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Abstract. In this paper, we evaluate the assertion-based monitoring
technology for mixed-signal systems by applying it to real-world case
study from the automotive domain.

We first motivate the case study by presenting the state-of-the-practice
verification and validation work-flow typically used in the automotive
industry. We identify the shortcomings of this work-flow, and propose
a more rigorous and automated methodology based on monitoring cor-
rectness of simulated mixed signal designs with respect to assertions,
which formalize in Signal Temporal Logic (STL) the requirements from
the design specification.

We apply the assertion-based monitoring framework for mixed signal
designs to check the correctness of Distributed System Interface (DSI3) in
a modern airbag system-on-chip application. We present all the relevant
steps in our proposed work-flow, evaluate the results and discuss the
framework’s benefits as well as its identified missing features.

1 Introduction

A modern car is a system-of-systems (SoS) that merges a number of embed-
ded elements that are often developed independently. The systems in a car are
heterogeneous, combining digital controllers with analog sensors and actuators.
They interact with their physical environment and are interconnected through
the vehicle physics, as well as communication protocols. This results in complex
interactions generating emergent behaviors that are not predictable in advance.
Many components in a car, such as the airbag systems, are safety critical. Hence,
correct system integration in the automotive domain is crucial to achieve high
standards with respect to safety.

Due to the heterogeneity and the complexity of components and sub-systems
in modern cars, verification and validation (V&V) poses a major challenge in the
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automotive domain and represents the main bottleneck in the design process.
Verification by simulation and manual testing are the dominant methods used
in the V&V practice of the automotive industry. However, these techniques have
the weakness of being ad-hoc, inefficient and prone to human errors.

The research community has investigated a number of approaches that address
V&V issues for mixed-signal systems. Formal verification of systems combining
continuous and discrete dynamics has been mainly studied by the hybrid sys-
tems [18,2] community. It consists in computing over-approximations of reach-
able sets of states of the circuit, modeled as a hybrid automaton (differential
equations with mode switching). Despite the important progress achieved in
this research field in recent years [13], such technique [6,14,17,24,1] still cannot
scale up to the size and complexity of transistor-level circuit models. In addition
to hybrid system verification, there are other orthogonal analytical approaches
to study similar systems. For instance, static analysis and abstract interpretation
were used to develop a framework for inferring continuous time properties of sys-
tems consisting of synchronous components that interact by quasi-synchronous
composition [5].

Assertion-based monitoring is a promising technology for verification of analog
and mixed-signal (AMS) designs, i.e. designs that consist of interacting digital
and analog components. It successfully exports some well-established ingredients
from digital verification to the AMS domain, while retaining the relative sim-
plicity and scalability of the simulation-based verification. In essence, assertion-
based monitoring frameworks consist of an assertion language used to formalize
the requirements that describe the correct interaction between analog and digi-
tal components, including timing constraints due to the communication delays.
The formal assertions are then automatically translated into monitors, programs
that read simulation traces of the design-under-test and check for the assertion
satisfaction/violation.

Signal Temporal Logic (STL) [19,20] is an assertion language extending Lin-
ear Temporal logic (LTL) [22]. LTL enables declarative, formal and compact
specification of reactive system requirements. Its original use was for evaluating
sequences of states and events in digital systems. A typical property stated in
temporal logic is always (req -> eventually! ack). This property says that
it is always the case that a request req eventually triggers an acknowledgment
ack. STL extends LTL to specification of properties involving both digital and
real-valued variables defined over dense time. Offline monitoring of STL was im-
plemented in the tool AMT [21]. The monitoring flow based on using STL for
formalizing assertions and monitoring them with AMT is depicted in Figure 1.
This specification language has been successfully used in the past for monitoring
in various application domains, such as analog circuits [16], biochemical reac-
tions [7], synthetic biological circuits [4] and music [11]. STL has also been ex-
tended in several other directions. In [11], the authors developed a first attempt
of time-frequency logic-based (TFL) specification, and successfully applied it to
detect music patterns. TFL expresses frequencies as atomic predicates (using
sliding FFT to evaluate the intensity of the signal around a frequency) and time
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using intervals and the classic temporal operators. The classic qualitative se-
mantics of STL was recently extended with more powerful and precise notions
of quantitative semantics [12,10,9] (or robustness degree), providing a real value
measuring the level of satisfaction or violation for a trajectory of the property of
interest. Several tools, such as BIOCHAM [23], S-TaLiRo [3] and Breach [8], are
available to perform robustness analysis on the time series collected in wet-lab
experiments or produced by simulation-based techniques.

