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Preface

Welcome to the proceedings of QEST 2014, the 11th International Conference
on Quantitative Evaluation of Systems. QEST is a leading forum on quantita-
tive evaluation and verification of computer systems and networks. QEST was
first held in Enschede, The Netherlands (2004), followed by meetings in Turin,
Italy (2005), Riverside, USA (2006), Edinburgh, UK (2007), St. Malo, France
(2008), Budapest, Hungary (2009), Williamsburg, USA (2010), Aachen, Ger-
many (2011), London, UK (2012), and, most recently, Buenos Aries, Argentina
(2013).

This year’s QEST was held in Florence, Italy, and co-located with the 12th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2014), the 33rd International Conference on Computer Safety, Reli-
ability and Security (SAFECOMP 2014), the 10th European Workshop on Per-
formance Engineering (EPEW 2014), and the 19th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2014). Together these
conferences and workshops formed FLORENCE 2014, a one-week scientific event
in the areas of formal and quantitative analysis of systems, performance engi-
neering, computer safety, and industrial critical applications.

As one of the premier fora for research on quantitative system evaluation
and verification of computer systems and networks, QEST covers topics includ-
ing classic measures involving performance, reliability, safety, correctness, and
security. QEST welcomes measurement-based as well as analytic studies, and
is also interested in case studies highlighting the role of quantitative evaluation
in the design of systems. Tools supporting the practical application of research
results in all of the above areas are of special interest, and tool papers are highly
sought as well. In short, QEST aims to encourage all aspects of work centered
around creating a sound methodological basis for assessing and designing sys-
tems using quantitative means.

The Program Committee (PC) consisted of 35 experts and we received a to-
tal of 61 submissions. Each submission was reviewed by at least four reviewers,
either PC members or external reviewers. In the end, 24 full papers and five tool
demonstration papers were selected for the conference program. The program
was greatly enriched with the QEST keynote talk of Tamer Basar (University of
Illinois) and the joint keynote talk with SAFECOMP of Samuel Kounev (Uni-
versity of Würzburg). We believe the outcome was a high-quality conference
program of interest to QEST attendees and other researchers in the field.

We would like to thank all the authors who submitted papers, as without
them there simply would not be a conference. In addition, we would like to thank
the PC members and the additional reviewers for their hard work and for sharing
their valued expertise with the rest of the community as well as EasyChair for
supporting the electronic submission and reviewing process. Also thanks to the
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tools chair David Parker, the publicity and publications chair Marco Paolieri
and local organization chair Laura Carnevali for their dedication and excellent
work. Furthermore, we gratefully acknowledge the financial support of ACM-e
s.r.l. Finally, we would like to thank Joost-Pieter Katoen, chair of the QEST
Steering Committee, for his guidance throughout the past year.

We hope that you find the conference proceedings rewarding and consider
submitting papers to QEST 2015 in Madrid, Spain.

September 2014 Gethin Norman
William Sanders
Enrico Vicario
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Mean-Field Approximation and Quasi-Equilibrium Reduction of
Markov Population Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Luca Bortolussi and Rytis Paškauskas
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Quantitative Evaluation of Service Dependability

in Shared Execution Environments

Samuel Kounev
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skounev@acm.org

Recent reports indicate that ICT is currently responsible for 8-10% of EU’s
electricity consumption and up to 4% of its carbon emissions [2,23]. By 2020, only
in Western Europe, data centers will consume around 100 billion kilowatt hours
each year [15] (the same as the total electricity consumption of the Netherlands),
making energy a major factor in IT costs. However, according to [3], due to the
growing number of underutilized servers, only 6 - 12% of the energy consumption
in data centers nowadays is spent for performing computations.

Industry’s answer to this challenge is cloud computing, promising both reduc-
tions in IT costs and improvements in energy efficiency. Cloud computing is a
novel paradigm for providing data center resources as on demand services in a
pay-as-you-go manner. It promises significant cost savings by making it possi-
ble to consolidate workloads and share infrastructure resources among multiple
applications resulting in higher cost- and energy-efficiency [9]. Despite the hype
around it, it is well established that if this new computing model ends up being
widely adopted, it will transform a large part of the IT industry [8,17].

However, the inability of today’s cloud technologies to provide dependabil-
ity guarantees is a major showstopper for the widespread adoption of the cloud
paradigm, especially for mission-critical applications [8,9,16,1]. The term de-
pendability is understood as a combination of service availability and reliability,
commonly considered as the two major components of dependability [21], in the
presence of variable workloads (e.g., load spikes), security attacks, and opera-
tional failures. Given that an overloaded system appears as unavailable to its
users, and that failures typically occur during overload conditions, a prerequi-
site for providing dependable services is to ensure that the system has sufficient
capacity to handle its dynamic workload [22]. According to [17,16], concerns of
organizations about service availability is a major obstacle to the adoption of
cloud computing.

Today’s cloud computing platforms generally follow a trigger-based approach
when it comes to enforcing application-level service-level agreements (SLAs), e.g.,
concerning availability or responsiveness. Triggers canbe defined that fire in a reac-
tive manner when an observedmetric reaches a certain threshold (e.g., high server
utilization or long service response times) and execute certain predefined reconfig-
uration actions until given stopping criteria are fulfilled (e.g., response times drop).

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 1–4, 2014.
c© Springer International Publishing Switzerland 2014



2 S. Kounev

Triggers are typically used to implement elastic resourceprovisioningmechanisms.
The term elasticity is understood as the degree to which a system is able to adapt
to workload changes by provisioning and deprovisioning resources in an autonomic
manner, such that at each point in time the available resources match the current
demand as closely as possible [6,26]. Better elasticity leads to higher availability
and responsiveness, as well as to higher resource- and cost-efficiency.

However, application-level metrics, such as availability and responsiveness,
normally exhibit a highly non-linear behavior on system load, and they typically
depend on the behavior of multiple virtual machines (VMs) across several appli-
cation tiers. Thus, for example, if a workload change is observed, the platform
cannot know in advance how much, and at what level of granularity, additional
resources in the various application tiers will be required (e.g., vCores, VMs,
physical machines, network bandwidth), and where and how the newly started
VMs should be deployed and configured to ensure dependability without sac-
rificing efficiency. Moreover, the platform cannot know how fast new resources
should be allocated and for how long they should be reserved. Hence, it is hard
to determine general thresholds of when triggers should be fired, given that the
appropriate triggering points typically depend on the architecture of the hosted
services and their workload profiles, which can change frequently during opera-
tion.

Furthermore, in case of contention at the physical resource layer, the avail-
ability and responsiveness of an individual application may be significantly in-
fluenced by applications running in other co-located virtual machines (VMs)
sharing the physical infrastructure [7]. Thus, to be effective, triggers must also
take into account the interactions between applications and workloads at the
physical resource layer. The complexity of such interactions and the inability
to predict how changes in application workload profiles propagate through the
layers of the system architecture down to the physical resource layer render
conventional trigger-based approaches unable to reliably enforce SLAs in an effi-
cient and proactive fashion (i.e., allocating only as much resources as are actually
needed and reconfiguring proactively before SLA violations have occurred).

As a result of the above described challenges, today’s shared execution envi-
ronments based on first generation cloud technologies rely on “best-effort” mech-
anisms and do not provide dependability guarantees. Nevertheless, although no
guarantees are given, the provided level of dependability is a major distinguish-
ing factor between different service offerings. To make such offerings comparable,
novel metrics and techniques are needed allowing to measure and quantify the
dependability of shared execution environments, e.g., cloud computing platforms
or general virtualized service infrastructures.

In this keynote talk, we first discuss the inherent challenges of providing ser-
vice dependability in shared execution environments in the presence of highly
variable workloads, load spikes, and security attacks. We then present novel met-
rics and techniques for measuring and quantifying service dependability specif-
ically taking into account the dynamics of modern service infrastructures. We
consider both environments where virtualization is used as a basis for enabling
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resource sharing, e.g., as in Infrastructure-as-a-Service (IaaS) offerings, as well as
multi-tenant Software-as-a-Service (SaaS) applications, where the whole hard-
ware and software stack (including the application layer) is shared among differ-
ent customers (i.e., tenants). We focus on evaluating three dependability aspects:
i) the ability of the system to provision resources in an elastic manner, i.e., sys-
tem elasticity [6,5,26,25,24,4], ii) the ability of the system to isolate different
applications and customers sharing the physical infrastructure in terms of the
performance they observe, i.e., performance isolation [12,13,11,14,10], and iii) the
ability of the system to deal with attacks exploiting novel attack surfaces such
as virtual machine monitors, i.e., intrusion detection and prevention [18,19,20].
We discuss the challenges in measuring and quantifying the mentioned three
dependability properties presenting existing approaches to tackle them. Finally,
we discuss open issues and emerging directions for future work in the area of
dependability benchmarking.
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In nutshell, multi-agent networked systems involve the modeling framework of
multiple heterogeneous agents (or decision makers, or players) connected in var-
ious ways, distributed over a network (or interacting networks) and interacting
with limited information (on line and off line) under possibly conflicting objec-
tives. We can actually view the agents as nodes in a graph or multiple graphs,
which could be time varying (some edges in the network appearing or disappear-
ing over time [11]), and the nodes themselves could be mobile [8]. In such settings,
agents actually interact in a three-tiered architecture, with each tier correspond-
ing to a different layer [21] , namely: Layer 1, where the agents operate and
decisions are made; Layer 2, which is the information level where data, models,
and actionable information reside and are exchanged; and Layer 3, which con-
sists of the physical communication network that is used for Layers 1 and 2, and
contains software and hardware entities, as well as sensors and actuators with
which the teams interface with the dynamic physical environment. The underly-
ing network for Layer 1 can be viewed as a collaboration network, where edges of
the corresponding graph capture the collaboration among corresponding nodes
(agents); the network for Layer 2 can be viewed as a communication/information
network, where edges of the corresponding graph constitute communication links
(uni- or bi-directional) among corresponding nodes (agents); and Layer 3 can be
viewed as a physical network, where edges constitute the physical links.

The recent emergence of suchmulti-agent networked systems has brought about
several non-traditional and non-standard requirements on strategic decision-
making, thus challenging the governing assumptions of traditional Markov deci-
sion processes and game theory. Some of these requirements stem from factors
such as: (i) limitations on memory [20], (ii) limitations on computation and com-
munication capabilities [20], (iii) heterogeneity of decision makers (machines ver-
sus humans), (iv) heterogeneity and sporadic failure of channels that connect the
information sources (sensors) to decision units (strategic agents) [13], [15], (v) lim-
itations on the frequency of exchanges between different decision units and the
actions taken by the agents [12], (vi) operation being conducted in an uncertain
and hostile environment where disturbances are controlled by adversarial agents
[5], (vii) lack of cooperation among multiple decision units [6], (viii) lack of a com-
mon objective shared by multiple agents [6], and (ix) lack (or evolution) of trust
among agents. These all lead to substantial degradation in performance and loss
in efficiency if appropriate mechanisms are not put in place.

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 5–8, 2014.
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An appropriate framework for studying and analyzing multi-agent networked
systems, and particularly those with adversarial intervention, is that of dynamic
games [6]. We have the scenario of multiple agents (decision makers or players)
picking policies (decision laws or strategies), which lead to actions that evolve
over time. Policies are constructed based on information provided by the com-
munication network (active as well as passive) and guided by individual utility
or cost functions over the decision making horizon. The very special case of a
single agent falls in the domain of stochastic control, and the special case of a
single objective for all agents (and no adversaries) fall in the domain of stochas-
tic teams [20]. The more general case of multiple agents and multiple objectives
falls in the domain of zero-sum or nonzero-sum stochastic dynamic games. The
former is the setting of stochastic teams operating in an environment with ad-
versarial intervention, in which case the adversary or adversaries can be seen as
members of a directly opposing party (and hence the name zero-sum, where the
solution concept is that of saddle point); security games fall into that class [2],
[14], and so do problems of jamming where the communication links between
collaborating agents are jammed by a team of adversaries [1], [9], [10]. The most
general framework is that of nonzero-sum games, where the solution concept
adopted, in a noncooperative setting, is generally Nash equilibrium. Here the
players (agents) are coupled through information exchange as well as their in-
dividual objective functions, and hence individual optimization by each player
regardless of what other players do is not a possible approach; players have to
anticipate the moves or actions of other players (at least in their neighborhoods
of spatially or informationally connected agents) before they take their decisions.
This necessitates the development of distributed algorithms and learning rules
for the decision process to converge to the fixed point characterized by the Nash
equilibrium [22]. The complexity created by the coupling among players can be
somewhat alleviated in the large population regime (that is when the game has
asymptotically an infinite number of players), in which case each player views
the aggregate of other players as a cloud that is not affected by unilateral deci-
sions or actions of individual players; this belongs to the domain of mean field
games, which is an active area of research; see [7], [18], and references therein.

The complexity of obtaining an equilibrium solution in a stochastic dynamic
game also depends on the nature of the information exchange among the players
(that is, the structure of the information network). Roughly speaking, if the an-
swer to the question “Is the quality of active and relevant information received
by a player affected by actions of other players?” is no, then the underlying
game is relatively easy to solve, in the sense that at least methodologies and
computational algorithms exist for such games. If the answer is, however, yes,
then the stochastic game (and as a special case, stochastic dynamic team) is gen-
erally very complex and is “difficult” to solve [20]. Such information structures
or networks are known as non-classical, and they arise because of limitation on
memory, presence of delay, or non-sharing of actionable information [3], [19],
[20]. This interaction of agents on a non-classical information network is a com-
plex one because, in addition to helping himself in performance improvement,
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each collaborating agent could also help neighboring agents to achieve an overall
better performance through a judicious use of control/action signals that would
improve the information content of transmitted messages. The presence of such
a dual role makes the derivation of optimal solutions even in stochastic teams
generally quite a challenging task. In an adversarial context, the same dual role
emerges, this time not to help with improvement of performance but to degrade
it. For some recent work on this topic, and additional references, see [4] and[16].

One class of problems that feature non-classical information are those where
agents operate under strict limitations on the number or frequency of their ac-
tions, be it control (as in a closed-loop system) or transmission of information
(as in a sensor network), with the restriction arising because of limitation on
resources (such as energy). In traditional decision problems, the issue of interest
has been what to send, or equivalently how to shape the information/sensor and
control signals so as to meet targeted objectives. The resource limitation now
brings in a second issue or question, one of when to send, given some constraints
on the number of transmissions (which could include sensor signals, control sig-
nals, or communication between agents) and also given the unreliability of the
transmission medium where the information on whether the signals sent have
reached their intended destinations or not (due to random failures or adversarial
intervention) is at best only partially available. The agents here are faced with
a dynamic decision making process that trades off using more of a resource now
(and therefore receiving instantaneous return in performance at the expense of
not so good performance in the future) against holding on to more of the re-
source for a future use (and thus possibly obtaining an improved performance
in the future at the expense of poor instantaneous return)–all this taking into
account the possibility that the transmission medium could be lossy (with some
statistical description of failures). Solutions to these problems involve threshold-
type policies with online dynamic scheduling and offline computation; for some
representative work, see [12] and [17].
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10. Bhattacharya, S., Başar, T.: Differential game-theoretic approach to a spatial jam-
ming problem. In: Advances in Dynamic Game Theory and Applications, Annals
of Dynamic Games, vol. 12, pp. 245–268. Birkhäuser (2012)
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Abstract. Two different methods have been introduced in the past for
the numerical analysis of Markov Regenerative Processes. The first one
generates the embedded Markov chain explicitly and solves afterwards
the often dense system of linear equations. The second method avoids
computation of the embedded Markov chain by performing a transient
analysis in each step. This method is called “matrix free” and it is often
more efficient in memory and time. In this paper we go one step further
by even avoiding the storage of the generator matrices required by the
matrix-free method, thanks to the use of a Kronecker representation.

1 Introduction and Previous Work

In many models of real systems the hypothesis that all durations have an ex-
ponential distribution may not be adequate (for example in case of timeouts or
hard deadlines). Including general distribution may indeed lead to more realistic
models, but with unfeasible solution, so that often simulation has to be used.
Markov Regenerative Processes (MRPs) [9] constitute a natural model for whose
systems in which the exponential choice is not realistic, but in whose behavior it
is possible to identify a renewal sequence. The class of MRP we consider (MRP
for short, from now on) is the subclass identified by the additional restriction
that the system evolution between regeneration points can be described by a
Continuous Time Markov Chain (CTMC), a condition which is true when, in
any state, at most one non-exponential activity can take place. This (strong)
modelling restriction is balanced by the fact that the solution of such an MRP
can still be computed for “reasonably large” state spaces. This paper presents a
technique that takes the MRP solution to even larger state spaces. This paper
builds on two research lines: numerical MRP solutions and structured represen-
tation of state spaces. The high-level formalisms of reference are Stochastic Petri
Nets (SPN), both Non-Markovian SPN (NMSPN) [16] and Deterministic SPN
(DSPN) [10], from which an MRP is generated.

The MRP solution we build upon is that proposed by Chiola et al. in [1].
The MRP is characterized by three generator matrices Q, Q̄,Δ, typically (very)
sparse and its solution requires the construction of the MRP embedded Markov
chain whose generator P is typically (very) dense, as well as the computation of

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 9–24, 2014.
c© Springer International Publishing Switzerland 2014



10 E.G. Amparore, P. Buchholz, and S. Donatelli

the matrix of sojourn times C, of similar characteristics. The presence of dense
matrices limits the solution to systems with a few thousand states. The solution
of MRPs presented by German in [12] works directly with the generators matri-
ces, without building, and storing, P and C. This method was called “iterative”
by the authors (later referred to as “matrix-free” or “implicit”) and it trades-off
memory saving for increased execution time, although memory saving can some-
times be so large so as to induce also better execution times. The method was
extended in [3] to deal with projection methods (like GMRES [14]), and it has
been made available through the DSPN-tool software [2].

The state space explosion problem of (stochastic) Petri nets (and similar for-
malisms) has been extensively studied in the past with the objective of limiting
the memory required to store the underlying CTMC. In this paper we build
on what is known as the “Kronecker approach” [13]: the system is built out of
components and the CTMC infinitesimal generator of the whole system is de-
fined by a Kronecker expression of matrices computed on the state space of the
components. The saving in time can be huge (from multiplicative down to ad-
ditive with respect to the state space of the components), and the overhead in
execution time is typically at most linear in the number of components. Another
technique for saving space is to use a decision diagram data structure to store
the CTMC [11]. In this paper we consider a structured approach based on a Kro-
necker description, and we leave the use of decision diagram to a future work.
This results in the following contribution: a steady-state solution of MRPs which
combines the matrix-free technique of [12] and [3] with the Kronecker approach,
leveraging on an extension of the Kronecker approach that builds a hierarchical
representation of the state space, as defined in [6].

Section 2 presents the background material for the hierarchical structuring
of CTMCs, Section 3 extends the structure to MRPs, and Section 4 defines
a numerical solution algorithm that combines the structured approach and the
implicit steady state solution of MRPs. Finally, Section 5 assesses experimentally
the proposed solution technique and concludes the paper.

2 Background Material

In this section we shall introduce the running example and the necessary back-
ground material on the Kronecker solution of (exponential only) SPN.

The running example, shown in Figure 1, is a moving server system model
(or polling system) with two stations. In the figure, white boxes are exponential
transitions, black boxes are general transitions. Inter-arrival and service times
are exponentially distributed and are realized by transitions tj1 and tj2 for com-
ponent j = 1, 2. The capacity of the queues equals mj . If the queue is empty,
the server waits (transition tj3) at the queue. When a customer arrives (tj1)
while the server is waiting, service starts again (transition tj3), otherwise the
server may move (tj4) to the other queue. Waiting and moving times are gener-
ally distributed. For the rest of this section we assume that all transitions are
exponential, to introduce the basic solution approach.
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Component 1 Component 2

p12 t11

m1

p11t12

p13 t13 p14 t14

p22 t21

m2

p21t22

p23 t23 p24 t24

Fig. 1. Petri net model of a simple moving server system with two stations

We assume that models are built from a set J of components, with J = |J |.
The example in Figure 1 has two components (J = 2), graphically identified by
the dashed boxes. Components have finite state spaces and interact via common
transitions. In Petri net terms a component is an SPN with finite reachability set,
and components have disjoint places, but can share some transitions. A transition
is shared if it is connected to places that belong to at least two components,
local otherwise. In the example t14 and t24 are the only shared transitions. The
reachability set of the components, taken in isolation, would be infinite, but the
structural analysis of the net (computation of p-semiflows) reveals that places
p13, p14, p23, p24, are safe (1-bounded), and that the sum of tokens in pj1 and pj2
is bounded by mj , for j ∈ {1, 2} so that a finite state space can be generated for
each component. For practical reasons we assume that all immediate transitions,
if any, are local.

For component j ∈ J let S(j) be the finite state space of cardinality n(j) and
let s(j)0 ∈ S(j) be the initial state of component j. Moreover let T be the set of
transitions, and let λt, for each t ∈ T be the transition rate of the exponential
distribution associated to t. The dynamic behavior of a component according to
the transitions from T is described by n(j) × n(j) matrices E

(j)
t . Each matrix

E
(j)
t is non-negative and has row sum 0 (i.e., the transition is disabled by the

component in the state corresponding to the row) or 1 (i.e, the transition is
enabled by the component in the state corresponding to the row). If component
j is not related to transition t, then E

(j)
t = In(j) , the identity matrix of order

n(j). State dependent transition rates can be considered as well, in this case the
row sums of matrices E

(j)
t are between 0 and 1 and not just 0 or 1.

For our running example, matrix E
(1)
t11 describes the contribution of the first

component to the firing of t11: a matrix with zero in all rows corresponding
to markings which do not enable t11, and with a single entry 1 in all other
rows. In each non-zero row the “1” contribution is in the column corresponding
to the change of marking realized by t11. Matrix E

(2)
t11 is instead the identity

matrix, since the state of the second component does not influence, and it is not
influenced by, the firing of t11.

Let S be the global state space of the model which contains the joint state of
all components. Thus, global states are described by vector s = (s(1), . . . , s(J))
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where s(j) ∈ S(j). In the example, the initial marking is s0 = (s
(1)
0 , s

(2)
0 ), where

s
(1)
0 = m1 ·m[p11] + 1 ·m[p13] and s(2)0 = m2 ·m[p21], m[p] indicates the number

of tokens in place p, and we have used the bag notation for vectors.
A transition t is enabled iff it is enabled in all components, i.e., transition

t ∈ T is enabled in s iff for all j ∈ J :
∑

s′∈S(j) E
(j)
t (s(j), s′) = 1 or > 0 if

state dependent transition rates are allowed. Let E(j)(s) ⊆ T be the set of
all transitions t ∈ T that are enabled in state s ∈ S(j). E(s) is the set of all
transitions enabled in global state s. We have

E(s) =
⋂
j∈J

E(j)(s(j)).

If transition t occurs in state s, state s′ is the successor state with probability∏
j∈J

E
(j)
t (s(j), s′(j)) .

Local and shared transitions can be distinguished based on the corresponding
E

(j)
t matrices. Transition t ∈ T is local if E

(j)
t �= I for exactly one j ∈ J .

Otherwise the transition is shared and its enabling depends on the state of
at least two components or the state changes synchronously in at least two
components. For our example transitions tj1 and tj2 are local to component j,
while tj3 and tj4 are global. The matrices of local exponential transitions can be
combined into a single matrix, as in [13]: this aggregation increases the efficiency,
but is not required for correctness.

The overall state space S can be over-approximated by the product of the
state space of the components (potential state space) or can be exactly computed
through an efficient reachability analysis of composed models, as described in
[8,11], starting from state s0 = (s

(1)
0 , . . . , s

(J)
0 ). In each component, the state

space S(j) is partitioned into subsets S(j)[k] (k = 1, . . . ,K) such that two states
s, s′ ∈ S(j) are put in the same subset iff

(s(1), . . . , s(j − 1), s, s(j + 1), . . . , s(J)) ∈ S ⇔
(s(1), . . . , s(j − 1), s′, s(j + 1), . . . , s(J)) ∈ S (1)

An algorithm that computes the subsets can be found in [6]. Let N (j) be the
number of subsets for component j, and let S(j)[k] be the k-th subset. States in
S(j) can then be ordered according to the subsets, such that the states belonging
to subset 1 come first, followed by the states from subset 2, and so on. With
this ordering all matrices E

(j)
t can be structured into block matrices E

(j)
t [k, l]

with 1 ≤ k, l ≤ N (j) including transitions between states for S(j)[k] and S(j)[l].
Observe that (1) implies that all states in a subset are reachable in combination
with exactly the same states of the environment. This condition is necessary and
sufficient to describe a state space as a union of subsets where each subset is
built from the cross product of subsets of component state spaces [6].

The global state space is decomposed into subsets, such that S =
⋃

k S[k]
and k = (k(1), . . . ,k(J)), where 1 ≤ k(j) ≤ N (j). We then have S[k] =
×j∈JS(j)[k(j)].
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To simplify the notation the subsets of the global state space are numbered
consecutively from 1 to N . Each subset k ∈ {1, . . . , N} belongs to a vector k
and kj denotes k(j). These subsets k are also called macro-states.

For the example, since both components have an identical structure, their
state spaces are decomposed in the same way. Each component state space is
decomposed in two subsets, one set S(j)[1] where one of the places pj3 or pj4 is
marked, and one subset S(j)[2] where both places are empty. The overall state
space of the composed net is then given by {S(1)[1]×S(2)[2]}∪{S(1)[2]×S(2)[1]}
with the two macro states (k, l) with k, l ∈ {1, 2} and k �= l.

Given the structuring of the state space, a Kronecker structure of the infinites-
imal generator can be derived as Q =

∑
t∈T (Rt − Dt) where Dt = diag(Rt1).

It is well known that the matrix-vector multiplication required by the steady-
state solution can be performed without the need to compute and store all the
entries of Q. Matrices Rt and Dt are block structured according to the decom-
position of S. For matrix Rt we have the following representation of the blocks:

Rt[k, l] = λt
⊗
j∈J

E
(j)
t [kj , lj ] (2)

3 A Kronecker Structure for MRPs

We now extend the Kronecker structured approach to non-Markovian stochastic
Petri nets (NMSPN) and the associated MRPs. A similar approach is feasible
also for other modeling formalisms. We shall first define a Kronecker expression
for the MRP generator matrices, while in the next section we show how this
structured description can be combined with a matrix-free solution for the MRP.

Again, we assume that models are composed of components from a set J
of cardinality J and a set of transitions T which can now be split into Te, the
set of transitions with exponentially distributed event times, and Tg, the set of
transitions with generally distributed event times. Let Te and Tg be the number
of transitions in Te and Tg, respectively. We use t for exponential transitions
and g for general. λt is the transition rate of t ∈ Te, while fg(x) is the density
and Fg(x) is the distribution function of the inter-event time distribution of
transition g ∈ Tg. Eg(s) = E(s) ∩ Tg is the set of general transitions that are
enabled in state s.

Following the standard notation for MRPs, Q, Q̄ and Δ denote the matrices
including, respectively, the rates of non-preemptive exponential transitions (Q),
the rates of preemptive exponential transitions (Q̄) and the general branching
probabilities of general transitions (Δ). Preemptive means that the firing of
t ∈ Te disables a currently enabled transition g ∈ Tg.

For deriving a Kronecker expression for Q and Q̄, we need to consider the
contribution of each exponential transition t to the generators Qt and Q̄t, and
to distinguish, for each of them, firings of t that happen in 1) states in which
no general transition is enabled or in 2) states in which a general transition g is
enabled. Moreover we need to distinguish, for the second case, whether 2a) the
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firing of t disables the general or 2b) does not disable it, since the contribution
of 2a goes into Q̄t and the one of 2b goes into Qt. Note that this distinction is
not required for Δ, although also in this case we shall consider the contribution
of one transition (general by definition) at a time.

The need to distinguish states according to the enabling of general transitions
should therefore be reflected also in the hierarchical structuring of the state
space: the condition of (1) is then refined to distinguish partitions depending on
the enabling of general transitions, leading to the following condition: two states
s, s′ ∈ S(j) are put in the same subset iff

(s(1), . . . , s(j − 1), s, s(j + 1), . . . , s(J)) ∈ S ⇔
(s(1), . . . , s(j − 1), s′, s(j + 1), . . . , s(J)) ∈ S

and E(j)(s) ∩ Tg = E(j)(s′) ∩ Tg.
(3)

Rule (3) ensures that in each partition the set of enabled general transitions
remains the same. Recall that N (j) is the number of subsets for component j
and denote by S(j)[k] the k-th subset.

For the running example each component state space is now decomposed into
4 subsets, S(j)[1], . . . ,S(j)[4], since we have to distinguish whether the general
transitions ti3 and ti4 are enabled or not. The structure becomes finer than in
the Markovian case. S(j)[1] contains states in which the server is not at the
component, therefore places pj3 and pj4 are both empty (for a total of mj + 1
states). S(j)[2] contains states in which the server is at the queue but tj3 and tj4
are not enabled, therefore pj4 is empty, pj3 contains a token and pj2 is not empty
(for a total of mj states). S(j)[3] contains all states where tj3 is enabled which
implies that pj3 contains a token and pj2 is empty, which actually corresponds
to a single state. Finally, S(j)[4] contains all states where tj4 is enabled, which
means that pj4 contains a token and the tokens can be in either pj2 or pj1 (for
a total of mj + 1 states). The complete state space S can then be described by
the following subsets: S[1, 2],S[2, 1],S[1, 3],S[1, 4],S[3, 1],S[4, 1], and contains
(m1 + 1)m2 +m1(m2 + 1) + (m1 + 1) + (m1 + 1)(m2 + 1) + (m2 + 1) + (m1 +
1)(m2 + 1) = 4(m1 + 1)(m2 + 1) states, as in the exponential case. We number
the vectors for the subsets or macro states in the order given above from 1
through 6. Usually, the number of macro states generated according to (1) or
(3) is significantly smaller than the number of states. If this is not the case,
another component structure should be defined to benefit from a structured
solution approach.

Remember that an MRP can be analyzed numerically if at most one general
transition is enabled in a state. This condition can be expressed as |Eg(s)| ≤ 1 for
all s ∈ S. This condition holds for the running example, since the sum of tokens
in places p13, p14, p23, and p24 is equal to one. Since for s, s′ ∈ S[k] the relation
Eg(s) = Eg(s′) holds by definition of the subset, it is meaningful to define Eg(k),
the set of global transitions that are enabled in states from subset S[k]. We shall
also assume that the state space of the system is irreducible. An extension of
the approach to reducible case can be made, similarly to [3].

To ease the description of the generator matrices, the subsets of the global
states space are ordered so that the subsets 1, . . . ,K0 contain only states where
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no transition from Tg is enabled. We assume that transitions from Tg are num-
bered from 1 through Tg, such that the subsets Kg−1 + 1, . . . ,Kg contain the
states where transition g ∈ Tg is enabled. Let Sg =

⋃ Kg

k=Kg−1+1S[k] be the set
of all states where g ∈ Tg is enabled.

We now show how the different matrices required for the analysis of the MRP
can be composed from the small matrices of the components. Let us start with
the matrix Q which includes all rates of transitions from Te that do not pre-
empt a general transition. The diagonal elements of Q contain the sum of ex-
ponential rates independently on whether they disable a general transition or
not. This representation is consistent with [3]. For each t ∈ Te we define a ma-
trix Qt and represent this matrix by matrices Rt containing the non-diagonal
part and Dt containing the diagonal part such that Q =

∑
t∈Te

(Rt − Dt) and
D =

∑
t∈Te

Dt. Matrices Rt and Dt are block structured according to the de-
composition of S. For matrix Rt we distinguish two expressions for the blocks of
Rt in Equation 4 due to the occurrence of t: one for states in which only expo-
nential transitions are enabled (first case), and one for states in which a general
transition g is enabled and the occurrence of t does not disable it (second case);
blocks corresponding to states in which a general transition g is disabled by firing
exponential transition t are not part of matrix Rt (third case). In the equations
E

(j)
t [kj , lj] is used to describe the firing of t for rows in which only exponentials

are enabled. For blocks in which, at the component level, a general g is locally
enabled and the firing of t leads to a local state in which g is still locally en-
abled, we need to distinguish two cases. First, the firings of t that “preempts and
immediately re-enables” g, and, second, the firings of t that do not affect g at
all. The latter are collected in Ej

t,g[kj , lj ] and contribute to Rt.

Rt[k, l] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λt

⊗
j∈J

E
(j)
t [kj , lj] if k ≤ K0,

λt
⊗
j∈J

E
(j)
t,g [kj , lj] if Kg−1 < k, l ≤ Kg for 1 ≤ g ≤ Tg,

0 otherwise.

(4)

In matrix Dt only the diagonal blocks are non-zero and they are built out of
diagonal matrices. Since diagonal elements contain all the rates of exponential
transitions of both Q and Q̄, we can write

Dt[k, k] = λt
⊗
j∈J

diag

(
N∑
l=1

E
(j)
t [kj , lj]1

)
= λt

⊗
j∈J

F
(j)
t [kj , kj ] (5)

where diag(a) is a diagonal matrix with a(i) in position (i, i) and F
(j)
t [kj , kj ] =

diag
(∑N

l=1 E
(j)
t [kj , lj ]1

)
.

Matrix Q̄ represents the contribution of exponential events that preempt a
general transition. As before, it can be represented as Q̄ =

∑
t∈Te

R̄t, and we
have two distinguished cases: transition g is disabled after the firing of t (first
case), and g is enabled before and after the occurrence of t but is disabled by
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t. Since g is disabled if it is disabled by at least one component, the resulting
matrix consists of the difference between the matrix with all transitions of t and
the matrix with all transitions where g is not preempted.

R̄t[k, l] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λt
⊗
j∈J

E
(j)
t [kj , lj]

if Kg−1 < k ≤ Kg,Kh−1 < l ≤ Kh,
g �= h, 1 ≤ g ≤ Tg, 0 ≤ h ≤ Tg

λt

(⊗
j∈J

E
(j)
t [kj , lj ] −

⊗
j∈J

E
(j)
t,g [kj , lj ]

)
if Kg−1 < k, l ≤ Kg,

for 1 ≤ g ≤ Tg

0 otherwise.

(6)

Finally, Δ =
∑

g∈Tg
Δg, where matrices Δg describe the transition probabil-

ities of the states reached after the firing of each transition g ∈ Tg:

Δg[k, l] =

⎧⎨⎩
⊗
j∈J

E
(j)
g [kj , lj ] if Kg−1 < k ≤ Kg

0 otherwise.
(7)

In our running example transitions t14 and t24 cannot be preempted, while
t13 and t23 can be preempted in states corresponding to blocks 3 and 5, leading
to the presence of non-zero sub-matrices Q̄[3, 1] and Q̄[5, 2] in Q̄. Furthermore,
the exponential transitions of each component are local, so for each component
there is a single matrix that describes tj1 and tj2.

4 Numerical Computation of the Stationary Vector

Our goal for the numerical analysis of an MRP is the computation of the station-
ary distribution π using the implicit (matrix-free) method [12]. In the following
we first review the explicit method, and then proceed in extending the method
to account for a structured representation of the MRP generator matrices.

4.1 Explicit Method for the Computation of the Stationary Vector

The stationary vector is computed as the stationary solution of the embedded
discrete time Markov chain which is afterwards normalized according to the
sojourn times in the different states during one regeneration cycle [12]. Following
[3,12] we define Ig as a |S| × |S| matrix where the diagonal elements belonging
to the rows from S[Kg−1 +1], . . . ,S[Kg] are 1 and all remaining elements are 0.
Similarly, for Ie the diagonal elements belonging to the rows from S[1], . . . ,S[K0]
are 1 and the remaining diagonal elements are 0. Due to the ordering of states, the
matrices select a consecutive subset of rows when multiplied with a matrix from
the left. For some vector x we define xg = xIg , xe = xIe and xG = x

∑
g∈Tg

Ig.
Then the matrix of the embedded Markov chain equals

P = Ie − Ie (D)
−1

Q+ΩΔ+ΨQ̄ (8)
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where (D)−1 is a diagonal matrix with the diagonal elements (D(x, x))−1 if
D(x, x) �= 0 and 0 otherwise. The terms Ω and Ψ are

Ω =
∑

g∈Tg

Ωg =
∑

g∈Tg

Ig
∞∫
0

eIg(R−D)xfg(x) dx =
∞∑

m=0
(Ug)

m
αf
g (m,μg)

Ψ =
∑

g∈Tg

Ψg =
∑

g∈Tg

Ig
∞∫
0

eIg(R−D)xF̄g(x) dx =
∞∑

m=0
(Ug)

m
αF̄
g (m,μg)

(9)

where Ug = Ig + Ig(R−D)/μg, μg ≥ maxx∈Sg |
∑

t∈Te
Dt(x, x)|, function F̄g(x)

is (1 − Fg(x)), and functions αf
g (k, μ) and αF̄

g (k, μ) are

αf
g (m,μ) =

∫ ∞

0

e−μx (μx)
m

m!
fg(x) dx, αF̄

g (m,μ) =

∫ ∞

0

e−μx (μx)
m

m!
F̄g(x) dx

(10)
with m ∈ N. For the evaluation of the functions for different densities fg(x) we
refer to [12]. The terms Ω and Ψ are matrix exponentials and can be computed
as truncated Taylor series.

Although the matrices Rt can be represented as Kronecker products of small
component matrices, this does not help when Ωg and Ψg are built. The matrices
have to be computed from a sparse matrix representation of matrices Rt and
even worse, the resulting matrices often become dense such that the memory
effort grows to O(n2) where n is the size of the state space. This implies that
the computation of matrix P can only be done for models of a moderate size
and is very time and memory consuming.

After matrix P is available from (8) the left eigenvector xP = x subject to
x1 = 1 can be computed. Alternatively, the system x (P − I) = 0 with x1 = 1
can be solved using standard numerical techniques for the computation of the
solution vector of a linear equation system. Commonly used algorithms are the
Power method, SOR or projection methods (like GMRES, BiCG-stab, see [15]).
In the case of the Power method, a series of vectors xm has to be computed
according to the relation: xm = xm−1P, with x0 an appropriate initial vector
with x0 ≥ 0, x01 = 1. In the case of projection methods, a sequence of residual
vectors in the form rm = xmP − xm is required (see [3]).

Let x the (approximate) solution of the linear equation system x = xP. The
stationary vector of the MRP π is computed as

π̂ = xC = x
(
Ie (D)−1 +Ψ

)
such that π =

π̂

π̂1
. (11)

where C is the conversion factors matrix, which is usually as dense as P.
The outlined approach is denoted as explicit method because it first builds

matrices P and C, and then computes the linear solution.

4.2 The Proposed Structured Implicit Method

The bottleneck of the above mentioned explicit solution method is the compu-
tation of the matrices P and C or, more precisely, the computation of Ω and
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Ψ. To avoid this computation one has to compute vector products xmP without
having pre-computed and stored matrix P (hence the “matrix-free” name). The
product xmP can be rewritten [12] as:

xmP = xm
(
Ie − Ie (D)

−1
Q+ΩΔ+ΨQ̄

)
= xm

e − xm
e (D)

−1
Q+

( ∑
g∈Tg

xm
g Ωg

)
Δ+

( ∑
g∈Tg

xm
g Ψg

)
Q̄

= xm
e − xm

e (D)
−1

Q︸ ︷︷ ︸
um

+ amΔ︸ ︷︷ ︸
vm

+bmQ̄︸ ︷︷ ︸
wm

(12)

In the implicit method vectors bm and am are computed without generation
of the matrices Ω and Ψ. In this paper we go one step further from [12] and
avoid even the generation of the matrices Q, Q̄ and Δ by using the implicit
Kronecker representation of these matrices in the xP products of Eq (12). In
what follows we present, at the same time, the implicit method and its adaptation
to deal with Kronecker expressions of the generators. We begin with the vectors
am and bm, which can be computed by an iterative approach based on (9).
Both vectors are computed from the repeated multiplication of vector xm with
matrices Ug, for each g ∈ Tg. This implies that the first rows, belonging to the
subsets S[1], . . . ,S[K0] are zero and the corresponding elements of vector xm

are not needed. Let y0 = xm and perform the following iterations.

yl+1[k] =
Kg∑

h=Kg−1+1

yl[h]
(
I − 1

μg
Q[h, k]

)
=

Kg∑
h=Kg−1+1

yl[h]

(
I −

∑
t∈Te

1
μg

Rt[h, k]

)
− yl[k]

∑
t∈Te

1
μg

Dt[k, k]

=
Kg∑

h=Kg−1+1

yl[h]

(
I −

∑
t∈Te

λt

μg

⊗
j∈J

E
(j)
t [hj , kj ]

)
− yl[k]

∑
t∈Te

λt

μg

⊗
j∈J

F
(j)
t [kj , kj ]

(13)

for g ∈ Tg andKg−1 < k ≤ Kg. Observe that we only have to consider the subsets
S[Kg−1 + 1], . . . ,S[Kg] if we analyze the behavior of exponential transitions
during the enabling time of general transition g ∈ Tg because g is disabled
in subsets h ≤ Kg−1 and h > Kg. All subvectors yl[k] and therefore the whole
vector yl can be computed by repeated use of the standard procedure to perform
the multiplication of a vector with a Kronecker product of matrices [15,7]. The
terms a and b are rewritten as

am[k] =

⎧⎪⎨⎪⎩
Rg∑

l=Lg

αf
g (l, μg) · yl if Kg−1 + 1 < k ≤ Kg for g ∈ Tg

0 otherwise

bm[k] =

⎧⎪⎨⎪⎩
Rg∑

l=Lg

αF̄
g (l, μg) · yl if Kg−1 + 1 < k ≤ Kg for g ∈ Tg

0 otherwise

(14)
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where Lg and Rg are the truncation points for the computations of the Taylor’s
series of the α-factors of g.

The values of am[k] and bm[k] can then be used to compute the vectors um,
vm and wm of (12) (always without generating Q, Q̄ and Δ explicitly). We
begin with um. Vector um[k] = 0 for k > K0, i.e., in states where a general
transition is enabled. For the case of k ≤ K0 we derive

um[k] =

K0∑
h=1

xm[h] (D[h, h])
−1

Q[h, k] =

=

K0∑
h=1

xm[h] (D[h, h])
−1

(∑
t∈Te

λt
⊗
j∈J

E
(j)
t [hj , kj ]

) (15)

Matrices D[k, k] are not represented as Kronecker products, but are stored as
sparse matrices. However, since these matrices are diagonal matrices only, it is
sufficient to store a vector of length

∑K0

k=1 |S[k]|, whose size is usually less than
the length of the um vector. Vector vm[k] is computed as

vm[k] =
∑
g∈Tg

Kg∑
h=Kg−1+1

am[h]Δg[h, k] =
∑
g∈Tg

Kg∑
h=Kg−1+1

am[h]
⊗
j∈J

E(j)
g [hj , kj ] (16)

for k = K0 + 1, . . . , N and 0 for k ≤ K0. Vector wm is given by

wm[k] =
∑

g∈Tg

Kg∑
h=Kg−1+1

bm[h]Q̄[h, k]

=
∑

g∈Tg

Kg∑
h=Kg−1+1

(
bm[h]

∑
t∈Te

λt ·
(⊗

j∈J
E

(j)
t [hj , kj ]

−δ(k ∈ {Kg−1 + 1, . . . ,Kg})
⊗
j∈J

E
(j)
t,g [hj , kj ]

)) (17)

where δ(b) = 1 for b = true and 0 otherwise. Again wm[k] = 0 for k ≤ K0.
These equations allow one to compute the steady state solution of an MRP

using the smaller component matrices E(j) rather than the much larger matrices
of the complete system, as the computation of the stationary vector x and of
π with (11) can be done by substituting the terms um, vm and wm from (12)
with the ones derived in (15), (16) and (17).

