MT D

2

6
6
4

.1C �!2/1=2M K 0 �DT

K ���1.1C �!2/1=2M �DT 0

0 �D 0 0

�D 0 0 0

3

7
7
5 ;



482 W. Krendl et al.

and

T D

T ˝ In 0

0 T ˝ Im
�

with T D .1C �!2/�1=4

.1C �!2/1=2 �i

0 1

�
:

Here the symbol˝ denotes the Kronecker product and Ik denotes the identity matrix
in R

k . The original system (3) is equivalent to the two systems

MTy
1
D c1 and MTy

2
D c2; (5)

with c D c1 C i c2 D
�
T�1

��
b and y D y

1
C i y

2
D Tx. So instead of solving

one linear system with a complex 4-by-4 block matrix, we have to solve two linear
systems with the same 4-by-4 real block matrix MT, which can be done in parallel.

3 Preconditioning

Our method of choice for solving (5) is the preconditioned MINRES method. As
preconditioner P we consider the block preconditioner constructed in [4]:

P D

P 0

0 R

�
; where P D


P 0

0 1
�

P

�
and R D


�S 0

0 S

�
; (6)

with real and symmetric positive matrices

P D MCp� .KC !M/ and S D DP�1DT : (7)

Definition 1 For a matrix N , we denote the eigenvalues of N with minimal and
maximal modulus by 
min.N / and 
max.N /, respectively.

We have the following estimates.

Theorem 1

1=
p
12 � j
min.P

�1MT/j and j
max.P
�1MT/j � .1C

p
5/=2:

For the proof, the detailed analysis and further structural spectral results, see [4].

Definition 2 We call a symmetric and positive definite matrix Q a robust precondi-
tioner for MT, if �.Q�1MT/ D 
max.Q�1MT/=
min.Q�1MT/ � C with constant
C independent of h, ! and �.

The result of Theorem 1 implies that �.P�1MT/ �
p
3.1 C p5/. Hence P

is a robust preconditioner for MT. Using well known convergence results for the
preconditioned MINRES method (see [2]), it follows that the number of iterations,
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which is needed to decrease the relative error of the k-th residual measured in the
k � kP�1 -norm by a factor " > 0, is independent of h, ! and �. Thereby, for a
symmetric and positive definite matrixM , the norm k � kM is defined by hM �; �i1=2,
where h�; �i denotes the Euclidean inner product.

3.1 The Practical Preconditioner QP

The usage of P as preconditioner for MT requires the evaluation of P�1d and
S�1e for some given vectors d and e in every step of the MINRES method. These,
especially the evaluation of S�1e, are nontrivial tasks, due to the potentially high
number of involved unknowns. To decrease the computational costs we want to
replace P and S by efficient approximations QP and QS , respectively. This leads to a
preconditioner of the form:

QP D
 QP 0

0 QR
�

with QP D
 QP 0

0 � QP
�

and QR D
 QS 0

0 1
�
QS
�
: (8)

Definition 3 For symmetric and positive definite matricesM;N 2 R
n�n, we write

M  N , if there exists positive constants 	1 and 	2 independent of h; � and !, such
that 	1hM v; vi � hN v; vi � 	2hM v; vi for all v 2 R

n.

Obviously we have that QP is also a robust preconditioner for MT, if QP  P and
QS  S . We will now present a possible choice for QP and QS with QP  P and QS  S ,

which guarantee the robustness of QP, and further an efficient evaluation of QP�1z
for a vector z:

Choice for QP: We replace the evaluation of P�1d by one V.1; 1/-cycle of a multi-
grid method with a symmetric Gauß-Seidel smoother as pre- and post-smoother

applied to Pv D d , shortly denoted by QP�1d . In [8] it was shown that QP  P.
Choice for QS: First we replace S by the so called Cahouet-Chabard precondi-

tioner SCH WD .p�M�1p C .1C
p
�!/K�1p /�1, whereMp andKp denote the mass

and stiffness matrices in the finite element space Qh, respectively. For particular
finite elements, e.g. the Taylor-Hood element, we have S  SCH, see, e.g., [1, 5, 6]
and [7]. In a second step of approximations, we replace the evaluation of M�1p e

by one step of a symmetric Gauß-Seidel iteration applied to Mpq D e and the
evaluation of K�1p e by one V.1; 1/-cycle of the same multigrid method as before

applied to Pq D e, shortly denoted by QM�1p e and QK�1p e, respectively. Again from

[8] we have QMp Mp and QKp  Kp. As result of this replacements we obtain

QSCH WD .
p
� QM�1p C .1C

p
�!/ QK�1p /�1; (9)

where QSCH  S and the inverse of QSCH can be applied efficiently. Now we replace
the evaluationS�1e by applying r-steps (typically r D 1; 2; 3) of the preconditioned
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Richardson method to the equation Sq D e, with scaling parameters �i > 0, the

preconditioner QSCH and the initial vector q0 D 0. The corresponding preconditioner
is given by

QS D S
 

I2m �
rY

iD1
.I2m � �i QS�1CHS/

i

!�1
; (10)

In order to guarantee that QS is positive definite, it is easy to see that the condition

1 �
rY

iD1
.1 � �i 
/i > 0 8
 2 .0; 1�: (11)

suffices. In particular if we choose �1 > 0 fixed and �i D 1 for i � 2, then it follows
that QS is symmetric, positive definite, and QS  S .

In summary we obtain:

Theorem 2 QP defined in (8) with the previous presented choices for QP and QS , is a
symmetric and positive definite robust preconditioner for MT.

3.2 Numerical Results

We present some numerical examples on the unit square domain ˝ D .0; 1/ �
.0; 1/ � R

2. Following Example 1 in [3] we choose the target velocity ud .x; y/ D
Œ.U.x; y/; V .x; y/�T , given by

U.x; y/ D 10 '.x/' 0.y/ and V.x; y/ D �10 ' 0.x/'.y/;

with '.z/ D �
1 � cos.0:8�z/

�
.1 � z/2: This target velocity ud .x; y/ is divergence

free. The problem was discretized by the Taylor-Hood pair of finite element spaces
consisting of continuous piecewise quadratic polynomials for the velocity u.x; y/
and the force f.x; y/, and continuous piecewise linear polynomials for the pressure
p.x; y/ on a triangulation of ˝ . The initial mesh contains four triangles obtained
by connecting the two diagonals. The final mesh was constructed by applying `
uniform refinement steps to the initial mesh, leading to a mesh size h D 2�`.

All presented numerical experiments refer to the first of the two systems from (5).
The results for the second system are completely identical. Therefore, they are
omitted. For each system, the total number of unknowns on the finest level ` D 7 is
1,184,780.

Tables 1 and 2 contain the numerical results produced by the preconditioned
MINRES method with the preconditioner QP as described in (8), where we choose
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Table 1 ! D 104 �

h 10�8 10�4 1 104 108

2�4 44 46 46 46 46

2�5 48 50 50 50 48

2�6 50 52 52 52 52

2�7 54 56 56 56 56

Table 2 � D 10�4
!

h 10�8 10�4 1 104 108

2�4 87 87 87 46 38

2�5 99 99 99 52 34

2�6 101 101 101 51 30

2�7 105 105 105 56 34

Table 3 h D 2�7, � D 1,
! D 1

r Scaling parameters Qk CPU-time (s)

1 �1 D 1 (i.e. QS D QSCH) 118 577.65

1 �1 D 4 (i.e. QS D 4 SCH) 69 341.69

2 �1 D 4, �2 D 1 46 333.7

3 �1 D 4, �2 D �3 D 1 41 402.73

r D 1 with �1 D 1 (i.e. QS D QSCH). The considered values for the mesh size h, the
frequency !, and the regularization parameter � are specified in the table captions,
the first rows and first columns. The other entries of the tables contain the numbers
of MINRES iterations that are required for reducing the initial errors in the QP�1-
norm by a factor of " D 10�8 with initial vector x0 D 0, respectively.

As expected from the results of Theorem 2, the condition numbers are bounded
away from1 independent of h, � and !, leading to a uniform bound for the number
of iterations.

Next, we compare the performance of the practical preconditioner QP with
the original (typically better but impractical) preconditioner P for the particular
parameter choice 2�7; � D 1 and ! D 1. In this case the number of iterations for QP
is 118, which is roughly four times higher than the expected number of iterations
for P , see Table 1 in [4]. Since the difference is relatively high, it is worthwhile
to consider other options for the inner iteration in order to reduce this gap. Table 3
shows the numbers of iterations Qk and the computational costs, measured in the
CPU-time, for QS with r 2 f1; 2; 3g, for different values of �1 2 f1; 4g and �i D 1

for i � 2. These and similar further numerical experiments show that a significant
improvement of the numbers of iterations can be achieved by a proper choice for �1
and not so much by a higher number r of inner iterations. It turned out that �1 D 4

is a very good choice, also for all other cases.
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4 Alternative Stopping Criteria

In our numerical examples the stopping criterion

krkk QP�1 � " kr0k QP�1 (12)

was used. Another natural measure for the error is kx � xkk QP . This quantity is not
directly computable but can be estimated by using the relation:

ckx � xkk QP � krkk QP�1 � Ckx � xkk QP (13)

with c D j
min. QP�1MT/j and C D j
max. QP�1MT/j. Approximations Qc and QC for
c and C , respectively, can be computed by using the so called harmonic Ritz values,
see [9]. Therefore, the stopping criterion

kx � xkkP � " kx � x0kP (14)

is asymptotically satisfied, if we prescribe (12) with " replaced by "� D Qc= QC ".
We test the use of the stopping criterion in (14) with a numerical example. For

the parameter choice h D 2�7; � D 1 and ! D 1, we computed the numbers of
iterations Qk produced by the preconditioned MINRES method, for the two different
stopping criteria (12) and (14). Thereby we choose for QS , r D 1 with �1 D 1

(i.e. QS D QSCH). As result we obtain Qk D 118 and Qk D 130, using (12) and (14),
respectively. The computed approximations are Qc D 0:152077 and QC D 1:60562.

Standard norm for stopping criterion: Finally we present an analytic conver-
gence result, for the standard norm

k.u; p;w; r/k2N WD kuk2H1.˝/
C kpk2

L2.˝/
C kwk2

H1.˝/
C krk2

L2.˝/
:

For � � 1, it is easy to see that:

kx � xkkN =kx � x0kN � 2 .max.2; !/=�/2 kx � xkkP=kx � x0kP :

This allows to use this standard norm for the stopping criterion in an efficient manner
via (14). Using this estimate in combination with the well known convergence
results for the preconditioned MINRES method (see [2]), it follows that the number
of iterations k? which is needed to decrease the initial error by a factor " >

0, depends only mildly on the parameters ! and �, namely, logarithmically on
.max.2; !/=�/2.
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An Accelerated Value/Policy Iteration Scheme
for Optimal Control Problems and Games

Alessandro Alla, Maurizio Falcone, and Dante Kalise

Abstract We present an accelerated algorithm for the solution of static Hamilton-
Jacobi-Bellman equations related to optimal control problems and differential
games. The new scheme combines the advantages of value iteration and policy
iteration methods by means of an efficient coupling. The method starts with a value
iteration phase on a coarse mesh and then switches to a policy iteration procedure
over a finer mesh when a fixed error threshold is reached. We present numerical tests
assessing the performance of the scheme.

1 Introduction

The numerical solution of optimal control problems is a crucial issue for many
industrial applications; usually, the final goal is to compute an optimal trajectory for
the controlled system and its corresponding optimal control. To solve this problem,
we focus our attention on the Dynamic Programming (DP) approach, introduced
by Bellman [3] since it produces optimal control in feedback form. However,
the synthesis of feedback requires the knowledge of the value function over the
whole state space and this is the major bottleneck for the application of DP-based
techniques.

It is well-known that the characterization of the value function for optimal
control problems by means of DP is obtained in terms of a first order nonlinear
Hamilton-Jacobi-Bellman (HJB) partial differential equation. In the last 20 years,
this approach has been pursued for all the classical control problems in the
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framework of viscosity solutions introduced by Crandall and Lions (see [2] for a
comprehensive illustration), since the value function of an optimal control problem
is known to be only Lipschitz continuous even when the data is regular. Several
approximation schemes have been proposed for this class of equations, ranging from
finite differences to semi-Lagrangian and finite element methods. Some of these
methods converge to the value function but their convergence is slow. Moreover,
for grid-based methods, the storage requirements are huge and the complexity of
the algorithm increases fast due to the so-called curse of the dimensionality; this
explains why the problem is very challenging from a computational point of view.

Our main contribution in this article, is a new accelerated algorithm which can
produce an accurate approximation of the value function in a reduced amount of
time, in comparison to the currently available methods. Furthermore, the proposed
scheme can be used over a wide variety of problems connected to static HJB
equations, such as infinite horizon optimal control, minimum time control and some
cases of pursuit-evasion games. The new method couples two ideas already existing
in the literature: the value iteration method (VI), and the policy iteration method (PI)
for the solution of Bellman equations. The first is known to be slow but convergent
for any initial guess, while the second is known to be fast when it converges (but if
not initialized correctly, convergence might be as slow as the value iteration). The
approach that we consider relates to multigrid methods (we refer to Santos [10] for
a brief introduction to subject in this context), as the coupling that we introduce
features an unidirectional, two-level mesh. The work by Chow and Tsitsiklis [5]
exploits a similar idea with a value iteration algorithm. However, as far as we know
the efficient coupling between the two methods has not been investigated.

To set this paper into perspective, we must recall that algorithms based on the
iteration in the space of controls (or policies) for the solution of HJB equations has a
rather long history, starting more or less at the same time of dynamic programming.
The PI method, also known as Howard’s algorithm [6], has been investigated by
Kalaba [7], and Pollatschek and Avi-Itzhak [8], who proved that it corresponds to the
Newton method applied to the functional equation of dynamic programming. Later,
Puterman and Brumelle [9], gave sufficient conditions for the rate of convergence to
be either superlinear or quadratic. More recent contributions on the policy iteration
method, and some extensions to games can be found in Santos and Rust [11], and
Bokanowski et al. [4] (a more complete list of references is given in [1]).

This paper is structured as follows. In Sect. 2, we describe some model problems
and the basic building blocks of our approach. In Sect. 3, an accelerated scheme
for dynamic programming equations is introduced, and Sect. 4 presents numerical
examples assessing its performance.
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2 Model Problems and Building Blocks

In this section, we introduce our model problems and summarize the basic results
for the two methods which will constitute the building blocks for our new algorithm.

Let the system dynamics be given by


 Py.t/ D f .y.t/; ˛.t//
y.0/ D x ; (1)

where y 2 R
n, ˛ 2 R

m and ˛.t/ 2 A 
 L1.Œ0;C1Œ; A/, and A is a compact
subset of Rm. If f is Lipschitz continuous with respect to the state variable and
continuous with respect to .x; ˛/, the classical assumptions for the existence and
uniqueness result for the Cauchy problem (1) are satisfied.

Let us consider the minimum time problem where we want to compute the time
of arrival of the dynamics (1) to a given target T , denoted by T .x/. Note that,
without additional assumptions, it is not guaranteed that T is finite everywhere, so
a crucial role is played by the reachable set R D fx 2 R

n W T .x/ < C1g. By
applying the Dynamic Programming Principle, it is possible to obtain the Bellman
equation giving the characterization of the solution T .x/ on R and, via the change
of variable v.x/ D 1�exp.�T .x//we extend it to R

n. In conclusion, v is the unique
viscosity solution of the Dirichlet problem

(
v.x/C sup

a2A
f�f .x; a/ � Dv.x/g D 1 in R

nnT
v.x/ D 0 on @T :

(2)

A similar equation will appear for differential games where two players are acting
on the dynamics: player-a wants to hit the target in minimal time, whereas player-b
wants to keep the system away from T . Under appropriate assumptions, one can
obtain a characterization of the v in terms of the following Dirichlet problem

(
v.x/C sup

a2A
inf
b2Bf�f .x; a; b/ � Dv.x/g D 1 in R

nnT
v.x/ D 0 on @T :

(3)

Value iteration A natural way to solve (2) in the context of semi-Lagrangian
schemes, is to consider a pseudotime parameter �t for the discretization of the
system dynamics, to apply a discrete version of the DP, and to consider an
approximation in space of the resulting HJB equation. The resulting nonlinear
equation is solved by means of a fixed point iteration over the discrete value
function, as described in Algorithm 2.1.

Here, we denote by V k
i the value function at a node xi of the grid at the k-th

iteration and I is an interpolation operator acting on the values of the grid; without
loss of generality, throughout this paper we will assume that the numerical grid G
is a regular equidistant array of points with mesh spacing denoted by �x, and that
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Algorithm 2.1: Value Iteration for the minimum time problem (VI)
Data: Mesh G, �t , initial guess V 0, tolerance �.

1 Define V 0 D 0 on T , V 0 D 1 elsewhere
2 while jjV kC1 � V k jj � � do
3 forall the xi 2 G do
4

V
kC1
i D min

a2A
fe��tI

�
V k
�
.xi C�tf .xi ; a//g C 1� e��t (4)

5 end
6 k D kC 1
7 end

Algorithm 2.2: Policy Iteration for the minimum time problem (PI)
Data: Mesh G, �t , initial guess V 0, tolerance �.

1 Define V 0 D 0 on T , V 0 D 1 elsewhere
2 while jjV kC1 � V k jj � � do
3 Policy evaluation step: forall the xi 2 G do
4

V k
i D 1� e��t C e��tI

�
V k
� �
xi C�tf

�
xi ; a

k
i

��
(5)

5 end
6 Policy improvement step:
7 forall the xi 2 G do
8

a
kC1
i D arg min

a

˚
e��tI

�
V k
�
.xi C�tf .xi ; a//

�
(6)

9 end
10 k D kC 1
11 end

the interpolant I corresponds to a multilinear interpolation operator. A drawback of
this approach resides in the fact that the convergence of the iteration is governed
by a contraction constant is given by e��t , thus higher accuracy will dramatically
increase the number of iterations. We consider an alternative solution method which
circumvents this problem.

Policy iteration In the approximation over policy space presented in Algorithm 2.2,
we start from an initial guess for the control for every point in the state space. Once
the control has been fixed, the Bellman equation becomes linear (no search for
the minimum in the control space is performed), and it is solved as an advection
equation. Then, an updated policy is computed and a new iteration starts. The
resulting sequence of value functions V k is monotone decreasing at every node
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of the grid. At a theoretical level, policy iteration can be shown to be equivalent
to a Newton method, so under appropriate assumptions, it converges locally with
quadratic speed.

3 The Accelerated Scheme for HJB Equations

We present an accelerated iterative algorithm which is constructed upon the building
blocks previously introduced. We aim at an efficient formulation exploiting the main
computational features of both value and policy iteration algorithms. As it has been
stated in [9], there exists a theoretical equivalence between both algorithms, which
guarantees a rather wide convergence framework. However, from a computational
perspective, there are significant differences between both implementations. A first
key factor can be observed in Fig. 1, which shows, for a two-dimensional minimum
time problem, the typical situation arising with the evolution of the error measured
with respect to the optimal solution, when comparing value and policy iteration
algorithms. To achieve a similar error level, policy iteration requires considerably
fewer iterations than the value iteration scheme, as quadratic convergent behavior is
reached faster for any number of nodes in the state-space grid.

However, a known drawback of policy iteration is its dependence on a good
initial guess in order to yield such an efficient behavior. Whereas some guesses
will produce quadratic convergence from the beginning of the iterative procedure,
others can lead to an underperformant value iteration-like evolution of the error.
A final relevant remark can be made from Fig. 1, where it can be observed that
for coarse meshes, the value iteration algorithm generates a fast error decay up to
a higher global error. This, combined with the fact that value iteration algorithms
are rather insensitive to the choice of the initial guess for the value function, are
crucial points for the construction of our accelerated algorithm. The accelerated

Fig. 1 Error in a 2D problem: value iteration (left) and policy iteration (right)
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Algorithm 3.1: Accelerated Policy Iteration (API)
Data: Coase mesh Gc and �tc , fine mesh Gf and �tf , initial coarse guess V 0

c , coarse-mesh
tolerance �c , fine-mesh tolerance �f .

1 begin
2 Coarse-mesh value iteration step: perform Algorithm 2.1

Input: Gc , �tc , V 0
c , �c

Output: V �

c

3 forall the xi 2 Gf do
4 V 0

f .xi / D I1ŒV
�

c �.xi / A
0
f .xi / D argmin

a2A

fe�
�t I1ŒV
0
f �.xi C f .xi ; a//g

5 end
6 Fine-mesh policy iteration step: perform Algorithm 2.2

Input: Gf , �tf , V 0
f , A0f , �f

Output: V �

f

7 end

policy iteration (API) Algorithm 3.1, is based on a robust initialization of the policy
iteration procedure via a coarse value iteration which will yield to a good guess
of the initial control field. The aforementioned accelerated algorithm can lead to a
considerably improved performance when compared to value iteration and naively
initialized policy iteration algorithms. However, it naturally contains trade-offs that
need to be carefully handled in order to obtain a correct behavior. We present some
general guidelines for a correct initialization.

Coarse and fine meshes For a good behavior of the PI phase, a good initialization
is required, but this should be obtained without deteriorating the overall perfor-
mance. If we denote by �xc and by �xf the mesh parameters associated to the
coarse and fine grids respectively, numerical findings reported in [1], suggest that
for minimum time problems and infinite horizon optimal control, a good balance is
achieved with �xc D 2�xf .

Accuracy Both VI and PI algorithms require a stopping criterion for convergence.
Following [11], the stopping criteria is given by jjV kC1 � V kjj � C�x2; which
relates the error to the resolution of the state-space mesh. The constant C is set to
C D 1

5
for the fine mesh, and for values ranging from 1 to 10 in the coarse mesh,

as we do not strive for additional accuracy that usually does not improve the initial
guess of the control field.

We now assess the performance of the scheme by presenting two numerical tests
related to minimum time optimal control and differential games.
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4 Numerical Tests

Test 1: Zermelo navigation problem We consider a minimum time problem to
the target T D fx 2 R

2 W jjxjj2 � 0:2g, for states inside the spatial domain
˝ D Œ�1; 1�2, with system dynamics and parameters given by

f .x; y; a/ D
�
1C Vb cos.a/
Vb sin.a/

�
; A D Œ��; �� ; �t D 0:8�x ;

where set A is uniformly discretized into 72 values.
We study two cases, setting Vb D 0:6 and Vb D 1:4, generating solutions with

different reachable sets. In the case Vb D 1:4, the reachable set corresponds to
˝ , whereas for Vb D 0:6 there exists a sharp restriction of the region of the
state space able to reach the target in finite time, as shown in Fig. 2. For every
case, we implement both VI and PI algorithms, and our API iteration procedure.
Comparisons of CPU time for different schemes are presented in Table 1; a speedup
of 7-8x is observed in the finest meshes for Vb D 1:4, and we report that a similar
acceleration is achieved in the case Vb D 0:6, i.e., in this case the speedup is
independent of the regularity of the solution.

Fig. 2 Zermelo navigation problem: different reachable sets for different choices of the para-
meter Vb

Table 1 Test 1: CPU time (iterations) for different algorithms with Vb D 1:4

Mesh API
# nodes �x VI PI VI(2�x) PI(�x) Total

812 0.025 32.85 (240) 6.02 (17) 3.1 (36) 0.99 (4) 4.09

1612 0.0125 184.11 (468) 45.52 (70) 15.47 (115) 4.37 (6) 19.84

3212 0.00625 1.18eC03 (904) 458.03 (49) 116.9 (339) 33.81 (7) 150.71
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Table 2 Test 2: CPU time (iterations) for different algorithms

Mesh API
# nodes �x VI PI VI(2�x) PI(�x) Total

412 0.05 67 (55) 20.08 (19) 21.06 (21) 7.51 (19) 28.57

812 0.025 2.29E02(106) 65.41 (35) 58.19 (48) 15.56 (35) 73.75

# nodes �x VI PI PI(2�x) PI(�x) Total

412 0.05 67 (55) 20.08 (19) 10.17 (10) 7.46 (19) 17.63

812 0.025 2.29E02(106) 65.41 (35) 20.21 (19) 13.32 (35) 33.53

Test 2: a two-player pursuit-evasion game Although there are cases where the
application of policy iteration algorithms for differential games can fail to converge,
as shown in [4], there exists a class of pursuit-evasion games where such an
approach can lead to convergence to the correct solution in a faster way. We
consider a reduced-coordinate system for a two-player pursuit-evasion game in two
dimensions. In ˝ D Œ�1; 1�2, we aim at solving a Hamilton-Jacobi-Bellman-Isaacs
equation of the form (3) with

f .x; y; a; b/ D
�

sin.b/ � 2 sin.a/
cos.b/ � 2 cos.a/

�
; A D


�3
4
�;
3

4
�

�
; B D Œ��; �� :

The capture set is defined T D fx 2 R
2 W jjxjj2 <D 0:2g, and the implementation

procedure follows the same guidelines as for minimum time problem, except that
in a single policy iteration, both control fields (for player A and B) are fixed,
and the policy update is performed via an argmaxmin search. We discretize both
control fields into uniform sets of 36 values, and the time step is set �t D 0:8�x.
Table 2 shows that in this case, the VI is slow even in a coarse mesh, leading to
underperformant results for the overall API algorithm. By replacing the coarse VI
phase by a coarse PI phase, a speedup of 7� with respect to the fine mesh VI is
recovered.
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Inverse Problem of a Boundary Function
Recovery by Observation Data for the Shallow
Water Model

Ekaterina Dementyeva, Evgeniya Karepova, and Vladimir Shaidurov

Abstract In the paper, the shallow water equations are applied to describe the
propagation of long waves in the coastal area of an ocean. For a correct formulation
of the problem, the equations are closed by boundary conditions involving a
function on the open water boundary. In general case this function is unknown.
The determination of this function is reduced to the solution of the inverse problem
on restoring it with auxiliary data on elevation of the sea surface along some
part of the boundary. The solving this (ill-posed) inverse problem is performed by
optimal control methods using adjoint operators. To improve the conditioning of the
problem, three types of regularization functionals are considered which correspond
to higher, deficient, and threshold smoothness of the data involved. The results of
their application are illustrated by a numerical example.

1 Introduction

In the monographs [4, 9], for tidal waves in large water areas, various aspects of
shallow water equations are outlined taking into account the Earth’s sphericity and
the Coriolis acceleration. In the papers [2, 8], the correct formulation of the initial-
boundary value problem is given for these equations; and the estimates providing
its unique solvability are derived. In the paper [5], for the numerical solving this
problem, the finite element method with linear elements on triangles is implemented
with a priori estimates providing unique solvability of the discrete problem.

However, the right-hand side of the boundary conditions of the problem involves
a function that describes the effect of the ocean through the open water boundary.
This function is often unknown, whereas such additional (satellite) data are available
as the elevation of the water surface along some parts of the boundary. As a
result, the inverse problem on restoring this function can be formulated taking into
consideration the auxiliary data on elevation of the sea surface along the certain
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part of the boundary. To solve it, optimal control methods with adjoint operators
are applied [1]. In general, the inverse problem is ill-posed [10]. To improve the
conditioning of this problem, in the paper three different types of regularizing
functionals [3] are examined which correspond to higher, deficient, and threshold
smoothness of data involved in the form of traces of water surface elevation on
the part of the boundary. The application and comparison of these regularizers are
illustrated by a numerical example.

2 The Differential Formulation of a Problem

Consider the following problem. Let .r; 
; / be spherical coordinates with the
origin at the terrestrial globe, 0 � 
 � 2� , ��=2 �  < �=2. Here 
 means
the geographic longitude and instead of the geographic latitude  we use an angle
' D  C �=2 2 Œ0I��. We put r D RE , where RE is the radius of the Earth which
is assumed to be constant.

We formulate the problem on propagation of the long waves in a water area as
follows. Let ˝ be some domain on a plane of .
; '/ variables with the piecewise
smooth Lipchitz boundary � D �1 [ �2 of the class C .2/, where �1 is a part of the
boundary passing along a coastline and �2 D � n �1 is a part of the boundary
rounded a water area. Let denote characteristic functions of these parts of the
boundary by �1 and �2, respectively. Without loss of generality we may assume
that the points ' D 0 and ' D � (poles) are not involved in ˝ .

For time discretization we subdivide the segment Œ0; T � into K equal subinter-
vals: 0 D t0 < t1 < � � � < tK D T with the step � D T=K .

For the unknown functions u D u.tkC1; 
; '/, v D v.tkC1; 
; '/ and � D
�.tkC1; 
; '/ on the interval .tk; tkC1/ we write the time-discretized equations of
the motion and continuity [2, 8] as follows:

�
1

�
CRf

�
u � lv �mg

@�

@

D f1 C 1

�
uk in ˝;

�
1

�
CRf

�
vC lu � ng

@�

@'
D f2 C 1

�
vk in ˝; (1)

1

�
� �m

�
@

@

.Hu/C @

@'

� n
m

Hv
	�
D f3 C 1

�
�k in ˝;

where u and v are the components of the velocity vector U in 
 and ' directions
respectively; � is a deviation of a free surface from the nonperturbed level;
H.
; '/ > 0 is a depth of a water area at a point .
; '/; the functionRf D r�jUj=H
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takes into account the friction force; r� is the friction coefficient; l D �2! cos'
is the Coriolis parameter; m D 1=.RE sin'/; n D 1=RE ; g is the acceleration
of gravity; f1 D f1.t; 
; '/, f2 D f2.t; 
; '/, and f3 D f3.t; 
; '/ are the
given functions of the external forces. Here for an arbitrary function f .t; 
; �/ we
use f k D f .tk; 
; �/, f D f .tkC1; 
; �/ D f kC1. Further the index .k C 1/
in the difference expressions is omitted if there is no ambiguity. Base friction
Rf D r�jUkj=H is taken from the previous time level.

We consider the boundary conditions in the following form:

HUn C ˇ�2
p

gH� D �2
p

gHd on � (2)

where Un D U � n, n D .n1; n
m
n2/ is the vector of an outer normal to the boundary

in the spherical coordinates; ˇ 2 Œ0; 1� is a given parameter; d D d.t; 
; '/ is a
function defined on the boundary � and equal to zero on the boundary �1.

The system (1)–(2) is the subject of our investigation. In the direct
problem (1)–(2) at the time instant tkC1, k D 0; 1; : : : ; K � 1, we should find u, v,
� when the functions H;f1; f2; f3; d are given. But in general case, the function d
is unknown. So we formulate the inverse problem for finding the function d in the
problem (1)–(2). In this case, to close the problem (1)–(2), consider the following
condition:

� D �obs on �0 (3)

where �obs 2 L2.�0/ is a given function (for example, from an observation data) on
the some part of the boundary �0 � � .

Thus, for the time step tkC1, k D 0; 1; : : : ; K�1, the differential problem (1)–(3)
can be formulated in the following way [2].

Problem 1 (Inverse problem) Assume that at a time instant tkC1, k D
0; 1; : : : ; K � 1, the function �obs is defined on �0, the function d is unknown
on �2 and vanishes on �1. At the time instant tkC1 find u, v, �, d , satisfying the
system (1), the boundary condition (2), and the closure condition (3).

3 A Problem of Optimal Control

For real vector-functions ˚ D .u; v; �/, O̊ D .Ou; Ov; O�/ 2 .L2.˝//3 consider the
inner product and the norm [2]

.˚; O̊ / D
Z

˝0

R2E sin'
�
H.uOuC vOv/C g� O�

	
d
d'; k˚k D .˚;˚/1=2 <1:

(4)
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For integral posing of the problem (1)–(2) we take the inner product of the
system (1) in .L2.˝//3 by an arbitrary vector function O̊ D .Ou; Ov; O�/ 2 .L2.˝//2 �
H1.˝/ 
 W and perform integration by parts taking into account the boundary
condition (2).

Definition 1 A vector-function˚ D .u; v; �/ 2 .L2.˝//2�H1.˝/ 
 W is called
a weak solution of the problem (1)–(2) if the integral equality

a.˚;W/ D f .W/C b.d;W/ (5)

holds for any vector function W D .wu;wv;w� / 2 W .

The bilinear forms a.˚;W/, b.d;W/, the linear form f .W/ are written in [6, 7].
Note that the boundary condition (2) is natural for the problem (1), hence it

imposes no restriction on the spaces of trial and test functions.
In [2] it has been proved for ˇ > 0 the problem (5) has a unique solution.
Considering the bilinear forms a.˚; �/ and b.d; �/ as the bounded linear func-

tionals defined for any functions ˚ 2 W and d 2 L2.�2/ respectively, the
problem (5), (3) can be written in an operator form with the compact operator
[6, 7]. Hence the problem is ill-posed. The problem (5), (3) is uniquely and densely
solvable if �0 D �2.

The problem (5), (3) is reduced to the family of optimal control problem with a
small parameter ˛ and unknown functions d˛ and ˚˛ D .u˛; v˛; �˛/ which satisfy
Eq. (5) and minimize one of the cost functional

J .I/˛ .d˛; �˛.d˛// D 1

2
g˛

Z

�2

p
gHd2˛ dsC 1

2
g

Z

�0

p
gH.�˛ � �obs/

2 ds; (6)

J .II/˛ .d˛; �˛.d˛// D 1

2
g˛

Z

�2

p
gH

�
d

ds
.d˛/

�2
dsC 1

2
g

Z

�0

p
gH.�˛ � �obs/

2 ds; (7)

J .III/˛ .d; �˛.d˛// D ˛
Z

�2

.d˛ CA 1=2d˛/d˛ dsC 1

2
g

Z

�0

p
gH.�˛ � �obs/

2 ds: (8)

In (8) the positive and self-adjoint operator A 1=2 W ıH1=2.�2/ ! L2.�2/ is

defined as the square root of the operator A D � d
2

ds2
W H2

0 .�2/! L2.�2/.

Note that the first term in (6)–(8) is a stabilizing functional. Their form
determines smoothness and a search space of the boundary function d . We consider
three following cases: deficient smoothness (d 2 L2.�2/, (6)), higher smoothness

(d 2 H1.�2/, (7)), and threshold smoothness (d 2 ıH1=2.�2/, (8)).
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Applying Euler optimality equation to problems (5)C (6), or (5)C (7),
or (5)C (8) we get the following problem.

Problem 2 Let �obs be given on �0. For fixed ˛ > 0 find the boundary function d˛
on �2 and the vector-functions˚˛ D .u˛; v˛; �˛/, O̊˛ D .Ou˛; Ov˛; O�˛/ 2 W satisfying
the equations

a.˚˛;W/ D f .W/C b.d˛;W/ 8W D .wu;wv;w� / 2 W; (9)

a. OW; O̊˛/Dg
Z

�0

p
gH.�˛ � �obs/ Ow�d� 8 OW D . Owu; Owv; Ow� / 2 W; (10)

with one of the Conditions:

Condition 2.1

˛d˛ C O�˛ D 0 on �2I (11)

Condition 2.2

˛
d

ds

�p
gH

dd˛
ds

�
D pgH O�˛ on �2; d˛.	0/ D d˛.	1/ D 0: (12)

Condition 2.3

˛d˛ C ˛A 1=2d˛ D g

2

p
gH O�˛ on �2; d˛j@�2 D 0: (13)

Here 	0, 	1 are the ends of �2 � � .

The Problem 2 is well-posed for any ˛ > 0, its solution converges to a weak
solution of the problem (5), (3) as ˛! C0.

Thus, for computation of a solution ukC1, vkC1, �kC1, and dkC1 from (9)–(10),
and one of (11), (12) or (13) at .k C 1/ time step, we apply the following iterative
process.

Iterative algorithm

1. Take some d .0/˛ on�2. From here on, when describing the algorithm, a superscript
in parentheses denotes the number of an iteration loop. Put u.0/˛ D uk, v.0/˛ D vk ,
�
.0/
˛ D �k .

2. While given accuracy of the stopping criterion is not achieved an iteration step is
performed:

2.1. Using d .l/˛ , we solve the direct problem (9) and determine u.l/˛ , v.l/˛ , �.l/˛
(index (k C 1) of the time step is omitted as usual).
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2.2. Using a solution �.l/˛ of the direct problem in the boundary condition for the
adjoint one, we solve the problem (10) and determine Ou.l/˛ , Ov.l/˛ , O�.l/˛ .

2.3. Using a solution O�.l/˛ of the adjoint problem, d .l/˛ is iteratively refined.
For Condition 2.1. Let w.l/˛ be equal to the adjoint solution O�.l/˛ .
For Condition 2.2. Let ˛ 
 1 and find a solution w.l/˛ of the boundary

value problem (12).
For Condition 2.3. Let ˛ 
 1 and with implementation of discrete

approximation of A 1=2 in (13), find a solution w.l/˛ of the algebraic equation
system (13).

After that use the solution w.l/˛ of one of the Conditions 2.1–2.3 for the
iterative refinement d .l/˛ by the scheme:

d .lC1/˛ D d .l/˛ � 	l.˛d .l/˛ C w.l/˛ /: (14)

Here 	l , ˛ are parameters of the method.
2.4. Put d .l/˛ D d .lC1/˛ , l D l C 1 and go to point 2.

Parameter 	l in the iterative scheme (14) can be chosen by the trial-and-error
method as 	1l 
 const for all l . To increase the convergence rate of Iterative
algorithm, 	l can be calculated for all l by the minimal residual method as 	2l . In this
case in point 2.3 before using iterative scheme it is necessary additionally to solve
the direct and adjoint problems with some initial data and then the corresponding
refinement equation using obtained adjoint solution. After that 	2l is calculated as
the ratio of some norms.

Consider also 	l chosen with according to the method from the extremum
problem theory [1]:

	3l D
Z

�0

p
gH.�.l/ � �.l/obs/

2 d�

,Z

�0

p
gH.w.l/˛ /

2 d� : (15)

Thus, on each time interval .tk; tkC1/ for sufficiently large l D L � 0 and
sufficiently small 0 < ˛ � 1, ukC1 	 u.L/˛ , vkC1 	 v.L/˛ , �kC1 	 �

.L/
˛ can be

taken as the solution of the differential problem (1)–(3). Note that convergence of
the Iterative algorithm is proved.

4 Numerical Tests for Boundary Function Recovery

The numerical solving the direct and adjoint problems is based on the finite element
method. Consider a consistent triangulation T D f!i g

ˇ
ˇNel

iD1 of the domain ˝ . The
Bubnov-Galerkin method is used for discretization of our problem with respect
to space. Linear functions on triangular finite elements are used as trial and test
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functions. In [5] a priori stable estimation for the discrete analogue is derived and
the second order of approximation in internal nodes for an uniform grid is shown.

We consider the water area of the Sea of Okhotsk and a part of the Pacific Ocean
near the Kuril Islands as a computational domain. The domain is bounded by a
“rectangle”: ˝ D Œ41ı; 62ı�N. � Œ135ı; 162ı�E.; its liquid boundary �2 passes
along 
 D 161; 1ı E. and along ' D 41; 5ıN. From here on, for convenience,
along the 
– and '–axes instead of the radian measure we use degrees of the
eastern longitude and the northern latitude respectively. Test calculations for the
computational domain were performed on the grids constructed on the basis of the
ETOPO2 open bathymetric data base.

Since in general case for a nonstationary problem the initial data are unknown
we use the following procedure for determination of the initial data in ˝ . Firstly,
we solve a steady-state problem using the function d which is given on the
whole “liquid” boundary independently of time. The values � from the steady-state
solution on some part of the boundary �0 are considered as the “observation” data.
Then we “forget” values of d . The aim of the numerical test is recovery of the
function d on the whole liquid boundary using our “observation” data. To this end,
d is recovered everywhere on the “liquid” boundary with Iterative algorithm starting
with d 
 0.

Using this procedure we obtain a rather smooth function as the “observation”
data. However, actual observation data, as a rule, are not so smooth and may
contain some gaps. Figure 1 shows the example of recovery of � and d by the
observation data with gaps including two discontinuous pieces along the boundary.
Here we can see at solving Problem 2 with Conditions 2.2 and 2.3 that free
surface elevation � and boundary function d are recovered on the whole liquid
boundary including the segments without the observation data. Note at solving
Problem 2 with Condition 2.1 that the recovery of � and d is in the points with
observations only. Moreover some results of d recovery by the observation data with
the superimposed “white noise” and with gaps are considered in [6, 7]. The results
about the convergence rate of Iterative algorithm depending on solving problem
and the quality of observation data are represented in Table 1. In the numerical
tests the smooth, “noisy” observation data and the observation data with gaps are
used. Parameter 	l is chosen by the trial-and-error method (optimal 	l for the
Condition 2.3), the minimal residual method (optimal 	l for the Condition 2.1), and
the method from the extremum problem theory (optimal 	l for the Condition 2.2).

Table 1 demonstrates: the worse quality of the observation data the more
iterations are required by the algorithm for its convergence.

Taking into account the numerical results (Fig. 1 and [6, 7]) and optimal choice
of parameter 	l for Conditions 2.1–2.3 (Table 1) we can conclude the following.
Iterative algorithm for solving Problem 2 with Condition 2.1 converges faster than
in another cases but it demonstrates the worse quality of the recovered data due to
the powerful sensitivity to errors and the gaps in observations. For solving Problem 2
with Condition 2.2 the algorithm converges slower than in another cases but it
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a b

dc

10 iteration
     loops
142 iteration
       loops

exact d

10 iteration
     loops

142 iteration
       loops

observation
data

1 iteration
   loop

20 iteration
     loops

observation
data

1 iteration
   loop
20 iteration
     loops
exact d

Fig. 1 Dependence of the functions d and � upon the number of iteration loops (1, 10, 20, 142) on
a liquid boundary of ˝ with observation data with gaps: (a)–(b) with Condition 2.2; (c)–(d) with
Condition 2.3

Table 1 The iterations
number for convergence of
Iterative algorithm for
different choices of parameter
	l : 	1l D const, 	2l and 	3l are
specified by the minimal
residual method and
formula (15) respectively

Problem Observation data 	1l 	2l 	3l

Problem 2 Smooth 9 3 9

with With gaps 9 3 9

Condition 2.1 With white noise 9 3 19

Problem 2 Smooth 45 57 24

with With gaps 60 81 29

Condition 2.2 With white noise 50 50 50

Problem 2 Smooth 11 9 60

with With gaps 13 9 58

Condition 2.3 With white noise 45 32 50

recovers smooth data on the whole boundary by observations with noise or gaps.
For solving Problem 2 with Condition 2.3 the algorithm is sensitive to errors in the
observations, but it recovers data on the whole boundary including parts without
observations; and it converges faster then in the case of Condition 2.2.

The work was supported by Russian Foundation of Fundamental Researches
(grant 14-01-00296), and by Project 130 of SB RAS.
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Determination of Extremal Points and Weighted
Discrete Minimal Riesz Energy with Interior
Point Methods

Manuel Jaraczewski, Marco Rozgic̀, and Marcus Stiemer

Abstract The asymptotic approximation of continuous minimal s-Riesz energy
by the discrete minimal energy of systems of n points on regular sets in R

3 is
studied. For this purpose an optimization framework for the numerical solution of
the corresponding Gauß variational problem based on an interior point method is
developed. Moreover, numerical results for ellipsoids and tori are presented.

1 Introduction

The Riesz kernel of order s in R
d with d � 2 and 0 � s < d is defined by

Rs.x/ WD

 kxk�s ; s > 0

� log kxk ; s D 0 ;

where k � k denotes the Euclidean norm in R
d . For d � 3 and 0 � s < d � 2 the

Riesz kernel is superharmonic on R
d , in case s D d � 2 it is harmonic on R

d n f0g,
and it is subharmonic for s > d � 2. In particular for n D 3 and s D 1 the Riesz
kernel coincides with the classical Newton kernel [25]. Let Q W ˝ ! Œ0;1/ be
a continuous non negative function, representing an external field. The weighted
energy integral for a compact set ˝ � R

d and a Borel measure � with total mass
�.˝/ D 1, is given by

IQs .�/ WD
Z

˝

Z

˝

Rs.x � y/ d�.x/C 2
Z

˝

Q.x/ d�.x/ ; (1)

including the unweighted case with Q.x/ D 0 for all x 2 ˝ . The set of all
normalized Borel measures is denoted by M .˝/. The weighted s-Riesz energy V Q

d;s

of ˝ is defined by
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V
Q

d;s WD V Q

d;s.˝/ WD inf
˚
IQs .�/ W � 2M .˝/

�
: (2)

This infimum always exists and is larger than 0 for s > 0 and larger than �1 for
s D 0, but it may coincide withC1. The latter is true, e.g., for finite sets. Moreover,
we have

inf
˚
IQs .�/ W � 2M .˝/

� D min
˚
IQs .�/ W � 2M .˝/

�
:

To avoid some (trivial) particular cases, we assume that the compact sets considered
in this work consist of infinitely many points. A measure �e 2 M .˝/ satisfying
I
Q
s .�e/ D V Q

d;s is called equilibrium measure.
By distributing point charges on ˝ , a discretization of the energy integral (1)

can be defined. For Pn WD .w1; : : : ;wn/ 2 ˝n, consisting of n 2 N distinct points
w1; : : : ;wn in ˝ , the discrete energy is defined by

E
Q

d;s.Pn/ WD
nX

jD1

nX

kD1
j¤k

Rs.wj � wk/C 2.n� 1/
nX

jD1
Q.wj / : (3)

The discrete counterpart of V Q

d;s , i.e., the discrete weighted n-point s-Riesz energy
of ˝ , is consequently defined via

E
Q

d;s.n/ WD inf
Pn2˝n

E
Q

d;s.Pn/ D min
Pn2˝n

E
Q

d;s.Pn/ : (4)

For n fixed, points w1; : : : ;wn minimizing (3) are called extremal points. The

sequence of normalized discrete energies
�

1
n.n�1/E

Q

d;s.n/
	

n2N of a compact set

˝ � R
d converges to the continuous energy V Q

d;s as n tends to infinity. In the
unweighted case Q D 0 this is a well known result from potential theory, e.g.,
[11, 16]. A comprehensive theory of logarithmic potentials (i.e., d D 2 and s D 0)
in the presence of an external field is provided by Saff and Totik [21]. Ohtsuka
proved the convergence of the above sequence in the case Q D 0 for general lower
semicontinuous kernel functions [15]. His argument can be modified to obtain the
same result for arbitrary weight functionsQ, cf. [9].

Most investigations into minimal discrete energy configurations focus on the
sphere or on a torus as canonical manifolds, see, e.g., [19, 22] for the sphere and
[2, 3, 5, 8] for tori. It should be mentioned, that discrete minimal energy can also
be considered in cases, where the continuous energy integral (1) fails to converge,
i.e., s � d , e.g., [7,10]. In this case local interaction between points dominates over
global phenomena, and for s !1 minimal energy configurations are given by the
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midpoints of best packing spheres. In this work, however, only the case 0 � s < d

is relevant, and we remain in the realm of potential theory. In Sect. 2 we present
an approach to find approximate solutions for the variational problem stated in (2).
Using an interior point method the discrete weighted n-point s-Riesz energy and
the corresponding point configurations are numerically determined. In the sequel
we present some numerical results for several manifolds in Sect. 3.

2 Computing Extremal Points with an Interior Point Method

In this section, we present a flexible method to compute extremal points on a large
class of compact sets ˝ � R

d . Hardin, Saff and Kuijlaars [6, 22] determined
numerically extremal points and the corresponding minimal discrete energy on the
sphere and on tori using quadratic programming. Minimal energy for more general
sets, like a cube and its boundary, has been computed in [17] by Rajon et al. By
providing rigorous upper and lower bounds, these methods lead to reliable values
for minimal energy and the related capacities. This method has been extended to
weighted s-Riesz energy in the presence of external fields in [18]. In contrast, the
method presented here is based on an interior point method, more precisely on the
efficient implementation IPOPT of this method by Wächter and Biegler [23]. The
presented approach is easily manageable and can be applied to a huge class of sets.
We consider sets ˝ � R

d that can be described by a set of finitely many equations
or inequalities of the type

'1.x/ D 0 ; : : : ; 'k.x/ D 0 ;  1.x/ � 0 ; : : : ;  `.x/ � 0 ;

where the functions 'i ;  j W Rd ! R, 1 � i � k, 1 � j � ` are assumed to
be at least twice continuously differentiable. This general form contains, amongst
other sets, smooth compact manifolds of arbitrary (integer) dimensions ˇ � d and
sets which are the union or intersection of a finite number of such manifolds. For d ,
s and n fixed, we consider Pn D .w1; : : : ;wn/ 2 ˝n. A set of extremal points of
order n on˝ , i.e., points w1; : : : ;wn 2 ˝ minimizing (3), can be derived by solving
the constrained nonlinear optimization problem

min
Pn2˝n

E
Q

d;s.Pn/

subject to 'i.w�/ D 0 ; i D 1; : : : ; k ; � D 1; : : : ; n ;
 j .w�/ � 0 ; j D 1; : : : ; ` ; � D 1; : : : ; n :

Here, EQ

d;s is the objective function as given in (3) and the constraints ensure the
extremal points to be located in ˝ . The, usually non linear, inequalities may be
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rendered into equalities by subtracting positive slack variables �j 2 R, j D
1; : : : ; n`, from each inequality, yielding the following reformulation

min
Pn2˝n

E
Q

d;s.Pn/ (5a)

subject to c.Pn; �/ D 0 (5b)

�j � 0 ; j D 1; : : : ; n` : (5c)

Here c W ˝n � R
n` ! R

n.kC`/ contains the constrained information given by
'1; : : : ; 'k and j .w�/��jC`.��1/ for 1 � j � `, 1 � � � n and � WD .�j /1�j�n`.
We refer to [23, Ch. 3.4] for a more detailed description. In the sequel we use IPOPT,
cf. [23], to solve (5). Interior point (or barrier) methods provide a powerful tool for
solving nonlinear constrained optimization problems. For an introduction to this
field we refer to [14, Ch. 19]. Problem (5) can be transformed to a constrained
problem without inequality bounds: By converting the bounds into barrier terms in
the objective function EQ

d;s we obtain

min
Pn2˝n

�2Rn`
B.Pn; �; 
/ ; B.Pn; �; 
/ WD EQ

d;s.Pn/� 

nX̀

jD1
log �j ; (6a)

subject to c.Pn; �/ D 0 (6b)

with the barrier function B and a barrier parameter 
 > 0. If 
 tends to 0, any
point fulfilling the Karush-Kuhn-Tucker conditions (KKT condition) of problem (6)
tends to a KKT point of the original problem (5), see [20] for more details on the
relationship of the barrier problem and the original problem. The KKT conditions
represent a set of first order necessary conditions for w1; : : : ;wn to be optimal.
If additionally constraint qualifications are satisfied [4], the KKT conditions also
become sufficient. Let Ak WD grad c.Pn;k; �k/ and Wk WD �L .Pn;k; �k; !k; zk/
represent the Hessian with respect to .Pn; �>/> of the Lagrangian

L .Pn; �; !; z/ WD EQ

d;s.Pn/C c.Pn; �/>! � z>�

of the original problem (5) in the kth step with the Lagrange multipliers ! 2
R
n.kC`/ and z 2 R

n` for Eqs. (5b) and (5c), respectively. Then, IPOPT solves the
optimization problem (5) by applying Newton’s method to the barrier problem (6).
The system to derive a Newton direction in the kth iteration for a fixed barrier
parameter 
 reads as

0

@
Wk Ak �Id
A>k 0 0

Zk 0 Xk

1

A

0

@
d
.Pn;�/

k

d!k
d z
k

1

A D �
0

@
gradL .Pn;k; �k; !k; zk/

c.Pn;k ; �k/

XkZk1 � 
1

1

A ;
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yielding the search directions d .Pn;�/k , d!k and d z
k , which are scaled with an adequate

step size and then added to .Pn;k ; �k/, !k , and zk , respectively, to obtain the
corresponding values in the .k C 1/th iteration step. Here, Xk is a diagonal matrix

representing the vectors Pn;k and �k , i.e., Xk WD diag
�
P>n;k; �>k

	>
, Id represents

the identity matrix of adequate size and gradL .Pn;k ; �k; !k; zk/ the gradient of

the Lagrangian with respect to
�
P>n;k ; �>k

	>
. Finally, Zk WD diag .zk/ represents

the Lagrange multiplier zk and 1 WD .1; : : : ; 1/>. For details about how the step
size for the obtained Newton direction is computed within IPOPT we refer to [23].
After each solution of (6) with a current value for the barrier parameter 
, the
barrier parameter is decreased (see [23] for the particular algorithm to find a new

) and IPOPT continues with a further barrier problem based on the approximated
solution of the previous one. To solve the KKT system the IPOPT solver requires
information about the first and second derivatives of EQ

d;s and c to derive search
directions proceeding towards the minimal energy.

3 Numerical Results

For a numerical study, we consider here the unweighted case Q.x/ D 0 for all
x 2 ˝ with d D 3 and s D 1 (Newtonian energy). Moreover, we confine
ourselves to the case that ˝ is a 2-dimensional smooth submanifold of R3. Then,
˝ can be identified by equality constraints 'i.w�/ D 0, i D 1; : : : ; k [12]. We
have implemented the target function EQD0

3;1 and the constraints in a MATLAB
[13] interface that provides all required information for IPOPT, particularly the
corresponding Jacobian and Hessian are conveyed to IPOPT. Thus, the discrete n-
point s-energy E

QD0
3;1 .n/ for different compact sets ˝ has been determined. For the

unit sphere, the theoretical result is reproduced very well: By direct computation
one obtains lim

n!1
1

n.n�1/E
QD0
3;1 .n/ D 1

2
. As it is shown in [10, 24] the error

ˇ
ˇ
ˇ 1
n.n�1/E

QD0
3;1 .n/ � 1

2

ˇ
ˇ
ˇ is of the order O

�
n� 1

2

	
if n tends to 1, which matches

the numerical results displayed in Fig. 1. In addition extremal point configurations
on further smooth manifolds have been considered, namely on two ellipsoids
with different eccentricities (sets ˝2 and ˝3 in Table 1) and two different types
of tori (˝4 and ˝5). Note, that a torus with major radius R > 0 and minor
radius R > r > 0 is defined by the equation

�
x21 C x22 C x33 CR2 � r2

�2 D
4R

�
x21 C x22

�
. Finally, a more complicated manifold is treated (˝6), which is not

longer differentiable, being the non-smooth union of two 2-dimensional manifolds.
In Fig. 1 the numerical results are presented. Here, the normalized discrete energy

1
n.n�1/E

QD0
3;1 .n/ is derived for different values of n 2 Œ4;500�. For better visualization

of the trend and for an estimation of the continuous minimal energy

1

2
V
QD0
3;1 D lim

n!1
1

n.n�1/E
QD0
3;1 .n/
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Fig. 1 Discrete Newtonian energy 1
n.n�1/

E
QD0
3;1 .n/ for different manifolds in R

3

Table 1 Description of the sets extremal points are numerically computed for

Name Set

˝1 Unit sphere

˝2 Ellipsoid with semi-axes a D 1, b D c D 21=2

˝3 Ellipsoid with semi-axes a D 1, b D c D 101=2

˝4 Torus with major radius R D 1, minor radius r D 1=10

˝5 Torus with major radius R D 1, minor radius r D 1=2

˝6 ˝1 [˝2

a function of the form x 7! a C bx�c has been fitted to the data with
a; b; c 2 R determined by a least-squares fit. Comparing the asymptotic behavior of�

1
n.n�1/E

QD0
3;1 .n/

	
for the manifolds˝2; : : : ;˝6 with the results for the unit sphere

˝1, the same asymptotic behavior of
�

1
n.n�1/E

QD0
3;1 .n/

	
for all these manifolds

seems to occur. These results give evidence to the hypotheses that the sharp
asymptotic behavior observed for the sphere, cf. [1, 24], which is given by

ˇ
ˇ
ˇE QD0
d;s .n/ � 1

2
V
QD0
d;s n2

ˇ
ˇ
ˇ � Cn1C

s
d�1 .0 � s < d; d � 2/ ;

where C is a constant that may depend on d and s but not on n is also true for
general smooth manifolds. In [9] this hypothesis is analyzed in more detail. It is
particularly remarkable that the lack of smoothness of˝6 does not seem to influence
the convergence rate as far as this can be deduced from the computed data. It may be
interesting to analyze, whether the observed asymptotic behavior also carries over to
lager sets of regular manifolds (e.g., bi-Lipschitz manifolds or even Ahlfors-David
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a b

Fig. 2 Top view on the extremal point configuration on the tori ˝4 for n D 17 and on ˝5 for
n D 7. The extremal points take the positions of the roots of unity

a b

Fig. 3 Extremal point configuration for the tori ˝4 and ˝5 for 64 points

regular sets, cf. [9]). A computation of the minimal energy for the different sets
yields

V
QD0
d;s .˝1/ D 1 ; V

QD0
d;s .˝2/ 	 0:78331 ; V

QD0
d;s .˝3/ 	 0:48305 ;

V
QD0
d;s .˝4/ 	 1:40712 ; V

QD0
d;s .˝5/ 	 0:82445 ; V

QD0
d;s .˝6/ 	 0:89893 :

It is a well known result form potential theory in the complex plane (two dimen-
sional case) that the optimal points on the unit circle coincides with the nth roots of
unity [16]. For small numbers of n the extremal points on tori act like the extremal
points on the outer boundary of the unit circle. For n � 17 and n � 7 for torus ˝4

and the narrow torus˝5, respectively, the extremal points are lying in the plane and
their positions coincides (up to rotation) with the nth roots of unity (Fig. 2). As n
increases the points escape into the third dimension. Thus the patterns in Fig. 3 are
obtained.
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Sensitivity Estimation and Inverse Problems
in Spatial Stochastic Models of Chemical
Kinetics

Pavol Bauer and Stefan Engblom

Abstract We consider computational stochastic modeling of diffusion-controlled
reactions with applications mainly in molecular cell biology. A complication from
the traditional ‘well-stirred’ case is that our models have a spatial dimension. Our
aim here is to put forward a practical algorithm by which perturbations can be
propagated through these types of simulations. This is important since the quality
of experimental data calls for frequently estimating stability constants. Another use
is in inverse formulations which generally relies on being able to effectively and
accurately judge the effects of small perturbations. For this purpose we present our
implementation of an “all events method” and give two concrete examples of its use.
One case studied is the effect of stochastic focusing in the spatial setting, the other
case treats the optimization of a small biochemical network.

1 Introduction

In the classical case of non-spatial stochastic modeling of chemical kinetics, the
reaction rates are understood as transition intensities in a continuous-time Markov
chain Xt�0. When spatial variability is important, space may be discretized in
voxels. Between voxels, diffusion-, or more generally, transport rates become
transition intensities in a Markov chain which now takes place in a much larger
state space.

This is the point of view taken in the software framework URDME [2, 5] where
fairly large-scale spatial stochastic reaction-diffusion models can be simulated. We
have developed a solver for sensitivity analysis which allows us to compare single
trajectories under arbitrary perturbations of input data and opens up for computing
stability estimates as well as optimizing models under various conditions.
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For a given parameter perturbation c ! cCı the task is to characterize the mean
effect on some function of interest,

EŒf .X.T; c C ı//� f .X.T; c//�; (1)

for example, by computing a sample average. As a prototypical application, c is a
rate constant and f a measure of the molecular populationXt .

The obvious way to carry out this is to conduct two Monte Carlo simula-
tions using independent random numbers and generating N trajectories each of
f .X.T; c C ı// and f .X.T; c//, and then taking the average. Two factors can lead
to unsatisfactory results with this approach. Firstly, with independent samples, the
variance of f .X.T; cC ı// and f .X.T; c// can be large compared to the difference
f .X.T; c C ı// � f .X.T; c//. This is the variance reduction problem which has
been discussed in the well-stirred setting by others [12]. Secondly, a slightly more
subtle point has been pointed out in [12]; solver algorithms related to Gillespie’s
Direct Method [8] are not suitable to compute the difference between two processes
X.T; cCı/ andX.T; c/ as their coupling is simply not the intended one. This would
be a problem for instance, if (1) were to be replaced by

EŒf .X.T; c C ı/� X.T; c//�; (2)

and f some nonlinear function. In fact, a popularly used algorithm for solving
spatial stochastic models, the Next Subvolume Method (NSM) [3], belongs to this
class of algorithms and can therefore not be used.

In this paper we present the “All Events Method”; a variant of the so-called
Common Reaction Path method [12], extended for spatial models in URDME and
meeting both the criteria above for an efficient and sound estimation of (1)–(2). In
Sect. 2 we give a brief overview of the modeling involved, in the non-spatial as well
as in the fully spatial setting, and we also sketch a theory for perturbations, including
some implementation aspects of our AEM-solver. In Sect. 3 we discuss two applied
examples and show how this solver can be conveniently used in the sense of both
forward- and backward formulations.