Fig. 1. Assertion-based monitoring flow with STL assertion language and AMT tool

In this work, we apply the assertion-based monitoring framework from Fig-
ure 1 to check the correctness of a sophisticated automotive sensor interface
integration in a modern system-on-chip (SoC) airbag system, developed by In-
fineon Austria AG. The correct integration of the SoC with its sensor interface
is specified in the Distributed System Interface (DSI3) protocol standard [15].
We present the work-flow of the case study in which we use STL to formalize
DSI3 requirements and AMT tool to monitor the simulation traces. We evalu-
ate the case study results and discuss the lessons that we learned regarding the
applicability of this approach in industry.

2 Verification Flow in the Automotive Domain –
State-of-the-Practice

Figure 2 illustrates the state-of-the-practice verification work-flow by Power
Train and Safety department at Infineon Technology Austria AG. The work-
flow describes as well collaboration between Tier-1 (system developer and inte-
grator) and Tier-2+ (HW - Hardware and SW Software element developers)
teams. The work-flow starts with the requirements and specifications phase at
the Tier-1 level. In this step system functionalities and related HW/SW com-
ponents are defined. The HW requirements are provided to Tier-2 supplier, e.g.
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Fig. 2. Verification workflow for complex mixed signal IC development

Infineon so that HW concept and design specification can be further defined.
Right after this phase, the design and verification/validation activities will be
launched (almost in parallel). The design activities covers conceptual and de-
sign work, which including digital and firmware design, analog schematic design
and top-level integration. Most of the tasks defined during design phase are
mainly done under the Cadence Virtuoso/AMS-Designer tooling environment,
whereas for the proof-of-concept, the COSIDE (Complex System Integrated De-
velopment Environment) from Fraunhofer IIS is used. Nearly at the same time,
verification engineering team also based on the hardware requirements and de-
sign specification starts their verification and validation planning process. This
process (with the support from some planning tools, e.g.: in-house tool) results
in a verification plan which then used by verification/validation engineer for test
bench creation. The verification plan is categorized with different verification
approaches including:

Pre-silicon verification covers all type of simulation at different design level
(block, module and chip top-level) using different techniques from mixed-
signal to mixed-abstraction simulation.
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Emulation at integrated circuit (IC) and system level uses FPGA with
mixed-signal test chip as an early prototype for verifying many scenarios that
are very impractical or impossible to simulate. These scenarios are usually
long term test, stress test or sensor data transmission test over a long period
of time (e.g.: could result in data interception of million sensor message).
This approach is an innovative approach, developed by Infineon and its cus-
tomer. The approach has been recently accepted as publication in the SAE
Journal of Passenger Car - Electrical and Electronic System (SAE Society
of Automotive Engineer).

Post-silicon Verification refers to verification of the real IC in the lab. It is
an extension of those test scenarios which could not be done using emulation
system. This is due to the fact that emulation system is mainly designed to
cover certain safety critical functions (e.g.: sensor interfaces or the deploy-
ment interfaces) but not the full design functionalities. Through extensive
tests done in the lab, the post-silicon verification should maximize the test
coverage at HW component level before being delivered to the system inte-
grator Tier-1 supplier.