5 Experimental Assessment and Conclusions

To experimentally assess the proposed technique we have implemented the struc-
tured implicit solution by merging the Kronecker-based solution of the nsolve [5]
tool with the implicit MRP solution provided by DSPN-tool [2]. nsolve is a tool
developed at the TU Dortmund that handles structured stochastic Petri nets
(exponential only), while DSPN-Tool is a Petri net solver [2] for stochastic Petri
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nets (exponential and deterministic), which solves MRPs with both the implicit
and explicit methods. The implemented tool is an extension of nsolve that in-
cludes the implicit structured solution of MRPs presented in this paper. In the
new tool, general transitions are currently restricted to deterministic ones, but
other distributions can be supported as well, with the proper generation of the
α-factors of (10) for other distributions, as exemplified in one of the examples.

The evaluation considers three different models, a Flexible Manufacturing Sys-
tem (FMS) [4], the Moving Server System of the running example and a sequen-
tial program with a fork and join section.

Objective of the evaluation is to understand the advantages/disadvantages of
the proposed method in terms of memory usage and execution time. Readers
should recall that Kronecker approaches are meant to save space, with a known
overhead in terms of time [7] which, however, strongly depends on the structure
of the model.Normally, we cannot expect the proposed method to be better that
the implicit method implemented in DSPN-tool, unless the memory occupation
becomes so large to affect execution times due to memory access or caching
effects. In particular, the Kronecker approach we use can be at most J times
slower than the unstructured one, when matrices involved are very sparse (much
less than one entry per row). In our experience this factor is usually around 2 or
3. Note that, although not reported, performance indicators have been computed
as well, and they fully coincide between the two tools. All results are computed
with a relative error ε of 10−8 on the same PC.
Flexible Manufacturing System. The net considered here has been presented in
[4]. It consists of four machines M1...4 that operate a set of N circulating objects.
Machine M2 can break during operation, but a set of Spares can be used to
repair it immediately. Machine M3 also may break, but it always requires a full
repairing. A repairman checks and repairs the machines, if needed. All activities
of the repairman are deterministic. Since there is a single repairman it is never
the case that two deterministic are enabled in the same state. The net consists
of 24 places, 8 immediate, 4 deterministic and 8 exponential transitions.

This example is used to compare the structured implicit solution of this paper
with the standard implicit solution in terms of space and execution time for three
different numerical methods: Power method [15], which directly implements (12),
and two projection methods, GMRES and BiCG-Stabilized [3].

Table 1 reports, in the order, the number N of objects, the number of states,
the number of macro states, the number of non-zero entries (nnz) in the Kro-
necker representation of the generators, the solution time and number of it-
erations of the three numerical methods for the proposed structured solution
implemented in nsolve. The same set of data is reported in the last 7 columns for
the unstructured case, as implemented in DSPN-tool; in this case nnz is the num-
ber of non-zeros in the generator matrices. Despite the large number of macro
states, which indicates the fairly complex structure of the model, we observe
a significant saving in space. Note the superior performance of GMRES and
BiCGstab over Power method, especially in terms of iterations for reaching con-
vergence. Moreover we have a counter-intuitive result for what concerns solution
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Table 1. FMS model: steady state solution comparison (time and space)

Structured implicit Unstructured implicit
Power GMRES BiCGstab Power GMRES BiCGstab

N states mst nnz Time It Time It Time It nnz Time It Time It Time It
5 4361 220 9442 0.76 90 0.44 45 0.37 40 18556 0.4 87 0.3 39 0.2 38
7 12744 306 20670 2.13 110 1.27 55 1.04 46 60120 1.6 110 0.9 48 0.8 43

10 42636 435 50472 7.37 140 4.14 69 3.34 58 219351 7.4 147 3.8 62 3.2 50
12 80899 521 81290 13.92 150 8.27 79 6.31 62 431535 14.8 152 8.9 75 7.1 59
14 140480 607 122716 25.93 170 17.07 100 11.44 68 769675 28.3 166 16.6 80 13.2 63
16 228123 693 176334 38.81 160 27.08 100 20.10 76 1275867 59.8 179 41.9 109 28.5 71
18 351500 779 243728 62.13 170 47.87 117 29.61 72 1998287 123.1 189 85.1 117 53.5 72
20 519211 865 326482 95.87 180 71.06 119 45.21 74 2991191 195.6 182 144.3 119 88.6 73

times, since the structured solution can even be faster than the unstructured one
(for large values of the state space). As we shall see in later examples, this is a
phenomenon that is always observed when memory occupation becomes large.
This could be caused by the fact that a smaller number of non-zeros can lead to
a better caching effect for the matrices.

Moving Server System. This is our running example (Figure 1) modified as to
consider 4 stations (leading to 4 components), and to include general transitions
(black and thick in the figure). Experiments are ran for a variable number mi of
requests arriving to the station’s queues (same value for all queues). The num-
ber of macro states is not reported since it is constant and equal to 12. With
this example we also compare the differences of a MRP solution with deter-
ministic transitions and a CTMC solution where deterministic transitions are
approximated by Erlang-k distributions.

Table 2. MSS: State space sizes and memory occupations

Structured representation (nsolve) Unstructured (DSPN-Tool)
General Exp Erl-2 Erl-3 Implicit Explicit

mi states nnz states nnz states nnz states nnz Q, Q̄,Δ nnz P nnz C

1 128 80 128 64 224 236 320 416 384 544 388
5 10368 240 10368 224 16416 684 22464 1056 44928 312384 262932

10 117128 440 117128 424 181016 1244 244904 1856 543048 7452116 6705612
15 524288 640 524288 624 802816 1804 1081344 2656 2490368 33127648 29974864
20 1555848 840 1555848 824 2370816 2364 3185784 3456 7482888 88318068 79771404
25 3655808 1040 3655808 1024 5554016 2924 7452224 4256 17716608 - -
30 7388168 1240 7388168 1224 11201416 3484 15014664 5056 35987528 - -

Table 2 summarizes the comparison in space: number of states and number of
non-zeros for the four cases of structured representation (general, exponential,
Erlang-2 and 3) and for the unstructured one (last three columns). Erlang is here
implemented through expansion of the CTMC, which justifies the larger num-
ber of states and of non-zeros in the Kronecker representation. As expected, the
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explicit solution (last two columns) is not able to cope with large state spaces,
while the implicit unstructured, although better than explicit, occupies much
more space than the corresponding structured case proposed in this paper, as
an example: 840 entries against more than 7 millions for the mi = 20 case. Note
also that, space wise, the (structured) approximation with an Erlang (columns
6 to 9) performs better than the implicit unstructured. If we compare the re-
sults of the deterministic versus the Erlang distributions for waiting and moving
time, significant differences can be observed for different measures like the mean
population of place pi2 (mean buffer population), or the probability that all mi

tokens or on pi2, even if Erlang-3 distributions are used. This shows that the
use of phase type distributions as approximation for deterministic distributions
is either only a rough approximation (exponential case) or requires additional
effort (Erlang-k distributions with a large k).

Table 3. MSS: steady state solution times, using the BiCG-Stabilized method

Structured implicit (nsolve) Unstructured (DSPN-tool)
General (MRP) Phase expansion (CTMC) Implicit Explicit
Det Erl-3 Exp Erl-2 Erl-3 Det Det

mi Time Iters Time Iters Time Iters Time Iters Time Iters Time Iters Time Iters
5 0.1 130 0.1 130 0.1 142 0.1 200 0.2 278 0.6 125 1.1 104

10 1.8 228 1.8 218 0.7 226 1.5 318 2.5 416 11.8 226 67.7 220
15 10.9 290 11.7 286 4.3 320 9.2 440 16.3 562 126.0 317 1488.0 320
20 44.2 384 47.5 382 16.8 398 35.4 532 64.3 698 606.8 424 12202.1 416
25 131.8 476 140.5 466 50.8 494 106.3 632 208.5 836 1687.8 509 - -
30 341.6 588 369.3 584 151.7 632 331.5 772 613.4 960 4048.4 611 - -

Table 3 reports the execution times for the steady-state solution of the same
systems as in Table 2, in which we consider two types of general: deterministic
and Erlang-3. Columns 2 to 11 show the time and number of iterations of nsolve
for the four distribution variations, while the last four columns report time and
iterations for the unstructured (implicit and explicit) solution of DSPN-tool.
Results correspond to the BiCG-stabilized method, which has shown to be the
best method for these models. When comparing the structured solution (column
2 and 3 against unstructured one (columns 12 and 13), the unexpected gain
in time, which is even more striking than for the FMS case, makes even more
explicit the need for a change in DSPN-tool.

Third example: The model is depicted in Figure 2, consists or two parts: a se-
quential part (upper part of the net) and a loop over a fork and join part. The
fork consists of three branches, and each fork creates N threads in each branch.
Computation of the fork and join is controlled by a time-out, while the number
of loops is at most K (at most since there is a transition that eliminates tokens
from the loop control place). Deterministic transitions are here used to have a
more realistic model: the time-out is deterministic and the execution of the ini-
tial sequential part is made of activities with low variability. This low variability
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Fig. 2. The Petri net of a sequential Program with a parametric fork and join

has been realized with an alternation of a deterministic of duration 1 and of an
exponential of mean duration 0.1 (parameter λ set to 10).

Table 4. Third example: steady state solution comparison (time and space)

Structured implicit Unstructured implicit
BiCGstab BiCGstab

K N states mst nnz Time It nnz Time It
10 2 2456 6 351 0.1 44 11962 0.1 49
10 4 46206 8 1409 4.4 42 278247 5.7 45
10 6 358336 10 3811 47.3 46 2382K 57.0 45
10 8 1736146 12 8133 282.2 44 12237K 298.2 45
20 8 3472286 12 8413 847.6 58 24648K 950.8 57
30 8 5208426 12 8693 1838.0 74 37059K 1745.2 73
40 8 6944566 12 8969 3306.0 88 49471K 2743.7 89

The experiments were conducted for varying N and K, and are reported in
Table 4 for the single case of BiCGstab, which was the faster solver. For these
models the number of macro states depends on N . For N ≥ 20 only results for
K = 8 are shown. Also in this more realistic case of the use of deterministic
transitions, the saving in space for the storage of non-zeros is striking (8969
entries against more than 49 millions!) and execution times, and iterations, are
comparable.

The experiments reported here (as well as all the others that we have per-
formed) show very clearly the advantage of the proposed technique and encour-
age to move on in this line on research, both to consolidate our numerical solvers
and to extend the technique to gain efficiency by exploiting symmetries or to
go towards approximate solutions. Another line that should be pursued is the
exploitation of decision diagram(DD) to understand how the DD encoding of
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the CTMCs should be modified to work with MRPs, and what is the impact on
the implicit method.
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Abstract. Stochastic models that describe interacting processes, such
as stochastic automata networks, feature a dimensionality that grows
exponentially with the number of processes. This state space explosion
severely impairs the use of standard methods for the numerical analy-
sis of such Markov chains. In this work, we discuss the approximation
of solutions by matrix product states or, equivalently, by tensor train
decompositions. Two classes of algorithms based on this low-rank de-
composition are proposed, using either iterative truncation or alternat-
ing optimization. Our approach significantly extends existing approaches
based on product form solutions and can, in principle, attain arbitrar-
ily high accuracy. Numerical experiments demonstrate that the newly
proposed algorithms are particularly well suited to deal with pairwise
neighbor interactions.

1 Introduction

Markov processes featuring high-dimensional state spaces regularly arise when
modelling processes that interact with each other. Termed communicating Mar-
kov processes in [4], this class includes queuing networks, stochastic automata
networks, and stochastic Petri nets. The need for considering the joint prob-
ability distribution for a network of stochastic processes is responsible for the
exponential growth of the state space dimension, which severely impairs the
numerical analysis of such Markov processes. For example, all standard itera-
tive solvers [2] for addressing the linear system or, equivalently, the eigenvalue
problem needed for determining the stationary probability distribution have a
complexity that scales at least linearly with the state space dimension.

The high dimensionality of the state space is usually coped with by either per-
forming model reduction or by exploiting the rich structure of the transition rate
matrix in the numerical solution procedure. Product form solutions represent a
particularly popular reduction technique and have been successfully used in a
wide range of applications. The basic idea of this reduction is to yield a system
for which the stationary distribution factorizes into a product of distributions
for the individual processes. This reduced system then allows for a much less
expensive numerical treatment. General techniques for arriving at product form
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solutions are described, e.g., in [18, Ch. 6]. Extensive work has been done on find-
ing conditions under which such a product form approach applies; see [10,9] for
some recent results. However, its practical range of applicability is still limited
to specific subclasses. A rather different approach is based on the observation
that the transition rate matrix of a communicating Markov process can often be
represented by a short sum of Kronecker products [25]. This property can then
be exploited when performing matrix-vector multiplications or constructing pre-
conditioners [19,20] to reduce the cost of iterative solvers significantly. Still, the
complexity scales linearly with the state space dimension.

The approach proposed in this paper can be viewed as a combination of the
two approaches above, performing (nonlinear) model reduction along with the
iterative solution. For this purpose, we exploit the fact that a vector containing
joint probabilities can be naturally rearranged into a tensor. This then allows
us to use established low-rank tensor approximation techniques [12]. Such an
approach has already been considered by Buchholz [6], using the so called CAN-
DECOMP/PARAFAC (CP) decomposition. As explained below, this decompo-
sition may not always be the best choice as it does not exploit the topology
of interactions. We therefore propose the use of matrix product states (MPS)
or, equivalently, tensor train (TT) decompositions. Note that MPS and related
low-rank tensor decompositions have already been used for simulating stochas-
tic systems [14,15]. The novelty of our contribution consists of explicitly tar-
geting the computation of the stationary distribution for a finite-dimensional
communicating Markov process, developing and comparing different algorithmic
approaches.

The rest of this work is organized as follows. In Section 2, we will introduce
the low-rank tensor decompositions that will subsequently, in Section 3, be used
to develop efficient algorithms for computing stationary distributions. Section 4
compares the performance of these algorithms for two popular examples.

2 Low-Rank Decompositions of Tensors

In this section, we discuss low-rank decompositions for compressing vectors.When
considering, for example, a network of d communicating finite state Markov pro-
cesses, the vector π containing the stationary distribution has length n1n2 · · ·nd,
where nμ denotes the number of states in the μth process for μ = 1, . . . , d. Quite
naturally, the entries of this vector can be rearranged into an n1 × · · · × nd array,
defining a dth order tensor X ∈ Rn1×···×nd . The entries of X are denoted by

Xi1,i2,...,id , 1 ≤ iμ ≤ nμ, μ = 1, . . . , d.

The opposite operation is denoted by vec(X ), which stacks the entries of X back
into a long vector, so that the indices of X are sorted in lexicographical order.

For d = 2, X becomes a matrix and there is a unique notion of rank, which can
be computed by the singular value decomposition (SVD) [11]. The extension of
this concept to d > 2 is by no means unique, and several different notions of low
rank decompositions for tensors have been developed; see [16] for an overview.
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The CP decomposition takes the form

vec(X ) =
R∑

r=1

u(1)r ⊗ u(2)r ⊗ · · · ⊗ u(d)r =
R∑

r=1

d⊗
μ=1

u(μ)r , (1)

where each u
(μ)
r is a vector of length nμ, and ⊗ denotes the usual Kronecker

product. The tensor rank of X is the smallest R admitting such a decomposition.
The individual entries of (1) are given by

Xi1,i2,...,id =

R∑
r=1

u
(1)
r,i1
u
(2)
r,i2

· · ·u(d)r,id
, 1 ≤ iμ ≤ nμ, μ = 1, . . . , d.

This reveals that tensors of rank R = 1 are closely related to the concept of
product form solutions.

The approximation of stationary distributions with tensors of tensor rank
R > 1 has been proposed by Buchholz [6], using a combination of greedy low-rank
and alternating optimization schemes. Despite certain theoretical drawbacks [16],
the CP decomposition has been observed to perform fairly well in practice. On
the other hand, this decomposition aims at a simultaneous separation of all d
processes. This ignores the topology of interactions between processes and may
result in relatively high ranks.

2.1 TT Decomposition / Matrix Product States

Low-rank decompositions that benefit from the locality of interactions are well
established in computational physics, in particular for simulating quantum sys-
tems [28,30]. A matrix product state (MPS) takes the form

Xi1,...,id = G1(i1) ·G2(i2) · · ·Gd(id), Gμ(iμ) ∈ Rrμ−1×rμ , (2)

where r0 = rd = 1. In the numerical analysis community, this decomposition
was proposed in [22,24] and termed tensor train (TT) decomposition. During
the last few years, MPS/TT have been used in a wide range of applications;
see [12] for a literature survey.

To give a concrete example, consider a vector of the form vec(X ) = x(1)⊗y(1)⊗
y(1)⊗y(1)+y(2)⊗x(2)⊗y(2)⊗y(2)+y(3)⊗y(3)⊗x(3)⊗y(3)+y(4)⊗y(4)⊗y(4)⊗x(4)
for arbitrary vectors x(μ), y(μ) ∈ Rn. The coefficients in the decomposition (2)
of X are then given by

G1(i1) =
[
x(1)(i1) y

(1)(i1)
]
∈ R1×2, G2(i2) =

[
y(2)(i2) 0

x(2)(i2) y
(2)(i2)

]
∈ R2×2,

G3(i3) =

[
y(3)(i3) 0

x(3)(i3) y
(3)(i3)

]
∈ R2×2, G4(i4) =

[
y(4)(i4)

x(4)(i4)

]
∈ R2×1.

The TT decomposition (2) is closely connected to certain matricizations of
X . Let X(1,...,μ) denote the (n1 · · ·nμ) × (nμ+1 · · ·nd) matrix obtained by re-
shaping the entries of X such that the indices (i1, . . . , iμ) become row indices



28 D. Kressner and F. Macedo

and (iμ+1, . . . , id) become column indices, sorted, again, in lexicographical or-
der. This operation has an important interpretation for a network of d stochastic
automata: Merging the automata 1, . . . , μ into one subsystem and the automata
μ+1, . . . , d into another subsystem yields a network with only two (aggregated)
automata, see Figure 1. The tensor corresponding to this network has order 2

Fig. 1. Network of 4 interacting automata. The aggregation of automata into two
disjoint subsystems (indicated by the dashed lines) corresponds to a matricization of
the tensor.

and coincides with the matrix X(1,...,μ). The following result is well known; we
include its proof to illustrate the use of matricizations.

Lemma 1. Given a TT decomposition (2), the matricization X(1,...,μ) of X
satisfies rank

(
X(1,...,μ)

)
≤ rμ for every μ = 1, . . . , d.

Proof. Let us define the so called interface matrices

G≤μ =
[
G1(i1) · · ·Gμ(iμ)

]
∈ R(n1···nμ)×rμ

G≥μ+1 =
[
Gμ+1(iμ+1) · · ·Gd(id)]

T ∈ R(nμ+1···nd)×rμ
(3)

Then, by definition (2), we have X(1,...,μ) = G≤μG
T
≥μ+1, which implies the

statement of the lemma since each of the factors has only rμ columns. ��

Motivated by Lemma 1, the tuple
(
rank

(
X(1,...,μ)

))
μ=1,...,d−1

is called the TT

rank of X . Following the proof of Lemma 1, successive low-rank factorizations
can be used to compute the TT decomposition (2) of a given tensor with TT
rank r = (r1, . . . , rd−1). More importantly, by using truncated SVD, we can
truncate any tensor X to a tensor Xr of rank r verifying

‖X − Xr‖22 ≤
d−1∑
μ=1

nμ∑
j=rμ+1

σj
(
X(1,...,μ)

)2
, (4)

where the 2-norm of a tensor is defined via its vectorization and σj(·) denotes
the jth largest singular value of a matrix. In our algorithms, we will use a related
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procedure described in [22] to truncate a tensor in TT decomposition to lower TT
rank. Properly implemented, this procedure takes O(dNR3) operations, where
R and N are upper bounds on the TT ranks and the sizes of the tensor X ,
respectively.

2.2 Example

One fundamental assumption in all low-rank techniques is that the data (in our
case, the stationary probability distribution) can actually be well approximated
by a low-rank tensor. According to (4), this can be quantified by considering the
singular values of the matricizations – good accuracy can only be expected when
these singular values decay sufficiently fast.
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Fig. 2. Singular values of X(1,...,μ) for the stationary distribution of the large overflow
model, for d = 4 and nμ = 20 (left plot) as well as d = 6 and nμ = 6 (right plot).
Each graph shows the singular values of the corresponding matricization sorted in
non-increasing order.

Figure 2 displays the singular values for the relevant matricizations of two
instances of the large overflow model, one of the queuing networks studied in
Section 4. Note that only the first half of the matricizations are considered, as
the singular values of the second half display similar behavior. It turns out that
the singular values have a very fast decay, showing that this model can be well
approximated with very low TT ranks.

2.3 Operator TT Decomposition / Matrix Product Operator

Our algorithms require the repeated application of the transition matrix Q ∈
R(n1···nd)×(n1···nd) to a vector in TT decomposition. It is therefore important
to represent Q in a form that allows to perform this operation efficiently. In
principle, a sum of T Kronecker products

Q =
T∑

i=1

d⊗
μ=1

Q(i)
μ (5)



30 D. Kressner and F. Macedo

would be suitable for this purpose. However, the application of such a Q will
increase all TT ranks by the factor T . Taking into account that low TT ranks are
decisive to attain efficiency, we prefer to work with a more suitable representation
of Q.

An operator TT decomposition, also called matrix product operator (MPO),
takes the form

Q(i1,...,id),(j1,...,jd) = A1(i1, j1) · A2(i2, j2) · · ·Ad(id, jd), (6)

where Aμ(iμ, jμ) ∈ Rtμ−1×tμ , and t0 = td = 1. This is simply the TT decompo-
sition (2) applied to vec(Q), merging each index pair (iμ, jμ) in lexicographical

order into a single index ranging from 1 to n2μ. The tensor X̃ resulting from a

matrix-vector product with Q, vec(X̃ ) = QT vec(X ), has a simple TT decom-

position. The updated cores G̃μ are given by

G̃μ(iμ) =

nμ∑
jμ=1

Aμ(jμ, iμ) ⊗Gμ(jμ) ∈ Rrμ−1tμ−1×rμtμ , iμ = 1, . . . , nμ, (7)

which shows that the TT ranks multiply.
The advantage of (6) over (5) is that the ranks tμ are often much lower

than T , especially in the case of pairwise neighbor interactions. To see this,
let us consider a typical example. The transition rate matrix has the general
representation Q = QL + QI , with QL representing local transitions and QI

representing interactions. Note that these matrices are never explicitly formed.
The local part always takes the form

QL =

d∑
μ=1

In1 ⊗ · · · ⊗ Inμ−1 ⊗ Lμ ⊗ Inμ+1 ⊗ · · · ⊗ Ind
,

where Lμ ∈ Rnμ×nμ contains the local transitions in the μth system and Inμ

denotes the identity matrix of size nμ. For the large overflow model considered
in Section 4.1, Lμ contains arrival and departure rates. In this example, the
matrix QI is given by∑
1≤μ1<μ2≤d

Id ⊗ · · · ⊗ Iμ2+1 ⊗Bμ2 ⊗Cμ2−1 ⊗ · · · ⊗Cμ1+1 ⊗Dμ1 ⊗ Iμ1−1 ⊗ · · · ⊗ I1

for some matrices Bμ, Cμ, Dμ ∈ Rnμ×nμ directly obtained from the description
of the model. Hence, the CP-like decomposition (5) of the operator Q requires

T = d(d+1)
2 terms. On the other hand, by direct calculation, it can be shown

that Q admits an operator TT decomposition (6) with the cores

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

⎡⎣ Id(id, jd)Dd(id, jd)
Ld(id, jd)

⎤⎦ ,
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and

Aμ(iμ, jμ) =

⎡⎣Iμ(iμ, jμ) 0 0
Cμ(iμ, jμ) Bμ(iμ, jμ) 0
Lμ(iμ, jμ) Dμ(iμ, jμ) Iμ(iμ, jμ)

⎤⎦ , μ = 2, . . . , d− 1.

In particular, the corresponding TT ranks tμ are 3, for any value of d.

3 Low-Rank Algorithms

In terms of the transition rate matrix Q, the computation of the stationary
distribution x requires the solution of the problem

QTx = 0, eTx = 1, (8)

where e is the vector of all ones. Clearly, a solution of (8) also solves the equiv-
alent constrained least-squares problem

min
x

{‖QTx‖22 : eTx = 1}. (9)

Remark 1. For an irreducible ergodic Markov Chain, each of the problems (8)
and (9) admits a unique solution [26, Ch. 4]. Reducible Markov Chains appear
quite frequently, e.g., this is the case for the Kanban control model considered in
Section 4.2. In this example, the states are combinations from 0 to the maximum
capacity of the queue for all types of customers. Some states are not well-defined
due to restrictions on the total number of customers. To address this, one can
eliminate combinations not verifying the restriction by ordering and filtering the
states in a specific way described in [5].

3.1 Truncated Power Method

A time discretization with step size Δt > 0 results in the matrix

P = I +ΔtQ,

and (8) becomes equivalent to the eigenvalue problem

PTx = x, eTx = 1. (10)

As explained in [29, Ch. 1],Δt > 0 needs to be chosen sufficiently small to ensure
that P is a non-periodic stochastic matrix. More specifically, it is required that
0 < Δt < |qii|−1 holds for every diagonal entry of Q. In our experiments, we
chose Δt = 0.9999×(maxi |qii|)−1. Note that Q is only given implicitly, in terms
of the low-rank Kronecker representations (5) or (6) and it may therefore not
be feasible to evaluate all diagonal entries of Q. In such cases, we use an upper
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bound on |qii| instead. For example, when a Kronecker product representation
of the form (5) is available, an inexpensive upper bound is given by

d∏
μ=1

max
i=1,...,nμ

∣∣[Q(1)
μ

]
ii

∣∣+ · · · +
d∏

μ=1

max
i=1,...,nμ

∣∣[Q(T )
μ

]
ii

∣∣.
Originally proposed in [3], in combination with the CP decomposition, the

truncated power method is probably the simplest low-rank tensor method for
solving the eigenvalue problem (10). Starting with a random vector x0 of rank
1, the jth iteration consists of computing

x̃j+1 = trunc
(
xj + trunc

(
ΔtQTxj

))
, xj+1 = x̃j+1/(e

T x̃j+1).

Note that all iterates xj are represented in terms of their TT decomposition.
Since both the application of Q and the addition of two tensors increase the TT
ranks, it is mandatory to repeatedly use the operation trunc, which truncates the
tensor back to lower TT ranks within a specified tolerance; see also Section 2.1.
This truncation destroys the property eT x̃j+1 = 1, which would otherwise be
preserved by the power method. The required inner product eT x̃j+1 to restore
this normalization is inexpensive since e corresponds to a tensor of rank 1 [22].

3.2 Alternating Least-Squares (ALS)

A rather different approach consists of constraining the optimization problem (8)
further to the set Mr of tensors having fixed TT ranks r = (r1, . . . , rμ−1):

min
x∈Mr

{‖QTx‖22 : eTx = 1}. (11)

Due to the nonlinear nature of Mr, the solution of this optimization problem is
by no means simple. On the other hand, each individual core Gμ(·) enters the
TT decomposition (2) linearly and therefore the optimization with respect to
a single core (while keeping all other cores fixed) should pose no problem. To
discuss the resulting alternating least-squares (ALS) method, we require some
additional notation.

Recalling the definition (3) of interface matrices for a given TT decomposition,
let

G�=μ = G≤μ−1 ⊗ Inμ ⊗ G≥μ+1.

Then

x = G�=μ · gμ, where gμ = vec
([
Gμ(1), . . . , Gμ(nμ)

])
∈ Rnμrμ−1rμ .

We additionally assume that the columns of G≤μ−1 and G≥μ+1 are orthonor-
mal, which can always be achieved by the orthogonalization procedure described
in [22]. In turn, the optimization of the μth core in ALS is performed by mini-
mizing

‖QTx‖22 =
∥∥QT

(
G�=μ · gμ

)∥∥2
2
= gT

μ

(
GT

�=μQQTG�=μ

)
gμ
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among all gμ satisfying eTG�=μgμ = (GT
�=μe)

Tgμ = 1. This problem can be
addressed by solving the linear system[

GT
�=μQQTG�=μ ẽ

ẽT 0

] [
gμ

λ

]
=

[
0
1

]
(12)

where ẽ = GT
�=μe is computed by performing contractions.

After (12) having been solved, the μth core of x is updated with gμ. The ALS
method continues with a left-orthonormalization of this core, followed by the
optimization of the (μ + 1)th core. A half sweep of ALS consists of processing
all cores from the left to the right until reaching μ = d. Similarly, the second
half sweep of ALS consists of processing all cores from the right to the left until
reaching μ = 1. Two subsequent half sweeps constitute a full sweep of ALS.

Remark 2. For small ranks, the reduced problem (12) is solved by explicitly
forming the matrix L = GT

�=μQQTG�=μ of size nμrμ−1rμ and utilizing a di-
rect solver. When this becomes infeasible due to large TT ranks, we should
resort to an iterative solver. As explained in [17, Sec. 3.3] the matrix L can
be represented by a short sum of Kronecker products which greatly speeds up
matrix-vector multiplications with L. Moreover, by a standard manipulation [21,
Ch. 16], the symmetric indefinite linear system (12) can be transformed into a
symmetric positive definite linear system. This allows us to apply the conjugate
gradient (CG) method to (12). In our experiments, we sometimes observed the
CG method to suffer from slow convergence. However, the construction of effec-
tive preconditioners to accelerate convergence for such reduced problems appears
to be a rather challenging task.

3.3 Local Enrichment with Residuals

An obvious drawback of ALS is that all TT ranks of x need to be chosen a
priori. This can be addressed by starting with very low ranks, say rμ ≡ 1,
and subsequently increasing the ranks by enriching the cores with additional
information. For the optimization problem (11), we can mimic gradient descent
by incorporating information from the residual QTx. Such an approach has been
suggested by White [31] for eigenvalue problems, and extended to linear systems
by Dolgov and Savostyanov [7,8].

As explained in Section 2.3, the tensor corresponding to QTx is again in TT
decomposition, with the updated cores G̃μ(·) defined in (7). The basic idea of

enrichment is to augment the μth core of x with G̃μ(·). However, augmenting all
cores in each microstep of ALS would increase the TT ranks way too quickly and
result in an inefficient algorithm. (Note that one microstep corresponds to the
optimization of one core in the TT decomposition.) To avoid this, this procedure
is modified as follows:

1. Before the enrichment, the residual is truncated to low TT ranks, within a
specified accuracy.
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2. In the μth microstep of the first half sweep, only the cores Gμ(·) and Gμ+1(·)
are augmented. In the μth microstep of the second half sweep, only the cores
Gμ(·) and Gμ−1(·) are augmented. This local enrichment benefits the next
microstep while it avoids that all TT ranks increase simultaneously. The
rank of the enrichment is fixed to 3.

We refrain from a more detailed discussion of these points and refer to [8,17]
for more details. Following [8], the resulting variant of ALS that allows for rank
adaptation is called AMEn.

4 Numerical Experiments

We have implemented all methods described in Section 3 – truncated power
method, ALS, and AMEn – in Matlab version 2013b. These methods are
based on the TT decomposition and we make use of functionality from the
TT-Toolbox [23]. For reference, we have also implemented the ALS method for
the CP decomposition [6], based on functionality from the tensor toolbox [1].
To distinguish between the two different ALS methods, we will denote them by
ALS-TT and ALS-CP.

We nearly always used a direct solver for addressing the reduced problems (12)
in ALS-TT and AMEn. Only for one example, we applied the CG method with
an adaptive stopping criterion. The CG method is terminated when the residual
norm has been decreased by a factor of 100 relative to the current residual norm
or when the number of iterations exceeds 1000, which was frequently the case.

The truncated power method and AMEn rely on repeated low-rank trunca-
tions to prevent excessive rank growth. If not stated otherwise, the tolerance for
performing this truncation is set adaptively to ‖r‖2 for the power method and
to ‖r‖2/100 for AMEn. The TT ranks used in ALS-TT are all set to the same
value, the maximum of the TT ranks of the approximate solution produced by
AMEn. In ALS-CP, we extensively tried different tensor ranks, choosing the one
exhibiting the best performance.

All computations were performed on a 12-core Intel Xeon CPU X5675 3.07
GHz with 192 GB RAM, under 64-Bit Linux version 2.6.32.

4.1 Large Overflow Model

This model was used to test ALS-CP in [6]. It consists of a queuing network where
customers can arrive in each of d = 6 ordered queues according to independent
Poisson processes and, in case the queue of arrival is full, they get blocked and try
to enter the next one, until finding one that is not full. If all queues turn out to be
full, the customer gets lost. The corresponding interactions are thus associated
with functional transitions, where the arrival rates of the queues depend on
the state of the previous ones (being full or not). Services follow an exponential
distribution with mean 1. The arrival rates for queues 1 to 6 are given by 1.2, 1.1,
1.0, 0.9, 0.8 and 0.7, respectively. Choosing a maximum capacity of 10 for each
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queue leads to a total of 116 = 1771561 states. As the capacity of each system
is not infinite and the arrival rates depend on the states of other queues, this
model does not constitute a Jackson network [13] and therefore the product-form
approach cannot be applied.

Table 1. Obtained execution times (in seconds) and corresponding ranks for the large
overflow model with respect to different accuracies

Accuracy 1× 10−5 4.6× 10−6 2.2× 10−6 1× 10−6

time rank time rank time rank time rank
ALS-CP 169.0 120 430.8 180 1330.3 240 3341.4 300

Power method 35.9 12.03 47.5 13.67 61.6 15.09 78.8 17.32

ALS-TT 10.7 13.92 11.4 13.92 22.8 15.67 35.9 16.84

AMEn 4.9 12.96 4.9 12.96 9.3 14.85 12.5 15.85

AMEn (CG) 266.5 11.65 – – –

We have applied ALS-CP to the large overflow model for tensor ranks ranging
from 120 to 300. The obtained accuracy (in terms of the residual norm) is dis-
played in the first row of Table 1. We then iterate the truncated power method,
ALS-TT, and AMEn until the same accuracy is reached. The obtained results
are shown in rows 4–7 of Table 1. For TT decompositions, the rank refers to
the effective rank reff . Following [27], reff is determined as the solution of the
equation

memory(r1, . . . , rd−1) = memory(reff , . . . , reff),

where memory(r1, . . . , rd−1) is the amount of storage needed by a TT decompo-
sition with TT ranks r1, . . . , rd−1. All algorithms attained the target accuracy
except for AMEn (CG), which refers to AMEn with the reduced problems solved
by the CG method. In this case, convergence stagnated and AMEn was stopped
after 10 full sweeps, reaching an accuracy of 3.622 × 10−5. Due to the lack of
an effective preconditioner for CG, the reduced problems could not be solved to
sufficient accuracy. This renders the use of the CG method unattractive and we
therefore do not consider it in the following experiments.

The execution times of ALS-CP are much higher compared to the times of the
TT-based algorithms. This is mainly due to the fact that the number of terms

in the Kronecker product representation (5) of the operator is T = d(d+1)
2 = 21,

while the TT ranks of the operator TT decomposition (6) are 3, see Section 2.3.
Among the TT-based algorithms, AMEn is clearly the best and the power

method appears to offer the poorest performance. This picture changes, how-
ever, when demanding higher accuracies. This results in higher TT ranks and
consequently makes the solution of the reduced problems in AMEn and ALS-TT
more expensive. For example, when demanding an accuracy of 10−8, the trun-
cated power method requires 275 seconds, ALS-TT 1120 seconds, and AMEn
367 seconds.

To give some additional indication on the accuracy of the different methods,
Table 1 displays two quantities that can be easily extracted from the approximate
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solution: (1) the mean population of the last queue, and (2) the probability that
the last queue is full. The reference values for these two quantities given in [6] are
(1) 3.949 and (2) 7.66 × 10−2, respectively. Note that the inaccuracy of AMEn
(CG) is due to convergence failures of the CG method.

Table 2. Mean population (’mean’) and probability of being full (’prob’) for the last
queue with respect to the different accuracies used in Table 1

Accuracy 1× 10−5 4.6× 10−6 2.2 × 10−6 1× 10−6

mean prob mean prob mean prob mean prob
ALS-CP 3.951 7.64×10−2 3.956 7.68×10−2 3.950 7.67×10−2 3.950 7.66×10−2

Power method 3.854 7.33×10−2 3.904 7.51×10−2 3.927 7.59×10−2 3.939 7.63×10−2

ALS-TT 3.887 7.44×10−2 3.879 7.43×10−2 3.912 7.56×10−2 3.936 7.62×10−2

AMEn 3.879 7.42×10−2 3.879 7.42×10−2 3.939 7.63×10−2 3.939 7.63×10−2

AMEn (CG) 2.990 3.87×10−2 – – –
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Fig. 3. Evolution of the residual norm with respect to the number of microsteps and
with respect to the accumulated execution time (in seconds) for ALS-TT and AMEn
applied to the large overflow model

The left plot of Figure 3 shows how the residual norm evolves for AMEn and
ALS-TT during the microsteps. Not surprisingly, ALS-TT converges faster as
it uses the maximal TT ranks right from the first sweep. This picture changes
significantly when considering the evolution with respect to the accumulated
execution time in the right plot of Figure 3. AMEn operates with much smaller
TT ranks during the first sweeps, making them less expensive and resulting in
a smaller total execution time despite the fact that the total number of sweeps
is higher.
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Reduced arrival rates. We now divide the arrival rates by 2. This significantly
decreases the execution times. To attain an accuracy of about 10−8, the trun-
cated power method now requires only 14 seconds, ALS-TT requires 11 seconds,
and AMEn 4.9 seconds. With 32 seconds, ALS-CP is still the slowest method.

Exploring AMEn. Since the experiments above clearly reveal the advantages of
AMEn, we investigate its performance for high-dimensional problems in more
detail. For this purpose, we reduce the maximum capacity to 2 customers in each
queue, that is nμ ≡ 3, and target an accuracy of 10−5. We vary the number of
queues from d = 7 to d = 24. Service rates are 1 for all queues while the arrival
rates have been adjusted to 12−0.1×i

8 for the ith queue. To avoid convergence
problems, the tolerance for performing low-rank truncations has been decreased
to ‖r‖2/1000.
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Fig. 4. Execution time in seconds (left plot) and effective rank (right plot) for AMEn
applied to the large overflow model with d = 7, 8, . . . , 24 queues

Figure 4 reveals how the execution time and the effective TT rank grow as d
increases. The TT rank appears to grow less than linearly, while the execution
time seems to grow proportionally with d4. This is due to the need for solving
the reduced problems, which require O(r6) operations when using a direct solver.
Note that the largest Markov chain is associated with a total of 324 ≈ 2.82×1011

states, which is clearly infeasible for standard solvers. In contrast, AMEn requires
less than 2000 seconds to obtain a good approximation of the solution.

4.2 Kanban Control Model

We now consider the Kanban control model [5], where customers arrive in the
first queue, being then served in sequence until the last queue, leaving the net-
work afterwards. We assume an infinite source – there is automatically a new
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arrival when the first queue is not full. A customer that finishes the service and
experiences that the next queue is full needs to wait in the current queue.

We choose d = 12 queues, each with a maximum capacity of one customer.
Services follow an exponential distribution with mean 1. The time spent traveling
from one queue to the next is also exponential, with expected value 1

10 . For the
queues 2 to 11, one needs to distinguish the type of customer (already served,
waiting to move to the next queue, or no customer), so that there are 3 possible
states. We therefore have, in total, 2 × 310 × 2 = 236196 states. The resulting
matrix operator has TT rank 4 and CP rank 3d − 2 = 34. The tolerance for
performing low-rank truncations is again decreased to ‖r‖2/1000 for AMEn.

Table 3. Obtained execution times (in seconds) and corresponding ranks for the Kan-
ban control model

Accuracy time rank

ALS-CP 2× 10−3 3024.7 200

Power method 1× 10−5 314.5 20.95

ALS-TT 1× 10−5 624.9 39.51

AMEn 1× 10−5 200.8 28.02

Table 3 shows that the execution times for the Kanban control model are
clearly higher than the ones for the large overflow model, see Table 1, despite
the fact that there is a smaller total number of states. For ALS-CP, we needed
to stop the algorithm before reaching the target accuracy of 10−5, to avoid
an excessive consumption of computational resources. In contrast to the large
overflowmodel, this model features interactions between non-consecutive queues,
as a customer has to go through all queues before leaving the system. This non-
neighbor interaction can be expected to lead to the observed higher TT ranks.
The largest TT rank of the approximate solution for this model is 47, while the
TT ranks for the large overflow model never exceed 30, even for d = 24.

5 Conclusions and Future Work

We have proposed three algorithms for approximating stationary distributions
by low-rank TT decompositions: the truncated power method, ALS and AMEn.
Preliminary numerical experiments with stochastic automata networks that fea-
ture a fairly simple topology of interactions demonstrate that these methods,
in particular AMEn, can perform remarkably well for very high-dimensional
problems. They clearly outperform an existing approach based on CP decompo-
sitions.

Having obtained approximate stationary distributions in low-rank TT de-
composition, it is comparably cheap to compute statistics of the solution. For
example, the marginal probabilities of a particular queue are obtained by par-
tial contractions with the vector of all ones, involving a cost that is negligible
compared to the rest of the computation.
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A bottleneck of ALS-TT and AMEn is that they use a direct solver for the
reduced problems, which becomes rather expensive for larger TT ranks. Our
future work will therefore focus on the further development of preconditioned
iterative methods to address this issue. Being able to deal with larger TT ranks
will then also allow us to study networks with a more complicated topology of
interactions.

While our algorithms are designed to guarantee that the entries of the ap-
proximate solution sum up to one, the preservation of nonnegativity is another
crucial aspect that remains to be addressed.

Acknowledgments. We thank Peter Buchholz for helpful discussions and the
reviewers for their constructive feedback.
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Abstract. We present a novel approach to compute reachable sets of
dynamical systems with uncertain initial conditions or parameters, lever-
aging state-of-the-art statistical techniques. From a small set of samples
of the true reachable function of the system, expressed as a function of ini-
tial conditions or parameters, we emulate such function using a Bayesian
method based on Gaussian Processes. Uncertainty in the reconstruction
is reflected in confidence bounds which, when combined with template
polyhedra ad optimised, allow us to bound the reachable set with a given
statistical confidence. We show how this method works straightforwardly
also to do reachability computations for uncertain stochastic models.

1 Introduction

Reachability computation for dynamical systems is a core topic in theoretical
computer science, with important implications for the analysis and control of
applications such as embedded systems or cyber-physical systems [17]. In most
applications, dynamical systems are described by a set of (nonlinear) differential
equations or differential inclusions. Reachability computation for this class of
systems is intimately connected with understanding the impact of uncertainty
on the dynamics: the interest normally lies in understanding how uncertainty on
the initial conditions, or on model parameters, or on the dynamics itself (e.g.
by external bounded perturbations) propagates during the time evolution of the
system. Usually, one is interested in computing if the system remains stable
even in presence of uncertainty, or how the dynamics is modified. Uncertainty is
treated in this context non-deterministically, i.e. in the least committal way, as
no assumption is made on the distribution of initial conditions or of parameter
values. This problem is relevant for many complex systems in areas as diverse
as systems biology, economics, computer networks. All those systems show a
non-linear dynamics depending on parameters which are seldom known exactly,
hence uncertainty is the norm rather than the exception.
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There are many approaches in the literature that tackle the reachability prob-
lem for uncertain dynamical systems, which can be roughly divided in two
classes: exact over-approximation methods and simulation-based methods [26].
The first class of methods manipulates directly sets of states, finitely represented,
for instance, as polytopes [17], ellipsoids [24], or zonotopes [22]. The dynamics
of the system is lifted at the set level, so that one computes the evolution of the
reachable set under the action of the dynamics. As exact computations may be
too expensive or unfeasible, one is usually satisfied with an over-approximation
of the real reachable set, which is formally guaranteed to contain all reachable
points. Most of the methods of this class deal with linear systems, which are
common in many engineering applications. For this class of systems, efficient
methods exist [22], scaling up to several hundred dimensions, which are imple-
mented in tools like SpaceEx [20]. Over-approximation methods for non-linear
systems, instead, are much less developed, mainly because the problem becomes
much more difficult. Here we recall hybridization [15], which is based on the
idea of splitting the state space into many regions, and linearising the dynamics
in each of them, with formal guarantees on the introduced error. Other meth-
ods work for restricted classes of non-linear systems, like multi-affine [4] and
polynomial systems [14,29]. However, all these methods suffer from the curse of
dimensionality.