2 A Viable “All Events Method”-Implementation

After a brief review of stochastic reaction-diffusion modeling we will here summa-
rize the logic behind URDMEs AEM-solver.
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2.1 Spatial Stochastic Chemical Kinetics

According to classical well-stirred stochastic modeling of chemical kinetics, reac-
tions are transitions between states x 2 ZDC, counting the number of molecules of
each of D distinct species. The transition intensity defines the probability per unit
of time for the transition from the state x to x C Sr ;

x
wr .x/���! x C Sr; (3)

where the transition vector Sr 2 ZD is the r th column in the stoichiometric matrix
S . Equation (3) defines a continuous-time Markov chain Xt�0 on ZDC.

For spatially extended problems, a stochastic model can be defined by first
discretizing space in voxels. Molecular transport can then be handled as a “reaction”
which brings a molecule of the l th species from voxel i to j ,

Xli
aijxli��! Xlj; (4)

where xli is the number of molecules of species l in subvolume i . When space is
discretized by general unstructured meshes, suitable rate constants can be obtained
by a numerical discretization of the diffusion equation. The consistency in this
approach hinges on the fact that the expected value of the concentration converges
to the deterministic numerical solution [5].

2.2 Path-Wise Analysis of Perturbations

Without loss of generality, we consider the well-stirred case (3). Let the stateX.t/ 2
ZDC count the number of molecules of the D species. The associated Markov chain
can be written in the convenient jump SDE form

dXt D S�.dt/; (5)

with counting measure � D Œ�1; : : : ; �R�T . According to this compact notation the
time to the arrival of the next reaction of type r is exponentially distributed with
intensity wr .Xt�/. A perhaps more familiar notation is Kurtz’s random time change
representation [6, Chap. 6.2], in which the path is characterized in terms of unit-rate
Poisson processes˘r ,

Xt D X0 CPR
rD1 Sr˘r

�R t
0

wr .Xs�/ ds
	
: (6)

This naturally gives rise to the term operational time for the argument to each of the
R Poissonian processes.
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Let a trajectory Y.t/ be a perturbed version of X.t/ in the sense that the former
is driven by modified rates vr .Yt /, but otherwise has an identical reaction topology
S . To compare the two trajectories we write

dXt D S
�
�.0/.w.Xt�/; v.Yt�/I dt/C�.ı/.w.Xt�/; v.Yt�/I dt/

�
; (7)

dYt D S
�
�.0/.w.Xt�/; v.Yt�/I dt/C�.ı/.v.Yt�/;w.Xt�/I dt/

�
; (8)

in terms of the base (superscript 0) and remainder counting measures (superscript
ı), respectively. The intensities for �.0/r and �.ı/r are given by

wr .x/ ^ vr .y/ and wr .x/ � .wr .x/ ^ vr .y// : (9)

As indicated in the order of the arguments in (7) and (8), there is an asymmetry in
the remainder measure.

To analyze Zt WD kXt � Ytk2 we apply a form of Itô’s formula [1, Chap. 4.4.2],

dZt D 2.Xt� � Yt�/T SŒ�.ı/w;v ��.ı/v;w�.dt/C S2Œ�.ı/w;v C �.ı/v;w�.dt/: (10)

Taking expectation values and ignoring the martingale part we get, after determining
the drift parts of the relevant measures,

d=dt EZt D E
�
2.Xt � Yt/T SŒw.Xt /� v.Yt /�C S2jw.Xt/ � v.Yt /j

�
: (11)

At this point we need some assumption on the dynamics of the process and on the
perturbation. Let the rates be locally Lipschitz and let the magnitude of the relative
perturbation be ı. Then for kxk _ kyk � P ,

kw.x/ � v.y/k � kw.x/ � w.y/k C kw.y/ � v.y/k (12)

� LP kx � yk C ıkw.y/k � CP .ı C kx � yk/: (13)

Working similarly, we find from (11) that for some constant CP ,

d=dtEkXt � Ytk2 � E CP .ı C kXt � Ytk2/; (14)

where we used the simple observation that for integers n, knk � knk2. From
Grönwall’s inequality, assuming X0 D Y0, we get under a stopping time t � �P WD
inft�0fkXtk _ kYtk > P g that

EkXt � Ytk2 � ı.exp.CP t/ � 1/: (15)

Thus, for bounded systems, (15) predicts a RMS perturbation which behaves as ı1=2.
For unbounded systems, the only immediate generalization is that the limit as ı ! 0

is zero, see [4] and the references therein.
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2.3 Simulation Using Consistent Poisson Processes

To motivate our approach to evolving two or more trajectories which can be path-
wise compared, consider first the diffusion approximation of (5),

dXt D Sw.Xt / dtC Sw.Xt/
1=2 dW t : (16)

Two comparable replicas of (16) can clearly be constructed using the same Wiener
processW .t/. In discrete time this boils down to using the same sequence of normal
random numbers. This idea can be transferred to the current setting by simply using
the same sequence of random numbers when simulating different trajectories, and it
leads to the Common Random Numbers method [9].

However, we see from the representation (6) that two trajectories formed by
identical Poisson processes are stronger candidates to being similar than any
dependency on identical random numbers may generate. This is the motivation
behind the Common Reaction Path method [12]. Here allR reaction channels access
their own stream of random numbers such that a consistent operational time in
the sense of (6) is continuously well-defined. In practise we implement this by
storing generator seeds si for every channel i and use these for every update of the
corresponding Poisson process. For the current case of spatial models this implies
that all reaction events and all transport events must be associated with a consistent
Poisson process. This in contrast to the NSM [3] where only a ‘total event’ process
per voxel is available.

A remark on continuity is made in [12, Appendix B]. When a zero rate is
encountered a discontinuity typically forms which is due to the fact that in most
implementations, a zero rate will lead to discarding the previous operational time.
A new, uncorrelated waiting time is drawn whenever the rate becomes non-zero
again. In our implementation we circumvent this problem by storing the pre-zero
operational time � inf and associated non-zero rate winf. When the channel is re-
activated we compute the next waiting time �new using the rescaling (essentially
proposed in [7]),

�new D tcurrent C
�
� inf � tcurrent

�
winf=wnew: (17)

For more information on implementation of solvers in URDME, consult [2].

3 Sample Applications

We shall now consider two sample applications of our URDME solver; one example
in the ‘forward’ mode, i.e. propagating a definite perturbation, and one example in
the ‘backward’ (or inverse) setting. Due to the computational complexity involved,
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the inverse problem we choose to consider is non-spatial. However, it is clearly
possible to, at an increased computational cost, also target fully spatial formulations.

3.1 Spatial Stochastic Focusing

As a basic but informative example we consider the following enzymatic law,

C C E k c�e��! P C E; (18)

in which E is an enzyme and C an intermediate complex which matures into a
product P . The model is completed by adding the in- and outflow laws

; ˛C•̌
C c
C; ; ˛E•̌

Ee
E; P

ˇP p��! ;: (19)

Stochastic focusing [11] is a non-linear stochastic effect under which an input
signal is strongly amplified, and notably much more effectively so than for the
corresponding mean field model. In the present case this effect can be observed
in the response of the number of intermediate complexes C when the birth rate ˛E
is perturbed according to ˛E ! ˛E.1 � ı/ (Fig. 1, left). A spatial version of (18)
and (19) can be defined in the geometry ˝ D Œ0; 1� with diffusion of the species.
We generate an ‘unperturbed’ trajectory C1.t/ for which ˛E D c is constant and
a ‘perturbed case’ C2.t/ for which ˛E is replaced by the space dependent function
˛E.x/ D c.1=2C x/. Note that this preserves the total production rate in the sense
that

Z

˝

˛E.x/dV D c: (20)

We combine the reactions with varying diffusion " and observe a phenomenon
which can be referred to as Spatial stochastic focusing (Fig. 1, center/right).

In the table below we determine at two different perturbations ı and for several
values of TOL, the number of realizations N D 10; 20; : : : needed to bring the
standard Monte Carlo error estimate std=

p
N below TOL. This for the case of

estimating EŒC2.1/ � C1.1/� using either the Next Subvolume Method [3] or the
solver proposed by us.

NSM AEM

ın TOL 1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

1=2 1,480 3,470 6,990 33,010 30 600 3,630 12,870

1=32 1,350 2,780 5,630 14,970 10 20 60 3,190
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Fig. 1 Left: ODE and mean SDE solutions of the unperturbed (C1 , red, lower) and perturbed (C2 ,
blue, upper) model (18)–(19) in the well-stirred case (ı D 1=2). Center: SDE solutions with spatial
perturbation and varying diffusion. Each point represents the mean of C at steady-state. From top
to bottom as in legend (Colors online). Right: traces of C1 (dashed) and C2 (solid) integrated over
space and plotted over time. All SDE solutions are averages of N D 104 trajectories, error bars
are std=

p
N

3.2 Enzymatic Control

Consider again the model (18)–(19) but with the enzyme E under control,

; s.t/•̌
Ee
E; (21)

with s.t/ a time-dependent signal. We define a payoff function '.P / by

'.P / D .P � c�/Œc� < P � CC�C .CC � c�/ŒCC < P � (22)

with c�=CC suitable cutoff values. Reasonable constraints are that ks.t/k1 and
ks.t/k1 are bounded. After adding a regularization term the target functional
becomes

M ŒP � WD
Z T

0

'.Pt / dtC �Œs.t/�0�t�T ; (23)

with Œ�� the total variation. Thus the overall formulation is “Find s.t/ such that in
expectation, M ŒP � attains it maximum subject to the constraints”. Here P D P.t/
is the solution to (18)–(19) and (21) with P.0/ D E.0/ D 0. We solve the
optimization problem both in the deterministic ODE setting and in the stochastic
setting using URDME/AEM. The optimization algorithm applied was the Nelder-
Mead simplex method [10] and results for two sets of cutoff-values are shown in
Fig. 2.
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Fig. 2 (a) Optimal solution s.t/ for cutoff values c� D 30 and CC D 50, for the case of a
deterministic ODE (left), and an SDE (right). These cutoff values yield similar “all-or-nothing”
optimal strategies in both cases. (b) Here c� D 5 and CC D 30, and the optimal solutions are
clearly different for the two cases. Legend: From top to bottom (colors online), P (red), C (green),
E (blue), signal s.t/ (black, dashed). Values of the target functional for the optimal s.t/ are also
indicated

Conclusions
We have presented a viable simulation algorithm for continuous-time Markov
chains which relies upon a self-consistent use of Poisson processes. This com-
putationally intensive technique enables perturbations in the input parameters
to be propagated and opens up for several relevant applications. To the best of
our knowledge none of the applications considered here have been addressed
previously.

Through straightforward perturbation calculations in the ‘forward’ mode
we have reported results for spatial stochastic focusing, where the strong
focusing effect can be uniquely attributed to the spatial dimension. In a
nutshell, the existence of a gradient implies an increase of outgoing products
which cannot be explained through well-stirred and/or deterministic analysis.

As an example of an interesting inverse formulation we studied a simple
chemical network and defined an arguably quite open criterion for optimality.
By wrapping our simulator with a simple external optimizing routine we were
able to find optimal control signals which realizes this optimality. In one case
the signals found clearly differ from their deterministic versions.

(continued)
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While developing computational algorithms simultaneously with challeng-
ing applications requires some care, it is our hope that this report shows the
value of this approach.
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A Bayesian Approach to Physics-Based
Reconstruction of Incompressible Flows

Iliass Azijli, Richard Dwight, and Hester Bijl

Abstract To reconstruct smooth velocity fields from measured incompressible
flows, we introduce a statistical regression method that takes into account the
mass continuity equation. It is based on a multivariate Gaussian process and
formulated within the Bayesian framework, which is a natural framework for fusing
experimental data with prior physical knowledge. The robustness of the method and
its implementation to large data sets are addressed and compared to a method that
does not include the incompressibility constraint. A two-dimensional synthetic test
case is used to investigate the accuracy of the method and a real three-dimensional
experiment of a circular jet in water is used to investigate the method’s ability to fill
up a gap containing a vortex ring.

1 Introduction

Measuring the velocity field of a flow has become quite common in many branches
of science and engineering (e.g., oceanography, meteorology and wind tunnel
testing) thanks to improvements in flow measurement techniques such as particle
image velocimetry (PIV). To obtain a smooth field in the presence of measurement
uncertainty and regions where information is absent (i.e., gaps), the experimental
data has to be processed further. Additionally, it may be required to obtain
unmeasured quantities such as vorticity and helicity.

To this end, the present work considers a statistical regression method based
on Gaussian processes. Its statistical interpretation allows for a natural inclusion
of measurement uncertainty. Past works have applied the method in the context
of reconstructing measured flow fields [2, 5, 9]. The common approach in these
applications is to handle the velocity components independently from each other
in the reconstruction.

In reality however, the velocity components are related through the governing
equations of fluid dynamics. In the present paper, it is assumed that the flow
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of interest is incompressible and the standard method is modified such that the
reconstructed velocity field satisfies the mass continuity equation

This paper is organized as follows. In Sect. 2, we present Gaussian process
regression from a Bayesian perspective. The standard approach of handling the
velocity components independently from each other is discussed and the method of
incorporating the incompressibility constraint is introduced. In Sect. 3, we discuss
two important issues related to the practical implementation of the methods, namely
computational cost and robustness. In Sect. 4, we apply and compare the two
methods to a two-dimensional synthetic test case and a real three-dimensional
experiment. Finally, the conclusions are presented in section “Conclusions”.

2 Gaussian Process Regression

Consider an unobservable Gaussian process F  GP
�
� .x/ ; c

�
x; xi I ��, where

x 2 R
3 and  2 R

d are the hyperparameters. If we discretize the space at n locations
of interest, we get F  N .�; P /, where �i D �

�
xi
�

and P ij D c
�
xi ; xj I �. Its

realization is the state vector f 2 R
n. The statistical model for the observations is

defined as y D H fC�, where �  N .0;R/. The matrixR is as the observation error
covariance matrix, representing the measurement uncertainty. Therefore, Yjf 
N .H f; R/, also known as the likelihood. We are interested in the distribution of
the true state given the observed data p .fjy/, known as the posterior. According to
Bayes’ Rule, the posterior distribution is proportional to the prior p .f/ times the
likelihood p .yjf/. The mean and variance of the posterior are therefore normally
distributed as well [12]. In this paper we are only interested in the posterior mean,
given by (1). The term RC HPHT is called the gain matrix A.

E .Fjy/ D �C PHT
�
RC HPHT

��1
.y �H�/ (1)

2.1 Standard Approach

The state is set to f D �
u1 u2 u3

�T 2 R
3n. The m observations are defined in y D

�
uo1 uo2 uo3

�T 2 R
3m. The covariance matrix P 2 R

3n�3n is a 3 � 3 block diagonal
matrix, with elements Pk , k D 1; 2; 3 on the diagonal. The off-diagonal blocks are
zero because the method assumes that the velocity components are uncorrelated.
The i; j entry of Pk is the covariance function c

�
r ij
�
, i; j D 1; : : : ; n, where r ij is

the distance between the points xi and xj , defined as .r ij/2 DP3
kD1..xik�xjk /=k/2.

The parameter k is the correlation length in the direction k.
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2.2 Divergence-Free Approach

The divergence-free approach takes into account the mass continuity equation. For
an incompressible flow, the density is constant in space and time, reducing the
equation to r � u D 0, i.e., a divergence-free velocity field. From vector calculus it
is known that a divergence-free vector field can be obtained by taking the curl of a
vector potential a. The state vector is now defined as:

f D � a1 @1a1 @2a1 @3a1 a2 @1a2 @2a2 @3a2 a3 @1a3 @2a3 @3a3
�T

where @i represents the partial derivative with respect to xi . Contrary to the standard
approach, the state vector is now an unobservable; neither the vector potential nor
the individual first partial derivatives are observed. Instead, we measure a particular
linear combination of the first derivatives. To be more specific, the curl of the vector
potential. The observation matrix should therefore be set up such that it will convert
the state vector into the curl of the vector potential. The covariance matrix is again
a block diagonal matrix. Equation (2) shows how the diagonal blocks are defined,
with k D 1; 2; 3 and @i;j the second partial derivative with respect to xi and xj [8].

PPk D

2

6
6
4

Pk @1Pk @2Pk @3Pk
�@1Pk @1;1Pk @1;2Pk @1;3Pk
�@2Pk @1;2Pk @2;2Pk @2;3Pk
�@3Pk @1;3Pk @2;3Pk @3;3Pk

3

7
7
5 (2)

Again, the off-diagonals of the covariance matrix are zero. But the reason for this
now is that the different components of the vector potential, not the velocity, are
assumed to be uncorrelated. In the most general case there is no a-priori physical
knowledge to assume that there is a relation between them. The gain matrix is given
by (3).

A D RC HPHT D RC
2

4
@3;3P2 C @2;2P3 �@1;2P3 �@1;3P2
�@1;2P3 @3;3P1 C @1;1P3 �@2;3P1
�@1;3P2 �@2;3P1 @2;2P1 C @1;1P2

3

5

(3)

It can easily be verified that the columns and rows of the gain matrix are divergence-
free. By taking the same covariance function for all directions of the vector potential
(P1 D P2 D P3) and assuming perfect measurements (R D 0), (3) reduces to:

A D ��I � rrT �P1 (4)

which turns out to be proportional to the operator constructed by Narcowich
and Ward [6]. We have therefore generalized their method by allowing different



532 I. Azijli et al.

covariance functions to be used for the different vector potential components and
by including measurement uncertainty in the reconstruction. The latter was natural
because our derivation was carried out from a Bayesian perspective.

3 Practical Implementation

The practical implementation of Gaussian process regression is discussed in this
section, which is important considering the fact that data sets can be large. We
compare the standard and divergence-free approach in terms of computational cost
and conditioning.

3.1 Computational Cost

To evaluate the posterior mean given by (1), one first has to solve the linear system
Ac D y � H�. The gain matrices for the standard and divergence-free cases are
symmetric and additionally positive definite if the covariance function is positive
definite [6]. The Cholesky factorization can therefore be used for a direct solver and
the conjugate gradient method can be used as an iterative solver.

Reconstructing a velocity field with the standard approach can be split up into
three separate problems since the gain matrix is a 3� 3 block diagonal matrix. This
is not possible for the divergence-free approach because the velocity components are
related. The divergence-free approach is therefore nine times more expensive than
the standard approach if the Cholesky factorization is used and three times more
expensive if the conjugate gradient method is used, assuming similar convergence.

If the gain matrix has structure then the solution can be obtained cheaper. If
the measurement grid is regular and all measurements have equal measurement
uncertainty, the matrix has Toeplitz structure. The standard approach renders a
3-level Toeplitz matrix and the divergence-free approach renders a 3 � 3 block
matrix with each block a 3-level Toeplitz matrix. Fast and superfast direct solvers
of complexity O

�
N2
�

and O
�
N log2 N

�
, respectively, can then be used [1]. The

conjugate gradient method can be accelerated by embedding a Toeplitz matrix into
a circulant matrix [3]. By making use of the Fast Fourier Transform, the matrix-
vector multiplication can be performed in O .N logN/. It can be shown that the
divergence-free approach will be O .1C logm 3/ times more expensive than the
standard approach, making the cost comparable, especially for larger system sizes.
In case of unequal measurement uncertainty, there exist no fast direct solvers for
the resulting Toeplitz-plus-diagonal systems [7]. However, the conjugate gradient
method can still be used in combination with the FFT.
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Table 1 Relative correlation length =L at which � .A/ D 1015. The spatial dimension is 2 and
the data points are defined on a regular 33 � 33 grid

�2;2 �2;3 �2;4 gauss

Standard 23.899 8.6501 2.0876 0.2848

Divergence free 919.28 24.637 3.8032 0.2117

3.2 Conditioning

The most important factors that influence the condition number of the gain matrix,
� .A/, are the covariance function, the separation distance of the data, the correlation
length and the observation error [4]. The divergence-free gain matrix is influenced
by the same parameters [6]. Decreasing the separation distance, increasing the
correlation length and decreasing the observation error all increase the condition
number. An ill-conditioned gain matrix causes inaccurate results, even if the
algorithm is stable. In fact, the gain matrix can become so ill-conditioned that it
stops being numerically positive definite, even though it will be analytically if its
covariance function is positive definite. In that case, a Cholesky factorization cannot
be carried out and the conjugate gradient method should in principle not be used.

Table 1 summarizes at which correlation range the various covariance functions
reach a condition number of 1015. The functions �2;k , k D 2; 3; 4 are the Wendland
functions with smoothness C2k [11]. The Gaussian (gauss), an infinitely smooth
function, is defined as exp

��˛2r2�. The constant ˛ was set to 3.3 to make it
resemble �2;3 as closely as possible. Contrary to the Gaussian, the Wendland
functions have compact support: �2;k D 0 for r � 1. The Gaussian covariance
function appears to be the most ill-conditioned, a property attributed to the fact
that it is infinitely differentiable [4]. The smoother the Wendland function, the
more it approaches the Gaussian. The idea that the level of differentiability is
related to the conditioning of the gain matrix is supported by the observation that
for the Wendland functions, the divergence-free gain matrix becomes numerically
not-positive definite at a larger  . The reverse happens for the Gaussian. For the
divergence-free approach, the covariance function is differentiated twice, reducing
the level of differentiability of the resulting function for the Wendland functions,
explaining the better conditioning of the matrix.

4 Results

We apply the standard and divergence-free approach to a 2D synthetic test case and
to a data set obtained from an actual 3D PIV experiment. The mean and standard
deviation of the prior are estimated from the data. Furthermore, it is assumed that
the correlation range in all directions is the same
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4.1 2D Synthetic Test Case

We consider the 2D incompressible flow of a counter-rotating vortex pair. For the
numerical experiments, the sample points are taken on uniform grids with spacing
h and the RMSE is calculated using 5,000 validation points, distributed over the
domain using Latin hypercube sampling. Table 2 shows how the minimum RMSE
changes as a function of the sample density.

Three observations are made. First of all, as expected, the RMSE decreases
with increasing sample density, both for the standard approach and the divergence-
free approach. Secondly, the velocity field reconstructed with the divergence-free
approach is more accurate than the standard approach. One exception is for h D 2�5,
when using �2;2. However, it can be argued that since the Wendland functions have
finite smoothness, the results for the covariance function of the standard approach
�2;k should be compared with �2;kC1 of the divergence-free approach since the
smoothness decreases with two orders for the divergence-free approach. In that case,
we observe that the divergence-free approach always produces a more accurate field.
So it seems like introducing the physical knowledge of incompressibility indeed
improves the reconstructed velocity field. Finally, a close inspection reveals that the
spread in RMSE between the different covariance functions used is larger for the
divergence-free approach, indicating that the reconstructed velocity field is more
sensitive to the covariance function used.

It is important to note that the results in Table 2 show the minimum RMSE. The
divergence-free approach does not reconstruct a more accurate velocity field for
every  . Figure 1 shows that for the small correlation length values, the standard
approach is more accurate. This behavior is quite unfortunate since it decreases the
sparseness of the gain matrix when using compactly supported covariance functions.
Knowing that the divergence-free gain matrix is more expensive to solve, obtaining
a sparse matrix is desired to decrease computational cost.

Table 2 RMSE as a function of sample density, covariance function and reconstruction approach
used. (st) stands for standard and (df) stands for divergence-free

h D 2�1 h D 2�2 h D 2�3 h D 2�4 h D 2�5

gauss (st) 5.30e�1 2.76e�1 8.11e�2 9.43e�3 2.20e�4

gauss (df) 3.45e�1 1.95e�1 4.25e�2 6.14e�3 1.53e�4

�2;2 (st) 5.31e�1 2.78e�1 8.16e�2 8.10e�3 9.77e�5

�2;2 (df) 3.34e�1 2.30e�1 5.85e�2 6.81e�3 1.05e�4

�2;3 (st) 5.31e�1 2.76e�1 8.12e�2 8.36e�3 1.04e�4

�2;3 (df) 3.41e�1 2.00e�1 4.58e�2 5.50e�3 9.12e�5

�2;4 (st) 5.31e�1 2.76e�1 8.11e�2 8.86e�3 1.10e�4

�2;4 (df) 3.44e�1 1.94e�1 4.28e�2 4.36e�3 7.57e�5
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Fig. 1 RMSE of the velocity vs. =L for h D 2�1. Solid lines: standard approach, dotted lines:
divergence-free approach. No marker: Gaussian,� : �2;2, � : �2;3, Þ : �2;4

Fig. 2 Horizontal velocity of the original data set (middle), standard approach (left) and
divergence-free approach (right) including sample points

4.2 3D Experimental Data Set

The velocity field considered in this section is that of a circular jet in water [10].
It was obtained using tomographic PIV, a measurement technique that extracts the
three components of velocity in a volume. The jet velocity at the nozzle exit is
0.5 m/s, so assuming incompressible flow is an excellent approximation. We want
to illustrate the ability of the divergence-free approach to reconstruct vortices. To
this end, we took a data set of 37 � 29 � 5 velocity vectors. From this set, we
introduced a small gap in the shear layer of the jet, where vortex rings are formed,
containing 20 � 14 � 5 vectors. Figure 2 shows the horizontal velocity in the gap.
The RMSE of the standard approach is 0.7634, while the RMSE of the divergence-
free approach is 0.5881. The divergence-free approach is able to resolve the vortex,
whereas the standard approach misses it. The divergence field for the standard
approach, not plotted here, contains strong sources and sinks. The divergence field
of the divergence-free approach is of course per definition zero.
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Conclusions
We have introduced a statistical regression method based on a multivariate
Gaussian process that enforces zero divergence on vector fields. Numerical
results have shown that the reconstructed fields can be more accurate than
those obtained without enforcing zero divergence. Future work will focus on
testing the method on larger data sets.
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Improved Stabilized Multilevel Monte Carlo
Method for Stiff Stochastic Differential
Equations

Assyr Abdulle and Adrian Blumenthal

Abstract An improved stabilized multilevel Monte Carlo (MLMC) method is
introduced for stiff stochastic differential equations in the mean square sense. Using
S-ROCK2 with weak order 2 on the finest time grid and S-ROCK1 (weak order
1) on the other levels reduces the bias while preserving all the stability features
of the stabilized MLMC approach. Numerical experiments illustrate the theoretical
findings.

1 Introduction

Estimating the expectation of a functional depending on a stochastic process
is essential in many applications ranging from biology, chemistry, physics to
economics [8,9,12,13]. A popular approach for such problems is the use of classical
and improved Monte Carlo (MC) techniques, in particular the multilevel Monte
Carlo (MLMC) method using Euler-Maruyama (EM) [10] as numerical integrator
[7]. An explicit stabilized multilevel Monte Carlo method has been proved to be
useful and efficient for stiff problems in a mean square sense and specially attractive
for problems of large dimensions (as it avoids solving nonlinear systems typically
arising with implicit methods) [1]. Here we present an improved version of the
stabilized MLMC method by using a higher weak order scheme on the finest time
grid.

We consider the Itô stochastic differential equation (SDE)

dX.t/ D f .X.t//dtC
mX

rD1
gr .X.t//dWr.t/; 0 � t � T; X.0/ D X0 ; (1)
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where X.t/ 2 R
d is a random variable, f W R

d ! R
d the drift function,

gr W Rd ! R
d the diffusion functions and Wr.t/ independent one-dimensional

Wiener processes (with r D 1; 2; : : : ; m). Further, we take into account a numerical
approximation of the solution of (1) by using a discrete map XnC1 D � .Xn; h; �n/,
where � .�; h; �n/ W Rd ! R

d , Xn 2 R
d for n 2 N, h a time stepsize and �n

some random vector. Let us now consider any �n D nh 2 Œ0; T � for h sufficiently
small. The numerical approximation is said to be of strong order of convergence
s if max0�n�T=h EjXn � X.�n/j � Chs for a constant C (independent of h). It is

said to be of weak order w if for any function � 2 C2.	C1/
P .Rd ;R/1 there exists a

constant C (independent of h) such that jEŒ�.Xn/� � EŒ�.X.�n//�j � Chw .
The stability of a numerical method is another important issue for

computations. A stochastic process .X.t//t�0 is said to be mean square
stable if E

�
X.t/2

�
tends to zero as t goes to infinity. The scalar linear SDE

dX.t/D
X.t/dt C�X.t/dW.t/; X.0/ D 1, with 
 2 C and � 2 C is commonly
used to figure as test problem [9]. The stability domain of the exact solution is given
by Sexact WD

˚
.
; �/ 2 C

2 j <f
g C 1
2
j�j2 < 0�. Similarly a numerical method is

mean square stable if E
�
X2
n

�
tends to zero as n goes to infinity. The stability domain

of the EM method (that has strong order 1=2 and weak order 1) is specified by
SEM D

˚
.p; q/ 2 C

2 j j1C pj2 C q2 < 1� with .p; q/ D .h
;phj�j/ (see [9]).
Stabilized stochastic methods were introduced in [2,3] with the aim of improving

the stability behavior of the EM method, while staying explicit. These methods are
s-stage explicit methods with fixed order based on

• a deterministic stabilization procedure;
• a finishing stochastic procedure to achieve the desired accuracy.

We will consider the s-stage S-ROCK1 method [3] defined by (for s � 2)

K0 D Xn; K1 D Xn C h!1!0 f .K0/ ;

Ki D 2h!1
Ti�1.!0/

Ti .!0/
f .Ki�1/C 2!0 Ti�1.!0/Ti .!0/

Ki�1 � Ti�2.!0/

Ti .!0/
Ki�2;

Ks D 2h!1
Ts�1.!0/

Ts.!0/
f .Ks�1/C 2!0 Ts�1.!0/Ts.!0/

Ks�1 � Ts�2.!0/

Ts.!0/
Ks�2

C
mX

rD1
gr .Ks�1/�WnC1;r ;

(2)

with i D 2; 3; : : : ; s � 1 and where !0 D 1 C �

s2
with � a damping parameter,

!1 D Ts.!0/

T 0

s .!0/
with .Ti .x//i�0 the orthogonal Chebyshev polynomials, �WnC1;r 

N .0; h/ and XnC1 D Ks . Here the first s � 1 stages represent the stabilization
procedure and the last stage a finishing procedure to achieve strong order 1=2 and
weak order 1 [2, 3]. We will also consider the S-ROCK2 method introduced in [5].

1Here C2.	C1/
P denotes the space of 2.	 C 1/ times continuously differentiable functions with all

partial derivatives bounded by a term of order 1C jxj2u with u 2 N (polynomial growth).
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Similar to S-ROCK1 this scheme uses a stabilization procedure (in this case ROCK2
[4]) on the first s � 2 stages and then a finishing procedure on the last two stages to
obtain a weak order of 2 and a strong order of 1=2. While remaining explicit the two
S-ROCK methods have an extended stability domain, which can be characterized as
follows. Let SSDE;a D

˚
.p; q/ 2 Œ�a; 0� �R j jqj � p�2p� be a “portion” of

Sexact and a� D sup fa > 0 j SSDE;a � Snumg with Snum denoting the stability
domain of the numerical method. It can be shown that for S-ROCK1 and S-ROCK2
a�s D cSR1.s/s

2 and a�s D cSR2.s/.sC 2/2, respectively. As s increases the constants
cSR1.s/ and cSR2.s/ quickly reach a value independent of the stage number that can
be estimated numerically as cSR1 D 0:33 (S-ROCK1) and cSR2 D 0:42 (S-ROCK2)
[2, 3, 5].

2 Multilevel Monte Carlo Method for Stiff SDEs

We are interested in estimating E WD E Œ� .X.T //�, the expectation of some
Lipschitz continuous functional � W Rd ! R depending on the stochastic process
.X.t//t2Œ0;T � specified through (1). The classical Monte Carlo method uses Euler-
Maruyama [10] as numerical integrator with a fixed time stepsize to approximate
the stochastic process and sample averages to estimate the expectation. This
approach is easy to implement, but computationally expensive. In fact defining the
computational cost (or complexity) by the number of function evaluations, one can
show that to achieve a mean square accuracy of O

�
"2
�

a computational cost of
O
�
"�3

�
is required (with " > 0) (see e.g. [8]).

One way to improve the performance of standard Monte Carlo techniques
is to use the multilevel Monte Carlo method, which is based on hierarchical
sampling. In this approach Monte Carlo is applied to a sequence of nested time
stepsizes. Simultaneously the number of samples is balanced according to the
stepsize. Combining many samples of computationally cheap approximations (the
ones using a large stepsize) with a few samples of computationally expensive
approximations (the ones based on a fine time grid) reduces the cost significantly

to O
�
"�2 .log."//2

	
while maintaining the same mean square accuracy of O

�
"2
�

[7].
For stiff problems, using the standard MLMC approach with EM, there is some

time stepsize restriction due to stability issues. Let k � 2 be some positive integer
indicating the refinement factor. We consider the time stepsizes

h` D T

M`

; ` D 0; 1; : : : ; L; (3)
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with L the total number of levels and M` D k` denoting the number of time steps
at level `. Suppose there is some stability constraint given by k�`EM� � 1 with
`EM corresponding to the largest possible stepsize such that the EM scheme is mean
square stable and � a given stiffness parameter. Furthermore suppose that a root
mean square accuracy of " D k�L is desired. One has to distinguish between two
cases:

1. `EM > L.
MLMC cannot be applied because none of the levels up to level L satisfies the
stability constraint. Though one can use classical Monte Carlo with h D T=k`EM

which results in a computational cost of O
�
"�3MC

�
and a precision O

�
"2MC

�
, where

"MC D k�`EM .
2. 0 < `EM � L.

MLMC can only be applied to the levels `EM; `EM C 1; : : : ; L. The resulting

computational complexity is O
�
"�2

�
.log."//2 C "�`EM=L

		
.

In [1] a stabilized multilevel Monte Carlo method, whose estimator we denote
by OE , is introduced which uses as numerical integrator S-ROCK1 (2), an explicit
Runge-Kutta method based on orthogonal Chebyshev polynomials. The stability

constraint of this scheme is given by k�`�

cSR1s
2
`

� 1, where s` is the number of

stages at level ` and cSR1 a positive constant. Due to the extended stability
domain of S-ROCK1 all levels are accessible in the stabilized MLMC approach.

A computational cost of O
�
"�2 .log."//2

�
1C

p
�

j log."/j
		

is necessary to attain a

mean square precision of O
�
"2
�
. For stiff problems as well as for nonstiff problems

with no small noise, this means a significant improvement over the standard MLMC
approach (which uses EM) as it is shown in [1].

3 Improved Stabilized Multilevel Monte Carlo Method
for Stiff SDEs

In this section we describe how the stabilized multilevel Monte Carlo method can
further be improved. As mentioned in the introduction, the EM method as well as
the S-ROCK1 method are both of weak order 1 and strong order 1=2. The idea is
to use a numerical integrator of higher weak order for the finest time grid (see [6]),
in our case S-ROCK2 [5] with weak order 2, which leads to a reduction of the bias.
In fact due to the telescopic sum representation of the multilevel estimator, only
the estimator based on the smallest time stepsize (which uses S-ROCK2) appears
in the bias. A smaller bias yields a reduction of the total number of levels, and
thus a reduced computational cost, without decreasing the accuracy. Note that in the
following we focus on problems that are either stiff or nonstiff but with significant
noise. Problems with no stability issues can be treated in a similar way.
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Recall the sequence of nested stepsizes (3). For ` D 0; 1; : : : ; L � 1 we denote
by �` the approximation of � .X.T // using S-ROCK1 with time stepsize h`. The
approximation of � .X.T // using S-ROCK2 on the finest time grid which is based
on hL is indicated by �L. The improved stabilized multilevel Monte Carlo estimator
is defined by

QE WD
LX

`D0

1

N`

NX̀

iD1

�
�
.i/

` � �.i/`�1
	

with ��1 
 0; (4)

a sum of sample averages over N` independent and identically distributed samples.
Note that �.i/` and �.i/`�1 are based on the same Wiener path. The accuracy of the
estimator QE can be measured, e.g., by the mean square error (see e.g. [8]), which
can be split into bias and variance as follows:

MSE
� QE� D E

h� QE � E�2
i
D Var

� QE�C �bias
� QE��2 :

Using the properties of the expectation we obtain

E
� QE� D

LX

`D0
.E Œ�`� � E Œ�`�1�/ D E

"
LX

`D0
.�` � �`�1/

#

D E Œ�L� :

Hence the bias satisfies

bias
� QE� D E

� QE� � E D E Œ�L� � E D O
�
k�2L

�
(5)

since the S-ROCK2 method, on which �L is based, is of weak order 2. Furthermore,
for the variance we use the Cauchy-Schwarz inequality to obtain

Var .�` � �`�1/ �
�

Var .�` �E/1=2 C Var .�`�1 �E/1=2
	2
:

Both numerical integrators, S-ROCK1 and S-ROCK2, are of strong order 1=2 and
� is Lipschitz continuous by assumption. Thus

Var .�` �E/ � E

h
.�` � E/2

i
� E

h�
�
�
XM`

� � � .X.T //�2
i
� Ck�`

and therefore

Var
� QE� D

LX

`D0

Var .�` � �`�1/
N`

� C
 
L�1X

`D0

k�`

N`
C k�L

NL

!

; (6)

where C is a positive constant.
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Assume now a mean square precision of MSE
� QE� D O

�
"2
�

is desired for

some " > 0. Considering (5) we obtain a total number of levels L D � 1
2

log."/
log.k/

(or equivalently " D k�2L). Inspired by (6) the number of simulations per level `
is set to N` D k�`k4L.L � 1/ for ` D 0; 1; : : : ; L � 1 and NL D k�Lk4L, which
yields Var

� QE� � Ck�4L
�
2C 1

L�1
� D O

�
"2
�
.

As mentioned above the stability constraint of S-ROCK1 is given by k�`�

cSR1s
2
`

� 1.

In a similar way one can define a stability criterion for S-ROCK2 k�L�

cSR2.sLC2/2 � 1

with sL � 2 and with cSR2 as defined above.

Theorem 1 Let QE be the improved stabilized MLMC estimator introduced in (4).
For a desired mean square accuracy of MSE

� QE� D O
�
"2
�

the computational cost
of QE is given by

Cost
� QE� D 1

4
"�2

�
log."/

log.k/

�2
Q̨ ;

where Q̨ D
�
mL�1

L
C 1

L

� p
kp
k�1

	q
�

cSR1

	
�
�
d1

"1=4
p
�

L
C d2 .

p
��d3/
L2

�
with d1, d2,

d3 some positive constants.

Proof For the computational cost of QE we obtain Cost
� QE�

D
L�1X

`D0
N`M` .s` Cm/CNLML .sL C 8C 2m/

D
L�1X

`D0
k4L.L � 1/

�r
�

cSR1
k�`=2 Cm

�
C k4L

�r
�

cSR2
k�L=2 C 6C 2m

�

D k4L.L � 1/
�q

�

cSR1

p
k�k�L=2C1=2p

k�1 CmL
	
C k4L

�q
�

cSR2
k�L=2 C 6C 2m

	
:

Using " D k�2L and rearranging terms yields Cost
� QE� D 1

4
"�2

�
log."/
log.k/

	2 Q̨ with Q̨
as defined above. ut

In comparison, for a same mean square accuracy, the cost of the stabilized

MLMC estimator OE of [1] is given by Cost
� OE
	
D "�2

�
log."/
log.k/

	2 Ǫ ; where Ǫ D
�
m
LC1=2
L
C 1

2L

� p
kp
k�1

	q
�

cSR1

	
� d4 "

1=2p�
L

with d4 a positive constant.

Asymptotically we observe that for both estimators

Cost
� QE� D Cost

� OE
	
D O

�
"�2 .log."//2

�
1C

p
�

j log."/j
��

;
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however with a smaller constant prefactor for QE allowing for a cost reduction by a
factor roughly between 0:25 (nonstiff problems but significant noise) and 0:5 (stiff
problems). This can be seen by comparing Q̨ and Ǫ .

4 Numerical Experiments

In this section we investigate a two-dimensional nonlinear noncommutative SDE
inspired by the one-dimensional population dynamics model (see [11])

d

�
X1.t/

X2.t/

�
D
�
˛a2.t/ � 
1b1.t/
�
2b2.t/

�
dt C

���1b1.t/ �2a1.t/

��2b2.t/ 0

��
dW1.t/

dW2.t/

�

for 0 � t � 1, where ai .t/ D Xi.t/�1 and bi.t/ D Xi.t/.1�Xi.t// for i 2 f1; 2g.
The initial condition is given by .X1.0/; X2.0// D .0:95; 0:95/ and .W1.t//t2Œ0;1�
and .W2.t//t2Œ0;1� are two independent Wiener processes. We consider two different
scenarios. First a stiff problem with drift term 
1 2 f�1;�100;�10;000g and noise
term �1 D

pj
1j. And then a nonstiff problem with no small noise by fixing 
1 D
�1 and varying �1 D

p�2
1 � ı with ı 2 f10�1; 10�2; 10�4g. In addition we pick
˛ D 2, 
2 D �1, �2 D 0:5, k D 2. As root mean square accuracy we choose k�2L
with L 2 f1; 2; : : : ; 5g. Stability is guaranteed by assessing the second moment at
the time end point. In Fig. 1 we compare the number of function evaluations (by
counting the drift and diffusion evaluations) of the improved stabilized (using S-
ROCK1 and S-ROCK2), the stabilized (using S-ROCK1) and the standard (using
EM) MLMC method. As expected the improved stabilized approach yields a cost
reduction over the other two methods (see also Table 1).
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Fig. 1 Function evaluations against root mean square accuracy comparing the improved stabilized
MLMC method using S-ROCK1 and S-ROCK2 with the stabilized (S-ROCK1) and the standard
(EM) MLMC method

Table 1 Number of function evaluations of the improved stabilized MLMC (using S-ROCK1 and
S-ROCK2), the stabilized MLMC (using S-ROCK1) and standard MLMC (using EM) for different
values of the root mean square error. As parameters we take 
1 D �1; �1 D p�2
1 � 0:01 (b)
and 
1 D �100; �1 Dpj
1j (e)

Precision 2�2 2�4 2�6 2�8 2�10

(b) imp.stab.MLMC 64 4;352 184;320 5:70� 106 14:99� 107
stab.MLMC 672 35;840 1;204;224 19:92 � 106 37:12 � 107
MLMC 10:49 � 106 10:49 � 106 10:49 � 106 42:27� 106 70:25 � 107

(e) imp.stab.MLMC 256 16;896 614;400 16:91 � 106 39:53 � 107
stab.MLMC 2;272 95;232 2;629;632 42:73� 106 73:61 � 107
MLMC 10:49 � 106 10:49 � 106 10:49 � 106 42:27� 106 70:25 � 107
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Adaptive Polynomial Approximation by Means
of Random Discrete Least Squares

Giovanni Migliorati

Abstract We address adaptive multivariate polynomial approximation by means
of the discrete least-squares method with random evaluations, to approximate
in the L2 probability sense a smooth function depending on a random variable
distributed according to a given probability density. The polynomial least-squares
approximation is computed using random noiseless pointwise evaluations of the
target function. Here noiseless means that the pointwise evaluation of the function is
not polluted by the presence of noise. Recent works Migliorati et al. (Found Comput
Math 14:419–456, 2014), Cohen et al. (Found Comput Math 13:819–834, 2013),
and Chkifa et al. (Discrete least squares polynomial approximation with random
evaluations – application to parametric and stochastic elliptic PDEs, EPFL MATH-
ICSE report 35/2013, submitted) have analyzed the univariate and multivariate
cases, providing error estimates for (a priori) given sequences of polynomial spaces.
In the present work, we apply the results developed in the aforementioned analyses
to devise adaptive least-squares polynomial approximations. We build a sequence
of quasi-optimal best n-term sets to approximate multivariate functions that feature
strong anisotropy in moderately high dimensions. The adaptive approximation relies
on a greedy selection of basis functions, which preserves the downward closedness
property of the polynomial approximation space. Numerical results show that the
adaptive approximation is able to catch effectively the anisotropy in the function.

1 Random Discrete Least Squares

The approximation of multivariate functions depending on several random variables
is a challenging task. Different approaches have been proposed, such as Monte Carlo
and quasi-Monte Carlo methods or stochastic collocation on sparse grids. Recent
works have proven that the univariate polynomial approximation based on discrete
least squares with noiseless pointwise evaluations in random uniformly distributed
points is stable and optimally convergent in expectation [2] and in probability [5],
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under the condition that the number of evaluations is proportional to the square
of the dimension of the polynomial space. The analysis has been extended to the
multivariate case in [1]: in any dimension, it has been proven that discrete least
squares on polynomial spaces with random evaluations are stable and optimally
convergent, again under the condition that the number of evaluations is proportional
to the square of the dimension of the polynomial space, irrespectively of the
“shape” of the polynomial space as long as it remains downward closed. Numerical
observations have shown that a quasi-optimal convergence can still be achieved in
case of a linear proportionality [1, 5, 6]. In this section we recall the construction of
the random discrete least-squares approximation and the main results achieved in
[1, 2, 5].

Let d 2 N and � WD Qd
kD1 �k � R

d denote the d -dimensional parameter set.
For each k D 1; : : : ; d we define the probability density �k W �k ! R and the family
of univariate polynomials f'ki gi�0 orthonormal w.r.t. the corresponding density �k ,
i.e.

R
�k
'ki .y/'

k
j .y/�k.y/dy D ıij. We will confine to the choice �k D Œ�1; 1� for all

k D 1; : : : ; d . Assume that the probability density � W � ! R has a product form
� D Qd

iD1 �i . Given a finite multi-index set � � N
d
0 , for each � 2 � we define the

corresponding multivariate polynomial basis function

 �.y/ D
dY

kD1
'k�k .yk/; y 2 �: (1)

The polynomial space P�.� / associated with the multi-index set � is defined as
P�.� / WD spanf � W � 2 �g, and of course dim.P�/ D #.�/. We denote by
Y a d -dimensional random variable distributed according to the density �, and by
� D �.Y / W � ! R a smooth function (at least continuous) depending on Y . Given

m independent and identically distributed random variables Y 1; : : : ;Y m
i.i.d. � we

introduce the following L2� inner product and its discrete counterpart

hu; viL2� D
Z

�

u.y/v.y/�.y/dy; hu; vim D 1

m

mX

jD1
u.Y j /v.Y j /; (2)

which induce on P�.� / the corresponding norm k�kL2� WD h�; �i
1=2

L2�
and the seminorm

k � km WD h�; �i1=2m . We focus on multi-index sets � featuring the following property.

Definition 1 The finite multi-index set� � N
d
0 is downward closed (or it is a lower

set) if whenever � 2 � and �0j � �j 8j D 1; : : : ; d then �0 2 �.

We define the discrete least-squares projection ˘m
�� of the function � over the

space P�.� / as

…m
�� WD argmin

v2P�.� /
k� � vk2m: (3)
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The discrete projection (3) approximates the L2 continuous projection

…�� WD argmin
v2P�.� /

k� � vk2
L2�
; (4)

which in general cannot be exactly computed. We denote by fˇm� g�2� and fˇ�g�2�,
respectively, the coefficients in the expansion of the two projections over the
polynomial space:

…m
�� D

X

�2�
ˇm�  � and …�� D

X

�2�
ˇ� �: (5)

Moreover, we introduce the following quantity K.�/ WD supy2�
P
�2� j �.y/j2,

which depends only on � and �, see [1]. For a given � > 0, we assume that the
target function satisfies a uniform bound j�.y/j � � for any y 2 � . In addition,
we introduce the truncation operator T�.t/ WD sign.t/minf�; jt jg and define the
truncated discrete least-squares projector Q…m

� WD T� ı…m
�. We recall from [1] the

following result, specifically targeted to the case of polynomial approximation.

Theorem 1 (From [1]) For any 	 > 0, if m is such that K.�/ satisfies

K.�/ � 0:15

.1C 	/
m

lnm
; (6)

then, for any � 2 L1.� / with k�kL1 � � , the following estimates hold

E

�
k� � Q…m

��k2L2�
	
�
�
1C 0:6

.1C 	/ lnm

�
k� �…��k2L2� C 8�

2m�	 ;

P r

�
k� �…m

��k2L2� � .1C
p
2/ inf

v2P�
k� � vkL1

�
� 1 � 2m�	 :

Given a finite multi-index set �, the quantity K.�/ can be directly computed, to
precisely quantify the value of m which satisfies condition (6). Nonetheless, the
following upper bounds have been derived.

Lemma 1 (From [1]) For any lower set �, the quantityK.�/ satisfies

K.�/ � .#.�//2; with tensorized Legendre polynomials; (7)

K.�/ � .#.�//ln 3= ln 2; with tensorized Chebyshev 1st kind polynomials: (8)

These bounds are sharp for the Tensor Product space, and their accuracy is discussed
in more detail in [1]. More general bounds with tensorized Jacobi polynomials
have been proven in [4]. The case of Hermite polynomials has been analyzed in
[3, chap. 3].
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2 Adaptive Random Discrete Least Squares

In general the knowledge of the best n-term sets, i.e. the sets of the n largest
coefficients, is not available when approximating a given anisotropic function �.
The aim of the adaptive approximation approach consists in building a sequence
f�kgk�0 of lower multi-index sets, with �0 D f0g and �k � �kC1 for any k � 0.
The sequence is adaptively computed with random discrete least squares driven
by a greedy selection. The following objects are useful to describe the adaptive
algorithm.

Definition 2 The margin M .�/ of a lower multi-index set � is

M .�/ WD f� 2 N
d
0 W � … � ^ 9j > 0 W � � ej 2 �g:

Definition 3 The reduced margin R.�/ of a lower multi-index set � is

R.�/ WD f� 2 N
d
0 W � … �^8j D 1; : : : ; d W �j ¤ 0) ��ej 2 �g �M .�/:

We devise an adaptive algorithm that computes at each iteration k the corresponding
multi-index set �k . At the kth iteration of the algorithm the set �k�1 is given, and
we have to select the new multi-indices to add and form�k . The new multi-indices
are picked among the elements of R.�k�1/, because this preserves the property of
downward closedness of the set �k at any iteration k � 0.

Since at every iteration of the adaptive algorithm we have to solve a least-
squares problem, it can be beneficial from a computational standpoint to select a
fraction of the multi-indices in the reduced margin rather than to pick them one
at a time. To perform this multiple selection, we exploit the idea of the Dörfler
marking, which has been originally proposed in the context of Adaptive Finite
Elements. Given a multi-index set �, a subset R � R.�/ of its reduced margin,
a nonnegative function e W R ! R and a parameter  2 .0; 1�, we define the
procedure Dörfler WD Dörfler.R; e; / that computes a set F � R � R.�/ of
minimal positive cardinality such that

X

�2F
e.�/ � 

X

�2R
e.�/: (9)

For any � 2 R, the function e.�/ estimates the absolute value of the coefficient ˇ�
appearing in the expansion (5) of…��, i.e. e.�/ 	 jˇ�j. Therefore, the selection (9)
corresponds to choose a fraction  of the sum of absolute values associated with the
(estimates of the) coefficients in the set R. Using an estimator Qe of the square of
the coefficients, i.e. Qe.�/ 	 .ˇ�/

2, the selection (9) with e replaced by Qe would
catch a fraction  of the energy associated with the coefficients in R, but we will
stick to the case e.�/ 	 jˇ�j. A natural choice of the estimator function e is the use
of the estimates fˇm� g�2� of the coefficients coming from the discrete least-squares
projection (3) at the kth iteration. Another further selection can be made, at each
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Algorithm 2.1: Adaptive polynomial random discrete least-squares approximation

Set r0 D �.Y /, �0 D f0g and choose ksg; kmax such that 1 � ksg � kmax.
for k D 1 to kmax do
F1  Dörfler.R.�k�1/; jhrk�1;  �imj; 1/Q�k  �k�1 [ F1
˘m

Q�k
� DP

�2 Q�k
ˇm�  �  argminu2P Q�k

k� � ukm
F2  Dörfler.F1; jˇm� j; 2/
�k  �k�1 [ F2
if k mod ksg D 0 then
�k  �k [�, with � being the most ancient multi-index in fR.�k�1/ n F2g

end if
rk  � �˘m

Q�k
�j�k

end for

iteration k, by using the estimator related to the correlations between the residual
rk�1 at the .k � 1/th iteration and the polynomial basis functions associated with
the multi-indices in R.�k�1/:

e.�/ D j Q̌m;k� j WD jhrk�1;  �imj; for any � 2 R.�k�1/: (10)

At each iteration the correlations are computed using the same pointwise evaluations
employed to compute the discrete least-squares projection, and their calculations are
cheap compared with the computational cost required to calculate the least-squares
approximation.

By combining the Dörfler marking with the two aforementioned estimators,
we propose the adaptive algorithm described in Algorithm 2.1. The first Dörfler
marking with parameter 1 uses the estimator (10) based on the correlations, and
returns a set F1 � R.�k�1/ which is added to �k�1 to form Q�k WD �k�1 [ F1.
Then the discrete least-squares projection is computed over the polynomial space
associated with Q�k . Afterwards, a second selection based on the Dörfler marking
with parameter 2 is performed, using the more accurate discrete least-squares
estimator, namely e.�/ D jˇm� j for any � 2 F1. This selection identifies a set
F2 � F1 to allow the final update�k D �k�1 [ F2.

The choice of the values of the parameters 1 and 2 should somehow reflect
the reliability of the two Dörfler selections. The purpose of the first selection is to
perform a rough screening of R.�k�1/ and discard the less-promising multi-indices
that would unnecessarily overload the computational cost of the least-squares
projection. Therefore it is reasonable to choose permissive values of 1 > 2, since
the correlation estimation of the coefficients fˇ�g�2R.�k�1/ is less accurate than their
estimation by means of the least-squares projection. The value of the parameter
2 should be carefully chosen depending on d , #.�k/ and any available a priori
information on the speed of decay of the coefficients of the target function �. One
could set the parameters 1 D 1.k/ and 2 D 2.k/ depending on the iteration
counter k as well.
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A safeguard mechanism prevents the advancement of the algorithm from getting
stuck into null coefficients: once every ksg iterations the most ancient element in the
set fR.�k�1/nF2g is added to the current set�k . If the number of evaluationsm in
the discrete projection satisfies (6) at each iteration, then the approximation error of
Algorithm 2.1 asymptotically converges to zero, i.e. limk!C1 k� �˘m

�k
�kL2� D 0.

In general the precise rate of convergence depends on the parameters 1, 2, ksg and
on howm is updated.

The key point is how to choose the number of evaluations of the function �
depending on #.�k/ at each step k of the algorithm. On the one hand, from
Theorem 1 we obtain the stability and optimal convergence of the algorithm at every
iteration k, if the number of evaluations m in the discrete least-squares projection
satisfies condition (6). As observed in [1, 5] the quadratic proportionality can be
relaxed to a linear proportionality without a loss in accuracy, when the function
is smooth and the dimension d is not small. This choice has been tested in many
examples involving PDEs with stochastic data in [6].

On the other hand, it is clear that if we are given a prescribed number of
evaluations, or we know that we will reach a given size of the dimension of the
polynomial space, then we can employ all the available evaluations starting from
the first iteration of the adaptive algorithm. We will focus on this case: we consider
a fixed numberm of evaluations (our available resource) and use all of them at each
iteration k of the adaptive algorithm until the set �k becomes too large and the
stability constraint (6) is violated.

3 Numerical Results

In this section we present some numerical tests in moderately high dimension
d D 16 to check the capabilities of the adaptive approximation method outlined
in Algorithm 2.1. We consider the following meromorphic function

�.y/ D 1

1C � � y ; y 2 � D Œ�1; 1�d : (11)

The point y is a realization of the random variable Y distributed according to
the uniform or arcsine density over � , i.e. � D U.� / or � D Beta.1=2; 1=2/
respectively. The vector � contains d positive weights which govern the anisotropy,
and is defined as � WD O�.2k O�k1/�1, with O� D .1; 5 � 10�1; 10�1; 5 � 10�2; : : : ;
5 � 10�8/.

The size of the best n-term set that we wish to approximate is kept fixed and
equal to 500. Therefore the maximal value kmax of the iteration counter k in
Algorithm 2.1 is not prescribed in advance, but kmax is the smallest k � 1 such
that #.�k/ � 500, so that #.�kmax/ 	 500. As an example, Fig. 1 shows an instance
of the quasi-optimal set �kmax . For each one of the two densities we choose either
the number of points prescribed by the theoretical analysis to preserve stability in
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Fig. 1 Sections of the multi-index set �k associated with the approximated best 500-term set of
the function (11) with � D Beta.1=2; 1=2/. The set �kmax has been computed by Algorithm 2.1,
withm D .#.�//ln 3= ln2, 1 D 0:5 and 2 D 0:2
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Fig. 2 Errors k� � ˘m
��kcv with the function (11). Left: � D Beta.1=2; 1=2/ and Chebyshev

polynomials of the 1st kind. Right: � D U.� / and Legendre polynomials

�max, namely m D .#.�kmax//
ln 3= ln 2 with the Chebyshev polynomials of the 1st

kind orm D .#.�kmax//
2 with the Legendre polynomials, or a linear proportionality

m D 3#.�kmax/. Moreover, we test two combinations of the values of the parameters
1 and 2, which make the algorithm very selective (1 D 0:5 and 2 D 0:2) or
poorly selective (1 D 0:9 and 2 D 0:7). The parameter ksg is set to a large value
such that the safeguard mechanism is never activated, because it is not needed in
this academic example with the function (11).

To estimate the approximation error we employ the cross-validation procedure
described in [5], and denote by k� � ˘m

��kcv WD k� � ˘m
��kL1.C / the cross-

validated error estimated over a set C of 104 independent points distributed
according to the underlying density �. Figure 2 shows the error obtained when
approximating the function (11), in the two cases � D U.� / or � D Beta.1=2; 1=2/.
Clearly, in the case � D Beta.1=2; 1=2/ the linear proportionality m D 3#.�kmax/

performs similarly to m D .#.�kmax//
ln 3= ln 2, also for the poorly selective con-

figuration of 1 and 2. In the case � D U.� / the difference between the
linear proportionality m D 3#.�kmax/ and m D .#.�kmax//

2 is more evident, but
still provides a quasi-optimal convergence rate. In any case, the poorly selective
configuration of the adaptive algorithm is able to catch the anisotropic decay
of the coefficients, providing an approximation error which is very close to the
error of the more selective (and more robust) configuration. Figure 3 shows the
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Fig. 3 Acceptance rates (normalized to one). Left: � D Beta.1=2; 1=2/, m D 3#�kmax , 1 D 0:5

and 2 D 0:2. Right: � D Beta.1=2; 1=2/, m D 3#�kmax , 1 D 0:9 and 2 D 0:7

acceptance rates of the adaptive algorithm in the case � D Beta.1=2; 1=2/, with the
left and right results being obtained using the very selective and poorly selective
configuration, respectively. The yellow and light green fractions correspond to the
first and second rejection rates and contain, respectively, the multi-indices which
have been rejected by the Dörfler marking based on the correlations and on the
least-squares projection. The dark green fraction shows the growth of #.�k/ at each
iteration k. The remaining green fraction is the acceptance rate of the algorithm, and
corresponds to the multi-indices which have been selected at each iteration by the
adaptive enrichment. Clearly the more selective the algorithm, the larger the total
number of iterations.

References

1. A. Chkifa, A. Cohen, G. Migliorati, F. Nobile, R. Tempone, Discrete least squares polynomial
approximation with random evaluations – application to parametric and stochastic elliptic PDEs,
EPFL MATHICSE report 35/2013 (submitted)

2. A. Cohen, M. Davenport, D. Leviatan, On the stability and accuracy of least squares approxi-
mations. Found. Comput. Math. 13, 819–834 (2013)

3. G.Migliorati, Polynomial approximation by means of the random discrete L2 projection and
application to inverse problems for PDEs with stochastic data. Ph.D. thesis, Dipartimento
di Matematica “Francesco Brioschi”, Politecnico di Milano, Milano, Italy, and Centre de
Mathématiques Appliquées, École Polytechnique, Palaiseau, France, 2013

4. , Multivariate Markov-type and Nikolskii-type inequalities for polynomials associated
with downward closed multi-index sets, to appear in J. Approx. Theory

5. G. Migliorati, F. Nobile, E. von Schwerin, R. Tempone, Analysis of the discrete L2 projection
on polynomial spaces with random evaluations. Found. Comput. Math. 14, 419–456 (2014)

6. Approximation of quantities of interest in stochastic PDEs by the random discrete L2

projection on polynomial spaces. SIAM J. Sci. Comput. 35, A1440–A1460 (2013)



Part IX
Solvers, High Performance Computing

and Software Libraries



Schwarz Domain Decomposition
Preconditioners for Plane Wave Discontinuous
Galerkin Methods

Paola F. Antonietti, Ilaria Perugia, and Davide Zaliani

Abstract We construct Schwarz domain decomposition preconditioners for plane
wave discontinuous Galerkin methods for Helmholtz boundary value problems.
In particular, we consider additive and multiplicative non-overlapping Schwarz
methods. Numerical tests show good performance of these preconditioners when
solving the linear system of equations with GMRES.