Finally, the rootcause analysis and bug-fix testing is considered as an unde-
sired part of the verification activities. However, when a bug is found, rootcause
analysis and bug-fix testing could significantly contribute to increase the verifi-
cation as well as the project timing and effort. This is because the bug-fix could
be a change in the design (re-design) of a modification/adaptation in the speci-
fication. In any case, this would trigger the verification regression run, meaning
cost in time and effort. Despite the fact that verification/validation activities
for mixed-signal IC development are well established, the verification work-flow
above still involves simulation and manual testing methods used in the practice
of the automotive industry. These methods consist in verification engineers creat-
ing input stimuli, executing simulation models and observing the waveforms for
correctness. They are known for the following weaknesses: ad-hoc, inefficient and
prone to human errors. In addition, it is widely accepted that for complex mixed-
signal multi-cores System-on-Chip (SoC) IC products, verification accounts for
around 60%-70% of the total development. This is especially true for automo-
tive safety critical SoC product with a high number of analogue interfaces to
the physical components, e.g.: an airbag SoC chipset in an automotive airbag
system application. As such, any approaches which could help to reduce design
and verification effort, improve time-to-market and product quality, e.g.: formal
verification, boost up verification runs using hardware acceleration platform and
verification automation are of extreme interest.

3 Signal Temporal Logic

In this section, we give a brief overview of the Signal Temporal Logic (STL) that
we use to formalize the case study requirements. For the full details regarding the
assertion language and the monitoring algorithms for STL, we refer the reader
to [20].
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We consider the STL logic with both future and past operators, interpreted
over a finite multi-dimensional signal w. A signal w is a partial function w : T →
B
m×R

n, where T is the interval [0, d) denoting a time domain of duration d. Let
X = {x1, . . . , xm} be the set of real valued variables and P = {p1, . . . , pn} the
set of STL propositions. We denote by w|x and w|p the projection of the signal w
to a real-valued or propositional variable x ∈ X or p ∈ P . A Boolean constraint
over X is a predicate of the form x ◦ c, where x ∈ X , ◦ ∈ {<, <=, =, >=, >} and
c ∈ Q. The syntax of an STL formula ϕ overX and P is defined by the grammar

α := p | x ◦ c
ϕ := α | not ϕ | ϕ1 or ϕ2 | ϕ1 until!I ϕ2 | ϕ since!I ϕ2

where p ∈ P , x ∈ X , c ∈ Q is a constant and I is an interval of the form
[a, b], [a, b), (a, b], (a, b), [a,∞) or (a,∞) where 0 ≤ a ≤ b are rational numbers.
As in LTL, basic STL operators can be used to derive other standard Boolean
and temporal operators, in particular the time-constrained eventually!, once!,
always, and historically operators:

eventually!I ϕ = true until!I ϕ once!I ϕ = true sinceI ϕ
alwaysI ϕ = not eventually!I not ϕ historicallyI ϕ = not onceI not ϕ

The semantics of an STL formula ϕ with respect to an n-dimensional signal
w is described via the satisfiability relation (w, t) |= ϕ, indicating that the signal
w satisfies ϕ at time t, according to the following recursive definition, where T
is the time domain.

(w, t) |= x ◦ c ↔ w|x[t] ◦ c
(w, t) |= p ↔ p[t] = 1
(w, t) |= not ϕ ↔ (w, t) �|= ϕ
(w, t) |= ϕ1 or ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 until!I ϕ2 ↔ ∃ t′ ∈ (t⊕ I) ∩ T (w, t′) |= ϕ2 and
∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

(w, t) |= ϕ1 since!I ϕ2 ↔ ∃ t′ ∈ (t I) ∩ T (w, t′) |= ϕ2 and
∀ t′′ ∈ (t′, t) (w, t′′) |= ϕ1

(1)

A formula ϕ is satisfied by w if (w, 0) |= ϕ.

Example 1. An example of a property that can be expressed in STL is a mixed
signal stabilization property that has the following requirements:

– The absolute value of a continuous signal x is always less than 5;
– When the (Boolean) trigger rises, within 600 time units abs(x) has to drop

below 1 and stay like that for at least 300 time units.