An alternative approach is offered by simulation methods, which simulate
some trajectories of the system, for fixed parameter values and initial conditions,
and try to infer the reachable set from a finite number of them. An approach
based on bisimulation metrics is [23], while [19] uses a barrier certificate appo-
rach. The method of [18], instead, leverages the sensitivity of the system with
respect to initial conditions to (approximatively) compute how a covering of the
set of uncertain initial conditions is enlarged or reduced during the dynamics,
obtaining a covering of the reachable set at a given time T . Other methods rely
on the law of large numbers to give asymptotic guarantees; for example, the
procedure of [5,13,16] constructs an under-approximation of the reachable set,
relying on a Monte-Carlo sampling method which is guaranteed to cover the
whole reachable set as the number of sampled points goes to infinity.

The method we propose in this paper is also simulation-based and it is not
exact. Our idea, however, is to tackle the problem from a statistical perspec-
tive, trying to statistically control the error introduced by considering only a
finite number of sample points belonging to the reachable set. To this end, we
leverage recent non-parametric Bayesian methods [28] developed in the context
of machine learning to treat the error in a sound way. Hence, we will produce
a statistical over-approximation: the true reachable set will be contained in the
output set of our procedure with a given confidence.

In general, we advocate the use of statistical methods in this context: machine
learning is concerned with reconstructing plausible models/ functions from few
data points, hence it is natural that techniques developed in this context can be
used to infer the reachable set from few simulations. More specifically, we will
consider Gaussian Process emulation [28], which has been previously used as a
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tool for sensitivity analysis of complex simulated models [27]. The appeal of these
methods lies in their ability to quickly provide good, statistically sound, and
analytically computable approximations of functions that can only be observed,
possibly with noise, in few points. To our knowledge, this is the first work in
which these methods are used to compute reachable sets of dynamical systems.

However, our approach has further advantages. First of all, it features a sound
treatment of noise. This means that the samples used to construct our approxi-
mation do not have to be exact observations of the true reachability function (up
to numerical error), but they can be noisy estimates. A classical scenario when
this happens is if we are interested in understanding the impact of uncertainty
in stochastic models, for instance on their average or on any other statistics. Our
approach applies tout-court also to this class of problems, for stochastic processes
as diverse as Continuous Time Markov Chains or Stochastic Differential Equa-
tions [21]. Furthermore, the treatment of noise allows us to keep consistently
into account the numerical error incurred during simulation. Third, this method
does not make any assumption about the nature of the dynamics: it works for
arbitrary (smooth) non-linear systems. We stress that our approach applied to
stochastic systems estimates the impact of uncertainty on the average or other
statistics, but it does not compute the probability of reaching a certain set of
states as a function of model parameters, although similar ideas can be used for
this problem, see [9]. In this respect, this is work is different from e.g. [10], which
uses bayesian statistics to compute the reachability probability.

The paper is organised as follows: in Section 2, we formalise the problem
we are tackling and introduce the SIR model from epidemiology [1], which will
serve as the running example throughout the paper. In Section 3, we discuss our
method from a high-level perspective, postponing the technical details to Section
4. We then present some experimental results on the epidemic spreading model
in Section 5, comparing the performance of our approach with the state-of-the-
art. We conclude the paper in Section 6 by discussing the merits and limitations
of the proposed method, as well as a number of possible extensions to the work.

2 Problem Definition

We consider a deterministic (dynamical) system with values in Rn:

x : R≥0 ×D ×D0 → Rn, x(t,p,x0) ∈ Rn.

The dynamics of x depends on a tuple of d parameters p ∈ D and on a tuple
of initial conditions x0 ∈ D0. Here D is a compact subset of Rdp , usually a

hyper-rectangle of the form D =
∏dp

i=1[pi, p
i], while D0 is a compact subset of

Rdn , where dn ≤ n. The idea is that D and D0 contain only the parameters and
initial conditions that we consider in the uncertainty analysis.

Furthermore, we assume to have a simulation algorithm which can provide
us with an observation yi of the process x at specific points zi = (ti,pi,xi

0) ∈
R≥0 ×D ×D0. Such observations can be noisy, i.e. we assume

yi = x(ti,pi,xi
0) + εi,



44 L. Bortolussi and G. Sanguinetti

where εi is a multivariate Gaussian random variable with mean zero and covari-
ance matrix C = σiIn, with σi being a vector of input-dependent standard
deviations. This is a very general setting, which encompasses the two cases in
which we are interested:

1. x(t,p,x0) is the flow of a differential equation defined by the vector field
F (x, t,p) ∈ Rn, i.e. the solution of the initial value problem

d

dt
x(t,p,x0) = F (x(t,p,x0), t,p), x(0,p,x0) = x0.

In this case the observations yi are essentially noise free, being produced
by a numerical integration algorithm. However, we will set σi equal to the
absolute tolerance of the numerical integrator [11], so that we can keep nu-
merical imprecisions into account. In particular, we assume that this error
has a Gaussian distribution, which can therefore take larger values than
the absolute tolerance. This is a common assumption, which simplifies the
statistical treatment [27].

2. x(t,p,x0) is the average or another statistic (e.g. the variance, or a quan-
tile of the distribution) of a stochastic process X : R≥0 → Dist(Rn), like
a Continuous Time Markov Chain or a stochastic differential equation [21].
In this case, we assume that x has been estimated by a batch of N sim-
ulations, and we assume the error term εi to be the standard deviation of
the estimator, either computed analytically or by bootstrapping. Here the
central limit theorem guarantees the Gaussian assumption about the noise
to be approximately correct.

In this paper, we will consider two bounded variants of the reachability problem
for x(t,p,x0). We assume to have uncertainty in both (some) parameters and
(some) initial conditions. We fix a finite time horizon T > 0.

Reachability at time T : given noisy observations y1, . . . ,ym at points
z1 = (T,p1,x1

0), . . . , z
m = (T,pm,xm

0 ), compute a set R̂T such that the

set RT = {x(T,p,x0) | p ∈ D,x0 ∈ D0} is contained in R̂T . In this case,
the input space is D = {T } ×D ×D0 and has dimension d = dp + dn.

Reachability between times T1 and T2 ([T1, T2] ⊆ [0, T ], T1 < T2): given
noisy observations y1, . . . ,ym at points z1 = (t1,p

1,x1
0), . . . , z

m = (tm,p
m,

xm
0 ), with ti ∈ [T1, T2] ∀i, compute a set R̂[T1,T2] such that the setR[T1,T2] =

{x(t,p,x0) | t ∈ [T1, T2],p ∈ D,x0 ∈ D0} is contained in R̂[T1,T2]. In
this case, the input space is D = [T∞, T∈] × D × D′ and has dimension
d = dp + dn + 1.

More precisely, in this paper we will be concerned with a statistical variant of
the above reachability problem:

Definition 1 (Statistical Reachability). Given noisy observations y1,
. . . ,ym, compute a set R̂ that over-approximates (as tightly as possible) the
exact reachable set R with a given confidence level α.1

1 This means such that if we repeat the reachability algorithm, R is contained in R̂
approximatively α percent of the times.
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2.1 A Working Example: Epidemics in a LAN Computer Network

We consider a simple variation of the classical SIR infection model [1], in which
an initial population of N susceptible nodes can be infected either from outside
the network (e.g. by receiving an infected email message) or by the active spread
of the virus by infected computers in the network. Infected nodes can be patched,
and become immune to the worm for some time, after which they are susceptible
again (for instance, to a new version of the worm).

This system is modelled as a set of ODEs or as a population CTMC. In both
cases, the state space is described by a vector X of three variables, returning the
number of nodes that are in the susceptible (XS), infected (XI), and patched
state (XR). The dynamics can be described by a list of transitions, in the popu-
lation CTMC style (see e.g. [7]). Each transition is defined by an update vector
ν, indicating how each variable is modified, and by a rate function. From this
description, it is straightforward to construct a CTMC or an ODE [7].

External infection: νe = (−1, 1, 0), with rate function re(X) = keXS ;
Internal infection: νi = (−1, 1, 0), with rate function ri(X) = kiXSXI ;
Patching: νr = (0,−1, 1), with rate function rr(X) = krXI ;
Immunity loss: νe = (1, 0,−1), with rate function rs(X) = ksXR;

The vector field of the ODEs is obtained as F (x) =
∑
νjrj(x). In this case, we

can further rely on the conservation law xS + xI + xR = N to get rid of one
variable, obtaining{

d
dtxS = −kexS − kixSxI + ks(N − xS − xI)
d
dtxI = kexS + kixSxI − krxI

3 Statistical Computation of Reachability

We introduce now a high level overview of the approach to solve the statistical
reachability problem, postponing the presentation of the actual statistical tools
we are using to the next section. We will start by introducing few key concepts
and then discussing the algorithm to compute reachability. The method will turn
out to be the same for both the bounded reachability problems we discussed in
the previous section.

3.1 Bayesian Emulation and Optimisation

Bayesian emulation is a method to reconstruct a function f : D → R, given
some noisy observations of its values at a certain set of points. This approach is
similar to regression [6], but is based on assigning an a-priori distribution p(g) to
functions g of a properly chosen class F , which is assumed to approximate well
the real function we are observing. Given (noisy) observations y = y1, . . . ,ym

of function values at points Z = z1, . . . , zm, one can in principle compute
a posterior distribution on the class of functions F , p(g|Z,y) through Bayes
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theorem. In practice, this is seldom possible analytically, except in the important
case when the prior distribution over functions is a Gaussian Process (see Section
4.1).

While approximating an unknown input/ output relation is the domain of
regression, one is often interested in also optimizing the response function, as-
suming a smooth dependence on some tunable parameters. The availability of
a probability distribution over the response function offers considerable advan-
tages for optimisation, as it enables a principled trade-off between exploitation,
i.e. local search near high scoring input values, and exploration, i.e. selection of
new input points in areas where the function values is very uncertain. Bayesian
optimization refers to a class of algorithms that leverage these concepts for op-
timisation: at the core is the definition of an acquisition function, a rule which
dictates which new input points to query, considering the emulated function and
uncertainty. In Section 4.4 we discuss one such algorithm, which has recently
been shown to be provably globally convergent [30].

3.2 Templates

The second ingredient we need for our reachability algorithm are polytope tem-
plates, similarly to [12,29]. The idea is simply to consider a polytope defined
as Wz ≤ a, W a h × n matrix, i.e. as the intersection of h linear hyperplanes
of the form wjz ≤ a, where wj is the vector of coefficients of the normal to
the hyperplane (and the jth row of W ). The idea behind a polytope template
is that it defines a family of polytopes of Rd as a function of the coefficients a,
and the goal of the reachability algorithm becomes to find the optimal vector
a such that the polytope over-approximates the true reachable set as tightly as
possible. This can be rephrased as the following optimisation problem:

∀j = 1, . . . , h, aj = max
z∈D

{wjx(z)}.

Note that the matrix W can be interpreted as defining the linear observables
Wx(t,p,x0) of the dynamical system x. Templates can be chosen according to
different heuristics. For instance, in [12], the authors take the polytope defining
the convex hull of (a subset of) the sample points. In [29], instead, the authors
start from a polytope bounding the initial conditions and refine it dynamically
taking into account rotational effects of the vector field.

3.3 Reachability Algorithm

We consider a template polytope defined by thematrixW , and try to upper bound
as tightly as possible the linear observablesWx(t,p,x0). The function x(t,p,x0)
is unknown, and so are the h observables rj(t,p,x0) = wjx(t,p,x0). The basic
idea of our method is to emulate rj from (noisy) observationswjy

1, . . . ,wjy
m at

points z1, . . . , zm ∈ D. To compute the over-approximation of the reachable set,
instead of finding a tight upper-bound of the prediction function r̂j , we work with
the upper confidence bound r̂j(z)+ϕασr̂j (z) for a given confidence level α. From
a high level perspective, our algorithm works as follows:
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– Let W be a template polytope, z1, . . . , zm be the input points, y1, . . . ,ym

be the noisy observations of x(zi), and α be the confidence level.
– For each j = 1, . . . , h

1. Construct the emulation r̂j of wjx(z) and obtain its maximum ρ̂j (with
associated uncertainty σ̂ρ̂j ) via Bayesian optimisation.

2. Compute âj = ρ̂j +ϕασ̂ρ̂j with ϕα a constant chosen such that the true
maximum value is below âj with confidence α.

– The over-approximation R̂α with confidence α of the reachable set is the
polytope Wz ≤ â

We note here that the confidence level α is computed conditionally on the
Bayesian optimisation algorithm having obtained a true maximum. While (some)
Bayesian optimisation algorithms come with strong convergence guarantees,
these generally only imply convergence in probability (where the probability
of convergence can be tuned to be as close as desired to 1). Therefore, our algo-
rithm, as all statistical algorithms, only returns an approximation which is with
high probability correct.

4 Statistical Methods

We now explain in more detail the statistical tools that we use to construct
the emulation function and to solve the global optimisation problem. We first
introduce Gaussian Processes (GP) and GP-regression, then comment on the
(hyper)parameters of the GP kernel, and finally discuss a GP-based Bayesian
optimisation.

4.1 Gaussian Processes

Gaussian Processes (GPs) are a natural extension of the multivariate normal
distribution to infinite dimensional spaces of functions [28]. A GP is a probability
measure over the space of continuous functions (over a suitable input space D)
such that the random vector obtained by evaluating a sample function at any
finite set of points z1, . . . , zN ∈ D follows a multivariate normal distribution. A
GP is uniquely defined by its mean and covariance (or kernel) functions, denoted
by μ(z) and k(z, z′). By definition, we have that for every finite set of points

f ∼ GP(μ, k) ↔ f =
(
f(z1), . . . , f(zN )

)
∼ N (μ,K) (1)

where μ is the vector obtained evaluating the mean function μ at every point,
and K is the matrix obtained by evaluating the covariance function k at every
pair of points. The prior mean function is often taken to be identically zero (a
non-zero mean can be added post-hoc to the predictions w.l.o.g., cf Section 4.3).

The choice of covariance function is an important modelling decision, as it
essentially determines the type of functions which can be sampled from a GP
(more precisely, it can assign prior probability zero to large subsets of the space of
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continuous functions). In this paper, we consider the ARD Gaussian covariance
(ARD-G)

k(z, z′) = γ exp

[
−

n∑
i=1

(zi − z′i)
2

λ2i

]
. (2)

The main motivation for this choice is that sample functions from a GP with
ARD-G covariance are with probability one infinitely differentiable functions [9].
For more details, we refer the interested reader to [28].

GPs depend on a number of hyperparameters through their mean and co-
variance functions: the ARD-G covariance depends on the amplitude γ and a
lengthscale λi for each coordinate. For the mean, we will model it as a linear
combination of basis functions μ(x) = βTϕ(x), with the coefficients constitut-
ing additional hyperparameters.

4.2 GP Regression and Prediction

Suppose now that we are given a set of noisy observations y of the function value
at input values Z = z1, . . . , zN , distributed around an unknown true value f(z)
with spherical Gaussian noise of variance σ2(z). We are interested in determining
how these observations influence our belief over the function value at a further
input value z∗ where the function value is unobserved.

By using the basic rules of probability and matrix algebra, we have that the
predictive distribution at z∗ is again Gaussian with mean μ∗ and variance k∗:

μ∗ = k(z∗)K̂−1
N y (3)

k∗ = k(z∗, z∗) − k(z∗)K̂−1
N k(z∗)T . (4)

where k(z∗) =
(
k(z∗, z1), . . . , k(z∗, zN )

)
, and K̂N is the Gram matrix, obtained

by evaluating the covariance function at each pair of training points and adding
the diagonal matrix diag(σ2(z1), . . . , σ2(zN )). Notice that the first term on the
r.h.s of equation (4) is the prior variance at the new input point; therefore, we
see that the observations lead to a reduction of the uncertainty over the function
value at the new point. The variance however returns to the prior variance when
the new point becomes very far from the observation points.

Equation (3) warrants two important observations: first, as a function of the
new point z∗, μ∗ is a linear combination of a finite number of basis functions
k(z∗, z) centred at the observation points. Secondly, the posterior mean at a
fixed z∗ is a linear combination of the observed values, with weights determined
by the specific covariance function used. For the ARD-G covariance, input points
further from the new point z∗ are penalised exponentially, hence contribute less
to the predicted value.

4.3 Hyperparameters

GP emulation depends in a complex way on the hyperparameters. The length-
scales, in particular, play a delicate role, because they control the Lipschitz
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constants of the predictive function along each coordinate, and as such they
govern the roughness of the predictive function and the quality of the emula-
tion. Furthermore, amplitude is also crucial as it controls the magnitude of the
variance, and hence the quality and correctness of the over-approximation. In
order to automatically choose the value of hyperparameters, we can estimate
them from the set of samples.

Lengthscale Optimisation. In order to choose the lengthscales, we can treat
the estimation of hyperparameters as a model selection problem, which can be
tackled in a maximum-likelihood perspective by optimising the model evidence

p(y|Z,λ) =
∫
p(y|f̂ ,Z)p(f̂ |Z,λ)df̂ .

p(y|Z,λ) is the marginal likelihood of the observed data; its dependence on the
hyperparameters can be calculated analytically [28]; optimisation of the marginal
likelihood is then both fast and theoretically well founded. Optimisation of model
evidence is done relying on a simple global optimisation scheme, running sev-
eral times a Newton-Raphson local optimisation algorithm from random starting
points [11]. Experimentally, we found that the model evidence tends to behave
quite well, with a global optimum having a large basin of attraction, a phe-
nomenon often observed in practice [28], so that few runs of the optimisation
routine suffice.

Amplitude Optimisation. If we fix the lengthscales, then the amplitude and
the mean coefficients can be estimated in a fully Bayesian way, following the
approach of [27]. Assuming a (non-informative) normal inverse gamma prior on
the coefficients β and the amplitude γ, one obtains that the posterior GP-process
follows pointwise a t-student distribution with m− 2 degrees of freedom (where
m is the number of observation points), with mean m∗(z) in a generic point z
equal to

m∗(z) = h(z)β̂ + k(z)tK̂−1
N (y −Hβ̂),

and covariance equal to

k∗(z, z′) =α̂
[
k(z, z′) − k(z)tK̂−1

N k(z)+

(h(z)− k(z)tK̂−1
N H)(HtK̂−1

N H)(h(z′) − k(z′)tK̂−1
N H)t

]
,

where K̂N is the Gram matrix and k(z) is the kernel evaluated between the point
z and all the observation points (see Section 4.2), , Ht = (h(z1)

t, . . . ,h(zm)t)
is matrix of the basis function of the prior mean evaluated at observation points,
β̂ = V ∗(HtK̂−1

N y), V ∗ = (HtK̂−1
N H), and the predictive posterior amplitude γ̂

is equal to

γ̂ =
[
ytK̂−1

N y − β̂
t
(V ∗)−1β̂

]
/(m− 2).
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4.4 Adaptive Bayesian Optimisation

The main computational challenge behind the algorithm sketched in Section 3.3
is to find the upper confidence bound (UCB) for the maximum of the reachability
function. However, if the variance of the GP-emulation is large, this can result
in a very poor over-approximation. To refine the method, we would like to force
the UCB of the maximum to be as close as possible to the maximum of the real
function wix(z). Staten otherwise, we would like to reduce the variance to a
minimum around the true maximum, and control the variance in other regions
of the state space to guarantee that the maximum we have identified is close
to the true one. This suggests an adaptive sampling scheme, which is driven
by the information contained in the samples already collected. Indeed, this is
achieved by state-of-the-art Bayesian optimisation algorithms, which realise a
trade-off between exploration of the state space and exploitation of the search
around the more promising areas. This is achieved by observing that the new
regions to explore are those with high variance (as we have few information about
them), while the regions to exploit are those with high value of the predictive
function. This reflectes in an adaptive optimisation scheme of the UCB, which
provably converges to the global optimum of the true function [30]. The GP-UCB
optimisation algorithm works as follows:

– Sample an initial set of input points z1, . . . , zm with a good coverage of
the input space (e.g., from a regular grid or by Latin Hypercube Sampling
strategies [31]), and compute the (noisy) value of the function to optimise.

– Iterate until the convergence criterion is met:

1. Construct the GP emulator f̂ and its standard deviation σf̂ from the
current set of t input points.

2. Find zt+1 = argmaxz∈Df̂(z)+βtσf̂ (z) using e.g. a multi-start gradient-

based optimisation strategy [11].2

3. Compute the true function yt+1 at zt+1 and add this to the input points.

Convergence is usually declared when no improvement in the maximum value
is observed in few attempts. βt has to be taken as a logarithmically divergent
sequence of positive values to enforce convergence [30].

5 Experimental Results

Consider the computer network epidemics model discussed in Section 2.1, fixing
the number of nodes to N = 100. Model parameters are set to ke = 0.01,
ki = 0.1/N , kr = 0.05, ks = 0.005, and initial conditions to x0S = N , x0I = 0. We
will first focus on the differential equation model, and investigate two scenarios:

1. uncertainty in the internal infection parameter ki, with ki ∈ [0.05/N, 0.15/N ];

2 Practically, we evaluate the UCB function on a random grid, choose the best k
points, and run a local optimisation starting from these points.
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2. uncertainty in the initial conditions, assuming (x0S , x
0
I) ∈ [0.8 ·N, 0.9 ·N ] ×

[0, 0.1 ·N ]

In case 1, we will investigate the reachability problem in [0, T ] fixing T = 300, a
time sufficient for the ODE system to reach equilibrium for the whole range of the
parameter ki considered. In case 2, instead, we will investigate the reachability
problem at given times T ∈ {3, 6, . . . , 300}. We will then consider a stochastic
variant of the network epidemics model, interpreted as a population CTMC [7].
Here we will investigate the following scenario:

3. uncertainty in infection and recovery parameters, with ki ∈ [0.0005, 0.0015]
and kr ∈ [0.01, 0.1].

In particular, we will be interested in the impact of the uncertainty on the average
of the steady state distribution, and in bounding the region of the (xS , xI) plane
in which the steady state is contained with 95% probability for any possible
value of (ki, kr).

Draft software to recreate the experiments is available from the authors on
request; we are currently working on a distributable and more efficient imple-
mentation, which will be released soon.

Template Selection. Our approach depends crucially on a choice of a polytope
template. We will combine basic information about the system with a statistical
analysis of the set of points based on Principal Component Analysis (PCA, [6]).
The idea is to include in the template the following hyperplanes:

W t =

(
1 −1 0 0 1 −1
0 0 1 −1 1 −1

wa
twb

t

)
The first four columns correspond to upper and lower bounds on the variables
xS and xI , respectively. The fifth and sixth columns upper and lower bound
the quantity xS + xI , which must always be less than N . Finally, the last two
columns wa and wb correspond to the two principal components (PC) of the
sample points of x(t,p,x0) = (xS(t,p,x

0), xI(t,p,x
0)). In this way, we bound

along the two orthogonal directions better explaining the variation of data.

Case 1: Reachability in [0, T ]. To approximate the reachable set in [0, T ],
we start by computing the solution (xS(t,p,x

0), xI(t,p,x
0)) in an equi-spaced

grid of 5 points for ki and 50 points for the time interval [0, T ]. Then we ran a
hyperparameter optimisation for the lengthscale, fixing the amplitude to 1, and
estimate the amplitude using the Bayesian approach of the previous section. As
for the prior mean, we considered a set of polynomial basis functions of degree
2, i.e. h(z) = (1, z1, z2, z

2
1 , z1z2, z

2
2). We defined a template from the PCA, using

the samples up to time 150, when the system has almost stabilised on the steady
state (more points would bias the PCA by placing more and more weight on the
steady state value). In Figure 1 left, we see the method applied to the whole set
of sample points at once, using the GP-UCB algorithm, initialised with the grid
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Fig. 1. Reachability in [0, T ]. Left: overapproximation by the PCA polytope for the
whole set of reachable points in [0, T ], varying ki. Blue dots are sample points from
the true function, for different values of time and ki. Right: over-approximation by the
PCA polytope, splitting the computation of the reachable set in several blocks.

Fig. 2. Reachability at time T , starting from uncertain initial conditions. Left: upper
and lower bound for variables xS and xT , as a function of time. Right: Comparison
between our method and the sensitivity-based one of [18], for different grid sizes.

of 5 × 50 initial samples. Convergence is reached after few additional function
evaluations.

In Figure 1 right, instead, we split as in [12] the reachability problem into
blocks, to increase the precision of the overapproximation. More specifically, we
decompose the interval [0, 300] in the following sub-intervals: [10 ∗ i, 10 ∗ (i +
1)], for i = 0, . . . , 9, [100, 150], and [150, 300]. For each subproblem, we sample
from an equi-spaced grid of 30 time points and 5 ki points. We use the PCA
procedure to define the template and run the reachability algorithm. The bound
obtained is quite tight. Furthermore, we experimentally tested the quality of the
overapproximation, simulating many points for different values of time and ki,
and checking how many of them are contained in the polytope. In this case,
100% of all the tested points (more than 20000) was inside. In general, however,
we may expect to find some points outside, due to the statistical nature of the
method.

Case 2: Reachability at Time T . In this second scenario , we looked at the
reachability at a given time instant T , taking T from {0, 3, 6 . . . , 300}. Here we
varied the initial conditions, keeping parameters fixed to their nominal value. In
Figure 2 left, we plot the upper and lower bounds for the two variables xS and
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Fig. 3. Left: over-approximation of the steady-state average of the CTMC interpreta-
tion of the epidemics model, with uncertainty on ki − kr. Right: over-approximation of
the region containing 95% of the steady state probability mass, again varying ki − kr.

xI as a function of time. As we can see, we correctly recover the fact that all
the trajectories of the model converge to its unique, globally attracting, steady
state. Here we used GP-UCB initialised with a grid of 25 points.

In Figure 2 right, instead, we present a comparison of our approach with the
method of [18], which uses sensitivity analysis to estimate how much a neigh-
bourhood of the initial condition xi

0 is expanded or compressed during the dy-
namics. This allows us to cover the reachable set at time T by a collection of balls
centered at points x(T,p,xi

0). We used squared balls (w.r.t the infinity norm),
choosing the same covering grid as the one with which we initialised our method,
in which balls have a radius of ε = 1.25, and denser grids for ε = 0.5, ε = 0.2,
and ε = 0.1. Then we upper and lower bounded the reachable sets for xI at the
time instants {0, 1.5, 3 . . . , 150}, and compared the results against our method.
In particular, in Figure 2 right we show the absolute error in the estimate of
the upper bound of infected individuals.3 As we can see, our approach consis-
tently produces tighter bounds. Computationally, our method (implemented in
Matlab) took about 6.4 seconds, while the cost of a comparable Matlab imple-
mentation of [18] varies between 1.5 seconds (ε = 1.25) to 225 seconds (ε = 0.1).
However, the computational cost of the method of [18] (for the precision level
of ε = 0.1) can be reduced closer to that of our algorithm using an adaptive
strategy to generate the grid, as discussed in [18].

Case 3:Reachability forStochastic Systems. We consider now the reachabil-
ity problem for the stochastic version of the network epidemics model. Each tran-
sition is interpreted as a randomevent taking an exponentially distributed amount
of time to happen, obtaining a population CTMC model (see e.g. [7]). In Figure 3
left, we try to over-approximate the steady state average, for ki ∈ [0.0005, 0.0015]
and kr ∈ [0.01, 0.1]. We took the distribution at time T = 300 as a proxy of the
steady state distribution. For this problem, the use of GP-UCB optimisation is
crucial to reduce the number of function evaluations, which are costly. In fact, the
average is estimated at each sampled point from 200 simulation runs, resulting in

3 The true upper bound has been estimated exploiting monotonicity properties of the
model. In particular, it is defined by two trajectories for extreme values of xS(0) and
xI(0). The error peak of Figure 2 right happens at their crossing point.
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considerably noisy observations. The standard deviation of the estimate is used for
the input dependent model of noise in the GP-emulation.

In Figure 3 right, instead, we tackle the problem of over-approximating the
region containing 95% of the probability mass of the steady state distribution
in the (xS , xI)-plane, again varying ki ∈ [0.0005, 0.0015] and kr ∈ [0.01, 0.1]
(and using the distribution at time T = 300). To this end, we maximised the
upper confidence bound of the 97.5 percentile of the steady state distribution,
estimated from 500 simulation runs, and symmetrically we minimised the lower
confidence bound of the 2.5 percentile. We used the GP-UCB algorithm, starting
from a grid of 25 initial samples. The optimisation procedure converges quickly,
after only 5-10 additional function evaluations. To asses the quality of the over-
approximation, we sampled 25000 points from the distribution at time T = 300
and computed the fraction contained in the over-approximating polytope. It
turned out that such a fraction was equal to 0.976, which is close to the expected
value of 0.95.

6 Discussion

We presented a novel statistical approach for reachability computation in non-
linear dynamical systems, as part of a research programme deploying advanced
machine learning tool to solve approximation problems in theoretical computer
science [8,9,2]. The method leverages recent advances in statistical machine learn-
ing which provide convergent algorithms to optimise unknown functions from
noisy pointwise observations [30]. We then adopt a template-based approach
[12,29] to construct an over-approximation to the reachable set in terms of lin-
ear observables, and determine a tight approximation to the reachable set by
optimising the linear observable from finite observations. Experimental evalua-
tions suggest that the method can have high accuracy and it is computationally
competitive with state-of-the art reachability computation methods [18].

In our view, a major advantage of our method is its ability to handle noise in
a structural way, through a Bayesian treatment that combines the system uncer-
tainty and the observation noise in the final predictions. As such, the method can
be directly used to study the impact of uncertainty on the statistics of a (non-
linear) stochastic process. We showed on a nontrivial example that our method
provides accurate and fast reconstructions of reachable set both for deterministic
and stochastic systems, and can be easily applied both to problems of reacha-
bility at a fixed time and reachability within an interval. Furthermore, Bayesian
optimisation provides an effective method to efficiently solve the maximisation
problems involved, but also to adaptively check if an unsafe set has been reached
(using the distance from the unsafe set as a non-linear observable), keeping the
number of samples to a minimum. This is relevant in high-dimensional problems
and for stochastic models, for which it is expensive to compute statistics of the
process.

While we believe this approach introduces a new idea for reachability com-
putation, there are plenty of potential improvements/ outstanding challenges
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to be addressed. A straightforward enhancement, which could further improve
accuracy, would be the use of derivative information in the definition of the GP
kernel, in the spirit of the sensitivity-based reachability computations of [18].
Derivative kernels can be constructed for GPs [28] and have been used in a bio-
logical modelling scenario in e.g. [25]. Another important problem is related to
the choice of the template, which can impact the quality of results. In the paper,
we advocated a statistical approach and used hyperplanes identified by PCA. In
general, the idea of learning templates from sample data should be investigated
with more detail, and possibly combined with the use of non-linear templates,
such as ellipsoids [24] or other polynomial curves. Since the GP emulation pro-
cedure does not depend on the details of the emulated function, our method
should be directly applicable to this case as well.

Two major challenges for the emulation based approach are scaling to higher
dimensions, and handling discontinuous reachability functions. Large spaces of
uncertain parameters are problematic due to the curse of dimensionality: ex-
ploring the reachability function to a sufficient degree to start the GP emulation
procedure involves a number of function evaluations which is exponential in the
number of uncertain parameters. This is further compounded by the cubic scal-
ing of GP emulation with the number of input points (due to the necessity of
inverting the Gram matrix). This can be circumvented by using sparse approxi-
mations [28] but it will inevitably introduce a trade-off between scalability and
accuracy. Discontinuous functions, such as the ones encountered for bi-stable
systems or bifurcations, violate the smoothness condition implied by the use of
GPs. This condition can be relaxed to a piecewise smoothness condition by using
decision trees to partition the input space [3]; however, such methods have not
been previously used in the context of Bayesian emulation or optimisation.
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Abstract. This work discusses the construction of a finite-space stochas-
tic dynamical model as the aggregation of the continuous temperature
dynamics of an inhomogeneous population of thermostatically controlled
loads (TCLs). The temperature dynamics of a TCL is characterized by
a differential equation in which the TCL status (ON, OFF) is controlled
by a thresholding mechanism, and which displays inhomogeneity as its
thermal resistance changes in time according to a Poisson process. In the
aggregation procedure, each TCL model in the population is formally ab-
stracted as a Markov chain, and the cross product of these Markov chains
is lumped into its coarsest (exact) probabilistic bisimulation. Quite im-
portantly, the abstraction procedure allows for the quantification of the
induced error. Assuming that the TCLs explicitly depend on a control in-
put, the contribution investigates the problem of population-level power
reference tracking and load balancing. Furthermore, for the correspond-
ing closed-loop control scheme we show how the worst case performance
can be lower bounded statistically, thereby guaranteeing robustness ver-
sus power-tracking when the underlying assumption on the inhomogene-
ity term is relaxed.
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1 Introduction and Background

Household appliances such as water boilers/heaters, air conditioners and electric
heaters – all referred to as thermostatically controlled loads (TCLs) – can store
energy due to their thermal mass. These appliances generally operate within
a dead-band around a temperature set-point. Control of the aggregate power
consumption of a population of TCLs can provide a variety of benefits to the
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electricity grid. First, ancillary service requests can be partially addressed lo-
cally, which reduces the need for additional transmission line capacity. Second,
controlling a large population of TCLs may improve robustness, since even if a
few TCLs fail to provide the required service the consequence on the population
as a whole would be small. Such benefits highlight the importance of precise
modeling and quantitative control of TCL populations.

Modeling efforts over populations of TCLs and applications to load control ar-
guably initiate with the work in [9]. A discrete-time stochastic model for a TCL
is studied in [25], where a simulation model is developed based on a Markov
chain approximation of the discrete-time dynamics. A diffusion approximation
framework is introduced in [21] to model the dynamics of the electric demand
of large aggregates of TCLs by a system of coupled ordinary and partial dif-
ferential equations. These equations are further studied in [8], where a linear
time-invariant dynamical model is derived for the population.

A range of recent contributions [4,19,22,24] employ a partitioning of the TCL
temperature range to obtain an aggregate state-space model for the TCL pop-
ulation. Matrices and parameters of the aggregate model are computed either
analytically or via system identification techniques. Additional recent efforts
have targeted the application of this approach towards higher-order dynamical
models [29,30] and the problem of energy arbitrage [23]. The main limitation of
these approaches is the lack of a quantitative measure on the accuracy of the
constructed aggregated model. Motivated by this drawback, [15,18] have looked
at the problem from the perspective of formal abstractions: in contrast to all
related approaches in the literature, stymied by the lack of control on the intro-
duced aggregation error, [15,18] have introduced a formal abstraction procedure
that provides an upper bound on the error, which can be precisely tuned to
match a desired level before computing the actual aggregation.

The purpose of this work is to focus on a new inhomogeneous model for the
TCL dynamics, where the inhomogeneity enters the model through a thermal
resistance capturing the effect of the opening/closing of windows, of people en-
tering/leaving the room, and so on. The inhomogeneity enters randomly via a
Poisson process with a fixed arrival rate, which changes the value of the ther-
mal resistance within a given finite set. We show that the TCL dynamics can
be equivalently represented by a discrete-time Markov process, of which we ex-
plicitly compute its stochastic kernel. Next, we employ the mentioned abstrac-
tion techniques in [1,13] to formally approximate it with a Markov chain. Thus,
the aggregated behavior of a population of Markov chains can be modeled as a
stochastic difference equation [14,15], which is then used for state estimation and
closed-loop control of the total power consumption for tracking a load profile.

A crucial assumption in our work underpinning the construction of the stochas-
tic abstraction and the synthesis of the corresponding control scheme is the ho-
mogeneity in the parameters of the population of TCLs. This assumption might
be practically violated. Additionally, some variables such as the initial state of the
population and the desired load profile to be tracked are potentially not known in
advance. Nevertheless, we would like to guarantee a desired performance of a con-
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trol scheme. For example, a desirable property could be that the control scheme is
able to follow a load profile up to a given deviation while keeping the temperature
of the individual households within a certain range. Once a property is specified,
guaranteeing such performance amounts to solving a stochastic satisfiability prob-
lem. More precisely, one has to choose initial states and load profiles pessimisti-
cally to minimize the expect value of the associated cost function. Mathematically
this problem can be formulated using stochastic satisfiability modulo theory [17].
Unfortunately, most tools for solving this kind of satisfiability problems are not
suited to handle continuous non-determinism. However, there is a tight connection
between noisy optimization and stochastic satisfiability [10], rendering the prob-
lem suitable for dedicated methods such as [20,28]. We employ these techniques
to investigate the robustness of the overall control scheme.

The article is organized as follows. Section 2 introduces the dynamics of a
TCL in continuous time, along with the inhomogeneity injected via the Poisson
process. Modeling of the TCL dynamics as a discrete-time Markov process and
computation of the associated stochastic kernel are presented in Section 3. Ab-
straction and aggregate modeling of a population of TCLs are then discussed in
Section 4. Power reference tracking through closed-loop control of the popula-
tion is described in Section 5. Finally in Section 6, robustness of the performance
of the synthesized controller is validated a-posteriori, against violations on the
assumptions on the model.

Throughout this article we use the following notation: N = {1, 2, . . .} for the
natural numbers, N0 = N ∪ {0}, and Nn = {1, 2, . . . , n} for n ∈ N.

2 Model of a Thermostatically Controlled Load

Consider the temperature θ(t) of a TCL evolving in continuous time according
to the equation

dθ(t) =
dt

R(t)C
(θa ± m(t)R(t)Prate − θ(t)) , (1)

where θa is the ambient temperature, C indicates the thermal capacitance, and
Prate is the rate of energy transfer. In equation (1) a + sign is used for a heating
TCL, whereas a − sign is used for a cooling TCL. Inhomogeneity enters via
the thermal resistance R(·) : R≥0 → {R0, R1}, which is a function of time and
switches between two different values (R0, R1), where the switching times are
distributed according to the (homogeneous) Poisson process N(·), namely

R(t) =

{
R0 if N(t) ≡ 0 (mod 2)

R1 if N(t) ≡ 1 (mod 2) .
(2)

The Poisson process accounts for the number of switches and their occurrence
time within a given time interval. N(·) is characterized by a specified rate pa-
rameter λ, so that the number of switches within the time interval (t, t + τ ]
follows a Poisson distribution with
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P{N(t+ τ) −N(t) = n} =
e−λτ (λτ)n

n!
∀n ∈ N0 .

In equation (1), the quantitym(·) represents the status of the thermostat, namely
m : R≥0 → {0, 1}, where m(t) = 1 represents the ON mode and m(t) = 0 the
OFF mode. For the sake of simplicity, we assume that the Poisson process N(·)
is initialized probabilistically according to

N(0) =

{
0 with probability q = 1 − p

1 with probability p .

Moreover, we select p = q = 1/2, which means P{R(t) = R0} = P{R(t) =
R1} = 1/2, for all t ∈ R≥0. This simplifying assumption on the initialization
of the Poisson process and on the special selection of parameter p can be easily
relaxed by including the thermal resistance within the discrete state of the TCL.
Without loss of generality, we further assume that R0 > R1.

With focus on a cooling TCL (− sign in equation (1)), the temperature of the
load is regulated by a digital controller m(t + τ) = f(m(t), θ(t)) that is based
on a binary switching mechanism, as follows:

f(m, θ) =

⎧⎪⎨⎪⎩
0 if θ < θs − δd/2

.
= θ−

1 if θ > θs + δd/2
.
= θ+

m else ,

(3)

where θs and δd denote the temperature set-point and the dead-band width,
respectively, and together characterize the operating temperature range. Note
that the switching control signal is applied only at discrete time instants {kτ, k ∈
N0}: the mode m(t) may change only at these times, and is fixed in between any
two time instants kτ and (k+1)τ , during which the temperature evolves based on
equations (1)-(2) with a fixed m(kτ). In other words, the operational frequency
of the digital controller is 1

τ .
The power consumption of the single TCL at time t is equal to 1

ηm(t)Prate,
which is then equal to zero in the OFF mode and is positive in the ON mode, and
where the parameter η is the coefficient of performance (COF). The constant
1
ηPrate, namely the power consumed by a single TCL when it is in the ON mode,
will be shortened as PON in the sequel.

In the next section we show that the power consumption of the TCL can
be modeled as a Markov process in discrete time, of which we compute the
stochastic kernel.

3 Discrete-Time Markov Process Associated to the TCL

We consider a discrete-time Markov process (dtMP) {sk, k ∈ N0}, defined over a
general (e.g., continuous or hybrid) state space [2]. The model is denoted by the
pairS = (S, Ts) in which S is an uncountable state space. We denote by B(S) the
associated sigma algebra and refer the reader to [2,5] for details on measurability
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and topological considerations. The stochastic kernel Ts : B(S) × S → [0, 1]
assigns to each state s ∈ S a probability measure Ts(·|s), so that for any set
A ∈ B(S), k ∈ N0, P{sk+1 ∈ A|sk = s} = Ts(A|s). We assume that the stochastic
kernel Ts admits a representation by its conditional density function ts : S×S →
R≥0, namely Ts(ds̄|s) = ts(s̄|s)ds̄, for any s, s̄ ∈ S.

The digital controller of Section 2 ensures that the power consumption of the
TCL is a piecewise-constant signal, where the jumps can happen only at the
sampling times {kτ, k ∈ N0}. We define θk = θ(kτ),mk = m(kτ) as the values
of the random processes θ(·),m(·) at the sampling time kτ . Despite the fact that
the temperature evolves stochastically in between sampling times, we show that
the dynamics of the temperature and of the mode at the sampling times (that
is, in discrete time with sampling constant τ) can be modeled as a dtMP and
we compute the corresponding conditional density function. In other words, the
goal of this section is to compute the density function of the process state at the
next discrete time step, conditioned on the state at the current time step.

Define the hybrid state of the dtMP S as sk = (mk, θk) ∈ S .
= {0, 1}×R. The

evolution of the mode is given by the deterministic equation mk+1 = f(mk, θk),
while the temperature evolves stochastically and depends on the conditional den-
sity function tθ(θk+1|θk,mk). Then for all sk = (mk, θk), sk+1 = (mk+1, θk+1) ∈
S,

ts(sk+1|sk) = δ [mk+1 − f(mk, θk)] tθ(θk+1|θk,mk) ,

where δ[·] is the discrete Kronecker delta function. The rest of this section is
dedicated to the computation of tθ, and to the study of its dependency on char-
acteristic parameters. We focus on the explicit computation of tθ for the case
where the mode of the current state is OFF, namely tθ(θk+1|θk,mk = 0). The
case of tθ(θk+1|θk,mk = 1) is similar and thus discussed at the end of this
section.

Lemma 1. Suppose the TCL is in the OFF mode, m(t) = 0, during the interval
t ∈ [t1, t2]. The value of the temperature at the end of the interval solely depends
on the relative time the temperature evolves with either of the two resistance
values {R0, R1}, and is independent of the actual order or number of occurrence
of the two values.