1 Introduction

Over the last years, finite element methods based on non-polynomial shape func-
tions for time harmonic wave propagation problems have become increasingly
popular. The idea behind these methods is to incorporate information on the
oscillatory behaviour of the solutions directly within the approximating spaces by
using, instead of polynomial basis functions, Trefftz basis functions, namely, local
solutions to the differential operator. For the Helmholtz equation these functions
can be, for instance, plane waves or circular/shperical waves, with the same
frequency as the original problem. Although these methods are not pollution-
free, they can deliver more accurate results, for a given number of degrees of
freedom, than standard polynomial finite element methods. The way of imposing
continuity at interelement boundaries generates different Trefftz-type methods:
ultra weak variational formulation/Trefftz-discontinuous Galerkin methods [8, 13,
14, 22, 23], partition of unity [6, 33], least squares methods [34] or Lagrange
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multiplier methods [1, 37]. These methods have been extended from acoustic to
electromagnetic [12, 26, 27] and elastic [28, 32] time-harmonic wave propagation
problems. Here, we consider plane wave discontinuous Galerkin (PWDG) methods,
of which the ultra-weak variational formulation can be seen as a particular case,
for the Helmholtz equation, and we attack the problem of preconditioning the
arising algebraic linear systems by domain decomposition methods (for plane wave
methods with Lagrange multipliers, domain decomposition preconditioners have
been introduced in [20]).

The solution of algebraic linear systems arising from discretizations of the
Helmholtz equation is a difficult problem [19] (see also the references therein for a
bibliography on this topic). In case of Dirichlet or Neumann boundary conditions,
classical discretization methods for the Helmholtz equation based on polynomial
spaces result into real, symmetric and indefinite linear systems of equations that can
be preconditioned, for example, by overlapping Schwarz, multigrid or substructur-
ing type methods, see for example [9,10,18] and the references therein. A complete
theory generalizing the classical Schwarz analysis for symmetric, positive definite
problems to indefinite problems has been provided in [9, 10] where, exploiting
GMRES converge bounds [16, 35], it is proven that GMRES converges uniformly
(with respect to the meshsize and the number of subdomains) provided that (i) the
subdomain and coarse partitions are sufficiently fine; (ii) the low-order term of the
differential operator is a relatively compact perturbation of the second order term.
For the Helmholtz problem, these methods are in general not scalable with respect
to the wavenumber and become less and less effective as the wavenumber increases,
unless a sufficient number of coarse points per wavelength is employed. Such a
requirement may become unfeasible for practical applications. Nevertheless, they
are currently employed for large scale computations, although a comprehensive and
sharp theory is still missing (because it also relies on GMRES convergence bounds
which are not sharp).

Using PWDG leads to a different situation: the resulting linear system of
equations is complex (independently of the considered boundary conditions) and
non-hermitian. Several strategies have already beed studied to cope with the severe
ill-conditioning; see [7, 29, 31].

The aim of this contribution is to preliminarily explore the performance of a class
of Schwarz methods to precondition the linear system of equations arising from
PWDG approximation of the Helmholtz equation in a 2D cavity with impedance
boundary condition. To keep as low as possible the computational effort without
loosing effectiveness, we take advantage of the DG framework and consider the non-
overlapping version of the classical Schwarz preconditioners. Indeed, according
to [2–4, 21], non-overlapping preconditioners for DG methods converge as fast
as overlapping solvers with minimal overlap for continuous discretizations. Our
numerical experiments indicate that our preconditioners work well in reducing the
computation effort in the solution of the resulting linear system of equations, and
that the PWDG method seems to be particularly well suited for the development of
solvers that are scalable with respect to the wavenumber.
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2 The PWDG Method for the Helmholtz Problem

We consider the homogeneous Helmholtz problem in a bounded Lipschitz domain
˝ � R

2, with impedance boundary condition along @˝ . Given a wavenumber k
(the corresponding wavelength is 
 D 2�=k) such that k � k0 > 0, the problem
reads:

(
��u � k2u D 0 in ˝;

ru � nC ik u D g on @˝;
(1)

where i is the imaginary unit, n is the outer normal unit vector to @˝ , and g 2
L2.@˝/ is given. The variational formulation of the problem reads as follows: find
u 2 H1.˝/ such that, for all v 2 H1.˝/, it holds

Z

˝

.ru � rv � k2uv/ dV C ik
Z

@˝

uv dS D
Z

@˝

gv dV: (2)

By Fredholm alternative, problem (2) is well posed, and stability estimates are given
by [33, Proposition 8.1.4].

In order to derive the PWDG method, we consider a shape-regular, quasi-uniform
family of finite element partitions fThg of˝ , possibly featuring hanging nodes. We
assume, for simplicity, that the elements K of Th are convex polygons. We write h
for the mesh width of Th, i.e., h D maxK2Th hK , with hK WD diam.K/. We define
the mesh skeleton Fh D SK2Th @K , and set F I

h D Fh n @˝ .
Given an element K 2 Th, we denote by PWp.K/ the plane wave space on K:

PWp.K/ D fv 2 L2.K/ W v.x/ D
pX

jD1
˛j exp.ik dj � .x � xK//; ˛j 2 Cg;

where xK is the mass center of K , and dj ,
ˇ
ˇdj
ˇ
ˇ D 1, 1 � j � p, are p different

directions. We assume these directions to be uniformly spaced. We define the plane
wave discontinuous finite element spaces on Th as follows:

PWp.Th/ D fvhp 2 L2.˝/ W vhpjK 2 PWpK .K/ 8K 2 Thg :

The functions in PWp.Th/ possess the local Trefftz property

��vhp � k2vhp D 0 8vhp 2 PWpK .K/ : (3)

In this paper, we assume uniform local resolution, i.e., pK D p for all K 2 Th, and
we use the same directions dj , 1 � j � p, in every element.
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We briefly recall the derivation of the PWDG methods following [25]. We
multiply the first equation of (1) by smooth test functions v and integrate by parts
on eachK 2 Th obtaining

Z

K

.ru � rv � k2uv/ dV �
Z

@K

ru � nK v dS D 0:

Then, we integrate by parts a second time, and replace u and v by discrete functions
uhp; vhp 2 PWp.Th/, and the traces of u and ru at @K by numerical fluxes to be
defined (u! Ouhp ru! ik O� hp). Taking into account the Trefftz property (3) of the
test functions vhp, we obtain the elemental formulation of the PWDG method:

Z

@K

Ouhprvhp � nK dS �
Z

@K

ik O� hp � nK vhp dS D 0 :

In order to complete the definition of the method, like in [23], we mimic the general
form of the fluxes defined in [11]. Using the standard DG notation [5] for averages
ff�gg and normal jumps ŒŒ���N across interelement boundaries, and denoting by rh the
elementwise application of r, we set

ik O� hp D
(
ffrhuhpgg � ˛ ik ŒŒuhp��N on faces in F I

h ;

rhuhp � .1 � ı/
�rhuhp C ikuhpn � gRn

�
on faces on @˝;

Ouhp D
(
ffuhpgg � ˇ .ik/�1ŒŒrhuhp��N on faces in F I

h ;

uhp � ı
�
.ik/�1rhuhp � nC uhp � .ik/�1gR

�
on faces on @˝;

where the so-called flux parameters ˛; ˇ; ı > 0 here are assumed to be constant,
with ı � 1=2 (taking ˛ D ˇ D ı D 1=2 gives the ultra weak variational
formulation [13]).

Remark 1 More general choices of flux parameters can be useful, for instance, for
improving some convergence properties in the h-version of the method [22], or
when non quasi-uniform meshes are used [24, 25].

Adding over all elements (and multiplying by �i ), we obtain the following
formulation of the PWDG method: find uhp 2 PWp.Th/ such that, for all vhp 2
PWp.Th/,

Ah.uhp; vhp/ WD Bh.uhp; vhp/CSh.uhp; vhp/ D `h.vhp/ ; (4)
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where

Bh.u; v/ Di
"

�
Z

F I
h

ffuggŒŒrhv��N dS C
Z

F I
h

ffrhugg � ŒŒv��N dS

�
Z

@˝

.1 � ı/ urhv � n dS C
Z

@˝

ırhu � n v dS

�
;

Sh.u; v/ D
Z

F I
h

ˇ k�1ŒŒrhu��N ŒŒrhv��N dS C
Z

F I
h

˛ k ŒŒu��N � ŒŒv��N dS

C
Z

@˝

ı k�1.rhu � n/ .rhv � n/ dS C
Z

@˝

.1 � ı/ k u v dS;

and

`h.v/ D
Z

@˝

ı k�1g rhv � n dS � i
Z

@˝

.1 � ı/ g v dS :

The PWDG method (4) is unconditionally well-posed and stable; see, e.g., [8, 13,
23, 25], where error estimates were also derived. We only recall here coercivity and
continuity properties of the sesquilinear form Ah.�; �/ from [23, 25]. To this aim, on
the mesh Th, we define the Trefftz space

T .Th/ WD
n
v 2 L2.˝/ W 9s > 0 s.t. v 2 H 3

2Cs.Th/ and �vC k2v D 0 in eachK 2 Th

o
;

where Hr.Th/ is a shorthand notation for elementwise Hr -spaces on Th; the
solution u of problem (1) actually belongs to T .Th/.

The mesh-dependent quantity

jjjvjjj2Ah WD ReŒAh.v; v/� D Sh.v; v/ (5)

defines a norm in T .Th/ (coercivity). Moreover, setting

jjjvjjj2
Ah

C
Djjjvjjj2Ah C k

���ˇ�
1
2 ffvgg

���
2

0;F I
h

C k�1
���˛�

1
2 ffrhvgg

���
2

0;F I
h

C k
���ı�

1
2 v
���
2

0;@˝
;

for all v;w 2 T .Th/, we have (continuity)

jAh.v;w/j � 2 kvkAhC kwkAh :

In order to give an idea of the error behavior, we report in Fig. 1 the diagram
of the L2-error for increasing local number p of plane waves, for two different
values of the wavenumber k, for a test case with smooth analytical solution. After a
preasymptotic region of amplitude proportional to k, the convergence is exponential,
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Fig. 1 L2-error of PWDG method versus the local number p of plane waves (loglog scale). Test
problem: ˝ D .0; 1/2 , g such that the analytical solution is given, in polar coordinates x D
.r cos ; r sin /, by u.x/ D J1.kr/ cos  , with wavenumber k D 10 (left) and k D 40 (right), on
a uniform mesh of 16 squares

until onset of numerical instability, which due to the fact that, for high p, the local
basis functions are close to be linearly dependent (this region is delayed for high
k). Setting Nh WD dim.PWp.Th//, the algebraic linear system associated with the
PWDG method (4) on the mesh Th is

Au D b; (6)

where A 2 C
Nh�Nh is the matrix associated with the sesquilinear form Ah.�; �/, and

b 2 C
Nh is the vector associated with the functional `h.�/. The GMRES iteration

counts to a given tolerance, for a fixed mesh and local number of plane wave
directions p, increases with k, provided that the mesh is fine enough.

We consider the same test case as in the caption of Fig. 1, fixing the mesh and
varying k. In each test, p is selected as the smallest value for which the L2-error
of the PWDG method (numerical solution computed by a direct solver) is <10�3.
We have accelerated the GMRES choosing as preconditioner the incomplete LU
factorization of A with no fill-in and no pivoting (PGMRES). We report in Table 1
and in Table 2 the number of GMRES and PGMRES iterations needed to achieve
convergence up to a (relative) tolerance of 10�8. The number of GMRES iterations
remains of the same order of magnitude and that of PGMRES is constant, and much
lower than that of GMRES.

While we leave the preconditioning of the p-version of PWDG to future
investigation, we develop in the following sections Schwarz domain decomposition
preconditioners for the h-version, addressing the issue of their scalability. Specific
features of PWDG spaces (or of more general Trefftz spaces) could also be
considered in order to improve the condition number of the linear systems. We refer
to [29, 31] for results in this direction, but we do not elaborate on that here.
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Table 1 GMRES and PGMRES iteration counts: uniform mesh of 16 squares

k D 10 k D 20 k D 30 k D 40 k D 50

(p D 9) (p D 13) (p D 17) (p D 19) (p D 23)

Syst size 144 208 272 304 368

nnz(A) 5,119 10,747 18,379 23,014 33,677

GMRES 114 172 233 186 233

PGMRES 17 16 15 15 15

Table 2 GMRES and PGMRES iteration counts: uniform mesh of 64 squares

k D 10 k D 20 k D 30 k D 40 k D 50

(p D 7) (p D 9) (p D 11) (p D 13) (p D 15)

Syst size 448 576 704 832 960

nnz(A) 13,861 23,052 34,461 48,347 64,342

GMRES 287 384 444 554 606

PGMRES 28 28 28 27 28

k D 60 k D 70 k D 80 k D 90 k D 100

(p D 17) (p D 17) (p D 19) (p D 21) (p D 23)

Syst size 1,088 1,088 1,216 1,344 1,472

nnz(A) 82,643 82,802 103,561 126,460 151,561

GMRES 716 359 371 456 477

PGMRES 27 27 27 27 27

3 Domain Decomposition Preconditioners

To solve efficiently (6), we consider two-level Schwarz domain decomposition
preconditioners. Let TS be a partition of ˝ into NS non-overlapping subdomains:
˝ D [NSjD1˝j , and let fTH gH>0 and fThgh>0 be two families of coarse and fine
partitions, respectively. We assume all the partitions to be shape-regular and quasi-
uniform, and such that TS � TH � Th, i.e., each ˝j 2 TS is union of elements
D 2 TH , and in turn each element D 2 TH is union of elements K 2 Th. From
here on, we omit the index p and set, for brevity, PWh D PWp.Th/; we recall that
Nh D dim.PWh/.

3.1 Local and Coarse Spaces, Prolongation and Restriction
Operators

We define, for each subdomain˝j 2 TS , the local PWDG space PWj

h defined as

PWj

h D fv 2 L2.˝j / W vjK 2 PW.K/ 8K 2 Thg; Nj WD dim.PWj

h/:
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We denote by RT
j W PWj

h ,! PWh the inclusion operator (prolongation operator)
and by RTj 2 R

Nh�Nj its matrix representation. The restriction operator Rj W
PWh ! PWj

h is defined as the operator whose matrix representation is Rj 2
R
Nj�Nh , the conjugate transpose of RTj . Clearly, RTj .r; s/ D 1 whenever the

r-th basis function of PWh coincides with the s-th basis function of PWj

h , and
RTj .r; s/ D 0 otherwise (and consequentlyRj D Rj ).

We define the local sesquilinear forms A j

h .�; �/ W PWj

h � PWj

h ! C by

A j

h .uj ; vj / D Ah.R
T
j uj ;R

T
j vj / 8 uj ; vj 2 PWj

h I (7)

their associated matrices are

Aj D RjARTj 2 C
Nj�Nj ;

We observe that the restriction of the formulation to each subdomain coincides
with the PWDG formulation of the Helmholtz problem with impedance boundary
condition on the subdomain boundary. Therefore, in the present situation, exact local
solvers [4, 21] and inexact local solvers [2, 21] coincide.

Now the coarse mesh TH comes into play. We define the coarse PWDG space as

PW0
hDPW.TH/Dfv2L2.˝/ W vjD 2PW.D/ 8D 2TDg; N0 WD dim.PW0

h/:

We also introduce the coarse space prolongation and restriction operators: RT
0 W

PW0
h ,! PWh, with associated matrix RT0 2 C

Nh�N0 , and R0 W PWh ! PW0,
which is the operator whose associated matrix is R0 2 C

N0�Nh . We also define

A0 D R0ART0 2 C
N0�N0 ;

associated with the sesquilinear form

A 0
h .u0; v0/ D Ah.R

T
0 u0;R

T
0 v0/ 8 u0; v0 2 PW0

h: (8)

We show how the operator RT0 is constructed. Let D 2 TH be an element of
the coarse mesh, and let fKrgNDrD1 be the elements of the fine mesh Th contained
in D. Consider one of the p basis function of PW0

h supported within D: ˚`.x/ D
exp.ik d` � .x � xD//. Now, we express ˚`.x/ as linear combination of the basis
functions of PWh supported within the elements fKrgNDrD1, i.e., we compute the
coefficients ˛rj 2 C such that

˚`.x/ D
NDX

rD1

pX

jD1
˛rj �

j;r

h .x/; (9)
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where �j;rh .x/ D exp.ik dj � .x � xKr // for x 2 Kr , and �j;rh .x/ D 0 outside Kr .
Clearly, ˛rj D 0 for every j ¤ `, i.e., the basis functions of PWh with direction
different from d` do not enter the expression (9); therefore

˚`.x/ D
NDX

rD1
˛r`�

`;r
h .x/;

with

˛r` D exp.ik d` � .xKr � xD//:

Requiring that R0;DRT0;D D I , where I is the N0 �N0 identity matrix, assuming
that the unknowns are ordered by an external loop over all elements, and an internal
loop over the p directions, the elemental contributionRT0;D 2 C

.r�p/�p to the matrix
RT0 is given by

RT0;D..r � 1/ � p C `; `/ D
1p
ND

˛r` ; 1 � ` � p:

3.2 Schwarz Operators

For j D 0; : : : ; NS , we define QPj W PWh ! PWj

h as the (unique) solution of the
following problem

A
j

h .
QPju; vj / D Ah.u;R

T
j vj / 8vj 2 PWj

h:

Well-posedness of the local sesquilinear forms A
j

h .�; �/, 0 � j � NS , defined

in (7) and (8) follows from the fact that ReŒA j

h .v; v/� are norms in the spaces PWj

h .
Therefore the projection operators QPj are well defined. We define the operators
Pj D RT

j
QPj W PWh ! PWh, j D 0; : : : ; NS , denote by Pj their matrix

representations, and observe that

Pj D RTj A�1j RjA 0 � j � NS:

Since Aj D RjARTj , 0 � j � NS , P2
j D Pj , i.e., the Pj ’s are projectors.

We define the additive and multiplicative Schwarz operators as

Qad WD
NSX

jD0
Pj ; Qmu WD I � Emu;
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where the error propagation operator Emu is defined as

Emu D .I �PNS / � � � .I �P1/.I �P0/:

From the algebraic point of view, the Schwarz operators can be seen as precondi-
tioned operators for the original operator A, and can be written as the product of a
suitable preconditioner and A. For example, for the additive operatorQad we have

Qad D P�1ad A; P�1ad D
NSX

jD0
RTj A

�1
j Rj I

analogously we can write Qmu as Qmu D P�1mu A.
Then, the preconditioned linear system of equations we are interested in solv-

ing is

Qu D g; (10)

whereQ D P�1A and g D P�1b, with either P D Pad or P D Pmu.

4 Numerical Results

We investigate the performance of our preconditioners when varying the fine and
coarse grids, the number of subdomains NS , as well as the wavenumber k and the
number of directions p. We use a uniform subdomain partition of ˝ D .0; 1/2

consisting of NS D 4; 16; 64 square subdomains. We have solved our problem on
a sequence of Cartesian grids with 1=h D 4; 8; 16; 32; for the coarse grids we have
also considered Cartesian partitions with 1=H D 2; 4; 8; 16; 32.

We choose the impedance datum g so that the analytical solution of problem (1)
is given, in polar coordinates x D .r cos ; r sin /, by u.x/ D J1.kr/ cos./; where
J1.�/ is the Bessel function of the first type. The flux parameters have been chosen
as ˛ D ˇ D ı D 1

2
, cf. Sect. 2.

Throughout this section, the linear systems of equations have been solved by
GMRES with a (relative) tolerance set equal to 10�6. We report the results obtained
by taking as initial guess the null vector. We point out that completely analogous
results have been obtained with normalized random initial guess vectors.

We first investigate whether the additive and multiplicative Schwarz precondi-
tioners are scalable, i.e., the iteration counts needed to reduce the residual up to a
(user defined) tolerance are independent of the number of subdomains. In Tables 3
and 4 we report the iteration counts for k D 30, p D 15 and NS D 4; 16; 64

computed with the additive and multiplicative preconditioners, respectively. The
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Table 3 Additive preconditioner: GMRES iteration counts. Wavenumber k D 30, number of
directions p D 15

NS D 4 NS D 16 NS D 64

H�1

h�1

4 8 16 32 4 8 16 32 4 8 16 32

2 22 35 48 64 – – – – – – – –

4 13 29 41 56 15 34 46 63 – – – –

8 – 16 33 46 – 17 37 53 – 19 41 56

16 – – 16 39 – – 17 43 – – 17 46

iter(A) 134 670 1,510 3,552 134 670 1,510 3,552 134 670 1,510 3,552

Table 4 Multiplicative preconditioner: GMRES iteration counts. Wavenumber k D 30, number
of directions p D 15

NS D 4 NS D 16 NS D 64

H�1

h�1

4 8 16 32 4 8 16 32 4 8 16 32

2 12 19 25 34 – – – – – – – –

4 2 14 21 30 2 17 25 34 – – – –

8 – 2 16 24 – 2 17 26 – 2 21 29

16 – – 2 18 – – 2 20 – – 3 21

iter(A) 134 670 1,510 3,552 134 670 1,510 3,552 134 670 1,510 3,552

proposed preconditioners seem to be asymptotically scalable, indeed for NS � 16
the number of iterations seems to be quite independent of the number of subdo-
mains. Moreover, in all the cases the preconditioners are effective, as confirmed
by a comparison with the iterations counts needed to solve the unpreconditioned
system, cf. last line of Table 3, and, as expected, the multiplicative preconditioner
performs much better than the additive one. In Tables 3–6, the symbol “–” refers to
the case where the hypothesis TS � TH � Th is not satisfied, and therefore the
construction of the preconditioner is meaningless. The lower diagonals reported in
Table 3 (and also in the tables below) correspond to the limit case h D H . In this
case, the coarse component of the preconditioner is an exact solver for the original
linear system (6), indeed, if A0 D A, then R0 D I and the operator P0 becomes
P0 D RT0 A

�1R0A D I . Thus, in principle, we should obtain convergence in one
iteration, and the fact that this does not happen indicates that the local solutions
“spoil” the result (see also [2]). The results for h D H are reported in order to give
an idea of the performance of the preconditioners also in such limit case.

We have repeated the same set of experiments taking the wavenumber k D 50,
cf. Tables 5 and 6 for the additive and multiplicative preconditioners, respectively.
We observe that the iteration counts of the preconditioned system do not seem to
vary significantly as the wavenumber increases, whereas the iteration counts of the
unpreconditioned one increase, at least when 1=h becomes sufficiently large. Also
in this case the multiplicative preconditioner outperforms the additive one.
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Table 5 Additive preconditioner: GMRES iteration counts. Wavenumber k D 50, number of
directions p D 15

NS D 4 NS D 16 NS D 64

H�1

h�1

4 8 16 32 4 8 16 32 4 8 16 32

2 16 29 42 55 – – – – – – – –

4 10 27 42 57 15 37 52 70 – – – –

8 – 14 31 43 – 16 32 45 – 19 37 50

16 – – 17 37 – – 18 37 – – 19 40

iter(A) 33 508 1,977 4,461 33 508 1,977 4,461 33 508 1,977 4,461

Table 6 Multiplicative preconditioner: GMRES iteration counts. Wavenumber k D 50, number
of directions p D 15

NS D 4 NS D 16 NS D 64

H�1

h�1

4 8 16 32 4 8 16 32 4 8 16 32

2 8 15 23 30 – – – – – – – –

4 2 14 22 30 2 18 27 36 – – – –

8 – 2 15 22 – 2 16 24 – 2 20 37

16 – – 1 16 – – 2 17 – – 2 19

iter(A) 33 508 1,977 4,461 33 508 1,977 4,461 33 508 1,977 4,461

Table 7 Additive preconditioner: GMRES iteration counts. Wavenumber k D 30; 40; 50, number
of directions p D 13; 15; 17; 19 (NS D 16 and 1=h D 16)

k D 30 k D 40 k D 50

H�1

p
13 15 17 19 13 15 17 19 13 15 17 19

4 47 46 47 49 50 48 48 47 49 52 52 50

8 35 37 39 41 33 35 36 37 32 32 34 34

iter(A) 1,510 1,510 1,511 1,511 1,826 1,825 1,824 1,825 1,883 1,977 1,973 1,973

We next address the performance of our preconditioners when varying the
number of directions p, fixing, for the sake of simplicity, NS D 16 and 1=h D 16.
In Tables 7 and 8 we report the GMRES iteration counts for p D 13; 15; 17; 19

and k D 30; 40; 50 computed with the additive and multiplicative preconditioners,
respectively. The last row of Tables 7 and 8 shows the corresponding iteration
counts needed to solve the unpreconditioned systems. From the numerical results,
we can observe that the iteration counts needed to solve the preconditioned systems,
both with the additive and the multiplicative preconditioners, seem to be fairly
independent of k, and that these preconditioners seem to be very effective in
accelerating GMRES convergence.



Schwarz DD Preconditioners for PWDG Dethods 569

Table 8 Multiplicative preconditioner: GMRES iteration counts. Wavenumber k D 30; 40; 50,
number of directions p D 13; 15; 17; 19 (NS D 16 and 1=h D 16)

k D 30 k D 40 k D 50

H�1

p
13 15 17 19 13 15 17 19 13 15 17 19

4 25 25 26 26 25 25 26 26 27 27 27 27

8 17 17 19 20 16 17 18 19 16 16 17 18

iter(A) 1,510 1,510 1,511 1,511 1,826 1,825 1,824 1,825 1,883 1,977 1,973 1,973

Table 9 Additive, multiplicative and hybrid preconditioners: GMRES iteration counts. Wavenum-
ber k D 30, number of directions p D 15 (NS D 4)

Additive Multiplicative Hybrid

H�1

h�1

4 8 16 32 4 8 16 32 4 8 16 32

2 22 35 46 64 12 19 25 34 17 32 43 60

4 13 29 41 56 2 14 21 30 2 24 35 49

8 – 16 33 46 – 2 16 24 – 2 25 37

16 – – 16 39 – – 2 18 – – 3 30

Finally, we have tested a hybrid additive-multiplicative preconditioner (multi-
plicative coarse problem and additive local problems).1 As reported in Table 9, the
performance of this hybrid preconditioner is intermediate with respect to the pure
additive and multiplicative ones.

5 The Issue of GMRES Convergence

In the following, we recall the GMRES convergence theory developed in [15,17,36]
which provides sufficient conditions for non-stagnation of GMRES, i.e., the iterative
method makes some progress in reducing the residual at each iteration step, and
establishes upper bounds on the residual norm.

Given the matrix Q 2 C
Nh�Nh , we define its associated field of values as

F.Q/ D
(

xTQx

xT x
; 0 ¤ x 2 C

Nh

)

;

1We express our gratitude to the anonymous reviewer for suggesting us these tests.
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and denote by �.F.Q// the distance of F.Q/ from the origin. The theory proposed
by [15, 36] states that the �-th residual r� of GMRES satisfies

kr�k
kr0k �

�
1 � �.F.Q// �.F.Q�1//��=2 : (11)

Denote byH.Q/ the hermitian part ofQ, i.e.,H.Q/ D QCQT

2
. IfH.Q/ is positive

definite, then �.F.Q// � 
 min.H.Q//, the minimum eigenvalue of H.Q/. In our
case, if A is the coefficient matrix of the unpreconditioned system,H.A/ is positive
definite, since it is associated with the bilinear form Sh.�; �/ (see (4)), which is a
scalar product in PWp.Th/. If we denote byQ the left/right preconditioned matrix,

i.e., Q D .P
T
/�1=2AP�1=2, with either P D Pad or P D Pmu, then H.Q/ is also

positive definite. Moreover, one can bound �.F.Q�1// from below by

�.F.Q�1// � 
 min.H.Q//

kQk2 ;

where k � k is the natural (complex) Euclidean matrix norm (see [30]), and write a
weaker but more practical version of the bound (11):

kr�k
kr0k �

�
1 � 


2
min.H.Q//

kQk2
��=2

;

which was firstly derived in [16, 17].
We have performed some experiments on the test problem described in Sect. 4

with k D 30 and number of plane wave directions per element p D 11; 13; 15,
on the grid with 1=h D 16. We have compared the values of 
min.H.R// and

min.H.R

�1// for the original matrix (R D A) and for the left/right preconditioned

matrix Q D .P
T
/�1=2AP�1=2 (R D Q), with P D Pad constructed with NS D 4

subdomains and a coarse grid with 1=H D 2. The results reported in Table 10 show
that, while 
min.H.R

�1// (which is a lower bound for �.F.R�1//) is essentially
the same for the unpreconditioned and the preconditioned matrices, and for all
the considered values of p, 
min.H.R// (which is a lower bound for �.F.R//) is
definitely larger for the preconditioned matrix (and it is almost uniform in p).

Table 10 Values of 
min.H.R// and 
min.H.R
�1// (which are lower bound for �.F.R// and

�.F.R�1//, respectively) for R D A (unpreconditioned matrix) and R D Q D .P
T
/�1=2AP�1=2

(preconditioned matrix). Wavenumber k D 30, Cartesian mesh with 1=h D 16; P D Pad

constructed with NS D 4 subdomains and a coarse grid with 1=H D 2

p D 11 p D 13 p D 15


min.H.A// 1:3338 � 10�5 1:0956 � 10�7 1:0079 � 10�9


min.H.A
�1// 1:7385 � 10�2 1:4711 � 10�2 1:2749 � 10�2


min.H.Q// 5:8730 � 10�2 4:4976 � 10�2 3:5210 � 10�2


min.H.Q
�1// 3:1358 � 10�2 3:1919 � 10�2 3:1977 � 10�2
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Table 11 Values of 
min.H.R// and 
min.H.R
�1// (which are lower bound for �.F.R// and

�.F.R�1//, respectively) for R D A (unpreconditioned matrix) and R D Q D .P
T
/�1=2AP�1=2

(preconditioned matrix). Cartesian mesh with 1=h D 16, number of plane wave directions per
element p D 15; P D Pad constructed withNS D 4 subdomains and a coarse grid with 1=H D 2

k D 30 k D 40 k D 50


min.H.A// 1:0079 � 10�9 7:0787 � 10�8 1:8717 � 10�6


min.H.A
�1// 1:2749 � 10�2 1:2495 � 10�2 1:3699 � 10�2


min.H.Q// 3:5210 � 10�2 6:1622 � 10�2 3:6636 � 10�2


min.H.Q
�1// 3:1977 � 10�2 3:0694 � 10�2 2:9770 � 10�2

A similar situation is observed when varying k (k D 30; 40; 50); the results for
p D 15, 1=h D 16, NS D 4 subdomains and 1=H D 2 are reported in Table 11.
Theoretical estimates of these quantities are under investigation.
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A Deflation Based Coarse Space in Dual-Primal
FETI Methods for Almost Incompressible
Elasticity

Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach

Abstract A new coarse space for FETI-DP domain decomposition methods for
mixed finite element discretizations of almost incompressible linear elasticity
problems in 3D is presented. The mixed finite element discretization uses contin-
uous piecewise triquadratic displacements and discontinuous piecewise constant
pressures. The piecewise constant pressure variables are statically condensated on
the element level. The new coarse space is significantly smaller than earlier known
coarse spaces for FETI-DP or BDDC methods for the equations of almost incom-
pressible elasticity or Stokes’ equations. For discretizations with discontinuous
pressure elements it is well-known that a zero net flux condition on each subdomain
is needed to ensure a good condition number. Usually, this constraint is enforced
for each vertex, edge, and face of each subdomain separately. Here, a coarse space
is discussed where all vertex and edge constraints are treated as usual but where
all faces of each subdomain contribute only a single constraint. This approach is
presented within a deflation based framework for the implementation of coarse
spaces into FETI-DP methods.

1 Introduction

It is well known that in order to obtain a good condition number bound for FETI-
DP or BDDC methods [1, 3, 10, 13] a zero net flux condition for each subdomain
has to be enforced; cf. [2, 8, 9, 11, 12]. This is usually done using one constraint
for each vertex, edge, and face of each subdomain. In our approach, all vertices
are chosen as primal constraints and the edge constraints are enforced using a
transformation of basis approach with partial assembly; see, e.g., [7, 10]. Here, we
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focus on establishing the zero net flux condition for faces using a deflation method;
see, e.g., [8]. But while the traditional way of implementing this condition for
face terms is to use one constraint for each face, in our approach it is sufficient
to establish one single face constraint for each subdomain. Therefore, this new
coarse space is significantly smaller than earlier known coarse spaces for FETI-
DP or BDDC methods for almost incompressible elasticity or Stokes’ equations.
We give a brief summary of the deflation method in Sect. 2 before we describe the
construction of the new coarse space in Sect. 3. Finally, we present some numerical
results, see Sect. 4, which confirm our theoretical considerations.

2 The Deflation Method

The standard coarse space of FETI-DP and BDDC domain decomposition methods
can be complemented by the use of projections; see, e.g., [8]. Using this approach,
a second, independent coarse space can thus be implemented for FETI-DP and
BDDC methods. The deflation approach can also be used to obtain robustness
with respect to heterogeneities inside subdomains; see, e.g., [6]. Such projection
approaches are known as projector preconditioning or as the deflation method,
closely related is the balancing preconditioner. Due to space limitations, we refer to
[8] for a more complete list of references for deflation, projector preconditioning,
and balancing methods. We briefly recall the projection framework for FETI-DP and
BDDC methods as presented in [8]. The solution of a symmetric positive definite
(or semidefinite) system

F
 D d (1)

using the deflation method consists of solving

M�1.I � P/T F 
 DM�1.I � P/T d

with respect to 
 using the conjugate gradient method and a projection

P D U.U TFU/�1U T F:

Here, M�1 is a symmetric positive definite preconditioner. This is equivalent to
solving (1) by conjugate gradients using the symmetric preconditioner

M�1PP D .I � P/M�1.I � P/T :

We set 
 WD PF�1d . The solution 
� of the original problem (1) is then


� D 
C 
:
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If we include the computation of 
 D PF�1d D U.U TFU/�1U T d into every step
of the iteration, we obtain the balancing preconditioner

M�1BP D .I � P/M�1.I � P/T C U.U TFU/�1U T :

We then obtain the solution of (1) directly without an additional correction.
For details on the deflation method or the balancing preconditioner applied

to the FETI-DP or BDDC method, see [8]. In [8] it was shown that for every
FETI-DP method using a standard coarse problem based on partial assembly and
a transformation of basis there exists a corresponding FETI-DP method using
deflation that has essentially identical eigenvalues. Note that the reverse is not true.
Indeed the FETI-DP method presented in this paper is an example of a FETI-DP
method using deflation where no corresponding standard FETI-DP method exists.

3 A New Coarse Space for Almost Incompressible Linear
Elasticity

For almost incompressible linear elasticity in 3D, we use the variational form of the
mixed problem: Find .u; p/ 2 H1

0 .˝; @˝D/ � L2.˝/; such that

Z

˝

G".u/ W ".v/ dxC
Z

˝

div.v/ p dx D < F; v > 8v 2 H1
0 .˝; @˝D/

Z

˝

div.u/ q dx �
Z

˝

.G ˇ/�1 p q dx D 0 8q 2 L2.˝/;

where the pressure p WD G ˇ div.u/ 2 L2.˝/ is introduced as an additional
variable. We use the expressions G D E

1C� and ˇ D �
1�2� ; using Young’s

modulusE and Poisson’s ratio �: This mixed formulation is discretized byQ2�P0
mixed finite elements. Static condensation of the piecewise discontinuous pressure
leads to a symmetric positive definite problem. We use a FETI-DP algorithm with
primal vertex constraints and primal edge averages to solve this reduced linear
system. The primal edge constraints are enforced using a transformation of basis
with partial assembly; see, e.g., [7]. It is necessary to establish a zero net flux
condition on each subdomain to ensure a good condition number for FETI-DP
or BDDC methods; see also [2, 8, 9, 11, 12]. We note that almost incompressible
elasticity was considered in Neumann-Neumann preconditioners already in [5].
We will use primal edge averages in the normal directions to enforce the zero
net flux condition for the edge terms. Traditionally, one normal constraint for
each face is used to enforce the zero net flux. We will show that, instead of
one constraint for each face, a single constraint for each subdomain is sufficient,
obtained by summing up the face contributions. This constraint is implemented
using deflation or balancing.It cannot be implemented by a transformation of basis
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and partial assembly. Configurations with almost incompressible components, i.e.,
almost incompressible inclusions inside subdomains, which can be enclosed in a
compressible hull, have been analyzed in [4]. There, an enhanced coarse space
is not needed. We need to enforce a zero net flux condition on each subdomain,
cf. [12]. Due to space limitations, for the definitions of the FETI-DP jump operator
B and the scaled jump operator BD , we refer to [7, p. 1892, bottom (def. of B);
p. 1893, bottom, (def. of BD)]. We also need a local assembly operator R.i/T ,
cf., e.g., [4, p. 2221, bottom] or [10, Sect. 4.1, p. 1533], which assembles in the
primal variables. A central role in the analysis of FETI-DP methods is played by the
operator PD WD BT

DB; cf., e.g., [13, Sect. 6.4] or [10, Sect. 8.1]. The zero net flux
condition can be written as

Z

@˝i

�
R.i/PDw

�

„ ƒ‚ …
DWv.i /

�n ds D 0:

Let us now denote by F ij the face shared by the subdomains ˝i and ˝j :

Correspondingly, we denote by E ik the edge shared by the subdomains˝i; ˝j ; ˝k;

and ˝l: We assume that all subdomain vertices are primal. By F ij and E ij , we
denote finite element partition of unity functions which are one on the face and
edge, respectively, and zero elsewhere on the interface. Then, we have the following
representation of v.i/, cf., [4, p. 2224] or [10, p. 1555, (8.7)],

v.i/ D
X

F ij�@˝i
I h
�
F ijv.i/

�C
X

E ik�@˝i
I h
�
E ik v.i/

�
(2)

D
X

F ij�@˝i
I h
�
F ijı

#
j .w

.i/ � w.j //
	
C

X

E ik�@˝i

n
I h
�
E ikı

#
j .w

.i/ � w.j //
	

CI h
�
E ikı

#

k.w
.i/ � w.k//

	
C I h

�
E ikı

#

l .w
.i/ � w.l//

	o
:

Thus, we can write
R
@˝i
.R.i/PDw/ � n ds D 0 as

X

F ij
�@˝i

Z

@˝i

ŒI h
�
F ijı

#
j .w

.i / � w.j //
	
� � n ds

C
X

E ik
�@˝i


Z

@˝i

ŒI h
�
E ikı

#
j .w

.i / � w.j //
	
� � n ds

C
Z

@˝i

ŒI h
�
E ikı

#

k.w
.i / � w.k//

	
� � n dsC

Z

@˝i

ŒI h
�
E ikı

#

l .w
.i / � w.l//

	
� � n ds

�
D 0:
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To satisfy this condition, we consider the face terms and the construction of the
matrix UT : The edge constraints are established using a transformation of basis
with partial assembly. We have

X

F ij�@˝i

Z

@˝i

ŒI h
�
F ijı

#
j .w

.i/ � w.j //
	
� � n ds

D
X

F ij�@˝i

Z

@˝i

X

x2F ij
h

ı
#
j

�
w.i/ � w.j /

�
.x/'x � n ds

D
X

F ij�@˝i

X

x2F ij
h


Z

@˝i

ı
#
j n1

�
w.i/1 � w.j /1

	
.x/ '.1/x ds

C
Z

@˝i

ı
#
j n2

�
w.i/2 � w.j /2

	
.x/ '.2/x dsC

Z

@˝i

ı
#
j n3

�
w.i/3 � w.j /3

	
.x/ '.3/x ds

�
:

Here, we have used the notation w.i/ D .w.i/1 ;w
.i/
2 ;w

.i/
3 /

T and 'x D
.'

.1/
x ; '

.2/
x ; '

.3/
x /

T . For all of those integrals, we just integrate for all x 2 F ij
h

over @˝i \ supp.'x/ � F ijI see Fig. 1. Thus, we obtain

0 D UTBBuB WD
X

F ij�@˝i

X

x2F ij
h


Z

F ij
ı
#
j n

.j /
1

�
w.i/1 � w.j /1

	
.x/ '.1/x ds

C
Z

F ij
ı
#
j n

.j /
2

�
w.i/2 � w.j /2

	
.x/ '.2/x dsC

Z

F ij
ı
#
j n

.j /
3

�
w.i/3 � w.j /3

	
.x/ '.3/x ds

�
;

where n.j / specifies the outer normal in the direction of subdomain˝j and

X

F ij�@˝i

X

x2F ij
h

�R
F ij ı

#
j n

.j /
1 '

.1/
x ds;

R
F ij ı

#
j n

.j /
2 '

.2/
x ds;

R
F ij ı

#
j n

.j /
3 '

.3/
x ds

	

defines one row in UT : Therefore, the face condition is enforced by one constraint
for each subdomain. It is also possible to enforce a stronger condition, i.e., instead

Fig. 1 A cross section of a
face shared by ˝i and ˝j :

The support of a shape
function corresponding to a
node on a face is a subset of
the face
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of ensuring the sum over all faces belonging to one subdomain to be zero, we make
each additive term zero; see, e.g., [2, 9, 11, 12]. We will refer to this approach as the
standard coarse space. We then obtain one constraint for each face.

4 Numerical Results

We consider the mixed formulation of almost incompressible linear elasticity on
the unit cube ˝ D Œ0; 1�3 with a Young modulus E D 210; see Sect. 3. The
problem is discretized with Q2 � P0 mixed finite elements and the pressure is
statically condensated on the element level. We apply a constant volume force,
use homogeneous Dirichlet boundary conditions on @˝ , and choose all vertices
as primal constraints. The zero net flux condition for edges is established using a
transformation of basis, see, e.g. [7], and for the face constraints we use projector
preconditioning/deflation as described before. We run all tests for the standard
coarse space and also using one constraint for each subdomain, i.e., we sum up
all face constraints belonging to one subdomain and refer to this strategy as the
new coarse space. All experiments were carried out using Matlab R2011b. In the
first set of tests, we use a fixed Poisson ratio of � D 0:499999 and increase the
number of elements, while having a constant number of subdomains, i.e., N D 27;
see Table 1. We only observe a slight difference in the condition number, but we
save 50% of the constraints when using our new coarse space. Here, our stopping
criterion for the cg method is the relative reduction of the preconditioned residual
to 10�14. We have chosen a very small tolerance in order to obtain an accurate
eigenvalue estimate. A least square fit of the condition number estimates with
a quadratic polynomial in log.H=h/ confirms our theoretical condition number

Table 1 For � D 0:499999, E D 210, and a constant number of subdomains with 1=H D 3, the
subdomain size is increased, resulting in an increased overall number of degrees of freedom (dof)

New coarse space Standard coarse space
(one constraint for each subdomain) (one constraint for each face)

# constraints: 27 # constraints: 54

H=h dof # its Cond # its Cond

2 6,591 16 2.2118 15 1.9679

3 20,577 20 3.2485 19 3.0076

4 46,875 23 3.9686 22 3.6786

5 89,373 26 4.6184 24 4.2866

6 151,959 27 5.2073 26 4.8374

7 238,521 28 5.7442 27 5.3401

8 352,947 29 6.2369 29 5.8019

9 499,125 31 6.6920 30 6.2290

10 680,943 32 7.1150 31 6.6262
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Fig. 2 Least square fit of a
quadratic polynomial in
log

�
H
h

�
to the data from

Table 1 (left, new coarse
space)
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estimate of C .1 C log.H=h//2; see Figs. 2 and 3. In Table 2, also for a fixed
Poisson ratio of � D 0:499999, we present the results for weak scaling, i.e., we
increase the number of subdomains from 8 to 1,000, but keep the subdomain size
fixed with H=h D 3: The condition number does not vary significantly, but for an
increasing number of subdomains the new approach is increasingly advantageous.
In a last set of experiments, we consider a variable incompressibility on the whole
domain, varying the Poisson ratio from � D 0:4 up to � D 0:4999999999:

We fix the number of subdomains to N D 27 and use H=h D 8 elements in
each direction of each subdomain; see Table 3. The condition number is bounded
independently of the almost incompressibility of the material, as expected from our
theory. In Table 3 (right) we also present numerical results using the coarse space
for compressible linear elasticity, i.e., primal vertices and edge averages. We see
that the system becomes ill-conditioned while increasing the incompressibility. In
Tables 2 and 3, our stopping criterion for the cg method is the relative reduction of
the preconditioned residual by 10�10.
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Table 2 Weak scaling. Poisson ratio � D 0:499999. For a constant subdomain size with
H=h D 3; the number of subdomains varies from 8 to 1,000. For an increasing number of
subdomains, the new approach generates increasingly higher savings

New coarse space Standard coarse space
(one constraint (one constraint

for each subdomain) for each face)

1=H dof # constraints # its Cond # constraints # its Cond Constraints saved (%)

2 6,591 8 10 1.7057 12 10 1.7057 33.3

3 20,577 27 14 2.8989 54 14 2.5185 50.0

4 46,875 64 16 3.4813 144 15 2.9639 55.6

5 89,373 125 18 3.9982 300 17 3.3369 58.3

6 151,959 216 19 4.0936 540 17 3.5887 60.0

7 238,521 343 19 4.2320 882 18 3.7705 61.1

8 352,947 512 20 4.2627 1,344 18 3.8973 61.9

9 499,125 729 20 4.3544 1,944 18 3.9884 62.5

10 680,943 1,000 20 4.3630 2,700 18 4.0554 63.0

Table 3 For a constant H=hD 8 and a constant 1=H D 3, the Poisson ratio varies from � D 0:4

up to � D 0:4999999999: The problem size is 352;947 dof

New Standard
coarse space coarse space
(one constraint (one constraint

for each subdomain) for each face) Vertices C
# constraints: 27 # constraints: 54 edge averages

� # its Cond # its Cond # its Cond

0.4 19 4.3946 19 4.2827 19 5.1127

0.49 21 5.7142 20 4.2219 26 18.1360

0.4999 21 6.2180 21 5.7185 48 1.5680eC03

0.499999 22 6.2367 21 5.7954 65 1.5657eC05

0.49999999 22 6.2369 21 5.8018 76 1.5657eC07

0.4999999999 22 6.2369 22 5.8019 87 1.5657eC09
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Scalable Hybrid Parallelization Strategies
for the DUNE Grid Interface

Christian Engwer and Jorrit Fahlke

Abstract The DUNE framework provides a PDE toolbox which is both flexible and
efficient. Integration of hardware oriented techniques into DUNE will be necessary
to maintain performance on modern and future architectures. We present the current
effort to add hybrid parallelization to the DUNE grid interface, which up to now only
supports MPI parallelization. In current hardware trends, we see a transition from
multi-core to many-core architectures, like the Intel PHI. Techniques which worked
well on traditional multi-core CPUs don’t scale anymore on many-core systems. We
compare different strategies to add a thread parallel layer to DUNE and discuss their
scalability and performance.

1 Introduction

Numerical software currently undergoes a dramatic change. We discuss this change
in the context of simulations of partial differential equations (PDEs). Since math-
ematical models are growing in complexity, we seek coupled multi-physics appli-
cations, and advanced numerical methods. This calls for flexible general purpose
frameworks, with a large body of functionality.

At the same time the underlying hardware is posing orthogonal challenges.
The memory and power wall problems are becoming hard limitations, and further
performance improvements are only achieved by using all levels of parallelism and
heterogeneity. Many people believe this can only be achieved by hardware-software
co-design, which contradicts the flexibility goal [5].

Simulation Software becomes more specialised and at the same time generalised.
On one hand, applications need to specialise toward advanced models in order to
answer more detailed questions. On the other hand, it is infeasible to write such an
application from scratch, so a general basis is needed to build upon. Here Software
frameworks play an important role to provide the required flexibility. As applications
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continue to grow in complexity, the need for sustainable development of software
for PDEs is increasing rapidly: Modern numerical ingredients such as unstructured
grids, adaptivity, high-order discretizations and fast and robust multilevel solvers are
required to achieve high numerical efficiency, and several physical models must be
combined in challenging applications. This is beyond the scope of an individual
simulation application, but requires additional support. Frameworks like Deal.II
[1], Fenics [8], or DUNE [2, 3] (the one we are focusing on) support developers
by providing a rich set of numerical algorithms and mathematical models. Such
frameworks are designed from the beginning for flexibility and generality. Thus
users can easily extend the generic framework code with their own algorithms and
models. Using modern C++ techniques DUNE supports this fusion of user and
framework code at compile time, which enables many compiler optimisations and
thus grants flexibility and efficiency.

Hardware is undergoing a dramatic change. Current peta-scale systems in general
still follow the old paradigms of high performance compute nodes, linked by
fast interconnects. Both on the low-power end and at the high performance end,
future systems will differ significantly: Typical workstations and cluster nodes now
comprise at least two multicore CPUs and potentially several manycore accelerators
such as GPUs, and energy-efficient designs such as ARMCGPU or BlueGene-
Q are gaining ground. Future systems will offer much less memory per node,
and show a massive increase of parallelism inside a single node, either with a
‘many conventional core’ approach or by combining fewer cores with specialised
accelerator designs like GPUs [6]. This is a 100 to 1,000-fold increase of parallelism
within each node, combined with an ever increasing impact of the memory wall
problem. While message passing will still be the communication of choice between
NUMA-nodes, dedicated hierarchic layers of hybrid parallelism will be necessary
to exploit instruction level parallelism (ILP) and short-vector units (SIMD).

The Challenge posed for frameworks is the adoption of these new hardware
paradigms. As frameworks allow for thorough user extensions at a very fine
grained level, it is much harder to support modern hardware than it is for classic
coarse grained libraries like BLAS. A complete rewrite of the framework for every
change in hardware is not feasible and contradicts the concept of fine grained user
interfaces. Thus all changes in the framework should be hidden from the user code,
or at least require only moderate changes. Keeping the generality and flexibility of
software frameworks while adapting them to the hardware revolution to make use of
the advertised performance improvements in a transparent way is the main challenge
today.

Our aim is to combine the flexibility, generality and application base of DUNE
[2,3] with the concepts of ‘hardware-oriented numerics’ as developed in the FEAST
project [9]. The hypothesis is that advanced numerical methods are the key to enable
efficient use of the underlying hardware and to maintain generality alike. The work
presented in this paper is part of the EXA-DUNE1 project.

1http://www.sppexa.de/general-information/projects.html#EXADUNE

http://www.sppexa.de/general-information/projects.html#EXADUNE
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2 Concepts

For PDE-based simulations the computation time is dominated by two phases, the
assembly and the solving of sparse linear problems. We define a partition T .˝/

of the computational domain, which we refer to as the mesh or grid. This mesh
induces our FEM function space and our degrees of freedom. On each cell of the
mesh local contributions to the global system matrix are computed and collected in
a local matrix, then these local matrices are used to update the global matrix.

To maintain performance assembling of the linear system and the linear solver
need to be accelerated homogeneously. In the following we discuss the necessary
changes to the DUNE grid interface and to the assembler in DUNE-PDELab.
Changes to the linear algebra are not discussed in this paper and will be incorporated
later.

3 Design and Implementation

The mesh is one of the key components of DUNE. The grid interface [2] follows
a generic definition [3], which can be implemented in many different ways and
also allows to use existing external mesh libraries through this interface. Based on
this grid interface and on the linear algebra library (DUNE-ISTL) the discretization
module DUNE-PDELab provides many choices of function spaces and many
different discretization schemes, which the user can easily extend or combine into
complete discretizations.

Up to now DUNE only considered MPI parallelization, as suitable data decompo-
sition is directly supported by the DUNE grid interface. As DUNE supports external
grid managers and many of these were only designed for MPI and don’t support
hybrid parallelization, we are seeking a hybrid approach which can be implemented
on top of the existing grid interface. Such an interface can be implemented in a
generic fashion, but can be specialised if a specific grid implementation provides
additional information.

Levels of Parallelism We plan for three levels of parallelism. For an efficient
assembly of the stiffness matrix and the right hand side vector, the key is concurrent
access to grid information and to associated data.

Globally the grid is partitioned using the existing MPI layer. This gives coarse
grained parallelism on the level of UMA nodes, where all cores within one MPI
node have uniform memory access.

Within each UMA node system threads are used to share the workload among
all cores. For a user-defined number of concurrent threads the grid will be locally
partitioned such that each thread handles the same amount of work.

On the finest layer future extensions will make use of vectorisation (SIMD,
ILP) by adapting the internal data structures used in DUNE and especially in the
assembler.
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Shared Memory parallelization using system threads is the main focus of our
following experiments. The coarse grained message-passing level is used as it is
and finer grained vectorisation level will be investigated in future work.

We introduce the concept of EntitySets to define iterator ranges, which
describe different mesh partitions. An EntitySet describes a set of grid objects,
e.g. a set of grid cells, which can be iterated over. For each cell and the associated
sub-entities we compute indices to store data consecutively; using these indices
we can directly access linear algebra vectors or matrices. As the EntitySet
lives outside the original mesh, it can take locally varying computational costs into
account.

For the local partitioning of a mesh T .˝/ we consider three different strategies,
where the first two are directly based on the induced linear ordering of all mesh cells
e 2 T .˝/.

Strided: For P threads each thread p iterates over the whole set of cells e 2
T .˝/, but stops only at cells where emodP D p holds. As all P threads
have to iterate over the whole grid simultaneously, they might start competing
for bandwidth.

Ranged: We define consecutive iterator ranges of the size jT j=P . This is
efficiently implemented using entry points in the form of begin and end iterators.
The memory requirement is O.P / and thus will not strain the bandwidth.

General: Technically all other partitioning strategies will be handled in the same
way. On structured meshes we can directly define geometric partitions, e.g.
equidistant partitions along one or all coordinate axes (later called sliced or
tensor, repectively). For unstructured meshes graph partitioning libraries like
METIS or SCOTCH offer different strategies. We support all these by storing
copies of all cells in an EntitySet. While this approach is the most flexible
one, it is memory intensive, which might lead to cache trashing. The additional
memory requirement is O.jT j/, but the constant can be big, depending on the
actual grid implementation.

Data Access is the other critical component. During assembly data races can occur,
as different local vectors and local matrices contribute to the same global entries.
Two approaches are possible to avoid race conditions: locking and colouring. As
global locking is known to diminish performance as all threads are competing for
this single lock, we discard this option right away and consider three different
strategies:

Elock: entity-wise locks are expected to give very good performance, as they
correspond to the granularity of the critical sections. The downside is the
additional memory requirement of O.jT j/.

Batched: batched write operations are a compromise between global and entity-
wise locking. Threads still compete for a global lock, but the frequency of
locking attempts is reduced by collecting updates in a temporary buffer. A lock is
acquired when the buffer is full and all buffered updates are performed at once.
The additional memory is O.P / with a large constant.
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Colouring: colouring avoids competing data access by assigning each partition
to a colour such that there is no overlap between partitions of the same color.
Different colors must be handled strictly in sequence, but partitions of the
same color may be handled concurrently. Colouring is not meaningful for some
partitioning strategies, e.g. strided and ranged. In general colouring may add to
the set-up time, but requires very little memory,O.P / with a small constant.

4 Performance Evaluation

Our goal is to evaluate the different strategies for system-level thread parallelization.
We validate the cross-architecture scalability and formulate best practice sugges-
tions. We restrict ourselves to the test problem of a stationary advection-diffusion
equation in two dimensions

r � f�A.x/ruC b.x/ug D f in ˝ (1)

with Dirichlet and outflow boundary conditions and compare the performance for
assembling the stiffness matrix and the residual. These are the most expensive mesh-
related operations in the FE method. Equation (1) is discretized using the weighted
SIPG discontinuous Galerkin method [4]. Ansatz and test space are discretized
using an orthonormal Pk basis of degree k. While this scheme can actually be
implemented in a completely race-free manner, doing so means that fluxes have
to be computed twice.

To get a worst case estimate on the impact of different partitioning and data
access strategies, we use a lightweight MPI-parallel structured mesh (Dune::
YaspGrid) for our performance evaluations. For unstructured meshes the relative
overhead will be considerably smaller and thus we expect better parallel efficiency.

We discuss timing results and scalability for the different hybridisation strategies
and compare the results for a multi-core system with many-core architecture.
Our experiments for the multi-core system are performed on a 4-socket (i.e.
4-UMA-node) Intel Xeon E7-4850 system at 2.00 GHz, with 10 cores per socket,
2 hyperthreads per core, 198 GB DDR3 total memory and 4 � 25:6GB/s transfer
rate. The many-core system is an Intel Xeon-PHI 5110P with 60 compute cores at
1.05 GHz, 4 hyperthreads per core, 8 GB total memory and 320 GB/s bandwidth.
Performance is measured for the assembly of the residual and of the Jacobian, i.e.
the right-hand side and the stiffness matrix. Additionally we compare results for
different polynomial degrees.

On the CPU we observe good scalability for all partitioning strategies, see Fig. 1.
This is in correspondence to the experimental hybrid parallelization discussed in [7].
The parallel efficiency of the residual drops down to 50%, whereas the Jacobian
keeps an efficiency �60% up to the 10 physical cores. Hyper-threading improves
the run times further, even though the efficiency drops significantly. The better



588 C. Engwer and J. Fahlke

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  8  10 12  16 20

Effi
ci

en
cy

#threads

res ranged
res sliced
res strided
res tensor
jac ranged
jac sliced
jac strided
jac tensor

 0

 0.2

 0.4

 0.6

 0.8

 1

1  2  3  4  5  6  8  10 12  16 20

Effi
ci

en
cy

#threads

res batched
res colored
res elock
jac batched
jac colored
jac elock

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  4  10  20  40 60  120  240

Effi
ci

en
cy

#threads

res ranged
res sliced
res strided
res tensor
jac ranged
jac sliced
jac strided
jac tensor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  2  4  10  20  40 60  120  240

Effi
ci

en
cy

#threads

res batched
res colored
res elock
jac batched
jac colored
jac elock

Fig. 1 Parallel efficiency of the assembly of residual (res) and Jacobian (jac) for different
partitioning (left, entity-wise locking) and locking (right, sliced partitioning) strategies on CPU
and PHI, polynomial degree k D 1

efficiency of the Jacobian is due to the increased algorithmic intensity for higher
polynomial degrees.

For data access we compare batched writes, entity-wise locks and a lock-free
strategy, via colouring. In our experiments the performance of entity-wise locking
and colouring is comparable. Batched writes pose difficulties when assembling the
Jacobian: the performance of batched writes depends severely on the size of the
temporary buffer and the sparsity pattern, which means that good performance can
only be achieved by tuning buffer sizes.

By comparing different partitioning strategies possible performance issues
become more visible. While strided partitioning is attractive in multi-core CPU
systems, it does not scale to the larger numbers of cores on the PHI. This is to be
expected: for this kind of partitioning, all threads will usually operate on nearby
mesh cells at any given time. On the CPU they benefit from the level 3 cache shared
by all 10 cores: one thread is likely to access data that a different thread has just
loaded. On the PHI each of the 60 cores has its own cache: the cores compete for
the memory bandwidth to transfer cache lines, but only a small part of each cache
line is actually used for computation.

Apart from strided partitioning, the choice of partitioning strategy has very
little effect. This means that the memory bandwidth has not been reached for
these schemes; we expect this effect to become important when element local
computations are vectorized. In this case it will be necessary to further increase the
algorithmic intensity—either by the use of significantly higher polynomial orders,
or by using locally structured low-order computations.
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Table 1 Comparison of different polynomial degrees k, number of threads P , and hardware X .
Time per DOF tXP Œ�s� and efficiency EX

P of the Jacobian assembly using sliced partitioning and
entity-wise locking. We see a clear benefit from higher order discretizations, due to the increased
algorithmic intensity

k t
CPU

1 t
CPU

10 t
CPU

20 E
CPU

10 E
CPU

20 t
PHI

1 t
PHI

60 t
PHI

120 t
PHI

240 E
PHI

60 E
PHI

120 E
PHI

240

0 4.59 0.74 0.54 62% 42% 59.57 1.33 1.17 1.20 75% 43% 21%

1 1.38 0.22 0.17 62% 42% 18.92 0.37 0.27 0.26 84% 57% 30%

2 1.10 0.15 0.12 72% 46% 17.12 0.32 0.21 0.19 90% 69% 38%

3 1.29 0.16 0.13 79% 50% 19.84 0.36 0.23 0.20 92% 72% 41%

4 1.52 0.18 0.15 87% 49%

5 1.81 0.21 0.18 88% 51%

Table 1 shows the computation time per DOF and the obtained efficiency for
different polynomial degrees in the DG discretization. Due to increased algorithmic
intensity the efficiency increases for higher order discretizations. Hyperthreading
does diminish the efficiency, but still gives a slight improvement in computation
time. In computation time the Xeon PHI does not pay of, as the current implemen-
tation does not use vectorisation, which necessary to unlock the potential of the PHI.