This property is illustrated in Figure 3 and expressed in STL as:

always (abs(x) < 6 and
(rise(trigger) -> eventually![0,600] always[0,300] (abs(x) < 1)))
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Fig. 3. Example: stabilization property

4 Case Study

4.1 Case Study Description

The increasing number of airbags in a vehicle, the requirement to comply with
stricter safety requirements, while costs must be reduced has brought automo-
tive airbag system application to a new approach with SoC design, shown in
Figure 1. Consequently, verification has dramatically increasingly challenges the
design of complex mixed-signal System-on-Chip (SoC) products. This is espe-
cially true for automotive safety critical SoC products with a high number of
analogue interfaces to the physical components, e.g.: an airbag SoC chipset in
an automotive airbag system application.

(a) (b)

Fig. 4. A typical airbag system: (a) overview; (b) airbag SoC chipset top-level imple-
mentation architecture

During the operation, the sensors (buckle switches, accelerometers, pressure
sensors, etc.) mounted in key locations of the vehicle, continuously measure the
positions of impact, the severity of the collision and other variables. This in-
formation is provided to the airbag SoC chipset in form of analog signals. The
airbag SoC chipset translates the analog sensor signals into digital words. The
translated digital sensor data is reported to the main uC via the SPI (Serial
Peripheral Interface) communication. Based on this information the airbag main
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uC decides if, where (location) and when the airbags (e.g.: actuators) is deployed.
Accordingly, this makes the verification (computer-based simulation) and valida-
tion (lab evaluation) of the airbag SoC product, especially the sensor interfaces
become a challenging task, mainly because of:

– Verification for the airbag SoC and its sensor interfaces has to cover real-time
embedded mixed signal domains.

– Failure during the reception, decoding and processing of sensor data in the
airbag controller system can originate unexpected or false deployment events
of the airbag system putting human safety in danger.

– Most of the functionalities of sensor interfaces can only be verified at the
system level of the chip and at the system application level. Only using
classical mixed-signal simulation approach becomes a bottle neck.

– Many verification scenarios of the sensor interfaces such as long-term ver-
ification run with checking of millions sensor data frames are not suitable
using computer-based simulation.

In addition, reducing time-to-market and first time right design in automo-
tive electronics industry, which are key requirements in project to win customer
and market share, has posed a great challenge to the design and verification
team. With this case study, we are evaluating the assertion-based monitoring
methodology on the modern airbag system application with the focus on the
new airbag sensor interface using the new DSI3 standard, promoted by the DSI
consortium1. DSI3 goals are to improve performance, reduce cost and promote
open standard but still remains at the lowest cost possible compare to the cur-
rent widely used PSI5 standard. Higher performance is achieved among others,
by increased communication speed from the slave sensor to the master.

4.2 Formalization of DSI3 Discovery Mode Requirements

In this section, we formalize DSI3 discovery mode requirements, illustrated in
the highlighted section of Figure 5. In the DSI3 discovery mode, μC interacts
with the sensor interfaces via the voltage (v) and current (i) lines. It is the initial
phase of the DSI3 standard protocol and it works as follows. First, the power
apply is turned on, resulting in the voltage ramp from 0V to V high (phase (1)
in Figure 5). Then, μC issues commands for probing the presence or absence of
sensors. These commands are converted by the SoC to analog pulses carried over
the voltage lines. In Figure 5, (2) shows a discovery pulse command. A sensor
that is connected to the sensor interface responds by an inverted analog pulse
carried over the current line (shown in (3) of Figure 5). Finally, if a sensor is not
connected to the sensor interface, the discovery pulse command is not followed
by any response on the current line, as illustrated in (4) of Figure 5.

In addition to the correct ordering of events, described in the previous para-
graph, the DSI3 Bus Standard also defines a number of timing requirements that
must be met by any correct implementation of the protocol:

1 http://www.dsiconsortium.org

http://www.dsiconsortium.org
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1. The minimal time between the moment that the power is applied and the
first discovery pulse command is sent, as shown by (a) in Figure 5;

2. The maximal total duration of the discovery mode, measured between the
moment that the power is applied and the end of the sensor probing by the
μC, as illustrated by (b) in Figure 5;

3. The expected time between any two consecutive discovery pulse commands
((c) in Figure 5); and

4. The expected time between a discovery pulse command and the response by
the sensor (or its lack of response if the sensor is not connected), as shown
by (d) in Figure 5.