Lemma 1 states that the distribution of the temperature at the next time
step θk+1, conditioned on the current temperature value θk, depends exclusively
on the relative time duration that the temperature evolves with any of the two
resistances, within the interval: the number or the order of switchings between
the resistances is not important, thus the corresponding time can be simply
accumulated. Since the resistance changes value based on the jumps of a Poisson
process, we define the sum of the length of the sub-intervals of [kτ, (k + 1)τ ]
in which the temperature evolves with R0 (resp. R1) as the random variable
w0 (resp. w1). Let us now compute the density functions of these two random
variables. Despite the fact that ω0, ω1 are defined with respect to the particularly
chosen interval [kτ, (k+1)τ ], next lemma shows that their density functions are
independent of k and solely depend on the length of the interval τ .



62 S. Esmaeil Zadeh Soudjani et al.

Lemma 2. The density function of ω0 can be expressed as

fω0(x) = e−λτδ(τ − x) + λe−λτ
[
I0

(
2λ
√
x(τ − x)

)
+
√

x
τ−xI1

(
2λ
√
x(τ − x)

)]
, (4)

which is parametrized by λ, τ , and is independent of k. I0(·), I1(·) are modified
Bessel functions of the first kind [3, Chapter 9] and δ(·) is the Dirac delta func-
tion. The density function of ω1 is fω1(x) = fω0(τ − x).

Lemma 2 indicates that the random variable ω0 (resp. ω1) is of mixed type,
including a probability density function with the interval [0, τ ] as its support,
and a probability mass at x = τ (resp. x = 0). Once we know the distributions
of ω0, ω1, we can compute tθ(θk+1|θk,mk) in the OFF mode.

Theorem 1. The conditional density function tθ(θk+1|θk,mk = 0) is of the
form

tθ(θk+1|θk,mk = 0) =
1

2
t0(θk+1|θk, R0) +

1

2
t1(θk+1|θk, R1) , (5)

where the functions t0, t1 are computed based on the density functions of ω0, ω1:

ti(θk+1|θk, Ri) =
1

|(θk+1 − θa)γ|
fωi

(
1

γ

[
ln
θk+1 − θa
θk − θa

+ τ1τ

])
i ∈ {0, 1} ,

(6)
and where τ0 = 1

R0C
, τ1 = 1

R1C
, and γ = τ1 − τ0 > 0.

We emphasize that the conditional density function tθ is independent of k, which
results in a time-homogeneous dtMP. It has the support [θmin, θmax] with

θmin
.
= θa + (θk − θa)e

−τ0τ , θmax
.
= θa + (θk − θa)e

−τ1τ ,

and includes two Dirac delta functions at the boundaries of its support

1

2
e−λτ [δ (θk+1 − θmin) + δ (θk+1 − θmax)] .

Moreover it is discontinuous at the boundaries of its support with the following
discontinuities:

tθ(θmin|θk,mk = 0) = λe−λτ (2+λτ)
2|(θk−θa)γ|e−τ0τ , tθ(θmax|θk,mk = 0) = λe−λτ (2+λτ)

2|(θk−θa)γ|e−τ1τ . (7)

All the above derivations for the density function tθ conditioned in the OFF
mode can be likewise obtained for that in the ON mode: tθ(θk+1|θk,mk = 1) is
formulated exactly as tθ(θk+1|θk,mk = 0) where the quantity θa is replaced by
the steady-state value of the temperature in the ON mode. The only required
assumption is that the temperature trajectories are steered toward the same
steady-state value regardless of the thermal resistance. Such a steady-state value
is θ∞ = θa −m(t)R(t)Prate, which is a function of R(t) in the ON mode. This
assumption technically allows us to swap the order of the intervals in which the
temperature evolves with different resistances and leads to being able to simplify
the computations and to obtain the conditional density functions.



Formal Synthesis and Validation of Inhomogeneous TCLs 63

4 Abstraction of a Population of Inhomogeneous TCLs

4.1 Abstraction of a TCL as a Markov Chain

The interpretation of the Poisson-driven TCL model as a dtMP allows lever-
aging an abstraction technique, proposed in [1] and extended in [12,13], aimed
at reducing an uncountable state-space dtMP into a (discrete-time) finite-state
Markov chain. This abstraction is based on a state-space partitioning proce-
dure as follows. Consider an arbitrary, finite partition of the continuous domain
R = ∪n

i=1Θi, and arbitrary representative points within the partitioning regions
denoted by {θ̄i ∈ Θi, i ∈ Nn}. Introduce a finite-state Markov chain M, charac-
terized by 2n states sim = (m, θ̄i),m ∈ {0, 1}, i ∈ Nn. The transition probability
matrix of M is made up of the entries

P(sim, si′m′) =

∫
Θi′

ts
(
m′, θ′|m, θ̄i

)
dθ′ ∀m,m′ ∈ {0, 1}, i, i′ ∈ Nn . (8)

The initial probability mass of M is obtained as p0(sim) =
∫
Θi
π0(m, θ)dθ, where

π0 : S → R≥0 is the density function of the initial hybrid state of the TCL.
For simplicity of notation we rename the states of M by the bijective map
�(sim) = mn + i,m ∈ {0, 1}, i ∈ Nn, and accordingly we introduce the new
notation

Pij = P(�−1(i), �−1(j)) , p0i = p0(�
−1(i)) ∀i, j ∈ N2n .

Notice that the conditional density function of the stochastic system capturing
the dynamics of a TCL is discontinuous, due to the presence of equation (3).
Further, the density function tθ(θk+1|θk,mk) is the summation of two Dirac
delta functions and of a piecewise-Lipschitz continuous part. The existence of
Dirac delta functions produces technical difficulties in the analysis of properties
of interest [16]. Despite these irregularities, we show in the next section that
we can compute an upper bound on the error of Markov chain abstraction,
based on [15,18]. The abstraction error is composed of three terms related to the
Dirac delta functions, the discontinuity at the boundaries, and the state-space
discretization.

4.2 Error Computation of the Markov Chain Abstraction

We compute the abstraction error based on [13, pp. 933-934], which gives an
upper bound for the abstraction error via the constantH satisfying the inequality∫

R

|tθ(θk+1|θk,mk) − tθ(θk+1|θ′k,mk)|dθk+1 ≤ H|θk − θ′k| ∀θk, θ′k,mk . (9)

Notice that the integration in the left-hand side is with respect to the next state
θk+1, while the changes are applied to the current state θk. In order to compute
the constant H, we first establish the Lipschitz continuity of the continuous part
of tθ in Theorem 2 which is founded on the Lipschitz continuity of the bounded
part of the functions fω0(·), fω1(·) presented in Lemma 3.
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Lemma 3. Functions gω0(x)
.
= fω0(x) − e−λτδ(τ − x) and gω1(x)

.
= fω1(x) −

e−λτδ(x), representing the bounded part of functions fω0 , fω1 , satisfy the Lips-
chitz condition

|gωi(x) − gωi(x
′)| ≤ h|x− x′| ∀x, x′ ∈ [0, τ ], i ∈ {0, 1} ,

where h = λ2e−λτM(2λτ) and M(a) = maxu∈[0,1] |ζ(u, a)|. The function ζ is
defined as

ζ(u, a) = I0

(
a
√
u(1− u)

)
+ 1−2u√

u(1−u)
I1

(
a
√
u(1 − u)

)
− u

1−uI2

(
a
√
u(1 − u)

)
,

where I0(·), I1(·), I2(·) are modified Bessel functions of the first kind [3].

Theorem 2. The density function tθ(θk+1|θk,mk) satisfies the Lipschitz condi-
tion

|tθ(θk+1|θk,mk)−tθ(θk+1|θ′k,mk)| ≤ κ|θk−θ′k| ∀θk, θ′k ∈ [θ−, θ+], mk ∈ {0, 1} ,

for all θk+1 in the intersection of the supports of tθ(·|θk,mk), tθ(·|θ′k,mk), with

κ =
h

�γ2
, and the constant � = min

{
(θ − θ∞)2, θ ∈ [θ−, θ+]

}
.

Recall that the density function tθ is discontinuous at the boundaries of its
support, with jumps quantified in (7). The value of these jumps appear directly
in the left-hand side of inequality (9). Then we have to establish the Lipschitz
continuity of the jumps of tθ with respect to the current state, which is done in
the next Lemma.

Lemma 4. The jumps of the density functions tθ(θmin|θk,mk), tθ(θmax|θk,mk),
as in (7), are Lipschitz continuous with respect to the current temperature θk,
with the following constants:

κ0 =
λ

2�|γ|(2 + λτ)e−λτ eτ0τ , κ1 =
λ

2�|γ|(2 + λτ)e−λτ eτ1τ .

Finally, the transition probabilities of the Markov chain are computed by
eliminating the Dirac delta functions and integrating over the partition sets.
The total abstraction error is formulated in Theorem 3 using the constants of
Theorem 2 and Lemma 4, and leveraging results of [13].

Theorem 3. If we partition the temperature range with the diameter δp, the
one-step abstraction error is ε = 2(e−λτ + κ0 + κ1 + κL)δp, where L is the
Lebesgue measure of the temperature range.

The error computed in Theorem 3 is useful towards two different purposes.
First, it provides a measure on the distance between the power consumption of
the model in (1)-(3) and that of the abstracted model [15], namely

|E [m(kτ) −mabs(kτ)| θ(0),m(0)]| ≤ kε .



Formal Synthesis and Validation of Inhomogeneous TCLs 65

Second, it can be used to check Bounded Linear Temporal Logic (BLTL) specifi-
cations over the abstracted Markov chain, providing a guarantee on the specifi-
cation for the original population model. The error caused by the abstraction for
checking any BLTL specification is Nε, where N is the horizon of the specifica-
tion [26]. Notice that the error can be tuned by proper selection of the partition
diameter, time-step, and arrival rate. For instance the error is ε = 1.3 × 107δp
for the physical parameters of Table 1 (left) that are widely used in the liter-
ature, and for the values of Table 1 (right) specifically selected for the model
in this study. The large constant in the expression of ε is mainly due to the
Lipschitz constant of the density function, which can be reduced by selection of
the discretization time step τ .

Table 1. Physical parameters of a residential air conditioner as a TCL [8] (left) and
selected parameters for the model in (1)-(3) (right)

Parameter Interpretation Value

θs set-point 20 [◦C]
δd dead-band width 0.5 [◦C]
θa ambient temperature 32 [◦C]
C thermal capacitance 10 [kWh/◦C]
Prate power 14 [kW ]
η COF 2.5

Parameter Interpretation Value

R0 thermal resistance 1.5 [◦C/kW ]
R1 thermal resistance 2.5 [◦C/kW ]
τ time step 10 [sec]
λ arrival rate 1 [sec−1]

4.3 Aggregate Model of a Population of TCLs

In the previous section we described how a TCL model is formally abstracted as a
Markov chain. In this section we develop a stochastic difference equation (SDE) as
the aggregate model of the TCL population, which is to be later employed in the
state estimation and closed-loop control. Our modeling approach generalizes the
results of [7,6] for our setting in which convergence to a deterministic difference
equation for large populations of Markov chains is investigated in the context of
mean field limits. To construct the SDE model, we first take the cross product of
all the abstracted Markov chains, to obtain a (admittedly large) Markov chain Z
with finitely many states characterizing the behavior of the population. As a sec-
ond stage we assign labels X ∈ R2n to the states of Z in which the ith entry of
X(X(i), i ∈ N2n) indicates the proportion of individual Markov chains within the
ith state. Given such a labeling, we define an equivalence relation over the labeled
Markov chain Z, which relates all states with the same label. This equivalence
relation is in fact an exact probabilistic bisimulation [15] and makes it possible to
consider equivalence classes as lumped states and thus reduce the state space ofZ.
In order for this to be an exact probabilistic bisimulation, however, all transition
matrices have to be the same,which reduces to TCL characterizedby equal param-
eters, unlike a different ambient temperature (see Section 6). Let us remark that
in practice the lumped chain can be obtained directly, with no need to go through
the construction of Z. The dynamics over the labels in the reduced Markov chain
can be modeled by the following SDE
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Xk+1 = PTXk +Wk , (10)

where Xk ∈ R2n is the value of the label of the reduced Markov chain at sample
time kτ , and its ith entry represents the portion of TCLs with mode and tem-
perature inside the partition set associated to the representative point �−1(i) (cf.
Section 4.1). Matrix P = [Pij ]i,j∈N2n is the transition probability matrix of the
Markov chain M, and Wk is a state-dependent process noise with E[Wk] = 0
and Cov(Wk) = [Σij(Xk)]i,j∈N2n ∈ R2n×2n, where

Σii(Xk) =
1

np

2n∑
r=1

Xk(r)Pri(1 − Pri) , Σij(Xk) = − 1

np

2n∑
r=1

Xk(r)PriPrj ,

for all i, j ∈ N2n, i �= j. The process noise Wk converges in distribution to a
multivariate normal random vector for large population sizes np [15]. Moreover,
the transition probability matrix P in (10) depends on the set-point θs, which
is utilized in the next section for power tracking.

The total power consumption obtained from the aggregation of the original
models in (1)-(3), with variables (mj , θj)(t), j ∈ Nnp , is

y(t) =

np∑
j=1

mj(t)PON ,

which is piecewise-constant in time due to the presence of the digital controller
updating the modes of the TCLs. Then the total power consumption can be
represented as

y(t) =

∞∑
k=0

ykI[kτ,(k+1)τ)(t) , yk =

np∑
j=1

mj
kPON , (11)

where IA(·) is the indicator function of a given set A, i.e. IA(x) = 1 for x ∈ A and
zero otherwise. With focus on the abstract model (10), the power consumption
of the model is also piecewise-constant in time with the representation

yabs(t) =

∞∑
k=0

yabsk I[kτ,(k+1)τ)(t) , yabsk = HXk , H = npPON [0n, 1n] , (12)

where 0n and 1n are n-dimensional row vectors with all the entries equal to zero
and one, respectively.

The performance and precision of the aggregated model in (10) is displayed
in Figure 1 by comparing its normalized output with the normalized power con-
sumption of the TCL population (namely, by comparing yabs(t), y(t) divided
by npPON ). In these simulations, the initial temperatures of the TCLs are dis-
tributed uniformly over the dead-band and the modes are obtained as samples
of Bernoulli trials with a success probability of 0.5. Two different population
sizes np = 100 (top panel) and np = 1000 (bottom panel) are considered. The
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oscillations ranges are [0.35, 0.58] and [0.40, 0.52], respectively, which indicates
that the oscillations amplitude depends on the population size: it decreases as
the population size increases. The number of introduced abstract states in both
cases is 2n = 860. The transition probability matrix P is computed within 8.3
seconds and is sparse with 0.3% non-zero entries.
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Fig. 1. Comparison of the total power consumption of the population with that of the
aggregated model, with population sizes 100 (top) and 1000 (bottom) respectively. The
initial conditions have been distributed uniformly.

5 Closed-Loop Control of the TCL Population

As recently investigated in related work [15,18], we consider the set-point θs
as the control input and regulate the value of this control uniformly over all
TCLs. The application of this control scheme practically leads to a change in
the position of the non-zero entries of the transition matrix P derived from the
dynamics of the single TCL. We discretize the domain of allowable set-point
control input by the same partition diameter δp used for the temperature range:
this allows retaining the definition of the states in Xk.

We employ the stochastic Model Predictive Control (MPC) framework used
in [15] over the controlled model in order to track a reference signal for the total
power consumption. More precisely, we optimize the following cost function at
each time step to track the reference power signal yref (·):

min
θs(kτ)∈[θ−,θ+]

|E[yabs(kτ + τ)|Xk, θs(kτ)] − yref (kτ + τ)| . (13)

A Kalman filter with state-dependent process noise is employed for state esti-
mation when the information of states Xk is not available and only the total
power consumption of the population y(kτ) is measured. Figure 2 presents the
closed-loop control scheme for the power reference tracking problem.

The performance of the closed-loop control of Figure 2 is illustrated in Figure 3
(left). A population size np = 100 is selected and the number of states 2n = 1000
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Population

Kalman filter
with state-dependent

process noise

State estimation

One-step regulation

X̂kθs(kτ )
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y(kτ )

yref (kτ + τ )

population
parameters

TCL1(θ1,m1)

TCL2(θ2,m2)
...
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minθs(kτ)

∣∣∣E [
yabs(kτ + τ )

∣∣Xk = X̂k, θs(kτ )
]
− yref (kτ + τ )

∣∣∣
where:

Xk+1 = P T
θs(kτ)

Xk +Wk

yabs(kτ + τ ) = HXk+1

Fig. 2. State estimation and one-step regulation architecture for the closed-loop control
of the total power consumption
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Fig. 3. Illustration of the controller based on a Kalman filter (ref. Figure 2), applied to
a population of 100 TCLs, modeled with equations (1)-(3), for either a homogeneous
(left) or heterogeneous (right) population. Each TCL has its own initial condition.
The upper panels show the evolution of the temperatures across the population in
black. The blue region indicates the applied set-point ± the δd dead-band. The lower
panels plot in red the desired load profile. The blue lines show the actual load, as
achieved when applying the control scheme. For the heterogeneous case the ambient
temperature of each TCL is allowed to vary randomly with ±2 C◦ around the average
ambient temperature of the homogeneous case.

is considered. The lower panel presents the reference signal and the normalized
power consumption of the population, while the upper panel shows the synthe-
sized temperature dead-band [θs(k)−δd/2, θs(k)+δd/2]. The simulations indicate
that the population can accurately track the desired power reference signal. In or-
der to examine the robustness of the control scheme against heterogeneity in the
parameters of the population, we run simulations for the case where the ambient
temperature of each TCL is allowed to vary randomly with ±2 C◦ around the av-
erage ambient temperature of the population. The result is presented in Figure 3
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(right), which shows that the control scheme is qualitatively robust against viola-
tion of this homogeneity assumption. In the next sectionwe quantifymore formally
the robustness of the closed-loop control scheme.

6 Validation of the Robustness of the Synthesized
Controller

As claimed theoretically and further suggested by Figure 3, the control scheme
devised on the aggregated population in the previous section can accurately
perform tracking of a given load profile for the total power consumption. This
requires an assumption on the parameter homogeneity of the TCL population.
The simulation shown in Figure 3, however, further suggests that the presented
control scheme is robust against heterogeneity, which is to be investigated in
this section. Although the following approach could be optimally applied in a
closed-loop setting in order to automatically validate the actions taken by the
control scheme, we restrict ourselves to an a-posteriori validation due to the
computational complexity that is discussed below. We have investigated how well
the control scheme based on the Kalman-filter is able to track power consumption
in a system that switches modes instantaneously once the temperature hits given
thresholds. To apply this control in practice we would like to know how safely
the control scheme performs in the worst case, that is across possible unknown
variables such as the initial conditions and the desired load profiles. With safe
here we mean that the achieved load is within a given range of the desired
load profile. As the underlying system is stochastic our goal is to bound the
probability of violating such a safety target. Mathematically, we can state such
a problem as a noisy optimization problem, representing the probability as an
expectation over a binary function:

max
x∈X

Ey(t),T0<t<T [φrob(y)|x] , (14)

where φrob is an indicator function characterizing whether a trajectory y(t) is in
close proximity of the desired load profile. Specifically, we use

φrob(y) = I|y−yref |≤Δl
(y) =

{
1 if ∀t ∈ [T0, T ] : |y(t) − yref (t)| ≤ Δl

0 else ,

whereΔl is a parameter controlling the desired degree of load tracking. The vector
x represents all variables (in a given space, to be discussed shortly) over which we
would like to optimize safety, including the desired load profile (yref ), the initial
conditions (θ1(0),m1(0), . . . , θnp(0),mnp(0)) of TCLs, and the ambient tempera-
tures θ1a, . . . θ

np
a . Parameters T0 and T are used to select the relevant time period

over which robustness is validated. Formally, equation (14) falls into the same class
of problems as equation (13) and therefore could be solved similarly. As we are
interested in robustness properties against heterogeneity, the corresponding opti-
mization space (X ) comprises as many dimensions as individual TCLs (x contains
all initial conditions of individual TCLs, see above). Formulating the problem as
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a maximization over an expectation can be interpreted as assigning a probabil-
ity value to a SSMT formula, comprised of an existentially quantified variable fol-
lowed by a randomized quantified variable,φrob being an atomic SMT formula (see
[17,10] for more details). As formal approaches to solve such problems depend crit-
ically on the dimension of the state space, we follow a statistical approach instead,
thereby relying only on simulations of the TCL population. To solve such a noisy
optimization problem, we are adopting statistical methods, presented in [20,28] to
obtain probably approximate near optimizers.

Suppose that g : Y → R, that PY is a given probability measure on Y , and that
α, ε > 0 are given numbers. A number g0 ∈ R is said to be a Type 3 near minimum
of g to level α, or a probably approximate near minimum of g to accuracy ε and
level α, if g0 ≥ miny∈Y g(y) − ε, and in addition: PY {y ∈ Y : g(y) < g0 − ε} ≤ α.

If the probability measure PY is chosen to be the uniform distribution, the
probably approximate near minimum is equivalent to the notion of approximate
domain optimizer with value imprecision ε and residual domain α [20]. These
notions of approximate near optimizers can further be extended to hold only
with a given confidence ρ, if the approximate near optimizers g0 have an addi-
tional dependence on further random variables [20]. We present a corresponding
algorithm to obtain such an optimizer based on uniform sampling.

As mentioned, we aim at a statistical solution to the noisy optimization prob-
lem of equation (14). To this end, we use the following simple algorithm [20,28].
The algorithm first samples the parameters over which we would like to optimize
the probability of satisfying the robustness property. For each such parameter
(in particular containing the initial conditions), the behavior of each TCL is
sampled under the closed-loop control from the previous section. Using these
samples the probability of satisfying the robustness property can be estimated.
The necessary number of samples to achieve the desired accuracy can be calcu-
lated in advance (N and M in the above algorithm). For this algorithm it can
be shown that the output is a probably approximate near minimum to accuracy
ε and level α with probability at least ρ, see [27,20,28].

Algorithm 1. Randomized Black-Box optimization algorithm

function RandOpt(satProperty, α, ε, ρ)

N ← log 2
1−ρ

log 1
1−α

; M ← 1
2ε2

log 4N
1−ρ

x1, . . . , xN ← SampleOptimizationParams(X ) 
 sample conditions/profiles
for n = 1, . . . , N do

y1
n, . . . , y

M
n ←SampleTrajectories(xn) 
 Sample power for condition xn

for m = 1 . . . ,M do
gn,m ← CheckRobustnessOnSample(φrob(y

m
n ))

end for
end for
ĝn ← Average(gn,m across m) 
 Estimate robustness for initial conditions
return minn ĝn

end function
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Table 2. Parameters for a posteriori verification of the closed-loop control scheme

Δl 0.15 Population size np 100
Range within ambient temp. ± 2◦ Level α 0.8
Accuracy ε 0.1 Confidence 1− δ 0.8
Duration between load switches 15 min Time horizon T0, T 25 min, 60 min

Weare interested in estimating theworst case performance of the control scheme
of Section 5. In such a setting, controllers are typically designed for performance,
say to follow a predefined load profile as closely as possible (see equation (13)).
Safety is usually not considered during the design phase. Having a system speci-
fication for which one can simulate an already designed controller also allows for
verifying safety with a statistical procedure such as the one presented in the previ-
ous section. If we define safety for a given controller by amaximal alloweddeviation
Δl of the actual load from the desired load profile, we can quantify the number of
simulations needed (in terms of precision, level and confidence) in order to guaran-
tee the safety of a given controller for a worst case scenario. To simulate, we have
to additionally assume a finite time horizon: we have chosen 4 times the period
needed for updating the desired load profile, in order to cover the relevant changes
between desired values (see Table 2). Using Algorithm 1 we can now verify that
such a controller achieves a desired load profile robustly across a heterogeneous
parameter within the ambient temperature. More precisely, using the parameters
in Table 2, we could verify that the worst-case probability of resulting in a non-
safe system using the closed-loop control scheme is guaranteed to be bounded by
ε (accuracy=0.1) up to residual α level and confidence, as given in Table 2. The
number of simulations for such parameters isN = 738 and the objective is to have
the total power consumption within±0.15 of the desired reference load. The worst
case were determined over all possible initial conditions (temperatures and modes
of TCLs) as well as over a set of desired load profiles. For the set of load profiles
we considered step-functions, which change the desired load every 15 minutes and
have a height ∈ [0.4, 0.6]. Due to the independence between different simulations,
Algorithm 1 can be parallelized efficiently. Nevertheless, the necessary number of
samples quickly increaseswith the different parameters for accuracy using this pro-
cedure, therefore, it still needs considerable computational effort. Although such
a procedure could in principle also be used to verify safety or solve the control
problem in a closed-loop setting, we did not investigate such scheme due to the
computational effort. To illustrate the feasibility of the approach and due to the
high computational load, we set α, or residual domain to 0.8 thereby allowing 80
percent of the optimization domain to have a potentially worse robustness level.

7 Conclusions

In this work the problem of aggregate modeling and control of a population of
TCLs has been addressed. The temperature evolution is modeled in continuous
time and combined with a digital ON/OFF switching controller. The TCLs are
allowed to have different thermal resistances which change values in time based
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on a Poisson arrival process, and thus induce inhomogeneity in the dynamics. The
power consumption of each TCL is modeled as a Markov process and formally
abstracted to a Markov chain, which is then used to develop an aggregate model
for the total power consumption of the population. Finally, a control scheme is
proposed to track a power reference signal and its robustness is examined against
violation of the homogeneity assumption by use of statistical techniques.
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Abstract. This work investigates the use of finite abstractions to study
the finite-horizon probabilistic invariance problem over Stochastic Max-
Plus-Linear (SMPL) systems. SMPL systems are probabilistic extensions
of discrete-event MPL systems that are widely employed in the engi-
neering practice for timing and synchronisation studies. We construct
finite abstractions by re-formulating the SMPL system as a discrete-
time Markov process, then tailoring formal abstraction techniques in the
literature to generate a finite-state Markov Chain (MC), together with
precise guarantees on the level of the introduced approximation. This
finally allows to probabilistically model check the obtained MC against
the finite-horizon probabilistic invariance specification. The approach is
practically implemented via a dedicated software, and elucidated in this
work over numerical examples.
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1 Introduction

Max-Plus-Linear (MPL) systems are a class of discrete-event systems [1, 2] with
a continuous state space characterising the timing of the underlying sequential
discrete events. MPL systems are predisposed to describe the timing synchronisa-
tion between interleaved processes, under the assumption that timing events are
dependent linearly (within the max-plus algebra) on previous event occurrences.
MPL systems are widely employed in the analysis and scheduling of infrastruc-
ture networks, such as communication and railway systems [3], production and
manufacturing lines [4, 5], or biological systems [6].
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Stochastic Max-Plus-Linear (SMPL) systems [7–9] are MPL systems where
the delays between successive events (in the examples above, the processing or
transportation times) are now characterised by random quantities. In practical
applications SMPL systems are more realistic than simple MPL ones: for instance
in a model for a railway network, train running times depend on driver behaviour,
on weather conditions, and on passenger numbers at stations: they can arguably
be more suitably modelled by random variables.

Only a few approaches have been developed in the literature to study the
steady-state behaviour of SMPL systems, for example employing Lyapunov ex-
ponents and asymptotic growth rates [10–15]. The Lyapunov exponent of an
SMPL system is analogous to the max-plus eigenvalue for an autonomous MPL
system. The Lyapunov exponent of SMPL systems under some assumptions has
been studied in [10], and later extended to approximate computations under
other technical assumptions in [11, p. 251]. The application of model predictive
control and system identification to SMPL systems is studied in [16, 17]. In con-
trast, our work focuses on one-step properties of SMPL systems and is based on
developing finite-state abstractions: this is parallel to the approach in [18] for
(deterministic) MPL systems. To the best of our knowledge, this contribution
represents the first work on finite-state abstractions of SMPL systems.

Verification techniques and tools for deterministic, discrete-time, finite-state
systems have been widely investigated and developed in the past decades [19].
The application of formal methods to stochastic models is typically limited
to discrete-state structures, either in continuous or in discrete time [20, 21].
Continuous-space models on the other hand require the use of finite abstrac-
tions, as it is classically done for example with finite bisimulations of timed
automata, which can be computed via the known region construction [22]. With
focus on stochastic models, numerical schemes based on Markov Chain (MC) ap-
proximations of stochastic systems have been introduced in [23, 24], and applied
to the approximate study of probabilistic reachability or invariance in [25, 26],
however these finite abstractions do not come with explicit error bounds. On
the contrary in [27], a technique has been introduced to instead provide formal
abstractions of discrete-time, continuous-space Markov models [29], with the ob-
jective of investigating their probabilistic invariance by employing probabilistic
model checking over a finite MC. In view of scalability and of generality, the
approach has been improved and optimised in [30]. Interestingly the procedure
has been shown [31] to introduce an approximate probabilistic bisimulation of
the concrete model [32].

The aim of this work is to characterise and to compute the approximate
solution of the finite-time invariance problem over SMPL systems: more pre-
cisely, for any allowable initial event time, we determine the probability that
the time associated to the occurrence of N consecutive events will remain close
to a given deterministic N -step schedule (cf. Section 2.2). The probabilistic in-
variance problem can be regarded as the dual of a reachability problem [29],
and can be computed by constructing finite abstractions of the SMPL system,
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which are quantifiably close to the concrete model [27]. More precisely, our ap-
proach works as follows. We first formulate the given SMPL system as a discrete-
time Markov process, as suggested by [8, 9]. Then we adapt the techniques in
[27, 30] to the structure of the SMPL system, in order to generate a finite-state
MC, together with guarantees on the level of approximation introduced in the
process. The invariance property over the obtained MC can then be analysed
via probabilistic model checking [20] and computed by existing software [33, 34].
The result obtained from the model checking software is then combined with
the approximation guarantees, in order to provide an overall assessment of the
probability that the concrete SMPL system satisfies the given property.

The article is structured as follows. Initially, Section 2.1 introduces the SMPL
formalism, whereas Section 2.2 presents the probabilistic invariance problem.
Section 3 discusses the formal abstraction of an SMPL system as an MC. Fur-
thermore, with focus on the probabilistic invariance problem, the quantification
of the abstraction error and some numerical examples are presented in Section
4. Finally, Section 5 concludes the presentation of this work.

2 Preliminaries

This section introduces the basics of max-plus algebra and of autonomous SMPL
systems, and discusses the probabilistic invariance problem, which is to be fur-
ther elaborated throughout the paper.

2.1 Modelling: Stochastic Max-Plus-Linear Systems

The notations IN and INn represent the whole positive integers {1, 2, . . .} and
the first n positive integers {1, 2, . . . , n}, respectively. We use the bold letters
for vectors and usual letters with the same name and index for the elements of
the vector, for instance x = [x1, . . . , xn]

T . Furthermore we define IRε, ε and e
respectively as IR∪{ε}, −∞ and 0. For α, β ∈ IRε, introduce the two operations

α⊕ β = max{α, β} and α⊗ β = α+ β ,

where the element ε is considered to be absorbing w.r.t. ⊗ [12, Definition 3.4],
namely α ⊗ ε = ε for all α ∈ IRε. The rules for the order of evaluation of the
max-algebraic operators correspond to those in the conventional algebra: max-
algebraic multiplication has a higher precedence than max-algebraic addition
[12, Sect. 3.1].

The basic max-algebraic operations are extended to matrices as follows. If
A,B ∈ IRm×n

ε ; C ∈ IRm×p
ε ; D ∈ IRp×n

ε ; and α ∈ IRε, then

[α⊗A]ij = α⊗ Aij , [A⊕B]ij = Aij ⊕Bij , [C ⊗D]ij =

p⊕
k=1

Cik ⊗Dkj ,
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for each i ∈ INm and j ∈ INn. Notice the analogy between ⊕, ⊗ and respectively
+, × for matrix and vector operations in the conventional algebra. In this paper,
the following notation is adopted for reasons of convenience. A vector with each
component being equal to 0 (resp., −∞) is also denoted by e (resp., ε). Fur-
thermore, for practical reasons, the state space is taken to be IRn (rather than
IRn

ε ).

An autonomous SMPL system is defined as:

x(k + 1) = A(k) ⊗ x(k) , (1)

where x(k) = [x1(k), . . . , xn(k)]
T ∈ IRn; {Aij(·)} are discrete-time stationary

random processes1 taking values in IRε; further Aij(k) are independent for all
k ∈ IN ∪ {0} and i, j ∈ INn. We assume each random variable has fixed support
[7, Definition 1.4.1], i.e. the probability of ε is either 0 or 1. The random sequence
{Aij(·)} is then characterised by a given density function tij(·) and correspond-
ing distribution function Tij(·) (cf. Theorem 1). The independent variable k
denotes an increasing occurrence index, whereas the state variable x(k) defines
the (continuous) time of the k-th occurrence of the discrete events. The state
component xi(k) denotes the time of the k-th occurrence of the i-th event. Since
this article is based exclusively on autonomous (that is, not non-deterministic)
SMPL systems, the adjective will be dropped for simplicity.

Example 1. Consider the following SMPL system representing a simple railway
network between two connected stations. The state variables xi(k) for i = 1, 2
denote the time of the k-th departure at station i:

x(k + 1) = A(k) ⊗ x(k), A(k) =

[
2 + e11(k) 5 + e12(k)
3 + e21(k) 3 + e22(k)

]
or equivalently,[

x1(k + 1)
x2(k + 1)

]
=

[
max{2 + e11(k) + x1(k), 5 + e12(k) + x2(k)}
max{3 + e21(k) + x1(k), 3 + e22(k) + x2(k)}

]
,

where we have assumed that e11(·) ∼ Exp(1), e12(·) ∼ Exp(2/5), e21(·) ∼
Exp(2/3), and e22(·) ∼ Exp(2/3), and Exp(λ) represents the exponential dis-
tribution with rate λ. Notice that Aij(·) denotes the traveling time from station
j to station i and amounts to a deterministic constant plus a delay modelled
by the random variable eij(·). A few sample trajectories of the SMPL system,
initialised at x(0) = [1, 0]T , are displayed in Figure 1. Note that when all ran-
dom delays are assumed to be equal to zero, the above deterministic system
admits the unique solution x(k) = x(0) + dk = [1+ 4k, 4k]T , where d = 4 is the
max-plus eigenvalue of matrix A, and [1, 0]T is the corresponding eigenvector of
the deterministic MPL system [12, Sect. 3.7]. Such a periodic trajectory can be
used as a regular schedule for the train departures (cf. Section 2.2). ��

1 Notice that, for deterministic MPL systems, matrix A is instead given and time-
invariant.
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Fig. 1. Sample trajectories of the SMPL system in Example 1 for 50 discrete steps
(horizontal axis) and both coordinates (vertical axis)

2.2 Problem: Probabilistic Invariance

Let us consider events that are scheduled to occur regularly, that is let us select a
time between consecutive events that is a positive given constant, say d. We call
this a regular schedule and assume that it does not affect the time of occurrence of
all events, e.g. any event may occur ahead of the regular schedule. In this work,
we consider an N -step finite-horizon probabilistic invariance problem w.r.t. a
regular schedule: more specifically, for each possible time of initial occurrence of
all events (xi(0), i ∈ INn), we are interested in determining the probability that
the time of k-th occurrence of all events (x(k)) remains close to the corresponding
time of the regular schedule, for k ∈ INN ∪ {0}. For instance, we may want to
determine the probability that the time of occurrence of all events is at least 5
time units ahead of the given regular schedule, as well as at most 5 time units
behind it. The safe set is then defined as the desired time of occurrence of all
events w.r.t. the regular schedule.

The techniques in [27, 30], developed to provide the characterisation and the
computation of the quantity of interest over general Markov processes, can be di-
rectly applied to the SMPL system (1). However, in order to prevent the growth
of the safe set as the event horizon N increases (which in general leads to a de-
crease in computational performance), we reformulate the SMPL system based
on the given regular schedule, so that a fixed safe set is obtained. Since we are
interested in the delay of event occurrences with respect to the given schedule,
we introduce new variables defined as the difference between the states of the
original SMPL system and the regular schedule. More precisely, first we define
a vector s(·) that characterises the regular schedule. The dynamics of s(·) are
determined by the time duration d ∈ IR between consecutive events2 and the
arbitrary initial condition s(0) ∈ IRn, i.e. s(k+1) = d⊗s(k). As mentioned, new

2 Our results can be generalised to event-dependent time durations. In this case the
Markov process becomes inhomogeneous, which will greatly increase the computa-
tional complexity of the procedure.
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states z(·) are defined as the difference between the states of the original SMPL
system (1) and the regular schedule s(·), i.e. z(k) = x(k)−s(k) for k ∈ IN∪{0}.
The dynamics of the newly introduced SMPL system are then given by

z(k + 1) = [A(k) +D] ⊗ z(k) , (2)

where D = [dij ]i,j ∈ IRn×n (i.e. dij is the entry of matrix D at row i and column
j), dij = sj(0) − si(0) − d, and z(k) = [z1(k), . . . , zn(k)]

T ∈ IRn. Notice that
Aij(k) ⊗ dij are independent for all k ∈ IN ∪ {0} and i, j ∈ INn. The density
(resp., distribution) function of Aij(k) ⊗ dij corresponds to the density (resp.,
distribution) function of Aij(k) shifted forward of dij units. The independent
variable k again denotes an increasing occurrence index, whereas the state vari-
able z(k) defines the delay w.r.t. the schedule of k-th occurrence of all events: in
particular the state component zi(k) denotes the delay w.r.t. the schedule of k-th
occurrence of the i-th event. Notice that if the delay is negative then the event
occurs ahead of schedule, whereas if the delay is positive then the event occurs
behind schedule. The next theorem shows that, much like the original model
in (1), the new SMPL system can be described as a discrete-time homogeneous
Markov process.

Theorem 1. The SMPL system in (2) is fully characterised by the following
conditional density function

tz(z̄|z) =
n∏

i=1

ti(z̄i|z) where

ti(z̄i|z) =
n∑

j=1

[
tij(z̄i − dij − zj)

n∏
k=1,k �=j

Tik(z̄i − dik − zk)

]
i ∈ INn .

(3)

Employing the introduced SMPL system (2), the problem can be formulated
as the following N -step invariance probability

Pz0
(A) = Pr{z(k) ∈ A for all k ∈ INN ∪ {0}|z(0) = z0} ,

where A is called the safe set and is assumed to be Borel measurable. The next
proposition provides a theoretical framework to study the problem.

Proposition 1 ([29, Lemma 1]). Consider value functions Vk : IRn → [0, 1],
for k ∈ INN ∪ {0}, computed through the following backward recursion:

Vk(z) = 1lA(z)

∫
A
Vk+1(z̄)tz(z̄|z)dz̄ for all z ∈ IRn ,

initialised with VN (z) = 1lA(z) for all z ∈ IRn. Then Pz0
(A) = V0(z0).

For any k ∈ INN∪{0}, notice that Vk(z) represents the probability that an execu-
tion of the SMPL system (2) remains within the safe set A over the residual event
horizon {k, . . . , N}, starting from z at event step k. This result characterises the
finite-horizon probabilistic invariance problem as a dynamic programming prob-
lem. Since an explicit analytical solution to the problem is generally impossible
to be found, we leverage the techniques developed in [27, 30] to provide a nu-
merical computation with exact associated error bounds. This is elaborated in
the next section.



80 D. Adzkiya, S. Esmaeil Zadeh Soudjani, and A. Abate

3 Abstraction by a Finite State Markov Chain

We tailor the abstraction procedure presented in [27, Sect. 3.1] towards the goal
of generating a finite-state MC (P , Tp) from a given SMPL system and a safe
set A, and employ it to approximately compute the probabilistic invariance of
interest.

Let P = {φ1, . . . , φm+1} be a set of finitely many discrete states and Tp :
P × P → [0, 1] a related transition probability matrix, such that Tp(φi, φj)
characterises the probability of transitioning from state φi to state φj and thus
induces a conditional discrete probability distribution over the finite space P .
Given a safe set A, Algorithm 1 provides a procedure to abstract an SMPL
system by a finite-state MC. The set Ap = {φ1, . . . , φm} denotes the discrete
safe set. In Algorithm 1, Ξ : Ap → 2A represents the concretisation function,
i.e. a set-valued map that associates to any discrete state (point) φi ∈ Ap the
corresponding continuous partition set Ai ⊂ A. Furthermore the abstraction
function ξ : A → Ap associates to any point z ∈ A on the SMPL state space,
the corresponding discrete state in Ap. Additionally, notice that an absorbing
discrete state φm+1 is added to the state space of the MC in order to render the
transition probability matrix Tp stochastic: the absorbing discrete state φm+1

represents the complement of the safe set A for the SMPL system, namely IRn\A,
and accounts for the associated dynamics.

Algorithm 1. Generation of a finite-state MC from an SMPL system and a safe
set
Input: An SMPL system in (2) and a safe set A
Output: A finite-state MC (P , Tp)
1. Select a finite partition of set A of cardinality m, as A = ∪m

i=1Ai

2. For each Ai, select a single representative point zi ∈ Ai

3. Define Ap = {φi, i ∈ INm} and take P = Ap ∪ {φm+1} as the finite state-space of
the MC (φm+1 is an absorbing state, as explained in the text)

4. Compute the transition probability matrix Tp as

Tp(φi, φj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ξ(φj)

tz(z̄|zi)dz̄ , if 1 ≤ j ≤ m and 1 ≤ i ≤ m ,

1−
∑

φ̄∈Ap

∫
Ξ(φ̄)

tz(z̄|zi)dz̄ , if j = m+ 1 and 1 ≤ i ≤ m ,

1 , if j = i = m+ 1 ,

0 , if 1 ≤ j ≤ m and i = m+ 1 ,

Remark 1. The bottleneck of Algorithm 1 lies in the computation of transition
probability matrix Tp, due to the integration of kernel tz. This integration can
be circumvented if the distribution functions Tij(·) for all i, j ∈ INn have explicit
analytical form, e.g. an exponential distribution.

The procedure in Algorithm 1 has been shown [31] to introduce an approxi-
mate probabilistic bisimulation of the concrete model [32].
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Algorithm 1 can be applied to abstract an SMPL system as a finite-state
MC, regardless of the particular safe set A. However the quantification of the
abstraction error in Section 4 requires that the safe set A is bounded. ��

Considering the obtained finite-state, discrete-time MC (P , Tp) and the dis-
cretised safe set Ap ⊂ P , the probabilistic invariance problem amounts to evalu-
ating the probability that a finite execution associated with the initial condition
φ0 ∈ P remains within the discrete safe set Ap during the given event horizon.
This can be stated as following probability:

pφ0(Ap) = Pr{φ(k) ∈ Ap for all k ∈ INN ∪ {0}|φ(0) = φ0} ,

where φ(k) denotes the discrete state of the MC at step k.
The solution of this finite-horizon probabilistic invariance problem over the

MC abstraction can be determined via a discrete version of Proposition 1.

Proposition 2. Consider value functions V p
k : P → [0, 1], for k ∈ INN ∪ {0},

computed through the following backward recursion:

V p
k (φ) = 1lAp(φ)

∑
φ̄∈P

V p
k+1(φ̄)Tp(φ, φ̄) for all φ ∈ P ,

initialised with V p
N (φ) = 1lAp(φ) for all φ ∈ P. Then pφ0(Ap) = V p

0 (φ0).

For any k ∈ INN ∪ {0}, notice that V p
k (φ) represents the probability that an

execution of the finite-state MC remains within the discrete safe set Ap over the
residual event horizon {k, . . . , N}, starting from φ at event step k. The quantities
in Proposition 2 can be easily computed via linear algebra. It is of interest to
provide a quantitative comparison between the discrete outcome obtained by
Proposition 2 and the continuous solution that results from Proposition 1: in
other words, we are interested in deriving bounds on the abstraction error. The
following section accomplishes this goal.