Summary and Conclusions
We have shown that many-core architectures require additional care in design-
ing the thread parallelism for hybrid simulations. As many mesh libraries
were only designed for distributed memory, using MPI parallelization, we
designed the extensions such that thread parallelism can be implemented on-
top of an existing DUNE grid. Support for this additional layer was added to
the DUNE-PDELab module. We emphasise that from the user point of view
the changes are totally transparent and hidden underneath the discretization
interface.

We demonstrated performance tests on an Intel Xeon PHI and compared
with results for a 4-socket Intel Xeon E7-4850 system. With a ranged
partitioning and entity-wise locking, or with colouring and the according
partitioning, it is possible to provide a low overhead thread parallelization
layer, which shows good performance on classic multi-core CPUs and on
modern many-core systems alike. The performance gain from coloring is
negligible, but increases code complexity, so that this approach is less
favourable. We increased the efficiency further to 90% by the use of higher
order methods.

Supporting modern hardware paradigms is possible within a general
purpose interface, without sacrificing flexibility and still obtain good perfor-
mance. From the user’s perspective all changes are completely transparent.

(continued)
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Future work will investigate how to add SIMD and wide-SIMD support
during the assembly of stiffness matrices and residuals and incorporate SIMD
support in the linear algebra. Adding SIMD support is still an open issue,
because in order to keep flexibility, it is no option to directly use intrinsics in
the user code.
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Unveiling WARIS Code, a Parallel
and Multi-purpose FDM Framework

Raúl de la Cruz, Mauricio Hanzich, Arnau Folch, Guillaume Houzeaux,
and José María Cela

Abstract WARIS is an in-house multi-purpose framework focused on solving
scientific problems using Finite Difference Methods as numerical scheme. Its
framework was designed from scratch to solve in a parallel and efficient way
Earth Science and Computational Fluid Dynamic problems on a wide variety of
architectures. WARIS uses structured meshes to discretize the problem domains,
as these are better suited for optimization in accelerator-based architectures. To
succeed in such challenge, WARIS framework was initially designed to be modular
in order to ease development cycles, portability, reusability and future extensions
of the framework. In order to assess its performance, a code that solves the vec-
torial Advection-Diffusion-Sedimentation equation has been ported to the WARIS
framework. This problem appears in many geophysical applications, including
atmospheric transport of passive substances. As an application example, we focus
on atmospheric dispersion of volcanic ash, a case in which operational code
performance is critical given the threat posed by this substance on aircraft engines.
Preliminary results are very promising, performance has been improved by 8.2�
with respect to the baseline code using a realistic case. This opens new perspectives
for operational setups, including efficient ensemble forecast.

1 Introduction

Many relevant problems arising in geoscience and Computational Fluid Dynamics
(CFD) can be solved numerically using Finite Difference Methods (FDM) on
structured computational meshes. Examples include, seismic wave propagation,
numerical weather prediction or atmospheric transport. FDM numerical schemes
on structured meshes allow peak performances of	20� 30%, about 3 times larger
than analogous FE (Finite Element) methods.
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WARIS is a brand-new multi-purpose framework aimed at solving efficiently in
a parallel way this kind of scientific computing problems. The design requirements
were to obtain a portable framework (i.e. able to run on any hardware platform)
suited for accelerated-based architectures, with reusable software components,
easily extendible, and able to solve the physical problems on structured meshes
explicitly, implicitly or semi-implicitly.

The next sections are organized as follows: Sect. 2 describes the procedure
followed during the development stages of WARIS, and introduces the current state-
of-the-art regarding FDM optimizations as well. Section 3 elaborates on the final
design chosen for the WARIS framework, detailing also its internals. Finally, Sect. 4
and section “Conclusions” expose a case of study and the conclusions respectively.

2 Software Engineering

Software engineering plays an important role when achieving a good software
design. The desirable aspects of a software package are reliability, efficiency, and
robustness; bestowing accurate results, high performance and solid components
respectively. Meeting all those requirements lead to a successful project. In order
to succeed in such a challenge, an application development life-cycle methodology
must be applied [11]. Besides, life-cycle methodology is particularly important
when HPC software comes into play. This importance is due to several inherent
needs of the HPC software.

Firstly, given that the numerical software is clearly expensive to develop due to
the involved research process, it is intended to reuse code as much as possible. A
modular and flexible design of the software framework may help in this approach
owing to many important reasons. Software must be flexible and modular whether
same code is wanted to be used for different scientific problems and likewise, be
adapted to a novel hardware architecture or a different programming model. In
this regard, the HPC is far more dynamic in terms of adaptability requirements
than the rest of the computational areas, and therefore these reasons have a greater
influence. Secondly, the HPC involves large numerical simulations which may
require hundreds or thousands of computational nodes during days or weeks.
Unsuccessful executions (abnormal end) might arise from time to time, leading to
unfruitful runs and a waste of time and resources. Hence, the cost of these executions
is utterly high in terms of power consumption and resource usage.

Finally, a modular and robust infrastructure is crucial, but performing the numer-
ical simulations in an efficient way is also a key point. Additionally, considering
that each simulation run can last several days or weeks, even a mild optimization
in performance of only 5–10 % may lead to days of savings in core-hours of
computational resources. In order to do so, unlike ordinary development life-cycle,
an additional stage for the optimization process of the modules is also included. This
stage is repeatedly performed in order to successively optimize the performance of
each module.
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2.1 Boosting Numerical Codes

Irregular codes (stencil computations and sparse algebra) are usually limited by
memory access (memory bound). Therefore, the ratio of floating-point operations to
memory access is low compared with regular codes (FFT and dense linear algebra),
which are mainly compute bound. In explicit FDM schemes, the basic structure of
stencil computation is that the central point accumulates the contribution of neighbor
points in every axis of the Cartesian system. The number of neighbor points in every
axis relates to the accuracy level of the stencil, where more neighbor points lead to
higher accuracy. The stencil computation is then repeated for every point in the
computational domain, thus solving the spatial differential operator.

Two inherent problems can be identified from the structure of the stencil com-
putation. Firstly, the non-contiguous memory access pattern. In order to compute
the central point of the stencil, a set of neighbors has to be accessed. Some of
these neighbor points are distant in the memory hierarchy, requiring many cycles
in latencies to be accessed [6]. Secondly, the low computational-intensity and reuse
ratios. After gathering the set of data points, just one central point is computed
and only the accessed data points in the sweep direction might be reused for the
computation of the next central point [5].

The state-of-the-art in performance optimizations for stencil computation is very
prolific. The contributions can be divided into three dissimilar groups: space block-
ing, time blocking and pipeline optimizations. Space blocking algorithms promote
data reuse by traversing data in a specific order. Space blocking is especially useful
when the dataset structure does not fit into the memory hierarchy [6, 13]. Time
blocking algorithms [9] perform loop unrolling over time-step sweeps to exploit
the grid points as much as possible, and thus increase data reuse. Finally, low level
optimizations at the CPU pipeline include several well-known techniques. These
techniques may be categorized into loop transformations [10], data access [2] and
streaming optimizations (SMP, SIMD and MIMD).

3 System Architecture

As the number of physical problems that should be supported could be in the
order of tenths, the primary system (named Physical Simulator Kernel, PSK)
should be flexible enough to accommodate new problems reusing as much code
as possible.The PSK framework is divided in two main sets of components. On
one hand, there is a framework responsible for those tasks that are common to any
physical simulation being solved, such as domain decomposition, communications
and I/O operations. On the other hand there is a set of specializations that are
used to configure the framework in order to have a complete solution for a given
physical problem. Those specializations depend on aspects such as: the physical
problem, the hardware platform (e.g. general purpose, GPU, FPGA, Xeon Phi) and
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the programming model being used for development. As the PSK main goal is to
generalize the way a physical simulation is built, some aspects have to be fixed and
restricted, in order to bound the framework functionality and limits.

3.1 Hardware Architecture Model

The first aspect to be considered is the computational architecture model that will
be supported by the PSK. Figure 1 shows the concepts in such model and their
relation. The main building block of the architecture model is the Computational
Node (CN), which is built using both the host and device elements that communicate
through a Common Address Space (CAS) memory. Examples of such devices
include GPUs [15] and brand-new Intel’s Xeon Phi [12]. Following this model the
PSK framework is executed in the host while the device processes the specifics of
the physical problem being simulated.

In order to run a physical simulation the PSK will construct a defined structure of
MPI processes and threads across the CNs to be used for such simulation. Figure 2.
Left shows the structure for a simulator using two CNs: CN0 and CN1. As the
memory address space of CN0 and CN1 are disjoint, the PSK system must provide
Domain Decomposition (DD) between both CNs (known as extra-node DD), in
order to coordinate the simulation process. Moreover, there are some cases (e.g.
multi- and many-core architectures), for which the PSK have to provide DD also
inside a CN (known as intra-node DD). Notice, that each small node into Fig. 2.
Left represents threads and I/O devices, whereas the small and large boxes are the
MPI processes running on each CN and the intra-node domains in a CN respectively.

3.2 Software Architecture Model

Once the hardware architecture model is defined, this subsection will depict the
software architecture model. That is, which is the PSK framework architecture

Fig. 1 Hardware architecture model supported by the PSK
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Fig. 2 Left: domain decomposition model. Right: PSK software model

and what is to be done in order to use it and extend or specialize it for a specific
physical problem. The specialization process is done by implementing an interface
defined by the PSK. Each of the functions to be implemented are known as a
specialized functions. Among this functions there are: initialization and finalization
routines for managing data structures that belongs to the physical problem at hands,
proper functions for the processing at each iteration of the simulation process,
or some functions for scattering and gathering data among different domains if
they are needed. Figure 2. Right shows the PSK framework structure. The dashed
boxes represent the functions to be provided by the user in order to specialize the
framework for a specific physical problem.

Regarding the PSK main structure (i.e. inside the main loop), it is divided in three
different phases (known as Pre- Main- and Post-Processing), which are separated
by some stages such as communications or I/O. The aim of such structure is to
provide an environment capable of overlapping computation with communication
and I/O. In order to do so, the functions provided by the user for phase 1 (P1)
must process all the physical problem involved in the exchange stage for the current
iteration step. Then, an asynchronous communication of these areas is started while
the computation in phase 2 (P2) processes the remaining domain for the current
iteration. Likewise, an I/O operation may be started asynchronously at the end of
phase 2, enabling as well overlapping with main computation. Finally, an optional
phase 3 (P3) is also considered for such cases where some processing is needed
after the communication, but prior to the next iteration.
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4 Application Example

Atmospheric transport models [14] deal with transport of substances in the atmo-
sphere, including natural, biogenic, and anthropogenic origin. The physics of these
models describes the transport and removal mechanisms acting upon the substance
and predicts its concentration depending on meteorological variables and a source
term. These models solve the Advection-Diffusion-Sedimentation (ADS) equation,
which is derived in continuum mechanics from the general principle of mass
conservation of particles within a fluid.

As an application example, the FALL3D model has been ported to WARIS
framework. FALL3D [4] is a multi-scale parallel Eulerian transport model coupled
with several mesoscale and global meteorological models, including most re-
analyses datasets. Although FALL3D can be applied to simulate transport of any
substance, the model is particularly tailored to simulate volcanic ash dispersal
and has a worldwide community of users and applications, including operational
forecast, modeling of past events or hazard assessment.

4.1 Volcanic Ash Dispersal

Volcanic ash generated during explosive volcanic eruptions can be transported by
the prevailing winds thousands of kilometers downwind posing a serious threat
to civil aviation. FALL3D models run worldwide operationally to provide advice
to the civil aviation authorities, which need to react promptly in order to prevent
in-flight aircraft encounters with clouds. Here, we investigate to which extent
WARIS-Transport can accelerate model forecasts and could be used for ensemble
forecasting [1]. We focus on a paradigmatic case occurred during April-May 2010,
when ash clouds from the Eyjafjallajökull volcano in Iceland disrupted the European
airspace for almost 1 week, resulting in thousands of flight cancellations and
millionaire economic loss [7].

The following results include several performance techniques carried out in
the WARIS-Transport module. These techniques are: SIMDization, blocking and
pipeline optimizations of the explicit kernels. Furthermore, the parallel I/O oper-
ations have been dramatically improved by implementing an active buffering
strategy [8] with two-phase collective I/O calls [3]. As an example, Fig. 3 shows
how a wise choice of the blocking parameter is crucial to reduce the execution time
of the explicit kernel. In this particular case (256 � 2048 � 64 domain size), the
kernel execution time has been reduced by 24.1 %.
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Fig. 3 Blocking impact on the kernel execution time. The small rectangle at the right shows the
performance of the naive implementation, whereas the circle at the middle depicts the best blocking
parameter. WARIS automatically selects the best parameter

All the tests have been conducted in MareNostrum supercomputer (Intel
SandyBridge-EP E5-2670) with different number of processors. The Eyjafjalla-
jökull case involves an input dataset of 9 GB of meteorological data, corresponding
to 8 days of eruption, and 370 MB of concentration and dispersal simulated output
data for the coarse-grain mesh (41 � 241 � 141). The FALL3D code taken as a
reference requires 1 h and 58 min to complete this simulation on 16 processors
with MPI. On the other hand, the WARIS-Transport module only took 14.4 min
to process it. These times make our implementation 8.2� faster than Fall3D
code. Additionally, strong scaling results were obtained for WARIS-Transport
using a fine-grain mesh (41 � 480 � 280) of the Eyjafjallajökull case. Scalability
results obtained for different number of processors (up to 32) are broken down
in Table 1. Results are categorized in four groups, explicit kernel (P1 and P2
stages), other computations (P3 stage), meteorological input and ash dispersal
output. P1 (boundary elements), P2 (internal elements) and P3 stages refer to
the kernel functions in the PSK framework structure. Finally, postprocess and
preprocess columns consider the data arrangement computation required after
reading meteorological data and before writing ash dispersal results respectively.
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Conclusions
WARIS framework has shown appealing capabilities by providing successful
support for scientific problems using FDM. In the foreseeable future, as the
amount of computational resources will increase, more sophisticated physics
may be simulated. Furthermore, it provides support for a wide-range of
hardware platforms. Therefore, as the computational race keeps the hardware
changing every day, support for specific platforms that will give the best
performance results will be supplied for the different simulated physics.
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Integrating Multi-threading and Accelerators
into DUNE-ISTL

Steffen Müthing, Dirk Ribbrock, and Dominik Göddeke

Abstract A major challenge in PDE software is the balance between user-level
flexibility and performance on heterogeneous hardware. We discuss our ideas on
how this challenge can be tackled, exemplarily for the DUNE framework and in
particular its linear algebra and solver components. We demonstrate how the former
MPI-only implementation is modified to support MPIC[CPU/GPU] threading and
vectorisation. To this end, we devise a novel block extension of the recently
proposed SELL-C-� format. The efficiency of our approach is underlined by
benchmark computations that exhibit reasonable speedups over the CPU-MPI-only
case.

1 Introduction

Software development, in the scope of our work for the numerical solution of a
wide range of PDE (partial differential equations) problems, faces contradictory
challenges. On the one hand, users and developers prefer flexibility and generality,
on the other hand, the changing hardware landscape requires algorithmic adaptation
and specialisation to be able to exploit a large fraction of peak performance.

1.1 Software Frameworks

A framework approach for entire application domains rather than distinct problem
instances targets the first challenge. We are particularly interested in frameworks
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for the solution of PDE problems with grid-based discretisation techniques. In
contrast to the more conventional approach of developing in a ‘bottom-up’ fashion
starting with only a limited set of problems (likely, a single problem) and solution
methods in mind, frameworks are designed from the beginning with flexibility and
general applicability in mind so that new physics and new mathematical methods
can be incorporated more easily. In a software framework the generic code of the
framework is extended by the user to provide application specific code instead of
just calling functions from a library. Template meta-programming in C++ supports
this extension step in a very efficient way, performing the fusion of framework and
user code at compile time which reduces granularity effects and enables a much
wider range of optimisations by the compiler.

1.2 Target Applications and Numerical Approach

Our work within the EXA-DUNE project ultimately targets applications in the field
of porous media simulations. These problems are characterised by strongly varying
coefficients and extremely anisotropic meshes, which mandate powerful and robust
solvers and thus do not lend themselves to the current trend in HPC towards matrix-
free methods with their beneficial properties in terms of memory bandwidth and / or
FLOPs/DOF ratio; typical matrix-free techniques like Cholesky preconditioning and
stencil-based geometric multigrid are not suited to those types of problems. For that
reason we aim at algebraic multigrid (AMG) preconditioners known to work well
in this context, and work towards further improving their scalability and (hardware)
performance.

1.3 Hardware Development

Future exascale systems are characterised by a massive increase in node-level
parallelism and heterogeneity. Current examples include nodes with multiple
conventional CPU cores arranged in different sockets. GPUs require much more
fine-grained parallelism, and Intel’s Xeon Phi design shares similarities with
both these extremes. One important common feature of all these architectures
is that reasonable performance can only be achieved by explicitly using their
(wide-) SIMD capabilities. The situation becomes more complicated as different
programming models, APIs and language extensions are needed, which lack
performance portability. Instead, different data structures and memory layouts are
required for different architectures. In addition, it is no longer possible to view the
available off-chip DRAM memory within one node as globally shared in terms of
performance. Firstly, accelerators are typically equipped with dedicated memory,
which improves accelerator-local latency and bandwidth substantially, but at the
same time suffers from a (relatively) slow connection to the host. Due to NUMA
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(non-uniform memory access) effects, a similar (albeit less dramatic in absolute
numbers) imbalance can already be observed on multi-socket multi-core CPU
systems. There is common agreement in the community that the existing MPI-only
programming model has reached its limitations. The most prominent successor will
likely be ‘MPICX’, so that MPI can still be used for coarse-grained communication,
while some kind of shared memory abstraction is used within MPI processes.

1.4 Consequences and Challenges

Obviously, the necessary adaptations to the changing hardware landscape should be
hidden as much as possible from the user. The conventional library-based approach
to software development only addresses this challenge at the component level,
forcing users to manually integrate those changes into their applications. Software
frameworks aid the user with higher abstraction and integration levels, which
isolate applications from hardware-specific implementation details. Nonetheless,
frameworks still face the conflict between generality, flexibility and API stability
on the user side and the need to adapt to new hardware and its potentially disruptive
programming models ‘under the hood’ for optimal performance. Finding the right
balance between those extremes defines the challenge of effective framework
development in HPC.

1.5 Paper Contribution

In the EXA-DUNE project, we pursue different avenues to preparing the DUNE
framework [3, 4] for the exascale era.1 The goal is to combine the flexibility,
generality and application base of DUNE with the concepts of hardware-oriented
numerics as developed in the FEAST project [12]. In this paper, we report on our
first results and design decisions. We focus on extending DUNE’s linear solver
module ISTL with architecture-aware backends for low-level constructs like vectors,
matrices and preconditioners.

2 Design and Implementation

Our approach to enable hybrid parallelism and memory heterogeneity within the
DUNE package can be categorised as follows: (1) We redesign the linear algebra
part of ISTL (DUNE’s linear solver library) around a novel block extension of

1http://www.sppexa.de/general-information/projects.html#EXADUNE

http://www.sppexa.de/general-information/projects.html#EXADUNE
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the SELL-C-� format [8] so that existing solvers need not be modified to benefit
from CPU/GPU threading. (2) We equip PDElab (DUNE’s ‘user interface’) with
support for this format so that existing user-level code and other DUNE components
can, e.g., directly assemble into this format without the need for costly format
conversions. In the following, we describe our changes in a bottom-up fashion.

2.1 Operations: Linear Algebra Kernels

Independent of the architecture, performance improvements not related to mathe-
matically superior algorithms stem from threading and vectorisation (SIMD units,
UMA domains). This distinction is explicit on modern multicore CPUs and the
Xeon Phi, and implicit on GPUs. We tackle the vectorisation level by creating
two collections of linear algebra kernels, one based on CUDA for NVIDIA GPUs
and a shared one based on Intel’s Threading Building Blocks (TBB) for multi-
core CPUs and Xeon Phi. Our design can easily encorporate other specialisations.
Following the DUNE philosophy, all new kernels are integrated into ISTL via (new)
C++ template interfaces, enabling standard architecture-dependent optimisations for
data types, SIMD block sizes and data alignment independent of the interfaces.
We choose not to manually program CPU vector units using compiler intrinsics
because of the large maintenance overhead every time a new SIMD instruction set
is released. Instead, we rely on the auto-vectorisers of modern compilers, which
we feed with explicit aliasing and alignment hints for the data arrays: Both GCC 4.8
and ICC 14.0 are able to generate vectorised code of sufficient quality, as verified by
inspecting the generated assembly code. The actual kernel implementation follows
standard approaches as reported elsewhere in abundance.

2.2 Containers: Matrices and Vectors

One central design choice for implementing numerical linear algebra on hetero-
geneous architectures is the issue of matrix (and associated vector) formats. On
CPUs, (block) CRS is the general format of choice so far [1, 7], while the GPGPU
community prefers ELL-like formats that enable a more efficient use of wide-
SIMD [8]. Format conversions between architecture-optimised formats pose a
severe bottleneck and should thus be avoided. Recent work by Kreutzer et al. [8]
indicates a feasible solution: Their SELL-C-� format potentially constitutes a
‘best compromise’ across architectures. Note that we do not implement a matrix
reordering step in our adoption of the format, as our matrices have a very uniform
row length distribution and thus, padding is not excessive and need not be avoided.

Other high-level PDE solver frameworks like FEniCS [9] and deal.II [2] support
hybrid parallelism via MPI C OpenMP / TBB, but rely on existing libraries at
the linear algebra level and do not fully support other accelerators. The linear
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algebra packages PETSc [1], Trilinos [7] and MTL [10] all support (at least in part)
threading and/or GPUs on top of MPI, but exploiting these features from higher-
level projects can prove difficult.

2.3 Block Matrices

As part of EXA-DUNE, we are investigating Discontinuous Galerkin (DG) dis-
cretisations for porous media simulations. Vectors and matrices associated with DG
discretisations exhibit a natural block structure at the mesh cell level, which can
be exploited by storing only block sparsity patters. As almost all of the memory
required by a CRS or ELL matrix is taken up by two arrays storing the non-
zero entries and their associated column indices, storing only block column indices
implies a factor of	 1Cb2

2
for a block size b in storage and bandwidth (cf. Fig. 1).

Block CRS matrices work by storing the individual blocks as small, dense
matrices, which is a well-known and widely-used optimisation technique that can be
implemented fairly easily [1, 7]. The efficient implementation proves more difficult
in our setting: ELL-like formats and SIMD-awareness require coalescing a number
of matrix entries that corresponds to the SIMD width. Most implementations
thus introduce blocks that match the SIMD width [11], which works fine in the
typical context of (GPU) performance studies, where the block structure tends to
be artificially introduced as an optimization parameter, accompanied by standard
padding. In our setting the block size is a property of the DG basis that we cannot
influence. Thus, our implementation needs to work with arbitrary block sizes. We
follow an alternative approach [5], which performs SIMD coalescing at the level

datadata columns columns columnsdata

SELL-C-σ storage BELL-C-σ storage
matrix compression

(block view)

Fig. 1 Data layout of SELL-C-� and the blocked version BELL-C-� for a single chunk of a matrix
with block size 3 and SIMD width 4. The columns are compressed and padded up to a uniform
width (center). For each scheme, the figure shows the in-memory data layout of those compressed
arrays as a path along the arrows. Note that SIMD chunks are not block-aligned for SELL-C-� ,
while BELL-C-� coalesces storage from four blocks to allow vectorisation of operations across
those blocks
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of entire matrix blocks as illustrated in Fig. 1. Our kernels then operate on several
blocks at a time, only requiring vertical padding with empty blocks at the end of the
matrix.

In order to further exploit the mathematically motivated blocking structure in
our setting, we also implement a block Jacobi preconditioner on top of the blocked
matrix, which performs an exact inversion of the diagonal blocks. The diagonal
blocks within a SIMD group lack alignment, so the preconditioner extracts the
diagonal block band in a preprocessing step and operates on this auxiliary data.

2.4 Solvers and PDELab

Due to the clear separation of algorithms and data structures in ISTL, we transpar-
ently reuse existing solver implementations on top of our new container formats
without any code changes in the framework. All modifications are restricted to
components that directly interact with the matrix structure, i.e., the containers them-
selves and the preconditioners. In keeping with the DUNE framework approach,
we fully integrate our new containers into the high-level PDE toolbox PDELab
by implementing a new backend interface that encapsulates the translation of user-
space .i; j / indexing to the underlying data layout. As all high-level access to the
containers happens via this backend interface, DUNE’s existing grid and system
assembly infrastructure can directly operate on the new containers, and we avoid
using an intermediate matrix format that would then have to be explicitly converted
to (B/S)ELL-C-� . As a direct consequence of this tight integration with the existing
solver library and high-level infrastructure, porting PDELab programs is a very
straightforward process that only requires modifying the two or three lines of source
code which define the active backends for vectors, matrices and preconditioners.

3 Experimental Evaluation

At the current stage of our project, we are mainly interested in validating cross-
platform functionality and (relative) performance, especially in terms of our hybrid
approach vs. the traditional MPI-only implementation. We can thus restrict our-
selves to a standard conjugate gradient solver with a simple scalar or block Jacobi
preconditioner, advanced numerical techniques like the ISTL AMG preconditioner
are not necessary yet. For our measurements we adapt an existing example program
from PDELab that solves a stationary diffusion problem:

r � .Kru/ D f in ˝ � R
3

u D g on � D @˝
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with f D .6 � 4jxj2/ exp.�jxj2/ and g D exp.�jxj2/. A Discontinuous Galerkin
discretisation is used with a weighted SIPG scheme [6]. We restrict our experiments
to the unit cube ˝ D .0; 1/3 and unit permeabilityK D 1.

Most of our experiments are executed on a single-socket Intel Sandy Bridge
machine (8 GB DDR3-1333 RAM, 2 GHz 4-core Intel Core i7-2635QM, no Hyper-
Threading) which supports 256-bit wide SIMD using AVX instructions. As this
baseline machine only has a single UMA memory domain, we also run larger
benchmarks on a 4-socket server with AMD Opteron 6172 12-core processors
and 128 GB RAM. These CPUs internally comprise two dies with separate cache
hierarchies and memory controllers, creating a fairly complex memory layout with
8 6-core UMA domains. This larger platform allows us to test the feasibility of our
fundamental approach to parallelisation, drawing the line between classical message
passing parallelism (MPI) and shared memory approaches at the level of a single
UMA domain, but is limited to two-way SIMD. For the GPU measurements, we
use an NVIDIA Tesla C2070 which comes from the same hardware generation as
the AMD server. While the host platform differs from our CPU testbeds, this does
not influence the results shown below as we only benchmark the CG solver, whose
compute- and bandwidth-intensive components run entirely on the GPU.

We use a structured grid with a uniform mesh size h and DG spaces of order p D
1; 2; 3, which in 3D translates into block sizes of 8, 27 and 64, and to matrix densities
with 	 56, 189 and 448 non-zero entries per row, respectively. For each space, we
choose problem sizes that stretch up to the limit of available memory on our test
systems, which is about 6 GB for both the multicore CPU system and the GPU card.
In order to enable a fair comparison with a non-multithreaded pure MPI version of
the code, we take care to choose problem sizes that can be decomposed into evenly
sized subdomains without excessively large surfaces to avoid load balancing issues
in the MPI version. Due to the large number of DOFs per cell for the higher-order
spaces, this restriction limits us to a smaller number of samples for larger values of
p. All computations are carried out in double precision floating point arithmetic.

The blocked format is currently only available on the CPU, here we also
investigate the impact of switching from a scalar preconditioner to a block version
that performs an exact inversion of the diagonal blocks. All of the compared
implementations use common data structures and mostly perform identical basic
operations (with the exception of the block matrix version), so we can expect all of
them to require the same number of CG iterations to achieve a given error reduction.
Moreover, due to the constant number of matrix entries per DOF for a fixed value of
p (apart from boundary effects), we can actually expect a constant time per iteration
and DOF for large problem sizes (after saturating either the compute or the memory
bandwidth of the system). Figure 2 illustrates that this assumption holds very well,
with all shared-memory implementations quickly reaching a saturation plateau. The
MPI version appears to actually become faster with growing problem sizes, this
is because it is based on an overlapping domain decomposition and thus benefits
from the reduction of the relative amount of overlap in the bigger problems. We
can see that the dominant computation kernels of the CG solver (SpMV and the



608 S. Müthing et al.

0

 100

 200

 300

 400

 500

 600

0 1 2 3 4 5 6 7 8

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

0

 500

 1000

 1500

 2000

 2500

0  0.2  0.4  0.6  0.8 1  1.2  1.4  1.6  1.8

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
im

e 
pe

r 
D

O
F

 a
nd

 C
G

 it
er

at
io

n 
(n

s)

# DOFs / 1e6

MPI
MT

MT blocked
Tesla

Fig. 2 Normalised execution time of the (Block-) Jacobi preconditioned CG solver for polynomial
degrees p D 1; 2; 3 (left to right) of the DG discretisation. The multithreaded (MT) versions use a
SIMD block size of 8. Missing data points indicate insufficient memory

Table 1 Comparison of different MPI / shared memory partition models for varying degree p of
the DG discretisation and mesh width h. For each configuration, we list timings for 100 iterations
of the CG solver (tM=T , where M is the number of MPI ranks and T the number of threads per
process), and the speedups compared to the MPI-only (48/1) case

p h�1 t48=1Œs� t8=6Œs�
t48=1

t8=6
t4=12Œs�

t48=1

t4=12
t1=48Œs�

t48=1

t1=48

1 192 262:8 259:5 1:01 622.6 0:42 1,695.0 0:16

1 256 645:1 600:2 1:07 1,483.3 0:43 2,491.7 0:26

2 96 345:8 318:3 1:09 814.8 0:42 1,639.5 0:21

2 128 999:5 785:7 1:27 1,320.7 0:76 2,619.0 0:38

3 32 120:7 70:1 1:72 183.0 0:66 622.8 0:19

3 64 709:6 502:9 1:41 1,237.2 0:57 1,958.2 0:36

(block-) Jacobi preconditioner) are entirely limited by memory bandwidth across all
examined architectures. The threaded implementation is approximately 25 % faster
than the MPI baseline, in line with common expectations. Switching from scalar
to blocked containers yields a speedup of 	1.6–2.0 depending on p, which is in
line with the bandwidth savings of moving to a block-level column index array (the
additional work by the block inversion in the CPU preconditioner has negligible
impact). Finally, the GPU gives a speedup of 3–4 over the best CPU implementation.

In order to validate our assumption that shared memory parallelism should be
limited to individual UMA domains, we measure the runtime of several large
benchmark problems on the AMD server with four different parallel setups, an
MPI-only version with 48 single-thread processes, an optimal configuration with 8
MPI processes that each span a complete UMA domain (6 cores), and 2 suboptimal
configurations employing 4 processes with 12 cores each (one process per socket)
and one process with 48 threads (using only shared memory). For all measurements,
we enforce process pinning. Ignoring the NUMA issue, we expect the timings
to improve for smaller numbers of MPI processes because there is less domain
overlap, reducing the effective problem size. The results in Table 1 clearly show a
noteworthy improvement from the MPI-only setting to our UMA-domain approach
(columns t48=1 vs. t8=6), with better results for higher polynomial degrees due to
slightly worse surface-to-volume ratios in the MPI case. The remaining columns
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show that extending shared-memory parallelism across the UMA domain boundary
causes a major performance breakdown by a factor of 2 in the intermediate setting
and up to 6 for the worst case.

We additionally note that we do not observe relevant differences when switching
off compiler vectorisation for the CPU in our experiments: As the benchmarks are
entirely bandwidth bound and as our blocking scheme ensures cache line reuse,
performing the actual computations in SIMD instructions has negligible impact.
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FMMTL: FMM Template Library
A Generalized Framework for Kernel Matrices

Cris Cecka and Simon Layton

Abstract In response to two decades of development in structured dense matrix
algorithms and a vast number of research codes, we present designs and progress
towards a codebase that is abstracted over the primary domains of research. In
the domain of mathematics, this includes the development of interaction kernels
and their low-rank expansions. In the domain of high performance computing, this
includes the optimized construction, traversal, and scheduling algorithms for the
appropriate operations. We present a versatile system that can encompass the design
decisions made over a decade of research while providing an abstracted, intuitive,
and usable front-end that can integrated into existing linear algebra libraries.

1 Introduction

Structured dense matrices arise in a broad range of engineering applications
including the discretization of Fredholm integral equations, boundary elements
methods, N -body problems, signal processing, statistics, and machine learning.
This research concerns kernel matrix equations of the form

ri D
X

j
K.ti ; sj / cj (1)

where we refer to K as the kernel generating elements of the dense matrix, the
sj as sources and cj as a source’s associated charge, and the ti as targets and ri
as a target’s associated result. Of course, a direct computation of a kernel matrix-
vector product requires O.N 2/ computations, where N is the cardinality of the
source set and target sets. Fast multipole methods (FMMs) and tree-codes allow
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Table 1 A table of common kernels emphasizing the varied domain and ranges of the operators

Name/equation K.x; y/ Domain Range

Laplace, Poisson 1= jx� yj R
3 � R

3
R

Yukawa, Helmholtz ekjx�yj= jx� yj R
3 � R

3
C

Stokes 1
jx�yj

�
IC .x�y/.x�y/T

jx�yj
2

	
R
3 � R

3
R
3;3

Gaussian e�"jx�yj
2

R
n � R

n
R

Multiquadric .1C jx� yj2/˙1=2
R �R R

for an approximate evaluation of this matrix-vector product with only O.N log˛ N /
complexity, where ˛ D 0; 1; or 2 depending on specifics regarding the kernel, the
expansions, the traversal algorithms, and the distribution of sources and targets.
Common kernels in physics and statistics and their domains and ranges are listed
in Table 1.

FMMs require multiple, carefully optimized steps and numerical analysis in
order to achieve the improved asymptotic performance and required accuracy.
These research areas span tree construction, tree traversal, numerical and functional
analysis, and complex heterogeneous parallel computing strategies for each stage.
Unfortunately, many FMM codes are written with a particular application (an
interaction kernel and/or compute environment) in mind [2,4,10]. It is often difficult
to extract out advances from one research area and apply them to another code or
application. Indeed, Yokota et al. [13] discuss recent developments and comparisons
to note the disappointing lack of fair benchmarking comparisons between kernel
expansions, data structures, traversal algorithms, and parallelization strategies.

In this paper, we review recent development of a parallel, generalized framework
and repository for kernel matrices of the form (1). This overarching goal of this
library, called FMMTL, is to separate academic concerns in research and develop-
ment of fast structured dense matrix algorithms. Using advanced C++ techniques
and design, we are able to develop the code at a high level, isolate development
hurdles and choices, and collect a repository of kernels and their associated
expansions for rapid application deployment in any of the above domain areas.
This is accomplished by defining generalized interfaces for kernels independent of
algorithmic concerns with tree construction and traversal and presenting a coherent
front-end for working with kernel matrices as abstract data types. Problems of the
form (1) can be constructed and manipulated in an intuitive way and should be able
to take advantage of existing solvers or provide their own. The library has already
seen use in simple Poisson problems, more advanced boundary element solvers, and
the use of FMM as a preconditioner.
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2 Background

Fast methods for kernel matrices define or compute a low-rank approximation to the
kernel valid for some set of the sources, S , and targets, T :

K.T; S/ 	 U.T / QK V T .S/:

These approximations can be computed analytically with series expansion or inter-
polations of the known kernel function [4, 5, 7] or algebraically by rank-reducing
operations on samples of the kernel function [6, 11, 12]. This allows off-diagonal
blocks of the kernel matrix to be approximated and computed quickly and defines
the class of Hierarchically Off-Diagonally Low-Rank (HODLR) matrices. The
fundamental operations used in working with HODLR matrices are:

S2M: M D V T .S/ � C M2L: L D QK �M L2T: R 	 U.T / � QK

where R are the results associated with the targets T , C are the charges associated
with sources S , and we callM a multipole expansion and L a local expansion.

Hierarchically SemiSeparable matrices (HSS) allow the multipoles of sets of
sources to be computed from the multipoles of subsets to form a hierarchy of low-
rank approximations. The operations involved are extended to include:

M2M: M 0 D QV T �M L2L: L0 D QU � L

Convenient operators to add to this pool are found in most often in tree-codes and
can be written as:

S2L: L D QK � V T .S/ � c M2T: R 	 U � QK �M

Finally, the sets of sources and targets whose block in the kernel matrix is
approximated in this way are chosen with a rule called the multipole acceptance
criteria (MAC). Whether this rule accepts “nearby clusters” of sources and targets
differentiates H matrices from HOLDR matrices and H 2 matrices from HSS
matrices.

In practice, these operations are often built into research implementations and
can be difficult to extract, understand, and modify. It is these operators that we
wish to classify and fully abstract in order to develop a library that can be
used, without modification, for any kernel matrix and any definition of the above
operators. Additional goals of FMMTL are to isolate algorithmic features such
as tree construction and traversal that are also too often entangled with problem-
specific data or algorithms.
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3 Design Considerations

The design of FMMTL attempts to make kernels and their expansions independent
citizens in that their implementation should not depend on or know about trees,
clusters of sources or targets, traversals, or parallelism. Furthermore, it should be
portable and easy to use and install. For this reason, the only dependency is a modern
C++ compiler with C++11 support and the renowned C++ Boost library (headers
only). Additionally, if CUDA is installed and available, the library will attempt to
use GPU acceleration.

In this section, we offer a brief overview of the features and design considerations
in FMMTL.

3.1 Kernels

Kernels are simply function objects used to generate elements of the matrix, but
should also define the domain of the problem. The fundamental types required are
the domain of the kernel (the source_type and the target_type) and the
range of the kernel (the kernel_value_type).

In Listing 1, Vec is a statically sized abstract vector type designed to work on
multiple architectures. In addition, note the transpose method labeled optional. In
many cases, the kernel satisfies a symmetry property

K.s; t/ D T ıK.t; s/

that can be computed much more efficiently than evaluation of the kernel and may
be used to accelerate the computation in the case that the source and target sets are
the same. The library uses advanced SFINAE – Substitution Failure Is Not An Error
– compiler techniques to statically detect whether this optional method is defined at
compile time and will use it if appropriate.

1 struct MyKernel : public fmmtl::Kernel<MyKernel> {
2 typedef Vec<3,double> source_type;
3 typedef Vec<3,double> target_type;
4 typedef double kernel_value_type;
5

6 FMMTL_INLINE kernel_value_type
7 operator()(const target_type& t, const source_type& s) const {
8 return norm(s-t);
9 }

10 /** Optional transpose operation for optimization **/
11 FMMTL_INLINE kernel_value_type
12 transpose(const kernel_value_type& kts) const {
13 return kts;
14 }
15 };

Listing 1 Example kernel typedefs and members
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Fig. 1 The “algebraic
system” of hierarchical
methods is composed of
sources S , multipole
expansions M , local
expansions L, and targets T .
The S2T operation is defined
by the kernel and all other
operators may be defined by
the expansion

3.2 Expansions

An expansion is the low-rank approximation of a kernel that can be used to
accelerate the kernel matrix operations. The primary role of expansions is to declare
the type of the multipole and local objects and provide methods for transform-
ing between the source_type, target_type, multipole_type, and
local_type. All possible conversions are shown in Fig. 1.

Nearly all of the functions in an expansion are optional and their availability
is statically detected. This information can be used to determine computational
pathways and potentially choose the most efficient. Additionally, this feature is
attractive when expansions cannot define a certain operator or some traversal
algorithms do not consider some operators. For example, the two primary types
of tree-codes both use subsets of the operations shown in Fig. 1. The particle-cluster
tree-codes [3] use the S2M, M2M, and M2T operations while the cluster-particle
tree-codes use the S2L, L2L, and L2T operations. Similarly, many fast multipole
methods neglect the S2L and M2T operators while others are beginning to consider
a larger set of operations to dynamically determine the cheapest computational
pathway [1, 8, 14].

The expansion also defines a point_type which is used as the spacial
embedding of the sources and targets for clustering and hierarchical constructions.
Because source_type and target_type need only be convertible to this
point_type, they are free to be much more complicated objects. For example,
in boundary element methods, the source and target types are naturally triangles,
patches, or basis functions. These may have a spacial center that can be used for the
construction of the tree, but should remain independent entities for simplifying the
definition of the kernel function.



616 C. Cecka and S. Layton

1 struct MyExpansion : public fmmtl::Expansion<MyKernel, MyExpansion> {
2 /** Spacial type to provide an interpretation for clustering.
3 * @note source_type and target_type must be either
4 * (1) convertible to point_type, or
5 * (2) S2P and/or T2P shall be defined to provide a conversion. */
6 typedef Vec<3,double> point_type;
7

8 typedef std::vector<double> multipole_type;
9 typedef std::vector<double> local_type;

10

11 /** Optional S2M Operator **/
12 void S2M(const source_type& s, const charge_type& c,
13 const point_type& center, multipole_type& M) const {
14 // Compute M += V^T(s) * c
15 }
16 ...
17 };

Listing 2 Example expansion typedefs and members

3.3 Tree and Traversals

The lightweight tree data structure is constructed on any point_type. Depending
on the dimension D of the point_type, another compile-time constant, a D-
dimensional binary tree (D D 2 is a quadtree, D D 3 is an octree, etc) is
constructed. This is accomplished via partially sorting the points on a space-filling
curve. However, this implementation detail is hidden behind an interface that any
reasonable tree structure should provide, so alternate tree types and representations,
such as a k-d tree, can be swapped in at will. A brief interface for a tree is given in
Listing 3.

1 struct Tree {
2 struct Box {
3 unsigned index() const;
4 body_iterator body_begin() const;
5 body_iterator body_end() const;
6 box_iterator child_begin() const;
7 box_iterator child_end() const;
8 Box parent() const;
9 };

10 struct Body {
11 unsigned number() const; // Original index this body was added
12 unsigned index() const; // Index within the tree
13 };
14

15 body_iterator body_begin() const;
16 body_iterator body_end() const;
17 box_iterator box_begin(int level) const;
18 box_iterator box_end(int level) const;
19 };

Listing 3 A truncated interface for a general tree data structure
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The tree need not store the points or the expansions as other implementations
of hierarchical algorithms appear to. Instead, each box and point in the tree have
an immutable identification index that can be used to manage arbitrary data outside
of the data structure. This allows the tree structure to be lightweight and allows
a more context-aware data structure to manage source, target, and expansion data
independent of the tree.

The traversals are implemented as a dual tree traversal and are templated on the
Box type, requiring a Box to implement a small number of reasonable methods
such as those in Listing 3. The dual tree traversal is often used in tree-codes, but not
fast multipole methods. However, Yokota et al. [13] take advantage of its versatility
for hierarchical problems to generalize their codes. We would like to note that
with a sufficiently generalized MAC, the dual tree traversal can produce the same
interaction lists as the classic FMM, the adaptive UVWX schemes [12], and modern
tree-codes. We find that there are two types of MAC: static MACs which depend
only the position and size of the boxes, and dynamic MACs which depend on the
expansions or are otherwise dependent on the source and target distributions [9,13].

3.4 Optimizations

When an operator is determined to be required, the operation may be dispatched
immediately or scheduled for later use and reuse. In general, making these choices
has been an algorithmic option in the development of hierarchical methods. Recent
studies have shown that event-driven parallel runtime systems provide success in
dynamically resolving the dependencies within fast multipole methods and tree-
codes. Ltaief and Yokota [8] use QUARK to schedule threads dynamically to
accommodate the data flow of exaFMM’s dual tree traversal. Agullo et al. [1] apply
a similar approach with StarPU to their black-box FMM using parallelism on both
the CPU and the GPU. These approaches appear promising and could result in
an efficient and easier to apply parallelism strategy than a statically implemented
distributed algorithm.

FMMTL provides a generic way to implement kernels so that if a CUDA
compiler is installed and a GPU is available, the library will use the GPU to
accelerate the costly S2T computation. This requires an accumulation of interacting
source and target sets and a compression of the interaction list to a form that is
suitable for the GPU. Dynamic parallelization studies have found that the methods
benefited the most from assigning the S2T operations exclusively to the GPU [1]
due to the structured nature and high flop-to-byte ratio of S2T operations. The first
major FMMTL parallelization step of executing a generalized S2T on the GPU is
motivated by these results.
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1 MyExpansion K(...); // Expansion order, error eps, etc
2 ..
3 std::vector<source_type> s = ... // Define sources
4 std::vector<charge_type> c = ... // Define charges
5 std::vector<target_type> t = ... // Define targets
6

7 fmmtl::kernel_matrix<MyExpansion> M = K(t,s); // Construct
8 fmmtl::set_options(M, opts); // Set options
9 ...

10 std::vector<result_type> r_apprx = M * c; // FMM/Treecode
11 std::vector<result_type> r_exact = fmmtl::direct(M * c); // O(N^2)

Listing 4 A use case of a kernel matrix abstract data type

4 Usage

Providing a kernel matrix data type allows the abstraction level of our code to remain
high while retaining generality and efficiency. Integration into existing efficient
linear algebra libraries such as MKL, Eigen, and/or ViennaCL for use of solvers
and preconditioners is an attractive option. Additionally, higher level linear algebra
and computer science concepts such as submatrix blocking, lazy evaluation, and
template expressions become a possibility.

4.1 Preliminary Benchmark

While FMMTL remains relatively new and the primary focus has been on design
rather than performance, we provide preliminary results in this section to show that
the abstractions and design decisions do not significantly impact raw performance
of the algorithm.

In Fig. 2, the performance of FMMTL for the benchmark case of the Laplace
kernel (potentialCforce) with expansion order p D 8 and varying number of
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Fig. 2 Timings for the Laplace kernel (potentialCforce) showing the performance of an FMM
with expansion order p D 8 and N particles uniformly distributed in a cube. These show (left)
CPU only and (right) with GPU acceleration in S2T
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sources. The hardware used was an Intel Xeon W3670 3.2 GHz CPU and an Nvidia
GTX580 GPU. This closely follows the benchmark presented by Yokota et al. in
[14].

These results show that the performance of FMMTL for this benchmark is on
par with that of the more well-tuned ExaFMM [14]. To alleviate the dependence of
the performance on the value of Nc , the maximum number of bodies per leaf box,
similar auto-tuning procedures may be performed as suggested in [1, 13, 14], which
is made easier and more general due to the encapsulation of operators in FMMTL.
In the current state of the library, much more static information about the kernel and
expansion may be taken advantage of in the tree traversal and operator evaluation
which will be discussed in a forthcoming optimization, performance analysis, and
application study publication.

Conclusion
Reviewing the literature and codes produced for hierarchical matrix algo-
rithms reveals a large number of difficult to use and modify research codes.
In the FMMTL library, we attempt to separate out the needs of a kernel
from the needs of an expansion and isolate the tree construction and tree
traversal. By doing so, continuing research into optimal kernel expansions,
tree data structures, tree traversals, cluster interaction, and parallel computing
strategies can continue independently of one another. At the very least, by
growing a repository of kernels and expansions in a uniform format allows
research to conduct fair comparisons – a requirement that is needed in the
short-term to determine where and why to allocate research resources.

For the time being, careful design has been critical to the development of
FMMTL to ensure that dependencies between components is low. Despite
this, the serial performance is on par with hand-tuned lower-level research
codes and higher performance already possible with OpenMP and GPU
acceleration.
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Modified Pressure-Correction Projection
Methods: Open Boundary and Variable Time
Stepping

Andrea Bonito, Jean-Luc Guermond, and Sanghyun Lee

Abstract In this paper, we design and study two modifications of the first order
standard pressure increment projection scheme for the Stokes system. The first
scheme improves the existing schemes in the case of open boundary condition
by modifying the pressure increment boundary condition, thereby minimizing the
pressure boundary layer and recovering the optimal first order decay. The second
scheme allows for variable time stepping. It turns out that the straightforward
modification to variable time stepping leads to unstable schemes. The proposed
scheme is not only stable but also exhibits the optimal first order decay. Numerical
computations illustrating the theoretical estimates are provided for both new
schemes.

1 Introduction

We consider the time-dependent Stokes system on a bounded domain ˝ � R
d ,

d D 2; 3, with Lipschitz boundary @˝ and over a finite time interval Œ0; T �. For a
given force f W ˝ � Œ0; T �! R

d , the velocity u W ˝ � Œ0; T �! R
d and the pressure

p W ˝ � Œ0; T �! R are related via the following system

�@tu � 2div
�
�rSu

�Crp D f and div.u/ D 0 in ˝ � Œ0; T �; (1)

where � and � are the fluid density and viscosity of the fluid assumed to be
constant (and positive) and rS WD 1

2

�r CrT � denotes the symmetric part of the
gradient. Relations (1) is supplemented by a boundary condition either prescribing
the velocity or the force at the boundary. In order to simplify the presentation, we
consider homogeneous cases

u D 0 on @˝ � Œ0; T � (2)
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or

.2�rSu � p/� D 0 on @˝ � Œ0; T �; (3)

where � is the unit, outward pointing normal of @˝ . In addition, the initial velocity
u0 W ˝ ! R

d is prescribed, i.e. u.0; :/ WD u0. At this point, we note that the
extension to the Navier-Stokes system is treated similarly with the additional, but
well known, techniques used to cope with the additional nonlinearity.

Most projection methods are based on the original ideas of Chorin [1] and Temam
[9], see also Goda [2]. We refer to [4] for an overview of projection methods.

In this work, we obtain two different results regarding the so-called incremental
pressure correction schemes studied for instance in [3, 5–7]:

• The scheme proposed in [3] when the system is subject to open boundary condi-
tions, see (3), is suboptimal with respect to the time discretization parameter. We
propose and study a new scheme able to recover the optimal convergence rate,
see Fig. 1.

• We analyze a new scheme allowing for variable time stepping. It turns out that the
straightforward generalization of constant time stepping to variable time stepping
is unstable, see Fig. 2. To the best of our knowledge, projection schemes with
variable time stepping have not been studied in the literature. Notice however,
that no additional difficulty arises from having variable time stepping in the non-
incremental scheme setting.

Given a positive integer N , let 0 D t0 < t1 < t2 < � � � < tN D T be a
subdivision of the time interval Œ0; T � and set ıtn WD tn � tn�1. The norm in L2.˝/

is denoted by k:k0 and we equip H1.˝/ with the norm k:k1 WD
�k:k20 C kr:k20

�1=2
.

Fig. 1 Decay of different
error norms versus ıt for the
original and modified
standard pressure correction
projection method.
Suboptimal order of
convergence O.ıt 1=2/ is
observed for the standard
method while the optimal
order of convergence O.ıt/ is
recovered using the proposed
scheme
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Fig. 2 (Left) Evolution of ku.tn; :/kL2.˝/ when using the standard scheme with ıt1 D 0:025 and
ıtn given by (16). (Right) Decay of the velocity and pressure errors versus ıt and with the time
steps ıtn given by (16) when using the proposed scheme. The optimal order of convergence O.ıt/
is observed

In addition, given a sequence of function 'ıt WD f'ngNnD0, we define the following
discrete (in time) norms:

k'ıtkl2.E/ WD
 

NX

nD0
ıtnk'nk2E

!1=2

; k'ıtkl1.E/ WD max
0�n�N.k'

nkE/: (4)

for E WD L2.˝/ or H1.˝/.

2 Optimal Incremental Projection Scheme for Open
Boundary Problem

We consider the system (1) supplemented with the force condition at the bound-
ary (3) and focus on the case of uniform (constant) time steps, i.e. ıt WD T

N
D ıtn,

n D 0; � � � ; N . The case of variable time steps is discussed in Sect. 3. The approxi-
mations of u.tn; :/ and p.tn; :/, n D 0; : : : ; N , are denoted un and pn respectively.
For clarity, we also denote by �n the pressure increment approximation, i.e.

pn D pn�1 C �n: (5)

Together with the initial condition on the velocity u0 D u0, the algorithm requires
initial pressure p.0/ and we set p�1 WD p0 WD p.0/, and so �0 WD 0. We seek
recursively the velocity unC1 and the pressure pnC1 in three steps. First, given un,
�n and pn, the velocity approximation at tnC1 is given by

�
unC1 � un

ıt
�2div.�rSunC1/Cr.pnC�n/�˛rdiv

�
unC1 � un

ıt

�
D f .tnC1; :/;

(6)
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in ˝ , where ˛ � 1 is a stabilization parameter. As we shall see, the consistent
“grad-div” term is instrumental to ensure the stability of the scheme by providing a
control on k�nC1 � �nkH1.˝/, i.e. the second increment of the pressure; see (13).

Equation (6) is supplemented by the boundary condition

�
2�rSunC1 � .pn C �n/C ˛div

�
unC1 � un

ıt

��
� D 0 on @˝: (7)

The second step consist in seeking the new pressure increment approximation �nC1
as the solution to

� ıt��nC1 C ıt�nC1 D �div.unC1/ in ˝ (8)

together with the boundary condition

@

@�
�nC1 D 0 on @˝: (9)

Finally, the new pressure approximation is then given by (5).
The novelty of this projection scheme is to impose a Neuman boundary condition

on the pressure increment (and therefore on the pressure). Its aim is to reduce the
boundary layer on the pressure and improve the convergence rate. Compare with
[3] where a Dirichlet condition pnC1 D pn is proposed on the pressure. This
is at the expense of adding (i) an harmless zero order term ıt�nC1 in (8) to be
able to recover the full l2.H1.˝// norm for the pressure and (ii) the more serious
“grad-div” stabilization term in (6), which complicates the linear algebra. Notice
that the boundary condition (9) proposed here corresponds to the standard boundary
condition when the velocity is imposed at the boundary; refer to [3].

We now briefly discuss the stability and error estimates for the scheme (6)–(9).

Theorem 1 (Velocity Stability) Set f 
 0 and assume ˛ � 1, then there holds

�kuıtk2l1.L2.˝//
C 4�krSuıtk2l2.L2.˝// C ˛kdiv.uıt /k2l1.L2.˝//

C .ıt/2kpıtk2l1.H1.˝//

� �ku0k20 C ˛kdiv.u0/k20 C .ıt/2kp0k21
provided u0 2 L2.˝/d , div.u0/ 2 L2.˝/ and p0 2 H1.˝/.

Proof Multiplying (6) by 2ıtunC1 and integrating over˝ one gets after integrating
by parts and using the boundary condition (7)

�
�kunC1k20 C kunC1 � unk20 � kunk20

�C 4ıt�krSunC1k20
C ˛ �kdiv.unC1/k20 C kdiv.unC1 � un/k20 � kdiv.un/k20

�

� 2ıt
Z

˝

.pn C �n/div.unC1/dx D 0:
(10)
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The last term in the left hand side of the above relation is estimated upon
multiplying (8) by 2ıt.pn C �n/, integrating over ˝ and using the boundary
condition (9)

�2ıt
Z

˝

.pn C �n/div.unC1/dx D 2.ıt/2
Z

˝

r�nC1 � r.pn C �n/dx

C 2.ıt/2
Z

˝

�nC1.pn C �n/dx:

In view of (5), we write pn C �n D �n � �nC1 C pnC1 and realize that

�2ıt
Z

˝

.pn C �n/div.unC1/dx D .ıt/2k�nk21 � .ıt/2k�nC1 � �nk21
C .ıt/2kpnC1k21 � .ıt/2kpnk21:

(11)

It remains to derive a bound for k�nC1 � �nk1. Multiplying by �nC1 � �n the
difference of two successive relations (8) and integrating over˝ yield

ıtk�nC1 � �nk21 D �
Z

˝

div.unC1 � un/.�nC1 � �n/dx; (12)

after an integration by parts and taking advantage of the boundary condition (9).
Hence, we deduce that

ıtk�nC1 � �nk1 � kdiv.unC1 � un/k0: (13)

Gathering the estimate (13), (11) and (10), we obtain

�
�kunC1k20 C kunC1 � unk20 � kunk20

�C 4ıt�krSunC1k20
C ˛ �kdiv.unC1/k20 � kdiv.un/k20

�C .˛ � 1/kdiv.unC1 � un/k20
C .ıt/2 �kpnC1k21 � kpnk21 C k�nk21

� � 0:

The desired bound follows after summing for n D 0 to N � 1. ut
We emphasize that the above proof is closely related to the case where Dirichlet

boundary conditions are imposed on the velocity; refer for instance to [4, 8]. The
difference resides on the fact that (13) can be circumvented using an integration
by parts in (12). Hence following the techniques developed for the Dirichlet case
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together with the argumentation leading to (13) yields the optimal convergence
rates

max
nD1;:::;N ku.t

n; :/ � unkL2.˝/ C
 

NX

nD1
ıtkrS .u.tn; :/ � un/k2L2.˝/

!1=2

C ˛ max
nD1;::;N kdiv.u.tn; :/ � un/kL2.˝/ C

 
NX

nD1
ıtkp.tn/� pnk2L2.˝/

!1=2

� Cıt;

with a constant C independent of N and provided the exact velocity u and pressure
p satisfy the appropriate regularity conditions.

To illustrate the optimality of the proposed algorithm, we consider the exact
solution

u.t; x; y/ WD
�

sin.t C x/ sin.t C y/
cos.t C x/ cos.t C y/

�
; p.t; x; y/ D sin.t C x � y/

defined ˝ WD .0; 1/2. The behavior of the errors in velocity and pressure
approximations versus the time step ıt used are depicted in Fig. 1. Suboptimal order
of convergence O.ıt1=2/ is observed for the standard method while the optimal
order of convergence O.ıt/ is recovered using the proposed scheme. The space
discretization is chosen fine enough not to interfere with the time discretization
error.

3 Variable Time Stepping

We now consider variable time steps ıtn satisfying

ıtn � ıt; 1 � n � N;

for a positive constant ıt independent of n. The incremental projection scheme
with variable time stepping reads as follow. Given un, �n and pn, the velocity
approximation at tnC1 is defined by the relation

�
unC1 � un

ıtnC1
� 2div.�rSunC1/Cr.pn C .ıt/2

ıtnıtnC1
�n/ D f .tnC1; :/: in ˝

(14)

For simplicity, we consider the boundary condition u D 0 on @˝ but the techniques
presented in Sect. 2 for the open boundary condition case apply in this context as
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well. The pressure increment �nC1 solves

� .ıt/2

ıtnC1
��nC1 D ��div.unC1/ in ˝ and

@

@�
�nC1 D 0 on @˝:

(15)

Finally, the pressure is updated according to relation (5).
The standard pressure correction schemes are derived from the original velocity

prediction – projection scheme, see for instance [4]. When the same time step
value is used for the velocity prediction and correction, the factors multiplying the

increment �n in (14) and (15) becomes ıtn

ıtnC1 and ıtnC1 instead of ıt
2

ıtnıtnC1 and ıt
2

ıtnC1

as in the proposed scheme (14)–(15). This alternative is referred as the standard
scheme but we emphasize that there is no reason for the projection step to use the
velocity prediction time step as projection parameter. In fact, this choice turns out
to be numerically unstable as illustrated now. We consider the same setting as in
Sect. 2 but with variable time steps given by

ıtn D ıt1 �


1 when n is odd;
10�2 when n is even;

(16)

for different values of ıt1. In this case, we set ıt WD ıt1. Figure 2 (left) illustrates the
unstable behavior of kunkL2.˝/ for n D 0; : : : ; N when using the standard scheme
with ıt1 D 0:025. However, the l2.H1.˝// and l1.L2.˝// errors on the velocity
decay like ıt when the proposed scheme (14)–(15) is used, see Fig. 2 (right).

We now briefly discuss the stability and error estimates for the scheme (14)–(15).

Theorem 2 (Velocity Stability) Set f 
 0, and assume ıtn � ıt , n D 1; ::; N ,
then there holds

�kuıtk2l1.L2.˝//
C 4�krSuıtk2l2.L2.˝// C

1

�
.ıt/2kpıtk2l1.H1.˝//

� �ku0k20 C .ıt/2kp0k21
provided u0 2 L2.˝/d and p0 2 H1.˝/.