Fig. 5. DSI3 Discovery Mode requirements - overview

Specification of Events of Interest. In order to be able to formalize these
timing properties defined by the DSI3 Bus Standard, we first must be able to
accurately characterize and recognize the “events” corresponding to power appli-
cation, discovery pulse commands, the sensor response and its lack of response.
The graphical specification of these patterns is shown in Figure 6.

We first consider applying power to the SoC, illustrated in Figure 6 (a), which
is characterized by a ramp that goes from 0V to Vhigh. We consider that the
power is on, characterized by the event pw app, when the voltage signal goes
above Vhigh.

% Regions of interest

1: define b:v zero := a:v == 0;

2: define b:v above high := a:v >= Vhigh;

3: define b:v between high zero := a:v > 0 and a:v <= Vhigh;

% Power applied

4: define b:pw app :=

5: rise(b:v above high ) and
6: (b:v between high zero since! fall(b:v zero );

A discovery pulse command is carried on the voltage line and is characterized
by its shape and duration, as shown in Figure 6 (b). The DSI3 standard requires
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Fig. 6. Graphical specification of events of interest: (a) power applied; (b) discoverly
pulse command; (c) sensor response; and (d) sensor no response

that the distance between two consecutive discovery pulse commands is tDisc Per

(± tolerance). In order to formalize this requirement in STL (shown in the next
paragraph), we first define the regions of interest that are needed to capture a
discovery pulse command (lines 1−3). We then characterize the correct shape of
the pulse (lines 4−7) and its duration (lines 8−11), resulting in the specification
of the discovery pulse command (line 12).

% Regions of interest

1: define b:v above high := a:v >= Vhigh;

2: define b:v below low := a:v <= Vlow;

3: define b:v between high low := a:v >= Vlow and a:v <= Vhigh;

% Pulse shape

4: define b:cmd dp shape :=

5: fall(b:v above high ) and
6: (b:v between high low until! b:v below low until!
7: b:v between high low until! b:v above high );

% Pulse end-to-end timing

8: define b:cmd dp e2e timing :=

9: fall(b:v above high ) and
10: ((not rise(b:v above high )) until![tDisc Pulse-tol:tDisc Pulse+tol]
11: rise(b:v above high ));
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% Pulse = shape + end-to-end timing

12: define b:cmd dp := b:cmd dp e2e timing and b:cmd dp shape ;

The specification of the sensor response (dsc res) and no response
(dsc no res) patterns (Figures 6 (c) and (d)) is very similar to the specification
of the discovery pulse command, and we skip their presentation due to the lack
of space.

Assertions for DSI3 Discovery Mode Requirements. After specifying
events of interest, we are ready to formalize the requirements that relate these
events and define the timing constraints between them, as described in the DSI3
bus protocol, and summarized in Figure 7.

last command pulse

v

0V

i

0A

IResp

≥ tDisc Start

≤ tDisc End

Vhigh

Vlow

tDisc Per tDisc Per

tDisc Dly

2IResp

Fig. 7. Graphical specification of DSI3 discovery mode requirements

We start with the requirement saying that between the power applied event
and the first discovery pulse command, there must be at least tDisc Start time
elapsed. We formalize this requirement with the following assertion.

% Timing between power applied and first discovery pulse commands

1: first disc cmd dly assert:
2: always (b:pw app -> (((not b:cmd dp ) until![tDisc Start:inf]
3: b:cmd dp);

The second requirement says that the discovery mode has a maximum du-
ration of tDisc End. We consider that the discovery starts when the power is
applied, and that it ends tDisc Per time after the last discovery command is is-
sued. We first define the auxiliary property end disc to characterize the end of
the discovery mode, and then formalize the assertion as follows.
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% Discovery end

1: define b:end disc :=

2: ( notb:cmd dp since![=t Disc Pulse] b:cmd dp ) and
3: always not b:cmd dp ;

% Discovery mode maximum duration

4: disc duration assert:
5: always (b:pw app -> (eventually![0:t Disc End] b:end disc );

The third requirement defines the correct timing between a discovery pulse
command, and the associated sensor response when the sensor is connected (and
its lack of response when it is not connected). This requirement is dependent on
the actual configuration of the system, and we formalize the property in which
only the first sensor is connected. In order to specify this requirement, we also
need to characterize the first discovery pulse command.