4 Quantification of the Abstraction Error

This section starts by precisely defining the error related to the abstraction
procedure, which is due to the approximation of a continuous concrete model
with a finite discrete one. Then a bound of the approximation error in [30] is
recalled, and applied to the probabilistic invariance problem under some struc-
tural assumptions, namely in the case of Lipschitz continuous density functions,
or alternatively of piecewise Lipschitz continuous density functions.

The approximation error is defined as the maximum difference between the
outcomes obtained by Propositions 1 and 2 for any pair of initial conditions
z0 ∈ A and ξ(z0) ∈ Ap. Since an exact computation of this error is not possible
in general, we resort to determining an upper bound of the approximation error,
which is denoted as E. More formally, we are interested in quantifying E that
satisfies

|Pz0(A) − pξ(z0)(Ap)| ≤ E for all z0 ∈ A . (4)



82 D. Adzkiya, S. Esmaeil Zadeh Soudjani, and A. Abate

We raise the following assumption on the SMPL system. Recall that the den-
sity function of Aij(k)⊗ dij in (2) corresponds to the density function of Aij(k)
in (1) shifted dij units forward.

Assumption 3. The density functions tij(·) for i, j ∈ INn are bounded:

tij(z) ≤ Mij for all z ∈ IR .

Assumption 3 implies the distribution functions Tij(·) for i, j ∈ INn are Lips-
chitz continuous. Recall that the (global) Lipschitz constant of a one-dimensional
function can be computed as the maximum of the absolute value of the first
derivative of the function. Thus

|Tij(z)− Tij(z
′)| ≤ Mij |z − z′| for all z, z′ ∈ IR .

For computation of the bound on approximation error, we use the following
result based on [30], which has inspired most of this work.

Proposition 4 ([30, pp. 933-934]). Suppose Assumption 3 holds and the den-
sity function tz(z̄|z) satisfies the condition∫

A
|tz(z̄|z) − tz(z̄|z′)|dz̄ ≤ H‖z − z′‖ for all z, z′ ∈ A ,

then an upper bound on the approximation error in (4) is E = NHδ, where N
is the event horizon and δ is the partition diameter.

The partition diameter δ is defined in [27, Sect. 3.1]. We first determine the
constant H for Lipschitz continuous density functions, then generalise the result
to piecewise Lipschitz continuous density functions.

4.1 Lipschitz Continuous Density Functions

Assumption 5. The density functions tij(·) for i, j ∈ INn are Lipschitz contin-
uous, namely there exist finite and positive constants hij, such that

|tij(z)− tij(z
′)| ≤ hij |z − z′| for all z, z′ ∈ IR .

Under Assumptions 3 and 5, the conditional density function tz(z̄|z) is Lips-
chitz continuous. This opens up the application of the results in [27, 30] for the
approximate solution of the probabilistic invariance problem. Notice that the
Lipschitz constant of tz(z̄|z) may be large, which implies a rather conservative
upper bound on the approximation error. To improve this bound, we can in-
stead directly use Proposition 4 presented before – an option also discussed in
[30]. In particular we present three technical lemmas that are essential for the
computation of the constant H . After the derivation of the improved bound, the
obtained results are applied to a numerical example.
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Lemma 1. Any one-dimensional continuous distribution function T (·) satisfies
the inequality∫

IR

|T (z̄ − z)− T (z̄ − z′)|dz̄ ≤ |z − z′| for all z, z′ ∈ IR .

Lemma 2. Suppose the random vector z̄ can be organised as z̄ = [z̄T
1 , z̄

T
2 ]

T , so
that its conditional density function is the multiplication of conditional density
functions of z̄1, z̄2 as:

f(z̄|z) = f1(z̄1|z)f2(z̄2|z) .

Then for a given set A ∈ B(IRn) it holds that∫
A

|f(z̄|z) − f(z̄|z′)|dz̄ ≤
2∑

i=1

∫
Πi(A)

|fi(z̄i|z) − fi(z̄i|z′)|dz̄i ,

where Πi(·) represents the projection operator on the i-th axis.

Lemma 3. Suppose the vector z can be organised as z = [zT
1 , z

T
2 ]

T , and that
the density function of the conditional random variable (z̄|z) is of the form

f(z̄|z) = f1(z̄, z1)f2(z̄, z2) ,

where f1(z̄, z1), f2(z̄, z2) are bounded non-negative functions with M1 =
sup f1(z̄, z1) and M2 = sup f2(z̄, z2). Then for a given set C ∈ B(IR):

∫
C
|f(z̄|z1, z2)− f(z̄|z′

1, z
′
2)|dz̄

≤ M2

∫
C
|f1(z̄, z1)− f1(z̄, z

′
1)|dz̄ +M1

∫
C
|f2(z̄, z2)− f2(z̄, z

′
2)|dz̄ .

Theorem 2. Under Assumptions 3 and 5, the constant H in Proposition 4 is

H =

n∑
i,j=1

Hij + (n− 1)Mij ,

where Hij = Lihij, and where the constant Li = L(Πi(A)) is the Lebesgue
measure of the projection of the safe set onto the i-th axis.

We now elucidate the above results on a case study, and select a beta distri-
bution to characterise delays. A motivation for employing a beta distribution
is that its density function has bounded support. Thus by scaling and shifting
the density function, we can construct a distribution taking positive real values
within an interval. Recall that this distribution is used to model processing or
transportation time, and as such it can only take positive values. Furthermore,
the beta distribution can be used to approximate the normal distribution with
arbitrary accuracy.
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Definition 1 (Beta Distribution). The general formula for the density func-
tion of the beta distribution is

t(x;α, β, a, b) =
(x− a)α−1(b − x)β−1

B(α, β)(b − a)α+β−1
if a ≤ x ≤ b ,

and 0 otherwise, where α, β > 0 are the shape parameters; [a, b] is the support
of the density function; and B(·, ·) is the beta function. A random variable X
characterised by this distribution is denoted by X ∼ Beta(α, β, a, b).

The case where a = 0 and b = 1 is called the standard beta distribution.
Let us remark that the density function of the beta distribution is unbounded
if any of the shape parameters belongs to the interval (1, 2). We remark that if
the shape parameters are positive integers, the beta distribution has a piecewise
polynomial density function, which has been used for system identification of
SMPL systems in [17, Sect. 4.3].

Example 2. We apply the results in Theorem 2 to the following two-dimensional
SMPL system (1), where Aij(·) ∼ Beta(αij , βij , aij , bij),[
α11 α12

α21 α22

]
=

[
2 4
2 2

]
,

[
β11 β12
β21 β22

]
=

[
5 2
2 4

]
,

[
a11 a12
a21 a22

]
=

[
0 2
2 0

]
,

[
b11 b12
b21 b22

]
=

[
7 6.5
4 9

]
.

Skipping the details of the direct calculations, the supremum and the Lipschitz
constant of the density functions are respectively[

M11 M12

M21 M22

]
=

[
1536/4375 15/32

3/4 15/64

]
,

[
h11 h12
h21 h22

]
=

[
30/49 80/81
3/2 20/81

]
.

Considering a regular schedule with s(0) = [0, 0]T and d = 4, selecting safe
set A = [−5, 5]2, and event horizon N = 5, according to Theorem 2 we ob-
tain an error E = 176.4δ. In order to obtain an approximation error bounded
by E = 0.1, we would need to discretise set A uniformly with 24942 bins per
each dimension (step 1 of Algorithm 1). The representative points have been
selected at the centre of the squares obtained by uniform discretisation (step
2). The obtained finite-state MC has 249422 + 1 discrete states (step 3). The
procedure to construct transition probability matrix (step 4) works as follows.
For each i, j ∈ {1, . . . , 249422+1}, we compute Tp(φi, φj) which consists of four
possible cases. If 1 ≤ i, j ≤ 249422, then Tp(φi, φj) is defined as the probability
of transitioning from the i-th representative point zi to the j-th partition set
Aj . If 1 ≤ i ≤ 249422 and j = 249422 + 1, then Tp(φi, φj) is defined as the
probability of transitioning from the i-th representative point zi to the comple-
ment of the safe set IRn \A. Since the discrete state φ249422+1 is absorbing, then
Tp(φ249422+1, φj) = 1 if j = 249422+1, and is equal to 0 otherwise. The solution
of the invariance problem obtained over the abstract model (cf. Proposition 2)
is computed via the software tool FAUST� [35] and is depicted in Figure 2 (left
panel). ��
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4.2 Piecewise Lipschitz Continuous Density Functions

It is clear that the structural assumptions raised in the previous section pose
limitations on the applicability of the ensuing results. For the sake of generality,
we now extend the previous results to the more general case encompassed by the
following requirement.

Assumption 6. The density functions tij(·) for i, j ∈ INn are piecewise Lips-
chitz continuous, namely there exist partitions IR = ∪mij

k=1D
k
ij and corresponding

finite and positive constants hkij , such that

tij(z) =

mij∑
k=1

tkij(z)1lDk
ij
(z) for all z ∈ IR ,

|tkij(z)− tkij(z
′)| ≤ hkij |z − z′| for all k ∈ INmij and z, z′ ∈ Dk

ij .

The notation k used in Assumption 6 is not a power and is not an occurrence
index (1), but it denotes the index of a set in the partition of cardinality

∑
i,j mij .

Notice that if Assumption 6 holds and the density functions are Lipschitz con-
tinuous, then Assumption 5 is automatically satisfied with hij = maxk h

k
ij . In

other words, with Assumption 6 we allow relaxing Assumption 5 to hold only
within arbitrary sets partitioning the state space of the SMPL system. In fact,
we could limit the assumptions to the safe set.

Under Assumptions 3 and 6, we now present a result extending Theorem 2
for the computation of the constant H .

Theorem 3. Under Assumptions 3 and 6, the constant H in Proposition 4 is

H =

n∑
i,j=1

Hij + (n− 1)Mij ,

where Hij = Li maxk h
k
ij +

∑
k |Jk

ij | and Li = L(Πi(A)). The notation Jk
ij =

limz↓ckij tij(z)− limz↑ckij tij(z) denotes the jump distance of the density function

tij(·) at the k-th discontinuity point ckij.

The constantsHij in Theorem 3 are chosen for the satisfaction of the following
inequalities∫

Πi(A)

|tij(z̄i − dij − zj) − tij(z̄i − dij − z′j)|dz̄i ≤ Hij |zj − z′j | . (5)

In some cases, it is possible to obtain a smaller value for Hij by substituting
the density function directly into the inequality in (5). Furthermore Hij may
be independent of the size of the safe set. For instance, if the delay is modelled
by an exponential distribution as in Example 1, then Aij(·) for all i, j ∈ INn

follows a shifted exponential distribution, i.e. Aij(·) ∼ SExp(λij , ςij). In this
case, Hij = λij + λ2ijLi, as per Theorem 3. However if we compute directly the
left-hand side of (5), we get the quantity Hij = 2λij , which is independent of the
shape of the safe set. This fact is now proven in general, for a class of distribution
functions, in Theorem 4. Let us first introduce the following definition.
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Definition 2 (Shifted Exponential Distribution). The density function of
an exponential distribution shifted by ς is given by

t(x;λ, ς) = λ exp{−λ(x− ς)}θ(x− ς) ,

where θ(·) is the unit step function. A random variable X characterised by this
distribution is denoted by X ∼ SExp(λ, ς).

Theorem 4. Any random sequence Aij(·) ∼ SExp(λij , ςij) satisfies inequality
(5) with Hij = 2λij .

Given the previous result, the bound related to the invariance-related abstrac-
tion error over SMPL systems with Aij(·) ∼ SExp(λij , ςij) can be improved and
explicitly shown as follows. The maximum value of the density function tij(·)
equals λij , i.e. Mij = λij for all i, j ∈ INn. By Theorem 3 and Proposition 4, the
bound of the approximation error is then

E = Nδ(n+ 1)
∑
i,j

λij .

Let us go back to Example 2 and adapt according to Definition 2 and Theorem
4.

Example 3. Consider the following two-dimensional SMPL system (1), where
Aij(·) ∼ SExp(λij , ςij) and[

λ11 λ12
λ21 λ22

]
=

[
1/2 1/3
1 1/3

]
,

[
ς11 ς12
ς21 ς22

]
=

[
0 2
2 0

]
.

Considering a regular schedule with s(0) = [0, 0]T and d = 4, selecting safe
set A = [−5, 5]2, and event horizon N = 5, we get E = 32.5δ. In order to
obtain a desired error E = 0.1, we need to use 4597 bins per dimension on a
uniform discretisation of the set A. The solution of the invariance problem over
the abstract model is presented in Figure 2 (right panel).

Let us now validate this outcome. We have computed 1000 sample trajectories,
with an initial condition that has been uniformly generated from the level set
corresponding to the probability 0.3, namely within the set {z : Pz(A) ≥ 0.3}.
Practically, this means we have sampled the initial condition on points cor-
responding to colours warmer than the “orange line.” Given the error bound
E = 0.1, we would expect that the trajectories are invariant with a likelihood
greater than 0.2. Among the cohort, we have found that 374 trajectories stay
inside the safe set for the given 5 steps, which is aligned with the guarantee we
have derived.

Furthermore we have compared the approximate solution against the follow-
ing empirical approach: for each representative point, we generate 1000 sample
trajectories starting from it and compute ratio of the number of trajectories
that stay in the safe set for 5 steps to the total number of trajectories (1000).
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The maximum absolute difference between the approximate solution and the
empirical approach for all representative points is 0.0565, which aligns with the
error bound of 0.1.

We have also done these two comparisons for the SMPL system in Example
2. The results are quite analogous to the ones obtained in this example. ��

Fig. 2. The left and right plots show solution of the finite-horizon probabilistic in-
variance problem for two-dimensional SMPL systems with beta (Example 2) and ex-
ponential (Example 3) distributions, respectively. The plots have been obtained by
computing the problem over finite abstractions obtained by uniform discretisation of
the set of interest and selection of central representative points.

5 Conclusions and Future Work

This work has employed finite abstractions to study the finite-horizon proba-
bilistic invariance problem over Stochastic Max-Plus-Linear (SMPL) systems.
We have assumed that each random variable has a fixed support, which implies
that the topology of the SMPL system is fixed over time. Along this line, we
are interested to relax this assumption in order to obtain results that are robust
against small topological changes. Furthermore, we are interested in considering
extensions of the probabilistic invariance problem. Computationally, we are in-
terested in improving the software and integrating it with FAUST� [35]. Finally,
we have been exploring the existence of distributions associated to an analytical
solution to the finite-horizon probabilistic invariance problem.
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Abstract. In this paper we extend the mean-field limit of a class of
stochastic models with exponential and deterministic delays to include
exponential and generally-distributed delays. Our main focus is the rig-
orous proof of the mean-field limit.

Keywords: mean-field limit, generally-distributed delay, delayed differ-
ential equation.

1 Introduction

In this paper, we further develop the new mean-field methodology introduced in
[16] for a class of massively-parallel generalised semi-Markov processes (GSMPs)
[20,14,15]. We focus on population models where individuals can enable both
Markovian and generally-timed transitions, which are crucial for the accurate
modelling of many real-world computer and networking protocols. We encode
such models in a low-level formalism, the population generalised semi-Markov
process (PGSMP).

The motivation for the mean-field approach is the same as in the continuous-
time Markov chain (CTMC) case — unsurprisingly, GSMP models with many
components also become computationally intractable to explicit state techniques
[7,9] rapidly as a result of the familiar state-space explosion problem. Our ap-
proach is based on the derivation of delay differential equations (DDEs) from
PGSMP models and generalises the traditional mean-field approach as applied
to CTMC models based on ordinary differential equations (ODEs) [1,13,4,17].

The class of models to which our approach applies is very broad — the only
significant restriction we make is that at most one generally-timed transition
may be enabled by each individual in any given local state. However, globally,
there is no restriction on the concurrent enabling of generally-timed transitions
by different individuals.

As in the CTMC case, the size of the system of DDEs is equal to the num-
ber of physical local states that components in the model can be in. Therefore
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this approach represents a significant improvement with respect to both ac-
curacy and efficiency when compared with the traditional CTMC mean-field
approach where generally-timed transitions are approximated using phase-type
distributions. The mean-field approach based on DDEs presented here captures
generally-timed distributions directly without the need for additional physical
states or for approximation of the generally-timed distribution itself.

This paper focuses on the non-racing case, that is, under the assumption that
generally-timed transitions do not compete locally with exponential transitions
(hence the term delay-only PGSMPs). The main contribution is to show how
systems of coupled DDEs can be derived directly from PGSMP models with
generally-timed transitions, and to give a full proof of transient mean-field con-
vergence. The paper is quite proof-heavy; for a worked example, see Section 4,
and for more examples, we refer to [16] and [5].

1.1 Related Work

Related work can be found in the biology and chemistry literature. Systems of
DDEs have been derived to approximate stochastic models of reaction networks
where deterministic delays are possible after reactions occur [3,6,21]. However,
these models differ from those considered here in a number of critical ways; most
importantly, the presentation in this paper lacks the severe rigidity of models
encountered in biology and chemistry, making it suitable for a much larger class
of population models.

Closest related work is due to [16] and [5] which both deal with deterministic
delay-only PGSMPs in different ways; our presentation is closest in spirit to [16],
but the upgrade from deterministic delays to generally-timed delays calls for a
careful and involved analysis.

The approach in [5] highlights the connection to ODE approximations of
DDEs [19] which is directly analogous to the Erlang approximation of the delay
in the PGSMP. The approach in the present paper, however, avoids any Erlang
approximations whatsoever, proving the mean-field limit directly via probability
concentration theorems.

2 Population Generalised Semi-Markov Processes

2.1 Definition of PGSMPs

A PGSMP model consists of many interacting components each inhabiting one
of a finite set of local states S. The global state space, say X , of a PGSMP model
then consists of elements x = (xs)s∈S where each xs ∈ Z+ tracks the number of
components currently in the local state s.

Exponential transitions are specified by a finite set of Markovian transitions
C. Each c ∈ C specifies a finite change multiset Lc, which consists of tuples
(s, s′) ∈ S × S each of which specifies that as part of a c-transition, a distinct,
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uniformly randomly selected component currently in local state s moves to local
state s′. Write also lc = (lcs)s∈S where each lcs := |{(s′, s) ∈ Lc}|−|{(s, s′) ∈ Lc}|,
which represents the total change in components that are in local state s when a
c-transition occurs. The aggregate rate of c-transitions is given by a rate function
rc : X → R+. We assume that the rate function is defined such that it is zero
whenever a transition is not possible due to there not being enough distinct
components in the required local states.

Generally-timed transitions are specified by event clocks in a similar fashion
to standard GSMPs [14]. Specifically, we assume a finite set of event clocks E .
Each event clock e ∈ E is specified by its set of active states Ae ⊆ S, its event
transition probability function pe : S ×S → [0, 1] and the clock time distribution
given by a cumulative distribution function (CDF) Fe used to the set the clock.

When a component enters a state s in Ae for the first time, the clock is ini-
tialized according to the CDF Fe. After the clock time has elapsed, it moves
immediately to a new local state by sampling from the discrete probability dis-
tribution pe(s, ·). The clock is disabled when the component leaves s and is reset
by resampling from the distribution if it later returns to the set of active states.

As mentioned above, the key restriction we make for all PGSMP models
considered in this paper is that at most one event clock may be active in any
local state. That is, for each s ∈ S, |{e ∈ E : s ∈ Ae}| ≤ 1. We will see that
this restriction is necessary for the mean-field analyses presented in the sequel.
This restriction also means that, with probability one, it is not possible for
two transitions (Markovian or generally-timed) to occur simultaneously within
a single component. Finally, we write x0 for the initial state of the model.

2.2 Delay-Only PGSMPs

We will focus on a class of PGSMPs with the structural restriction that, within
a given component, generally-timed transitions may not be enabled concurrently
with Markovian ones. We refer to such models as delay only since the general
transitions in the constituent components then serve only to introduce generally-
distributed delays between periods of otherwise Markovian behaviour.

Formally, the class of delay-only PGSMPs is specified by two restrictions: for
all e ∈ E ; if s ∈ Ae then there can be no c ∈ C with (s, s′) ∈ Lc; and for each
s ∈ Ae, there must exist some s′ ∈ S such that s′ /∈ Ae′ for any e′ ∈ E and
pe(s, s

′) = 1. The first restriction guarantees that no Markovian transitions are
enabled concurrently with general transitions, as above. The second restriction
guarantees, firstly, that after any general transition completes, the component
jumps into a unique state.1 Secondly, it also ensures that the completion of a
general transition cannot immediately enable another.

1 This is a technical but not, in fact, a modelling restriction, as the state space may be
reconfigured so the general transition is followed by a Markovian transition sampling
from any discrete probability distribution pe.
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2.3 Construction of Delay-Only PGSMPs in Terms of Poisson
Processes

In this section we give a construction of the population processes of a delay-only

PGSMP in terms of Poisson processes. Write x(t) ∈ Z+|S|
for the underlying

population process of a delay-only PGSMP, where xs(t) ∈ Z+ tracks the number
of components currently in the local state s.

Now let {Pc : c ∈ C} be a set of mutually-independent rate-1 Poisson pro-
cesses and, for each e ∈ E , let {T e

i }∞i=1 be mutually independent sequences of
identically-distributed random variables distributed according to Fe, all also mu-
tually independent of the Poisson processes. Then we may write:

xs(t) =x
0
s +

∑
c∈C

lcsPc

(∫ t

0

rc(x(u)) du

)

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)

×
∫ t

z=0

1{
T e
Pc(

∫ z
0

rc(x(u)) du)
≤t−z

} dPc

(∫ z

0

rc(x(u)) du

)
(1)

This is similar to the direct definition of [16]; the extra variables T e
k are nec-

essary due to the more complicated nature of the process.

3 Mean-Field Approximation of Delay-Only PGSMPs

For each local state s ∈ S, we write vs(t) for the mean-field approximation
to the number of components in state s at time t ∈ R+ and we also let
v(t) = (vs(t))s∈S . The mean-field approximations satisfy the following system
of integral equations:

vs(t) = v0s +
∑
c∈C

lcs

∫ t

0

rc(v(u)) du

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)
×
∫ t

0

Fe(t− u)rc(v(u)) du (2)

3.1 Transient Mean-Field Convergence

In this section of the paper, we prove transient mean-field convergence for delay-
only PGSMPs. We begin by constructing a sequence of delay-only PGSMP
models indexed by N ∈ Z+ with increasing total component population size.

Their underlying stochastic processes are denoted {xN (t) ∈ R+|S|}N∈Z+ , where
xN (t) = (xNs (t))s∈S and xNs (t) ∈ Z+ tracks the number of components currently
in the local state s for the Nth model.
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We assume that the set of local states S; the set of transitions C and the
change multisets Lc; the sets of event clocks E , the sets of active states Ae, the
transition probability functions pe and the delay CDFs Fe are all fixed for all
elements of the sequence. The rate functions rNc are allowed to vary with N and
the initial conditions for the Nth model in the sequence are given by Nx0 for

some x0 ∈ Z+|S|
. Write XN ⊆ Z+|S|

for the reachable state space of the Nth
model. Note that following Section 2.3, we may write, in terms of a single set of
Poisson processes {Pc : c ∈ C} and delay variables {T e

i : e ∈ E}∞i=1:

xNs (t) = xNs (0) +
∑
c∈C

lcsPc

(∫ t

0

rNc (xN (u)) du

)

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)

×
∫ t

0

1{
T e

Pc(
∫ z
0

rNc (xN (u)) du)
≤t−z

} dPc

(∫ z

0

rNc (xN (u)) du

)
(3)

Similarly to the case of density-dependent Markov chains [12,18], we assume
that we may define rc(x) := (1/N)rNc (Nx) for all x ∈ R+|S| independently
of N . Furthermore, we assume that rc satisfies a local Lipschitz condition on
R+|S| and that for all c ∈ C, rNc (x) ≤ R‖x‖ for all x ∈ XN where R ∈ R+ is
independent of N . Define the rescaled processes x̄N (t) := (1/N)xN (t) that thus
satisfy rc(x̄

N (t)) = rNc (xN (t)).
We assume that initially, the system is concentrated on the non-active states

C \ ∪e∈EAe, in which case no initialization is necessary for the non-Markovian
clocks. (For a discussion of the issue of initialization in the deterministic delay
case, see [5]). We also assume

‖v0 − x̄N (0)‖ → 0.

Note that in most applications, it is perfectly natural to set a deterministic initial
condition, but we may also allow x̄N (0) to be random; in this case, assume

P(‖v0 − x̄N (0)‖ > ε) → 0.

Theorem 1. Under the assumptions and setup given above, we have, for any
T > 0 and ε > 0:

lim
N→∞

P

{
sup

t∈[0,T ]

‖x̄N (t) − v(t)‖ > ε

}
= 0

Remark. Actually, assuming the initial condition converges almost surely, we
have almost sure convergence in the theorem, which is stronger than convergence
in probability, but, since the probabilistic coupling presented in (3) is a technical
issue with no underlying deeper connection, there is not much of a difference.
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Proof. Define the auxiliary process

yNs (t) := v0s +
∑
c∈C

lcs

∫ t

0

rc(x̄
N (u)) du

+
∑
e∈E

∑
c∈C

( ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

)
×
∫ t

0

Fe(t− u)rc(x̄
N (u)) du

Then

|x̄Ns (t) − vs(t)| ≤ |x̄Ns (t) − yNs (t)| + |yNs (t) − vs(t)|.

Denote

DN
s (T ) = sup

t∈[0,T ]

|x̄Ns (t) − yNs (t)|

We estimate yN (t) − v(t) by

|yNs (t) − vs(t)| ≤
∑
c∈C

|lcs|
∫ t

0

|rNc (xN (u)) − rc(v(u))| du

+
∑
e∈E

∑
c∈C

∣∣∣∣ ∑
s′∈Ae

pe(s
′, s)lcs′ − 1{s∈Ae}l

c
s

∣∣∣∣× ∫ t

0

Fe(t− u)|rc(x̄N (u)) − rc(v(u))| du

≤ ZR

∫ t

0

‖xN (u)− v(u)‖du

where

Z :=
∑
c∈C

|lck,s| +
∑
e∈Ek

∑
c∈C

∣∣∣∣ ∑
s′∈Ae

pe(s
′, s)lck,s′ − 1{s∈Ae}l

c
k,s

∣∣∣∣
and ‖.‖ is the maximum norm on R|S|. We aim to show that DN

s (T ) → 0 in
probability for each s ∈ S; once we have that, we have

‖x̄N (t) − v(t)‖ ≤ max
s∈S

DN
s (t) + ZR

∫ t

0

‖x̄N (u) − v(u)‖du (4)

and an application of Grönwall’s lemma ([12], page 498) readily yields

‖x̄N (t) − v(t)‖ ≤ max
s∈S

DN
s (T ) exp(ZRT ),

proving the theorem.
It now remains to show that for each s ∈ S, DN

s (T ) → 0 in probability as
N → ∞. To see this note that:

DN
s (T ) ≤ |v0s − x̄N

s (0)|+
∑
c∈C

|lcs|
N

sup
t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rc(x̄
N(u)) du

)
−

∫ t

0

rc(x̄(u)) du

∣∣∣∣
+

∑
c∈C

∑
e∈E

Yc,e

N
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0

1{
Te
JN
c (u)

≤t−u

} dJN
c (u)−

∫ t

0

Fe(t− u)rNc (x̄(u)) du

∣∣∣∣∣
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where Yc,e :=
∣∣∑

s′∈Ae
pe(s

′, s)lcs′ − 1{s∈Ae}l
c
s

∣∣, using the shorthand JN
c (u) :=

Pc

(∫ u

0 r
N
c (xN (z)) dz

)
.

The first term converges per our assumptions; we argue that the second and
third terms on the right-hand side converge almost surely. The second term is
handled in the following lemma.

Lemma 1. For any c ∈ C

1

N
sup

t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rNc (xN (u))du

)
−
∫ t

0

rNc (xN (u))du

∣∣∣∣ → 0

almost surely as N → ∞.

Proof. By the Lipschitz-condition, 0 ≤
∫ t

0
rNc (xN (u))du ≤ RTN and thus

1

N
sup

t∈[0,T ]

∣∣∣∣Pc

(∫ t

0

rNc (xN (u)) du

)
−
∫ t

0

rNc (xN (u)) du

∣∣∣∣ ≤
≤ 1

N
sup

s∈[0,RT ]

|Pc(Ns)−Ns| ,

which goes to 0 almost surely by the functional strong law of large numbers
(FSLLN) for the Poisson process ([22], Section 3.2).

To handle the third term we note that:∣∣∣∣∣
∫ t

0

1{
T e

JN
c (u)

≤t−u

} dJN
c (u) −

∫ t

0

Fe(t− u)rNc (xN (u)) du

∣∣∣∣∣ ≤∣∣∣∣∣
∫ t

0

1{
T e

JN
c (u)

≤t−u

} dJN
c (u) −

∫ t

0

Fe(t− u) dJN
c (u)

∣∣∣∣∣
+

∣∣∣∣∫ t

0

Fe(t− u) dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u)) du

∣∣∣∣
(Yc,e’s are constants not depending on N and t, and as such, there is no

need to carry them around.) The two terms on the right hand side require tools
different enough to separate them into Lemmas 2 and 3. The proof of Lemma
2 is essentially a consequence of the FSLLN for the Poisson process, while the
heart of the proof of Lemma 3 is a probability concentration (or large deviation)
theorem (Azuma’s inequality).

We have some more preparations first. We already have that

sup
t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

0

rNc (xN (u))du

)
−
∫ t

0

rNc (xN (u))du

∣∣∣∣ → 0

almost surely as N → ∞. As a direct consequence of this, we also have

sup
s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))du

∣∣∣∣ → 0
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almost surely since

sup
s,t∈[0,T ]

∣∣∣∣∫ t

s

·
∣∣∣∣ = sup

s,t∈[0,T ]

∣∣∣∣∫ t

0

· −
∫ s

0

·
∣∣∣∣ ≤ 2 sup

t∈[0,T ]

∣∣∣∣∫ t

0

·
∣∣∣∣

Also as a preparation, we have

sup
t∈[0,T ]

1

N

∫ t

0

rNc (xN (u))du ≤ sup
t∈[0,T ]

1

N

∫ t

0

R‖xN (u)‖du ≤ 1

N
sup

t∈[0,T ]

NRt = RT

independent of N , again using ‖xN‖ ≤ N and rNc (x) ≤ R‖x‖ ∀x ∈ XN . Lemma

1 then also implies 1
N

∫ t

0
dJN

c (u) ≤ RT + εN , where εN → 0 almost surely as
N → ∞.

Lemma 2

sup
t∈[0,T ]

1

N

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u)−

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣ → 0

almost surely as N → ∞.

Proof. Let ε > 0 be fixed. Write

Fe(t− u) = ge,t,ε(u) + he,t,ε(u),

where g = ge,t,ε is a piecewise constant function with 0 ≤ g(u) ≤ 1 and ‖h‖∞ ≤
ε. Their exact definition is as follows. Take the ε, 2ε, . . . quantiles of Fe(t − u)
(recall Fe(t − u) is a nonincreasing function between 0 and 1); that is, let uk =
inf{u : F (t−u) ≤ kε}. Some of these uk’s may be equal if F has discontinuities.
The number of distinct quantiles is certainly no more than �ε−1�, independent
of N and t.

Let g be the piecewise constant function

g(u) = Fe(t− uk) if u ∈ (uk−1, uk],

so g(u) ≤ Fe(t−u). The choice of uk’s guarantees that h(u) = Fe(t−u)−g(u) ≤ ε.
Then we can write

1

N

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u) −

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣ ≤
1

N

∣∣∣∣∫ t

0

g(u)dJN
c (u) −

∫ t

0

g(u)rNc (xN (u))du

∣∣∣∣+
1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)−

∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣
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Since g is piecewise constant,

1

N

∣∣∣∣∫ t

0

gdJN
c (u)−

∫ t

0

g(u)rNc (xN (u))du

∣∣∣∣ =
1

N

∣∣∣∣∣∣
�ε−1�∑
k=1

g(uk)

(
JN
c (uk) − JN

c (uk−1)−
∫ uk

uk−1

rNc (xN (u))du

)∣∣∣∣∣∣ ≤
1

N

�ε−1�∑
k=1

∣∣∣∣∣g(uk)
(
JN
c (uk) − JN

c (uk−1)−
∫ uk

uk−1

rNc (xN (u))du

)∣∣∣∣∣ ≤
1

N

�ε−1�∑
k=1

∣∣∣∣∣JN
c (uk) − JN

c (uk−1) −
∫ uk

uk−1

rNc (xN (u))du

∣∣∣∣∣ ≤
�ε−1�∑
k=1

sup
s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))

∣∣∣∣ =
�ε−1� · sup

s,t∈[0,T ]

1

N

∣∣∣∣Pc

(∫ t

s

rNc (xN (u))du

)
−
∫ t

s

rNc (xN (u))du

∣∣∣∣ → 0

almost surely as N → ∞ since ε is independent of N .
Since ‖h‖∞ ≤ ε, we have

1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)−

∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣ ≤
1

N

∣∣∣∣∫ t

0

h(u)dJN
c (u)

∣∣∣∣+ 1

N

∣∣∣∣∫ t

0

h(u)rNc (xN (u))du

∣∣∣∣ ≤
ε

N

∣∣∣∣∫ t

0

dJN
c (u)

∣∣∣∣+ ε

N

∣∣∣∣∫ t

0

rNc (xN (u))du

∣∣∣∣ ≤ ε(2RT + εN ),

independent of t (with εN → 0 almost surely as N → ∞).
Letting ε → 0 proves

sup
t∈[0,T ]

∣∣∣∣∫ t

0

Fe(t− u)dJN
c (u) −

∫ t

0

Fe(t− u)rNc (xN (u))du

∣∣∣∣ → 0

almost surely as N → ∞.

Lemma 3

sup
t∈[0,T ]

1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u

}dJN
c (u)−

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ → 0

almost surely as N → ∞.
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Proof. Let ε be fixed. Also fix t for now. We want to prove

P

(∣∣∣∣∣
∫ t

0

1{
T e

JN
c (u)

≤t−u

}dJN
c (u) −

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)

is exponentially small in N via Azuma’s inequality [8,2]. Once we have that,
we can apply Borel–Cantelli lemma (see e.g. [10] Chapter 2.3) to conclude that
for any fixed ε, the above event happens only finitely many times, which is
equivalent to almost sure convergence to 0. To apply Azuma, we need to write the
above integral as a martingale with bounded increments. The measure dJN

c (u)
is concentrated on points u where Pc has an arrival at

∫ u

0 r
N
c (xN (z)dz. Let we

denote these points by u1, u2, . . . . The integral only has contributions from these
points; it is natural to write (using a slightly different notation)

Sl :=
(
1{T e

1 ≤t−u1} − Fe(t− u1)
)
+ · · ·+

(
1{T e

l ≤t−ul} − Fe(t− ul)
)

MN := Pc

(∫ t

0

rNc (xN (z))dz

)
so that ∫ t

0

1{
T e

JN
c (u)

≤t−u

}dJN
c (u) −

∫ t

0

Fe(t− u)dJN
c (u) = SMN .

We first resolve the difficulty that MN is in fact random.

P

(
1

N

∣∣∣∣∣
∫ t

0

1{
T e

JN
c (u)≤t−u

}dJN
c (u) −

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
=

P

(∣∣∣∣SMN

N

∣∣∣∣ > ε

)
=

∞∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε, MN = l

)
≤

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+

∞∑
2RTN+1

P(MN = l) =

2RTN∑
l=0

P

(∣∣∣∣Sl

N

∣∣∣∣ > ε

)
+P(MN > 2RTN).

The sum was cut at 2RTN becauseMN is stochastically dominated by a Poisson
distribution with parameter RTN , so P(MN > 2RTN) is exponentially small
due to Cramér’s large deviation theorem (see e.g. Theorem II.4.1 in [11]):

P(MN > 2RTN) ≤ e−RTN(2 ln 2−1).

(The Cramér rate function of the Poisson-distribution with parameter λ is I(x) =
x ln(x/λ) − x+ λ.)

To apply Azuma to each of the terms P
(∣∣Sl

N

∣∣ > ε
)
, we also need to check that

Sl is indeed a martingale with bounded increments. To set it up properly as a



100 R.A. Hayden, I. Horváth, and M. Telek

martingale, note that {ul} is an increasing sequence of stopping times, so the
filtration {Fl} is well-defined; Fl contains all the information known up to time
ul, including the values of all of the non-Markovian clocks that started by the
time ul.
Sl has bounded increments, since

|1{T e
l ≤t−ul} − Fe(t− ul)| ≤ 1.

The last step to apply Azuma is that we need to check that Sl is a martingale
with respect to Fl. It is clearly adapted, and

E(1{T e
l+1≤t−ul+1}|Fl) = E(E(1{T e

l+1≤t−ul+1}|Fl, ul+1)|Fl) =

E(P(T e
l+1 ≤ t− ul+1)|Fl, ul+1)|Fl) = E(Fe(t− ul+1)|Fl)

shows that it is a martingale as well. (In the last step, we used the fact that ul+1

is measurable with respect to σ{Fl∪{ul+1}} while T e
l+1 is independent from it.)

We have everything assembled to apply Azuma’s inequality:

2RTN∑
l=0

P

(∣∣∣∣Sl − E(Sl)

N

∣∣∣∣ > ε

)
≤

2RTN∑
l=0

2e−
2ε2N2

l ≤

≤2RTN · 2e− 2ε2N2

2RTN = 4RTNe−
ε2N
RT .

In the last inequality, we estimated each term in the sum by the largest one,
which is for l = 2RN .

The estimate obtained is

P

(
1

N

∣∣∣∣∣
∫ t

0

1{
T e

JN
c (u)≤t−u

}dJN
c (u) −

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤

4RTNe−
ε2N
RT + e−RTN(2 ln 2−1).

Remember that t was fixed; we need to upgrade this estimate into an estimate
that is valid for supt∈[0,T ](.) before applying Borel–Cantelli lemma. We do this by
partitioning the interval [0, T ] intoN subintervals uniformly, and then controlling
what happens at the partition points and between the partition points separately.
For the former, we apply the previous estimate. Let

ti :=
iT

N
, i = 0, 1, . . .N,

then

P

(
max

0≤i≤N

1

N

∣∣∣∣∣
∫ ti

0

1{
T e

JN
c (u)≤t−u

}dJN
c (u) −

∫ ti

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤

(N + 1)
(
4RTNe−

ε2N
RT + e−RTN(2 ln 2−1)

)
,

which is still summable.
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Now we turn our attention to the intervals [ti, ti+1]. Since∫ t

0

1{
T e

JN
c (u)≤t−u

}dJN
c (u) and

∫ t

0

Fe(t− u)dJN
c (u)

are both increasing in t, we only have to check that neither of them increases by
more than εN over an interval [ti, ti+1].

Let i be fixed. We handle the two integrals separately. First, for∫ t

0

Fe(t− u)dJN
c (u),

we have∫ ti+1

0

Fe(ti+1 − u)dJN
c (u)−

∫ ti

0

Fe(ti − u)dJN
c (u) =∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) +

∫ ti+1

ti

Fe(ti+1 − u)dJN
c (u) ≤∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) +

∫ ti+1

ti

1dJN
c (u).

The second term is equal to JN
c (ti+1)−JN

c (ti), e.g. the number of arrivals of Pc in
the interval [ti, ti+1]. By the Lipschitz-condition, this is stochastically dominated
from above by Z ∼ Poisson(RT ) given that the length of the interval is T/N ,
and thus

P

(
1

N

∫ ti+1

ti

Fe(ti+1 − u)dJN
c (u) > ε

)
≤ P

(
Z

N
> ε

)
= P

(
Z

ε
> N

)
.

Note that the right hand side is summable in N , its sum being equal to the
expectation of

⌈
Z
ε

⌉
.

To estimate the other term, note that

u ∈ [tl−1, tl] =⇒Fe(ti+1 − u)− Fe(ti − u) ≤ Fe(ti+1 − tl−1) − Fe(ti − tl) =

Fe(ti+1 − tl−1) − Fe(ti+1 − tl) + Fe(ti+1 − tl)− Fe(ti − tl),

which gives ∫ ti

0

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) =

i∑
l=1

∫ tl

tl−1

Fe(ti+1 − u)− Fe(ti − u)dJN
c (u) ≤

i∑
l=1

∫ tl

tl−1

Fe(ti+1 − tl−1) − Fe(ti − tl)dJ
N
c (u) =

i∑
l=1

(Fe(ti+1 − tl−1) − Fe(ti − tl))(J
N
c (tl) − JN

c (tl−1)).
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We use two things here: the fact that (JN
c (tl)− JN

c (tl−1)) is stochastically dom-
inated by Poisson(RT ) and the fact that the sum

i∑
l=1

(Fe(ti+1 − tl−1) − Fe(ti − tl)) =

i∑
l=1

Fe(ti−l+2) − Fe(ti−l) =

Fe(ti+1) + Fe(ti)− Fe(1) − Fe(0) ≤ 2

is telescopic. This means that the whole sum can be stochastically dominated by
Poisson(2RT ) (note that the number of clocks starting at each interval is not in-
dependent, but because of the Lipschitz-condition, we may still use independent
Poisson variables when stochastically dominating the sum). Using the notation
Z ∼ Poisson(RT ) again, we get that

∞∑
N=1

P

(
2Z

N
> ε

)
=

∞∑
N=1

P

(
2Z

ε
> N

)
≤ 2RT

ε
+ 1.

(In fact, P
(
2Z
ε > N

)
goes to 0 superexponentially in N .)

The last term to estimate is the increment of∫ t

0

1{
T e
JN
c (u)≤t−u

}dJN
c (u).

between ti and ti+1, e.g. the number of clocks expiring between ti and ti+1.
Partition the clocks according to which interval [tl−1, tl] they started in.

The number of clocks starting in [tl−1, tl] is stochastically dominated by Z ∼
Poisson(RT ) by the Lipschitz-condition, and for each such clock, the proba-
bility that it goes off in [ti, ti+1] is less than or equal to Fe(ti+1) − Fe(tl−1).
This implies that the number of the clocks starting in [tl−1, tl] and going off in
[ti, ti+1] is stochastically dominated byWi,l ∼ Poisson(RT (Fe(ti+1)−Fe(tl−1))).
The total number of clocks going off in [ti, ti+1] is stochastically dominated by

Poisson(RT
∑i

l=1(Fe(ti+1) − Fe(tl−1))), where the familiar telescopic sum ap-
pears in the parameter. (Once again, the Lipschitz-condition was used implicitly.)
So the total number of clocks going off in [ti, ti+1] is stochastically dominated
by Poisson(2RT ), which means we arrive at the also familiar P

(
2Z
ε > N

)
value,

which we already examined and proved to be summable in N .
Putting it altogether, we get that

P

(
sup

t∈[0,T ]

1

N

∣∣∣∣∣
∫ t

0

1{
T e
JN
c (u)

≤t−u

}dJN
c (u)−

∫ t

0

Fe(t− u)dJN
c (u)

∣∣∣∣∣ > ε

)
≤ CN,ε

where
∞∑

N=1

CN,ε < ∞,

so the Borel–Cantelli lemma gives almost sure convergence as N → ∞.
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With Lemmas 1-3 finished, the proof of Theorem 1 is complete.

Theorem 1 proves mean-field convergence in the transient case. The question
of stationary regime is quite different; for some remarks on the stationary regime,
we refer to Section 5 of [16].

4 Example

In this section, we derive the system of DDEs as defined in the previous section
for a simple example model of a peer-to-peer software update process. For a more
detailed discussion of a peer-to-peer update example, we refer to [16], where es-
sentially the same model was introduced, albeit with deterministic delays instead
of general ones.