Proof Multiplying (14) by 2ıtnC1unC1 and integrating over ˝ one gets after
integrating by parts and using the boundary condition u D 0,

�
�kunC1k20 C kunC1 � unk20 � kunk20

�C 4ıtnC1�krSunC1k20

� 2
Z

˝

 

ıtnC1pn C .ıt/2

ıtn
�n

!

div.unC1/dx D 0:
(17)

The pressure increment relation (15) is invoked to derive a bound for the last term
in the left hand side of the above relation. More precisely, multiplying (15) by
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2.ıtnC1pn C .ıt/2

ıtn
�n/ , integrating over ˝ and using the boundary condition (9)

we realize that

� 2�
Z

˝

.ıtnC1pn C .ıt/2

ıtn
�n/div.unC1/dx

D 2.ıt/2
Z

˝

r�nC1 � rpndxC 2
Z

˝

r
 
.ıt/2

ıtnC1
�nC1

!

� r
 
.ıt/2

ıtn
�n

!

dx:

Relation (5) allows us to rewrite the right hand side of the above expression as

.ıt/2
�krpnC1k20 � krpnk20 � kr�nC1k20

�

C .ıt/4

.ıtnC1/2
kr�nC1k20 C

.ıt/4

.ıtn/2
kr�nk20 �

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
r
 
.ıt/2

ıtnC1
�nC1 � .ıt/

2

ıtn
�n

!ˇˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

0

:

Going back to (17), we get

�
�kunC1k20 C kunC1 � unk20 � kunk20

�C 4ıtnC1�krSunC1k20

C 1

�
.ıt/2

�krpnC1k20 � krpnk20
�C 1

�
.ıt/2

 
.ıt/2

.ıtnC1/2
� 1

!

kr�nC1k20

C 1

�

.ıt/4

.ıtn/2
kr�nk20 D

1

�

ˇ
ˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌r
 
.ıt/2

ıtnC1
�nC1 � .ıt/

2

ıtn
�n

!ˇˇ
ˇ
ˇ̌

ˇ
ˇ
ˇ
ˇ̌

2

0

:

The difference of two successive relations (15) together with the boundary condition
un D unC1 D 0 on @˝ guarantee that

ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ̌
ˇ
r
 
.ıt/2

ıtnC1
�nC1 � .ıt/

2

ıtn
�n

!ˇˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ̌
ˇ
0

� �kunC1 � unk0:

Hence, using the assumption ıtnC1 � ıt ,

�
�kunC1k20 � kunk20

�C 4ıtnC1�krSunC1k20 C
1

�
.ıt/2

�krpnC1k20 � krpnk20
�

C 1

�

.ıt/4

.ıtn/2
kr�nk20 � 0;

and the desired bound follows after summing for n D 0 to N � 1. ut
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Regarding the error decay we have that under the assumption ıtn � ıt , n D
1; : : : ; N , there exists a constant C independent of n and ıt such that

max
nD1;:::;N ku.t

n; :/ � unkL2.˝/ C
 

NX

nD1
ıtnku.tn; :/ � unk2

H1.˝/

!1=2

� Cıt;

provided u and p are smooth enough and ıt is sufficiently small. The proof of the
above claim is omitted but relies on the argumentations provided in the proof of
Theorem 2. In addition, we emphasize that scheme (14)–(15) does not optimize the
choice of ıtn in order to equi-distribute the time discretization errors and explain
that the decay rate is dictated by ıt (and not ıtn, n D 1; : : : ; N ). Including such
mechanism is out of the scope of this work. Moreover, the decay rate for the
l2.L2.˝// error on the pressure is still an open problem but the numerical results
provided in Fig. 2 indicate an optimal rate.
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An ALE-Based Method for Reaction-Induced
Boundary Movement Towards Clogging

Kundan Kumar, Tycho L. van Noorden, Mary F. Wheeler,
and Thomas Wick

Abstract In this study, reaction-induced boundary movements in a thin channel are
investigated. Here, precipitation-dissolution reactions taking place at the boundaries
of the channel resulting in boundary movements act as a precursor to the clogging
process. The resulting problem is a coupled flow-reactive transport process in a
time-dependent geometry. We propose an ALE-based method (ALE – arbitrary
Lagrangian-Eulerian) to perform full 2D computations. We derive a 1D model that
approximates the 2D solution by integrating over the thickness of the channel. The
boundary movements lead in the limit to clogging when the flow gets choked for a
given pressure gradient applied across the channel. Numerical tests of the full 2D
model are consulted to confirm the theory.

1 Motivation

Reactive flows are of great importance in a variety of fields including but not limited
to porous media, biomedical applications, and biofilm growth [2, 3, 6–8]. Reactive
processes such as precipitation-dissolution lead to geometry changes leading to
changes in the flow which in turn affects the transport. Hence, the resulting model
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must consider geometry changes, reactive processes, transport and flow problems in
a coupled manner. In this work, we consider flow in a thin channel where ions are
transported by flow and undergo molecular diffusion. The ions react to each other at
the boundaries of the channel leading to the deposition of the crystalline material.
We consider both the precipitation and dissolution processes as prototypes of
reactions. The particularity is in the reactions, namely, precipitation and dissolution
processes taking place at the boundaries of the channel leading to the deposition of
the crystal material.

We employ an ALE-based method (ALE – arbitrary Lagrangian-Eulerian) to
study coupled flow-transport phenomena in a time-dependent geometry. The initial
geometry is quite simple and taken to be a thin channel which is a representative
pore scale geometry. The changes in the geometry, as already stated, result from the
reactions which are themselves functions of concentration and geometry. Hence, the
time-dependent configuration remains an unknown and hence part of the solution
variable. Since full 2D computations for the channel are expensive, we consider a
1D upscaled model derived in [5]. Both the 2D model and its approximate 1D model
predict decreasing of strength of the flow as the channel progressively gets narrower.
We term the limit of the narrowing of the channel as clogging, which is consistent
with the intuitive notion.

The ALE method presented in this paper has been discussed in detail in [4]
whereas the upscaled 1D model has been derived in [5] for a different set of
boundary conditions for flow. We consider pressure boundary conditions for the flow
which allows us to investigate the choking of the flow when the channel becomes
constricted. These earlier studies did not consider the clogging process due to their
choice for the boundary conditions for the flow. Our motivation for the present
investigation stems from studying processes preceding the clogging and its effect
on the flow and transport and further being able to define both 2D and upscaled
1D equations describing the behavior of post-clogging. Consequently, this work is
a beginning in this direction.

The outline of the article is as follows: In Sect. 2, we recapitulate the underlying
partial differential equations for the thin strip. Then, in Sect. 3, we state a 1D
upscaled model. Next, the ALE method and discretization schemes for solving the
free and moving boundary problem in the thin strip are described in Sect. 4. It is
followed by Sect. 5 where clogging is discussed. Finally, in Sect. 6, the numerical
experiments are conducted for full 2D model and we conclude by commenting on
the consistence of 1D model with full 2D computations.

2 Equations

Let ˝0 be a bounded domain in R
2 representing a thin strip. The region occupied

by the flow is ˝.t/ � ˝0, the precipitate layer is described by � .t/, with the inlet
and outlet denoted by �i and �o. The geometry description in which the flow and
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Fig. 1 Schematic of a thin channel showing the geometry changes due to precipitate being formed
at the boundaries. The flow and transport takes place in˝.t/ and the reactions take place at lateral
boundaries � .t/

transport processes take place is given by:

˝.t/ WD f.x; y/ 2 R
2 j 0 � x � 1; �." � d.x; t// � y � ." � d.x; t//g;

� .t/ WD f.x; y/ 2 R
2 j 0 � x � 1; y 2 f�." � d.x; t//; ." � d.x; t//gg;

�i.t/ WD f.x; y/ 2 R
2 j x D 0; �." � d.0; t// � y � ." � d.0; t//g;

�o.t/ WD f.x; y/ 2 R
2 j x D 1; �." � d.1; t// � y � ." � d.1; t//g:

Due to the reactions at the boundaries, ˝ and the boundaries � ’s are time-
dependent. The schematic illustration for the thin strip is displayed in Fig. 1.

The flow and transport of the solutes (the ions) are described by the following
system of equations. The transport equation reads:

@t c D r � .Drc � vc/; in ˝.t/ � .0; T /;
�s@td D f .c; �sd/

p
1C .@xd/2; on � .t/ � .0; T /;

f .c; �sd/ D r.c/ � w; on � .t/ � .0; T /:
(1)

Here, the unknowns are: c.x; y; t/, concentration of the charged ions, d.x; t/ free
and moving boundary resulting due to reactions, and v.x; y; t/ the flow field. The
known physical parameters are:D > 0; diffusion constant, �s; the density of ions in
the precipitate. Equation (1)1 describes the transport of solutes due to convection
and molecular diffusion processes, whereas (1)2 describes the movement of the
boundary due to reaction term f . According to (1)3, the reaction rate f is imposed
by the following structure:

f .c; �sd/ D r.c/ � w; (2)

where r.�/ describes the precipitation part whereas w models the dissolution process.
Additionally, we assume that r.�/ W R! Œ0;1/, is monotone and locally Lipschitz
continuous in R. The usual mass-action kinetics laws governing the precipitation
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process satisfy this assumption. For the dissolution process, the rate law is given as

w 2 H.d/; where H.d/ D
8
<

:

f0g; if d < 0;

Œ0; 1�; if d D 0;
f1g; if d > 0:

(3)

The flow equations read:

Continuity: r � v D 0; in ˝.t/ � .0; T /;
Momentum: �f v � rv D r � ��f .rvC .rv/T /

� � rp; in ˝.t/ � .0; T /;
(4)

where p is the pressure field and �f D �f �f is the dynamic viscosity. The flow
and transport equations are complemented by the initial and boundary conditions.
The initial conditions read:

c.x; y; 0/ D co; d.x; 0/ D do: (5)

The boundary conditions read:

c D cb; p.0; y; t/ D 1; on �i .t/ � .0; T /;
@xc D 0; p.L; y; t/ D 0; on �o.t/ � .0; T /;
v D 0; � � .�Drc/p1C .@xd/2 D @td.�s � c/ on � .t/ � .0; T /:

(6)

As stated above, at the inlet and outlet, we prescribe the pressures and further impose
that the flow takes place normal to the boundaries.

3 A 1D Averaged Model

An upscaled model is obtained by integrating the equations in the y-direction. We
consider a sequence of problems depending upon the thickness of strip " and using
formal asymptotic expansions, the unknowns are assumed to be of the form

z" D z0 C "z1 CO."2/;

with z" denoting any of c"; d "; v". Following the procedure in [5], the following
upscaled equations are derived

@xv0 D 0; v0 � .1�d0/3
3�

@xP0 D 0;

@t ..1 � d0/c0/C @t .�sd0/ D @x .D.1 � d0/@xc0/ � @x.v0c0/;
@t d0 � f .u0; �sd0/ D 0:

(7)
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As our interest is in the case of closing of the channel, the above system of equations
degenerates as d0 ! 1. In this work, we consider only the flow equations, that
is, (7)1. The limit case for the reactive transport will be treated in future studies.

4 ALE Based Method for Full Thin-Strip Computations
and Discretization

The moving boundary problem is computed with the help of the arbitrary
Lagrangian-Eulerian (ALE) approach that is mostly well-known from fluid-
structure interaction computations. Here, rather than computing the equations
on the physical mesh (bottom figure in Fig. 2), the equations are solved on a
reference mesh (top figure in Fig. 2) by transforming them with the ALE-mapping.
The discretization is based on Rothe’s method: first in time and than in space. A
one-step- scheme is employed for temporal discretization and a Galerkin finite
element method for spatial discretization including local mesh refinement with
hanging nodes. Since we are solving the incompressible Navier-Stokes equations
and due to the ALE-mapping, we deal with a nonlinear system of equations, which
is solved in a monolithic fashion. The linear equations are treated with a direct
solver. Rather than providing all necessary information and all important references
of this section, we would like to refer the friendly reader to [4], where all details are
given. The discretization is realized with the multiphysics template [10] based on
the finite element software deal.II [1].

Fig. 2 Initial (and also the reference) mesh and the deformed mesh at end time step T D 14.
Local mesh refinement with hanging nodes is used in the middle of the channel
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5 Clogging of the Channel

When the channel starts getting narrower, the flow profile alters because of changing
geometry. However, as the channel starts getting clogged, the flow is expected to
decrease and eventually, the channel should be closed. For the upscaled model,
following calculations show that the flow becomes zero as the channel closes.
Using (7)1

@x.
.1 � d0/3
3�

@xP0/ D 0; leading to
.1 � d0/3
3�

@xP0 D C;

and hence,

P0.x; t/ D
Z 1

x

C

.1 � d0.�; t//3 d�;

where C is obtained by using the boundary conditions for P0,

v0.t/ D C.t/ D

Z 1

0

1

.1 � d0.�; t//3 d�
��1

: (8)

Now considering (8), formally, one sees that the integral is dominated by the regions
where 1 � d0 is small and the flow v0.t/ decreases as .1 � d0/3. Hence, wherever
locally d0 ! 1, we get that the flow in the channel tends to zero, allowing us to
conclude that in the limit (clogging), the flow becomes zero. Since the 2D model is
quite complicated, an analytical treatment is rather difficult. We resort to numerical
computations to study this process in the following section.

6 Numerical Tests

We conduct numerical tests using the full 2D model and study the pressure and flow
profiles. These 2D tests are based on the second numerical example presented in [4].
Specifically, we have a right-hand side force function (representing an analytical
expression for a point source)

f .x; y/ D a exp.�b.x � xm/2 � c.y � ym/2/;

where a D 1;000; b D c D 100 and xm D 0:5; ym D 0:05, representing a
source with maximum strength at .xm; ym/ and having an exponential decay and
causing the precipitation in the middle of the thin channel ˝ WD Œ0; 1� � Œ0; 0:1�.
All material parameters and geometry information are described in the previously
mentioned article [4]. In contrast, the flow is now driven by pressure difference such
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that we have p D 1 on the inflow (left boundary) and p D 0 at the right (outflow)
boundary. The initial concentration is c D 1 for all x 2 ˝ . In addition, we prescribe
c D 0 at the left boundary. The goal of our present study is now different from
[4]. We are specifically interested in the pressure behavior along the x-axis and the
validity of approximating the behavior through the lower-dimensional lubrication
equation (7)1.

Figure 3 shows the pressure and the pressure gradient at T D 14 when the
channel has closed by 	92%. Furthermore, the two bottom figures show w2@xp
(w is the width of flow domain) and the vx velocity with respect to time. The choice
of this scaling w2 is motivated by considering (7)1; since the total flow follows the
cubic law, the average flow obeys a square law. For the 2D model, achieving the
limit is not possible since the mesh will degenerate as the channel is closed. (This
drawback in the numerics is investigated in terms of a nonstandard fluid-structure
interaction framework in [9]). However, the amount of channel constriction is pretty
close to the process of clogging. The profile shows that the pressure gradients
are blowing up as the channel gets smaller. However, when this is weighted with
2." � d/2, that is with square of the opening width of the channel, the resulting
quantity goes to zero. This quantity is proportional to the flow and showing similar
behavior as displayed in Fig. 3. This suggests that the flow strength vanishes as the
channel progressively gets clogged. This is consistent with the case of upscaled
model. Figure 4 displays the plot of concentration for two different times.
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Fig. 3 Results of the 2D numerical simulation: Profiles at final time T D 14 for the pressure,
its gradient, and the key observation quantity @xpw2 shown in the first three figures. Each of the
quantities of interest is computed on a sequence of three locally refined meshes to have numerical
evidence of convergence. In the final figure, the velocity component in normal flow direction
integrated over the cross section is shown on the finest mesh for the inlet and the middle (narrow
part of the channel)
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Fig. 4 Results of the 2D numerical simulation: Concentration at the first time step and the end
time step T D 14. At the initial time, the concentration is c D 1 in the whole channel. Starting the
simulation, c D 0 is applied at the inlet boundary and the source term f increases the concentration
in the middle

Conclusion
In this work, we investigated a coupled flow-reactive transport model in a
time-dependent thin channel where the geometry changes are induced by
reactive boundary conditions. The 2D model is solved using an ALE-based
method. A pressure gradient is applied across the channel and as the channel
gets constricted, the flow strength diminishes so that in the limit we get no-
flow across the channel. The approximating 1D model can be analytically
studied and formal arguments are employed to obtain the same observations.
The study highlights that a local clogging leads to the closing (in the sense
of flow) of the channel. In addition, this study provides some hints that the
derived 1D upscaled model with appropriate boundary conditions will allow
us to capture the clogging phenomenon and continue the solution thereafter.
The findings of this work serve as precursor for future studies of post-clogging
processes.
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discussions.
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A Unified Approach for Computing Tsunami,
Waves, Floods, and Landslides

Alexander Danilov, Kirill Nikitin, Maxim Olshanskii, Kirill Terekhov,
and Yuri Vassilevski

Abstract The prediction of large-scale hydrodynamic events such as tsunami
spread and run-up, dam break, flood, or landslide run-out is a challenging and
important problem of applied mathematics and scientific computing. The paper
presents a computational approach based on free surface flow models for fluids
of complex rheology to simulate such events and phenomena with detail and pre-
diction confidence typically not achievable by simplified models. Using nonlinear
defining relations for stress and rate of strain tensors allows a unified approach
to simulate events described by both the Newtonian model (tsunami, dam break)
and non-Newtonian models (landslide, snow avalanches, lava flood, mud flow). The
computational efficiency of the numerical approach owes to the level-set method for
free surface capturing and to an accurate and stable FV/FD method on dynamically
adapted octree meshes for discretization of flow and level set equations. In this paper
we briefly describe the numerical method and present results of several simulations
of hydrodynamic events: a dam break, a landslide and tsunami spread and run-up.

1 Introduction

Numerical simulations became a standard tool for the study and prediction of
disasters and events involving water and mud flows, landslides, avalanches and other
phenomena described by equations of continuous medium. Since the computational
complexity of full-scale simulations of such events is highly demanding for com-
puter resources, it is common to describe phenomena by reduced-order approaches,
for example, based on 2D and even 1D equations and simplified rheological models.
A few examples are the use of the shallow water equations [14, 19] to simulate the
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spread of tsunami or modified hydrodynamics equations to compute landslide and
debris flows [5].

In this paper, we describe a computational approach that allows one to simulate
many of complex hydrodynamic events using fewer simplifying assumptions to
describe the physics of flows and accounting for their three-dimensional nature
and real environment. Instead of models based on shallow water theory or other
approaches using simplified physics, we use the full system of incompressible
Navier-Stokes equations for flows with free surface. The necessary model order
reduction is performed on the numerical method stage of simulations and is
essentially due to the use of accurate discretization schemes on dynamically adapted
octree meshes. The phenomenological diversity of the processes we are interested
in is accounted by the choice of proper nonlinear relations between the stress and
the strain rate tensors. We consider both Newtonian model to describe dam break
and ocean tsunami flows and viscoplastic Hershel-Bulkley model for landslides.
However, the developed numerical technology makes it easy for a researcher to
incorporate different, even more complicated, defining relations.

In all flows considered here, finding free surface dynamics is critical. To capture
the free surface evolution, we apply the level set method [17]. We discretize flow and
level set equations using octree meshes. Discretizations on octree meshes benefit
from their regular orthogonal structure on one hand and the embedded hierarchy on
the other hand, which make the reconstruction and adaptation process as well as
data access fast and easy. Nowadays such grids are widely used in simulations and
visualization, see, e.g., [6, 8, 9, 11, 15, 18]. However, building accurate and stable
discretizations on such grids is a challenging task. For the fluid equations we use
the second order accurate finite difference/finite volume method with compact nodal
stencils developed in [12]. This method is a stable extension of the classical MAC
scheme on octree meshes. Semi-Lagrangian particle level set method [13] is used to
solve the transport equation for the level set function. To integrate in time, we apply
a second order splitting scheme of Chorin type. This scheme decouples one time
step on convection, diffusion and plasticity, pressure correction, and the level set
function advection substeps. Numerical stability and accuracy of the whole method
were verified for the case of Newtonian flows in [10, 12] by computing analytical
solutions and benchmark flows in a cubic cavity and over a 3D cylinder. Computed
results for a collapsing water column perfectly match available experimental data.
The efficiency of the approach for non-Newtonian flows was accessed in [11, 18],
where the flow of Hershel-Bulkley fluid from a reservoir over inclined planes was
computed and compared to documented experimental results with Carbopol Ultrez
10 gel. These results let us believe that the entire approach is computationally
efficient, highly predictive and thus it is a reliable tool for simulation of large-scale
hydrodynamic events.

The remainder of the paper is organized as follows. The mathematical model
is given in Sect. 2. In Sect. 3, we sketch the basics of the numerical approach.
In Sect. 4, we discuss our approach to the topography-specific design of the
computational domain. Section 5 presents results of numerical simulations of three
hypothetical scenarios: the break of the Sayano-Shushenskaya dam, landslide in
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the Sayan mountains and tsunami run-up in the Bay of Bengal. The computations
were done using real topography and bathymetry. It is remarkable that such different
natural disaster scenarios can be simulated in a unified framework of computational
non-Newtonian fluid dynamics.

2 Mathematical Model

Conservation of mass and momentum for an incompressible viscous fluid leads to
the Navier-Stokes equations for the unknown velocity field u and stress tensor 
:

8
<̂

:̂

�

�
@u
@t
C .u � r/u

�
� div 
 D f

r � u D 0
in ˝.t/; (1)

where f are given mass forces,˝.t/ 2 R
3 is a spatial domain occupied by fluid and

dependent on time, � is the density. For the strain rate tensor Du D 1
2
ŒruC .ru/T �

and the stress tensor we consider the Hershel-Bulkley defining relations [3]:


 D �p IC �K jDujn�1 C �s jDuj�1�Du , j
j > �s;
Du D 0 , j
j � �s;

(2)

where K is the consistency parameter, �s is the yield stress parameter, n is the fluid
index, p is the pressure. Newtonian flows correspond to the choice �s D 0, n D 1.
In computations we use a regularized model [11, 18].

A volume occupied by fluid and the velocity field at t D 0 are assumed to be
given:

˝.0/ D ˝0; ujtD0 D u0: (3)

Finding ˝.t/ for t > 0 is a part of the problem which is solved together with
Eqs. (1). To formulate this more precisely, let us divide the boundary of the whole
volume into the static boundary �D (for instance, the rigid walls or the bottom of
a bassin) and the free boundary � .t/ (in practice it usually models an interface
between fluid and air), i.e. @˝.t/ D �D [ � .t/. Generally speaking, the boundary
@˝.t/ depends on time.

We assume the non-penetration condition on �D and, depending on a physical
setup, the no-slip or slip with friction conditions. The free boundary evolves with
the normal velocity of fluid, which can be written as the kinematic condition

v� D u � n� ;
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where n� is the outer unit normal to the surface � .t/, v� is the normal velocity of
the surface � .t/. Normal stresses on the free surface are balanced by the surface
tension forces. This leads to the boundary condition


n� D &�n� � pextn� on � .t/; (4)

where � is the sum of the principal curvatures of the surface, & is the surface tension
coefficient, pext is the external pressure. If the surface tension forces are not taken
into account, we may assume & D 0.

In order to find the position of the free boundary at each time moment we use
the implicit definition of � .t/ as the zero level set of the globally defined indicator
function �.t; x/ instead of the kinematic condition

�.t; x/ D

8
ˆ̂
<

ˆ̂
:

< 0 if x 2 ˝.t/
> 0 if x 2 R

3 n˝.t/
D 0 if x 2 � .t/

for all t 2 Œ0; T �:

The function � is called the level set function. The level set function satisfies the
following transport equation [13]:

@�

@t
C Qu � r� D 0 in R

3 � .0; T �; (5)

where Qu is the fluid velocity field extended outside˝.t/. Initial condition (3) is used
to define �.0; x/. One can impose the additional restriction

jr�j D 1 (6)

onto the level set function to ensure numerical stability, i.e. � is the signed distance
function. Given �, the outer normal and the curvature of the free boundary can be
calculated from n� D r�=jr�j, � D r � n� .

The mathematical model used in our calculations consists of Eqs. (1)–(6) and
appropriate boundary conditions on static boundaries.

3 Numerical Method

For the numerical time integration of (1)–(5) we use a second order splitting scheme
of Chorin type with the BDF2 approximation of time derivative. For some given
u.t/, p.t/, �.t/ at time t , one time step consists in finding u.t C �t/, p.t C �t/,
�.t C�t/, where �t is a time increment. This is done in few substeps. First, using
the second order semi-Lagrangian method [16], we integrate back in time the level
set transport equation (5) along characteristics interpolated from previous time steps.
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At this step we find the new volume occupied by a fluid, ˝.t/ ! ˝.t C �t/.
Approximation errors may lead to a non-physical loss or gain of fluid volume,
i.e. j˝.t/j ¤ j˝.t C �t/j even in the absence of sources or sinks. To reduce
this loss/gain of volume, we use the grid adaptation towards the free surface and
the particle method [13]. This enhances the conservation properties of the semi-
Lagrangian method significantly. If a further correction is still needed, one solves
for ı the equation

measfx W �.x/ � ıg D Volreference

and correct �new D � � ı. The above equation is solved for ı by the secant method
for root finding and Monte-Carlo method to approximate measfx W �.x/ < ıg.
For stability reasons, the substep is accomplished be the re-initialization of �new

such that (6) holds, see [10, 11]. After ˝.t C �t/ is found, we rebuild the octree
mesh and re-interpolate all unknowns to the new mesh. If an extension of velocity
(or pressure) to the exterior of ˝.t/ is needed during the stages of re-interpolation
or numerical integration of (5), then we perform the extension of unknowns along
normals to free surface, i.e. the extension of velocity field satisfies .r�/ �ru.t/ D 0
in the exterior of ˝.t/.

Further, one finds new values of hydrodynamic variables in ˝.t C �t/:
fu.t/; p.t/g ! fu.t C �t/; p.t C �t/g. This is done in the following substeps:
(i) The convective terms are approximated using the second order accurate compact
upwind method on octree grids from [12] and the momentum equation is solved
for an intermediate velocity, while the plasticity terms are treated explicitly [11];
(ii) The intermediate velocity field is projected onto the subspace of discrete
divergence free functions and the pressure is updated by the solution of the discrete
Poisson equation.

The time step is variable and controlled by a CFL type condition.

4 Design of Computational Domain

We use the Google SketchUp tool to generate a polygonal approximation of the
earth surface and facilities on it in the area of interest. Depending on the problem
the topographic data can be obtained from the Shuttle Radar Topography Mission
(NASA), or the Google Maps, or the Google Earth projects. Ocean bathymetry can
be retrieved from ETOPO data. As an example, the left picture of Fig. 1 shows the
modeled ‘broken’ dam in a real life topography of Sayan mountains and Yenisei
river. The scene of a rocky bay in the right picture is purely hand-made.
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Fig. 1 Design of the computational domain using Google SketchUp software: environment of a
dam (left), a rocky bay (right)

5 Simulation of Hydrodynamic Events

In this section all variables are dimensional and given in the SI system.
First we present the results of simulations of the break of the Sayano-

Shushenskaya dam. The calculations presented do not necessarily show any actual
or feasible scenario for this hydro power plant. Rather, they show that with the
present approach a prediction is practically possible, if more detailed geophysical
data for the riverside area and the dam conditions are supplied. The computational
domain and the part of the dam simulated as ‘broken’ are shown in green in Fig. 2
(left). The maximal number of active cells in the computational octree meshes was
about 520,000. The water rise levels at given points are shown as graphs in Fig. 2
(right). The steplike graphs of the water level reflect the appearance of waves which
are clearly seen on animation available from [4].

Next, we simulate a rock landslide on the right-bank slope near the same dam.
Due to the absence of the rheological data for the considered slope, we adopted
the coefficients K , �s , n of the Hershel-Bulkley model from [1] measured for rock
landslides in the south of Italy. Figure 3 (left) shows the top view of the landslide at
intermediate time moment and the velocities of the fluid. The graph of the maximal
pressure acting on the dam structures at the place of landslide is given in Fig. 3
(right). The maximal number of cells in the computational meshes approached
560,000.

Finally, we simulate a tsunami run-up in two stages. At the first stage we solve
the shallow water equations [19] for horizontal velocity components and water level
defined in the World Ocean. The solution is based on the mixed finite element
method [2] on unstructured triangulation of the World Ocean and the fractional time
stepping scheme [7]. At the second stage, when the tsunami wave approaches the
shore, we adopt the elevation and horizontal velocity in the boundary conditions of
the 3D free surface flow model presented in Sect. 2.

Figure 4 (left) demonstrates the tsunami wave elevation in 100 min after a
hypothetical earthquake with epicenter at 9ı400 north latitude and 92ı300 east
longitude. The epicenter is located in seismically active region between Andaman
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Fig. 2 Left: Mesh representation of the dam and the surrounding area. The monitoring of the
water level variation is performed in the marked points. Right: Dependence of water level on time
at points P1–P4

Fig. 3 Left: Migration of the landslide at time moment t D 100 s. Right: The pressure experienced
by the dam at the place of the landslide

Fig. 4 Left: Tsunami elevation in 100 min after an earthquake in the Bay of Bengal. Right:
Tsunami run-up in a bay with rocky relief

and Nicobar islands in the Bay of Bengal. The colored field of ocean elevation
is superposed on the Google Earth images of the Bay of Bengal. The features of
tsunami run-up depend on the ocean bed and the terrain. The terrain shown in
Fig. 1 (right) is capable to produce wave breaking, which is dangerous for boats
and facilities, see Fig. 4 (right). Development and breaking of waves in the run-up
can be inspected in [4].
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Formulation of the Navier-Stokes Equations
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Abstract Least-squares finite element methods are motivated, beside others, by
the fact that in contrast to standard mixed finite element methods, the choice of
the finite element spaces is not subject to the LBB stability condition and the
corresponding discrete linear system is symmetric and positive definite. We intend
to benefit from these two positive attractive features, on one hand, to use different
types of elements representing the physics as for instance the jump in the pressure
for multiphase flow and mass conservation and, on the other hand, to show the
flexibility of the geometric multigrid methods to handle efficiently the resulting
linear systems. With the aim to develop a solver for non-Newtonian problems,
we introduce the stress as a new variable to recast the Navier-Stokes equations
into first order systems of equations. We numerically solve S-V-P, Stress-Velocity-
Pressure, formulation of the incompressible Navier-Stokes equations based on the
least-squares principles using different types of finite elements of low as well as
higher order. For the discrete systems, we use a conjugate gradient (CG) solver
accelerated with a geometric multigrid preconditioner. In addition, we employ a
Krylov space smoother which allows a parameter-free smoothing. Combining this
linear solver with the Newton linearization results in a robust and efficient solver.
We analyze the application of this general approach, of using different types of
finite elements, and the efficiency of the solver, geometric multigrid, throughout the
solution of the prototypical benchmark configuration ‘flow around cylinder’.
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1 Introduction

Least-Squares FEM (LSFEM) is generally motivated by the desire to recover the
advantageous features of Rayleigh-Ritz methods, as for instance, the choice of
the approximation spaces is free from discrete compatibility conditions and the
corresponding discrete system is symmetric and positive definite [1].

In this paper, we solve the incompressible Navier-Stokes (NS) equations with
LSFEM. Direct application of the LSFEM to the second-order NS equations
requires the use of quite impractical C1 finite elements [1]. Therefore, we introduce
the stress as a new variable, on one hand to recast the Navier-Stokes equations to a
first-order system of equations, and on the other hand to develop the basic solver for
non-newtonian problems, i.e. the stress-velocity-pressure (S-V-P) formulation.

The resulting LSFEM system is symmetric and positive definite [1]. This permits
the use of the conjugate gradient (CG) method and efficient multigrid solvers
for the solution of the discrete system. In order to improve the efficiency of the
solution method, the multigrid and the Krylov subspace method, here CG, can be
combined with two different strategies. The first strategy is to use the multigrid as
a preconditioner for the Krylov method [2]. The advantage of this scheme is that
the Krylov method reduces the error in eigenmodes that are not being effectively
reduced by multigrid. The second strategy is to employ Krylov preconditions
methods as multigrid smoother. The Krylov methods appropriately determine the
size of the solution updates at each smoothing step. This leads to smoothing sweeps
which, in contrast to the standard SOR or Jacobi smoothing, are free from predefined
damping parameters.

We develop a geometric multigrid solver as a preconditioner for the CG (MPCG)
iterations to solve the S-V-P system with LSFEM. The MPCG solver has been first
introduced and successfully used by the authors for the solution of the vorticity-
based Navier-Stokes equations [4]. We use a CG pre/post-smoother to obtain
efficient and parameter-free smoothing sweeps. We demonstrate a robust and grid
independent behavior for the solution of different flow problems with both bilinear
and biquadratic finite elements. Moreover, we show through the ‘flow around
cylinder’ benchmark that accurate results can be obtained with LSFEM provided
that higher order finite elements are used.

Therefore, the paper is organized as follows: in the next section we introduce
the incompressible NS equations, the Newton linearization, the continuous and
the discrete least-square principles with their properties and the designed LSFEM
solver. In the third section, we present the general MPCG solver settings and
the detailed results of the flow parameters in the ‘flow around cylinder’ problem.
Finally, we give a conclusion and an outlook in the last section.
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2 LSFEM for the Navier-Stokes Equations

The incompressible NS equations for a stationary flow are given by

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

u � ruCrp � �4u D f in ˝

r � u D 0 in ˝

u D gD on �D

n � � D gN on �N

(1)

where ˝ � R
2 is a bounded domain, p is the normalized pressure p D P=�, � D

�=� is the kinematic viscosity, f is the source term, gD is the value of the Dirichlet
boundary conditions on the Dirichlet boundary�D , gN is the prescribed traction on
the Neumann boundary � N , n is the outward unit normal on the boundary, � is the
stress tensor and � D �D [ �N and �D \ �N D ;. The kinematic viscosity and
the density of the fluid are assumed to be constant. The first equation in (1) is the
momentum equation where velocities u D Œu ; v�T and pressure p are the unknowns
and the second equation represents the continuity equation.

2.1 First-Order Stress-Velocity-Pressure System

The straightforward application of the LSFEM to the second-order NS equations
requiresC1 finite elements [1]. To avoid the practical difficulties in the implementa-
tion of such FEM, we first recast the second-order equation to a system of first-order
equations. Another important reason for not using the straightforward LSFEM is
that the resulting system matrix will be ill-conditioned.

To derive the S-V-P formulation, the Cauchy stress, � , is introduced as a new
variable

� D 2�D.u/ � pI (2)

where 2D WD rCrT . Using the NS equations and the stress equation (2) we obtain
the first-order Stress-Velocity-Pressure (S-V-P) system of equations

8
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

u � ru � r � � D f in ˝

r � u D 0 in ˝

� C pI � 2�D.u/ D 0 in ˝

u D gD on �D

n � � D gN on �N

(3)
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2.2 Continuous Least-Squares Principle

We introduce the spaces of admissible functions based on the residuals of the first-
order system (3)

V WDH.div;˝/\Hs.˝/ �H1
gD;D

.˝/ �L20.˝/ (4)

and we define the S-V-P least-squares energy functional in the L2-norm

J .� ;u; pIf / D1
2

�Z

˝

j� C pI � 2�D.u/j2 d˝

C
Z

˝

jr � uj2 d˝ C
Z

˝

ju � ruCr � � � f j2 d˝

C
Z

�N

jn � � � gN j2 ds
�

8.� ;u; p/ 2 V
(5)

where we have assumed extra regularity for the stress to define the functional on
the boundary �N in L2.�N /. The minimization problem associated with the least-
squares functional in (5) is to find Qu 2 V , Qu WD .� ;u; p/, such that

Qu D argmin
Qv2V

J .QvIf / (6)

2.3 Newton Linearization

The S-V-P system (3) is nonlinear, due to the presence of the convective term, u�ru,
in the momentum equation. Let R denote the residuals for the S-V-P system (3).
We use the Newton method to approximate the nonlinear residuals. The nonlinear
iteration is updated with the correction ı Qu, QukC1 D Quk C ı Qu. Then, the Newton
linearization gives the following approximation for the residuals:

R. QukC1/ DR. Quk C ı Qu/

'R. Quk/C
"
@R. Quk/
@x

#

ı Qu
(7)

Using the least-squares principle, the resulting quadratic linearized functional, L ,
is given in terms of L2-norms as:

L .uk I ı Qu/ D 1

2

Z

˝

ˇ
ˇ
ˇ
ˇ̌R. Quk/C

"
@R. Quk/
@x

#

ı Qu
ˇ
ˇ
ˇ
ˇ̌

2

d˝ (8)
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where we omitted the residual on the Neumann boundary for alluding briefly the
main points. Minimizing the quadratic linearized functional (8) is equivalent to find
ı Qu such that:

Z

˝

 

R. Quk/C
"
@R. Quk/
@x

#

ı Qu
!

�
 "

@R. Quk/
@x

#

Qv
!

d˝ D 0 8Qv (9)

In the operator form, let A and F defined as follows:

A . Quk/ WD
"
@R. Quk/
@x

#� "
@R. Quk/
@x

#

; F . Quk/ WD �
"
@R. Quk/
@x

#�
R. Quk/:

(10)

Then, the linear system to solve at each nonlinear iteration is:

A . Quk/ı Qu D F . Quk/ (11)

The resulting Newton iteration for the least-squares formulation is given as follows:

QukC1 D Quk �
 "

@R. Quk/
@x

#� "
@R. Quk/
@x

#!�1 "
@R. Quk/
@x

#�
R. Quk/ (12)

2.4 Variational Formulation

The variational formulation problem based on the optimality condition of the
minimization problem (6), considering the Newton Linearization in Sect. 2.3, reads



Find .� ;u; p/ 2 V s:t:

hA .� ;u; p/; .
; v; q/i D F .
; v; q/
(13)

where A is the bilinear form defined on V � V ! R as follows

˝
A .� k;uk; pk/.� ;u; p/; .
; v; q/

˛ D
Z

˝

�
� C pI � 2�D.u/

� W�
 C qI � 2�D.v/
�
d˝

C
Z

�N

�
n � � � � �n � 
� ds C

Z

˝

�r � u� �r � v� d˝

C
Z

˝

�
u � ruk C uk � ruCr � � � � �v � ruk C uk � rvCr � 
� d˝

(14)
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and the bilinear form F is defined on V ! R as follows:

F .� k;uk; pk/.
; v; q/ D
Z

˝

�
@R.� k;uk; pk/

@x
.
; v; q/

�
�
�
R.� k;uk; pk/

�
d˝

(15)

2.5 Operator Form of the Problem

To analyze the properties of the least-squares problem, let us write the bilinear
form (14) as in (10). Then, the S-V-P operator reads:

A .� ;u; p/ D

@R.� ;u; p/

@x

�
�

@R.� ;u; p/

@x

�

D
0

@
I � rr � Cn�N n�N � �2�D � rC.u/ I

2�r � CC�.u/r� �4�2r � D � rr � CC�.u/C.u/ 2�r�
I �2�D I

1

A

(16)

Here, the term C.u/ is defined as follows:

C.u/v D v � ruC u � rv (17)

The resulting matrix, from Eqs. (16), is symmetric and positive definite. So, after
discretization, we are able to use the CG method to efficiently solve the system of
equations. Our aim is to design an efficient solver which exploits the properties of
the least-squares system with respect to both the CG and the multigrid methods.
Therefore, we use CG as the main solver and accelerate it with the multigrid
preconditioning.

2.6 Discrete Least-Squares Principle

Let the bounded domain˝ � R
d be partitioned by a grid Th consisting of elements

K 2 Th which are assumed to be open quadrilaterals or hexahedrons such that
˝ D int

�S
K2Th K

�
. Furthermore, let H1;h.˝/, Hs;h.˝/, and H div;h.˝/ denote

the spaces of elementwise H1, Hs , andH.div/ functions with respect to Th [3].
Now, we turn to the approximation of the problem (13) with the finite element

method. So, we introduce the approximation spaces V h such that

V h � Hdiv;h.˝/\Hs;h.˝/ �H1;h
gD;D

.˝/ �L20.˝/ (18)



Newton-Multigrid Least-Squares FEM 657

and we consider the approximated problems



Find .� h;uh; ph/ 2 V h s:t:

hA h.� ;u; p/; .
h; vh; qh/i D F h.
h; vh; qh/
(19)

where A h is an approximate bilinear form of (14) defined on V h � V h ! R.
The least-squares formulation allows a free choice of FE spaces [1]. So, we

are able to use different combinations of FE approximations, as for instance,
discontinuous P dc

0 , P dc
1 , H1-nonconforming QQ1 and QQ2, H1-conforming Q1 and

Q2, or from H.div/. Here we use different combinations of finite element spaces
allowing better comparison with the standard mixed finite element for velocity and
pressure. Therefore, we set V h � V , and A h D A .

2.7 MPCG Solver

The discrete linear system of equations resulting from the least-squares finite
element method (16) has a symmetric and positive definite (SPD) coefficient matrix
i.e.

A D
0

@
A�� A�u A�p
A�u Auu Aup

A�p Aup App

1

A (20)

Therefore, it is appropriate to take full advantage of the symmetric positive
definiteness by using solvers specially designed for such systems. In addition,
the resulting system matrix is sparse due to the properties of the interpolation
functions used in the finite element discretization. Our main focus is on the iterative
solvers. We specifically employ the conjugate gradient method as a Krylov subspace
solver suitable for the SPD systems. In addition, we use multigrid method as a
highly efficient defect correction scheme for sparse linear systems arising in the
discretization of (elliptic) partial differential equations [4].

3 Numerical Results and Discussions

We investigate the performance of the MPCG solver for the system (20) for a
wide range of parameters, using the benchmarks quantities drag, lift, pressure drop,
and the Global Mass Conservation (GMC) (see [4]). Moreover, we analyze the
performance of the MPCG solver for the solution of the S-V-P. Figure 1 shows
the computational mesh of the coarsest level.
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Fig. 1 Flow around cylinder: computational grid on level 1

Table 1 S-V-P Formulation: Benchmark quantities for flow around cylinder at Re D 20

Level d.o.f. CD CL 4p GMCjxD2:2 NL=MG

Q1=Q1=Q1 4 135,024 5.1716353 0.0210522 0.0103135 1.114501 7/19
5 535,776 5.4440131 0.0142939 0.1117922 0.299773 7/17
6 2,134,464 5.5415463 0.0117584 0.1152451 0.077866 7/17

Q2=Q2=Q2 3 135,024 5.5588883 0.0101360 0.1165546 0.022791 6/12
4 535,776 5.5769755 0.0105355 0.1173265 0.003022 6/12
5 2,134,464 5.5792424 0.0106064 0.1174766 0.000556 6/12

Q2=Q2=P
dc
1 3 129,128 5.5586141 0.0101405 0.1168068 0.0320698 6/13

4 512,912 5.5769573 0.0105351 0.1173867 0.0039341 6/13
5 2,044,448 5.5792414 0.1060618 0.1174911 0.0004692 6/13

Ref.: CD D 5:57953523384; CL D 0:010618948146;4p D 0:11752016697

We present the drag and the lift coefficients, the pressure drop across the cylinder,
and the GMCjxD2:2 values at the outflow (x D 2:2) at Reynolds number Re D 20

for the S-V-P formulation in Table 1 which also shows the number of nonlinear
iterations and the corresponding averaged linear solver (MPCG solver) iterations
for different levels.

Using higher order finite elements, the method shows excellent convergence
towards the reference solution. We observe a grid-independent convergence
behavior.

4 Summary

We presented a numerical study regarding the accuracy and the efficiency of
least-squares finite element formulation of the incompressible Navier-Stokes equa-
tions. The first-order system is introduced using the stress, velocity, and pressure,
known as the S-V-P formulation. We investigated different finite element spaces
of higher and low order. Using the Newton scheme, the linearization is performed
on the continuous operators. Then, the least-squares minimization is applied.
The resulting linear system is solved using an extended multigrid-preconditioned
conjugate gradient solver. The flow accuracy and the mass conservation of the
LSFEM formulations are investigated using the incompressible steady-state laminar
‘flow around cylinder’ problem.
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On the accuracy aspect, we have shown that highly accurate results can be
obtained with higher order finite elements. More importantly, we have obtained
more accurate results with the higher-order finite elements with less number of
degrees of freedom as compared to the lower-order elements. This obviously
amounts to less computational costs. On the efficiency aspect, we have shown that
the MPCG solver performs efficiently for LSFEM formulation.

Having the basic S-V-P LSFEM solver, our main objective is the investigation
of generalized Newtonian fluids with the nonlinearity due to the stress � D
2�. P	/D .u/ � pI, and multiphase flow problems with the jump in the stress and
discontinuous pressure.
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Compressible Flows of Viscous Fluid in 3D
Channel

Petra Pořízková, Karel Kozel, and Jaromír Horáček

Abstract This study deals with the numerical solution of a 3D compressible flow
of a viscous fluid in a channel for low inlet airflow velocity. The channel is a
simplified model of the glottal space in the human vocal tract. The system of
Navier-Stokes equations has been used as mathematical model of laminar flow of
the compressible viscous fluid in a domain. The numerical solution is implemented
using the finite volume method (FVM) and the predictor-corrector MacCormack
scheme with artificial viscosity using a grid of hexahedral cells. The numerical
simulations of flow fields in the channel, acquired from a developed program, are
presented for inlet velocity Ou1 D 4:12ms�1 and Reynolds number Re1 D 4;481.

1 Introduction

A current challenging question is a mathematical and physical description of the
mechanism for transforming the airflow energy in the glottis into the acoustic energy
representing the voice source in humans. The voice source signal travels from the
glottis to the mouth, exciting the acoustic supraglottal spaces, and becomes modified
by acoustic resonance properties of the vocal tract [1].

Acoustic wave propagation in the vocal tract is usually modeled from incom-
pressible flow models separately using linear acoustic perturbation theory, the wave
equation for the potential flow [2] or the Light-hill approach on sound generated
aerodynamically [3]. In reality, the airflow coming from the lungs causes self-
oscillations of the vocal folds, and the glottis completely closes in normal phonation
regimes, generating acoustic pressure fluctuations. The goal is numerical simulation
of flow in the channel which involves attributes of real flow causing acoustic
perturbations.
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2 Mathematical Model

The system of Navier-Stokes equations has been used as mathematical model to
describe the unsteady laminar flow of the compressible viscous fluid in a domain.
The system is expressed in non-dimensional conservative form [4]:

@W
@t
C @F
@x
C @G
@y
C @H
@z
D 1

Re

�
@R
@x
C @S
@y
C @T
@z

�
: (1)

W D Œ�; �u; �v; �w; e�T is the vector of conservative variables where � denotes
density, .u; v;w/ is velocity vector and e is the total energy per unit volume. F, G, H
are the vectors of inviscid fluxes and R, S, T are the vectors of viscous fluxes. The
static pressure p in inviscid fluxes is expressed by the state equation in the form

p D .� � 1/

e � 1

2
�
�
u2 C v2 C w2

��
; (2)

where � D 1:4 is the ratio of specific heats.
The reference variables for transformation are inflow variables (marked with the

infinity subscript): the speed of sound Oc1D343ms�1, density O�1D1:225 kg m�3,
dynamic viscosity O�1D18 � 10�6 Pa � s (for temperature OT1D293:15K) and a
reference length OLrD0:02m. General Reynolds number in (1) is computed from
reference variables ReD O�1 Oc1 OLr= O�1. The non-dimensional dynamic viscosity in
the dissipative terms is a function of temperature in the form � D .T=T1/3=4.

3 Computational Domain and Boundary Conditions

The bounded computational domainD used for the numerical solution of flow field
in the channel is shown in Fig. 1. The domain is symmetric channel in y and z
directions, the shape of which is inspired by the shape of the trachea (inlet part),
vocal folds, false vocal folds and supraglottal spaces (outlet part) in human vocal
tract. The gap width is the narrowest part of the channel in y direction and is set in
middle position Ogmid D 1:6mm.

The boundary conditions are considered in the following formulation:

1. Upstream conditions: u1 D Ou1Oc1 ; flow rate at the inlet is constant H2 � u1;
�1 D 1; p1 is extrapolated from domain.

2. Downstream conditions: p2 D 1=�; .�; �u; �v; �w/ are extrapolated from
domain.

3. Flow on the wall: .u; v;w/ D .uwall; vwall;wwall/ – velocity of the channel walls
and for temperature T D �p=� is @T

@n D 0.

The general Reynolds number in (1) is multiply with non-dimensional value
u1H which represents kinematic viscosity scale at inlet. For computation of real

problem inlet Reynolds number Re1 D Re � Ou1

Oc1
OH
OLr D Re � u1H is used in (3).
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Fig. 1 The computational domainD.LD 8 (160 mm),H D 0:8 (16 mm), gmid D 0:08 (1.6 mm)
– middle position

4 Numerical Solution

The numerical solution uses finite volume method (FVM) in cell centered form on
the grid of hexahedral cells. The bounded domain is divided into mutually disjoint
sub-domainsDi;j;k (i.e. hexahedral cells). The system of Eqs. (1) is integrated over
the sub-domains Di;j;k using the Green formula and the Mean value theorem. The
explicit predictor-corrector MacCormack (MC) scheme in the domain is used. The
scheme is second order accurate in time and space (on orthogonal grid):

WnC1=2
i;j;k D �ni;j;k

�nC1i;j;k

Wn
i;j;k �

�t

�nC1i;j;k

6X

qD1
Aq

� QFnq � s1qWn
q �

1

Re1
QRn
q

�
n1q

C
�
QGn
q � s2qWn

q �
1

Re1
QSnq
�
n2q C

�
QHn
q � s3qWn

q �
1

Re1
QTnq
�
n3q

�
;

W
nC1
i;j;k D

�ni;j;k

�nC1i;j;k

1

2

�
Wn

i;j;k CWnC1=2
i;j;k

	
� �t

2�nC1i;j;k

6X

qD1
Aq

h� QFnC1=2q � s1qWnC1=2
q

� 1

Re1
QRnC1=2
q

�
n1q C

�
QGnC1=2
q � s2qWnC1=2

q � 1

Re1
QSnC1=2q

�
n2q

C
�
QHnC1=2
q � s3qWnC1=2

q � 1

Re1
QTnC1=2q

�
n3q

�
; (3)

where�t D tnC1�tn is the time step,�i;j;k D
R R

Di;j;k
dx dy dz is the volume of cell

Di;j;k , nq D .n1; n2; n3/q is outlet normal vector on face q (see Fig. 2),Aq is area of
the face and vector sq D .s1; s2; s3/q represents the speed of the face. The physical
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Fig. 2 Finite volume of cell Di;j;k and dual volume V 0

q on face q

Fig. 3 Mesh of the hexahedral cells Di;j;k in part of the domain D and detail of mesh in the gap

fluxes F; G; H; R; S; T on the face q of the cell Di;j;k are replaced by numerical
fluxes (marked with tilde) QF; QG; QH; QR; QS; QT as approximations of the physical
fluxes. The higher partial derivatives of velocity and temperature in QRq; QSq; QTq are
approximated using dual volumes V 0q as shown in Fig. 2.

The last term used in the MC scheme is the Jameson artificial dissipation
AD.Wi;j;k/

n [5], then the vector of conservative variables W can be computed at

a new time level WnC1
i;j;k DW

nC1
i;j;k C AD.Wi;j;k/

n.
The grid of the channel have successive refinement cells near the wall, the

minimum cell size in y and z directions is �ymin; �zmin 	 1=
p

Re1 to resolve
capture boundary layer effects (see Fig. 3).
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Fig. 4 The numerical solution of the airflow in D � u1 D 0:012, Re1 D 4;481, p2 D 1=�,
200 � 50 � 50 cells. The results are shown by isolines of velocity (from black to white) and by
streamlines



666 P. Pořízková et al.

5 Numerical Results

The numerical results were obtained (using a specifically developed program) for
the following input data: inflow velocity u1 D Ou1

Oc1 D 0:012 (Ou1 D 4:116m=s),
the inlet Reynolds number Re1 D 4;481 and atmospheric pressure p2 D 1=�

( Op2 D 102;942Pa) at the outlet.
The computational domain contained 200�50�50 cells inD, detail of the mesh

is shown in Fig. 3.
The application of the method for low Mach number at inlet (M1 D u1 D

0:012) in 3D domain D is shown in Fig. 4. The results are shown by isolines of
velocity and by streamlines using slices of the domain in x; z directions.

Discussion and Conclusions
The governing system (1) for flow of viscous compressible fluid based
on Navier-Stokes equations for laminar flow is tested in 3D domain. A
similar generation of large-scale vortices, vortex convection and diffusion, jet
flapping, and general flow patterns were experimentally obtained in physical
models of the vocal folds by using Particle Image Velocimetry method in [6].
The method described in this study will be used for 3D simulation of unsteady
flow in domain with vibrating walls near the gap region to simulate airflow
in human vocal tract. Completion computation of the unsteady flows in 3D
channel with vibrating walls is expecting in short time.

Acknowledgement This contribution was partially supported by GAČR P101/11/0207, 13-005-
22S and P101/10/1329.
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Numerical Investigation of Network Models
for Isothermal Junction Flow

Gunhild Allard Reigstad and Tore Flåtten

Abstract This paper deals with the issue of how to properly model fluid flow
in pipe junctions. In particular we investigate the numerical results from three
alternative network models, all three based on the isothermal Euler equations. Using
two different test cases, we focus on the physical validity of simulation results from
each of the models. Unphysical solutions are characterised by the presence of energy
production in junctions. Our results are in accordance with previous conclusions;
that only one of the network models yields physical solutions for all subsonic initial
conditions. The last test case shows in addition how the three models may predict
fundamentally different waves for a given set of initial data.

1 Introduction

A network model describes the global weak solution of hyperbolic conservation
laws defined on N segments of the real line that are connected at a common point.
In addition to fluid flow in pipeline junctions, such models are used to describe for
example traffic flow, data networks, and supply chains [4].

For fluid flow, the model describes a junction that connectsN pipe sections. Each
section is modelled along a local axis (x 2 R

C) and x D 0 at the pipe-junction
interface. The problem is investigated by defining a generalized Riemann problem
at the junction, and thus the condition of constant initial conditions in each pipe
section is presupposed.
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The flow condition in each pipe section is found as the solution to the half-
Riemann problem

@U k

@t
C @

@x
F .U k/ D 0;

U k.x; 0/ D
( NU k if x > 0

U �k if x < 0;
(1)

restricted to x 2 R
C. U �k is a constructed state, defined as

U �k
� NU 1; : : : ; NU N

� D lim
x!0C

U k.x; t/: (2)

U �k is per definition connected to the initial condition, NU k , by waves of non-negative
speed only. This ensures that the constructed state propagates into the pipe section.

In the present paper we consider the isothermal Euler equations, which are
described by the isentropic conservation law

@

@t


�

�v

�
C @

@x


�v

�v2 C p.�/
�
D

0

0

�
; (3)

together with the pressure law

p.�/ D a2�: (4)

Here � and v are the fluid density and velocity, respectively, p.�/ is the pressure
and a is the constant fluid speed of sound. Initial conditions of standard Riemann
problems are, for this set of equations, connected by two waves. Only waves of the
second family have non-negative speed at subsonic conditions. Therefore U �k and
NU k are connected by either a rarefaction or a shock wave of this family [7].

In addition to the wave-equation describing the relation between U �k and NU k , a
set of equations is needed for U �k to be uniquely defined. The equations are denoted
coupling conditions, and for the isothermal Euler equations, they are related to mass
and momentum:

CC1: Mass is conserved at the junction

NX

kD1
��k v�k D 0: (5)

CC2: There is a unique, scalar momentum related coupling constant at the
junction

H �
k .�

�
k ; v
�
k / D QH 8k 2 f1; : : : ; N g: (6)
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Three different expressions for the momentum related coupling constant are
considered in this paper. Pressure

H �
k .�

�
k ; v
�
k / D ��k ; (7)

and momentum flux

H �
k .�

�
k ; v
�
k / D ��k

 

1C
�

v�k
a

�2!

; (8)

have been frequently used in the literature [1–3, 5]. The Bernoulli invariant

H �
k .�

�
k ; v
�
k / D ln

�
��k
�C 1

2

�
v�k
a

�2
(9)

was recently proposed [7]. The constant may also be stated as H .��k ;M �k / where
M �k is the Mach number,M �k D v�

k=a.
The suitability of a suggested momentum related coupling constant is evaluated

according to two criteria. First, a standard Riemann problem in a pipe section
of uniform cross sectional area may be modelled as two pipe sections connected
at a junction. The resulting network model must then have a solution equal
to the solution of the standard Riemann problem. This imposes a symmetry-
and a monotonicity constraint on the momentum related coupling constant [6].
Second, the solutions of the network model must be physically reasonable. This
is determined by the entropy condition (10), which states that energy production
does not occur in a junction if the solution is physical.

Ecrit D
NX

kD1
��k v�k

�
1

2
.v�k /2 C a2 ln

��k
�0

�
� 0; (10)

where �0 is some reference density.
The entropy condition was first used by Colombo and Garavello [3] and is based

on the mechanical energy flux function. The presented condition (10) is derived for
the isothermal Euler equations.

An analytical investigation on the relation between the entropy condition and
the momentum related coupling constant was previously performed for the special
case of three pipe sections connected at a junction [7]. The analysis showed that
for certain flow rates within the subsonic domain, both pressure (7) and momentum
flux (8) as coupling constant yield unphysical solutions. Physical solutions for all
subsonic flow rates were only guaranteed when the Bernoulli invariant (9) was used
as coupling constant. In the present paper, two numerical test cases will be used to
verify this analysis and to explore the behaviour of the different models.

The first test case consists of five pipe sections connected at a junction. The case
illustrates how the network model easily may be applied to a junction connecting
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a large number of pipe sections. We will as well evaluate the results in terms of
physical soundness using the entropy condition (10).

The second case consists of three pipe sections connected by two junctions such
that a closed system is constructed. We will show how the different models produce
fundamentally different results in terms of rarefaction and shock waves. The total
energy of the system as a function of time will as well be presented in order to
display the effect of having unphysical solutions.

2 Numerical Results

The fluid flow in each pipe section is solved by a classical approximate Riemann
solver of Roe as described by Reigstad et al. [6]. In the two cases, the fluid speed
of sound is set to a D 300 m=s and the Courant-Friedrichs-Lewy condition is set to
C D 0:5.

2.1 Case 1: Five Pipe Sections Connected at a Junction

Five pipe sections, each of lengthL D 50 m are connected at a single junction. The
initial conditions of each pipe section are given in Table 1. Interaction between the
fluids in the pipe sections first occur at T D 0:0 s and immediately afterwards one
wave enters each section.

For a given set of initial conditions we may calculate the constructed states,
U �k , and the analytical velocity and pressure profiles at a given time as function of
distance through the pipe section. The analytical profiles are compared to numerical
results derived at different grid resolutions in order to identify the suitable grid cell
size [6]. For the present case, a grid resolution of �x D 5:0 � 10�2 m was chosen.

Table 1 presents the constructed state densities and velocities for the three
different models. As seen, the values are different for the three models. However,

Table 1 Initial conditions and constructed states of the network models

T D 0:0 s H D � H D �
�
1CM2

�
H D ln .�/C 1

2
M2

Pipe section Np (bar) Nv (m/s) p� (bar) v� (m/s) p� (bar) v� (m/s) p� (bar) v� (m/s)

1 1.00 0.00 1.30 79.4 1.27 71.0 1.28 74.3

2 1.20 0.00 1.30 24.5 1.32 29.6 1.31 27.4

3 1.30 0.00 1.30 0.453 1.34 8.28 1.32 4.58

4 1.50 0.00 1.30 �42.5 1.31 �39.6 1.31 �41.1

5 1.60 0.00 1.30 �61.8 1.27 �69.5 1.29 �64.6
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Fig. 1 Entropy function
values for the three different
network models

the predictions of rarefaction- and shock waves are consistent, with shock waves in
pipe section 1–3 and rarefaction waves in pipe section 4 and 5.1

Our main focus is to evaluate the simulation results with the aid of the entropy
condition (10). The results are shown in Fig. 1. As expected, Bernoulli invariant as
coupling constant yields energy conservation at the junction. The two other options
lead to energy production at the junction for the given set of initial data. That is, the
solutions are unphysical.

Analytically, the Ecrit profile for a given set of initial conditions is a constant
value. The deviation seen in Fig. 1 is due to the numerical implementation, where
the constructed state, U �k , at a new time-step is calculated based on the calculated
conditions in the inner grid cell closest to the interface, at the previous time-step.
As the waves propagate into the pipe sections, the numericalU �k values will deviate
from the analytical ones. However, the impact is temporary and the entropy function
soon regains its initial value.

2.2 Case 2: A Closed System of Three Pipe Sections and Two
Junctions

An outline of the closed system is shown in Fig. 2. Three pipe sections, labelled S1
to S3, each of length L D 50 m, are connected by two junctions. At the bottom of
the figure, the local axis along each pipe as assumed by the network theory is shown
for the junctions. The global axis direction is from L to H.