% First discovery pulse command

1: define b:first cmd dp :=

2: (b:cmd dp and historically notb:cmd dp ;

% Discovery pulse command - response delay

3: cmd resp delay assert:
4: always ((b:cmd dp and b:first cmd dp ->

5: (eventually![t Disc Dly-tol:t Disc Dly+tol] b:dsc res );

% Discovery pulse command - no response delay

6: cmd resp delay assert:
7: always ((b:cmd dp and not b:first cmd dp ->

8: (eventually![t Disc Dly-tol:t Disc Dly+tol] b:dsc no res );

Finally, the last requirement says that every two consecutive discovery pulse
commands must be separated by tDisc Pulse± some tolerance, which is formalized
with the following STL assertion.

% Timing between consecutive discovery pulse commands

1: cmd disc pulse period assert:
2: always (b:cmd dp -> (((not b:cmd dp ) until![tDisc Per-tol:tDisc Per+tol]
3: b:cmd dp) or (always not b:cmd dp )));

4.3 Case Study Evaluation

The design-under-test used in the case study was implemented by Infineon Tech-
nologies in VHDL (RTL) and VHDL with real number behavior. The design-
under-test represents a mixed-abstraction of RTL and behavior model, consists
of 23 different functional modules which are connected together via a complex
logic core. The simulation time for this design takes approximately between 2
and 3 hours per simulation.

The formalization of the DSI3 requirements was lead by AIT, and was done
in several iterations, involving feedback from the Infineon’s designers and engi-
neers. The tool used for monitoring the simulation traces against the formalized
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requirements was AMT [21]. The monitoring was done on a computer with Intel
Core i7 processor, 8GB of RAM and the 64-bit Ubuntu 12.04 LTS running on a
virtual machine from 64-bit Windows 7 operating system. The simulated traces
files had approximately 210MB per simulation. The assertions were checked
against the simulation traces one by one, and all the monitoring times were
lower than 20s per assertion. It follows that the monitoring presented a negligi-
ble overhead compared to the simulation time.

The monitoring results provided several interesting insights regarding the for-
malization of requirement documents. The formalization for discovery pulse com-
mands and the event when the voltage is applied proved to be sufficient to catch
these events. However, in our first iteration, we were not able to catch the sensor
response. In fact, the DSI3 standard does not specify the minimal duration of the
pulse falling (see Figure 6 (c)), but our intuition was that due to the physical con-
straints the duration must be strictly positive. We thus imposed this constraint
in our original formulation of the dsc res property. However, after clarification
from Infineon’s designers, we found out that at this given stage of development,
the design is approximated by a simpler model that allows instantaneous ramps
between values, as we can see in Figure 8.

Fig. 8. Zoom in on the simulated sensor response on the current line

The monitoring tool reported a violation of the cmd disc pulse period asser-
tion. In the formal assertion, we used the value of 125μs for tDisc Per , while the
actual distance between consecutive discovery pulse commands in the simulated
trace was close to 250μs, as shown in Figure 9. The value 125μs for tDisc Per

was taken from Table 6-2 in the standard [15]. After discussions with the Infi-
neon’s engineers, it turned out that the standard gives only an average value for
tDisc Per , while allowing the designer to choose any other value for tDisc Per as
long as all the other hard timing constraints are met. After reformulating the
assertion with the new value for tDisc Per provided by Infineon’s engineers, the
simulation traces satisfied the assertion.