We consider two general types of nodes in this model which we term old and
updated. Old nodes are those running an old software version and new nodes are
those which have been updated to a new version. Nodes alternate between being
on and off ; when an old node turns on, it searches for an update in peer-to-peer
fashion, with the probability of successfully finding an update being proportional
to the number of nodes already updated. If it does not find an update, it gives
up after a timeout. After that, it stays on for some time and then eventually
turns off. New nodes do not search for updates, just alternate between on and
off. We assume that the off time of a node is random and Pareto-distributed.
So, nodes have five possible local states: updated nodes can be on and off, which
we denote by a and b, respectively. Old nodes can be on (c), off (e) or in a state
representing an old node which is on but has given up seeking updates (d). In
the notation of Section 2.1, the set of local states is thus S := {a, b, c, d, e}. The
local behaviour of a node is depicted in Figure 1.

In this example, we consider all transitions to be Markovian except for the
transitions bringing nodes from their off state into their on state, which have
density function f(s). Formally, there are two event clocks t0 and t1 with At0 :=
{e}, dt0 := η, pt0(e, c) = 1, At1 := {b}. dt1 := η and pt1(b, a) := 1.

The DDEs corresponding to this model are:

v̇a(t) = − ρva(t) + βvc(t)va(t) + ρ

∫ t

0

va(t− s)f(s) ds

v̇b(t) = − ρ

∫ t

0

va(t− s)f(s) ds+ ρva(t)

v̇c(t) = − ρvc(t) − βvc(t)va(t) − κvc(t)

+ ρ

∫ t

0

(vd(t− s) + vc(t− s))f(s) ds

v̇d(t) = − ρvd(t) + κvc(t)

v̇e(t) = − ρ

∫ t

0

(vd(t− s) + vc(t− s))f(s) ds+ ρvd(t) + ρvc(t)
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Fig. 1. Representation of the behaviour of a single node in the delay-only software
update model
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Fig. 2. Delay-only software update model rescaled DDE approximation (solid lines)
compared with rescaled actual means for N = 20, 50 and 200 (dashed lines). Initial
component proportions are (0.1, 0, 0.9, 0, 0) and parameters are β = 2.0, ρ = 0.1,
κ = 0.67 with f(s) a Pareto density with scale parameter 1.5 and shape parameter 0.9.

This system of DDEs can be integrated numerically by adapting existing ODE
solvers or specialised DDE routines such as the dde23 routine in MATLAB R©. The
solution of these DDEs for one set of parameters is shown in Figure 2 compared
with the corresponding rescaled component-count expectations as computed by
many stochastic simulation replications. We observe that the means do appear
to converge to the mean-field solutions in line with Theorem 1.
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Abstract. Markov Population Model is a commonly used framework to
describe stochastic systems. Their exact analysis is unfeasible in most
cases because of the state space explosion. Approximations are usually
sought, often with the goal of reducing the number of variables. Among
them, the mean field limit and the quasi-equilibrium approximations
stand out. We view them as techniques that are rooted in independent
basic principles. At the basis of the mean field limit is the law of large
numbers. The principle of the quasi-equilibrium reduction is the sepa-
ration of temporal scales. It is common practice to apply both limits to
an MPM yielding a fully reduced model. Although the two limits should
be viewed as completely independent options, they are applied almost
invariably in a fixed sequence: MF limit first, QE reduction second. We
present a framework that makes explicit the distinction of the two reduc-
tions, and allows an arbitrary order of their application. By inverting the
sequence, we show that the double limit does not commute in general:
the mean field limit of a time-scale reduced model is not the same as
the time-scale reduced limit of a mean field model. An example is pro-
vided to demonstrate this phenomenon. Sufficient conditions for the two
operations to be freely exchangeable are also provided.

1 Introduction

Many complex systems whose dynamics is the result of the interaction of popula-
tions of indistinguishable agents can be described by Markov Population Models
(MPM, [9,17]). This is the case, for instance, for biological systems and com-
puter systems like queuing networks. Quantitative formal methods offer a pow-
erful framework to describe and analyse them, using tools from verification and
model checking. However, formal analysis of the Continuous Time Markov Chain
(CTMC) that underlies an MPM is extremely challenging due to its usually large
state space. Approximation techniques are therefore extremely useful, as they
can lead to considerable simplifications of the analysis phase.

In this paper, we discuss two such methods. The first one is the fluid or
mean-field approximation [9,12,1]. It has received considerable attention in the
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quantitative formal methods community in the past years with applications also
to passage time computations [16] and stochastic model checking [5,10]. This
method is based on a version of the law of large numbers for stochastic processes,
known as Kurtz’ theorem [12] which guarantees that, for large populations, an
MPM is close to a (deterministic) ordinary differential equation (called fluid or
mean-field ODE), converging to the latter in the limit of infinite population.
This approximation holds for the transient behaviour under mild conditions on
rate functions and model transitions, and can be extended to the steady state
behaviour under additional assumptions on the limit ODEs [3,2].

Multiple time scale reduction, on the other hand, is based on a common in-
trinsic property of multi-dimensional dynamical systems to equilibrate unevenly.
Several dimensions can be removed from a model if certain degrees of freedom
equilibrate much faster than the rest. This is achieved by identifying the fast
components and approximating them with the conditional equilibrium distribu-
tion. A rigorous definition involves singular perturbation [28]: A model that is a
singular perturbation of another model is a multi-scale model. But this definition
is too restrictive for real life situations (models with numerical rate constants of
the same order may be multi-scale). Several methodologies and criteria to de-
tect multiple time scales have been developed over the years: quasi-equilibrium
and quasi-stationary state [18], computational singular perturbation[19], intrin-
sic low dimensional manifold [22] etc. Most of them have originated in chemistry
[18,22,19] (ODE models) and [24,23,11,29] (stochastic models) and quite often
the impression is that ODE and stochastic reductions are based on different as-
sumptions. In the present article we propose a framework that eliminates this
prejudice for a special, but important class of so-called quasi-equilibrium reduc-
tions [6]. Our contributions can be summarised as follows:

– we provide a consistent and constructive definition of the quasi-equilibrium
reduction for MPMs. In particular, we treat uniformly mean field equations
and stochastic processes by constructing reductions at a level of the MPM
formalism [17]. For the stochastic case, we also formally prove the conver-
gence of the full model to the reduced one when fast and slow time scales
diverge.

– by examining the relationship between the QE reduction of the MF limit of
a population process and the MF limit of the QE-reduced stochastic system
we give sufficient conditions for the mean-field limit of the reduced stochastic
system to exist and to be equal to the reduced mean field model. We also
show that this is not true in general, and discuss scenarios where, application
of the two limits in different order results in non-equivalent approximations.

The paper is organised as follows: In Section 2, we introduce Markov Popula-
tion Models, while in Section 3 we review the mean-field approximation. Section
4, instead, is devoted to the presentation of the Quasi-Equilibrium reduction,
both for differential equations and for MPMs. Section 5 contains our results
about the relationship between mean-field and quasi-equilibrium, while in Sec-
tion 6 we draw the final conclusions.
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2 Markov Population Models

A Markov Population Model [17,9] is a simple formalism to describe models
of populations of interacting agents based on Continuous-Time Markov Chains
(CTMC). The formalism is inspired by chemical reaction networks [15], and is
formally characterised by a tuple X = (X,M, T ,X0) where

1. X = (X1, . . . , Xn)
ᵀ is a (column) vector of variables describing the n species

of the model.
2. M is the domain of X. Usually Xi counts the number of elements in a

population of a species, therefore we assume Xi ∈ N and M ⊆ Nn.
3. T = {τ1, . . . , τr} is the set of r transitions, of the form τ = (ν,W ), where:

(a) ν = (ν1, . . . , νn)
ᵀ ∈ M is a (column) update vector. This vector deter-

mines the stoichiometry of a transition, i.e. its elements equal the net
change of the corresponding variable due to the transition.

(b) W : M �→ R≥0 is the rate function. We impose that all rate functions
satisfy W (X) ≥ 0 and W (X) = 0 if X+ ν /∈ M.

4. X0 ∈ M is the initial state: the process starts in X0 with probability one.

An MPM describes a Markovian stochastic process X(t) with r competing
Poissonian (memoryless) transitions X −→ X + νj , with rates Wj(X). Its ana-
lytic formulation is a ‘master equation’ for the probability mass P (X; t):

∂tP (X; t) =
r∑

i=1

{Wi(X− νi)P (X − νi; t)−Wi(X)P (X; t)} . (1)

2.1 A Self-repressing Gene Network

We introduce now a simple ‘running’ example to illustrate the main concepts
of the paper. Specifically, we consider the simplest gene network, composed of
a single gene repressing its own expression. Despite its simplicity, this system
is ubiquitously present in the genome [21]. We model it by a PCTMC X =
(X,M, T ,X0) with three variables, X = (X1, X2, X3), counting the amounts of,
respectively, the repressed gene (X1); the active, protein-producing gene (X2);
and the protein (X3). The transcription-translation is lumped in one single step.
The state space is M = {0, . . . , N}×{0, . . . , N}×N, where N is the number of
copies of the gene in the system (cf. also the discussion at the end of Section 3).
The model is specified by the following four transitions:

– τ1 = (ν1 = ( 0, 0, 1)ᵀ,W1(X) = εkpX2) – protein production;
– τ2 = (ν2 = ( 0, 0,−1)ᵀ,W2(X) = εkdX3) – protein degradation;
– τ3 = (ν3 = (−1, 1, 0)ᵀ,W3(X) = kbX2X3/N) – repression, caused by the

protein binding to a gene;
– τ4 = (ν4 = (1,−1, 0)ᵀ,W4(X) = kuX1) – the unbinding event.
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Two remarks are in order: first, we do not remove a protein from the system when
it bounds to the repressor. This is a minor tweak that simplifies the following
discussion. Secondly, as typical for bimolecular reactions [15], we rescale the
binding rate by the volume N , which for simplicity we assume here to equal the
total amount of genes. In this way, the (copy number) concentration of the gene
is between zero and one.

3 The Mean Field Limit of a MPM

Consider a MPM for a fixed system size N . The system size is usually inter-
preted as either the total population (typical of ecology and queueing networks’
applications), or volume (chemical reaction networks). We can easily define a
normalised MPM, by dividing variables by N , XN = X/N , and expressing
rates and updates with respect to these new variables. We call MN the nor-
malised state space, and further assume that the normalised state space satisfies⋃

N∈N MN ⊆ E for some open set E ⊆ Rn. We call WN
j : E �→ R≥0 the nor-

malised rate functions for system size N , and assume WN
j (x) is defined for each

x ∈ E (as usually the case).

Assumption 1. We require that:

(a) For each j = 1, . . . , r, uniformly for x ∈ E it holds that

wj(x) = lim
N→∞

WN
j (x)

N
. (2)

(b) Smoothness of functions wj(x), at least locally Lipschitz continuous.
(c) The normalised initial conditions converge: XN

0 → x0 ∈ E.

Under this assumption, the sequence of MPMXN (t) converges (in probability,
for any finite time horizon) to the solution x(t) = x(t,x0) of the initial value
problem

dx

dt
(t) = F (x(t)) , x(0) = x0 , F (x) =

r∑
i=1

νiwi(x), (3)

where F (x) is the (mean field) drift of the MPM. More formally, the following
theorem holds [12]:

Theorem 1. Under conditions a, b, and c above, for any T < ∞ and ε > 0,

lim
N→∞

P

{
sup
t≤T

∥∥XN (t) − x(t)
∥∥ > ε

}
= 0.

We stress that Theorem 1 holds for any finite time window but it does not
address the important question of steady state behaviour (T = ∞). Here the
phenomenology is much wilder, and few things are known with certainty. How-
ever, if the mean field ODE (3) has a unique, globally attracting steady state
x(∞), i.e. for each x0 ∈ E, limt→∞ x(t,x0) = x(∞), then we have [3,2,9]:
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Theorem 2. Under the conditions of Theorem 1, if XN (t) is ergodic and x(t,x0)
has a unique globally attracting steady state, then

lim
N→∞

XN (∞) = δx(∞) in probability,

where δx(∞) is the point-wise mass probability at x(∞).

Running Example. The mean field equations for the simple gene model are

dx2
dt

(t) = −dx1
dt

(t) = kbx2x3 − kux1 ,
dx3
dt

(t) = εkpx2 − εkdx3 .

Theorem 1 asserts that a solution of these ODEs is exactly equivalent to the
corresponding MPM in the limit N = ∞. The important question is whether
this ODE is an acceptable approximation when N < ∞, as is always the case
in practice. Intuitively, if there are many (paralogue) copies of the gene, so that
transcription can happen concurrently, this ODE may be expected to be an ex-
cellent approximation to the MPM with a finite, but large N . If the number
of gene copies remains small and constant with respect to N , we can still con-
struct a hybrid limit, see [4]. For a discussion about the accuracy of mean field
approximation, see [9].

4 Quasi-Equilibrium Reduction

In this section we provide formal definitions of the Quasi-Equilibrium framework
with two objectives in mind. Firstly, we aim at generalising the ‘canonical’ setting
where the fast and slow components of a model are decoupled by premise. We
assume that they could be entangled, paying the price of a little extra formality.
The second goal is to present a formal guideline of reducibility in the form of a
list of easily verifiable conditions. This is achieved in Assumption 2 of section 4.3.
However, we start by recalling two key ingredients of the reduction, coordinate
transforms and stoichiometric invariants applied to MPMs.

4.1 Image of a MPM under a Change of Coordinates

A linear operator L acting on a finite dimensional vector space M is equivalent to
matrix multiplication. We would like describe the L-action on an MPM. Define
LA(x) = Aᵀ ·x, where A is a real n×m matrix, and x ∈ M. If, in addition, y =
LA(x) is invertible (A is a square, invertible matrix) then the inverse, denoted
by x = L−1

A (y), is unique and L−1
A = LA−1 .

Fix such an invertible L and consider an MPM X = (X,M, T ,X0). The
L-image of X is defined as XL := L ◦ X = (Y,N , T ,Y0), where

– Y = L(X), Y0 = L(X0), and N = L(M);
– Each transition τ = (ν,W ) of X becomes the transition τ ′ = (μ,W ′), where

μ = L(ν) and W ′(y) =W (L−1(y)).

It is obvious that, as L preserves all the update rules X −→ X + νj , XL is
equivalent to X , in a sense that XL represents the same stochastic process as X ,
viewed in transformed coordinates Y = L(X).
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4.2 Image of a MPM under a Stoichiometry Reduction

The n × r stoichiometry matrix S of a MPM X is a matrix composed from all
the state change vectors ν, arranged as columns:

SX =
(
ν1, . . . ,νr

)
. (4)

Two important characteristics of S are, the rank rank (S), and the co-dimension

codim (S) := n− rank (S) ≥ max{0, n− r} . (5)

A MPM X is called (stoichiometry) reducible iff mX := codim (SX ) > 0.
By definition, there exist mX linearly independent vectors c1, . . . , cmX such
that Lci(νj) = 0 for all i, j. This implies, for each Yi = Lci(X), a transition
Yi −→ Yi + Lci(νj) = Yi. Therefore, the vector Y = (Y1, . . . , YmX ) is conserved
by dynamics. Its components are called p-invariants. They maintain constant
values throughout dynamics therefore they can be made into parameters, rather
than remaining independent variables. To achieve this, fix additional n − mX
vectors k1, . . . ,kn−mX , requiring that {ci} and {kj} should span M. We arrange
those vectors in two matrices C =

(
c1, . . . , cmX

)
and K =

(
k1, . . . ,kn−mX

)
. The

matrix
(
C,K

)
is then invertible by definition. The (stoichiometry) reduced image

of X is defined as XC,K := (Z,K, T , {Z0,Y0}) where

– Z = LK(X), K = LK(M), Y0 = LC(X0), and Z = LK(X0);
– Each transition τ = (ν,W ) of X becomes the transition τ = (σ,WY0),

where σ = LK(ν) and WY0(Z) =W
(
L−1
(C,K)(Y0,Z)

)
.

Running Example. Going back to the example of section 2.1, we have

S =
(
ν1,ν2,ν3,ν4

)
=

⎛⎝0 0 −1 1
0 0 1 −1
1 −1 0 0

⎞⎠ .

We may recognise that c = (1, 1, 0)ᵀ is a p-invariant of the system. Letting
k1 = (0, 1, 0)ᵀ, k2 = (0, 0, 1)ᵀ, we obtain the following reduced PCTMC model:

– Z = (Z1, Z2) = (X2, X3), Y0 = N , K = {0, . . . , N} × N;
– State changes σi are obtained from the corresponding νis by crossing out

the first element. Rates W̃ are equal to W s expressed in the new variables
Z. The rate of the ‘unbind’ transition becomes W̃4(Z1, Z2) = ku(N − Z1).

4.3 Fast-Slow Rate and Variable Decomposition of a PCTMC

We are now in position to describe the quasi-equilibrium reduction.

Assumption 2. Consider an MPM X = (X,M, T ,X0) such that



112 L. Bortolussi and R. Paškauskas

(a) There exist two parameters T slow > T fast > 0 and an integer s, 1 < s < r,
such that the ordering of all rate functions

W1(X) ≤ · · · ≤ Ws(X)︸ ︷︷ ︸
slow transitions

≤ N

T slow
<

N

T fast
≤ Ws+1(X), . . . ,Wr(X)︸ ︷︷ ︸

fast transitions

(6)

is valid for all X in a sufficiently large subspace of M, containing the initial
condition X0. This condition is equivalent to requiring that rate functions

behave with respect to dimensionless parameter ε = T fast

T slow as follows

Wi(X; ε) ∼
ε→0

εW0,i(X) +O(ε2) , i = 1, . . . , s (7)

Wi(X; ε) ∼
ε→0

W0,i(X) +O(ε) , i = s+ 1, . . . , r (8)

where W0,i(X) are functions that do not depend on ε.
The set of transitions T is thus partitioned into slow transitions T slow =
{τ1, . . . , τs}, and fast transitions T fast = {τs+1, . . . , τr}.

(b) X restricted to T fast is stoichiometry reducible according to section 4.2, i.e.

m := codim (νs+1, . . . ,νr) > 0 . (9)

If both these conditions are satisfied, we may separate slow and fast com-
ponents of X, such separation being the basis of the subsequent dimensional
reduction. Matrices C and K can be identified such that, following section 4.1,
(C,K) is invertible and LC(νi) = 0, but only for i = s+ 1, . . . , r. Define

Y = (Y1, . . . , Ym) = LC(X)︸ ︷︷ ︸
slow variables

Z = (Z1, . . . , Zn−m) = LK(X)︸ ︷︷ ︸
fast variables

(10)

Note that Y, owing to its definition in terms of fast transitions rather than all
transitions, is not a p-invariant. This means that some transitions of the slow
variable will occur, given by the updated vectors μ, defined as follows

LC

(
ν1, . . . ,νs,νs+1, . . . ,νr

)
=
(
μ1, . . . ,μs,0, . . . ,0

)
.

The fast subspace update vectors are similarly defined: σi = LK(νi).

Running Example. We assume that ε � 1 is a small dimensionless parameter.
This assumption implies the partition T slow = {τ1, τ2} and T fast = {τ3, τ4}.
If all other parameters are O(1), then there is a large gap between T fast and
T slow, guaranteed by the smallness of ε, which we leave as the scale separation
parameter. The procedure of stoichiometry reduction, applied to T fast, provides

m = codim

(
1 −1
0 0

)
= 2 − 1 = 1 .

Since m > 0, this model is QE-reducible and indeed, c = (0, 1)ᵀ is a p-invariant
of T fast. Complementing the basis with k = (1, 0)ᵀ we conclude that the slow
variable is Y = Lc(X) = X3 (protein) and the fast variable is Z = Lk(X) = X2

(active gene). The ε-rescaled rates W0,i, expressed in the slow-fast variables, are

W0,1 = kpZ, W0,2 = kdY, W0,3 = kbY Z/N, W0,4 = ku(N − Z). (11)
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4.4 Quasi-Equilibrium Reduction of the Mean-Field Model

As a demonstration of utility of our formalism, we will obtain the canonical equa-
tions of the singular perturbation theory [28] from the standard quasi-equilibrium
approximation of ODEs.

Recall from Section 3 the definition of limit rate functions (2) and that of
the limit drift vector F (x) =

∑r
i=1 νiwi(x; ε), where we made explicit the de-

pendence on a small parameter ε. If the MPM satisfies Assumption 2, then the
asymptotic ε → 0 dependence of the rate functions is wi(x; ε) ∼ εw0,i(x)+O(ε

2)
for i = 1, . . . , s, and wi(x; ε) ∼ w0,i(x)+O(ε) for j = s+1, . . . , r and 1 < s < r.
Define the slow variables y = LC(x), the fast variables z = LK(x), and the slow
time τ = εt. It is then straightforward to demonstrate that the mean field limit
equations are equivalent to

dy

dτ
= G(y, z) +O(ε), ε

dz

dτ
= H(y, z) +O(ε) (12)

where

G =

s∑
i=1

LC(νi)w0,i(L
−1
(C,K)

(
y, z)

)
, H =

r∑
j=s+1

LK(νj)w0,j(L
−1
(C,K)

(
y, z)

)
.

Since ε multiplies the highest order derivative in (12) (right), the perturbation
in ε is singular [28]. The construction of a reduced model from equations (12) is
governed by further assumptions provided by the Tikhonov theorem [28, Theo-
rem 8.1].

Assumption 3. Consider the initial value problem (12) for τ ≥ 0, with y(0) =
y0, z(0) = z0. We further require:

(a) the drifts G(y, z) and H(y, z) are sufficiently smooth functions of their ar-
guments.

(b) a unique solution yε(τ), zε(τ) of the initial value problem (12) exists;
(c) a unique solution y(τ), z(t) of the reduced initial value problem exists; the

reduced problem being defined by

dy/dτ = G(y, z), y(0) = y0, 0 = H(y, z),

(d) equation 0 = H(y, z) is solved by z = φ(y) where φ is continuous, and it is
an isolated root;

(e) z = φ(y) is an asymptotically stable solution of dz/dt = H(y, z) uniformly
in y(τ), considered as a (fixed) parameter;

(f) z(0) is contained in an interior subset of the domain of attraction of z = φ(y)
for y = y(0).

The previous conditions guarantee that the solution of the reduced problem
(defined in (c) above) is actually the ε → 0 limit of the original system, as
proved in the following:

Theorem 3 (Tikhonov (1958)). Under conditions (a)–(f) above, ∀T < ∞

lim
ε→0

yε(τ) = y(τ), lim
ε→0

zε(τ) = z(τ), 0 < τ ≤ T (13)
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Running Example. In our example, the slow variable y is the protein con-
centration, the fast variable z is the active gene concentration. They satisfy
(12) in the slow time variable τ = εt, with G(y, z) = kpz − kdy and H(y, z) =
kbyz− ku(1− z). Solving H(y, z) = 0 for z, we get φ(y) = ku

ku+kby
, hence finding

the classic ODE for lumped gene transcription:

dȳ

dτ
=

kpku
ku + kbȳ

− kdȳ

4.5 The Quasi-Equilibrium Reduction of an MPM

Let the Assumption 2 hold for (1) (the rate functions and the variable are de-
composable into fast and slow subsets). Inserting the decomposition, described
in section 4.3, into (1), yields

∂tP (Y,Z; t) =

r∑
i=1

{
Wi(Y − μi,Z− σi)P (Y − μi,Z− σi; t)

−Wi(Y,Z)P (Y,Z; t)
}
, P (Y,Z; 0) = P0(Y,Z). (14)

In addition to requiring that a corresponding MPM satisfies Assumption 2, we
further require

Assumption 4. (Ergodicity)

(a) The full process X(t) = (Y,Z)(t) is ergodic;
(b) The stochastic process ZY(t) describing the fast subsystem is ergodic for

each fixed Y.

Under these further requirements, the master equation of the reduced system is

∂τP (Y; τ) =

s∑
i=1

{
W̃∞

0,i(Y − μi)P (Y − μi; τ) − W̃∞
0,i(Y)P (Y; τ)

}
(15)

W̃∞
0,i = EZY(∞)(W0,i(Y,Z)) =

∑
Z

W0,i(Y,Z)PY(Z), i = 1, . . . , s (16)

and ZY(∞) is the unique steady state measure of the fast process ZY(t) (due
to 4.b), with PY(Z) being the steady state probability of the master equation

∂tPY(Z; t) =

r∑
j=s+1

{
W0,j(Y,Z−σj)PY(Z−σj ; t)−W0,j(Y,Z)PY(Z; t)

}
(17)

The slow process Ỹ(τ) defined by the master equation (15) is indeed the limit
of the full process for ε → 0 (see [7] for the proof):
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Theorem 4 (Quasi-equilibrium reduction). Under assumptions 4.(a)–(b),

lim
ε→0

∑
Z

P (Y,Z; τ/ε) = P (Y; τ) (18)

for all T > 0 and 0 ≤ τ ≤ T . ��
We can now lift Theorem 4 to the MPM level. Consider an MPM X =
(X,M, T ,X0), that is QE reducible (see section 4.3). The quasi-equilibrium
image of X is defined as X qe = (Y,N , T slow, {Y0,Z0}), where
– Y = LC(X), N = LC(M), Y0 = LC(X0), and Z0 = LK(X0);
– Each slow transition τ = (a,ν,W ) ∈ T slow of X becomes the transition

τ = (a,μ, W̃∞
0 ), where μ = LC(ν) and W̃

∞
0 (Y) is defined by (16).

It is also straightforward to define a family of MPMs for the fast subsystem,
parameterised by the slow variable Y, described by the master equation (17).

Running Example. The most important new information are the expressions
for the averaged slow rates, given by the definition (16). We find

W̃0,1(Y ) =
∑
Z

kpZP Y (Z) = kp〈Z〉ZY (∞) , W̃0,2(Y ) = kpY. (19)

These rates, together with the state change vectors μ1 = 1, μ2 = −1, complete
the definition of a reduced MPM, which is easily seen to describe a birth-death
process. The rates of this process are given by (19). In this simple case, the
fast process, conditional on Y , is also a birth-death process, hence owing to the
linearity of (11), we get 〈Z〉ZY (∞) =

Nku

ku+kbY/N , which gives an explicit expression

for the rates of Y . We emphasise that in general this is not true, as the stationary
distribution of ZY may not be known explicitly, so that one has still to rely on
numerical methods, like simulation [29].

5 Comparing Mean Field and Quasi-Equilibrium

Consider an MPM X , and, as in Section 3, let XN (t) be the normalised model
with respect to system size N . In this paper we have introduced two possible
model simplification strategies: the mean field approximation and the QE reduc-
tion. To fix notation in the rest of this section, we will refer to the former by
the operator M, and to the latter by the operator Q. Hence, M(XN (t)) = x(t)

is the mean field limit of XN (t), and Q(XN (t)) = ỸN (τ) is the QE reduction
of XN (t), whereas Q(x(t)) = ỹ(τ) = Q(M(XN (t))) the QE reduction of x(t).

The issue we wish to address in this section is how these two procedures are
related. In particular, it is natural to ask if the two operatorsM and Q commute,
as shown in Fig. 1. The diagram illustrates the following two possibilities. We
could either construct the QE reduction upon the mean field limit of a MPM
XN (t) and obtain a deterministic process ỹ(τ), or we could first apply the QE

reduction toXN (t), and then attempt to construct the mean field limit of ỸN (t).
Two questions arise naturally
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Population size → ∞

S
ca
le

sep
a
ra
tio

n
→

∞

MPM MF

QE MF+QE

M

Q
Q

M time

X3

N

Fig. 1. Left: commutation diagram. The curved paths illustrate two distinct limiting
procedures to arrive from an MPM to a fully reduced model. Right: toggle switch
counter example to Theorem 5. The blue curve is the solution of the reduced mean
field ODE, while the solid black curve is the average of the reduced stochastic process,
which is bistable (cf. the empirical distribution on the right).

1. Does M(Q(XN (t))), i.e. the mean field limit of ỸN (τ) exist?
2. If so, is it the same as ỹ(τ) = Q(M(XN (t))), i.e. does the diagram in Figure

1 commutes?

We show that the answer is ‘yes to both questions’ only if some additional re-
quirements for the fast subsystem are fulfilled. We will demonstrate that the
answer to question 2 is ‘no in general’, and that even question 1 may have
a negative answer. The problem is intimately connected with the extension of
Theorem 1 to the steady state, hence with Theorem 2. In fact, when we con-
struct the QE reduction Q(XN (t)) of XN (t), we need to average the slow rates
with respect to the steady state distribution ZN

Y(∞) of the fast subsystem ZN
Y .

Assumptions 4.(a) and 4.(b) enforce ergodicity, hence existence and uniqueness
of such a steady state distribution ZN

Y(∞) for each N and Y. However, to con-
struct the mean field limit of Q(XN (t)), we also need to know how such sequence
behaves as N goes to infinity. Essentially, we need to know if it has a limit, and
what such limit is. Unfortunately, this is one of the most delicate points of mean-
field approximation theory: Little is known about the limiting behaviour of the
steady state, except from Theorem 2. Hence, we can provide a positive answer to
questions 1 and 2 only if we place ourselves in the conditions of such a theorem.
This leads to the following

Assumption 5. The solution z = φ(y) of 0 = H(y, z) is unique, i.e. the mean
field limit of the fast subsystem z̄(t) = z̄(t,y) has a unique, globally attracting
equilibrium φ(y) for each value of the slow variables y.

Under this assumption, we can apply Theorem 2 and conclude that, for each
Y, it holds that ZN

Y(∞) → δφ(Y) in probability. At this stage, however, we need
a further technical assumption (see also Remark 1):

Assumption 6. ZN
Y(∞) converges to δφ(Y) uniformly in Y, i.e. ∀ε > 0,

lim
N→∞

P

{
sup

Y∈NN

‖ZN
Y(∞) − φ(Y)‖ > ε

}
= 0.
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Under these two additional assumptions, it is easy to show that

W̃∞
0,i(y)

N
−→
N→∞

w0,i(y) (20)

uniformly in y. This readily implies that the drift of the QE-reduced process

ỸN (t), F̃N (y) :=
∑

νi
W̃∞

0,i(y)

N converges uniformly to the drift G(y,φ(y)), defin-
ing the vector field of the QE-reduced mean field limit, as in equation (12), which
is sufficiently regular by hypothesis 3.(a). Hence, the conditions of Theorem 1

are satisfied by the sequence of processes ỸN (t), and we can conclude that

Theorem 5. Under Assumptions 5 and 6 above, with T < ∞ fixed and for each
t ≤ T , M(Q(XN (t))) exists and M(Q(XN (t))) = Q(M(XN (t))) . ��

Remark 1. Assumption 2 requires that the convergence of the sequence of steady
state measures of the fast subsystem to their limit point-wise distribution is
uniform in the slow state Y. We conjecture this is in fact true without any
further requirement on the MPM. A heuristic argument goes as follows: by the
functional central limit [12], we know that the fast subsystem will behave like a
Gaussian process for N large enough. In particular, the steady state distribution
of ZN

Y(∞) will be approximatively Gaussian with mean φ(Y) and Covariance
matrix CN (Y) = 1√

N
C(Y), where C(Y) does not depend on N and it is the

steady state solution of the covariance linear noise equations [13]. As such, it will
depend continuously on Y. Using similar arguments as in the proofs of Kurtz
theorem, we can guarantee that the eigenvalues of C(Y) are uniformly bounded
by a constant Λ < ∞, which implies that we can find a uniform bound in Y on
the spread of the steady state distribution, going to zero as the population size
N diverges. A formal proof of Assumption 6 seems to be strictly related to the
availability of explicit bounds for the convergence in probability of ZN

Y(∞) to
δφ(Y), which is still an open issue, see also [8].

Running Example. The mean field equation for the fast variable z in the self-
repressing gene example is linear, so that it is easy to see that it has a unique
globally attracting equilibrium for each y. Furthermore, for any N and y, it holds
that W̃∞

0,1(y)/N = w0,1(y) (cf. the expression of W̃∞
0,1(y) computed at the end

of last section), hence Assumption 6 is trivial in this case. Therefore Theorem 5
applies: mean field and time scale reduction commute.

5.1 On the Necessity of Assumption 5

Assumption 5, on the other hand, is quite crucial for Theorem 5 to hold. With-
out it, we cannot say much about the limit behaviour of the sequence of steady
state measures of the fast subsystem, a part from the fact that each limit point
will be supported in the Birkhoff center of the limit mean field dynamical sys-
tem [9,3]. If this system has only stable and unstable equilibria as invariant
sets (e.g. it satisfies the conditions of [20]), then each limit point of the sequence
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of steady state measure will be supported in those equilibria, but this is as
much as we can say. In particular, we cannot guarantee the existence of a limit
for such a sequence, hence the reduced stochastic model may not be amenable
of mean field approximation. However, we can argue that, in case the limit of
ZN
Y(∞) is defined, then M and Q will not generally commute. The reason for

this is to be found in the large deviations theory for (population) CTMC [26,
Ch. 6], which guarantees that each trajectory of the stochastic system will remain
close to all stable equilibrium of the mean field limit a non-negligible fraction of
time. Hence, the limit steady state measure, if any, must be a mixture of point-
wise masses concentrated on (stable) equilibria1. On the other hand, the fast
subsystem z̄ of the mean-field limit will converge to a single stable equilibrium
(assuming no bifurcation event happens in the fast subsystem as ȳ(t) varies, i.e.
that Assumption 3.(e) is in force). This implies that the limit for N → ∞ of

the rates
W̃∞

0,i(y)

N will not converge to w0,i(y), which is evaluated on the single
equilibrium z = φ(y), but rather to a weighted average of the rate function wi

evaluated on all (stable) equilibria.
To render this discussion more concrete, we illustrate this phenomenon by

means of a genetic network model of a toggle switch [14]. We have three protein
species, whose number is given by variables X = (X1, X2, X3), living in a vol-
ume N , with density xj = Xj/N (possibly exceeding unit value). The MPM is
specified by the following six transitions:

production of X1 : ν1 = ( 1, 0, 0)ᵀ, W1(X) = α1N
β1+1/

(
Nβ1 +Xβ1

2

)
,

degradation of X1 : ν2 = (−1, 0, 0)ᵀ, W2(X) = X1,

production of X2 : ν3 = (0, 1, 0)ᵀ, W3(X) = α2N
β2+1/

(
Nβ2 +Xβ2

1

)
,

degradation of X2 : ν4 = (0,−1, 0)ᵀ, W4(X) = X2,
production of X3 : ν5 = (0, 0, 1)ᵀ, W5(X) = εX1,
degradation of X3 : ν6 = (0, 0,−1)ᵀ, W6(X) = εX3.

The proteins ‘1’ and ‘2’ mutually repress each other, and thus properly constitute
the toggle switch. Molecule ‘3’ instead, is a slow product of the protein ‘1’, and
does not influence the toggle switch. This example is cooked up so that if ε � 1
then the variable x3 and transitions τ5 and τ6 are trivially the slow ones. It
should still be possible to see the breakdown of the assumptions 5 & 6 in the
long time expectation value of the molecule ‘3’. First we consider the mean field
limit

dx1
dt

=
α1

1 + xβ1

2

− x1 ,
dx2
dt

=
α2

1 + xβ2

1

− x2 ,
dx3
dt

= ε(x1 − x3).

For a symmetric toggle model with parameters α1 = α2 = 10, β1 = β2 = 1.4,
the two stable equilibria are (x1, x2) = (a, b), (b, a) where a = 0.764, b = 5.931.
The limiting behavior of x3 is x3 −→

τ→∞
x1, where x1 is either a or b, depending

on whose basin of attraction covers the initial condition of the trajectory. We

1 The role of unstable equilibria is unclear. It is plausible that they will be visited only
for a vanishing fraction of time, but we know no proof of this fact.
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took the initial conditions that are below the diagonal x1 = x2. Such initial
conditions are attracted to the equilibrium x1 = b. The mean field time series
x3 vs t is displayed in figure 1, where the mean field trajectory saturates at b
(blue curve).

Next we consider the stochastic dynamics. A representative stochastic time
series of X3/N vs t is shown in figure 1. Its variations are wider than a Gaus-
sian approximation of the probability would imply. Sufficient insights can be
gained by looking at the expectations of the form 〈X〉 (t) =

∑
X XP (X; t). The

expectation of molecule ‘3’ satisfies an exact differential equation

d 〈X3〉 /dt = ε 〈X1〉 − ε 〈X3〉

Making a QE approximation to this equation is equivalent to replacing 〈X1〉 with
the equilibrium expectation X

∞
1 of the fast (‘1+2’) subsystem, and 〈X3〉 (t)

– with X̃3(τ), each of which should be expressed in terms of their respective
reduced probabilities. Since X3 is decoupled from X1 in the full model, X1(t) =
〈X1〉 (t). Moreover, if ε � 1, we can also take X

∞
1 ≈ 〈X1〉 (t), resulting in

dX̃3(τ)/dτ = X
∞
1 − X̃3(τ).

Within this approximation, the solution tends to X̃3(τ) −→
τ→∞

X
∞
1 . Then, com-

parison of x3(t), obtained from the mean field limit, and x̃3(τ) = X̃3(τ)/N ,
obtained from the stochastic model, provides a good measure of differences be-
tween the two approximations. The mean field trajectory, discussed in the previ-
ous paragraph, should be compared with the expectation X̃3(τ), shown as a solid
gray line in figure 1. There is a significant difference between the two, suggesting
the non-equivalence of reduced models in this particular case. Applying large
deviations arguments [26, Ch. 6], one may expect P (X3) (shown as a density
in figure 1) to look like, as N → ∞, a mixture of point masses, concentrated
equilibria. Conjecturing that the mass is distributed only on stable equilibria
and owing to the symmetry between X1 and X2, such weights will be equal to
1
2 , so x̃3(∞) = (a+ b)/2. A simulation supports this conjecture, as the curve for

X̃3(τ) is roughly in the middle between the two peaks of the probability density
shown in 1.

6 Discussion

In this paper, we discussed in a homogeneous way two approximation techniques
for Markov Population Models: the mean-field limit and the quasi-equilibrium
reduction in the presence of multiple time-scales. Both approaches are based on
a notion of limit: for large population in the former case, and for a diverging
separation of time scales in the latter. Our first contribution of this paper is to
formalise in a clear way the quasi-equilibrium reduction for MPM, proving also
the convergence of the original model to the reduced one in the stochastic setting.
The second original ingredient of this work is the investigation of the relationship
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between QE and mean-field. In particular, we identified sufficient conditions
under which the two limits commute. We also argued that the commutation
should not hold in general. The situation here is intimately connected with the
nature of mean field convergence for steady state distributions.

The take-home message is that care must be exercised when time scale sep-
aration techniques are combined with mean field limits. The behaviour of the
system that we obtain by first taking the mean field limit and then the QE re-
duction, the most common way in literature, may not reflect at all the actual
behaviour of the original stochastic model. Hence, one has to additionally show
that the fast subsystem is well behaved (i.e., it satisfies assumption 5).

We note here that most of the assumptions we introduced hold in almost all
practical cases, and are generally easy to verify. The most challenging ones are
the separation of time scales (Assumption 2), and those related to the steady
state behaviour of ODE models, i.e. Assumptions 5 and 3.(e).

This line of research can be extended in few directions. First of all, the litera-
ture on time scale separation for MPM is not as well developed as the literature
for ODE models [6]. Many ideas developed in this context can possibly be ex-
ported to MPM, especially techniques that automatically identify multiple time
scales [19]. Finally, we are investigating how QE reduction propagates to mo-
ment closure-based approximations of variance and of higher order moments of
the stochastic population process.
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Abstract. Many applications associated with the smart city experi-
ence rely on spatio-temporal data. Specific use-cases include location-
dependent real-time traffic, weather and pollution reports. Data is
traditionally sampled using stationary sensors, however, in densely pop-
ulated areas one could envisage crowd-sensing data collection schemes
where cars, bikes and pedestrians collect information in transit and trans-
mit it to a service provider through one of either a fast mobile network
such as LTE(4G) or by Wifi/Gossip communication. While mobile sen-
sors reduce the need for expensive infrastructure, the downside is that
performance characteristics of data coverage and transmission are less
reliable and harder to predict. In this paper we present a generic model
to investigate the robustness and efficiency of LTE/Gossip hybrid data
transmission strategies for crowd-sensing networks that are not amenable
to mean-field analysis. To illustrate our model’s scalability, we fit it to
journey data from the London Cycle Hire scheme.

Keywords: Crowd-sensing, Gossip networks, Spatial modelling, Smart
city, Time-inhomogeneous delay-only population CTMC models.

1 Introduction

Smart city research promotes the use of technology to improve the quality of
living and to reduce the cost of services in urban areas. Specifically, smart city
applications take advantage of data obtained from sensor readings or local social
network activity. Applications range from simple services for the urban popu-
lation, e.g. providing local temperature, traffic or pollution reports, to complex
applications that monitor leaks in water systems [1]. As installation and mainte-
nance of sensor and network infrastructure are major cost factors [2], researchers
have proposed solutions which make use of mobile sensors to sample data. In
particular crowd-sensing or participatory-sensing, where pedestrians [3], bikes [2]
or vehicles [4] are equipped with sensors and radio hardware, are being discussed
as cost effective alternatives for data collection in densely populated areas. To
reduce the need for network infrastructure, protocols for ad hoc, opportunistic
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Gossip networks have been suggested [5,4]. Aside from their cost saving poten-
tial, opportunistic networks can act as backups when infrastructure dependent
mobile networks are overloaded or down.

While a number of studies [5,6], have addressed non-functional, high-level1

performance aspects of information spread and collection in Gossip protocols,
performance analysis of high-level, large-scale opportunistic networks for data
collection is less abundant in the literature. On the other hand many studies
on microscopic mobile ad hoc network (MANET ) protocol performance have
been published [7,4], however, their analysis is usually limited to simulation
or empirical trials. In this paper we introduce a generic probabilistic model
that enables system designers to estimate the high-level performance of large-
scale crowd-sensing systems, taking into account accurate geographical topology.
Opportunistic data gathering [8] is a key component of our model, but like [6]
we assume that data producing agents are mobile while Wifi upload points are
static. Moreover, we assume that agents can exchange messages in a Gossip
fashion akin to [5]. In combining these concepts in a single model, we provide a
flexible mobile crowd-sensing performance modelling technique that is suitable
for infrastructure planning purposes.

More specifically, the model described in this work analyses the performance
of an LTE(4G)/Gossip hybrid transmission protocol for large crowd-sensing sys-
tems. The idea is that clients can choose to use LTE, a fast mobile data network,
but are encouraged to rely on ad hoc Gossip networks in order to reduce the
peak time load on the LTE network as well as the overall transmission costs
so long as service level agreements are likely to be met. Despite having a spe-
cific analysis goal, many of the model features described in Section 2 are kept
generic and could easily be adapted to evaluate other performance features, such
as spatial crowd-sensing coverage. We are particularly interested in the mod-
elling scenario that arises when the number of network participants is spatially
sparse with respect to radio ranges, which can lead to large approximation er-
rors when mean-field assumptions are made. However, since the analysis of such
non-linear population models outside a mean-field regime [5] is hard as well as
computationally demanding, our model reduces complexity by making use of
the findings of Jahnke et al. [9] using a linear time-inhomogeneous population
CTMC (IPCTMC) model with extra deterministic delays [10] instead. As a con-
sequence we can use a hybrid simulation technique to analyse city-scale models
with complex agent movement, rather than having to resort to a less efficient
full simulation approach.

The rest of the paper is structured as follows; In Section 2 we introduce
a generic model to compare the efficiency of different LTE/Gossip transmission
policies in mobile crowd-sensing networks. Section 3 applies the model to journey
data from the London cycle hire scheme to show that it scales well. Section 4
summarises our findings and suggests possible future research directions.