Initially, the pipe sections are filled with stagnant fluid of uniform pressure. At
T D 0:0 s two waves enter each pipe section as the interaction between the fluids is
initiated. The initial conditions are summarised in Table 2.

The grid cell size was determined based on a comparison between analytical and
numerical results obtained at different grid cell sizes. The results were compared for

1For examples of rarefaction- and shock waves, see Fig. 3



672 G.A. Reigstad and T. Flåtten

Fig. 2 Closed system
consisting of three sections
and two junctions

J1 J2
S2

S1

S3

J1 J2

H

H

H

L

L

L

L H

Table 2 Initial conditions Section p (bar) v (m/s)

1 1.0 0.0

2 1.5 0.0

3 1.9 0.0

simulations run until T D 0:06 s. At this time there has been no interaction between
the two waves that entered the pipe sections initially. Therefore it is possible to
derive analytical profiles for total energy as a function of time. Pressure and velocity
profiles were also compared. The comparison showed that a resolution of �x D
5:0 � 10�3 m was needed to obtain accurate numerical energy profiles. A resolution
of�x D 5:0 � 10�2 m was sufficient if only pressure and velocity were considered.
Thus the grid cell size was set to �x D 5:0 � 10�3 m. A similar comparison was
performed by Reigstad et al. [6].

Pressure- and velocity profiles for each of the three pipe sections and each of
the momentum related coupling constants are presented in Fig. 3. In the first pipe
section, S1, the three coupling constants all predict that two shock waves will
enter. Similarly, two rarefaction waves are predicted to propagate into the third pipe
section. In the second pipe section, the three models yield different kind of waves.
The models using pressure and Bernoulli invariant as momentum related coupling
constant predict two rarefaction waves to enter, while the model using momentum
flux predicts shock waves. This is due to the predicted pressure at the pipe-junction
boundary, p�2 . Momentum flux as coupling constant results in a pressure which
is larger than the pressure within the pipe, p�2 > Np2 . The two other models
predict pressures that are lower. Correspondingly, the Lax-criterion for shock- and
rarefaction waves results in the difference in predicted wave type [3].

Total energy as function of time is shown in Fig. 4. In Fig. 4a numerical results are
compared to analytical profiles derived under the constraint of energy conservation
at the junctions. Figure 4b presents long term numerical results, for which no
analytical profiles are available.

The physical soundness of the numerical solutions showed in Fig. 4a is deter-
mined by a comparison with the profiles denoted “Analytic 2”. If the numerical
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a b

c d

e f

Fig. 3 Pressure and velocity profiles at T D 0:06 s for the three different momentum related
coupling constants. (a) Pressure – pipe section 1. (b) Velocity – pipe section 1. (c) Pressure – pipe
section 2. (d) Velocity – pipe section 2. (e) Pressure – pipe section 3. (f) Velocity – pipe section 3

profiles show a larger total energy than the corresponding analytic curve, energy
production is present in the numerical results, and thus the solutions are unphysi-
cal [6].

As earlier predicted, models with momentum flux or pressure as momentum
related coupling constant yield unphysical solutions for the selected set of initial
data [7]. Using the Bernoulli invariant as coupling constant results in energy
conservation at the junctions.

In Fig. 4b, a net reduction in total energy is observed for all three network
models. The influence of the energy production in the junctions is clearly seen for
pressure as momentum related coupling constant, as the profile does not decrease
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a b

Fig. 4 Case 2 – Energy-profiles for the three different momentum related coupling constants.
(a) T D 0:06 s. (b) T D 1:0 s

monotonically. In general, for certain sets of initial data, non-monotonicity will as
well be observed for momentum flux as coupling constant.

3 Summary

Numerical results from three different network models have been investigated,
mainly in terms of physical soundness. Results from two different network layouts,
one open and one closed, are considered. Two layout-related evaluation approaches
are applied, and unphysical solutions are identified as those with energy production
in one or more junctions. The two test cases show that the models including pressure
or momentum flux as coupling constant have unphysical solutions for the selected
initial data. The network model which uses Bernoulli invariant as coupling constant
has physical solutions, as energy is conserved at the junctions.

This is in accordance with analytical results; only Bernoulli invariant yields
physical solutions for all subsonic initial conditions [7].
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Numerical Simulation of Compressible
Turbulent Flows Using Modified EARSM Model

Jiří Holman and Jiří Fürst

Abstract This work describes the numerical solution of compressible turbulent
flows. Turbulent flows are modeled by the system of averaged Navier-Stokes
equations closed by the Explicit Algebraic Reynolds Stress Model (EARSM) of
turbulence. EARSM model used in this work is based on the Kok’s TNT model
equations. New set of model constants which is more suitable for conjunction with
EARSM model has been derived. Recalibrated model of turbulence together with
the system of averaged Navier-Stokes equations is then discretized by the finite
volume method and used for the solution of some realistic problems in external and
internal aerodynamics.

1 Governing Equations

Compressible turbulent flows are modeled by the system of averaged Navier-Stokes
equations in a vector form

@W

@t
C @Fj .W /

@xj
D @Rj .W;rW /

@xj
; (1)

where W D .�; �u; �E/T is vector of unknown conservative variables,1 Fj are
inviscid fluxes and Rj are viscous fluxes [6].

System (1) is also equipped with the equation of perfect gas in form

p D .� � 1/

�E � 1

2
�ujuj � �k

�
: (2)

1Where � is density, u is velocity vector, E is specific total energy and p is pressure.
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1.1 EARSM Model of Turbulence

Averaged Navier-Stokes equations are closed by the EARSM model of turbulence
developed by Wallin and Johanson [5] (designated here as EARSM-TNT). This
model is derived as a simplified solution of full differential Reynolds stress transport
model where both advection and diffusion are neglected.

Tensor of Reynolds stresses is approximated as

� tij D 2�T Sij � 2
3
ıij�k � �kaij; (3)

where Sij is strain-rate tensor defined as

Sij D 1

2

�
@ui
@xj
C @uj
@xi

�
� 1
3
ıij
@uk
@xk

; (4)

�T is turbulent viscosity,

�T D �1
2
.ˇ1 C II˝ˇ6/�k� (5)

and aij is extra anisotropy given by

aij D ˇ3
�
˝�ik˝�kj �

1

3
II˝ıij

�

C ˇ4.S�ik˝�kj �˝�ikS�kj/

C ˇ6
�
S�ik˝�kl˝

�
lj C˝�ik˝�klS

�
lj � II˝S

�
ij �

2

3
IVıij

�

C ˇ9.˝�ikS�kl˝
�
lm˝

�
mj �˝�ik˝�klS

�
lm˝

�
mj /: (6)

Both turbulent viscosity �T and extra anisotropy aij are strongly nonlinear terms
which depends on normalized strain-rate tensor S�ij D �Sij, normalized tensor of
rotation ˝�ij D �˝ij and related invariants IIS D S�klS

�
lk , II˝ D ˝�kl˝

�
lk and IV D

S�kl˝
�
lm˝

�
mk. Beta coefficients ˇ1 � ˇ9 are also nonlinear terms which depends on

invariants IIS , II˝ , IV and also on V D S�klS
�
lm˝

�
mn˝

�
nk. For more details see [5].

Quantity � is turbulent time scale defined as

� D max

�
1

ˇ�!
; C�

r
�

ˇ��k!

�
; (7)

with constant C� D 6.
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In case of two-dimensional mean flows there are only two nonzero beta coeffi-
cients ˇ1 and ˇ4 and relations (5) and (6) are simplified to

�T D �1
2
ˇ1�k�; aij D ˇ4.S�ik˝�kj �˝�ikS�kj/: (8)

This version of the EARSM model is based on the Kok’s TNT k � ! model
of turbulence [4]. TNT model includes transport equations for the turbulent kinetic
energy k and the specific dissipation rate ! in form:

@.�k/

@t
C @.�kuj /

@xj
D P � ˇ��k! C @

@xj

�
�C ���T

� @k
@xj

�
(9)

@.�!/

@t
C @.�!uj /

@xj
D ˛

!

k
P � ˇ�!2 C �d �

!
max

�
@k

@xj

@!

@xj
; 0

�

C @

@xj

�
�C ��T

� @!
@xj

�
; (10)

where P is production term, � is molecular viscosity and ˛; ˇ; ˇ�; �; �� and �d are
model constants.2

2 Calibration of Model Constants

Model constants of the original TNT model were derived under the assumption
of linear relation between tensor of Reynolds stresses and strain-rate tensor (so
called Boussinesq hypothesis). On the other hand, EARSM model is nonlinear
and Hellsten shows that not every two-equation model of turbulence is suitable
for conjunction with EARSM constitutive relations [2]. Therefore our goal in this
section is revision of the TNT model constants.

The first relation for the model constants can be obtained from the decaying
homogeneous isotropic turbulence. Transport equations for the turbulent kinetic
energy k and for the specific dissipation rate ! are reduced to the set of ordinary
differential equations

dk

dt
D �ˇ�k!; d!

dt
D �ˇ�!2 (11)

for this case. Solution of system (11) reads

k  t�ˇ�=ˇ: (12)

2Original values of TNT model are ˛ D 0:553; ˇ D 0:075; ˇ� D 0:09; � D 0:5; �� D 0:667 and
�d D 0:5.
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Experimental observations indicate k  t�n with n D 1:25 ˙ 0:06 and after
comparison with (12) we can obtain relation for the ratio of ˇ� and ˇ

ˇ�

ˇ
D 6

5
: (13)

Next relations are derived from the flat plate zero pressure gradient boundary
layer, more specifically from the logarithmic part of boundary layer which is far
enough from wall so that molecular viscosity is negligible but close enough so that
convection can be neglected too. Transport equations of the TNT model together
with the averaged Navier-Stokes equations are reduced to system:

0 D @

@y


�T
@u

@y

�

0 D �T
�
@u

@y

�2
� ˇ�k! C �� @

@y


�T
@k

@y

�

0 D ˛
�
@u

@y

�2
� ˇ!2 C � @

@y


�T
@!

@y

�
: (14)

Solution of system (14) is

u D u�
�

ln y C const.; k D u2�p
ˇ�
; ! D u�p

ˇ��y
; (15)

where u� D
p
�wal l=� is friction velocity and � D 0:41 is Von Kármán constant.

After substituting solution (15) back to system (14) we obtain relations for the model
constant ˛,

˛ D ˇ

ˇ�
� ��2
p
ˇ�

(16)

and for the component of Reynolds stress � txy,

� txy D u2� : (17)

Measurements indicate the ratio of � txy to the turbulent kinetic energy k is about 3/10
in the logarithmic layer and therefore value of the model constant ˇ� is 0:09 (the
value is obtained using relation (17) and second relation in (15)). Value of the model
constant ˇ D 0:075 is consequently obtained from relation (13).

Analysis of defect layer and sublayer indicate optimum3 choice of the model
constant � D 0:5 [6]. Finally, model constant ˛ D 0:553 is obtained from
relation (16) using Von Kármán constant � D 0:41.

3Optimum in a sense that turbulence model equations can be integrated to the wall without any
damping functions and without distance to the nearest wall information.



Modified EARSM Model 681

Last two model constants have small effect in the inner layer and their values are
determined form the behavior near the edges of shear layers. Transport equations of
the TNT model together with the averaged Navier-Stokes equations are simplified
to the system:

vC
@u

@y
D @

@y


�T
@u

@y

�

vC
@k

@y
D �� @

@y


�T
@k

@y

�

vC
@!

@y
D � @

@y


�T
@!

@y

�
C �d �T

k

@k

@y

@!

@y
; (18)

where convection speed vC is assumed to be constant. Kok found that the following
power functions form at least a weak solution to the system (18) if ��, � , and �d
are suitably selected [4]:

u.y/ D u0f
���=.����C�d /

k.y/ D k0f
�=.����C�d /

!.y/ D !0f
.����d /=.����C�d /; (19)

where function f .y/ reads

f .y/ D max

�
ı0 � y
ı0

; 0

�
(20)

with index 0 indicating characteristic scales of the problem. Solution (19) must be
non-singular to form at least a weak solution to the problem and that the slope of
the velocity remains bounded at the edge. The resulting conditions are:

� � �� C �d > 0
�� � �d > 0

� � �� C �d � ��� (21)

with �� > 0:5 and � > 0. Requirements (21) hold for the models of turbulence
based on the Boussinesq eddy-viscosity hypothesis. Hellsten modified this require-
ments for the nonlinear constitutive relations [2]:

� � �� C �d > 0

�� � �d > 0

�� > 1 (22)
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We have chosen �� D 1:01 according to the last condition in (22). Substituting ��
to second inequation in (22) we obtain condition for the last constant �d > 0:51. Our
choice is lower limit �d D 0:52. Note that �� and �d are the only recalibrated model
constants and modified set of model constants also satisfies original requirements
derived by Kok.

3 Numerical Methods

We have developed in-house solver for two-dimensional averaged Navier-Stokes
equations (together with modified EARSM model) based on the finite volume
method [1]. Inviscid numerical fluxes are approximated by the HLLC scheme with
the piecewise linear MUSCL or WENO reconstruction of second order accuracy [3].
Viscous numerical fluxes are approximated by the central differencing with aid of
dual mesh [3]. The resulting system of ordinary differential equations is then solved
by the explicit two-stage TVD Runge-Kutta method with local time-step and point
implicit treatment of source terms [3].

We also used freely available OpenFOAM software based on the in-house
modified rhoSimpleFOAM solver with segregated approach (SIMPLE loop) and
second order interpolations. This software was also equipped with EARSM model
of turbulence based on the recalibrated TNT model equations. This software was
used for three-dimensional cases.

4 Numerical Solution of Compressible Turbulent Flows

This chapter presents some numerical solutions of the compressible turbulent
flows. For validation purpose, the subsonic flow around the flat plate was solved
first. Next test cases represents realistic problems from both external and internal
aerodynamics.

4.1 Subsonic Flow Around the Flat Plate

The first solved case was subsonic flow around the flat plate. This case is character-
ized by inlet Mach number M1 D 0:2, zero angle of attack and Reynolds number
Re D 8 � 105. We used rectangular computational domain Œ�1; 16:67�� Œ0; 3� where
flat plate starts at point x D 0. Computational mesh was structured H-type grid with
110 � 80 cells with 95 cells at flat plate itself.

From Fig. 1 one can see that EARSM model with original Kok’s model constants
has qualitatively wrong shape of velocity profile. On the other hand, recali-
brated model is in good agreement with Hellsten model which was designed
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Fig. 1 Detail of profiles of velocity in point x D 12:68

Fig. 2 Comparison of distributions of friction coefficient

especially for the conjunction with EARSM constitutive relations. Figure 2 shows
a good agreement of all models with experiment but we can see that recali-
brated EARSM model archived slightly better results then original EARSM-TNT
model.
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4.2 Transonic Flow Around the RAE 2822 Airfoil

Next solved case was transonic flow around the RAE 2822 airfoil. This problem is
characterized by inlet Mach number M1 D 0:754, angle of attack ˛1 D 2:57ı
and Reynolds number Re D 6:2 � 106. This is a well known AGARD case 10 where
interaction of shock wave with the boundary layer create a small separation region
behind the shock. Computational mesh was structured C-type grid with 300 � 70
cells and computational domain was circa 30 times larger then characteristic size of
the airfoil.

We can see very good agreement between both original EARSM model (Fig. 3)
and recalibrated EARSM model (Fig. 4). Figure 5 shows comparison of pressure
coefficient around the RAE 2822 airfoil. We can see very good agreement of
recalibrated EARSM model with experiment while Hellsten’s version of EARSM
failed to capture position of the shock wave correctly.

4.3 Transonic Flow Through the SE 1050 Turbine Cascade

Last solved case was full three dimensional transonic flow through the SE 1050
turbine cascade. The problem is characterized by the outlet isentropic Mach number
M2is D 1:198, angle of attack ˛1 D 19:34ı and Reynolds number Re D 1:5 �
106. The simulation was carried out assuming the periodicity in pitch-wise direction
and symmetry in span-wise direction. We used unstructured mesh with 3:3 � 106
cells.

Fig. 3 Flow around the RAE 2822



Modified EARSM Model 685

Fig. 4 Flow around the RAE 2822

Fig. 5 Transonic flow around the RAE 2822

Our simulations have archived very good match between original and
recalibrated (Fig. 6) EARSM models and further with well known SST k � !
model.
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Fig. 6 Flow through the SE 1050, EARSM-Recalibrated

Conclusion
We have described the numerical method for the solution of compressible tur-
bulent flows. Moreover, we propose new model constants for the TNT model
transport equations which are more suitable for conjunction with EARSM
model constitutive relations. From the flow around the flat plate one can see
an improvement of recalibrated EARSM model over the standard EARSM-
TNT version. Profiles of velocity now corresponding very well with the
Hellsten model which was designed especially for the EARSM constitutive
relations. Moreover, other solved cases indicate very good performance in the
real aerodynamics problems (especially flow around the RAE 2822 airfoil).
Finally, recalibrated EARSM model remains as simple as original EARSM-
TNT model and does not require any damping functions or wall distance
information like Hellsten model.

Acknowledgment The work was supported by the Grant no. GAP101/12/1271 and Grant no.
P101/10/1329 of the Grant Agency of Czech Republic.
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Steady Mixed Convection in a Heated
Lid-Driven Square Cavity Filled
with a Fluid-Saturated Porous Medium

Bengisen Pekmen and Munevver Tezer-Sezgin

Abstract Steady mixed convection flow in a porous square cavity with moving side
walls is studied numerically using the dual reciprocity boundary element method
(DRBEM). The equations governing the two-dimensional, steady, laminar mixed
convection flow of an incompressible fluid are solved for various values of param-
eters as Darcy (Da), Grashof (Gr), and Prandtl (Pr) numbers. The results are given
in terms of vorticity contours, streamlines and isotherms. Further, average Nusselt
number variations with respect to the problem parameters are also presented. The
fluid flows slowly as Da decreases since the permeability of the medium decreases,
and the increase in Grashof number causes the flow to pass to the natural convective
behavior. DRBEM has the advantage of using considerably small number of grid
points due to the boundary only nature of the method. This provides the numerical
procedure computationally cheap and efficient.

1 Introduction

In many fundamental heat transfer analyses, convective flows in porous media have
received much attention and played the central role due to the important applications
as in packed sphere beds, insulation for buildings, grain storage, chemical catalytic
reactors, and geophysical problems. The underground spread of pollutants, solar
power collectors, and geothermal energy systems include porous media.

The theoretical and analytical details of heat transfer in porous medium may
be found in the books [5, 6]. Also, a lot of numerical studies concerning heat
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transfer in a porous medium are reported in the last decade. Among these, numerical
solutions obtained by DRBEM [9], finite element method (FEM) [2], penalty FEM
with biquadratic elements [10], finite volume method (FVM) [1, 11], and the finite
difference method (FDM) [4, 7] may be mentioned.

In this study, steady mixed convection flow in a porous square cavity with differ-
entially heated and moving side walls is studied numerically using the DRBEM.
An isotropic, homogeneous porous medium saturated with an incompressible,
viscous fluid is considered. The thermal and physical properties of the fluid are
assumed to be constant, but the fluid density varies according to Boussinessq
approximation. The fluid and the solid particles are also assumed to be in local
thermal equilibrium. Viscous dissipation, and Forchheimer terms (quadratic drag
terms) in the momentum equations are neglected.

The two-dimensional, steady, laminar mixed convection flow of an incompress-
ible fluid is taken into account. The non-dimensional governing equations in terms
of stream function  -temperature T -vorticity w are [2]

r2 D �w (1a)

1

�pRe
r2w D 1

�2p

�
u
@w

@x
C v

@w

@y

�
� Gr

Re2
@T

@x
C 1

Da Re
w (1b)

1

Pr Re
r2T D u

@T

@x
C v

@T

@y
(1c)

where �p is the porosity of the porous medium, u D @ =@y; v D �@ =@x; w D
@v=@x�@u=@y. Non-dimensional physical parameters are Reynolds, Grashof, Darcy
and Prandtl numbers, respectively, given as

Re D U0L

�e
; Gr D gˇ�TL3

�2e
; Da D �

L2
; Pr D �e

˛e
; (2)

with characteristic velocity U0, characteristic length L, gravitational acceleration
g, effective kinematic viscosity �e, permeability of the porous medium �, thermal
expansion coefficient ˇ, temperature difference �T D Th � Tc , effective thermal
diffusivity ˛e of the porous medium.

We consider the problem geometry consisting of the cross-section of a unit square
cavity which has the moving lids on the left and right walls (Fig. 1). The boundary
conditions are as follows. The velocity v D 1 on the vertical walls with u D  D 0;
and u D v D  D 0 on the horizontal walls. The right wall is the hot (Th D 1), and
the left wall is the cold (Tc D 0) wall while the top and bottom walls are adiabatic
(@T=@n D 0). Vorticity boundary conditions are unknown, and are going to be
derived with the help of DRBEM coordinate matrix during the iterative solution
procedure.
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Fig. 1 Problem configuration

2 DRBEM Application

DRBEM treats all the right hand side terms of Eqs. 1 as inhomogeneity, and an
approximation for this inhomogeneous term is proposed [8] as

b 	
NCLX

jD1
˛j fj D

NCLX

jD1
˛jr2 Ouj (3)

where N is the number of boundary nodes, L is the number of internal collocation
points, ˛j ’s are sets of initially unknown coefficients, and the fj ’s are approximat-
ing functions which are related to particular solutions Ouj with r2 Ouj D fj . The
radial basis functions fj ’s are usually chosen as polynomials of radial distance
rij D

p
.xi � xj /2 C .yi � yj /2 as fij D 1 C rij C r2ij C : : : C rnij where i and

j correspond to the source(fixed) (xi ; yi ) and the field(variable) (xj ; yj ) points,
respectively.

DRBEM transforms differential equations defined in a domain ˝ to integral
equations on the boundary � . For this, differential equation is multiplied by the
fundamental solution u� D �ln.r/=.2�/ of Laplace equation and integrated over
the domain. In Eqs. 1, the right hand sides are approximated using Eq. 3 giving
Laplacian terms on both sides. Using Divergence theorem for the Laplacian terms on
both sides of the equation, domain integrals are transformed to boundary integrals
as follows

ciui C
Z

�

uq�d� �
Z

�

qu�d� D
NCLX

jD1
˛j

�
ci Ouij C

Z

�

q� Ouijd� �
Z

�

u� Oqijd�

�
;

(4)

where ci D 0:5 if the boundary � is a straight line and i 2 � , and ci D 1 when
node i is inside, Oqij D @Ouij=@n with the outward unit normal n to � .
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Discretizing the boundary � by using N linear elements, evaluating integrals
over each element, and then performing assembly procedure for all elements result
in a system of equations for each of the Eqs. 1 as

Hu� Guq D
�
H OU �G OQ

	
F�1b; (5)

where H and G are BEM matrices contain integral values of fundamental solution
u� and its normal derivative over the boundary elements, respectively. F is the
coordinate matrix formed from the radial basis functions fj ’s. OU and OQ matrices
are of size .N C L/ � .N C L/, and are built from particular solution Ou and its
normal derivative Oq D @Ou=@n at the .N C L/ source and field points. The vector b
is formed from the right hand sides of Eqs. 1.

Matrix-vector form for Eqs. 1 are written as

H mC1 �G mC1q D �Swm (6a)

.H � PrReSM/ T mC1 � GTmC1q D 0 (6b)
�
H � Re

�p
SM � �p

Da
S

�
wmC1 � GwmC1q D ��p Gr

Re
S
@F

@x
F�1T mC1 (6c)

where S D .H OU � G OQ/F�1; umC1 D .@F=@y/F �1 mC1; vmC1 D
�.@F=@x/F �1 mC1,
M D

�
Œu�mC1d

@F

@x
F�1 C Œv�mC1d

@F

@y
F �1

�
, the subscript d shows the diagonal

matrix, and m is the iteration level.
Unknown vorticity boundary conditions are obtained from the definition of w as

w D @v

@x
� @u

@y
D @F

@x
F �1v � @F

@y
F�1u; (7)

with the help of coordinate matrix F . Also, all the space derivatives in b are
computed by using DRBEM coordinate matrix F , i.e.

@T

@x
D @F

@x
F�1T;

@w

@y
D @F

@y
F�1w: (8)

Systems of Eqs. 6a–6c are solved iteratively for the unknowns  ; T;w; and
normal derivatives  q; Tq;wq . Initially,  ; T and w are taken as zero except on
the boundary. First, Eq. 6a is solved for stream function. Then, stream function is
used to compute velocity components u and v inserting their boundary conditions.
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The energy and vorticity transport equations are then solved by using u and v,
respectively. The iterations continue until the criterion [4]

�
� mC1 �  m��1
k mC1k1

C
�
�T mC1 � T m��1
kT mC1k1

C
�
�wmC1 � wm

�
�1

kwmC1k1
< � (9)

is satisfied where � D 10�5 is the tolerance to stop the iterations.
In order to accelerate the convergence for large values of problem parameters a

relaxation parameter 0 < 	 � 1 is used for the vorticity as wmC1  	wmC1 C
.1 � 	/wm. Further, average Nusselt number through the heated wall is computed
by Nu D R 1

0
.@T=@x/dy.

3 Numerical Results

As a validation case, a non-porous unit square cavity with heated bottom, cold top
wall, adiabatic left and right walls and moving top lid is considered. As is seen in
Table 1, present results using considerably small number of grid points are in good
agreement with the results in [10] where 57 � 57 grid points are used.

In the numerical computations of stream function, vorticity and temperature in a
square cavity with heated and upwards moving vertical walls, radial basis function
f D 1C r , and 8-point Gaussian quadrature are used for the construction of F;H
and G BEM matrices. N D 96; L D 625 are taken, and Re D 100 is fixed.
Cavity contains a fluid saturated porous medium with �p � 1. Mixed convection
flow behavior in this porous medium is depicted in terms of streamlines, isotherms,
and vorticity contours for various values of Da;Gr and Pr.

As Da decreases (Fig. 2), permeability decreases and causes a force opposite
to the flow direction which tends to resist the flow. This means that the fluid
flows slowly. While the center of streamlines is in the direction of moving lids,
they cluster along the left and right boundaries forming boundary layers, and the
effects of moving walls almost disappear. Isotherms become almost perpendicular
to the top and bottom walls pointing to the increase in conduction dominated effect.
Circulation in the vorticity through the upper corners due to the effect of moving

Table 1 Re D 500;

	 D 0:1; Nu comparison
with various Pr numbers

[10] Present

Pr Gr Nu Nu N,L CPU(sec.)

0.01 104 1.0431 1.0372 136,529 139.9

0.01 105 1.0721 1.0733 136,529 129.3

0.1 104 2.3815 2.3711 96,529 110.7

0.1 105 2.8704 2.8731 96,576 143.9

1 104 5.5695 5.5661 96,729 256.2

1 105 6.3313 6.3242 96,900 591.7
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lids diminishes, and strong boundary layers are formed through the right and left
walls leaving a stagnant region at the center.

As Gr increases, the left counter-clockwise secondary cell starts to be squeezed
through the left wall, and the clockwise primary cell is centered. Buoyancy effect is
pronounced due to the increase in Ri D Gr=Re2. That is, natural convection is high.
Actually, this can be seen in isotherms at Gr D 105. While the isotherms pronounce
the forced convection with Gr D 103; Da D 0:01(Ri D 0:1) in Fig. 2, they cluster
through the left and right walls forming strong temperature gradients for Gr D 105
(Fig. 3). Even though there is a Darcy effect with strength Da D 0:01, one is able
to observe the characteristics of mixed convection flow in a non-porous medium in
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Fig. 5 Mid-u-velocity profile and average Nusselt Number on the heated wall. (a) Gr D
103; Pr D 0:71; �p D 1. (b) Pr D 0:71; �p D 1

the cavity [3]. Vorticity almost covers the cavity with new cells through the left and
right walls, and spreads also along the top and bottom walls.

The increase in Pr only affects the isotherms (as is seen in Fig. 4) due to the
dominance of convection terms in the temperature equation.

The decrease in the velocity of the fluid with the decrease in Da number is
shown in Fig. 5a with the u-velocity profile through x D 0:5. The dominance of
natural convection with high Gr is depicted in Fig. 5b. When Gr is increased, Nu
values also increase. Average Nusselt number is almost the same for all values of
Grashof number with Da � 10�4 due to the dominance of conduction. However, Nu
increases as Da increases showing the increase in the heat transfer.

Finally, we show how the heat transfer is affected by different values of porosity.
As is seen in Fig. 6a (Ri < 1, forced convection is dominant), Nu increases at all �p
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Fig. 6 Average Nusselt number variations with �p on the heated wall. (a) Gr D 103;Pr D 0:71.
(b) Da D 0:01;Pr D 0:71

values as Da increases. High Nu values are obtained by small �p values which yields
the increase in convective heat transfer. As the natural convective effect increases
Ri > 1 (Fig. 6b), it is found that Nu takes larger values with �p D 0:8 than the other
ones. Namely, natural convection is pronounced with the increase in �p .

Conclusion
The two-dimensional, steady mixed convection flow in a square cavity with
porous medium is numerically solved by dual reciprocity boundary element
method. The space derivatives in inhomogeneous terms as well as unknown
vorticity boundary conditions are easily computed by the coordinate matrix.
For this Brinkmann-extended Darcy model, the decrease in Darcy number
causes the fluid to flow slowly, and the heat to transfer in conductive mode.
Natural convection is pronounced with the increase in Grashof number. In
natural convection mode (Ri > 1), convective heat transfer increases in a high
porosity of the medium.
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The Influence of Boundary Conditions on the 3D
Extrusion of a Viscoelastic Fluid

Marco Picasso

Abstract The influence of slip/no-slip boundary conditions on the shape of a jet
flowing out of an axisymmetric capillary die is investigated. Numerical results are
obtained using the numerical model presented in [1]. It is shown that with no-
slip boundary conditions along the tube, a large swelling is obtained past the die,
even with a small Weissenberg number. On the other side, no swelling occurs when
perfect slip boundary conditions apply along the die, but the stress induced by the
contraction flow prior to the die has strong effects on the shape of the viscoleastic
jet. Finally, these strong memory effects vanish when the Phan-Thien Tanner model
is considered instead of Oldroyd-B.

1 Introduction

Numerical simulation of extrusion for viscoelastic flows is of great importance for
industrial processes involving pasta dough. A free surface flow is involved, since the
location of the interface between the surrounding air and the dough is unknown. Few
3D models have been proposed for such simulations [1,2,5]. Moreover, the question
of rheology and boundary conditions is central in order to reproduce experiments
with accuracy. The goal of this paper is to discuss the role of boundary conditions.
This point is important in practice since the die is designed either to give a smooth
finish (Teflon dies) or a matt surface (bronze die).

2 The Model

Let � be a cavity of R3 partially filled with liquid. Let T be the final time of the
simulation. Let ' be volume fraction of liquid, ' W � � .0; T / ! R, ' D 1 in the
liquid, ' D 0 in the surrounding air, see Fig. 1. Let QT be the liquid space-time
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Fig. 1 The extrusion process. A pasta dough enters the cavity �. The volume fraction of liquid '
indicates the presence or absence of liquid

domain

QT D f.x; t/ 2 � � .0; T / such that '.x; t/ D 1; 0 � t � T g:
The unknowns of the model are the volume fraction of liquid ' W � � .0; T /! R,
the velocity v W QT ! R

3, the pressure p W QT ! R and the extra-stress � W QT !
R
3�3 such that

@'

@t
C v � r' D 0 in � � .0; T /; (1)

�
@v

@t
C �.v � r/v � 2�s div �.v/Crp � div � D �g in QT ; (2)

div v D 0 in QT ; (3)
 

1C ˛

� p
tr.�/

!

�

C 

�@�
@t
C .v � r/� � rv � � �rvT

	
� 2�p�.v/ D 0 in QT : (4)

Here, � is the fluid density, �s and �p are the solvent and polymer viscosities,
respectively, �.v/ D 1=2.rvC rvT / is the strain rate tensor, g the gravity, 
 the
relaxation time, ˛ the extensibility parameter, t r.�/ the trace operator. Note that the
velocity, pressure and extra-stress are only defined in the liquid domain whereas the
volume fraction of liquid is defined in the whole cavity. When ˛ D 0 the above
model corresponds to the so-called Oldroyd-B model.

Initial conditions for the volume fraction of liquid '.�; 0/, the velocity v.�; 0/ and
the extra-stress �.�; 0/ have to be prescribed. Concerning the boundary conditions,
the volume fraction of liquid ', the velocity v and the extra-stress � are prescribed
at the inflow region of the cavity�. A zero force condition applies on the liquid-air
free surface

2�s�.v/nC �n � pn D 0;



3D Extrusion of a Viscoelastic Fluid 701

whereas either slip or no-slip conditions apply along the die

.v � n D 0 and .2�s�.v/� pI C �/n:ti D 0; i D 1; 2/ or v D 0;

where n; t1; t2 are the unit outer normal and two tangent vectors at the boundary of
the die, respectively.

3 Numerical Method

In [1] an implicit order one splitting scheme was advocated for the time discretiza-
tion. Let � be the time step, tn D n� , n D 0; 1; 2; : : : and let 'n�1 W � ! R

be an approximation of ' at time tn�1. Let ˝n�1 D fx 2 �I'n�1.x/ D
1g be the corresponding liquid domain and let vn�1 W ˝n�1 ! R

3, �n�1 W
˝n�1 ! R

3�3 be approximations of the velocity and extra-stress at time tn�1,
respectively. Then, the new approximations 'n, vn, �n are computed as follows, see
Fig. 2.

The prediction step consists in solving three convections problems between tn�1
and tn, starting from 'n�1, vn�1, �n�1:

@'

@t
C v � r' D 0; @v

@t
C .v � r/v D 0; @�

@t
C .v � r/� D 0: (5)

We denote 'n the obtained volume fraction of liquid at time tn and ˝n D fx 2
�I'n.x/ D 1g the new liquid domain. The obtained velocity and extra-stress at
time tn are denoted as vn�1=2 W ˝n ! R

3 and �n�1=2 W ˝n ! R
3�3, respectively;

they are predictions of the velocity and extra-stress.

Fig. 2 Time discretization: the splitting algorithm



702 M. Picasso

Fig. 3 The two grids used for solving problem (5) and (6). In the left figure, the small cubic cells
of size h, in the right figure, the coarse tetrahedral finite elements with sizeH . In practice,H ' 4h

In the correction step, a viscoelastic problem without convection is solved in
˝n � .tn�1; tn/:

�
@v

@t
� 2�s div �.v/Crp � div � D �g;

div v D 0;
 

1C ˛

� p

tr.�/

!

� C 

�@�
@t
� rv � � �rvT

	
� 2�p�.v/ D 0;

(6)

starting from the predictions vn�1=2 and �n�1=2. We then set vn and �n to the
obtained velocity and extra-stress at time tn, respectively.

Two fixed grids are used to solve problems (5) and (6), see Fig. 3. A structured
grid of small cubic cells (size h) is used to solve the convection problems (5),
with goal to reduce numerical diffusion of the volume fraction of liquid ' as
much as possible. An unstructured finite element grid with coarse tetrahedrons
(size H ) is used to solve problem (6). A trade-off between accuracy (h as small as
possible) and computational complexity (H as large as possible) is to use H ' 4h.
Since all the methods used are implicit, no stability condition occurs between
the time step � and the mesh spacing h. However, the precision depends on the
CFL number (maximum velocity times � divided by h), typical CFL numbers are
between 1 and 10. The overall method is then O.h C �/. For details, we refer
to [1].

4 Numerical Results

The finite element mesh is reported in Fig. 4. The length of the domain is 0.035 m,
the biggest diameter is 0.012 m, the diameter of the die is 0.001 m, the finite
element mesh size in the die being H D 0:0001m, the size of the cells being
h D 0:000025m.

The physical data are � D 1;300 kg=m3, �s D 0, �p D 1;500 kg/(ms), we start
with an Oldroyd-B fluid, thus ˛ D 0 in (4). The relaxation time 
 will range from
0.001 to 1 s depending on the boundary conditions along the die, either slip or no-
slip. The velocity at the inlet is such that the maximum velocity in the die is 0:05m/s,
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Fig. 4 The finite element mesh

thus the Weissenberg number (relaxation time times maximum velocity divided by
the die diameter) ranges from 0:05 to 50. Note that the wall shear rate is not used
in the definition of the Weissenberg number since it is zero when slip boundary
conditions apply. At time T D 0:8 s the extruded jet is about to reach the end of the
computational domain and the simulation is stopped, the time step is � D 0:005 s,
so that the maximum CFL number is 0:05�=h D 10.

We first present some numerical results when no-slip conditions apply along
the die wall. In Fig. 5 the shape of the jet, the norm of the velocity and the �33
component of the extra-stress are presented for 
 D 0:02 s. The jet swelling
can clearly be observed. The shape of the extruded jet at final time T D 0:8

is shown in Fig. 6 with 
 D 0:002, 0:005 and 0:01 s. When 
 D 0:01 s the
jet buckles, which does not correspond to experiments. Indeed, experiments have
shown that the jet does not buckle [3] although the measured relaxation time of
pasta ranges from 0:001 to 10 s [4]; thus we conclude that the numerical results
of Fig. 6 do not correspond to experiments; we believe this discrepancy can be
explained by the fact that no-slip boundary conditions may not be physically
relevant.

We now present numerical results with slip boundary conditions along the
die, the relaxation time ranging from 
 D 0:1 to 1 s. It should be stressed
that when slip boundary conditions apply along the die wall, the shear stress
is small since the velocity remains constant along the diameter. Also note that
there is no more singularity at the die exit. The results corresponding to 
 D
0:1 s are reported in Fig. 7. Clearly, looking at the extra-stress �33, there is a
competition between the elastic effects due to the contraction at the entrance
of the die and the extrusion at the exit of the die. However, there is no jet
swelling. When 
 D 1 s, the jet buckles, see Fig. 8, which again does not
correspond to experiments. Finally, we have considered a Phan-Thien Tanner
model instead of Oldroyd-B with ˛ D 15 in (4). The results are reported in
Fig. 9 and show that the jet does not swell when 
 D 1 s, which better fits the
experiments.
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Fig. 5 Initial and final shape of the extruded jet with no-slip conditions and 
 D 0:002 s
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Fig. 6 Final shape of the extruded jet with no-slip conditions and 
 D 0:002, 0:005 and 0:01 s

Fig. 7 Shape of the extruded jet with slip conditions and 
 D 0:1 s at time t D 0:2 s and t D 0:6 s
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Fig. 8 Shape of the extruded jet with slip conditions and 
 D 1 s at time t D 0:5 s and t D 0:6 s

Fig. 9 Shape of the extruded jet with slip conditions, 
 D 1 s and the Phan-Thien Tanner model.
at time t D 0:7 s
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Conclusions and Perspectives
We have reported numerical results corresponding to the 3D extrusion of a
viscoelastic fluids with slip or no-slip boundary conditions. Numerical results
indicate that the Phan-Thien Tanner model with slip boundary conditions
seems to produce realistic results. We propose to investigate partial slip
boundary conditions, the sliding parameter being tuned with experiments.
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References

1. A. Bonito, M. Picasso, M. Laso, Numerical simulation of 3D viscoelastic flows with free
surfaces. J. Comput. Phys. 215(2), 691–716 (2006)

2. T. Coupez, Metric construction by length distribution tensor and edge based error for anisotropic
adaptive meshing. J. Comput. Phys. 230(7), 2391–405 (2011)

3. A. Kratzer, Hydration, dough formation and structure development in durum wheat pasta
processing, Ph.D. thesis, ETHZ, 2011

4. A. Kratzer, S. Handschin, V. Lehmann, D. Gross, F. Escher, B. Conde-Petit, Hydration dynamics
of durum wheat endosperm as studied by magnetic resonance imaging and soaking experiments.
Cereal Chem. 85(5), 660–666 (2008)

5. M. Tome, A. Castelo, V. Ferreira, S. McKee, A finite difference technique for solving the
Oldroyd-B model for 3d-unsteady free surface flows. J. Non-Newtonian Fluid Mech. 154(2–
3), 179–206 (2008)



Numerical Simulation of Polymer Film
Stretching

Hogenrich Damanik, Abderrahim Ouazzi, and Stefan Turek

Abstract We present numerical simulations of a film stretching process between
two rolls of different temperature and rotational velocity. Film stretching is part
of the industrial production of sheets of plastics which takes place after the
extrusion process. The goal of the stretching of the sheet material is to rearrange
the orientation of the polymer chains. Thus, the final products have more smooth
surfaces and homogeneous properties. In numerical simulation, the plastic sheet is
modelled geometrically as a membrane and rheologically as a polymer melt. The
thickness of the membrane is not assumed to be constant but rather depends on the
rheology of the polymer and the heat transfer. The rheology of the sheet material
is governed by a viscoelastic fluid and is coupled to the flow model. An A-stable
time integrator is applied to the systems in which the continuous spatial system
is discretized within the FEM framework at each time step. The resulting discrete
systems are solved via Newton-multigrid techniques. Moreover, a level set method
is used to capture the free surface. We obtain similar results for test configurations
with available results from literature and present “neck-in” as well as “dog-bone”
effects.

1 Introduction

Film casting processes are widely practiced in industry. The purpose is to produce
thin sheets of polymer. They are mainly used for food packaging, drugs, coating,
etc. Having extruded from the die below the melting temperature, the film sheet
needs to be further oriented on the molecular level to obtain more smooth material
properties at desired thickness. This is done by several rolls stretching the sheet
material, see Fig. 1. The first several rolls warm up the temperature of the sheet
material with constant heat source. Then, the two middle rolls stretch the sheet with
different velocity and temperature. The last rolls cool down the temperature of the
sheet material. Industrial objectives are to improve the properties of end products
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Fig. 1 Left: Laboratory tools (Courtesy of Schöppner, Wibbeke). Right: The numerical setup

at higher production rates and to reduce production cost. In reality, the higher the
rate of production process is the poorer the quality of the end product becomes. The
reduced qualities are well-known as “neck-in” and “dog-bone/edge-bead” effects as
studied in [8] for the extrusion process.

Numerical treatment of such process has been studied in the work of [7] where
a 2D membrane model is introduced together with isothermal Newtonian flow.
Furthermore, a viscoelastic model is clearly of importance for the corresponding
process, as shown in [13, 14].

2 Membrane Model, Viscoelasticity and Temperature
Coupling

The thickness of the sheet material film, which is roughly 0.1 % of the width, makes
it possible to use a 2D membrane model as described in the work of [7]. This is
numerically more advantageous, but we are aware that this model may not be able to
predict all viscoelastic physical phenomena such as rod-climbing, delayed die-swell,
Kaye effect, siphon effect and melt-fracture, to name a few, see [10]. Following [7],
the 2D membrane model starts with the assumption that inertia can be neglected and
that incompressibility holds, such as

8
ˆ̂
<

ˆ̂:

@u
@t
Cr � eTC �ge D 0

@u
@t
Cr � eu D 0

(1)

where T D 2�s tr.D/I C 2�sD C �p
�
.
 � I/. Here, the material parameters are

density �, solvent viscosity �s , polymer viscosity �p and polymer relaxation time
�. The later mentioned introduces the Weissenberg number We D � uc

lc
with

characteristic velocity uc and length lc . The thickness e appears as new unknown
and the hydrostatic pressure is replaced by the trace of the 2D velocity gradient,
which is a consequence of the 2D simplification of the third direction in 3D. In
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the presence of viscoelasticity, the conformation stress tensor 
 is governed by the
following viscoelastic constitutive law,

@


@t
C .u � r/
 � ru � 
 � 
 � ruT D 1

�
f .
/: (2)

Depending on how one sets f .
/, many viscoelastic models as described in [9]
can be included. In this study, we use the Oldroyd-B model with 59 % solvent
contribution. Furthermore, the non-isothermal condition is treated via a transport-
diffusion equation for the temperature

@

@t
C .u � r/ D k1r2; (3)

which influences the viscosity and the relaxation time of the fluid, for example by
the well-known Arrhenius dependence

�s=p D �s0=p0 exp
E

R

�
1


� 1

0

�
and � D �0 exp

E

R

�
1


� 1

0

�
: (4)

Here, the parameters k1; E;R are the heat diffusion coefficient, activation of
energy and ideal gas constant. The subscript zero denotes the constant value of the
corresponding parameter.

The system of Eqs. (1)–(3) is solved with the following boundary coundi-
tions: Dirichlet data for the velocity and temperature at both inflow and outflow
(uin,uout,in,out), while a Neumann condition is set for the viscoelastic stress. The
thickness Dirichlet data is set for the inflow only (ı). We assume that there is no
force on the interface, T �n D 0, where n is the unit normal at the interface pointing
into ˝a.

3 Multiphase Treatment

In the presence of the free surface for the above configuration, a surface tracking
method is possible. However, it is more convenient to use a single mesh without
having to update the mesh at every time step. Furthermore, ALE formulations make
also sense since the deformation of the mesh is small. On the other hand, it is
computationally cheaper, in view of non-isothermal situations, to avoid additional
numerical variables from ALE formulations. Thus, a level set approach [12] is a
good candidate,

@'

@t
C .u � r/' D 0; (5)
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to capture the free surface as implemented in [6] for multiphase viscoelastic flow.
One needs to take care that the function should approximate the distance property of
kr'k D 1 at each time step which requires an additional reinitialization procedure,
also implemented in [6].

4 Numerical Treatment

The numerical strategy to deal with the multiphase character, that means where and
what to solve, is based on the sign of the level set function. In the following we
describe the numerical treatment via the backward Euler scheme, for simplicity.
We proceed, also implemented in [3, 4] and by neglecting the gravity (also for
simplicity), as follows: Given initial solutions (un; en;
n; n) and interface 'n in
each time step, the coupled weak formulation of the above system of equations is
to find (u D unC1; e D enC1;
 D 
nC1;  D nC1) for the next time step with
�t D tnC1 � tn so that

1

�t
hu; �i˝ � he T;r�i˝ C h.eT/ � n; �i@˝ D 1

�t
hun; �i˝ (6)

1

�t
he; �i˝ C h.er � uC .u � r/e/; �i˝ D 1

�t
hen; �i˝ (7)

1

�t
h
; �i˝ C h.u � r/
 � ru � 
 � 
 � ruT � 1

�
f .
/; �i˝ D 1

�t
h
n; �i˝

(8)

1

�t
h; �i˝ C h.u � r/; �i˝ C k1hr;r�i˝ D 1

�t
hn; �i˝ (9)

with an admissible inner product h�; �i, and with test functions � 2 Q2 as higher
order finite element functions. Then, given a current solution u, one seeks a solution
for ' of the next time step via

1

�t
h'; �i˝ C h.u � r/'; �i˝ D 1

�t
h'n; �i˝ (10)

also here with � 2 Q2 as higher order finite element approximation. The material
parameters are set to be level set dependent, denoting ˝f and ˝a, where ˝ D
˝f [ ˝a with ˝f \ ˝a D 0. Next, the same redistancing procedure, as in [6], is
applied to maintain the distanced property of the level set function in each time step.
The process is then repeated for the next time steps.

One expects that the solution of Eq. (2) may not be smooth even at lower Weis-
senberg numbers [11]. This fact introduces problems with the Galerkin formulation.
Unlike in the Stokes problem where a pair ofQ2P1 FEM satisfies the so-called LBB
condition for velocity-pressure [1], in the presence of viscoelasticity, the same space
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approximation of velocity-stress violates the inf-sup stability condition. A remedy
can be obtained by adding a consistent stabilization term which penalizes the jump
of the solution gradient over element edges E (with hE denoting the length of the
edge, see also [2]). This jump term “smooths” the spurious velocity components,
as presented in [15], as well as the stress components, as in [4]. Thus, it avoids
unnecessary numerical artifacts. This term can be written in the following form (see
[15] for more details and also [4] in the case of viscoelasticity):

J� D
X

edge E

	h2E

Z

E

Œr
� W Œr��ds: (11)

Regarding the numerical solvers, the obtained discrete system of Eqs. (6)–(11) is
nonlinear and fully coupled. Therefore, a damped Newton interation is applied to
the solution vector

xnC1 D xn C !n

@R.xn/
@x

��1
R.xn/; (12)

where x represents the vector of coefficients corresponding to the above physical
unknowns, with a damping parameter !n. The resulting linear system is solved via
a monolithic multigrid solver, see [5].

5 Numerical Results

There exist several numerical attempts for similar problems of film casting, as
for example in [7, 13, 14]. Unfortunately there is no common benchmark on this
issue. Numerical parameters of the corresponding fluids model are not easily
available, thus new numerical techniques are hard to validate. So, here we try the
dimensionless numbers of numerical attempts from the following Table 1, which
use the same geometry as the one in the work of [14] with similar fluid parameters.
Qualitative comparison with reference is still possible, as shown in Fig. 2. We
simulate several mesh levels (12 � 8, 24 � 16, 48 � 32, denoted as L2, L3, L4
accordingly) to be sure that the solutions are converging. The following Fig. 2 shows
that our numerical results lead to converged solutions with mesh refinement. The end
width of the free surface is wider than that of [14]. As a consequence, the thickness
along the symmetry line is thinner than that of [14] accordingly. In general, the

Table 1 Film stretching condition

Case Dist.(S) (1/2 W) Thick. (ı) uin uout in out �0 We

Newtonian 5 12.5 0.07 0.1 1.5 – – 1 0

Viscoelastic 5 12.5 0.07 0.1 1.5 – – 1 0.03
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Table 2 Film stretching condition of Fig. 1

Dist.(S) (1/2 W) Thick. (ı) uin uout in out �0 We E R k1

3.487 7 0.02 5/3 5 433 413 1 0.04779 45 8.31 0

results show a similar behaviour when the fluid is stretched. Here, the “dog-bone”
effect is clearly visible from the left of Fig. 2. In the presence of viscoelasticity, see
Fig. 3, the shear thinning effect in the direction of the elongational flow makes the
end width of the film to be wider than that in the case of Newtonian which is also
qualitatively shown in [14] with the Upper Convective Maxwell model. As in the
Newtonian case, one sees clearly “neck-in” effects for the corresponding numerical
setup.

Having qualitatively compared the numerical results, we do simulations for the
setup in Fig. 1 with the conditions as in Table 2. The geometry and flow conditions
are slightly adjusted from the one in Table 1. Here, the temperature of the two rolls
is taken into account. The rest of the data is meant for numerical tests only. For
this setup, we are quite flexible to choose the time step size (�t D 0:01 is also
used in Table 1) due to the monolithic treatment of velocity, thickness and stress.
Care has to be taken that the time step size is not too big, not to deteriorate the
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decoupling of the level set function. We found that the above time step size is quite
optimal in this case. One can see in Fig. 4 that the flow of the system gets steady.
This is shown by the thickness evolution at two points: one in the middle of the exit,
and one is close to the edge of the free surface. For two levels of computation, the
solutions seem to reach mesh convergence. In the region close to the free surface,
care has to be taken that the numerical parameters do not lead to additional “jumps”
across the element. However this is not the case in the region (˝f ) far from the free
surface which shows clearly mesh converged solutions, see Fig. 5. Furthermore, the
simulation of the complete system shows the same behaviour of “dog-bone” effect.
Here, the thickness in the middle is relatively thinner than that near the free surface.

6 Summary

A membrane model for simulating the stretching of viscoelastic flow is presented.
The total governing system includes the Stokes equations as well as non-isothermal
viscoelastic constitutive laws and they are fully coupled. The multiphase behaviour
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is handled by a level set equation denoting different fluid domains. This may induce
numerical artifacts which are cured by adding a consistent jump stabilization term.
The results are qualitatively compared against reference [14] results and show that
the numerical simulation is able to predict the so-called “dog-bone” and “neck-in”
effects. In the presence of viscoelasticity, the final thickness at the chill roll shows
less of these effects. Further studies will be performed.

Acknowledgement The authors would like to thank the German Reasearch Foundation (DFG) for
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Numerical Modelling of Viscoelastic
Fluid-Structure Interaction and Its Application
for a Valveless Micropump

Xingyuan Chen, Michael Schäfer, and Dieter Bothe

Abstract An implicit partitioned coupling algorithm is used to simulate and
investigate the interaction between a viscoelastic fluid and an elastic structure. As
a test case, a lid-driven cavity with flexible bottom is studied. It is found that the
amplitude, the frequency, and the equilibrium position of the structural oscillation
are different from the Newtonian case. As a potential application, a two-dimensional
valveless micropump pumping a viscoelastic fluid is studied. The simulation shows
that the pumping average flow rate is different when the pumping medium is a
viscoelastic fluid instead of a Newtonian fluid.

1 Introduction

Micropumps have become indispensable in many biomedical applications, such as
sampling and drug delivery. In these applications the transported fluids are usually
non-Newtonian, in particular viscoelastic, and are flowing in deformable domains
along with the interaction with elastic solids. Thus one is faced with a viscoelastic
fluid-structure interaction (FSI) problem.

Among different types of micropumps, the valveless one is popular. A typical
valveless micropump consists of a large chamber with an oscillating diaphragm,
where FSI occurs, and two diffuser/nozzle elements at inlet and outlet, which control
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Fig. 1 Pumping principle of a valveless micropump

the flow direction. The working principle is illustrated in Fig. 1. In supply mode, the
chamber volume increases, and the fluid flows into both inlet and outlet. The inlet
element acts as a diffuser, which has lower pressure loss than the outlet element
acting as a nozzle. Thus more volume flux comes from inlet than outlet. In pump
mode, the pump works analogously.

In the past decades the simulation techniques for FSI and viscoelastic fluid
flow have been developed quickly. However, not much work has been focused on
the combination of them. Although there are still many challenges, e.g. achieving
quantitative accurate results, in both of the problems, the developed techniques
provide the possibility to numerically investigate the viscoelastic FSI problem
qualitatively.

In the present work we consider an incompressible Oldroyd-B fluid interacting
with an elastic structure, using an implicit partitioned coupling algorithm. As a
prototype test case, a lid-driven cavity with flexible bottom is employed for a
preliminary study. Then a two-dimensional valveless micropump is simulated. We
show the differences in the behaviours between the Newtonian and viscoelastic FSI
in the prototype test case and the different pumping performances of the micropump.

2 Governing Equations

We consider the FSI problem consisting of a fluid domain ˝f and a structural
domain˝s . These two domains share a common moving interface � . To account for
the moving fluid domain, the Arbitrary-Lagrangian-Eulerian (ALE) formulation is
applied to describe the fluid motion. Omitting the gravitational force, the governing
equations for an incompressible fluid are

r � u D 0 in ˝f � .0; T / , (1)

�f
@u
@t

ˇ
ˇ̌
ˇ
�

C �f .u� ug/ � ru D �rp Cr � 
 in ˝f � .0; T / , (2)
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where �f is the density of the fluid, u is the velocity of the fluid, ug is the
velocity field of the mesh, p is the pressure, and 
 is the extra stress. The term
@u
@t

ˇ
ˇ
�

represents the time derivative of the velocity in the referential configuration
(here the mesh configuration). To model the viscoelastic fluid, the Oldroyd-B
model is employed. The extra stress 
 is separated into the solvent contribution

1 and the polymer contribution 
2 according to 
 D 
1 C 
2. The solvent
contribution is modeled by 
1 D 2�1D, where �1 is the solvent viscosity and
D D 1

2

�ruC .ru/T
�
. The polymer contribution fulfills the constitutive equation in

a moving domain according to

@
2

@t

ˇ
ˇ̌
ˇ
�

C .u�ug/ � r
2 D 
2ruC .ru/T
2C 1



.2�2D � 
2/ in ˝f � .0; T /,

(3)

where �2 is the polymer viscosity and 
 is the relaxation time of the fluid.
The constitutive equation can be formulated using the conformation tensor C D


2=�2 C I. The evolution equation for C in the ALE description reads

@C
@t

ˇ
ˇ
ˇ
ˇ
�

C .u � ug/ � rC D CruC .ru/TCC 1



.I � C/ . (4)

To cope with the High Weissenberg Number Problem (HWNP) in the simulation
of viscoelastic fluids, there exist several stabilization approaches in the finite volume
framework, as we described and compared them in [1]. In the present work, the
approach of symmetry factorization of the conformation tensor [2] is applied. The
constitutive equation (4) is formulated in the form of its square root s D C1=2:

@s
@t

ˇ
ˇ̌
ˇ
�

C .u� ug/ � rs D sruCMsC 1

2

.s�T � s/ , (5)

where M is an anti-symmetric tensor. The computation of the components of the
matrix M is detailed in [2] and [1].

For the problem under consideration, there are two dimensionless numbers in
the description of the fluid domain: the Reynolds number Re D �UL=� and the
Weissenberg number Wi D 
U=L, where � D �1 C �2 is the total viscosity, U is
the characteristic velocity and L is the characteristic length.

In the structural domain, the displacement of a material point of the structure is
evaluated by d D x�X, where x represents the current position of the material point
originally at X. The balance of momentum for the solid domain˝s reads

�s
@2d
@t2
D r � .F ST/C �sfs in ˝s � .0; T / , (6)

where F D @x=@X denotes the deformation gradient, S is the second Piola-Kirchhoff
stress tensor, �s is the density of the solid, and fs are external volume forces acting
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on the solid. In the present investigation we consider the Saint Venant-Kirchhoff
material law S D 
s.trE/I C 2�sE, with the Green-Lagrangian strain tensor E D
1
2
.FTF � I/, as kinematic property. The parameters 
s and �s are the two Lamé

constants which can also be expressed with Young’s modulus E and Poisson ratio
�s by

E D �s.3
s C 2�s/

s C �s and �s D 
s

2.
s C �s/ . (7)

The problem formulation is closed by prescribing suitable boundary and interface
conditions. On solid and fluid boundaries � s and � f , standard conditions as for
individual solid and fluid problems can be prescribed. For the velocities and the
stresses on a fluid-solid interfaces � , we have

u D @d
@t
D ub and .�pIC 
/n D Tsn, (8)

where ub is the velocity of the interfaces and Ts D F S FT=det.F/.

3 Numerical Methods

A schematic view of the implicit partitioned algorithm for the viscoelastic fluid-
structure coupling is illustrated in Fig. 2. The structural part is treated by the
finite-element solver FEAP (see [3]), whereas the fluid part is treated by our in-
house collocated finite-volume solver FASTEST. The detailed discretization of the
governing equations for viscoelastic fluid flow can be read in [1]. In the fluid solver
the transfinite interpolation method is used for grid movement.

Fig. 2 Solution flowchart of the viscoelastic fluid-structure interaction
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For the ALE description, a discrete form of the space conservation law

d

dt

Z

Vf

dV D
Z

Sf

ug � ndS (9)

is taken into account to compute the additional convective fluxes in equations for
the blocks which are moving. This is done via the swept volumes ıVc of the control
volume faces for which one has the relation (see [4])

X

c

ıV n
c

�tn
D V n

f � V n�1
f

�tn
D
X

c

.ug � nSf /nc , (10)

where the summation index c runs over the faces of the control volume, the index n
denotes the time level tn and�tn is the time step size. The fluid-structure interaction
loop is repeated until the convergence criterion is reached. The latter is defined via
the change of the mean displacements and reads as

1

N

NX

kD1

kdk;m�1 � dk;mk1
kdk;mk1 < "FSI, (11)

where m denotes the FSI iteration counter, N is the number of interface nodes, and
k : k1 denotes the maximum norm. The data transfer between the flow and solid
solvers within the partitioned algorithm is performed via an interface realized by
the coupling library MpCCI (see [5]) which controls the data communication and
carries out the interpolations of the data from the fluid and solid grids. To stabilize
the coupled solution algorithm, an under-relaxation is employed, i.e., the actually
computed displacements dact are weighted with the values dold from the preceding
iteration to give the new displacement

dnew D ˛FSIdact C .1 � ˛FSI/dold with 0 < ˛FSI � 1. (12)

4 Test Cases and Results

4.1 Lid-Driven Cavity with Flexible Bottom

This test case with Newtonian fluid has been investigated applying the same
algorithm as in [6]. The geometry and boundary conditions of the problem are
shown in Fig. 3. We use the same physical parameters as in [6]. The fluid parameters
are �f D 1 kg=m3 and �f D 0:01 Pa � s for the Newtonian case. When the fluid is
viscoelastic the solvent and polymer viscosities are �1 D �2 D 0:005 Pa � s. The
fluid relaxation times are 
 D 0:5; 1; 2 and 3 s, respectively. The corresponding
Reynolds number is Re D 100 and Weissenberg numbers are Wi D 0:5; 1; 2 and 3.
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Fig. 3 Geometry and boundary conditions for lid-driven cavity with flexible bottom
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Fig. 4 Position of the plate middle point in lid-driven cavity with flexible bottom with (a) time
dependent lid velocity (b) time independent velocity

The plate thickness is d D 0:002m with Young’s modulusE D 250N=m2, Poisson
ratio � D 0 and density �s D 500 kg=m3. For the spatial discretization of the flow
domain 32 control volumes in each spatial direction are employed. The plate is
discretized with 20 � 20 � 4 trilinear 8-node solid hexahedral solid elements. The
time step size is 0:1 s. The FSI under-relaxation factor is fixed at 0:5.