Fig. 9. Zoom in on the detected discovery command pulses extracted from the simu-
lations by the monitoring tool
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We conclude that generally requirement documents are not always fully pre-
cise regarding parts of the specification, which makes the formalization of re-
quirements a non-trivial task. For some of the properties, interpretation freedom
is left, and one must take extreme care to make assumption which match the
intended meaning.

5 Lessons Learned and Future Directions

Requirements document often give interpretation freedom to the designer which
can result in ambiguous understanding of the desired property. Using STL to
monitor the compliance of the airbag SoC to the DSI3 standard protocol, it helps
to remove these kinds of ambiguity. In addition, when the STL is implemented
as an assertion, it strengthens the communication between different disciplinary
teams, ensuring a clear and common understanding between teams on the system
properties and requirements. We found that the monitoring itself represents a
negligible overhead to the design simulation, while automatically providing useful
debugging information to the designer as well as reducing time and error prone
due to manual inspection of the simulation results.

We identified a number of features that are still missing in the STL-based
monitoring framework and that we will investigate in the near future:

Template Specification Languages for STL: while STL is a rigorous, un-
ambiguous and powerful specification language, it is often not very intuitive
to the engineers, and especially to analog designers. Inspired by the graph-
ical specification of properties, as described in the DSI3 bus standard, we
will develop a graphical language for specifying common STL patterns, while
hiding away low-level STL details from the future.

STL Assertion Libraries: we identified that building libraries of common
STL properties for specific applications would greatly facilitate application
of this technology and would enhance the reuse of assertions across different
phases of design, various actors in the automotive value chain and different
project. For instance, an assertion library specifying the full DSI3 bus stan-
dard would be reused in every project that requires using this communication
protocol. The assertion skeletons would remain the same across the project,
and only instantiations of project-specific parameters would need to change.
In order to facilitate this goal, we need a more flexible syntax for STL that
allows declaration of variables and constants outside of the assertions. We
are currently working on adding this feature to the STL language.

Diagnostics for Assertion Violations: when an assertion is violated, it is
extremely important to be able to easily extract the reasons of the violation.
The AMT tool already provides extensive information about the assertion
violation, by computing and making visible to the user the information about
the satisfaction/violation in time of all sub-formulas in the violated asser-
tion. However, the causality analysis still needs to be done manually by the
engineer in order to gain insight into reasons for assertion violation. We are



30 T. Nguyen and D. Ničković

planing to further automate this process, by generating reports explaining
in human readable language the reasons of assertion violations.

Assertion Language Extensions: in this paper, we focused on the discovery
mode of the DSI3 protocol, in which STL can be directly used to accurately
specify needed requirements. The expressive power of STL might not be
sufficient for later phases of the protocol, when actual data is exchanged
between the sensors and the μC over the voltage and current lines. This
protocol uses multi-level source and Manchester coding for transferring data.
We will look in the future for additional features that STL may need in order
to support accurate specification of the full DSI3 bus standard and study
the necessary extensions.

Algorithms for Hardware FPGA Monitors for STL: we used in this pa-
per the offline STL monitoring tool AMT for case study evaluation. The
offline monitoring has the advantage of being indifferent about the source
(simulation, emulation or measurement) of the trace files – their provenance
does not affect the monitoring results. However, the trend of implementing
mixed-signal designs on FPGA hardware enables much longer design emu-
lations of the design, generating huge amount of data to be processed. It
follows that online hardware FPGA implementation of STL monitors, run-
ning in parallel with the design emulation, would be beneficial as they would
limit the amount of data that needs to be stored at any time and would
enable aborting emulation upon assertion violation detection.

6 Conclusions

We have evaluated the mixed-signal assertion-based monitoring methodology by
applying it to check correctness of DSI3 sensor interfaces in a modern airbag
system-on-chip application. We have demonstrated the usefulness and the po-
tential of the approach, highlighting its benefits but also identifying the features
that need to be added to the framework in order to make it mature for indus-
trial use. AIT and Infineon will continue working together to strengthen the
assertion-based monitoring technology and tailor it for its effective application
in the V&V of automotive applications.
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