1 Models where low-level details such as wireless communication protocol details are
abstracted for the sake of efficient macroscopic system analysis.
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2 Model Description

Smart city applications, such as traffic and weather apps that provide local infor-
mation in real time, are usually subject to service level agreements (SLAs). An
SLA might postulate that 90% of all data must arrive within 10 minutes of being
collected. To meet such demands while keeping transmission costs low, data col-
lecting agents should always attempt to use Wifi for uploading data to the service
provider and only resort to LTE for untransmitted samples that approach the
SLA deadline. To increase the utilisation of Wifi uploads, it is conceivable that
a crowd-sensing data transmission protocol would further feature opportunistic
Gossip communication, where agents exchange sensor readings whenever they
are within each other’s radio range. Any foreign data is then uploaded at the
next available Wifi hotspot. This reduces the Wifi delivery time and increases the
chance of conforming to the SLA without resorting to LTE transmission. Eval-
uating SLA compliance of a combined LTE/Gossip(Wifi) strategy is naturally
challenging. Whenever a sample approaches an SLA deadline, i.e. whenever the
age of a sample that has not been uploaded via Wifi reaches the SLA deadline,
the sampling agent needs to decide whether it should rely on the Gossip network
or whether to fall back on LTE transmission. The communication protocol there-
fore requires a policy which makes this decision based on information such as the
number of Gossip contacts the agent has had since sampling the data. Our model
offers the opportunity to compare such policies for large crowd-sensing networks.
The most important performance aspects of a policy are its chance of SLA vio-
lation and its efficiency, relative to a theoretically optimal policy, at which the
Gossip network is utilised. The model we are about to present is kept as generic
as possible so that it can be applied to various forms of crowd-sensing networks
where participants move in a non-congesting manner. By non-congesting, we
mean modes of transport such as walking or cycling, where faster traffic partici-
pants can overtake slower ones at any point and where arrival order at junctions
or at traffic lights does not require a queueing model. These assumptions are
crucial as they drastically reduce the complexity of the analysis. The model
comes in two parts, a movement model (see Section 2.1) and a communication
model (see Section 2.3), which uses the notion of a measure agent discussed in
Section 2.2.

2.1 Movement Model

Various studies [11,12] have shown that the performance of mobile ad hoc net-
works (MANETs) and their vehicular counterparts (VANETs), is heavily im-
pacted by the underlying choice of movement model. Our movement model as-
sumes that agents are born according to a time-inhomogeneous Poisson process.
Each agent moves independently from all other agents and belongs to a specific
class that specifies and route that it travels on. Agents travel at constant speed,
but are subjected to occasional exponentially distributed time-inhomogeneous
stop and start delays. The time-inhomogeneous nature of delays is important as
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Fig. 1. Movement of agent of class (r1, sg), with origin orig1, destination dest1 and
delay nodes del1∗ (cf. Eq. (1))

it enables us to ensure that all agents experience the same delay in certain loca-
tions, say at red traffic lights. We chose this particular level of abstraction to fit
complex inner-city road topologies, which has not been done in comparable stud-
ies [5,6] and required expensive discrete event simulation studies in others [11,12].
Results for the CSM w/pauses model [11], which our approach was inspired by,
suggest that simple stop and go models are decent macroscopic abstractions in
sparse, non-congesting traffic scenarios. Furthermore, the microscopic movement
analysis of cars in [12] shows that the constant speed assumption is reasonable
for many city traffic scenarios.

The states of an individual agent’s movement are shown in Figure 1. To rep-
resent agent journeys, e.g. a path taken from start to end docking station in a
bicycle hire network, we introduce the notion of a route. A route is a specific
path connecting two locations and consists of road segments, delay and non-delay
nodes. On a road segment connecting two nodes, agents move at a constant speed
defined by their speed group. While nodes generally represent changes in direc-
tion and influence an agent’s radio range, delay nodes further cause an agent to
wait for a time-dependent, exponentially distributed time. Some delay nodes, e.g.
traffic lights, may cause start, stop dynamics that result in temporary Poisson
event rates of βr

sg∗ = 0. When analysing the movement model, we only keep
track of the time-evolution of agent populations at delay nodes (see Figure 1
and Eq. (1)), however, when analysing inter-agent communication, we use all
nodes to determine exact agent radio range overlaps. A speed group sg for route
r defines the Poisson birth rate parameter αr

sg , as well as the speed of agents
for all road segments of r and hence the movement delay δrsg∗ between any two
delay nodes. The pair (r , sg) will be referred to as an agent class and A as
the set of all agent classes in the model. Mathematically, we can represent the
movement of an agent class, i.e. of a number of agent instances of that class,
as a time-inhomogeneous [13], delay-only [10], population CTMC model (ID-
PCTMC). If birth rates are Poisson and all populations are initially empty, then
Delay-Differential equations (DDEs) numerically determine the time-evolution
of the Poisson distribution rate for the number of agents located at any of the
delay nodes at time t. For the agent described in Figure 1 the system of DDEs
is

δorig1(t)
δt = α1

sg(t) − β1
sg1

(t) orig1(t)
δdel11(t)

δt = β1
sg1

(t− δ1sg1) orig
1(t− δ1sg1) − β1

sg2
(t) del11(t)

δdel12(t)
δt = β1

sg2
(t− δ1sg2) del

1
1(t− δ1sg2) − β1

sg3
(t) del12(t)

δdest1(t)
δt = β1

sg3
(t− δ1sg3) del

1
2(t− δ1sg3)

(1)
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where population values are 0 for t ≤ 0. Populations orig1, del1∗, dest
1 capture

agents located at the start of route, agents waiting at intermediate nodes and
agents that have completed their journey, respectively. When setting α1

sg(t) = 0

for all t and orig1(0) = 1, dest1(t) captures the passage-time cumulative density
function (CDF) for a single agent on route r1. Moreover, both α1

sg and β1
sg∗ are

time-dependent. When solving Eq. (1) we assume that they change according
to a deterministic schedule. If rate schedules are probabilistic, e.g. due to

Algorithm 1. Hybrid simulation for stochastic time-dependent delay rates

1 distributions ← new List();
2 for r in numRuns do
3 schedule ← sampleTimeDependentRates();
4 distributions.add(ddeSolution(schedule));

5 return histogram(distributions);

pedestrians that randomly push traffic light buttons, then a hybrid simulation
technique as shown in Algorithm 1 is required to analyse the movement and
communication model. The hybrid solution simply solves the DDEs representing
the movement model numRuns times using a randomly sampled rate schedule for
each repetition. The hybrid analysis becomes more efficient than full simulation
as agent birth rates increase.

2.2 Measure Agent, Measure Route

To decide whether to rely on LTE or on Gossip communication as an SLA dead-
line approaches, a protocol policy requires information regarding the number
of other agents the data was communicated to. In combination with knowledge
about passage-time distributions to reach the next Wifi spot, this allows agents
to make informed decisions in an effort to meet SLA requirements at minimal
transmission costs. In this section we introduce the concept of a measure agent,
which is similar to a tagged customer in a Stochastic Petri net. We define the set
of measure agents as M ⊂ A × R × R, where (ac, t, p) ∈ M is a measure agent
whose movement is defined by agent class ac = (r , sg). The policy is then tested
for a single data sample taken at time t, p% down route r . Furthermore, we
assume that a measure agent experiences the average delay at every delay node,
i.e. for a given delay rate schedule it moves deterministically and its exact radio
range is known. That way we avoid non-linear communication dynamics, keep
the underlying IPCTMC model linear and all populations independently Pois-
son distributed. In our case-study analysis (see Section 3.3) we found that the
measure agent approach is a good proxy for the actual non-linear model, most
likely because the randomness of the delay rate schedule, the agent birth rate
and the communication dynamics dominate the effect of random delay node so-
journ times. When analysing a model we usually consider a measure route rather



On Performance of Gossip Communication in a Crowd-Sensing Scenario 127

r1

r2

r2a

r3

Z1 Z2 Z3 Z4

[t, t+ 1] [t+ 1, t+ 2] [t+ 2, t+ 3] [t+ 3, t+ 4]

a b c de
f g

Fig. 2. Zones for a measure agent ma ∈ M on r1 in a model with 4 routes (r2 is
bidirectional). The ma gathers its sample at the black dot and diamonds mark locations
of first and last contact points between agents on r∗ and ma in a zone.

than a single measure agent. This means we do the analysis in Section 2.4 for all
measure agents on the same route and weight each measure agent’s contribution
to the solution proportional to their speed group’s birth rate. This allows us to
get a better understanding of how transmission strategies fare across a range of
participants.

2.3 Communication Model

Since transmission mode decisions of measure agents depend on the agents it has
communicated with before the deadline, we need to extend the model shown in
Figure 1 to keep track of unique contacts made with other agents. A unique first-
time contact occurs when a measure agent communicates with another agent
it has not previously communicated with. The number of contacts made dur-
ing [t, t + SLA deadline] and the information about where contacts were made,
form the evidence on which decisions are taken. While it is straightforward to
capture this information in a simulation, we have to discretise time into in-
tervals to obtain these measures through DDE analysis. Figure 2 illustrates a
discretisation concept that enables us to estimate the Poisson distribution pa-
rameter for the total amount of contacts made between a measure agent and
agents from other agent classes in a particular time zone interval. Zones avoid
the need to keep track of precise moments in time at which communication
occurs. If our deadline was t + 10 minutes, we might for instance have zones
[t, t+1], [t+1, t+2], . . . , [t+9, t+10]. Note that due to the time-inhomogeneous
nature of delays, the distance covered by a measure agent in each zone varies
with the rate schedule. In fact, Figure 2 gives a rather idealised spatial no-
tion of the spatial radio coverage of ma in each time zone, as it can happen
that different time zone intervals have overlapping radio ranges. Having defined
zone intervals, we can work out the first-time contacts for each zone using the
time-inhomogeneous model shown in Figure 3, which extends the movement
model from Figure 1. This is done by translating ma’s radio range into time-
inhomogeneous rates, so that communication events between agents and the
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orig3
sg fsg gsg dest3sg

orig3
sg fsg gsg dest3sg

Comm(Zi ,ma, ac)

Zi contact

Fig. 3. Contacts made in each zone between measure agent ma ∈ M and agents of
class ac = (r3, sg). States f , g correspond to delay nodes on r3 closest to f , g in
Figure 2. Dotted transitions indicate omitted intermediate states. When agents of ac
communicate with ma for the first time in zone i, they enter state Comm(Zi ,ma, ac).

measure agent are Poisson distributed with a rate proportional to the amount of
time that they were in each other’s radio range. When a contact event between
an agent of agent class ac ∈ A and a measure agent ma ∈ M occurs in zone
i, the agent continues its journey in state Comm(Zi ,ma, ac), where it can no
longer communicate with ma. As for the movement model (see Eq. (1)) linear
DDEs can be derived that compute the Poisson zone contact rates between any
pair of measure agent ma ∈ M and another agent class ac ∈ A. It is important
to bear in mind that all Comm(Zi ,ma, ac) contact populations have mutually
independent Poisson distributions. Mathematically this can easily be justified
by extending the argument made in [9] for delay-only [10] monomolecular reac-
tion systems. Moreover, since we can solve the DDE system for a single measure
agent, agent class pair at a time, the analysis is parallelisable. With respect to
scalability, Figure 2 shows that the number of routes we need to consider in our
analysis depends on the distance covered by a measure agent from collecting its
sample to reaching the SLA deadline. To reduce the size of our case-study model,
our policies only consider the contacts made in first 5 minutes of a 10 minutes
delivery time deadline. Naturally, this implies that contacts made between t+5
and t + 10 are ignored by our protocol, which may not be adequate for other
studies.

2.4 Policy Analysis

The multivariate distribution we are interested in has 4 real-valued non-negative
random variables (L L,L G,G L,G G) that sum up to 1 and represent a cate-
gorical distribution where L L = P(Choose LTE ∧ Gossip missed SLA), L G =
P(Choose LTE ∧ Gossip met SLA), G L = P(Choose Gossip ∧ Gossip missed
SLA) and G G= P(Choose Gossip ∧ Gossip met SLA). Obviously, a good deci-
sion strategy must aim to maximise L L and G G. G L measures the proportion
of messages for which the SLA was breached by the protocol and L G indicates
the amount of LTE resources that were wasted. Line 4 in Algorithm 1 computes
the categorical distribution for a specific measure agent, schedule combination
using Algorithm 2 or by simulation. A histogram for the multivariate distribu-
tion, which collects all categorical distribution samples from a number of random
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schedules, is then computed in l. 5. We can consider multiple measure agents on
the same route by averaging the distributions of several measure agents returned
from l. 5. For a fixed schedule, the categorical distribution can be computed ex-
actly using simulation analysis, which keeps track of where and when agents first
communicated with measure agents, of their protocol decision and if the Gossip
delivery was timely. With DDEs, however, we cannot capture the precise time
at which an exchange took place within a zone. Instead, we compute upper and
lower bounds for the distribution, where an upper bound will have the highest
possible G G with the lowest G L for a given rate schedule and vice versa for
the lower bound. The remainder of this section describes how these bounds can
be computed for a single measure agent and rate schedule.

First we use DDEs to compute the first-time contact Poisson rate RZi,ma,ac

(cf. Comm(Zi ,ma, ac)) for all zones for all pairs (ma, ac) ∈ M×A, where ma =
(∗, ts, ps) and mSLA the SLA deadline in minutes. For each zone we also keep
track of the earliest and the latest possible time tZi,e, tZi,l at which ma and ac
can communicate as well as the first and last position pZi,f , pZi,l on ac’s route at
which communication with ma can occur (cf. diamond locations in Figure 2). We
use these to calculate the probability that an agent of class ac will reach a Wifi
hotspot inmSLA−(tZi,e−ts) minutes from pZi,l and the probability of doing so in
mSLA−(tZi,l−ts) minutes from pZi,f . D

U
Zi,ma,ac andD

L
Zi,ma,ac denote these best

and worst case Gossip delivery probabilities for agents of ac met by ma in zone
i, respectively. Since all agents move independently, we can express RZi,ma =∑

ac RZi,ma,ac and D∗
Zi,ma =

∑
acD

∗
Zi,ma,ac · RZi,ma,ac/RZi,ma . Furthermore,

let Rma = (RZ1,ma , . . . , RZn,ma) be the vector of zone contact rates and D∗
ma =

(D∗
Z1,ma , . . . , D

∗
Zn,ma) be the vector of best (U) and worst case (L) delivery

probabilities. Moreover, let Hma = (HZ1,ma , . . . , HZn,ma) be the equivalent of
Dma , but computed from historical data available for the local area that each
zone spans, assuming that the message is exchanged at the end of a zone interval.
Naturally, both Dma and Hma depend on the location of Wifi hotspots in our
model. Generally, there is no restriction on how many there are on a route, but
since we did not make them explicit model features in Section 2.1, we assume
that they are always located at the end of a route. Note that for both DDE
analysis and simulation analysis, we assume that protocol decisions use position-
independent delivery time distributions HZi,ma for each zone. Hence protocol
delivery time estimates only depend on how many agents of a certain class where
met in a zone. While this makes both simulation and DDE analysis dependent
on the zone size, it does not matter much in practice if zone intervals are short.

Given Rma ,D
U
ma ,D

L
ma and Hma we can evaluate each LTE/Gossip pol-

icy for ma using the procedure described in Algorithm 2. We compare the
policy decision with the actual delivery probability for all probable combina-
tions of zone contacts (see l. 4). For a valid zone contacts combination, we
first compute the probability with which the transmission protocol chooses the
LTE network pLTE (see l. 6). By valid we mean any combination of zone con-
tacts that are obtained when considering that the number of first-time contacts
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Algorithm 2. Evaluating the LTE/Gossip strategy performance of an ma
for a specific delay rate schedule (see l. 4 in Algorithm 1)

1 maxContacts ← (PoisCDFInv(RZ1 ,ma , 0.999), . . . , PoisCDFInv(RZn ,ma , 0.999));
2 contacts ← (1, 0, 0, . . . , 0);
3 L L ← 0, L G ← 0, G L ← 0, G G← 0;
4 while contacts �= (0, 0, 0, . . . , 0) do
5 pContacts ← 1, pSLAVio ← 1;
6 pLTE ← LTEProbStrat(Hma ,contacts);
7 for i ← 1 to n do
8 pContacts ← pContacts * PoisCDF(RZi ,ma ,contacts(i));
9 pSLAVio ← pSLAVio * (1−D∗

Zi,ma)ˆcontacts(i);

10 L L ← L L + pContacts * pLTE * pSLAVio ;
11 L G ← L G + pContacts * pLTE * (1 - pSLAVio);
12 G L ← G L + pContacts * (1 - pLTE) * pSLAVio;
13 G G← G G+ pContacts * (1 - pLTE) * (1 - pSLAVio);
14 contacts ← nextValidContactVector(contacts, maxContacts);

15 return (L L ,L G,G L,G G);

in each zone i is likely to be between 0 and the 99.9th percentile of the underlying
Poisson distribution. Next we compute the probability pContacts of the contacts
vector and pSLAVio, the probability of violating the SLA when relying on Gos-
sip transmission given contacts. Since first-time contact distributions as well as
passage times in different zones are mutually independent (see Section 2.3), we
can obtain the joint probability for pContacts (see l. 8) and pSLAVio (see l. 9)
through multiplication of the respective zone probabilities. Note that pSLAVio
is simply the probability that all agents that we meet fail to deliver on time.
When using DU

ma , Algorithm 2 yields the upper DDE bound for the given rate
schedule and the lower bound when DL

ma is used. A simple strategy for comput-
ing pLTE would be to compute it the same way as pSLAVio using Hma instead
of D∗

ma . However, the strategy can also choose to apply further heuristics, for
instance thresholds as in Section 3. Finally in ll. 10–13, the algorithm adds the
current contacts ’ contribution to the categorical distribution for the given delay
rate schedule and measure agent ma.

3 Case Study: Crowd-Sensing Bikes in London

In this section we fit the model described in Section 2 to journey data from the
London Barclays cycle hire scheme. For our analysis we use weekday morning
rush hour journey data from May and June 2012. We describe procedures to
generate routes and speed groups, show how to create a submodel for specific
measure routes and how we implement traffic light and roundabout behaviour.
Finally, in Section 3.3 we analyse two policies for two rate parameter setups on
4 measure routes with 4 measure agents each.
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Fig. 4. Distribution of speed estimated for journeys made on routes with no traffic
lights

3.1 Route and Speed Group Estimation

Although the publicly available data provides information about journey origin,
destination as well as duration, it does not specify the actual route taken by
cyclists. To estimate routes, along with roundabout and traffic light locations
between any two stations, we extended Routino [14], a routing tool for Open-
StreetMap (OSM) [15]. As there are about 200k origin–destination pairs in our
data set, this process had to be automated. Using the standard Routino configu-
ration for bikes, we found that 20% of all generated routes were more than twice
as long as their aerial distance. To avoid such overlong, unrealistic routes, we
always chose the shortest one from a number of alternative routes. The result-
ing speed distribution for weekday mornings in May, June 2012 for routes with
no traffic lights are shown in Figure 4. Clearly, speeds are lower the later we
measure, which agrees with observations made in [16]. Further analysis on the
data indicated dependencies between route length and speed distribution. The
average route length of the 20% slowest journeys, for instance, was shorter than
that of the 20% fastest journeys. While this might be due to incorrect route
estimates, it could also be down to journeys being affected by start, stop delays.
As speed = distance/time cycling = distance/(journey time − delay), speeds on
shorter routes are more likely to be underestimated, since start, stop delays have
a larger impact. Of course, there are other traffic related events, such as being
slowed down rather than coming to a halt, which have a big impact on the aver-
age speed on shorter journeys, but this is beyond the dynamics we can capture
in our model. For our analysis in Section 3.3 we use the speed distribution from
Figure 4. We decided to use 4 speed groups, the 25, 50, 75, 95 speed quantiles,
which are 13, 15, 16.8 and 20.0 km/h for the 7–8am data. Each of these speed
groups is assumed to have an equal share of a route’s total birth rate.

3.2 Fitting a Network Model

Another challenge in building the model for our case-study was to create a
topology that truly reflects the physical road network of the inner city of London.
Each measure route is assumed to start at a particular point on an existing
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route and ends at the location that the fastest measure agent (20 km/h) can
reach by the end time of the last zone interval, assuming no delay at delay
nodes. Measure routes must end before reaching a docking station, otherwise no
transmission decision is required. Having chosen a measure route, we need to find
all other routes that lie within its radio range of 30m and compute subroutes,
i.e. radio range overlaps with the measure route. Note that two distinct routes
have the same subroute if their radio range overlaps with the measure route are
identical. Subroutes range from simple intersections to longer overlaps going in
either direction of the measure route.

When looking at a 5 minute zone on a measure route, a 20 km/h fast agent
can move up to 1650m. In central London, a measure route can easily have up to
120 distinct subroutes for a 30m radio range. To reduce the number of subroutes,
we compute cliques of similar subroutes, which share ≥ 90% of the GPS way-
points produced by Routino. For each clique we merge the subroutes into a new
subroute, whose way-points that are most similar to all other subroutes in the
clique. Moreover, the merged subroute retains total birth rates as well as passage-
time samples from the end of the clique to docking stations. Cliques reduce the
number of subroutes by up to 60%, hence reducing the size of the agent class set
A drastically, which in turn speeds up the analysis. Next we discard all subroute
cliques with less than 3 journeys per hour to save another 50% of subroutes while
only losing 5%–10% of all journeys. Finally, we compute the overall birth rates
of speed groups for every clique and create discrete passage-time distributions
for agents from the end of their subroute to their destination. When computing
D, H for the analysis described in Section 2.4, each D is calculated as the
convolution of the passage-time required to reach the end of the subroute, either
computed exactly in simulation analysis or as upper and lower bounds using
DDEs, and the empirical passage-time distribution from the end of the subroute
to the docking station according to the speed group quantile. To determine theH
distributions, we partition the area around each measure route into 250m×250m
squares and calculate local passage-time H distributions for each partition from
training journeys. For a given measure agent and schedule, the zone delivery
time distribution is chosen to be the one of the partition that the measure agent
spends most time in, during the zone interval.

Traffic lights are clustered by proximity to ensure that phases of co-located
signals are synchronised. For our case-study we used 2 phases for each cluster.
Phase membership depends on the angle that a subroute approaches the centre of
a traffic light cluster. This way, routes from north to south experience a different
phase than routes from east to west. In the model with short delay rates, time-
inhomogeneous rate schedules representing phase changes of traffic light clusters,
are sampled from an independent normal distribution with a mean of 25 and a
variance of 2 seconds using an initial uniformly-distributed offset with a mean of
10 seconds, while in the long delay model it is 50, 4 and 10 seconds respectively.
Moreover, in the short delay model the delay experienced at a green traffic light
is assumed to be exponentially distributed with rate 2, but for the first 5 seconds
after switching from red to green the exponential rate is reduced to 0.2 to capture
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(a) Queen’s Gate
to Lancaster Gate

(b) Waterloo to Whitehall

(c) Fenchurch St to Barbican (d) Waterloo to Tot. C. Rd

Fig. 5. Measure routes. Traffic lights are green and red dots, roundabouts are blue.

acceleration dynamics, while roundabouts always cause an exponential delay at
rate 0.2. For the long delay model we halve these rates except for the green light
rate and assume that the acceleration time interval extends to up to 10 seconds
after a traffic light turns green. Although we exclusively use exponential delays,
we could alternatively deploy phase-type delays.

3.3 Analysis

We consider 4 measure routes (see Figure 5) with one measure agent per speed
group, for different areas of London. While the Queen’s Gate to Lancaster Gate
and the Waterloo to Whitehall routes are moderately used between 7–8am,
Fenchurch St to Barbican as well as Waterloo to Tottenham Court Rd are very
busy as commuters head for the city. Measure agents sample data at the begin-
ning of their route.

We compare the performance of two strategies S1 and S2. S1 is a simple thresh-
old policy that decides to use Gossip, whenever the Gossip success probability is
believed to be > 95%. S2 uses the same threshold, but assumes a tighter deadline
of 9 minutes at the time of making the decision. Hence, S2 is a more conservative
strategy and should meet SLA deadlines at least as often as S1. S1 on the other
hand, being a more optimistic strategy, should offload more data to the Gossip
network. In Figure 6 we show the Upper and Lower DDE performance bounds
for S1 and S2 and the exact measure agent simulation results Sim for short delay
models. Moreover, Table 1 further shows long delay model results and simula-
tion results for the non-linear model RndMA, where measure agents experience
probabilistic delays. We used 1000 traffic light schedules for each measure route
and 7500 simulation runs for each schedule. The performance measures we study
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Table 1. Mean Gossip usage Efficiency = E[G G/(L G+G G)] vs. mean probability of
SLA violation E[G L] in % between 7–8am. The CI-Width column shows the maximum
relative confidence interval width of the DDE bounds.

S1: Threshold 95%, 10mins S2: Threshold 95%, 9mins
Lower Sim RndMA Upper CI-Width Lower Sim RndMA Upper CI-Width

Queen’s Gate to Lancaster Gate (short delay)
E[G L] 0.035 0.031 0.032 0.027 2.099% 0.022 0.019 0.020 0.016 2.349%

Efficiency 21.070% 20.847% 21.103% 20.590% 1.525% 14.469% 14.333% 14.305% 14.099% 1.756%
Queen’s Gate to Lancaster Gate (long delay)

E[G L] 0.049 0.044 0.049 0.038 2.015% 0.031 0.028 0.030 0.024 2.302%
Efficiency 25.803% 25.486% 27.901% 25.240% 1.437% 18.507% 18.273% 19.344% 18.039% 1.720%

Waterloo to Whitehall (short delay)
E[G L] 0.104 0.081 0.082 0.065 1.619% 0.034 0.024 0.024 0.019 3.221%

Efficiency 48.487% 47.384% 47.434% 46.429% 1.026% 22.985% 22.206% 21.751% 21.419% 1.925%
Waterloo to Whitehall (long delay)

E[G L] 0.097 0.074 0.075 0.057 2.989% 0.030 0.021 0.022 0.015 3.504%
Efficiency 48.015% 46.680% 46.731% 45.582% 2.002% 22.745% 21.747% 21.549% 20.905% 2.517%

Waterloo to Tottenham Court Rd (short delay)
E[G L] 0.077 0.060 0.061 0.046 0.657% 0.069 0.054 0.054 0.040 0.646%

Efficiency 97.329% 97.218% 97.349% 97.098% 0.044% 95.081% 94.908% 94.610% 94.711% 0.063%
Waterloo to Tottenham Court Rd (long delay)

E[G L] 0.075 0.061 0.061 0.042 0.488% 0.068 0.055 0.055 0.037 0.462%
Efficiency 98.607% 98.569% 98.479% 98.464% 0.028% 96.692% 96.612% 96.314% 96.407% 0.045%

Fenchurch St to Barbican (short delay)
E[G L] 0.168 0.137 0.136 0.100 1.055% 0.147 0.118 0.117 0.084 0.924%

Efficiency 93.414% 93.054% 93.658% 92.868% 0.292% 88.935% 88.405% 89.231% 88.151% 0.451%
Fenchurch St to Barbican (long delay)

E[G L] 0.180 0.147 0.147 0.111 1.959% 0.163 0.132 0.132 0.097 1.664%
Efficiency 95.948% 95.756% 95.984% 95.594% 0.302% 92.774% 92.471% 92.837% 92.221% 0.493%

are the Efficiency, which is G G/(L G + G G), i.e. the proportion of messages
that an optimal decision policy would have offloaded to the Gossip network and
G L, the SLA violation rate of a policy. The distributions shown in Figure 6
show the joint distribution of the Efficiency and SLA violation probability in %,
while Table 1 shows mean values. As expected, S2 always has a better chance of
SLA compliance, but never exceeds the efficiency of S1. Interestingly, the upper
bound efficiency is lower than the lower bound efficiency for both policies, though
reassuringly a look at the raw data shows that G G is higher for upper bounds
in all models. On the other hand G L is always lower for the upper bound, as
is expected. Moreover, the data in the table shows that while the results of the
non-linear model are not always bound by the DDE results, the differences in
first-order moments are small compared to simulation results for deterministi-
cally moving measure agents. Despite being rather simplistic, on average our
strategies have at most a 14% chance of violating the SLA and often exhibit a
high degree of efficiency. It is likely that more sophisticated strategies, possibly
using additional information like weather or weekday dependent distributions
to get better estimates for H , can improve upon this further. Furthermore, a
look at the raw G G and L G data, which was omitted due to space constraints,
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Fig. 6. Distributions for measures shown in Table 1 for models with short delays
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shows that on busy routes up to 80% of the messages can be transmitted on time
via the Gossip network. Even on less busy routes, such as between Queen’s Gate
and Lancaster Gate, it is still possible to offload 40% with an optimal policy.
In reality, Gossip network utilisation could be even higher since we discarded
5–10% of all journeys and do not consider all contacts made during the SLA
time interval. Moreover, bicycles could also offload data to Wifi hotspots along
their route and it would be possible to allow bikes to pass on foreign data to
other bikes, thereby increasing the chance of timely Gossip delivery.

4 Conclusions and Future Work

Our main contributions in this work are the development of a scalable mobility
and communication model for a high-level crowd-sensing data-collection proto-
col; associated performance analysis and a detailed case-study for a large-scale
bicycle network. The spatial model is flexible and suitable for capturing detailed
topologies of non-congesting traffic scenarios, including features such as traffic
lights. Moreover, the measure agent concept allows us to apply an efficient hybrid
simulation technique for studying inter-agent communication, even when mean-
field analysis or fast simulation techniques [5] are inappropriate. While easily
parallelisable, it should be possible to further reduce the evaluation cost of our
hybrid approach by using more efficient ways to compute radio range intersec-
tions and better numerical DDE integration techniques. Although we found that
the DDE bound computation for any rate schedule was generally faster than
simulation analysis, we still need to carry out a proper benchmark in the future.
The case-study has shown that it is easy to apply the model to real data and to
get some intuition about how reliable and efficient opportunistic data collection
can be in a large city. Naturally, due to the lack of GPS traces, this model is
only a proxy for the actual movement of bikes in London, however, if better data
were available it would be straightforward to reuse many of the model fitting
techniques described in Section 3 to reflect it.

For future work it would be interesting to benchmark a full simulation against
a hybrid approach after optimising both methods. Furthermore, additional re-
search is needed to understand the impact of using a deterministically moving
measure agent as opposed to a non-linear model in order to give guidelines for
when the simplification is appropriate. Moreover, limiting the analysis to a sim-
ple measure point per measure agent is wasteful. If the DDE analysis could be
altered to provide last zone contact analysis, for instance through time-reversal,
we could evaluate the protocol performance for multiple messages for a single
measure agent. It would also be interesting to apply our model to different data
sets, such as pedestrian movement. Similarly, an adaptation of our modelling
technique to vehicular networks would be desirable, although this could prove a
lot harder due to congestion and queueing effects. Finally, it would make sense
to extend the model to derive other spatio-temporal crowd-sensing performance
metrics such as area coverage of crowd-sensing approaches.
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Abstract. Software developers cannot always anticipate how users will
actually use their software as it may vary from user to user, and even
from use to use for an individual user. In order to address questions raised
by system developers and evaluators about software usage, we define new
probabilistic models that characterise user behaviour, based on activity
patterns inferred from actual logged user traces. We encode these new
models in a probabilistic model checker and use probabilistic temporal
logics to gain insight into software usage. We motivate and illustrate our
approach by application to the logged user traces of an iOS app.

1 Introduction

Software developers cannot always anticipate how users will actually use their
software, which is sometimes surprising and varies from user to user, and even
from use to use, for an individual user. We propose that temporal logic reasoning
over formal, probabilistic models of actual logged user traces can aid software
developers, evaluators, and users by: providing insights into application usage,
including differences and similarities between different users, predicting user be-
haviours, and recommending future application development.

Our approach is based on systematic and automated logging and reasoning
about users of applications. While this paper is focused on mobile applications
(apps), much of our work applies to any software system. A logged user trace
is a chronological sequence of in-app actions representing how the user explores
the app. From logged user traces of a population of users we infer activity pa-
tterns, represented each by a Discrete-Time Markov Chain (DTMC), and for
each user we infer a user strategy over the activity patterns. For each user we
deduce a meta model based on the set of all activity patterns inferred from the
population of users and the user strategy, and we call it the user metamodel.
We reason about the user metamodel using probabilistic temporal logic proper-
ties to express hypotheses about user behaviours and relationships within and
between the activity patterns, and to formulate app-specific questions posed by
developers and evaluators.

We motivate and illustrate our approach by application to the mobile, mul-
tiplayer game Hungry Yoshi [1], which was deployed in 2009 for iPhone devices
and has involved thousands of users worldwide. We collaborate with the Hun-
gry Yoshi developers on several mobile apps and we have access to all logged
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user data. We have chosen the Hungry Yoshi app because its functionality is
relatively simple, yet adequate to illustrate how formal analysis can inform app
evaluation and development.

The main contributions of the paper are:

– a formal and systematic approach to formal user activity analysis in a pro-
babilistic setting,

– inference of user activity patterns represented as DTMCs,
– definition of the DTMC user metamodel and guidelines for inferring user

metamodels from logged user data,
– encoding of the user metamodel in the PRISM model checker and temporal

logic properties defined over both states and activity patterns as atomic
propositions,

– illustration with a case study of a deployed app with thousands of users and
analysis results that reveal insights into real-life app usage.

The paper is organised as follows. In the next section we give an overview
of the Hungry Yoshi app, which we use to motivate and illustrate our work.
We list some example questions that have been posed by the Hungry Yoshi
developers and evaluators; while these are specific to the Hungry Yoshi app,
they are also indicative questions for any app. In Sect. 3 we give background
technical definitions concerning DTMCs and probabilistic temporal logics. In
Sect. 4 we define inference of user activity patterns, giving a small example as
illustration and some example results for Hungry Yoshi. In Sect. 5 we define
the user metamodel, we illustrate it for Hungry Yoshi and we give an encoding
for the PRISM model checker. In Sect. 6 we consider how to encode some of
the questions posed in Sect. 2.1 in probabilistic temporal logic, and give some
results for an example Hungry Yoshi user metamodel. In Sect. 7 we reflect upon
the results obtained for Hungry Yoshi and some further issues raised by our
approach. In Sect. 8 we review related work and we conclude in Sect. 9.

2 Running Example: Hungry Yoshi

The mobile, multiplayer game Hungry Yoshi [1] is based on picking pieces of
fruit and feeding them to creatures called yoshis. Players’ mobile devices reg-
ularly scan the available WiFi access points and display a password-protected
network as a yoshi and a non-protected network as a fruit plantation. Planta-
tions grow particular types of fruit (possibly from seeds) and yoshis ask players
for particular types of fruit. Players score points if they pick the fruit from the
correct plantations, store them in a basket, and give them to yoshis as requested.
There is further functionality, but here we concentrate on the key user-initiated
events, or button taps, which are: see a yoshi, see a plantation, pick fruit and
feed a yoshi. The external environment (as scanned by device), combined with
user choice, determines when yoshis and plantations can be observed. The game
was instrumented by the developers using the SGLog data logging infrastruc-
ture [2], which streams logs of specific user system operations back to servers on
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(a) Main menu (b) Yoshi Zoe (c) Newquay plantation

Fig. 1. Hungry Yoshi screenshots: two plantations (Newquay hill and Zielona valley)
and two yoshis (Zoe and Taner) are observed. The main menu shows the available
plantations and yoshis with their respective content and required types of fruit. The
current basket contains one orange seed, one apricot and one apple.

the developing site as user traces. The developers specify directly in the source
code what method calls or contextual information are to be logged by SGLog.
A sample of screenshots from the game is shown in Fig. 1.

2.1 Example Questions from Developers and Evaluators

Key to our formal analysis is suitable hypotheses, or questions, about user be-
haviour. For Hungry Yoshi, we interviewed the developers and evaluators of the
game to obtain questions that would provide useful insights for them. Interest-
ingly most of their hypotheses were app-specific, and so we focus on these here,
and then indicate how each could be generalised. We note that to date, tools
available to the developers and evaluators for analysis include only SQL and
iPython stats scripts.

1. When a yoshi has been fed n pieces of fruit (which results in extra points
when done without interruption for n equal 5), did the user interleave pick
fruit and feed a yoshi n times or did the user perform n pick fruit events
followed by n feed a yoshi events? And afterwards, did he/she continue with
that pick-feed strategy or change to another one? Which strategy is more
likely in which activity pattern? More generally, when there are several ways
to reach a goal state, does the user always take a particular route and is this
dependent on the activity pattern?

2. If a user in one activity pattern does not feed a yoshi within n button taps,
but then changes to another activity pattern, is the user then likely to feed
a yoshi within m button taps? More generally, which events cause a change
of activity pattern, and which events follow that change of activity pattern?
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3. What kind of user tries to pick fruit 6 times in a row (a basket can only hold
5 pieces of fruit)? More generally, in which activity pattern is a user more
likely to perform an inappropriate event?

4. If a user reads the instructions once, then does that user reach a goal state
in fewer steps than a user who does not read the instructions at all? (Thus
indicating the instructions are of some utility.) More generally, if a user
performs a given event, then it is more likely that he/she will perform another
given event, within n button taps, than users that have not performed the
first event? Is this affected by the activity pattern?

3 Technical Background

We assume familiarity with Discrete-Time Markov Chains, probabilistic logics
PCTL and PCTL*, and model checking [3, 4]; basic definitions are below.

A discrete-time Markov chain (DTMC) is a tuple D = (S, s̄,P, L) where: S is a
set of states; s̄ ∈ S is the initial state; P : S×S → [0, 1] is the transition probabil-
ity function (or matrix) such that for all states s ∈ S we have

∑
s′∈S P(s, s′) = 1;

and L : S → 2AP is a labelling function associating to each state s in S a set of
valid atomic propositions from a set AP . A path (or execution) of a DTMC is a
non-empty sequence s0s1 . . . where si ∈ S and P(si, si+1) > 0 for all i ≥ 0. A
path can be finite or infinite. Let PathD(s) denote the set of all infinite paths of
D starting in state s.

Probabilistic Computation Tree Logic (PCTL) [3] and its extension PCTL*
allow one to express a probability measure of the satisfaction of a temporal
property. Their syntax is the following:

State formulae Φ ::= true | a | ¬Φ | Φ ∧ Φ | P�� p[Ψ ]
PCTL Path formulae Ψ ::= XΦ | ΦU≤n Φ

PCTL* Path formulae Ψ ::= Φ | Ψ ∧ Ψ | ¬Ψ | XΨ | ΨU≤n Ψ

where a ranges over a set of atomic propositions AP , "#∈ {≤, <,≥, >}, p ∈ [0, 1],
and n ∈ N ∪ {∞}.

A state s in a DTMC D satisfies an atomic proposition a if a ∈ L(s). A
state s satisfies a state formula P�� p[Ψ ], written s |= P�� p[Ψ ], if the probability
of taking a path starting from s and satisfying Ψ meets the bound "# p, i.e.,
Prs{ω ∈ PathD(s) | ω |= Ψ} "# p, where Prs is the probability measure defined
over paths from state s. The path formula XΦ is true on a path starting with
s if Φ is satisfied in the state following s; Φ1 U

≤n Φ2 is true on a path if Φ2

holds in the state at some time step i ≤ n and at all preceding states Φ1 holds.
This is a minimal set of operators, the propositional operators false, disjunction
and implication can be derived using basic logical equivalences and a common
derived path operators is the eventually operator F where F≤n Φ ≡ true U≤n Φ.
If n = ∞ then superscripts omitted. We assume the following two additional
notations. Let ϕ denote the state formulae from the propositional logic fragment
of PCTL, i.e., ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ, where a ∈ AP . Let D|ϕ denote the
DTMC obtained from D by restricting the set of states to those satisfying ϕ.
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Many of the properties we will examine require PCTL*, because we want to
examine sequences of events: this requires multiple occurrences of a bounded
until operator. This is not fully implemented in the current version of PRISM
(only a single bounded U is permitted1) and so we combine probabilities obtained
from PRISM filtered properties to achieve the same result. Filtered probabilities
check for properties that hold from sets of states satisfying given propositions.
For a DTMC D, we define the filtered probability of taking all paths that start
from any state satisfying ϕ and satisfy (PCTL) ψ by:

ProbDfilter(ϕ)(ψ)
def
= filters∈D,s|=ϕPrs{ω ∈ PathD(s) | ω |= ψ}

where filter is an operator on the probabilities of ψ for all the states satisfying
ϕ. In the examples illustrated in this paper we always use state as the filter
operator since ϕ uniquely identifies a state.

4 Inferring User Activity Patterns

The role of inference is to construct a representation of the data that is amenable
to checking probabilistic temporal logic properties. Developers want to be able
to select a user and explore that user’s model. While this could be achieved by
constructing an independent DTMC for each user, there is much to be gained
from sharing information between users. One way to do this is to construct
a set of user classes based on attribute information, and to learn a DTMC
for each class. This is the approach taken in [5] for users interacting with web
applications, and is a natural way to aggregate information over users and to
condition user-models on attribute values. One issue with this approach is that
it assumes within-class use to be homogeneous. For example, all users in the
same city using the same browser are modelled using the same DTMC.

In this work we take a different approach to inference. We have found the
common representations of context - such as location, operating system, or time
of day - to be poor predictors of mobile application use. For this reason we
construct user models based on the log information alone, without any ad-hoc
specification of user classes. By letting the data speak for itself, we hope to un-
cover interesting activity patterns and meaningful representations of users.

4.1 Statistical Model and Inference

We extend the standard DTMC model by introducing a strategy for each user
over activity patterns. More formally, we assume there exists a finite K number
of activity patterns, each modelled by a DTMC denoted αk = (S, ιinit,Pk, L),
for k = 1, . . . ,K. Note only the transition probability Pk varies over the set of
DTMCs, all the other parameters are the same. For some enumeration of users
m = 1, . . . ,M , we represent a user’s strategy by a vector θm such that θm(k)
denotes the probability that user m transitions according to αk.

1 Because currently the LTL-to-automata translator that PRISM uses does not support
bounded properties.
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Statistical Model. The data for each user is assumed to be generated in the
following way. We assume all users to be independent and all DTMCs to be
available to all users at all points in time. A user chooses an initial state according
to ιinit . When in state s ∈ S, user m selects the kth DTMC with probability
θm(k). If the user chooses the kth DTMC, then they transition from state s
to s′ ∈ S with probability Pk(s, s

′). This simple description specifies all the
probabilistic dependencies required to compute the likelihood of the data given
the parameters of the model. While it is possible to extend the model so θ is
state-dependent, this will require us to either lose the distributed representation
of the user population, or to increase the number of parameters in a way that
leads to a high combinatorial degree of complexity.

Inference. Inference is performed by maximising the log-likelihood of the data
over the parameters of the model. This cannot be done analytically and we use
a numerical method: the expectation-maximisation (EM) algorithm of [6]. For
K > 1, the log-likelihood has multiple maxima and we restart the algorithm
multiple times and select the output parameters with the highest log-likelihood
over all runs. For the data considered here, restarting the algorithm 1000 times
was sufficient to reproduce the same output parameters.

4.2 Example Activity Patterns from Hungry Yoshi

In Fig. 2 we give the activity patterns inferred from a dataset of user traces
for 164 users randomly selected from the user population, for K = 2. A more
detailed overview is given in the work-in-progress paper [7]. For brevity, we
do not include the exact values of P1 and P2, but thicker arcs correspond to
transition probabilities greater than 0.1, thinner ones to transition probabilities
in [0.01, 0.1], and dashed ones to transition probabilities smaller than 10−12.
Intuitively, we can see that given the game is essentially about seeing yoshis and
feeding them, α1 looks like a better way for playing the game. For example in
α2 it is quite rare to reach feed from seeY and seeP, and also rare to move from
seeP to pick. Hungry Yoshi is a simple app with only two distinctive activity
patterns, in a more complex setting we might not be able to have any intuition
about the activity patterns.