The position histories of the plate middle point are shown in Fig. 4a for time
dependent lid velocity and in Fig. 4b for time independent lid velocity. In both cases,
the equilibrium position moves upwards and the oscillation amplitude increases,
when the Weissenberg number increases. The oscillation frequency is the same as
the lid velocity oscillation frequency when the lid velocity is time dependent. The
frequency increases slightly when the Weissenberg number increases in case the lid
velocity is time independent.
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4.2 Valveless Micropump

The pumping net flow rate in a valveless micropump greatly depends on the diffuser
efficiency ratio � D �n=�d , where �n and �d are the pressure loss coefficients of the
nozzle and diffuser, respectively. Before simulating the whole pump, we investigate
the influence of fluid relaxation time on the diffuser efficiency ratio by a pure two-
dimensional CFD simulation. The geometry of the element is illustrated in Fig. 5. A
constant volume flux is given at the narrow side for the diffuser direction or at the
wide side for the nozzle direction. The Weissenberg number is calculated with the
velocity and the height at the narrow side.

From Fig. 6a we see that for a fixed opening angle, the diffuser efficiency ratio
decreases as the fluid relaxation time (Weissenberg number) increases. From Fig. 6b
we see that for a fixed relaxation time (Weissenberg number) there is an optimal
angle.

Considering the influence of viscoelasticity of the fluid on FSI and on the
diffuser coefficient ratio of the diffuser/nozzle element, we simulate the whole two-
dimensional valveless micropump. Its geometry and material properties are shown
in Fig. 7a. The external pressure on the plate has amplitudep D 2 kPa and frequency
f D 10Hz. The pumping net flow rates for different fluid relaxation times are

Fig. 5 Geometry of diffuser/nozzle element
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Fig. 6 Diffuser efficiency ratio of diffuser/nozzle element for different (a) Weissenberg numbers
and (b) opening angles
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Fig. 7 (a) Geometry and material property and (b) Net flow rate for a two-dimensional valveless
micropump

shown in Fig. 7b. When the fluid relaxation time changes, the average flow rate
varies as expected. For viscoelastic fluid with 
 D 0:1 s, the average flow rate is
larger than for a Newtonian fluid. For viscoelastic fluid with 
 D 1 s, the average
flow rate is smaller than for Newtonian fluid and, more importantly, the average
flow direction reverses. For both viscoelastic fluids the flow rate needs a longer time
to reach steady state. At steady state, the oscillation amplitude is larger than for a
Newtonian fluid.

Conclusion
In this work we have shown the possibility of investigating viscoelastic
FSI using an implicit partitioned coupling algorithm. The study of a lid-
driven cavity with flexible bottom shows the different dynamic properties
(amplitude, frequency and equilibrium position) between Newtonian and
viscoelastic FSI. To illustrate the importance of viscoelastic FSI, we have
simulated a two-dimensional valveless micropump. Different pumping flow
rates are found between pumping Newtonian and viscoelastic fluids.
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Numerical Investigation of Convergence Rates
for the FEM Approximation of 3D-1D Coupled
Problems

Laura Cattaneo and Paolo Zunino

Abstract We consider the numerical approximation of second order elliptic equa-
tions with singular forcing terms. In particular we investigate the case where a
Dirac measure on a one-dimensional (1D) manifold is the forcing term for a three-
dimensional (3D) problem. A partial differential equation is also defined on the
manifold. The two problems are coupled by means of the intensity of the Dirac
measure, which depends on both solutions. Such a problem is used to model
the interaction of microcirculation and interstitial flow at the microscale, where
the complicated geometrical configuration of the capillary network is taken into
account. In order to facilitate the numerical discretization, the capillary bed is
modeled as a collection of connected one-dimensional manifolds able to carry blood
flow. We apply the finite element method (FEM) to discretize the equations in the
interstitial volume and the capillary network. Because of the singular forcing terms,
the solution of the coupled problem is not regular enough to apply the standard
error analysis. A novel theoretical framework has been recently proposed to analyze
elliptic problems with Dirac right hand sides. Using numerical experiments, in this
work we investigate the validity of the available error estimates in the more general
case of 3D-1D coupled problems, where the 1D problem acts as a concentrated
source embedded in the surrounding volume.

1 Introduction

The microcirculation is a fundamental part of the cardiovascular system [8], because
it is responsible for mass transfer from blood to organs. Theoretical models,
with a variety of different approaches, help to understand and quantify the main
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mechanisms at the basis of these phenomena. Our work stems from the idea of
representing vessels as one-dimensional sources embedded into the surrounding
tissue, originally introduced in [6, 10–12]. We aim to study the interplay of
microcirculation and interstitial flow on a space scale that is sufficiently small to
clearly separate the capillary bed from the interstitial tissue. To solve the governing
equations of the flow in the interstitial and capillary domains, we adopt the finite
element method. More precisely, we apply the immersed finite element method
[9, 13] to reduce the computational cost of the model. The capillary bed is modeled
as a network of one-dimensional channels. Due to the natural leakage of capillaries,
it acts as a concentrated source of flow immersed into the interstitial volume.
This reduced modelling approach significantly simplifies the issues related to the
simulation of the flow in the microvessels, [3–5]. However, this approach ends up
with a coupled system of equations where the microvasculature is represented as
a Dirac measure source term coupled with the solution in the surrounding volume.
The approximation of such problem using finite elements poses significant questions
with respect to the accuracy of the method. When only an L2 control on the
error is required, the a priori error estimates recently published in [7] represent
a very interesting theoretical framework to analyze our problem. However, these
theoretical results only apply to a two-dimensional (2D) elliptic problem with Dirac
source terms, while our model turns out to be a 3D-1D coupled system of elliptic
equations. After summarizing the problem formulation, in this work we aim at
investigating whether the convergence properties proved in [7] are valid in a more
general case, where the Dirac measure term is in turn coupled to the solution in the
surrounding volume through a partial differential equation.

2 Model Set Up

Following the approach presented in [1, 2], we consider a domain ˝ that is
decomposed into two parts,˝v and˝t , the capillary bed and the tissue interstitium,
respectively. Assuming that the capillaries can be described as cylindrical vessels,
we denote with � the outer surface of˝v, withR its radius and with� the centerline
of the capillary network, as reported in Fig. 1. We consider R constant and any
physical quantity of interest, such as the blood pressure p and the blood velocity
u, is a function of space, being x 2 ˝ the spatial coordinates, and time t . These
quantities obey to different balance laws, depending on the portion of the domain of
interest and, in general, they are not continuous at the interface between subdomains.
We consider the tissue interstitium ˝t as an isotropic porous medium, such as the
Darcy’s law applies. To set up the microcirculation model we rely on the following
assumptions: (i) the displacement of the capillary walls can be neglected, because
the pressure pulsation at the level of capillaries is small; (ii) the convective effects
can be neglected, because the flow in each capillary is slow; (iii) the flow almost
instantaneously adapts to the changes in pressure at the network boundaries, because
the resistance of the network is large with respect to its inductance. This means that
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Fig. 1 Starting from the left: interstitial tissue with one embedded capillary; reduction from 3D to
1D description of the capillary vessel; computational mesh used to define the reference solution pt

the quasi-static approximation is acceptable. As a result of that, the blood flow along
each branch of the capillary network can be described by means of Poiseuille’s law
for laminar stationary flow of incompressible viscous fluid through a cylindrical
tube with radius R. As a consequence of all these modelling assumptions, the fluid
problem in the entire domain˝ reads as follows:

8
ˆ̂
<

ˆ̂
:

r � ut D 0; ut D � k
�
rpt in ˝t

��R
4

8�
�pv D 0; uv D �R

2

8�
rpv in ˝v

(1)

where � and k denote the dynamic blood viscosity and the constant tissue
permeability, respectively. At the interface � D @˝v \ @˝t we impose continuity
of the flow:

ut � n D Lp.pv � pt / ut � 
 D 0; on � (2)

where n is the outward unit vector normal to the capillary surface. The fluid flux
across the capillary wall can be obtained on the basis of the Starling law and Lp
represents the hydraulic conductivity of the vessel wall. Problem (1) represents a
simpler setting than the one studied in [1], where the role of the lymphatic system
was also taken into account. However, this simplification will not compromise
the generality of the results addressed later on. Finally, to be uniquely solvable,
problem (1) must be complemented by boundary conditions on @˝t and @˝v. We
will fix it for our numerical example in Sect. 3. To avoid solving the complex
three-dimensional (3D) geometry of the capillary network, we exploit the immersed
boundary method combined with the assumption of large aspect ratio between vessel
radius and capillary axial length. More precisely, we apply a suitable rescaling of
the equations and let the capillary radius, R, go to zero. By this way, we replace
the immersed interface and the related interface conditions with an equivalent mass
source. We denote with f the flux released by the surface � , which is a flux per unit
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area. Proceeding along the lines of [3], whenR! 0we aim to replace the mass flux
per unit area by an equivalent mass flux per unit length, distributed on the centerline
� of the capillary network. For the application of this model reduction strategy to
the particular case of problem (1) we refer to [1]. In conclusion, the coupled problem
for microcirculation and interstitial flow consists to find the pressure fields pt , pv

and the velocity fields ut , uv such that

8
ˆ̂
<

ˆ̂
:

�r �
�
k

�
rpt

�
� f .pt=v/ı� D 0; ut D � k

�
rpt in˝

��R
4

8�

@2pv

@s2
C f .pt=v/ D 0; uv D �R

2

8�

@pv

@s
� s 2 �

(3)

where the term f .pt=v/ accounts for the blood flow leakage from vessels to tissue
and it has to be understood as the Dirac measure concentrated on � and having line
density f . The expression of f .pt=v/ is provided using the Starling equation (2),
suitably rescaled as discussed above,

f .pt=v/ D 2�RLp.pv � pt / with pt .s/ D
1

2�R

Z 2�

0

pt .s; /Rd: (4)

3 Numerical Approximation

For complex geometrical configurations explicit solutions of problem (3) are
not available. Numerical simulations are the only way of applying the model
to real cases. Moreover, the solution of problem (3) does not satisfy standard
regularity estimates, because the forcing term of Eq. (3).a/ is a Dirac measure.
To characterize the regularity of the trial and test spaces we do not resort to
weighted Sobolev spaces, as proposed in [4]. Indeed, that approach to analyze and
discretize the problem naturally ends up with error estimates requiring finite element
approximation on graded meshes, a necessary condition to capture the solution
gradients in the neighborhood of the singularity. Here, we investigate the validity
of weaker error estimates, which provide control on the approximation error under
less restrictive requirements on the scheme. This objective is achieved by following
[7], where the error analysis is based on the fact that pt does not belong to H1 but
pt 2 W 1;p

0 ; p 2 Œ1; 3� d=2/ holds instead. Then, we consider the solution pt of (3)
as an element of W 1;p

0 ; p 2 Œ1; 3 � d=2/ and we define our test spaceW 1;q
0 as:

W
1;q
0 D fv 2 W 1;q W v D 0 on @˝g; 1

p
C 1

q
D 1

The discretization of problem (3) is achieved by means of the finite element method
that arises from the variational formulation of the problem, obtained by multiplying
the first equation by a test function qt 2 W 1;q

0 and integrating over ˝ . We choose
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test functions for the pressure field on the capillary bed that are continuous on the
entire network, namely qhv 2 Vv;0 � C0.�/ on 1D manifolds and we obtain

�v
�
@spv; @sqv

�
�
C 2�RLp

�
pv � pt ; qv

�
�
D �pv;0; qv

�
�
; 8qv 2 Vv;0:

Then, the weak formulation of (3) consists to find pt 2 W 1;p
0 ; and pv 2 Vv;0 such

that,

(
at .pt ; qt /C b�.pt ; qt / D Ft .qt /C b�.pv; qt /; 8qt 2 W 1;q

0 ; ;

av.pv; qv/C b�.pv; qv/ D Fv.qv/C b�.pt ; qv/; 8qv 2 Vv;0;
(5)

with the following bilinear forms and right hand sides,

at .pt ; qt / WD �t
�rpt ;rqt

�
˝
; av.pv; qv/ WD �v

�
@spv; @sqv

�
�
;

b�.pv; qv/ WD 2�RLp
�
pv; qv

�
�
;

Ft .qt / WD 0; Fv.qv/ WD
�
pv;0; qv

�
�
:

where �t D k=� and �v D �R4=.8�/.
The main advantage of the reduced model formulation (3) is that at the

discrete level the partition of the domains ˝ and � into elements are completely
independent. We denote with T h

t an admissible family of partitions of ˝ into
tetrahedrons K 2 T h

t , where the apex h denotes the mesh characteristic size. Let
V h
t WD fv 2 C0.˝/ W vjK 2 P

1.K/; 8K 2 T h
t g be the space of piecewise

linear continuous finite elements on T h
t . For the discretization of the capillary

bed, we partition each branch �i of � into a sufficiently large number of linear
segments E , whose collection is �h

i , which represents a finite element mesh on a
one-dimensional manifold. Then, we will solve our equations on �h WD [NiD1�h

i

that is a discrete model of the true capillary bed. Let V h
v;i WD fv 2 C0.�i/ W vjE 2

P
1.E/; 8E 2 �h

i g be the piecewise linear and continuous finite element space
on �i . The numerical approximation of the equation posed on the capillary bed
is then achieved using the space V h

v WD
� [NiD1 V h

v;i

� \ C0.�/. We observe that
the continuity of the discrete pressure at the junctions of the network is enforced by
construction, by means of the approximation space. More precisely, we will use V h

v;0,
that is the restriction of V h

v to functions that vanish on the boundary of�, to enforce
essential boundary conditions on the pressure, at the inflow and outflow sections of
the capillary bed. The mesh characteristic size is denoted with a single parameter
h, because we will proportionally refine both finite element spaces V h

t ; V
h

v . The
discrete problem arising from (5) requires to find pht 2 V h

t and phv 2 V h
v;0 such that

(
at .p

h
t ; q

h
t /C b�h.pht ; qht / D Ft .qht /C b�h.phv ; qht /; 8qht 2 V h

t ;

av.p
h
v ; q

h
v /C b�h.phv ; qhv / D Fv.q

h
v /C b�h.pht ; qhv /; 8qhv 2 V h

v;0;
(6)
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where the bilinear forms at .�; �/; av.�; �/; b�.�; �/ are the same as before, with
the only difference that b�h.�; �/ is now defined over the discrete representation
of the network �h. In particular, the evaluation of the bilinear forms
b�h.p

h
t ; q

h
t /; b�h.p

h
t ; q

h
v / involves interpolation and average operators. For every

node sk 2 �h we define T h
	 .sk/ as the discretization of the perimeter of the vessel,

denoted by 	.sk/. For simplicity, we assume that 	.sk/ is a circle of radius R
defined on the orthogonal plane to�h at point sk . After restricting pht onto the nodes
of T h

	 .sk/, we calculate pht using the composite trapezoidal formula. The related
quadrature error will be neglected in the forthcoming convergence analysis, because
the partition T h

	 .sk/ is significantly finer than T h
t and �h. Prescribed boundary

conditions are a pressure drop along the capillary and an imposed pressure value
on the outer tissue domain, that is, pv.s D in/ D 1, pv.s D out/ D 0:5 and
pt D p0 D 0 on @˝ . The tissue domain is a cube of side L D 50(m and the fixed
radius of the capillary is R D 7:5 (m. We solve the non-dimensional form of (6),
fixing the characteristic length d D 50(m, so that L D 1 and R D 0:15. For the
values of all the other equation parameters we refer to [1].

4 Error Analysis, Numerical Results and Discussion

The solution of the problem (5) is characterized by a low regularity. For this reason,
studying the convergence properties of (5) to (6) is a challenging task. A novel
approach for the a priori error analysis of an elliptic problem with a Dirac measure
source term has recently been developed in [7], where the authors derive a quasi-
optimal a priori estimate for first order finite elements approximation and optimal
error bounds for higher order approximations, on a family of quasi-uniform meshes
in aL2-seminorm. Graded meshes are no longer needed to achieve optimality in this
new theoretical context. The aim of this work is to perform numerical experiments
to investigate whether the same a priori estimates are still valid for coupled problems
such as (3). For the sake of clarity, we report below the main results of [7], adapted
to this particular case.

Let pt 2 W 1;p
0 the weak solution of (5) and let pht 2 V h

t be the finite element
approximation given by (6). Then, the following upper bound for theL2-error holds:

kpt � pht kL2.˝n˝v/ . h2j loghj: (7)

We investigate with numerical experiments the validity of (7) in the model
introduced above. Since we do not know an analytic expression for the exact
solution pt of the considered problem, in order to evaluate the norm of the error (7),
we construct a reference solution on a very fine mesh, reported in Fig. 1. We fix
in this case h D 1=40. From now on, we will identify the exact solution pt
with the numerical solution pht obtained on this fine mesh. Then we compute the
numerical solution pht on coarser meshes, fixing h D 1=20, h D 1=10 and h D 1=5
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respectively. We compute the L2 norm of the error, kpt � pht kL2.˝n˝v/, fixing ˝v

as the cylinder of radius R surrounding the vessel and using the three-dimensional
composite trapezoidal formula based on the vertices of the fine mesh (h D 1=40).
This is a second-order formula which does not pollute the convergence rate of
the method. For the sake of completeness we also assess the error using the
H1-seminorm. The numerical results are reported in Fig. 2. These tests confirm
that error bound (7) is still valid for (5). Furthermore, the following behavior of
the H1-seminorm error is observed:

kpt � pht kH1.˝n˝v/ . hj loghj: (8)

Although still preliminary, these findings are encouraging at multiple levels.
From the standpoint of applications, they confirm that graded meshes are not
required to accurately approximate the pressure field in the volume outside ˝v,
where it has a precise physical meaning according to problem (1). A standard
finite element formulation, as in (6), combined with suitably refined quasi-uniform
partition, T h

t , will capture the main features of the pressure field, as prescribed
by (7). As a result, the 3D to 1D model reduction technique discussed here turns out
to be a very effective approach, which brings significant simplifications to handle
the network of capillaries at the computational level, without compromising the
accuracy of the discretization method. From the theoretical standpoint, we believe
that these results shed light on possible directions to extend the analysis of [7]. The
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results of [7] apply to elliptic problems with a Dirac measure as forcing term and the
numerical evidence in support of the analysis is limited to the case of point sources
distributed in a bi-dimensional domain. Here we study a more challenging problem,
in which a 1D manifold is embedded into a 3D domain. Furthermore, we solve a
coupled problem, namely a problem in which the solutions on the 3D domain and
1D manifold depend on each other. Also, anH1 error estimate seems to be satisfied
too. Ongoing work is therefore oriented to extend the analysis of [7] to a problem
setting equivalent to (5).
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The Interaction of Compressible Flow
and an Elastic Structure Using Discontinuous
Galerkin Method

Adam Kosík, Miloslav Feistauer, Martin Hadrava, and Jaromír Horáček

Abstract In this paper we are concerned with the numerical simulation of the
interaction of fluid flow and an elastic structure in a 2D domain. For each
individual problem we employ the discretization by the discontinuous Galerkin
finite element method (DGM). We describe the application of the DGM to the
problem of compressible fluid flow in a time-dependent domain and also to the
dynamic problem of the deformation of an elastic body. Finally, we present our
approach to the coupling of these two independent problems: both are solved
separately at a given time instant, but we require the approximate solutions to satisfy
certain transient conditions. These transient conditions are met through several
inner iterations. In each iteration a calculation of both the elastic body deformation
problem and the problem of the compressible fluid flow is performed. The presented
method can be applied to solve a selection of problems of biomechanics and
aviation. Our numerical experiments are inspired by the simulation of airflow in
human vocal folds, which implies the choice of the properties of the flowing fluid
and the material properties of the elastic body. The results are post-processed in
order to get a visualization of the approximate solution. We are especially interested
in the visualization of the elastic body deformation and the visualization of some
chosen physical quantities of the flow.
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1 Introduction

The area of the fluid-structure interaction includes many specific problems, which
(after a reasonable simplification) can be described by a mathematical model of
partial differential equations and subsequently solved by appropriate numerical
methods. The problem of our interest consists of the fluid-structure interaction
where an elastic structure changes the domain of the fluid flow due to its defor-
mation. We especially focus on airflow problems, which are described by a
compressible viscous flow model.

The applicability of the discontinuous Galerkin method (DGM) to simulation
of compressible viscous flow is now well-known, but the method also seems to
be a good choice when solving the problem of dynamic elasticity, see, e.g., [4].
The coupled problem is solved by the so-called staggered approach, which means
that both problems are solved at a given time instant separately. The approximate
solutions are required to fulfill certain transient conditions, which are met through
several inner iterations.

In this paper the application of the DGM to both problems is described. It
is applied to the spatial discretization of both problems. The time discretization
is based either on finite-difference methods or on the space-time discontinuous
Galerkin method (STDGM). The STDGM applies the main concept of the DGM
(piecewise polynomial but in general discontinuous approximation) both to the time
and to the space semi-discretizations.

Flow of viscous compressible fluid is described by the Navier-Stokes equations.
The time-dependent computational domain and a moving grid are taken into account
employing the arbitrary Lagrangian-Eulerian (ALE) formulation of the Navier-
Stokes equations.

2 Mathematical Model

Let us first define the problem of compressible flow in a time-dependent bounded
domain ˝t � R

2 with t 2 Œ0; T � : The boundary of ˝t is formed by three disjoint
parts: @˝t D �I [ �O [ �Wt ; where �I is the inlet, �O is the outlet and �Wt
represents impermeable fixed or elastic walls.

The time dependence of the domain ˝t is taken into account with the aid of the
Arbitrary Lagrangian-Eulerian (ALE) method, see, e.g., [5]. The method is based
on a regular one-to-one ALE mapping At of the reference configuration ˝0 onto
the current configuration ˝t , i.e. At W ˝0 �! ˝t , where X 2 ˝0 7�! x D
x.X ; t/ D At .X/ 2 ˝t : We define the domain velocity both in the reference and
the current configuration:

Qz.X ; t/ D @

@t
At ; t 2 Œ0; T � ; X 2 ˝0; (1)

z.x; t/ D Qz.A �1t .x/; t/; t 2 Œ0; T � ; x 2 ˝t
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and the so-called ALE derivative of the state vector function w D w.x; t/ defined
for x 2 ˝t and t 2 Œ0; T � W

DA

Dt
w.x; t/ D @ Qw

@t
.X ; t/; (2)

where Qw.X ; t/ D w.At .X/; t/, X 2 ˝0,X 2 ˝0 and x D At .X/. Using the chain
rule we are able to express the ALE derivative in the form

DA wi
Dt

D @wi
@t
C div .zwi / � widiv z; i D 1; : : : ; 4: (3)

Application of (3) to the continuity equation, the Navier-Stokes equations and the
energy equation leads to the governing system in the ALE form

DA w
Dt
C

2X

sD1

@gs.w/
@xs

C wdiv z D
2X

sD1

@Rs.w;rw/
@xs

; (4)

where w D .�; �v1; �v2; E/T 2 R
4 , gs.w/ D f s � zsw, s D 1; 2 , f s D

.�vs; �v1vs C ı1sp; �v2vs C ı2sp; .E C p/vs/T , Rs.w;rw/ D .0; �Vs1 ; �
V
s2; �

V
s1v1 C

�Vs2v2 C k @
@xs
/T , s D 1; 2 , �Vij D 
ıijdiv v C 2�dij.v/, dij.v/ D 1

2

�
@vi
@xj
C @vj

@xi

	
,

i; j D 1; 2. For a detailed description, see, for example, [3]. The following notation
is used:

• � – fluid density
• p – pressure
• E – total energy
• v D .v1; v2/ – velocity vector
•  – absolute temperature
• cv > 0 – specific heat at constant volume
• 	 > 1 – Poisson adiabatic constant
• � > 0; 
 D �2�=3 – viscosity coefficients
• k > 0 – heat conduction coefficient
• �Vij – components of the viscous part of the stress tensor
• �ij D �pıij C �Vij ; i; j D 1; 2 – components of the stress tensor � .

The vector-valued function w is called the state vector, f s are inviscid fluxes and
Rs represent viscous terms. The system (4) is completed by the thermodynamical

relations p D .	 � 1/
�
E � � jvj2

2

	
,  D 1

cv

�
E
�
� 1

2
jvj2

	
and equipped with the

initial condition w.x; 0/ D w0.x/; x 2 ˝0 and the boundary conditions:

�I : � D �D; v D vD;
P2

jD1
�P2

iD1 �Vij ni
	

vj C k @@n D 0, on inlet

�Wt : v D zD.t/ D velocity of a moving wall; @
@n
D 0, on moving wall

�O :
P2

jD1 �Vij nj D 0; @
@n
D 0; i D 1; 2; on outlet,
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with prescribed data �D , vD and zD . By n we denote the unit outer normal to ˝t .
The elastic structure deformation is described by equations of dynamic linear

elasticity. We consider an elastic body ˝b � R
2, which has a common boundary

with the reference domain˝0 occupied by the fluid at the initial time. The boundary
of ˝b is formed by two disjoint parts @˝b D �N [ �D; where �N \ �D D ;,
�N � �W0 and �D is a fixed part of the boundary. We denote the displacement of
the body by u D u.X ; t/, X 2 ˝b, t 2 .0; T /. The dynamic elasticity problem is
given as follows: find u W ˝b ! R

2 such that

�b
@2u
@t2
C cM�b @u

@t
� div � .u/� cK @

@t
div � .u/ D 0 in ˝b � .0; T /; (5)

u D uD in �D � .0; T /; �� .u/ � n D gN in �N � .0; T /; (6)

u.x; 0/ D u0.x/; x 2 ˝b;
@u
@t
.x; 0/ D z0.x/; x 2 ˝b: (7)

Here uD W �D � .0; T / ! R
2 – boundary displacement, gN W �N � .0; T / ! R

2

– acting surface force, u0 W ˝b ! R
2 – initial displacement, z0 W ˝b ! R

2 –
initial displacement velocity are given functions and �b > 0 is a given constant
material density. We assume a linear dependence between the stress tensor � .u/
and the strain tensor e.u/ and that the material is isotropic and homogeneous (the
details can be found in [4]). The expressions cM� @u

@t
and cK @

@t
div � .u/ represent the

damping terms, with cM , cK � 0.

3 Discretization

In this section we shall briefly describe the discretization. A more thorough
description of the discretization of the dynamical elasticity system can be found
in [4], while the discretization of the system for the fluid flow problem can be found
in [1].

3.1 Space Discretization

We begin with the main idea of the space discretization technique. In both problems
we consider a polygonal computational domain and a triangulation of the domain
consisting of triangular elements, which have the standard properties known from
the finite element method. We define a finite-dimensional space of piecewise
polynomial functions, which are in general discontinuous at the edges of the
triangulation.
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The equations are multiplied by test functions of this finite-dimensional space
and integrated over each element of the triangulation. Subsequently Green’s theorem
is employed, a suitable “stabilization” and interior and boundary penalty terms
(vanishing for the exact regular solution) are added and finally the resulting
equations are summed over all elements of the triangulation.

Moreover, the resulting discrete problem for the fluid flow is partially linearized,
which leads to a semi-implicit scheme. We also apply the concept of an artificial
viscosity in the vicinity of internal and boundary layers.

Both problems are discretized in time by two different approaches: by a
finite-difference method and by the space-time discontinuous Galerkin method
(STDGM).

The finite-difference method is based on a second order backward-difference
formula for the approximation of the time derivative:

@u
@t
.t/ 	 3u.t/ � 4u.t � �/C u.t � 2�/

2�
; (8)

where � > 0 is a chosen time step.
The STDGM is a fundamentally different approach to the time discretization

compared to methods based on finite-difference approximations. The sought solu-
tion is approximated by a discontinuous piecewise polynomial function both in
space and in time. The method allows an arbitrary choice of the polynomial degree
both in space and in time and yields a robust and a very accurate scheme.

4 Implementation Remarks

In this section we shall mention some important topics of the definition and
implementation of the discrete solver for the coupled problem of the fluid-structure
interaction. We shall describe the coupling procedure and explain how to get an
appropriate ALE mapping.

The construction of the ALE mapping and the domain velocity is following.
For the construction of the ALE mapping and the domain velocity we employ a
static linear elasticity model. We consider an elastic body represented by a bounded
domain ˝0 � R

2, which is the reference domain occupied by the fluid. The ALE
mapping At is obtained as the solution of the following problem:

� div � .At / D 0 in ˝0; At D u.t/ on �Wt ; At D 0 on @˝0 n �Wt : (9)

The two Dirichlet boundary conditions mean that on the common boundary the
displacement of the flow domain ˝0 is equal to the displacement of the elastic
bodies represented by the domain˝b, and that the displacement of the elastic bodies
is zero otherwise. We again assume a linear dependence between the stress tensor
� .At / and the infinitesimal strain tensor e.At / and that the material is isotropic
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and piecewise homogeneous. The applied model implies that the flow domain is
represented by some elastic material. Satisfactory results are obtained with the aid
of non-physical material parameters, see [6]. In our experiments we prescribed
piecewise constant Lamè parameters by setting 
 D �c � avgdiamTh=diamK ,
� D �
, where c > 0 is a suitable constant, diamK is the diameter of an element
K and avgdiamTh is the average element diameter of the triangulation Th. In
contrast to a material with physical Lamè parameters, where 
;� > 0, we set

 C � D 0. Moreover, on each element K we divide the Lamè parameters by
the relative element size. Finally, we choose an appropriate constant c > 0. Our
numerical experiments suggest that smaller values of c yield more suitable mesh
deformations.

Necessary to apply a suitable coupling procedure. Let us introduce the following
algorithm:

1. Assume that the approximate solution of the flow problem and the deformation
of the structure u on the time level tk are known.

2. Set the deformation on the time level tk as deformation u0 on the time level
tkC1; l WD 1 and apply the following iterative process. We use the upper index to
distinct the approximate solution obtained during the iterative process:

(a) Compute the aerodynamic stress tensor �l and the acting aerodynamical
force transformed to the interface �N by the transmission conditions gN D
��l � n

(b) Solve the elasticity problem (5)–(7), compute the deformation ul on the time
level tkC1 and the approximation˝l

tkC1
of the domain occupied by the fluid

at time tkC1.
(c) Determine the approximation of the ALE mapping A l

tkC1
at time tkC1 and

approximate the domain velocity zlkC1.
(d) Solve the flow problem (4) on the approximation˝l

tkC1
.

(e) If the variation julkC1 � ul�1kC1j is larger than prescribed, go to (a) and l WD
l C 1. Else k WD k C 1 and go to (2).

A simplified so-called “weakly coupled” scheme is defined by the same algo-
rithm with the exception that we only perform a single inner iteration, i.e. we set
k D k C 1 and go to .2/ already in the case when l D 1.

For the numerical solution of the dynamic 2D linear elasticity problem with
mixed boundary conditions we developed a .NET library written in C#. The flow
problem is solved by a library developed by J. Česenek, which is written in the C
language. (For details, see [1].) Both libraries support several time discretization
techniques, built on top of the DG discretization in space with an arbitrary choice of
the degree of the polynomial approximation. The time discretizations are based on
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the backward Euler formula, the second-order backward difference formula and the
STDGM with an arbitrary choice of the degree of the polynomial approximation in
time. The resulting linear systems are solved using the direct solver UMFPACK [2]
or by the iterative solver GMRES with block diagonal preconditioning.

The presented method can be applied to solve a selection of problems of
biomechanics and aviation. Specifically, in this paper we are focused to model
a simplified 2D simulation of vibrations of vocal folds, which are caused by the
airflow originating in human lungs.

5 Numerical Results

We consider the model of flow through a channel with two elastic bodies (see Fig. 1).
The numerical experiments were carried out for the following data:

• Magnitude of the inlet velocity vin D 4m:s�1
• The viscosity � D 15 � 10�6 kg:m�1:s�1
• The inlet density �in D 1:225 kg:m�3
• The outlet pressure pout D 97;611 Pa
• The Reynolds number Re D �invinh=� D 5;227
• Heat conduction coefficient k D 2:428 � 102 kg.m.s�2:K�1
• The specific heat cv D 721:428m2:s�2:K�1
• The Poisson adiabatic constant 	 D 1:4
The relative tolerance for the GMRES solver was set to 105. The Young modulus
and the Poisson ratio have values Eb D 25;000 Pa and �b D 0:4, respectively,
the structural damping coefficient is equal to the constant cM D 100 s�1 and the
material density �b D 1;040 kg.m�3. We used the time step � D 2 � 10�5 s. Example
of the computed results is shown in Fig. 2.

Fig. 1 The computational mesh of the fluid domain and the structure domain
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Fig. 2 The velocity vectors and the pressure field (the values of pressure dark to light) at several
time instants

Conclusion
In this paper we presented a method for the numerical solution of the
interaction of the viscous compressible fluid flow and an elastic body in
2D. The work on this topic is motivated by the problems of biomechanics
of vocal tract. The main goal was to show the applicability of the DGM
to the discretization of all the three involved problems (fluid flow, elastic
material deformation and mesh movement) both in space and in time. Selected
elements of the coupling procedure and the implementation techniques were
presented. We also described a construction of the ALE mapping, which leads
to the problem of the static linear elasticity, and solved this problem by means
of the DGM. Finally we presented the results of our numerical simulations.
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Eulerian Techniques for Fluid-Structure
Interactions: Part I – Modeling and Simulation

Stefan Frei, Thomas Richter, and Thomas Wick

Abstract This contribution is the first part of two papers on the Fully Eulerian
formulation for fluid-structure interactions. We derive a monolithic variational
formulation for the coupled problem in Eulerian coordinates. Further, we present the
Initial Point Set method for capturing the moving interface. For the discretization of
this interface problem, we introduce a modified finite element scheme that is locally
fitted to the moving interface while conserving structure and connectivity of the
system matrix when the interface moves. Finally, we focus on the time-discretization
for this moving interface problem.

1 Introduction

The underlying difficulty of fluid-structure interactions (fsi) is the free boundary
character of the coupled system: as the deformation or motion of the solid
determines the interface to the fluid problem, the domains (fluid as well as
solid) are subject to change. In problems of solid mechanics, the displacements
are usually represented in Lagrangian coordinates, such that the computational
domain is always fixed. The shape of the current configuration is expressed by the
displacement field. This concept does not directly transfer to coupled fsi problems,
as fluid flows are usually considered in Eulerian coordinates. A direct coupling
between the fixed Lagrangian and the moving Eulerian domain is not possible.

For stiffly coupled problems, monolithic formulations of the coupled system
are required for robust implicit discretization and solution techniques. A simple
approach is to reformulate the flow problem on a fixed coordinate system, that
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matches the fluid-problem. By introducing a reference domain and a mapping
between this reference domain and the current configuration, the fluid problem can
be expressed on a fixed domain. All motion is hidden in the transformation, which
is now an unknown part of the system. This Arbitrary Lagrangian Eulerian (ALE)
formulation is one possibility out of two and is often used and highly successful (see,
e.g. the survey [2]), mostly due to the simple structure and the very good accuracy,
that can be achieved. We notice that the reference system for the fluid problem is
artificial. Problems appear, if the fluid domain undergoes a very large deformation.
The mapping between artificial reference domain and current configuration must be
invertible and differentiable. If the deformation gets too large, e.g. if the topology of
the domain is changed (by contact), the ALE approach will fail. By remeshing and
definition of a new reference domain, one can overcome this limitation, however at
the cost of loosing a strictly monolithic formulation.

Here, we present an Eulerian formulation for the coupled problem, which is
similar to the ALE approach, as coupling will be realized in a monolithic variational
formulation. The fluid problem is given in its natural Eulerian framework, and the
solid problem will also be mapped to Eulerian coordinates, such that both sub-
problems are formulated in the moving current configuration. This approach has first
been introduced by Dunne [3] and then been further analyzed and developed into a
computational method [4, 13, 14, 16]. Two major differences between the Eulerian
and the ALE approach are of importance: First, we do not have to use artificial
reference domains. The mapping between Lagrangian and Eulerian systems is
natural and will never be the cause for a breakdown of the approach. Large motion,
deformation and contact are possible. Second, as the problems are given in the
moving current configuration on a fixed spatial coordinate system, the formulation
is of front-capturing type. The position of the interface must be carefully followed
and achieving good interface accuracy will be challenging.

The Fully Eulerian approach must be distinguished from other techniques like
Euler-Lagrange schemes based on Level-Sets [9], the XFEM dual mortar approach
[10], or Peskin’s immersed boundary method [12] where two different meshes
are used and the information is provided by smoothed delta-functions. The key
difference of these methods to the Fully Eulerian approach is that we neither need
Lagrange-multipliers, and that we work on one common fixed background mesh,
that allows us to realize the coupling by variational techniques.

The following second section is devoted to an introduction of the Fully Eulerian
formulation for fluid-structure interactions. Then, in Sect. 3 we describe a spatial
finite element discretization that is able to locally resolve the interface. Section 4
discusses the temporal discretization of the coupled system. Numerical test-cases
and different applications of the Fully Eulerian formulation are presented in the
second part of this series [6].
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2 Fluid-Structure Interactions in Eulerian Coordinates

Let˝ � R
d be a two- or three-dimensional domain, that is split into a fluid-domain

F and a solid-domain S and a common interface I by ˝ D F [ I [ S .
By ˝ D ˝.0/, F D F .0/ and I D I .0/ we denote the stress-free reference
configuration. On the sub-domainF we prescribe the incompressible Navier-Stokes
equations, while S is governed by an elastic structure. The two problems are
coupled on the common interface by prescribing continuity of velocities vf D vs as
well as continuity of normal stresses���f n D ���sn, where by ���f and ���s we denote the
Cauchy stresses of fluid and solid and n denotes the normal vector. By the dynamics
of the coupled problem, the solid domain will undergo a motion or deformation
S ! S .t/ and the fluid-domain will move along, such that the joint domain
˝.t/ D F .t/ [ I .t/ [ S .t/ will neither overlap nor produce gaps. The main
task for a monolithic variational formulation of the coupled problem is to state the
solid equations on this moving Eulerian domain S .t/. Details on the derivation of
the equations as well as differences to the traditional ALE formulation are presented
in detail in the literature, see e.g. [4].

Here, by vs and us we denote solid velocity and displacement in the Eulerian
framework. By the relation Ox WD x � u.x; t/ we define the mapping of a Eulerian
coordinate x 2 S .t/ back the reference coordinate x 2 S D S .0/ of the
particle. By F WD I � ru we denote the Eulerian displacement gradient with
determinant J WD det F. It holds F D OF�1, where OF is the usual Lagrangian
displacement gradient [4]. Finally, the Green Lagrange strain tensor has the Eulerian
representation E WD 1

2
.F�TF�1 � I /. This notation allows to state various

constitutive laws of elastic materials in Eulerian coordinates. For simplicity, we
restrict all considerations to the St. Venant-Kirchhoff material, where the Cauchy
stresses are given by

���s WD JF�1 .2�sEC 
s tr.E/I /F�T ;

with Lamé coefficients �s and 
s .

2.1 Variational Formulation in Eulerian Coordinates

We start by defining the correct functional spaces for the solution of the coupled
problem. As velocities of fluid and solid are continuous on the complete domain
˝.t/ D F .t/ [ I .t/ [ S .t/, we define a global function space that directly
incorporates the kinematic coupling condition

v 2 vD C V ; V WD H1
0 .˝.t/I� D.t//d ;
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where � D.t/ is that part of the domain’s boundary, where Dirichlet conditions are
prescribed and vD 2 H1.˝.t//d is an extension of the Dirichlet data into the
domain. Fluid and solid velocities are given by restriction of v to the subdomains
vf WD vjF .t/ and vs WD vjS .t/, respectively. Considering compressible elastic
structures, the pressure is only given in the fluid domain

pf 2 Lf WD L2.F .t//:

As the Eulerian formulation does not involve transformation of the fluid-domain, no
additional displacement variable (like in the ALE approach) is required. We find the
solid displacement in the form

us 2 uDs CWs; Ws WD H1
0 .S .t/I� D

s .t//
d ;

where by � D
s .t/ we denote the Dirichlet part of the solid boundary and by uDs 2

H1.S .t//d an extension of the Dirichlet values into the solid domain. Finally,
velocities v 2 vD C V , displacement us 2 uDs C Ws and pressure pf 2 Lf are
defined by the system:

.�f .@tvf C vf � rvf /;�f /F .t /C.Js�0s .@tvs C vs � rvs/;�s/S .t /

C.���f ;r�f /F .t / C .���s;r�s/S .t / D .�f ff ;�f /F .t / C .J�0s fs ;�s/S .t / 8� 2 V

.@tus C vs � rus; s/S .t / D .vs ; s/S .t / 8 s 2 Ws

.div vf ; �f /F .t / D 0 8�f 2 Lf ;

(1)

where by �f and �0s we denote the densities of fluid and solid in reference state,
by ���f WD �pf I C �f �f .rvf C rvTf / the fluid stresses with kinematic viscosity
�f . The global definition of the test-function � 2 V ensures the dynamic coupling
condition of the normal stresses. As for the velocities, we use the notation �f WD
�jF .t/ and �s WD �jS .t/.

This system of equations in not closed, as the motion of the domains is deter-
mined in an implicit sense only. Without knowledge of the solution, the affiliation of
a coordinate x 2 ˝.t/ to either solid- or fluid-domain is not immediately possible.
The next section will focus on this issue.

2.2 The Initial Point Set Method

One common possibility to capture the interface in fixed mesh methods is to use
Level-Set functions [15] that transport the interface as zero contour of a signed
distance function with the fluid and solid velocity. Eulerian Level-Set methods
for fsi problems are discussed in the literature [7, 8]. Here, we refrain from using



Eulerian FSI: Part I – Modeling and Simulation 749

Level-Sets due to two reasons: first, Level-Sets have difficulties capturing sharp
edges. And second, an additional equation has to be solved and the problem
complexity increases. Instead, we base the interface capturing on a transportation
of the complete reference domain instead of the interface:

@t˝.t/C v � r˝.t/ D 0:

Within the solid domain, the displacement us exactly takes this role. For x 2 S .t/,
the displacement vector points back to the reference domain x � us.x; t/ 2 S D
S .0/. Hence, if x and u are available, we can decide, whether x � u is part of the
reference solid or not. To apply this concept, we must define a displacement field u
on the complete domain˝.t/. Then, the Initial Point Set [3, 13] is given as

˚IPS.x; t/ WD
(
x � us.x; t/ x 2 S .t/;

x � ext.us/.x; t/ x 2 F .t/:

The extension of the solid displacement is only required in a close neighborhood of
the interface [13]. Given the initial point set, the domain affiliation of x 2 ˝.t/ is
determined by ˚IPS.x; t/ 2 S .0/ for the solid domain and ˚IPS.x; t/ 62 S .0/ for
coordinates in the fluid domain F .t/. Here, we stress one detail in the realization:
a coordinate x 2 ˝.t/ belongs to the fluid part, if the Initial Point Set ˚IPS maps
out of the reference solid domain. No mapping between F .0/ and F .t/ is required,
see [13] for a discussion. The extension can be embedded into the variational system
and the coupling condition uf D us is realized by finding a global displacement
field on the whole domain u 2 uD CW , where W WD H1

0 .˝.t/I� D
s /

d .

3 Finite Element Discretization

Typically, in fluid-structure interaction problems the overall dynamics of the system
strongly depend on the dynamics in the interface region. Hence, one key ingredient
for both stability and accuracy reasons is to capture the interface accurately. The
combined velocity consisting of solid and fluid part typically shows a kink at the
interface. It is important to resolve this kink accurately in our discretization scheme.
One standard approach to include jumps or kinks into the discrete space is the
Extended Finite Element Method [11]. A drawback of the XFEM method is the
addition and elimination of degrees of freedom which leads to a local distortion of
the connectivity and structure of the system matrix. Furthermore, one may have to
deal with so called “blending” cells lying next to the interface cells that might distort
the method’s accuracy. Finally, the condition number of the system matrix does
not necessarily remain bounded. Here, we present a method [5], that avoids these
issues. The idea is to use a fixed background mesh consisting of patches that remains
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unchanged for all time steps. Inside the patches we adjust degrees of freedom locally
by choosing a special parametric finite element space.

Locally Modified Parametric Finite Element Scheme Let ˝h be a form and
shape-regular decomposition of the domain ˝ � R

2 into open quadrangles. The
mesh˝h does not necessarily resolve the partitioning˝.t/ D F .t/[I .t/[S .t/

and the interface I .t/ can cut the elements K 2 ˝h. We further assume, that the
mesh ˝h has a patch-hierarchy in such a way, that each four adjacent quads arise
from uniform refinement of one common father-element, see Fig. 1. The interface
I may cut the patches in the following way: Each (open) patch P 2 ˝h is either
not cut P \I D ; or cut in exactly two points on its boundary: P \I ¤ ; and
@P \I D fxP1 ; xP2 g.

We define the finite element trial space Vh � H1
0 .˝/ as iso-parametric space on

the triangulation˝h. If a patch is not cut by the interface, we use the standard space
of bilinear functions OQ (bilinear on each of the four sub-quads) for both reference
element transformation and finite element basis. If a patch P 2 ˝h however is
cut, we use the space OQmod of piecewise linear functions (linear on each of the eight
triangles) for transformation and basis. Depending on the position of the interface I
in the patch P , three different reference configurations are considered, see the right
sketch in Fig. 1. Note that the functions in OQ and OQmod are all piecewise linear on
the edges @P , such that mixing different element types does not affect the continuity
of the global finite element space.

Next, we present the subdivision of interface patches P into eight triangles each.
We distinguish four different types of interface cuts, see Fig. 2: Configurations A
and B are based on the reference patches OP2 and OP3, configurations C and D use the

x̂1 x̂2 x̂3

x̂4 x̂5 x̂6

x̂7 x̂8 x̂9
xP
1

P

xP
2

Fig. 1 Left: triangulation ˝h with interface I . Patch P is cut by I at xP1 and xP2 . Right:
subdivision of reference patches OP1; : : :; OP4 into eight triangles each

xm

r

e4

e2

T8 T6

T5

T1

T7

T3
T4 sT2

r

e1

s x2

x3 se3
x4

x1

Fig. 2 Different types of cut patches. From left to right: A,B , C and D. The subdivision can be
anisotropic with r; s 2 .0; 1/ arbitrary
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reference patch OP4, see Fig. 1. If an edge is intersected by the interface we move the
corresponding point ei on this edge to the point of intersection. The position of the
midpoint xm depends on the specific configuration. As the cut of the elements can
be arbitrary with r; s ! 0, the triangle’s aspect ratio can be very large, considering
h! 0 it is not necessarily bounded. We can however guarantee, that the maximum
angles in all triangles will be bounded away from 180ı. This result allows us to
define stable interpolation operators and to derive error estimates [5].

To cope with the condition number of the system matrix, that can be unbound for
some configurations r; s ! 0, we modify the parametric basis in a hierarchical way.
By splitting of the finite element space Vh D V2h C Vb , where V2h is the standard
space of linear functions on the patches P � ˝h and Vb is the space with only local
contributions, the effect of the interface motion is kept locally. This modification
allows us to show an interface-independent condition number for the system matrix
of elliptic problems [5].

4 Outlook: Accurate Temporal Discretization

As time-stepping scheme we use the implicit Euler method. The implicit Euler
method has excellent stability properties, may suffer from strong dissipation,
however. Due to the hyperbolic character of the structure equation, it is desirable
to use a scheme with better dissipation properties. Furthermore, for stability and
accuracy reasons, it is important to capture the interface movement accurately. The
combined functions v and u both typically show kinks, their gradients are typically
discontinuous across the interface. A standard time-stepping scheme for the first
equation in (1) reads

k�1.�f .vmf �vm�1f /;�f /F .tm/C .vmf � rvmf C .1�/vm�1f � rvm�1f ;�f /F .tm/C : : :

Implementation of this scheme is not straightforward, however, as the domains F
and S change with time. Points belonging to S at time tm�1 might lie in F at time
tm. In this case the fluid velocity vm�1f is not defined in some parts of F .tm/.

In order to capture the velocity kinks accurately and not depend on artificial
extensions, we propose the use of a moving mesh technique at each time step in
the interface region. Similar to the ALE Method, we define a transformation Tm
from a fixed reference domain (e.g. ˝.tm/) back in time to the time slab Q.t/ D˚
.x; t/

ˇ
ˇ t 2 .tm�1; tm/; x 2 ˝.t/

�
that maps F .tm/ to F .t/, S .tm/ to S .t/ and

I .tm/ to I .t/. We use this transformation in a neighborhood of the interfaceI .tm/
only, outside we set Tm D id the identity (cf. Fig. 3). The reference domain (e.g.
˝.tm/) changes in every time step. A similar method has been proposed by Baiges
and Codina [1]. In order to avoid the need for remeshing around the interface, we
use the same mesh in all time steps, with the only difference that – as explained in
Sect. 3 – patches cut by the interface are arranged in such a way that the interface is
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Fig. 3 Extract of the space-time domain with moving interface I .t /. We use an ALE time
stepping scheme near the interface to track the interface movement accurately. The transformations
Tm and TmC1 are indicated by arrows. Outside of the interface region, we use a standard  -scheme

captured. Note that with this technique the interface motion is tracked accurately by
a moving mesh line that moves with the interface.
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Eulerian Techniques for Fluid-Structure
Interactions: Part II – Applications

Stefan Frei, Thomas Richter, and Thomas Wick

Abstract This contribution is the second part of two papers on the Fully Eule-
rian formulation for fluid-structure interactions (fsi). We present different fsi
applications using the Fully Eulerian scheme, where traditional interface-tracking
approaches like the Arbitrary Lagrangian-Eulerian (ALE) framework show difficul-
ties. Furthermore, we present examples where parts of the geometry undergo a large
motion or deformation that might lead to contact and/or topology changes. Finally,
we present an application of the scheme for growing structures. The verification
of the framework is performed with mesh convergence studies and comparisons to
ALE techniques.

1 Introduction

In this second part of the series on the Fully Eulerian formulation for fluid-structure
interactions (fsi), we present different test-cases and applications to highlight the
potential of this novel formulation. We focus on specific difficulties like large
deformations, motion and contact, where interface-tracking approaches such as the
Arbitrary Lagrangian Eulerian (ALE) formulation tend to fail without remeshing.
Details on the derivation of the model, as well as the finite element discretization of
the resulting equations are given in the first part [7].

The paper is organized as follows: In Sect. 2 we verify the Eulerian formulation
by means of benchmark problems and comparison with ALE computations. Further,
by modification of the benchmark descriptions, we go beyond the limit that can
be reached by ALE techniques. Next, Sect. 3 presents test-cases, where the solid
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undergoes a very large motion. In Sect. 4 we focus on problems with contact and
break of contact. In Sect. 5, we apply the locally modified finite element technique
described in the first part to a simple fsi problem. Finally, in Sect. 6 we discuss
applications with growing structures, as they appear in the growth and rupture
of plaque in blood vessels. We conclude in section “Conclusion”, where we also
discuss some open topics and shortcomings of the Fully Eulerian approach for fluid-
structure interactions. All tests are computed either with the finite software library
Gascoigne [2] or with the fsi-code [12] based on deal.II [1].

2 Numerical Validation: Benchmark Problems

In this section, we present two test cases. The first test is based on a Computational
Structure Mechanics (CSM) benchmark in which a gravitational force acts on an
elastic beam deflecting it towards the bottom of the configuration (see the results in
Fig. 1). The second example is an extension to fluid-structure interaction. Although
both tests reach a stationary limit, important issues such as interface cuts are already
present. The CSM test case is split into two sub-cases. The first case is a widely used
benchmark [3], in the second one we increase the force acting on the beam such that
it touches the lower wall. This test case is motivated by studies of Dunne [4] and it
shows the potential of the fully Eulerian formulation. The results of the first case are
summarized in Table 1 (left) and compared to results obtained with an ALE code.
In the second test [11] we are able to simulate the situation where the beam touches
the lower wall (up to one mesh cell because otherwise the fluid continuum equations
are no longer valid), see Fig. 1. For the y-displacement, the results are very similar
to results obtained by Richter [9] (see Table 1 at right). For the x-displacements, we
observe a slight difference, however, our findings are in reasonable agreement.

In the second test, the FSI 1 benchmark [3] is considered in which a parabolic
inflow is prescribed. The elastic beam deforms caused by a pressure difference
because of the non-symmetric location of the cylinder. First results using a stationary
code were presented in [10]. Now, we use our recent advances [9, 11] to recompute

Fig. 1 CSM-1 benchmark test (left) and CSM touching the lower wall for gs D 8ms�2 (right).
The left figure displays the ALE computation with the moving mesh whereas the right shows the
Eulerian result
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Table 1 Results for CSM 1 test in Eulerian coordinates. Force gs D 2ms�2 (left) and gs D
8ms�2 (right)

DoF ux.A/Œ�10�3� uy.A/Œ�10�3� DoF ux.A/Œ�10�3� uy.A/Œ�10�3�

4,004 �4:6371 �65:7587 20,988 �25:26 �192:61
12,868 �8:7366 �67:5678 54,744 �54:55 �195:26
48,768 �7:8551 �66:5940 184,629 �53:33 �196:11
179,936 �7:0841 �66:2150 691,233 �55:04 �196:89
ALE �7:1455 �65:8808 (Ref. [9]) �66:857 �192:35

Table 2 Results for the FSI 1 benchmark

Level DoF ux.A/Œ�10�3� uy.A/Œ�10�3� Drag Lift

3 131,976 0:0236 0:8146 18:831 0:7784

(Ref. [8]) 0:0227 0:8209 14:295 0:7638

this example with a nonstationary code version. Our findings are summarized in
Table 2. In order to keep the computational cost reasonable, local mesh refinement
around the elastic beam is applied.

3 Large Motion: 360ı Rotation

Usually, the reason for the break-down of the ALE approach is loss of regularity in
the ALE transformation map and not the large deformation or motion of the structure
itself.

In Fig. 2, we show a prototypical configuration: an (elastic or rigid) body S D
S .0/ is centered in a flow container S � ˝ . By a rotational flow in the fluid-
domain F D F .0/ D ˝ n S .0/ the object starts to rotate. Here, it is not a
deformation of the solid but a rigid body rotation that causes severe problems in
ALE computations (top line of Fig. 2).

In the Fully Eulerian formulation, the large motion and rotation does not cause
any problems, as the fluid problem is given in the Eulerian framework, see the
bottom line of Fig. 2. In this framework, the interface moves through the domain
and must be captured by the Initial Point Set. As these computations have been
done without a specially fitted interface finite element method, we observe a strong
loss of accuracy. For the Eulerian framework, meshes with a finer resolution are
required to reach the same accuracy as with an ALE approach. In order to obtain
approximately the same accuracy, we used about 4,000 locally refined elements for
the Eulerian approach vs. 400 elements in the ALE case (cf. Fig. 2).

As an interface-capturing technique, the Fully Eulerian approach is not strictly
mass-conserving, the solid mass

ms.u/ D
Z

S .t/

J.u/�0s dx
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Fig. 2 Rotational flow around an unmounted obstacle at different time steps. Top row: ALE
computation. Bottom row: Fully Eulerian

depends on the accuracy of the captured interface. For this test-case, we observe,
that linear finite elements (even without fitted interface modifications) show second
order in capturing the solid mass

jms.u/�ms.uh/j D O.h2/:

4 Touching the Boundary

We consider a test problem, that has been introduced in [9]. An elastic ball “falls”
due to gravity in a viscous fluid until it touches the bottom of the rigid fluid domain.
Due to elasticity, the ball bounces off and is elevated, then falls down again for
several times until the motion is finally damped by viscous effects.

The fixed computational domain is set to ˝ D .�1; 1/2 m, and at reference time
t D 0 the system is at rest, with the ball being centered in the origin S .0/ D fx 2
˝ W jxj < 0:4m}. The fluid-domain F .0/ D ˝ nS .0/ is governed by a viscous
incompressible Navier-Stokes fluid with density �f D 103 kg m�3 and kinematic
viscosity �f D 10�2 m2 s�1. The elastic ball has density �0s D 103 kg m�3 and the
Lamé coefficients �s D 104 kg m�1 s�2 and 
s D 4 � 104 kg m�1 s�2. The problem
is driven by a right hand side, that acts on the solid-domain only, fs D �1m s�2 and
ff D 0. On the bottom part of the boundary �bot D f.�1; 1/ � f�1gg we prescribe
homogenous Dirichlet conditions for the velocities v D 0. On all other parts of the
boundary @˝ n �bot we prescribe the “do-nothing” outflow condition for the fluid
�pf n C �f �f @nvf D 0. Finally, we prescribe homogenous Neumann conditions
for the displacement @nu D 0 on the complete boundary @˝ .
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Fig. 3 Left: height of the falling ball over the ground, wall-stress and solid Cauchy stress. Right:
configuration at the time of closest contact t D 0:675. Small undershoots in the wall-stress are due
to the forces of the incompressible fluid on the boundary at separation time

The main interest of this test case is the contact of the structure with the boundary
of the domain. In Fig. 3, we plot the distance of the ball to the ground. First
we observe, that the ball touches the ground for a short time-interval and then
bounces off. The maximum elevation is reduced after each contact with the domain’s
boundary. Further, we show the normal wall stress on the lower boundary and the
norm of the Cauchy stresses within the solid:

Jwall-stress D
Z

�bot

n � ���f n do; Jsolid-stress D
Z

S .t/

���s W ���s dx:

There will always be a thin layer of fluid around the structure, such that there
is no real “contact” between both phases. The right part in Fig. 3 shows a plot of
the elastic ball on the fixed background mesh at the time where ball and boundary
are closest. The forces are transferred via the remaining small layer of fluid. These
results are stable under refinement of the temporal and spatial discretization. It
however still remains to show, that the realization of contact, which is modeled by
the discretization only, gives realistic results. Here, comparisons to experiments and
numerical benchmarking with alternative formulations are necessary steps in future
work.

5 Locally Modified Finite Element Scheme

In this section, we present first nonstationary results using the Locally Modified
Finite Element scheme described in the first part [5, 7] applied to a simplified
fluid-structure interaction problem. The problem under consideration consists of an
elastic ball in the middle of a fluid governed by the linear Stokes equation. The
elastic solid is governed by a fully linearized elasticity model. The flow field is
driven by a prescribed parabolic inflow on the left-hand side of the domain. This
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Fig. 4 Screen-shots of a moving elastic ball simulated using the Locally Modified Finite Element
scheme at time T D 0:05, T D 0:1, T D 0:15 and T D 0:2

causes the elastic ball to move towards the right side where we prescribe the do-
nothing outflow condition. In Fig. 4, we show screen-shots of simulation results at
four different time steps. The time step was chosen k D 10�3.

As described in [5, 7], we use a fixed patch mesh for all time steps. Outside
the interface region, we split each patch P 2 ˝h into four quadrilaterals (type 1).
Patches cut by the interface are split into 8 triangles that resolve the interface with
a linear approximation (types 2–4). The type assigned to a patch may vary in every
time step depending on the position of the interface. Although the aspect ratio of the
triangles can get arbitrarily bad, we can make sure, that all triangles have interior
angles bound away from � . This guarantees robust interpolation estimates. To cope
with the bad conditioning of the system matrix, we use a hierarchical basis on those
patches, that are cut by the interface.

This approach is equivalent to a fitted finite element method using a mixed
triangular-quadrilateral mesh, which is well known to give optimal approximation
properties. However, instead of modifying the mesh, we locally modify the finite
element basis. The number of unknowns and the connectivity of the system matrix
does not depend on the interface location.

6 Growing Structures and Clogging Phenomena

In this final example, we present results showing our recent efforts in modeling
and simulating growing solids and clogging phenomena. The key idea relies on
a multiplicative decomposition of the displacement gradient into an elastic and a
growth part. The fundamental relation (see Part I [7]) is given by

F D OF �1: (1)

Now, the Eulerian displacement gradient is split into a growth part and an elastic
part using relation (1):

F D OF�1 D OF�1g OF�1e DW OF�1g Fe; Fe WD OF�1e ;
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Fig. 5 Configuration 2: Deformation at times T D 10; 40 in the time interval Œ0; 80�
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Fig. 6 Deformation of the top solid at channel’s mid-point at times T D 10; 40 in the time interval
Œ0; 80�

and

J WD OJ�1 D OJ�1g OJ�1e DW OJ�1g Je; Je WD det Fe D OJ�1e :

The growth tensor is defined as OF �1g WD Og. Ox; t/I .
The problem is driven by a pressure difference described as cosine function

and simultaneously by growth of the structure. Consequently, we consider two
effects, namely, fsi-interaction and solid-growth. The configuration and the material
parameters are taken from [6], Example 2. In addition to these tests, we now
consider growth and back-growth of the solid (for instance when a plaque-disease
occurs and vanishes after treatment). By observing Figs. 5 and 6, we see that the
findings in both frameworks show similar qualitative behavior. The results of the
Eulerian approach are less accurate and stable, as this test-case is computed using
the standard non-fitted finite element approach without the modifications described
in Sect. 5.

Conclusion
As shown in our studies, the Fully Eulerian formulation for fluid-structure
interactions offers an alternative modeling approach, that can be preferable
for certain classes of problems. As a monolithic model, one can use strong
implicit discretization schemes with large time-steps, independent of the prob-
lem’s stiffness. One benefit of the Eulerian scheme is the simple incorporation

(continued)
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of complex models, like, e.g. active growing solids. As a drawback, we
point out the interface-capturing type of this approach. To achieve good
approximation at the interface, additional computational effort is required.
Often, finer meshes are required, however, the Fully Eulerian approach will
not fail, if motion of the solid gets large. The full use of the locally modified
finite element scheme [5, 7] for nonstationary problems will essentially
remove this drawbacks. Among the large variety of different schemes for
fluid-structure interactions that are able to deal with large deformation and
motion, the peculiarity of the Fully Eulerian approach is its strictly monolithic
character. If implicit discretization schemes and solvers are desirable or if
adjoint schemes for error estimation or optimization are to be used, the
Eulerian scheme can be easily embedded into the usual variational framework.
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A Local Projection Stabilization FEM
for the Linearized Stationary MHD Problem

Benjamin Wacker and Gert Lube

Abstract We present a local projection stabilization (LPS) type finite element (FE)
method for the linearized stationary magnetohydrodynamics (MHD) problem. In
contrast to the residual-based stabilization in Badia et al. (J Comput Phys 234:399–
416, 2013; Analysis of an unconditionally convergent stabilized finite element
formulation for incompressible magnetohydrodynamics, submitted), we investigate
a symmetric LPS method comparable to the term-by-term stabilization in Badia et
al. (Int J Numer Methods Eng 93:302–328, 2013).

1 Introduction

Following the time discretization and linearization approach in [1–3], we consider
the stationary MHD model

� ��uC .a � r/uCrp � .r � b/ � d D fu ; r � u D 0; (1)


r � .r � b/Crr � r � .u � d/ D fb ; r � b D 0; (2)

in a bounded Lipschitz domain˝ � R
d , d 2 f2; 3g with r � a D 0. a and d are the

vector-fields for the velocity and magnetic field at linearization. For the unknown
velocity field u, magnetic field b, pressure p and magnetic pseudo-pressure r
(vanishing in the continuous case), we introduce the function spaces

V D
n
v 2 �H1.˝/

�d W v D 0 on @˝
o

; Q D L20.˝/;
C D fc 2 H.curl I ˝/ W n � c D 0 on @˝g ; S D H1

0 .˝/
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where .�; �/ and h�; �i are appropriate inner and dual products. The variational
problem reads: Find U WD .u;b; p; r/ 2 V � C �Q � S such that

AG .U;V/ D FG .V/ ; 8V WD .v; c; q; s/ 2 V � C �Q � S (3)

with

AG .U;V/ D � .ru;rv/C ha � ru; vi � .p;r � v/� h.r � b/ � d; vi
C .r � u; q/ � .b;rs/ (4)

C
 .r � b;r � c/C .rr; c/ � hr � .u � d/ ; ci;
FG .V/ D hfu; vi C hfb; ci: (5)

Let Th be the primal grid with FE spaces of Taylor-Hood type

Vh �Qh=Ch � Sh D P
k
Th
� P

k�1
Th

or Qk
Th
�Q

k�1
Th
; k 2 N n f1g: (6)

The pair Vh �Qh is discretely-divergence-free, thus

V div
h WD fvh 2 Vh W .r � vh; qh/ D 0 8qh 2 Qhg ¤ f0g:

Let Mh D Th or Mh D T2h be the macro grid with discontinuous FE spaces
D

u=b
h � ŒL2.˝/�d . The local orthogonal L2-projectors are denoted as �u=b

M W
ŒL2.M/�d ! D

u=b
h jM . The global projections�u=b

h W ŒL2.˝/�d ! D
u=b
h are given as

.�
u=b
h w/jM WD �

u=b
M .wjM/: The fluctuation operator �u=b

h W ŒL2.˝/�d ! ŒL2.˝/�d

with �u=b
h w WD �.id � �u=b

h /wi /diD1 is assumed to have the approximation property

k�u=b
h vk0;M � ChlMkvkl;M 8v 2 ŒW l;2.M/�d ; l D 0; : : : ; s; s 2 f0; : : : ; kg:

(7)

Let Uh D .uh;bh; ph; rh/ ;Vh D .vh; ch; qh; sh/ 2 Vh � Ch �Qh � Sh � V �
C �Q � S . Then the LPS terms read

Slps.Uh;Vh/ D
X

M

˚
�1
�
�u
h..aM � r/uh/; �

u
h..aM � r/vh/

�
M
C �2 .r � uh;r � vh/M

C�3
�
�bh..r � bh/ � dM/; �

b
h..r � ch/ � dM/

�
M

C�4
�
�bh..r � .uh � dM//; �

b
h.r � .vh � dM//

�
M

C �5 .rrh;rsh/M C �6 .r � bh;r � ch/M g
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where .�; �/M is the L2 scalar product on cell M . Here, aM and dM are elementwise
constant approximations of ajM and djM. The LPS problem consists of finding Uh 2
Vh � Ch �Qh � Sh such that for all Vh 2 Vh � Ch �Qh � Sh:

Astab.Uh;Vh/ D AG.Uh;Vh/CSlps.Uh;Vh/ D FG .Vh/ : (8)

2 Stability of the Proposed Method

For k 2 N0 and D � ˝ , we use the notation j � jk;D WD j � jHk.D/ and k � kp;D WD
k � kLp.D/ with 1 � p � 1. In case of D D ˝ , we omit indexD.

Lemma 1 For U;V 2 V � C �Q � S , it holds for the symmetric LPS terms

.i/ Slps .U;U/ � 0; .ii/
ˇ
ˇSlps .U;V/

ˇ
ˇ � �Slps .U;U/

� 1
2
�
Slps .V;V/

� 1
2 :

Let V D .v; c; q; s/ 2 V � C �Q � S . Integration by parts yields ha � rv; vi D 0

and h.r � c/ � d; vi D �hr � .v � d/ ; ci, hence

AG .V;V/ D �krvk20 C 
kr � ck20:

We define the following expressions

kVk2G D �krvk20 C 
kr � ck20; kVk2lps D Slps .V;V/ : (9)

Symmetric testing Vh D Uh yields

�
AG CSlps

�
.vh; vh/ D kvhk2G C kvhk2lps D hfu;uh > C < fb;bhi: (10)

By the discrete Babuška-Brezzi-condition, we have for all ph 2 Qh the unique
existence of vh 2 Vh with

r � vh D �ph ; jvhj1 � ˇ�1u kphk0: (11)

Examining the term
�
AG CSlps

�
.Uh; .vh; 0; 0; 0//, we end up with

kphk20 � kfuk�1 jvhj1 C �kruhk0 jvhj1 C
ˇ
ˇSlps ..uh; 0; 0; 0/ ; .vh; 0; 0; 0//

ˇ
ˇ

� .a � ruh; vh/C ..r � bh/ � d; vh/

by using that uh 2 V div
h . Based on the inequalities

� .a � ruh; vh/ D .a � rvh;uh/ � Cpkak1 juhj1 jvhj1 ; (12)

..r � bh/ � d; vh/ � Cpkdk1kr � bhk0 jvhj1 ; (13)
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k.vh; 0; 0; 0/k2lps � max
M

�
�1jaMj2 C �2d C �4jdM j2

� jvhj21 (14)

together with (11), we obtain after some calculation an estimate of the fluid pressure

ˇukphk0 � kfuk�1 C
�p

� C Cpkak1p
�
C Cpkdk1p




�
kUhkG

C
�

max
M

�p
�1jaMj

�Cmax
M

p
�2d Cp�4jdM j

�
kUhklps: (15)

We define the norms

kckC D
p


�
L�10 kck0 C kr � ck0

�
; kskS D .ksk0 C L0krsk0/ =

p

 (16)

on the spaces C and S with a length-scale L0  diam.˝/. Using integration by
parts, we define the bilinear form of the Maxwell problem

CMax ..b; r/ ; .c; s// D AG ..0;b; 0; r/ ; .0; c; 0; s// :

For this problem, the continuous Babuška-Brezzi-condition

inf
.b;r/2C�S

sup
.c;s/2C�S

CMax ..b; r/ ; .c; s//
.kbkC C krkS / .kckC C kskS / � ˇm (17)

holds. Let .bh; 0/ 2 Ch � Sh � C �S . By (17) there exists a unique .c; s/ 2 C � S
with kckC C kskS D 1 such that

ˇmkbhkC � CMax ..bh; 0/ ; .c; s// (18)

D CMax ..bh; 0/ ; .c; 0//C CMax ..bh; 0/ ; .0; s// DW I C II

holds. We get with kskS � 1 and kckC � 1 the estimates

I D 
 .r � bh;r � c/ �
p

kr � bhk0

p

kr � ck0 � kUhkG; (19)

II D j.r � bh; s/j �
�X

M

�6kr � bhk20;M
	 1
2
�X

M

1

�6
ksk20;M

	 1
2

� kUhklps �
�

max
M

1p
�6

	
�
p


ksk0p


D max

M

s



�6
� kUhklps (20)

by the Cauchy-Schwarz inequality. Putting (19) and (20) into (18) and requiring
max
M


=�6 � 1 leads to
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ˇM kbhkC �
�
kUhkG Cmax

M

s



�6
kUhklps

	
� kUhkG C kUklps (21)

Adding (10) and squared inequality (20) and applying Young’s inequality leads after
some calculation to

ˇ2Mkbhk2C C �kpuhk20 �
g

�
kfuk2�1 C

g

ˇ2M
kbhk2C�

where C � in the dual of the space C . This gives the uniqueness and existence of
the discrete velocity and magnetic fields uh and bh and inequality. (15) implies the
unique existence of the discreate kinematic pressure.

Finally, from the equation
�
AG CSlps

�
.Uh; .0; 0; 0; rh// D � .bh;rrh/ CP

M

�5krrhk20;M D 0; we conclude by using (16) that

krrhk0 �
�

min
M

p
�5

��1
kbhk0 � L0

�p

 min

M

p
�5

��1
kbhkC : (22)

This implies existence of the unique discrete magnetic pseudo-pressure. As full
control of rrh is essential to enforce condition r � bh D 0, (22) and (21) suggest
with C � 1

�5  L20=
; �6 � C
: (23)

3 Error Analysis for Smooth Solutions

Subtracting (3) and (8) gives the approximate Galerkin orthogonality.

Lemma 2 Let U and Uh be the solutions of (3) and (8). Then

�
AG CSlps

�
.U�Uh;Vh/ D Slps.U;Vh/; 8Vh 2 Vh �Ch �Qh � Sh: (24)

Let J D �
ju; jb; j p; j r

�
be appropriate interpolation operators. In particular, we

assume that juu 2 V div
h . We therefore decompose the error as

U � Uh D .U � JU/C .JU � Uh/ D "C Eh 

�
"u; "b; "p; "r

�C �eu; eb; ep; er
�
:

Set now Vh D Eh in (24), thus

kEhk2G C kEhk2lps D Slps .U;Eh/„ ƒ‚ …
DI

�AG .";Eh/„ ƒ‚ …
DII

�Slps .";Eh/„ ƒ‚ …
D�III

: (25)
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We obtain

I � �Slps .U;U/
� 1
2
�
Slps .Eh;Eh/

� 1
2 D kUklpskEhklps; (26)

jIIIj D Slps .";Eh/ � k"klpskEhklps; (27)

�II � k"kGkEhkG C IV (28)

IV D .a � r"u; eu/� ..r � "b/ � d; eu/� .r � ."u � d/ ; eb/ (29)

� �"p;r � eu
�C �r � "u; ep

�C �r"r ; ep
� � ."b;rer / :

Then we can summarize estimates (25)–(29) as

kEhk2G C kEhk2lps �
�k"klps C kUklps

� kEhklps C k"kGkEhkG C jIVj : (30)

Integration by parts and Cauchy-Schwarz inequality give for the terms in IV:

.a � r"u; eu/ D �
�

a � reu; "u

	
�
�X

M

kak21;M
�
k"uk20;M

	 1
2 kEhkG;

�
�
"p;r � eu

	
�
�X

M

min
�d
�
I 1
�2

	
k"pk20;M

	 1
2 kEhklps;

� ."b;rer / �
�X

M

1

�5
k"bk20;M

	 1
2 kEhklps; (31)

� .r � ."u � d/ ; eb/ D ."u; .r � eb/ � d/ �
�X

M

kdk21;M


k"uk20;M

	 1
2 kEhkG:

The term .r"r ; eb/ vanishes since r D j rr 
 0. Moreover, term �.ep;r � "u/

vanishes via r � u D 0 and since juu 2 V div
h . Let d 2 �W1;1 .˝/

�d
. By formula

r�.e � f/ D f �re�f .r � e/�e �rfCe .r � f/, the inequalities of Cauchy, Schwarz
and Poincare, it follows

� ..r � "b/ � d; eu/ D
X

M

."b;r � .eu � d//M

�
�X

M

��1
�
1C
p
d
�2�kdk1;M C krdk1;M

�2k"bk20;M
	 1
2 kEhkG: (32)

We then summarize Eqs. (30)–(32). Using Young’s inequality, we obtain

kEhk2G C kEhk2lps � S21 C S22 ;
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with

S1 WD k"kG C
�X

M

1

�
kak21;M k"uk20;M

	 1
2 C

�X

M

1



kdk21;M k"uk20;M

	 1
2

C
�X

M

��1
�
1C
p
d
�2�kdk1;M C krdk1;M

�2k"bk20;M
	 1
2
;

S2 WD k"klps C kUklps C
�X

M

min
�d
�
I 1
�2

	
k"pk20;M

	 1
2 C

�X

M

1

�5
k"bk20;M

	 1
2
:

The approximation properties of the FE spaces, see [5], and the local L2-projector
yield for U 2 ŒHkC1.˝/�d � ŒHkC1.˝/�d �Hk.˝/ �Hk.˝/ that

S21 � C
X

M

h2kM

h�
�
�
1C kak

21;M h2M
�2

�C 
kdk
21;M h2M

2

�	juj2kC1;!M

C
�

C h2M

�

�kdk1;M C krdk1;M
�2	jbj2kC1;!M

i
; (33)

S22 � C
X

M

h2sM

h�
�2d

2 C �1jaMj2 C �4jdMj2
�juj2sC1;!M

Cmin
�d
�
I 1
�2

	
jpj2s;!M C

�
�3jdMj2 C �6d 2 C h2M

�5

�jbj2sC1;!M
i

(34)

where !M denotes an appropriate patch around cell M .
Denote the local fluid and magnetic Reynolds numbers by

Ref;M WD kak1;M hM=�; Rem;M WD kdk1;M hM=
:

respectively. We will call an error estimate to be of order k if the coefficients
multiplying corresponding Sobolev norms of the solutions are of order hk uniformly
w.r.t. the problem data. In this case, sufficient conditions can be found by the
following (mild) restrictions on the local mesh width hM

p
�Ref;M � C;

p

Rem;M � C; hM .kdk1;M C krdk1;M / � C

p
� (35)

and on the stabilization parameters (by using (7))

0 � �1 � Ch2.k�s/M =jaMj2; 0 � �3; �4 � Ch2.k�s/M =jdMj2; Ch2M � �5: (36)

Condition (23) implies the latter condition on �5. Moreover, (34) suggests the
balance �5�6  h2M , thus (see also [1, 2])
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�5  L20=
; �6  h2M
=L20: (37)

A balance of the terms with the div-div parameter �2 leads to the practically
unfeasible formula �2  max

�
0I jpjk;M j=jujkC1;M � �

�
. A reasonable compromise

is to set

�2  1: (38)

Theorem 1 Assume that the solution .u;b; p/ of (3) belongs to ŒHkC1.˝/�d �
ŒHkC1.˝/�d � Hk.˝/ and that juu 2 V div

h . Further, let the LPS parameters be
chosen according to condition (36)–(37) and that the local mesh width hM is chosen
such that (35) is valid. Then we obtain (using r 
 0)

kUh � JUk2G C kUh � JUk2lps � C
X

M

h2kM

�
juj2kC1;!M C jbj2kC1;!M C jpj2k;!M

	
:

Numerical results for the magnetic part, i.e. u 
 0; p 
 0, show the relevance of
the parameter design (37) for Taylor-Hood type pairs Ch � Sh. In particular, this is
valid if the magnetic field b does not belong to ŒH1.˝/�d . Such singular solutions
can be well approximated on meshes with suitable macro-element structure, like
cross-box elements, see [1]. Our results confirm this for Taylor-Hood type pairs
Ch � Sh as well.

Numerical experiments for the fluid part, i.e. b D 0; r D 0, see [4], show:
The mesh conditions (35) are much less restrictive than the typical ones on the
local Peclet number PeM WD hMkak1;M =� � 1 in the Galerkin method for
advection-diffusion problems. The div-div stabilization term is very important
for robust estimates in case of Taylor-Hood elements. Compared to the Galerkin
method, much better local mass conservation clearly improves theH1- andL2-error
rates for velocity uh. Increasing values of Ref WD kak1CP =� can lead to order
reduction. Nevertheless, the choice of the div-div parameters �2 is still a question of
ongoing discussion. It turns out that the SUPG-stabilization is much less important
than div-div stabilization, thus showing the surprising robustness of the Galerkin-
FEM with div-div stabilization in case of inf-sup stable pairs Vh �Qh.

4 Improved Error Estimates

The restrictions (35) on the mesh width are not convincing. Let us assume the
following orthogonality conditions

.v� juv; �h/ D 0 8v 2 V and 8�h 2
�
Du
h.M/

�
; (39)

�
c � jbc;�h

� D 0 8c 2 C and 8�h 2
�
Db
h.M/

�
: (40)
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Sufficient conditions on Th;Mh, the FE and projection spaces for (39)–(40) can be
found in [6] or [4]. In particular, for the one-level approach with Th D Mh, one
has to enrich the velocity space by local bubble functions [6]. Another implication
is that juu 62 V div

h , hence the mixed term .ep;r � "u/ has to be considered. Moreover,
a careful selection of the pressure spaces Qh is required. The critical mixed term
vanishes for continuous pressure space Qh D Pk�1. In case of discontinuous space
Qh D P�.k�1/, one can introduce additional pressure jump terms across interior
edges to handle it, see [4].

Equations (39)–(40) allow modified estimates of the skew-symmetric terms

.a � r"u; eu/ D �
�
�u
h .a � reu/ ; "u

	
�
�X

M

1

�1
k"uk20;M

	 1
2 kEhklps;

� ..r � "b/ � d; eu/ D
�
"b; �

b
h

�r � �eu � d
��	 �

�X

M

1

�4
k"bk20;M

	 1
2 kEhklps;

� .r � ."u � d/ ; eb/ D
�
"u; �

b
h ..r � eb/ � d/

� �
�X

M

1

�3
k"uk20;M

	 1
2 kEhklps:

Then, a modification of (33) leads to

S21 � C
X

M

h2kM

h�
� C h2M

�1
C h2M

�3

	
juj2kC1;M C

�

C h2M

�4

	
jbj2kC1;M

i
: (41)

Preserving the choice of div-div parameters according to (38) and of (37), a
calibration of the parameters in (41) and (34) gives

Ch2M � �1 � C=jaM j2; Ch2M � �3; �4 � C=jdM j2; (42)

and allows to omit the restrictions (35). A careful estimation has to consider the
approximation of aM  a and dM  d. For simplicity, we assume here elementwise
constant fields ajM D aM and djM D bM.

Theorem 2 Let the orthogonality conditions (39)–(40) be valid. Assume that the
solution .u;b; p/ of (3) belongs to ŒHkC1.˝/�d � ŒHkC1.˝/�d �Hk.˝/. Further,
let the LPS parameters be chosen according to conditions (38), (37) and (42). Then
we obtain the quasi-optimal error estimate in Theorem 1 without the mesh-width
restrictions (35).

Numerical experiments for the fluid part, i.e. b D 0; r D 0, show: One can omit
restriction (35) if conditions (39)–(40) are valid, see [4]. The experiments indicate
that optimal error estimates for the H1- and L2-error rates for the velocity uh are
obtained which are robust with respect to Ref .

Corresponding numerical experiments for the magnetic part and the full MHD
problem are in preparation and will be reported elsewhere.
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Domain Decomposition for Computing
Ferromagnetic Effects

Michel Flueck, Ales Janka, and Jacques Rappaz

Abstract We present here a model for simulating the ferromagnetic screening
effect in thin steel plates. We exhibit a domain decomposition method to solve
this problem by using only Laplace equations. We then apply this on an academic
situation of a steel plate placed in front of a linear conductor and on an industrial
application in aluminum production. More details and proofs can be found in Flück
et al. (Numerical methods for ferromagnetic plates. Scientific report, SB/MATH-
ICSE, EPFL).

1 The Ferromagnetic Screening Effect and Its Industrial
Application

We briefly present an academic situation illustrating ferromagnetic screening and an
industrial application as well.

1.1 The Ferromagnetic Screening Effect in General

Let us consider an infinite linear electric conductor with a given steady current. The
well known Biot-Savart formula gives the induction produced by this current in the
whole space. Figure 1(left) shows this induction field due to a wire orthogonal to
the plane of the Figure.

Let us now place a rectangular plate in front of the conductor. Figure 1(right)
shows the induction field as modified due to the ferromagnetic effects. As we can see
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Fig. 1 Left: the induction field generated by an infinite linear conductor. Right: the induction field
modified by ferromagnetic effects. The view is on a plane perpendicular to the conductor using
same scale for both plots

induction behind the plate is much smaller in intensity. This is called ferromagnetic
screening effect. It is precisely this effect we want to model and compute here.

1.2 The Industrial Application: An Aluminum Electrolysis Cell

An aluminum electrolysis cell is a 15 m long, 4 m wide and 1 m high cell that
contains smelted aluminum (about 20 cm high) at the bottom and liquid electrolyte
(about 5 cm) placed above the aluminum, see Fig. 2.

A strong direct current is forced through these liquids using carbon anodes in
the electrolyte and a carbon cathode under the aluminum. The temperature is about
950 ıC. The whole system is built in a big steel container 3 cm thick (not shown in
Fig. 2 but shown in Fig. 3).

To feed the cell with current (it can reach 500,000A) big conductors come into the
cell from outside the steel container. This current crosses vertically the cell allowing
the electrolysis process and production of aluminium. It is then taken off the cell by
other conductors outside the steel container and send to the next cell.

The two fluids, aluminium and electrolyte undergo Lorentz forces. This produces
movement of these fluids and a deformation of their common interface. In order to
precisely model these movements, we need to know the induction field in the fluids.
This induction is generated partly by the conductors outside the container and it is
attenuated by the screening effect of the steel container, see Fig. 3. It is then of big
importance to have a good idea of the screening effect if we want to precisely model
the movements. This is the industrial application of our model.
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Fig. 2 3D view of an aluminum electrolysis cell. The fluids are in dark. Container of the fluids is
not visible here. The anodes are immersed in the fluids. The cathode lies under the fluids. All the
rest are conductors

Fig. 3 The steel container with its vertical supports. The fluids are represented in dark

2 Modelling of Ferromagnetism

We first recall the Maxwell equation for a static situation. Then we present our
model for ferromagnetism already used in [1]. Finally we give an existence and
unicity theorem to our problem. See also [4].
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2.1 Static Maxwell Equations Without and With Magnetization

We consider a given, stationary electric current j. We can compute magnetic field
H0 produced by j using Biot-Savart equation:

H0.x/ D
Z

R3

rxG.x; y/^ j.y/dy

where G.x; y/ is the Green kernel given by:

G.x; y/ D 1

4�kx � yk ; x; y 2 R
3

where k : : : k denotes the Euclidian norm. With induction B0 D �0H0 where �0 is
the permeability of the void, we then have:

div.B0/ D 0; curl.H0/ D j:

Let us now introduce a ferromagnetic material in the situation of Fig. 3. We
call ˝ the bounded domain in R

3 occupied by that ferromagnetic material and we
assume that the support of current j lies outside˝ . Moreover we assume that current
j is not affected by the introduction of the ferromagnetic material. If we call H the
magnetic field and B the induction field in the new situation we then have:

div.B/ D 0; curl.H/ D j:

From which we deduce that there exists a scalar function  defined in R
3 and such

that:

H �H0 D r :

We then have the constitutive relation taking into account magnetization in the
material

B D �H

where

� D �0 outside ˝ and � D �0�r.kHk/ inside ˝

which makes the problem non-linear. The function �r is a property of the material.
Figure 4 gives a typical example for the graph of �r . In particular, we can see that
with very strong currents, ferromagnetic effects vanish due to saturation.
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Fig. 4 The graph of �r
function in a ferromagnetic
material, s D kHk

With an additional condition for finite energy,  .x/ D O.kxk�1/ at infinity, we
finally get for  the following equation in R

3:

div
�
�.H0 � r /

� D 0: (1)

This is a non-linear problem for function  which is defined in the whole space R3.
Let us show now how we solve this problem.

2.2 A Theorem of Existence and Uniticity

Introducing the Beppo-Levi [3] space

W 1.R3/ D
n
' W R3 7! R W '.x/

1C kxk 2 L
2.R3/;r' 2 L2.R3/

o

and using a variational formulation, problem for  writes: find  2 W 1.R3/ such
that forall ' 2 W 1.R3/ we have

Z

R3

�
�
H0 Cr / � r' dx D 0

� being the function defined above. Recall that this makes the problem non-linear.
It can be shown [2] that, under certain hypothesis on function �r , this problem has
a unique solution.
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3 A Domain Decomposition Method to Solve Problem

Let us consider problem given by Eq. (1) and let us first rewrite it. We seek a scalar
function  defined in R

3 and satisfying:

� div
�
�r � D f; in R

3 (2)

 .x/ D O.kxk�1/; as kxk ! 1 (3)

where f is here given by div
�
�H0

�
.

If we had to solve Eq. (2) in a bounded domain with given values on its boundary,
the problem would be simple.

If we had to solve Eqs. (2) and (3) outside a ball centered at the origin and
containing ˝ , with given values on its boundary, the problem would be solved by
using Poisson’s formula since � D �0 outside the ball.

So we present an iterative process which alternates between both problems.

3.1 The Domain Decomposition Algorithm

We fix two balls Br and BR centered at the origin, of radius r and R resp. with
0 < r < R choosen such that ˝ � Br .

Figure 5 gives a simple view of the situation. Then, given  0 D 0 on @BR, the
algorithm is defined as follows:

• If  k is given on @BR (say  k 2 H1=2.@BR/)

1. We compute  kC 1
2
2 H1.BR/ satisfying  kC 1

2
D  k on @BR and

Z

BR

�r kC 1
2
:rv dx D

Z

BR

f v dx; 8v 2 H1
0 .BR/:

Fig. 5 Schematic
representation of domain ˝
and the two balls Br and BR
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�  kC 1
2

is computed by a P1-finite element method on a tetrahedral mesh on
BR, the linear problem is solved by a CG(diag) method.

� Since f D div.�H0/ D div.� � �0/H0 and � D �0 outside ˝ we have

Z

BR

fvdx D �
Z

˝

.� � �0/H0 :rv dx; 8v 2 H1
0 .BR/:

2. We compute  kC1 2 H1=2.@BR/ given by Poisson’s formula

 kC1.x/ D jxj
2 � r2
4�r

Z

@Br

 kC 1
2
.y/

jx � yj3 ds.y/; 8x 2 @BR:

�  kC1.x/ is computed by Gauss integration on the triangles which discretize
@Br .

� Notice that this integral implies no singularity.

It can be shown that this algorithm converges to the solution  of our problem.

4 Numerical Results

We give here some numerical results for the academic problem and for the industrial
one as well, using the algorithm just described above.

4.1 The Academic Case

Figure 6 shows the linear conductor and the ferromagnetic plate introduced at the
beginning. Note that it is not necessary to center the big ball at the origin. The
center is choosen in order to include measurement line. We plot in Fig. 7 the vertical
component of induction along line 1 which is perpendicular to the plate and on the
opposite side to the conductor: on the left, the induction without plate; on the right
the effect of the plate can be seen.

The screening effect is clear. Note that, if we take a much bigger current in the
conductor, this effect completely disappears, due to saturation of the magnetic field
in the plate.
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Fig. 6 Academic test of a ferromagnetic plate near a linear conductor
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Fig. 7 Left: Vertical component of induction on line 1, without ferromagnetic effects Right:
Vertical component of induction on line 1, with ferromagnetic effects

4.2 The Industrial Case

Let us come back now to the industrial situation described in Sect. 1.2. To exhibit
the effect of ferromagnetic steel container we plot here the stationary velocity field
computed on an horizontal plane placed in the aluminum. Figure 8 gives the velocity
field without screening effect while Fig. 9 gives the velocity field with screening
effect both figures being at the same scale.
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Fig. 8 Velocity field at the interface without ferromagnetism

Fig. 9 Velocity field at the interface with ferromagnetism

It is clear that velocity at the interface is reduced when we take into account
ferromagnetic effects in the induction field.

In order to conclude, we showed that our domain decomposition method for
computing ferromagnetic screen effect is very efficient and can easily be used in
industrial applications.

References

1. J. Descloux, M. Flück, M.V. Romerio, A problem of magnetostatics related to thin plates.
RAIAO Modél. Math. Anal. Numér. 32(7), 859–876 (1998)

2. M. Flück, A. Janka, J. Rappaz, Numerical methods for ferromagnetic plates. Scientific report,
SB/MATHICSE, EPFL

3. J-C. Nédélec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic
Problems. Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)

4. R. Touzani, J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics, chap 11.
Scientific Computation (Springer, Dordrecht, 2013)



Mortar FEs on Overlapping Subdomains
for Eddy Current Non Destructive Testing

Alexandra Christophe, Francesca Rapetti, Laurent Santandrea,
Guillaume Krebs, and Yann Le Bihan

Abstract We focus on the analysis of a magnetostatic problem with discontinuous
coefficients and on its non-conforming mortar finite element discretization on
overlapping grids. The global air-filled domain and the nested ferromagnetic
subdomain are indeed discretized by two independent triangulations, as the latter
subdomain can change position inside the global domain. The two directional
exchanges of information between the grids are established by using stable mortar-
like projection operators. Numerical results are presented and commented both from
a mathematical and physical point of view.

1 Introduction

In the non-destructive testing (NDT) of a conductor by eddy currents, an inducting
coil is fed with an alternative electrical current and moves over the underlying
conductor to induce eddy currents on it. In proximity of a defect, the circulation
of the eddy currents in the conductor is modified with respect to the one associated
with an unflawed conductor [9]. The modification of the eddy current distribution
induces a modification of the total magnetic field in the coil (combination of the
inducting field created by the coil current and the induced one created by the eddy
currents) which yields a variation of the coil impedance. The coil impedance brings
then information on the structural health of the conductor. The coil is generally filled
with a ferromagnetic material with the purpose of concentrating and increasing the
intensity of the inducting magnetic field on the conductor (see Fig. 1) in order to
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Fig. 1 From left to right: Eddy current non-destructive testing configuration; A unique subdomain
for the whole configuration (a computational expensive global re-meshing is thus necessary at each
new position of the coil); Two non-overlapping subdomains (the global re-meshing is avoided but
the interface between the subdomains must be invariant with respect to the coil motion); Two
overlapping subdomains, the one containing the coil and a thin layer of air around the coil, the
other the whole configuration with some air at the place of the coil (no constraint neither on the
meshing nor on the coil motion)

have more intense eddy currents thus more visible perturbation effects associated to
the presence of the defect [7]. It has to be remarked that, even if the coil moves
rather quickly over the conductor, there is no quasi-static effect associated with
this movement. Therefore, there is no relation between the solutions of the NDT
problem for two different positions of the testing coil. At the continuous level, we
consider two non-overlapping subdomains, each subdomain being associated with
a fixed value of the magnetic permeability and one subdomain (the one containing
the field source) changing position inside the other. At the discrete level, we deal
instead with two overlapping non-nested (thus non-matching) meshes, and a new
method generalizing the pioneering approach presented in [8] and its successive
applications to linear elasticity in [5] and electrodynamic levitation in [10]. With
the proposed discrete method, the meshes in the global (say, background) domain
and in the ferromagnetic (say, foreground) domain containing the coil, are created
independently of each other and only once, even if the coil occupies different
positions in the global domain. Moreover, the coupling between the meshes is
bilateral in order to simulate the reaction of the materials to the source field. The
bilateral exchange is required by the very basis of eddy current non-destructive
testing which involves a signal transfer from the coil to the conductor (eddy currents
induced in the conductor by the coil source) and a signal transfer from the conductor
to the coil (modification of the magnetic field in the coil due to the eddy currents).

In this paper, we wish to consider the magnetostatic problem only, as its analysis
and discretization already present some difficulties. However, the discrete method
proposed here for a magnetostatic problem is the same that would be used in a
complete NDT situation, as the conductor is included in the background domain
and it can be managed that the mesh elements in the conductor are never overlapped
by the foreground mesh, since the coil is never in contact with the conductor but
stays at a certain height, called lift-off. Finally, it must be noticed that the magnetic
materials used in eddy current testing as coil cores are in ferrite which exhibit a very
low and completely negligible electrical conductivity.
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The paper is organized as follows. In Sect. 2 we describe the model problem of
magnetostatics with non-constant coefficients. In Sect. 3 we introduce the discrete
formulation obtained by using the generalized overlapping mortar element method
and the corresponding algebraic formulation. Some numerical results are presented
and discussed in Sect. 4. Conclusions are drawn in section “Conclusions and
Acknowledgements”.

2 Continuous Problem Formulation

Let ˝ be an open bounded domain in R2 with polygonal boundary @˝ D �D [
�N and mes.�D/ > 0. We may consider ˝ as the transverse .x; y/-section of an
infinitely long z-axed cylinder C � R3. In this work, we restrict the analysis to
magnetostatics: the problem equations in C are

r �H D Js; B D �H; r � B D 0; (1)

where H (resp. B) is the magnetic field (resp. induction) and Js the source current
density. The problem is well posed by adding boundary conditions on @C and
suitable interface conditions at any surface where the magnetic permeability � is
discontinuous (in particular, ŒH ��n D 0 and ŒB��n D 0, where n is the normal to the
interface and Œv� stands for the jump of v at the interface). The magnetic permeability
� is supposed to be a bounded function which respects the symmetry of the domain,
that is �.x; y; z/ D �.x; y/ � �0, with �0 D 4�10�7 H=m the permeability of the
air. The source current density Js has the support strictly contained in !, a polygonal
subdomain of ˝ , with complement in ˝ denoted by !c D ˝ n N!, and boundary
� . We consider Js D f .x; y/ez so that the problem can be reduced to a scalar PDE
(with discontinuous coefficients). To this purpose, we introduce a magnetic vector
potentialA D u.x; y/ez related to B by the well-known conditionB D r�A. Note
that by construction, r � A D 0, and this yields uniqueness of A. In the following,
the Dirichlet condition on @˝ is represented by a function gD 2 H1=2.�D/ whose
H1.˝/ lifting is denoted by gD , the source f 2 L2.!/ extended by zero in !c (see
[2] for the definition of the involved functional spaces). The magnetic permeability
is a piecewise constant function � D �!I! C �!cI!c , with IE the characteristic
function of the domain E where E D ! or E D !c . In the case of the NDT
application, we generally have �! > �!c and the position of ! inside ˝ changes
(indeed, ! contains the testing coil and ˝ the tested object). We wish to compute
the solution of problem (1) for different positions of ! in ˝ by a finite element
method with independent meshes in ˝ and !. We thus have to find u WD .u!; u!c /
such that

� r � . 1
�!c
r u!c / D 0; in !c; (2)

r � . 1
�!
r u!/ D f; in !; (3)
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u!c D u!; on �; (4)

1

�!c
@nu!c D 1

�!
@nu!; on �; (5)

u!c D gD; on �D; (6)

@nu!c D 0; on �N : (7)

The weak problem consists in finding .u!; u!c / 2 UD;�D such that

ag..u!; u!c /; .w; v// D ..f; 0/; .w; v//g; 8.w; v/ 2 U0;�D (8)

with .u!; u!c �gD/ 2 U0;�D . Here, UD;�D is the functional space fu WD .u!; u!c / 2
H1.!/ � H1.!c/; u!c j�D D gD; u!j� D u!c j� g and U0;�D is UD;�D with gD
replaced by 0. Note that UD;�D (resp. U0;�D ) is isomorphic to H1

D;�D
.˝/ D

fu 2 H1.˝/; uj�D D gDg (resp. H1
0;�D

.˝/), as a consequence, it is a Hilbert
space endowed with the broken norm. In (8) we have set ..f; 0/; .w; v//g WD
.f;w/! D

R
! f w and ag..u!; u!c /; .w; v// WD a!.u!;w/ C a!c .u!c ; v/, with

aE.uE; z/ WD
R
E

1
�E
r uE � r z the standard bilinear form over a domain E .

Problem (8) has a unique solution by the Lax-Milgram lemma, since the linear form
.w; v/ 7! ..f;�gD/g; .w; v//g is continuous on U0;�D and the bilinear form ag.:; :/

is continuous and elliptic on U0;�D . Indeed, the continuity of ag.:; :/ with constant
� D maxf 1

�!
; 1
�!c
g follows from the continuity of a!.:; :/ and a!c .:; :/. Similar

reasoning for the ellipticity of ag.:; :/ where the constant is now � D minf 1
�!
; 1
�!c
g.

3 Discrete Problem Formulation

For the discretization of problem (8) we adopt piecewise linear finite elements,
separately, all over N̋ and N!. Indeed, as the position of ! can change in ˝ and we
do not wish to re-create a computational mesh over N!c for each new position of !,
we use two different shape regular triangulations �H on N̋ and �h on N!, withH and
h indicating the maximum element diameters, respectively. Moreover, in presence
of discontinuous coefficients, we should choose H > h if �!c < �! and H < h if
�!c < �! , for optimal convergence rates w.r.t.H and h of the approximation error.
The latter condition is easy to fulfill with overlapping triangulations �H and �h,
completely independent of each other. The flexibility has however a price: indeed,
the transmission condition (4) on � which is contained in the definition of the space
UD;�D cannot be imposed punctually (�H and �h do not match on � ) but weakly,
by involving a suitable projection operator which is well known in the framework
of mortar finite elements.
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We denote by SH.˝/ the piecewise linear and H1-conforming finite element
space in ˝ and let be S0;DIH.˝/ D SH.˝/ \H1

0;�D
.˝/. Functions in S0;DIH.˝/

are linear combinations of the classical hat functions, with degrees of freedom
associated to the vertices of �H which are in ˝ [ �N . The space of standard
conforming elements of first order associated with �h on ! is denoted by Sh.!/.
We note that no boundary conditions are imposed on Sh.!/. Moreover, we assume
that � can be written as union of edges in �h. The trace space of Sh.!/ on � is
called Wh.� /.

We need to introduce a projection operator �� W SH.˝/ ! Wh.� /, that passes
the information from ˝ to the boundary � of ! at the discrete level. Indeed, we
have that vH j� 62 Wh.� /, 8 vH 2 SH.˝/. To get an optimal a priori estimate, the
operator �� has to be stable in theH1=2.� /-norm (see [11]). We then introduce the
weak form of (4) on � as follows:

b� .uh; z/ D 0; b� .w; z/ WD
Z

�

.w � �� uH/z; 8 z 2 Wh.� /: (9)

To simulate the “reaction” of !, we introduce a projection operator �	 W
Sh.!/! WH.	/, stable in theH1=2.	/-norm, where 	 is the polygonal line formed
by the edges of �H lying under ! and bounding, on the one side, the strep of
elements of �H containing � (see Fig. 2). Note that � does not change when !
moves whereas 	 does. We introduce a second weak form of (4) on 	 that reads:

b	.uH; t/ D 0; b	 .v; t/ WD
Z

	

.�	uh � v/t; 8 t 2 WH.	/: (10)

Fig. 2 The exchange form ˝

to ! is realized on the
boundary � . The interface of
transmission 	 from ! to ˝
is chosen as the inner
boundary of the elements of
˝ overlapped by �
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The discrete problem reads: find .uh; uH/ 2 Sh.!/ � SgH ;DIH.˝/ such that

ag..uh; uH/; .w; v//C bg..w; v/; .
h; 
H // D ..fh; 0/; .w; v//g;
8.w; v/ 2 Sh.!/ � S0;DIH.˝/;

bg..uh; uH/; .
0h; 
0H// D 0; 8.
0h; 
0H/ 2 Wh.� / �WH.	/:

(11)

where bg..uh; uH/; .r; s// WD b� .uh; r/Cb	.uH ; s/. We have denoted by fh D Ihf
(resp. gH D IH j� gD) where Ih (resp. IH j� ) is the interpolation operator over �h
(resp. �H , restricted to � ). In this system, 
h; 
H play the role of the Lagrange
multipliers associated with the constraints (9) and (10). By adapting the results
developed in [1] for the non-overlapping case, we have that problem (11) has a
unique solution.

In order to write the matrix form of problem (11), we adopt bold letters to
indicate vectors of degrees of freedom (dof), namely, u D .uI ;uB/, with uI for
dofs associated to “interior” nodes and uB for dofs associated to “boundary” nodes.
For the latter, we have uB D u� in ! and uB D u	 in ˝ . Let �i and  i be the
basis functions associated to nodes in �H and �h, respectively, and C;D;E;H be
the matrices with entries detailed, on each edge of the concerned interfaces, here
below:

C.i; j / D
Z

e2)
 j i ; i; j nodes in �h \ �

D.i; k/ D
Z

e2)
�k i ; k node in �H ; i node in �h \ �

E.i; j / D
Z

e2	
�j �i ; i; j nodes in �H \ 	

H.i; k/ D
Z

e2	
 k�i ; k node in �h; i node in �H \ 	:

(12)

The matrices C andE can be easily computed since both basis functions live on the
same mesh. On the contrary,D andH involve discrete functions living on different
meshes and are computed relying on quadrature formula, as detailed in [4]. The
matrix form of conditions (9) and (10) thus read, respectively:

Cu� �DuH D 0; Eu	 �Huh D 0: (13)

Conditions (13) are imposed, on the global linear system, with the help of Lagrange
multipliers, 
� and 
	 , respectively. The final algebraic linear system to solve is
Mu D f where

M D

0

B
B
BB
B
@

MH 0 0 �DT ET

0 Mh;II Mh;IB 0 0

0 Mh;BI Mh;BB C T .HIM
�1
h;IIMh;IB �HB/

T

�D 0 C 0 0

E 0 HIIM
�1
h;IIMh;IB �HIB 0 0

1

C
C
CC
C
A

(14)
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andMh (resp.MH ) is the stiffness matrix associated to the discrete operator defined
in ! (resp. in !c but extended to ˝). The global vector of unknowns is u D
.uH ;uh;I ;uh;B ; 
� ; 
	 /T and the right-hand side f D .0; fh;I ; fh;B ; 0;HIIM

�1
h;IIfh;I /

T.
The resultant system Mu D f is symmetric and sparse, solved by iterative methods.

Remark 1 In condition (13), u	 depends on uh;I and uh;B . Hence, the method of
Lagrange multipliers imposes a penalty on the vector of interior dofs uh;I . In order
to remove this penalty, we choose to apply a Guyan condensation [3, 6], where u	
is expressed only in terms of u� . Note that, in the extreme case where 	 and � are
two piecewise linear curves with nodes on @!, system (14) with condensation is
equivalent to the one on independent non-overlapping meshes in N! and N!c .

4 Numerical Results and Analogy with Linear Elasticity

To illustrate an application of the presented method, we consider˝ D Œ�1; 1�2 and
! D Œ�0:5; 0:5�� Œ�0:3; 0:3�, with �! ¤ �!c . We impose homogeneous Neumann
boundary conditions @nu D 0 on the horizontal sides of ˝ and non-homogeneous
Dirichlet conditions on the vertical sides of ˝ , and we take f D 0. If �! D �!c ,
the magnetic equipotential lines would be all parallel to the horizontal sides of ˝ .
The presence of an intrusion (!) with different magnetic permeability with respect
to the surrounding material (!c) acts as either an attractor (when �! > �!c ) or a
repeller (when�! < �!c ) for the field lines (see the left-side and left-center pictures
of Fig. 3). Indeed, the magnetic field lines follow the way with minimal magnetic
reluctivity � D 1=�. When �! > �!c , the physical situation is analogous to having
a paramagnetic material in ! with air whole around. When �! < �!c , the physical
situation is similar to having ! filled by a diamagnetic material.

The results shown in the left-side and left-center pictures of Fig. 3 can be
interpreted also from an “elastic” point of view, relying on a so-called physical
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Fig. 3 Magnetic equipotential lines for �! < �!c (left-side) and �! > �!c (left-center). Case
�! D 100�!c . Value of the x-component of B along the line y D 0 (right-center) and x D 0

(right-side). We may remark the continuity of Bx across the vertical sides of � despite the weak
constraint, as in this case Bx D B � n. The jump of Bx is visible across the horizontal sides of � ,
as in this case we have Bxex D n� .B � n/
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analogy. More precisely, in electromagnetics we may define an impedance Z
of the material as Zem D �0 c where c is the light speed in the material. The
electromagnetic impedance is analogous to the one known in fluid dynamics such
as Zfd D � c where � is the fluid density and c denotes the sound speed in the
fluid. Comparing the two expression, we remark that � is equivalent to �0. In the
empty space, c D 1=

p
�0�0 so that Zem D

p
�0=�0. Recalling that the velocity of

a transverse elastic wave is equal to
p
E=�, with E the elastic modulus the inverse

of which is a sort of electric permittivity �0, we come up with � D � D �0�r (with
�r the relative magnetic permeability of the material). So, a diamagnetic material
is equivalent from an “elastic” point of view to a material with higher density (e.g.,
a stone) whereas a paramagnetic material looks like an object with lower density
(e.g., a bath sponge). The higher �, the smaller the deformation of the material in
presence of an external load. When �! > �!c (resp. �! < �!c ), the situation
looks like a stone (resp. a sponge) surrounded by a sponge (resp. a stone): under an
external load, only the sponge deformates (left-center picture of Fig. 3).
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Solving a Maxwell Interface Problem by a Local
L2 Projected C0 Finite Element Method

Huoyuan Duan, Ping Lin, and Roger C.E. Tan

Abstract In general, the solution of a Maxwell interface problem would not belong
to H1 space and the standard C0 finite element method fails. With the help of local
L2 projections applied to both the curl and div operators, we propose a new C0

finite element method which can correctly converge to the non H1 space solution.
Stability and error estimates are given.

1 Introduction

In this note we shall develop a C0 finite element method for the Maxwell interface
problem. Let ˝ � R

3 denote a Lipschitz polyhedron, with boundary � . To
model different anisotropic inhomogeneous materials filling ˝ , we introduce two
symmetric tensor fields �; " 2 R

3�3 satisfying the boundedness and uniform
ellipticity conditions as follows: let ! D .!ij/ 2 R

3�3 (!ij D !ji) stand for either �
or ", !ij 2 L1.˝/; 1 � i; j � 3; � � ! � � � C j�j2 a.e. in ˝;8� 2 R

3. Let "
and � be given by piecewise Lipschitz continuous functions. This defines a partition
of ˝ into a finite number of subdomains ˝j , 1 � j � J , in each of which � and
" are Lipschitz continuous. Denote by Einter the set of all the material interfaces
�ij D ˝i \ ˝j . We assume that each subdomain ˝j is a Lipschitz polyhedron.
Let n denote the outward unit normal vector to � or the unit normal vector to
�ij oriented from ˝i to ˝j , and let jumps Œv � n�j�ij D v � nj˝i � v � nj˝j and
Œv � n�j�ij D v � nj˝i � v � nj˝j . Let u denote an unknown field and f, g and �
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be given functions and � � 0. The Maxwell interface problem [7, 14, 18] we shall
consider is to find u such that

curl .��1 curl u/C� " u D f; div." u/ D g in ˝; u�n D � on � : (1)

In general, it would often happen that the solution of (1) belong to fractional Hilbert
space

QJ
jD1.Hr.˝j //

3 for some r � 1, whenever � and " are discontinuous,
anisotropic and inhomogeneous and ˝ possesses reentrant corners and edges.
A most useful variational problem for studying problem (1) is the well-known
plain regularization (PR) variational problem, which is an elliptic problem with
curl-curl and div-div terms, suitable for theoretical and numerical purposes, see
[2, 4, 5, 7, 12, 14, 19, 23, 24]. From the viewpoint of finite element discretizations,
therefore, it is natural to use the very common C0 elements to approximate the
solution. Unfortunately, a direct discretization using C0 elements cannot yield a
correctly convergent finite element solution, see [4, 5, 19, 20].

In [15,16] we proposed an element-local L2 projected C0 finite element method
for solving problem (1) in homogeneous media (i.e., � D " D 1). This method
consists of element-local L2 projectors which are applied to both div and curl
operators in the PR formulation and that the C0 linear element (enriched with
suitable face-and element-bubbles) is used. Theoretical and numerical results for
source and eigenvalue problems showed that this method yields correct and good
C0 finite element solutions. In this note we shall consider this type of method
for the Maxwell interface problem (1). Precisely, the method and theory in [15]
to problem (1) are generalized, where � and " are allowed to be discontinuous,
anisotropic and inhomogeneous and the solution u is allowed to have piecewisely
low regularity, i.e., u 2 QJ

jD1.Hr.˝j //
3. For this purpose, we must construct a

suitable C0 finite element method in order to allow " to be discontinuous. This
has been done by incorporating " into the finite element space. Thus, to some
extent, the proposed finite element method is heterogeneous. Across the material
interfaces where " is discontinuous, the finite element space is also discontinuous,
but elsewhere continuous. We have previously considered problem (1) in [17], but
therein the global L2 projection for the div operator is adopted. Here we instead
use the element-local L2 projection for the div operator. This will greatly simplify
the implementation of the finite element method. In addition, to accommodate the
case where " discontinuous, we additionally introduce face-local L2 projection on
Einter. Thus, the C0 finite element method for the Maxwell interface problem in
this note features element-local L2 projections for both curl and div operators, a
heterogeneous C0 finite element space, and face-local L2 projections associated
with the interface discontinuity. Theoretical results of stability and error estimates
can be obtained by adapting the argument from [15], and the details of proving these
results will be omitted.
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2 The Finite Element Method

Let Ch denote a regular triangulation [10] of N̋ into tetrahedra, with diameters hK
for all K 2 Ch bounded by h. We assume that the closure of each material interface
is the union of the closure of element faces in Ch. For simplicity, we assume that
" is piecewise constants with respect to Ch. Let Eh D E 0

h

S
E @
h denote the set of

all element faces in Ch, where E 0
h is the set of all the interior element faces in Ch

and E @
h the set of all the element faces on � . We now introduce element-and face-

bubbles. Let K be a tetrahedron with vertices ai , 1 � i � 4, we denote by 
i
the barycentric-coordinate of ai : 
i is a linear polynomial on K and takes values
‘1’ at ai and ‘0’ at other vertices, cf. [10]. Denote by Fi the face opposite ai .
Introduce the following face bubbles: bF1 D 
2
3
4; bF2 D 
3
4
1; bF3 D

4
1
2; bF4 D 
1
2
3 and the element-bubble: bK D 
1
2
3
4 2 H1

0 .K/: We
have bFi 2 H1

0 .Fi /; bFi jFj D 0 8j 6D i: As usual, let Pn be the space of
polynomials of degree not greater than n � 0. Given K 2 Ch with boundary @K .
On K , we introduce

P.K/ WD spanfpF;l bF ; 1 � l � mF ;8F � @Kg

where pF;l ; 1 � l � mF , are chosen so that .P1.F //
3D spanfpF;l jF ; 1� l �mF g.

Define face-bubble space and element-bubble space:

˚h WD
8
<

:
v 2

JY

jD1
.H1.˝j //

3I vjK 2 P.K/;8K 2 Ch

9
=

;
;

�h WD fv 2 .H1
0 .˝//

3I vjK 2 .P0.K//
3 bK;8K 2 Chg:

Note that ˚h is not defined as globally continuous in order to deal with the
discontinuity of " across the material interfaces. Let

Uh WD
˚
v 2 .H1.˝//3I vjK 2 .P1.K//

3;8K 2 Ch
�
:

We define the finite element space for approximating the solution as follows:

Uh WD Uh C ˚h C�h: (2)

Note that Uh is continuous, only except for those discontinuous interfaces of ". Let

V D
n
v 2 .L2.˝//3I curl v 2 .L2.˝//3; div." v/ 2

JQ

jD1
L2.˝j /;

Œ." v/ � n�jF 2 L2.F /;8F 2 Einter; v � njF 2 .L2.F //3;8F 2 E @
h

o
:
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Let

Pn
h WD fq 2 L2.˝/I qjK 2Pn.K/;8K 2 Chg .n D 0; 1/:

For any v 2 V , we define MRh.div." v// 2 P0
h and Rh.��1 curlv/ 2 .P 1

h /
3 as

follows:

. MRh.div." v//; q/ WD
X

K2Ch
.div." v/; q/0;K 8q 2 P0

h ;

.Rh.�
�1 curl v/;q/� WD P

K2Ch
.curl v;q/0;K � P

F2E @h

R
F
.v � n/ � q 8q 2 .P 1

h /
3;

where jjvjj2� WD jj�
1
2 vjj20. We additionally define an L2 projection: Rinter;�

h .Œ." v/ �
n�/jF 2P0.F / for any F 2 Einter, by

Rinter
h .Œ." v/ � n�/jF WD 1

jF j
Z

F

Œ." v/ � n� 8F 2 Einter:

In what follows we define some mesh-dependent bilinear and linear forms:

Sh;div.u; v/ WD
X

K2Ch
h2K.div u; div v/0;K; Zh;div.gI v/ WD

X

K2Ch
h2K.g; div v/0;K;

Sh;inter.u; v/ WD
X

F2Einter

hF

Z

F

Œ." u/ � n� Œ." v/ � n�;

Sh;curl.uI v/ WD
X

K2Ch
h2K.curl u; curl v/0;K;

Sh;� .u; v/ WD
X

F2E @h
hF

Z

F

.u � n/ � .v � n/; Zh.v/ WD Zh;div.gI v/:

We thus define the stabilization term and its right-hand side as follows:

Sh.u; v/ WD P

F2Einter

.Rinter
h .Œ." u/ � n�/; Rinter

h .Œ." v/ � n�//0;F
CSh;div.u; v/C Sh;curl.u; v/C Sh;inter.u; v/C Sh;� .u; v/:

The finite element method we propose is to find uh 2 Uh such that

Lh.uh; v/ D Fh.v/ 8v 2 Uh;
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where

Lh.u; v/ WD .Rh. ��1 curl u/; Rh.��1 curl v//�

C. MRh.div."u//; MRh.div."v///CSh.u; v/; (3)

Fh.v/ WD .f; v/C .g; MRh.div." v///CZh.v/:

3 Coercivity and Condition Number

This subsection is devoted to the coercivity property of Lh and the condition
number.

Theorem 1 We have

Lh.v; v/ � C jjvjj20 8v 2 Uh:

Theorem 2 Assuming quasiuniform meshes, we have the condition numberO.h�2/
of the resulting linear system of problem (3).

4 Error Estimates

In this section we establish the error bound in an energy norm between the exact
solution and the finite element solution. This consists mainly of how to estimate
the inconsistent errors caused by the L2 projector Rh of the curl operator and how
to construct an appropriate interpolant of the exact solution to eliminate the effects
of the first order derivatives from both div and curl operators on the solution (not
in H1).

Hypothesis H1 Let u be the solution to problem (1), with z WD ��1 curl u 2
H.curlI˝/ \ H0.div0I�I˝/, where H0.div0I�I˝/ D fv 2 .L2.˝//3 W
div.�v/ D 0; .�v/ � nj� D 0g. We require that z 2 QJ

jD1 .Hr.˝j //
3 with some

r � 1 and that z allows the regular-singular decomposition:

z WD zH C�
' in ˝j , 1 � j � J ;

where zH 2 H.curlI˝/\QJ
jD1 .H1Cr .˝j //

3 and ' 2 H1.˝/\QJ
jD1 H1Cr .˝j /

satisfy

JX

jD1
.jjzH jj1Cr;˝j C jj'jj1Cr;˝j / � C�;

where C� depends on the right-hand sides of problem (1).
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Readers may refer to [12, 14, 25] for details of the regular-singular decompo-
sitions relating to Hypothesis H1. Under Hypothesis H1, the inconsistent errors
caused by the L2 projectorRh of the curl operator is given as follows.

Lemma 1 Let u be the solution to problem (1). Assuming Hypothesis H1, we have

.��1 curl u; Rh.��1 curl vh//� � P

K2Ch
.��1 curl u; curl vh/0;K

C P

F2E @h

R
F .vh � n/ � .n � .��1 curl u � n// � C hr jjRh.��1 curl vh/jj�

C C hr
0

@ P

K2Ch
h2K jjcurl vhjj20;K C

P

F2E @h
hF

R
F jvh � nj2

1

A

1
2

:

Theorem 3 Let u and uh be the exact solution to problem (1) and the finite element
solution to problem (3). We have the following inconsistent error estimates

jLh.uh � u; vh/j � C hr jjjvhjjjLh
8vh 2 Uh;

where jjjvhjjj2Lh
WD Lh.vh; vh/:

In what follows we shall construct interpolants Qu of the solution u.

Lemma 2 Let u be the exact solution. Assuming u 2 QJ
jD1 .Hr.˝j //

3 with r > 1
2
.

Let Uh be defined as in (2). We have a Qu 2 Uh such that

jj MRh.div ." .u� Qu///jj20 D jjRh.��1 curl .u � Qu//jj2�
D

X

F2Einter

jjRinter
h .Œ.".u� Qu/ � n�/jj20;F D 0;

jju� Qujj0 � C hr
JX

jD1
jjujjr;˝j :

We introduce an energy norm as follows:

jjjvjjj2h;curl;div WD jjvjj20 CLh.v; v/

D jjvjj20 C jj MRh.div." v//jj20 C jjRh.��1 curl v/jj2� CSh.v; v/;

which corresponds to the usual energy norm jjvjj2curl;div D jjvjj20 C jjdiv." v/jj20 C
jjcurl vjj2�. Combining Lemma 2 and Theorem 3, we can obtain the error bound.

Theorem 4 Let u and uh be the solution to problem (1) and the finite element
solution to (3). Assume that Hypotheses H1) holds and that u; ��1 curl u 2QJ
jD1 .Hr.˝j //

3 with r > 1=2. Then

jju� uhjjh;curl;div � C hr :
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We require that the piecewise regularity r > 1=2, i.e, u; ��1 curl u 2QJ
jD1.Hr.˝j //

3 for some r > 1=2. This is because in proving Lemma 2 the
element-face integrals of u are used. Such an assumption is also used elsewhere,
see, e.g., [8]. In [21] it requires even more regularity, i.e., r D 1, and in [9]
a piecewise regularity W 1;p.˝j / for some p > 2 is assumed. Meanwhile, the
piecewise regularity r > 1=2 is shown in [6, 22].

Remark 1 In the use of C0 elements for solving Maxwell equations (1), several
other methods may be employed, i.e., weighted methods [11, 13], H�˛-norm
method [1, 3]. The weighted method lies in the introduction of a weight function
which depends on the geometrical singularities of the solution itself to the diver-
gence operator, while the H�˛-norm method is to measure the divergence operator
in the norm of H�˛.˝/, the dual of H˛

0 .˝/, where 1=2 < ˛ � 1. Both methods
would lead to a rather low convergence rate far from r , if the C0 element space of
the solution does not include the gradient of a C1 element. In sharp contrast with
these methods, a priori geometrical singularities of the solution and the inclusion
of the gradient of C1 elements into the C0 element space of the solution are not
required in our method. The convergence rate in our method is optimal r .
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