5 User Metamodel

We define the formal model of the behaviour of a user m with respect to the
population of users, which we call the user metamodel (UMM). The UMM for
user m is a DTMC obtained by “flattening” the transition model over states
and strategies. The resulting DTMC describes how the user transitions between
composite states of the form (s, k) where s is an observable state and k indicates
the activity pattern at that time. The UMM can be defined formally in the
following way.
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seeY seeP

feed pick

α1

seeY seeP

feed pick

α2
Fig. 2. Two user activity patterns α1 and α2 inferred from Hungry Yoshi usage

Definition 5.1 (User Metamodel). Given K activity patterns α1, . . . , αK

and θm the strategy of user m for choosing activity patterns, the user metamodel
for m is a DTMC M = (SM, ιinitM ,PM,LM) where:

– SM = S × {1, . . . ,K},
– ιinitM (s, k) = θm(k) · ιinit (s),
– PM((s, k), (s′, k′)) = θm(k′) ·Pk′ (s, s′),
– LM(s, k) = L(s) ∪ {α = k}.

We label each state (s, k) with the atomic proposition α = k to denote that the
state belongs to the activity pattern αk.

5.1 Example UMM from Hungry Yoshi

An intuitive graphical description of the UMM for the Hungry Yoshi game for
K = 2 is illustrated in Fig. 3. For example, θm(1) is the probability that user
m continues with activity pattern α1, i.e. takes a transition between states in
α1. The probability that the user changes the activity pattern and makes a
transition according to α2 is proportional to θm(2). Figure 3 is not a direct
representation of the transition probability matrix of the UMM DTMC, but it
illustrates how that matrix is derived from the matrices of the individual user
activity patterns. Note that the activity patterns have the same sets of states.
For instance, in the Hungry Yoshi example, consider we are in state seeY with
α1; we can move to state feed following the same pattern α1 with the probability
θm(1) · P1(seeY , feed), or we can change the activity pattern and move to state
feed following α2 with the probability θm(2) · P2(seeY , feed).

5.2 Encoding a UMM in PRISM

We use the probabilistic model checker PRISM [8]. We assume some familiarity
with the modelling language (based on the language of reactive modules), which
includes global variables, modules with local variables, labelled-commands cor-
responding to transitions and multiway synchronisation of modules. Below we
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θm(1) θm(2)

θm(1)

θm(2)seeY seeP

feed pick

α1

seeY seeP

feed pick

α2

Fig. 3. An intuitive view of computing the transition probability matrix of the user
metamodel for the Hungry Yoshi app

illustrate the PRISM encoding of the UMM for user m, where K is the number
of activity patterns, n is the number of states in each activity pattern αk.

module UserMetamodel m
s : [0 .. n] init 0;
k : [0 ..K] init 0;

[] (s = 0) −→ θm(1) ∗ ιinit (1) : (s′ = 1)& (k′ = 1) + . . .+
θm(K) ∗ ιinit (n) : (s′ = n)& (k′ = K);

[] (s = 1) −→ θm(1) ∗P1(1, 1) : (s
′ = 1)& (k′ = 1) + . . .+

θm(K) ∗PK(1, n) : (s′ = n)& (k′ = K);
...
[] (s = n) −→ θm(1) ∗P1(n, 1) : (s

′ = 1)& (k′ = 1) + . . .+
θm(K) ∗PK(n, n) : (s′ = n)& (k′ = K);

endmodule

The representation is straightforward, consisting of one module with (n + 1)
commands for all n states of any activity pattern and for one initial state. The
initial state (s = 0, k = 0) is a dummy that encodes the global initial distribution
ιinit for the user activity patterns. All activity patterns have the same set of
states and we enumerate them from 1 to n; we can label them conveniently
with atomic propositions. For instance, in a Hungry Yoshi UMM the states
(0, k) to (4, k) are labelled by the atomic proposition init , seeY , feed , seeP , pick
respectively. For each state (s, ·), with s > 0, we have a command defining all
possible n ·K probabilistic transitions. Pk(i, j) is the transition probability from
state i to state j in αk, and θm(k) is the probability of user m to choose the
activity patterns αk, for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . ,K}. If the probability
of an update is null, then the corresponding transition does not take place.
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Fig. 4. Question 1: the probability of feeding a yoshi for the first time within N button
taps for the activity pattern α1 on the left and for α2 on the right

6 Analysing the Hungry Yoshi UMM

In this section, we give some example analysis for a UMM. Namely, we encode
and evaluate quantitatively several example questions from Sect. 2.1 for the
UMM with the user strategy for transitioning between activity patterns defined
by θ = (0.7, 0.3). The PRISM models and property files are freely available2.

Recall that to score highly, a user must feed one or more yoshis (the appro-
priate fruit) often. An informal inspection of α1 and α2 indicates that α2 is a
less effective strategy for playing the game, since paths from seeP and seeY to
feed are unlikely. Now, by formal inspection of the UMM (encoded in PRISM),
we can investigate this hypothesis more rigorously. We consider properties that
are parametrised by a number of button taps (e.g. N , N1, N2) and by activity
pattern (e.g. α1, α2), so we use the PRISM experiment facility that allows us to
evaluate and then plot graphically results for a range of formulae.

Question 1. How many button taps N does it take to feed a yoshi for the first
time? We encode this by the probabilistic until formula:

p1(i) = ProbMinit ((¬feed)U≤N ((α = i) ∧ feed))

and equivalently in PRISM:P=?[(!"feed") U<=N (alpha=i)&("feed")]..
For activity pattern α1, Figure 4 shows that within 2 button taps the prob-

ability increases rapidly, and after 5 button taps the probability is more than
70%. Contrast this with the results for α2: the probability increases rapidly after
3 button taps but soon it reaches the upper bound of 0.003. Comparing the two
results, α1 is clearly more effective.

Now we consider more complex questions concerning sequences of feeding
and picking; recall that a basket can hold at most 5 fruits and extra points are
gained by feeding a yoshi its required 5 fruits without any other interruption. In
Question 2 we consider feeding a full basket to a yoshi, without any interruptions;

2 Available from http://dcs.gla.ac.uk/~oandrei/yoshi

http://dcs.gla.ac.uk/~oandrei/yoshi
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in Question 3 we consider picking a full basket, without being interrupted by a
feed , followed by feeding the full basket to a yoshi, which is again defined by five
consecutive feeds, without any interruptions. Note that when considering feeding
the full basket to a yoshi, we exclude all interruptions, i.e. any interleavings with
pick, seeY, and seeP.

Question 2. What is the probability of feeding the same yoshi a full basket? We
calculate the probability of reaching the state feed within N button taps and
then visiting it (with the same activity pattern i ∈ {1, 2}) for another four times
without visiting any other state:

p2(i) = ProbMinit (F
≤N (α = i ∧ feed)) · (ProbM|α=i

feed (X feed))4

We calculate this probability in PRISM using the property:

P=?[F<=N((alpha=i)&"feed")] *

pow(filter(state,P=?[X(alpha=i&"feed")],(alpha=i&"feed")),4)

The results are shown in Fig. 5 for both activity patterns and a range of number
of button taps. While the results for α1 (converging to 0.018) are higher than for
α2 (effectively 0); they are both small. There could be several causes for this. For
example, players are only made aware of the possibility of extra points at the end
of the instructions pages, or available fruit depends on the external environment.
If designers/evaluators want this investigated further, then we would require to
record and extract more detail from the logs, for example to log numbers of
available WiFi access points and scrolls through instruction pages.

Question 3. What is the probability of filling up a basket of fruit without feeding
a yoshi, and only after the basket is full feeding the same yoshi the whole basket?
We calculate the probability of reaching the state feed only after visiting the state
pick five times (without feeding) and then visiting the state feed four more times
without visiting any other state, for each activity pattern i ∈ {1, 2}:

p3(i) = ProbMinit [(¬pick )U≤N ((α = i) ∧ pick )]·
(Prob

M|α=i

pick [X((¬feed ∧ ¬pick )U (pick ))])4·
Prob

M|α=i

pick [(¬feed)U feed ] · (ProbM|α=i

feed [X feed ])4

The corresponding PRISM property is:

P=?[!("pick") U<=N ((alpha=i)&"pick")] * pow(filter(state,

P=?[X ((alpha=i)&(!"feed")&(!"pick") U ((alpha=i)&"pick"))],

((alpha=i)&"pick")),4) * filter(state,

P=?[(alpha=i)&(!"feed")U((alpha=i)&"feed")],((alpha)=i&"pick")) *

pow(filter(state,P=?[X((alpha=i)&"feed")],((alpha=i)&"feed")),4)

The results are presented in Fig. 6. Again, while the probabilities are low
(presumably for the reasons outlined above for Question 2) the user that picks
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Fig. 5. Question 2: the probability of
feeding one yoshi the whole fruit basket
without interruptions

Fig. 6. Question 3: the probability of
picking five pieces of fruit and then
feeding one yoshi the whole basket

a full basket and feeds it to a yoshi by following activity pattern α1 does it with
around 0.00019 probability within 20 steps into the game, whereas if they follow
α2 from the beginning, they almost never empty the basket. So again, α1 proves
to be more effective.

Now we turn our attention to a question that involves a change of activity
pattern, i.e. a change in the playing strategy.

Question 4. What is the probability of starting with an activity pattern and
not feeding a yoshi within N button taps, then changing to the other activity
pattern and eventually first feeding a yoshi within N2 button taps? We compute
this probability as follows, where L0 = {feed , pick , seeY , seeP}:

p4(i) =
∑

�∈L0
ProbMinit ((¬(α = i) ∧ ¬feed)U≤N ((α = i) ∧ �))·
Prob

M|α=i

� ((¬feed )U≤N2 feed)

The corresponding PRISM property is:

P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"feed")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"feed") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"pick")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"pick") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"seeY")] *

filter(state,P=?[(alpha=i)&!("feed") U<=N2 (alpha=i&"feed")],

alpha=i&"seeY") + P=?[(!(alpha=i)&!("feed")) U<=N (alpha=i&"seeP")] *

filter(state,P=?[(alpha=i&!"feed")U<=N2(alpha=i&"feed")],alpha=i&"seeP")

Figure 7 shows the results for switching from activity patterns α1 to α2 and
vice-versa respectively for less than 10 button taps to feed a yoshi after switching
the activity pattern, while Figure 8 shows the same but for an unbounded number
of button taps (to feed a yoshi). We can see that success is much more likely by
switching from α2 to α1, than switching from α1 to α2, and a user needs about
4-5 button taps to switch from α2 to α1 to maximise their score. This latter



Probabilistic Model Checking of DTMC Models of User Activity Patterns 149

Fig. 7. Question 4 for N2 ≤ 10 and i = 1 on the left and i = 2 on the right

Fig. 8. Question 4 for N2 = ∞ and i = 1 on the left and i = 2 on the right

result is not surprising, considering that users might first inspect the game,
which would involve visiting the 4 states.

All analyses were performed on a standard laptop. Note that for brevity, the
mobile app analysed here, and its formal model, are relatively small in size; more
complex applications will yield more meaningful activity patterns and complex
logic properties that can be analysed on the metamodels. While state-space
explosion of the UMM could be an issue, it is important to note that the state-
space does not depend on the number of users, but on the granularity of the
states (logged in-app actions) we distinguish.

7 Discussion

We reflect upon the results obtained for the Hungry Yoshi example and further
issues raised by our approach.

Hungry Yoshi Usage. Our analysis has revealed some insight into how users
have actually played the game: α1 corresponds to a more successful game play-
ing strategy than α2 and a user is much more likely to be effective if they change
from α2 to α1 (rather than vice-versa), thus we conclude that α1 is expert be-
haviour and α2 is ineffective behaviour. (Note that users can, and do, switch
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between both behaviours, e.g. a user who exhibits expert behaviour can still
exhibit ineffective behaviour at some later time.) This interpretation of activity
patterns can inform a future redesign that helps users move from ineffective to
expert behaviour, or induces explicitly populations of users to follow selected
computation paths to reach certain goal states. We note that the developers had
very little intuition about how often, or if, users were picking a full basket and
then feeding a yoshi (e.g. Questions 3 and 4 in Sect. 6), and so the results, which
indicate this scenario is quite rare, provided a new and useful insight for them.

Why DTMCs? Our choice of DTMC models is based on the work of of [9] in
modelling web-browsing activity, usage of Microsoft Word commands, and tele-
phone usage across populations of individuals. Girolami et al. used probabilistic
convex combinations of DTMCs and demonstrated empirically that such model
was superior in predictive performance to single DTMCs and mixture (point-
mass) of DTMCs. Future work involves developing algorithms for inference of
Hierarchical Hidden Markov models, where the first abstract level in the hierar-
chy is the activity patterns.

Temporal Properties. The properties refer to propositions about user-initiated
events (e.g. seeY, feed) and activity patterns (e.g. α1, α2). A future improve-
ment would be a syntax that parametrises the temporal operators by activity
pattern. We note that PCTL properties alone were insufficient for our analysis
and we have made extensive use of filtered properties. We also note that for some
properties we have used PRISM rewards, e.g. to compare scores between activity
patterns, but these are omitted in this short paper.

Reasoning about Users. Model checking is performed on the UMM resulting from
the augmentation of the set ofK activity patterns with a strategy θm. It is simple
to select a user by selecting a θm and to analyse the resulting UMM. Metrics on
the set {θm | m = 1, . . . ,M} will be used in future work to characterise how the
results of the analysis change depending on the value of one θm, in the hope that
results of the analysis for one user can be generalised to users close by (under
the given metric).

Formulating Hypotheses: Domain Specific and Generic. We have considered do-
main specific hypotheses presented by developers and evaluators, but could a
formal approach help with hypothesis generation? For example, we could frame
questions using the specifications patterns for probabilistic quality properties as
defined in [10] (probabilistic response, probabilistic precedence, etc.). Referring
to our questions in Sect. 2.1, we recognise in the first item the probabilistic prece-
dence pattern, in the second one the probabilistic response pattern, and in the
last two the probabilistic constrained response pattern. However, these patterns
refer only to the top level structure, whereas all our properties consist of mul-
tiple levels of embedded patterns. Perhaps more complex patterns are required
for our domain? The patterns of [10] were abstracted from avionic, defence, and
automotive systems, which are typical reactive systems; does the mobile app



Probabilistic Model Checking of DTMC Models of User Activity Patterns 151

domain, or domains with strong user interaction exhibit different requirements?
We remark also that analysis of activity patterns is just one dimension to con-
sider: there are many others that are relevant to tailoring software to users, for
example software variability and configuration, and user engagement. These are
all topics of further work.

Choosing K Activity Patterns. What is the most appropriate value forK, can we
guide its choice? While we could use model selection or non-parametric methods
to infer it, there might be domain-based reasons for fixingK. For example, we can
start with an estimate value of K and then compare analysis activity patterns: if
properties for two different activity patterns give very close quantitative results
then we only need a smaller K.

What to Log? This is a key question and depends upon the propositions we exa-
mine in our properties, as well as the overheads of logging (e.g. on system per-
formance, battery, etc.) and ethical considerations (e.g. what have users agreed).
Formal analysis will often lead to new instrumentation requirements, which in
turn will stimulate new analysis. For example, our analysis of Hungry Yoshi has
indicated a need for logged traces to include more information about current
context, e.g. the observable access points (yoshis).

8 Related Work

Our work is a contribution to the new software analytics described in [11], focus-
ing on local methods and models, and user perspectives. It is also resonates with
their prediction that by 2020 there will be more use of analytics for mobile apps
and games. Recent work in analysis of user behaviours in systems, especially
XBox games, is focused on understanding how features are used and how to
drive users to use desirable features. For example, [12] investigates video game
skills development for over 3 million users based on analysis of users’ TrueSkill
rating [13]. Their statistical analysis is based on a single, abstract “skill score”,
whereas our approach is based on reasoning about computation paths relating to
in-app events and temporal property analysis of activity patterns. Our approach
can be considered a form of run-time quantitative verification (by probabilistic
model checking) as advocated by Calinescu et al. in [14]. Whereas they consider
functional behaviour of service-based systems (e.g. power management) and soft-
ware evolution triggered by a violation of correctness criteria because software
does not meet the specification, or environment change, we address evolution
based on behaviours users actually exhibit and how these behaviours relate to
system requirements, which may include subtle aspects such as user goals and
quality of experience. Perhaps of more relevance is the work on off-line runtime
verification of logs in [15] that estimates the probability of a temporal prop-
erty being satisfied by program executions (e.g. user traces). Their approach
and results could help us determine how logging sampling in-app actions and
app configuration affects analysis of user behaviour. The work of [16] employing
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Hidden Markov Chains models (HMMs) is related to our approach, however our
focus on capturing behavioural characteristics that are shared across a popula-
tion forces us to consider a model whose distributed representation cannot be
captured by HMMs. Finally we note the very recent work of [5] on a similar ap-
proach and comment the major differences in Sect. 4. In addition they analyse
REST architectures (each log entry corresponds to a web page access), whereas
the mobile apps we are analysing are not RESTful, we can include more fine
grained and contextual data in the logged user data.

9 Conclusions and Future Work

We have outlined our contribution to software analytics for user interactive sys-
tems: a novel approach to probabilistic modelling and reasoning over actual user
behaviours, based on systematic and automated logging and reasoning about
users. Logged user traces are computation paths from which we infer activity
patterns, represented each by a DTMC. A user meta model is deduced for each
user, which represents users as mixtures over DTMCs. We encode the user meta-
models in the probabilistic model checker PRISM and reason about the meta-
model using probabilistic temporal logic properties to express hypotheses about
user behaviours and relationships within and between the activity patterns.

We motivated and illustrated our approach by application to the Hungry Yoshi
mobile iPhone game, which has involved several thousands of users worldwide.
We showed how to encode some example questions posed by developers and
evaluators in a probabilistic temporal logic, and obtained quantitative results
for an example user metamodel. After considering our formal analysis of two
activity patterns, we conclude the two activity patterns distinguish expert be-
haviour from ineffective behaviour and represent different strategies about how
to play the game. While in this example the individual activity pattern DTMCs
are small in number and size, in more complex settings it will be impossible to
gain insight into behaviours informally, and in particular to insights into rela-
tionships between the activity patterns, so automated formal analysis of the user
metamodels will be essential.

In this paper we have focused on defining the appropriate statistical and for-
mal models, their encoding, and reasoning using model checking. We have not
explored here the types of insights we can gain into user behaviours from our
approach, nor how we can employ these in system redesign and future system de-
sign, especially for specific subpopulations of users. Further, in this short paper,
we have not considered the role of prediction from analysis and the possibili-
ties afforded by longitudinal analysis. For example, how do the activity patterns
and properties compare between users in 2009 and users in 2013? This is ongo-
ing work within the A Population Approach to Ubicomp System Design project,
where we are working with system developers on the practical application of
our formal analysis in the design and redesign of several new apps. We are also
investigating metrics of user engagement, tool support, and integration of this
work with statistical and visualisation tools.



Probabilistic Model Checking of DTMC Models of User Activity Patterns 153

Acknowledgments. This research is supported by EPSRC Programme Grant
A Population Approach to Ubicomp System Design (EP/J007617/1). The authors
thank all members of the project, and Gethin Norman for fruitful discussions.

References

1. McMillan, D., Morrison, A., Brown, O., Hall, M., Chalmers, M.: Further into the
Wild: Running Worldwide Trials of Mobile Systems. In: Floréen, P., Krüger, A.,
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Abstract. For use in vehicular networks, IEEE 802.11p has been stan-
dardized as the underlying wireless system. The 802.11 standard distin-
guishes two main methods of operation with respect to channel access, the
Distributed Coordination Function (DCF) and the Enhanced Distributed
Channel Access (EDCA), where the latter is the mandated method to be
used in vehicular networks (in 802.11p). We present validated analytical
models for both DCF and EDCA, and compare both methods in the con-
text of beaconing.Wewill show that, surprisingly,DCFoutperformsEDCA
under assumptions that are realistic for beaconing in vehicular networks.

1 Introduction

Vehicular networks are expected to enable increased traffic safety and efficiency,
and reduced environmental impact of road traffic. Many traffic safety and effi-
ciency applications rely on vehicles wirelessly broadcasting, e.g., their position
and speed, to vehicles in their surroundings. The rate at which this beaconing
occurs, may vary from once per few seconds until up to 25 times per second,
depending on the application.

For use in vehicular networks, a dedicated variant of the IEEE 802.11 family
of wireless communication protocols [1] has been specified. The most important
adaptations made in this IEEE 802.11p standard are the increased symbol time
and reduced data rate, in order to deal with the vehicular environment, and the
possibility to communicate with other stations in an ad-hoc manner, without pre-
establishing an association. The typical communication range for IEEE 802.11p
ranges between a few hundred to thousand meters.

In a vehicular environment communication is taking place directly between
vehicles, and not via an access point. Hence, it is important to perform medium
access control in a fully distributed way. In the traditional IEEE 802.11 standard,
access to the medium is governed using the so-called Distributed Coordination
Function (DCF), which applies a form of Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA). The DCF uses carier sensing to avoid inter-
ference and collisions between different nodes. The start of a new transmission
after a busy period is randomized by decrementing a backoff counter (bc). To

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 154–169, 2014.
c© Springer International Publishing Switzerland 2014



Performance Comparison of IEEE 802.11 DCF and EDCA 155

allow for prioritized access for traffic flows, the so-called EDCA has been defined,
which treats packets from different Access Categorys (ACs) differently. To make
this prioritization possible, the rules for decrementing the bc have been slightly
changed. IEEE 802.11p prescribes the use of EDCA in vehicular networks.

Beaconing in vehicular networks is fundamentally different from communica-
tion in traditional wireless LANs, where most traffic consists of series of unicast
messages to or from an access point. In case of beaconing, nodes broadcast a
single packet periodically. Broadcast implies that transmitted packets are not
acknowledged by the receiver. As a consequence, packets are never retransmit-
ted, and nodes do not adapt their load on the network, based on the success or
failure of previous transmissions. Because nodes are typically dispersed of a large
geographical area, and the use of Request-To-Send Clear-To-Send (RTS/CTS)
is not possible in a broadcast environment, vehicular networks suffer a lot from
hidden terminal problems. Beaconing in vehicular networks is characterized by
a large number of nodes, each with a relatively low load. Vehicles may receive
beacons from many other vehicles in their surroundings, which poses a scalability
challenge to such networks.

This paper evaluates the scalability of beaconing in vehicular networks using
the IEEE 802.11p DCF and EDCA. More specifically, we investigate the impact
of the modified bc decrement rules on the probability of successful transmission
and throughput. We present analytical performance models for the DCF and
EDCA. We focus on the bc decrement behaviour, hence, we do not model the
effect of hidden terminals. Solving the analytical models, and comparing numer-
ical results reveals remarkable differences in the system performance for both
access methods, which we will explain.

In [2], we already introduced the DCF model described in Sec. 3. The con-
tributions of this paper are as follows. (1) We present an analytical model for
beaconing in vehicular networks using EDCA. (2) We compare the beaconing
performance of EDCA and DCF, and (3) we present a detailed analysis of the
effect of the bc decrement rules on the system performance.

In the following, we first describe DCF and EDCA and their differences, in
Sec. 2. Models of these mechanisms are described and analysed in Sec. 3. In Sec.
4, we compare and explain numerical results for both mechanisms. For ease of
understanding, related work on modeling IEEE 802.11(p) is only reviewed in
Sec. 5. Finally, we give conclusions and future work in Sec. 6.

2 Operation of IEEE 802.11DCF and EDCA

2.1 Distributed Coordination Function (DCF)

The mandatory Distributed Coordination Function (DCF) specifies basic rules
for medium access and contention resolution in all IEEE 802.11 stations [1]. It
coordinates transmission attempts by multiple stations contending for access to
the same wireless channel, and prevents collisions. To reduce the probability of
collision, the DCF specifies the use of CSMA/CA. The Carrier Sense (CS) part
prevents a node from transmitting when an other node is already transmitting.
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The medium is idle when the detected signal level is below the carrier sense
threshold. In this case, a node may proceed to access the channel. If the channel
is busy, the access attempt is deferred until the medium turns idle again.

The Collision Avoidance (CA) part prevents collisions where they are most
likely to occur: just after a transmission by an other node. As described above,
CS mandates to defer access until the channel turns idle again. If multiple con-
tending nodes are waiting for the channel to become idle, they are somehow syn-
chronised and could cause a collision if they were to transmit immediately. To
alleviate this, CA mandates use of a so-called backoff. When the medium turns
idle, a node does not immediately begin transmission, but will wait a mandatory
gap, called Interframe Space (IFS), and some random extra time by means of
a backoff counter (bc). The bc is randomly drawn from the a range [0, CWmin],
the contention window. More precisely, the DCF performs the following opera-
tions once the network layer submits a packet to the MAC’s transmission queue,
assuming the station starts in the idle state:

1. Upon reception of a packet in the transmission queue, the MAC performs
CS.
(a) If the channel is idle for at least one IFS, the transmission may com-

mence immediately.
(b) If the channel is busy, the node enters contention, which is divided into

a countdown and freeze state.
2. The node draws a bc from the contention window, according to the discrete

uniform distribution [0,CWmin].
3. When the channel turns idle, the node waits one IFS.
4. After every idle timeslot σ, the bc is decremented.
5. If the channel turns busy during Countdown, bc is frozen and the process

continues from step 3.
6. When bc reaches 0, the node transmits the frame. This may also happen if

a node chooses 0 as bc in step 2.

The operation of the DCF is illustrated in Fig. 1, where the actions relating to
decrementing or transmitting are illustrated on top of the blocks. In this example,
node A finds the medium busy and chooses a bc of 1. Another node B has choosen
bc = 0 during the same medium busy period, and transmits immediately after
the IFS. Node A then has to wait for an IFS, and an empty slot σ to decrement
its bc to 0, after which it can transmit. These two transmissions follow each other
without intermediate σ. However, all nodes that have a non-zero bc freeze until
an empty slot is observed on the medium. This consecutive series of transmissions
without intermediate empty slots is called a streak.

2.2 Extended Interframe Spacing and Post-Backoff

The Extended Interframe Space (EIFS) is used to respond to a frame which failed
its CRC check. This implies that the station was also not able to determine
the nature of the (badly) received packet, i.e., whether it was a broadcast or
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time
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bc: 1

IFS B:Transmit IFS σ

↓0,tx

A:Transmit

Fig. 1. DCF operation (empty slot needed for counter decrement)

time
Medium busy

bc: 1

IFS

↓0

B:Transmit IFS

tx

A:Transmit

Fig. 2. EDCA operation (no empty slot needed for counter decrement)

unicast transmission. To prevent this station from interfering with an ongoing
transaction, it has to wait until the intended recipient had an opportunity to
return an acknowledgement frame, which is done after leaving the medium idle
for a Short IFS (SIFS). So the EIFS extends the DIFS with a SIFS and the time
to transmit a full acknowledgement frame. Nodes that notice a collision on the
medium will also refrain from accessing the medium for this prolonged time.

Post-backoff (PBO) prevents unfair advantage of nodes that have just finished
a transmission and still have packets to send. Since other nodes in the system
are still counting down their bc values, such a node may find the medium idle,
and can immediately transmit without performing backoff. The mechanism of
PBO prevents the starvation of other nodes, which could be caused by a node
with a very high traffic load. PBO is similar to the backoff prior to performing
a transmission: (i) After completion of a transmission, the node draws a bc from
the contention window. (ii) After an IFS during which the channel remains idle,
for every timeslot σ in which the channel remains idle, the bc is decremented. (iii)
If the channel turns busy the bc is frozen and the process may only continue after
the channel has turned idle, and remained idle for at least an IFS. (iv) When bc
reaches 0, the node transmits the frame if there was a frame to transmit. If the
transmission queue is empty, the node remains idle.

2.3 Enhanced Distributed Channel Access (EDCA)

To enable service differentiation for packets of different flows, Enhanced Dis-
tributed Channel Access has been introduced in IEEE 802.11. In EDCA, pack-
ets are classified based on an Access Category (AC), and each AC has its own
transmission queue within a station. The service differentiation is defined among
traffic from different stations, but also among traffic from different ACs within
a single node.

Instead of the standard IFS used in the DCF (DIFS), EDCA uses a different
Arbitration Interframe Space (AIFS) for each AC. Stations with a longer Arbi-
tration Interframe Space (AIFS) have less chance of accessing the medium than
stations with a shorter AIFS. Another way of differentiation is using different
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Fig. 3. Markov chain of the DCF model

contention window sizes for different ACs. This applies both to the initial con-
tention window (CWmin) and to the maximum contention window (CWmax). The
latter is however not used in broadcast transmissions. Stations with a smaller
CWmin value can on average acquire the medium faster than stations with a larger
value. The Transmission Opportunity (TXOP) value is defined for use with uni-
cast transmissions. A station with a non-zero TXOP is allowed to send frames
in rapid succession for a certain duration, separated by a Short IFS (SIFS) in
stead of a DIFS or AIFS.

Another difference between DCF and EDCA, which is less widely understood,
is the way the backoff counter is decremented. Whereas DCF decrements the bc
after an empty slot σ and is allowed to transmit at the moment the bc reaches 0,
EDCA decrements the bc at slot boundaries. In this case, a station decrements
the bc at the beginning of a timeslot immediately following the IFS (either AIFS
or EIFS), irrespective of the channel status in that slot [3]. However, it is not al-
lowed to decrement the bc and start transmission simultaneously at the same slot
boundary. At a slot boundary, a station shall perform only one of the following
actions [1]: start a transmission, decrement the bc, invoke the backoff procedures
for an internal collision (a virtual collision with a packet from another AC in the
same station), or do nothing. Hence, an EDCA node has to wait for the next
slot boundary to transmit, once its bc reaches zero.

Fig. 2 illustrates the operation of EDCA for the same scenario as discussed for
DCF in Fig. 1. Note the difference when bc decrement takes place. Station A can
decrement its bc at the slot boundary following the first IFS. Immediately after
the second IFS, after B’s transmission, A can start transmission. This provides
EDCA a bc decrement advantage over DCF [3]. However, as we will see this
decrement advantage is not always beneficial for the system performance.
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3 Modelling and Analysis

3.1 General Model Structure and Assumptions

Along the lines of [4], we model a single station as an M/G/1 queueing station
with successive beacon arrivals according to a Poisson process, i.e., exponentially
distributed inter-arrival times with mean 1/λg. A station is assumed to have and
infinite queue. This is not a strong simplification, as it turns out that queueing
is very limited. The server of the M/G/1 queueing station has a general service
time distribution, where the service time of a packet includes the time the station
contents for medium access before a packet is transmitted. A packet is considered
serviced regardless of the success or failure of the transmission, i.e., also if a
collision takes place. The mean of this service time E[S] is derived from an
embedded Discrete Time Markov Chain (DTMC), which models the behaviour
of the DCF or EDCA in detail. The DTMC model in turn, needs the utilization
ρ (ρ = λgE[S]) from the M/G/1 queue.

In the DTMC, which models a single station, time is discretised into generic
slots. A slot is either idle or busy; a busy slot is either successful or a collision.
When deriving the probability of packet arrivals in a generic slot, the exact du-
ration of a slot, e.g., the deterministic time to transmit a beacon, is taken into
account. Using the DTMC, we can determine the probability τ that the station
is transmitting in a generic slot. It is assumed that n stations are sharing the
medium, and are able to receive each other. No hidden terminals are assumed.
Using a mean-field approximation technique [5], a station is assumed to experi-
ence the average behaviour for each of the n− 1 other stations, and will assume
that each of them is also accessing the medium in a generic slot with probabil-
ity τ . This way, we can obtain results for the overall model using a fixed point
iteration.

3.2 DCF Model

We have presented and analysed the DTMC model of DCF used in this paper
in [2]. For comparison purposes, we recall the model here, without deriving all
variables and solving the steady-state equations. Instead, we refer to the original
paper.

Fig. 3 shows the DTMC model for a DCF node that is only broadcasting.
The state space S of the DTMC consists of a finite set of states S = {sj,k|j ∈
{0, 1} ∧ k ∈ {0, . . . ,W − 1}}, where j = 0 holds for a node that is currently not
accessing the medium (it is either in PBO or idle) and j = 1 means that the
node is contending for medium access (BO), or actually transmitting. Parameter
k denotes the current bc value, when (1) a station takes a packet from the queue
and starts its medium access attempt and finds the medium busy, or (2) when a
station starts PBO. Each bc value between 0 andW−1 is chosen with probability
1/W , where W − 1 equals the initial contention window, CWmin.

When the bc reaches zero (s1,0), the node transmits the current frame. After
transmission, with probability ρ the station finds another packet in its queue and
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performs a new BO for medium access. With probability 1−ρ the queue is empty
and the node will enter PBO. While in BO or in PBO, the bc is decremented for
every idle slot. If a transmission by an other node is overheard (with probability
p�) the bc is frozen. Countdown resumes when the channel turns idle again, with
probability 1 − p�.

During PBO, with probability q� a frame enters the transmission queue. The
bc countdown will continue, in order to access the medium. This is modelled by
the “diagonal transitions” in Fig. 3. When a node reaches s0,0, which represents
an idle node, it receives a packet in its transmission queue with probability q
or remains idle with probability 1 − q. A node perceives the channel busy with
probability p, hence, will perform a BO with probability qp, or a direct transmis-
sion with q(1− p), if it perceives the channel idle. Both the direct transmissions
and those mediated by BO will transition into s1,0: the transmission state. The
probability that the DTMC is in this state, i.e., that a station is transmitting in
a generic slot, is denoted as τ , which is used in the mean field approximation.

3.3 EDCA Model

As the behaviour of a station operating according to EDCA is different from a
station using DCF operation, also the DTMC model for EDCA is different. Since
we assume that all beaconing stations are using the same Access Category (AC),
we do not model the service differentiation features of the EDCA, although we
do take the modified IFS and CWmin into account. The most important difference
sbetween the DCF and EDCA model come from the modified bc decrement rules.
Fig. 4 shows the DTMC model for EDCA. Because an EDCA station always
decrements at slot boundaries, bc countdown occurs in generic slots, irrespective
of the medium condition. Thus, the bc is not frozen with probability p�, as
in DCF, but is decremented at every generic slot. This behaviour was already
taken into account in the original Bianchi model [4] where DCF bc freezing was
modelled incorrectly. While in the DCF model, the probability of a packet arrival
during PBO (”the diagonal transition”) was denoted as q�, the probability of
an arrival during a freezing period or streak, in the EDCA model, it is equal to
q, the probability of an arrival in a generic slot. Because a generic slot can be
empty, contain a successful transmission, or a collision, an arrival occurs in one
of these slots with different probability depending on the type of slot. The mix
of these types depends on the probability of occurence of such slots. Therefore,
the probability q that a packet arrival occurs in a generic slot, is given by a
weighted Poisson arrival process with parameter λg:

q = 1 −
(
(1 − p�b)e

−λgTe + p�se
−λgTs + (p�b − p�s)e

−λgTc

)
, (1)

where p�s is the probability that the node under consideration observes a slot
containing a successful transmission from one of the n − 1 others. This means
that out of these other nodes, one does transmit and n − 2 do not transmit:

p�s = (n − 1)τ(1 − τ)n−2. (2)
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Fig. 4. Markov chain of the EDCA model

The probability of observing a busy slot is obtained as:

p�b = 1 − (1 − τ)n−1. (3)

Finally, Te, Ts, and Tc denote the duration of an empty, successful, or collision
slot, respectively. A successful slot lasts the time for transmission of the entire
packet, including preamble and headers, plus the AIFS period following the
transmission. Similarly, a collision slot lasts the time for packet transmission
plus the EIFS period following the transmission.

To account for the fact that an EDCA station may not decrement its bc to
0 and transmit in the same slot, an extra state (s1,−1) is added to the model,
which represents a station transmitting in a generic slot. Upon completion of
a transmission, a station goes into BO with probability ρ and into PBO with
probability 1 − ρ. In both cases, the randomly chosen bc can be decremented
directly after the IFS following the transmission. This means that if a bc of
W − 1 is chosen, it is already decremented before the next generic slot. As a
result, states sj,W−1 are not present in the EDCA model. If the station choses
bc = 0 while going into BO, it immediately transmits the frame in the next slot,
and returns to state s1,−1. If the station choses bc = 0 while going into PBO,
it will go to the same idle state (s0,0) as when it choses bc = 1. This is why
the probability of going from transmission to idle is 2 times higher than the
probability of going into another PBO state (2/W versus 1/W ).

When a station is idle (s0,0), what happens during the next generic slot de-
pends on the type of of the current slot. The current generic slot is a busy slot
with probability, p, that at least one of the other n− 1 stations is transmitting:

p = 1 − (1 − τ)n−1. (4)
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With probability qe(1− p), the current slot is idle and a packet arrival occurs
within the slot, so that the station can transmit in the next slot, i.e., go to s1,−1.
Here, qe denotes the probability of a packet arrival during an empty slot;

qe = 1 − e−λgTe . (5)

With probability qbp, the current slot is busy, and a packet arrival occurs within
the slot, so that the station will draw a new bc and go into BO. Similarly, qb
denotes the probability of a packet arrival during a busy slot;

qb = 1 −
(
ps
pb

e−λgTs +

(
1 − ps

pb

)
e−λgTc

)
. (6)

If no packet arrival occurs while in s0,0, with probability 1 − qbp− qe(1 − p), the
station will remain in the same state. (6) is again a weighted Poisson arrival
process, where pb denotes the probability that a slot is busy, i.e., at least one of
the n nodes is transmitting,

pb = 1 − (1 − τ)n. (7)

Furthermore, ps denotes the probability that a generic slot contains a successful
transmission, i.e., one of the n stations transmits, and the other n − 1 do not
transmit,

ps = nτ(1 − τ)n−1. (8)

3.4 Steady State Distribution of the EDCA Model

Let b0,k, b1,k, and b1,−1 denote the stationary probability of being in states s0,k,
s1,k, and s1,−1 for k ∈ {0, . . . ,W − 2}. By working recursively from right to left
(see Fig. 4), the following expressions for the steady state probabilities can be
derived. Complete derivations can be found in [6].

The steady-state probability for a node in PBO is given by:

b0,k =
1 − ρ

W
b1,−1

1 − (1 − q)W−k−1

q
, for k = 1, . . . ,W − 2. (9)

A node is idle with steady-state probability:

b0,0 =
(1 − ρ)

W (qbp+ qe(1 − p))
b1,−1

(
1 +

1 − (1 − q)W−1

q

)
. (10)

The steady-state probability for a node in BO is given by:

b1,k =
b1,−1

W

(
(W − k − 1)

(
ρ+ qbp(1−ρ)

W (qbp+qe(1−p))

(
1 + 1−(1−q)W−1

q

))
+(1 − ρ)

(
(W − k − 1) − 1−(1−q)W−k−1

q

))
, for k = 0, . . . ,W − 2.

(11)
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The probability that a node transmits in a generic slot, τ , equals the probability
of being in the state in which transmission is performed, which is obtained by
normalisation:

τ = b1,−1 =

(
1 + (W−1)

2 +

(
1−ρ

W (qbp+ qe(1 − p))(
1 − 1 − (1 − q)W−1

q

))(
1 +

qbp(W − 1)

2

))−1

. (12)

3.5 Service Time

We can now derive an expression for the service time of the EDCA. This is the
sum of the time it takes to transmit a frame (including the IFS), and the time
spent in contention. Recall that whether or not to perform contention depends
on the state of the channel upon arrival of a packet. The probability that a
slot is observed busy is expressed as p, see (4). However, arrivals can happen
at random moments in time (and not only on slot boundaries), so following the
PASTA property, these Poisson arrivals see time averages. In this line, we need to
find the observed real-time channel utilisation (μ) by multiplying the probability
of encountering a busy slot with the duration of such a slot, and divide by the
duration of a generic slot:

μ =
pE[Tb]

E[T ]
, (13)

where the average duration of a generic slot is:

E[T ] = (1 − pb)Te + psTs + (pb − ps)Tc, (14)

and the average duration of a busy slot:

E[Tb] =
ps
pb

Ts +

(
1 − ps

pb

)
Tc. (15)

The expected service time E[S] is obtained as follows. Transmission of a message,
including the IFS, has a duration of E[Tb]. A station observes the medium busy
and has to perform BO with probability μ. In this case, the event which caused

it to back off has a mean remaining duration of E[Tb]
2 , after which BO starts.

On average, the station has to count down (W−1)
2 empty slots of average slot

length E[T ]. The expected service time of the EDCA, including contention, then
becomes:

E[S] = E[Tb] + μ

(
E[Tb]

2
+

(W − 1)

2
E[T ]

)
. (16)

Then, Little’s Law can be used to obtain ρ = λgE[S].
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4 Performance Comparison

We will now use the models presented in Sec. 3 to compare the performance of the
DCF and EDCA. The analytical results from the DTMC models are obtained by
solving the system of equations using a fixed-point iteration approach in Matlab.
The iterations terminate once τ − τnew < ε, with ε = 1 · 10−6.

The parameters values used in the experiments are as follows. The number
of nodes is varied from n = 1, . . . , 200, to analyze the scalability of DCF and
EDCA. The generation rate λg is either kept constant at 10 beacons per second,
or varied between 0 and 25 beacons per second. The data rate of beacons is
assumed to be 3 Mbps (for highly robust beacon broadcasting), and a beacon
is assumed to have 3200 bits of data. For EDCA, Access Class 0 is assumed,
leading to a duration of a successful packet of Ts = 1.336 · 10−3s, and, because
of the longer EIFS, a duration of a collision of Tc = 1.480 · 10−3s. For the DCF,
these durations are slightly shorter, because of the use of a DIFS instead of
AIFS: Ts = 1.224 · 10−3s; Tc = 1.368 · 10−3s. For both EDCA and DCF, the
duration of an empty backoff slot is Te = 16 · 10−6s. Finally, W=16, i.e., the
(initial) contention window, CWmin, is 15 for both DCF and EDCA (AC0).
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We compare DCF and EDCA with respect to the success probability and
throughput. The success probability of a transmitted beacon is the probabability
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that none of the other stations transmits in the same slot and given by Ps = (1−
τ)n−1. The throughput, X = ps

E[T ] , is defined as the mean number of successful

beacon transmissions per second, can be found by multiplying the expected
number of slots per second, 1

E[T ] , with the probability that these slots contain

successful transmission, ps.
Both models have been validated against simulation experiments performed

using OMNeT++ and MiXiM with extensions to simulate vehicular networking
[6]. The validation results for the DCF model have been published in [2] and the
validation for the EDCF model is presented in Fig. 5 and Fig. 6. As is the case for
the DCF model, the EDCA model also retains inaccuracies in the semi-saturated
areas for n between 60 and 80.

Fig. 7 shows the beacon success probability, Ps, for both DCF and EDCA. The
general trend is that with increasing number of nodes, n, Ps first decreases slowly,
and after a critical point drops sharply. DCF is able to achieve a significantly
larger Ps than EDCA with increasing n. For DCF, the sharp decrease in Ps occurs
also at a larger n, and for n > 150, it is nearly double the Ps for EDCA. Note
that these values of n correspond to a saturated network. In general, one would
like to avoid these highly congestion situations. However, beaconing in vehicular
networks will have to deal with a wide range of vehicle densities, and from time
to time, the network will experience situations with high overload, e.g., around
a highway junction with (road traffic) congestion a vehicle may find hundreds
of cars within transmission distance. It is therefore of paramount importance to
have a reasonably smooth performance degradation with increasing load.

The difference between DCF and EDCA is even more visible in Fig. 8, which
shows the throughput, X , for both mechanisms. The DCF is able to achieve a
significantly larger throughput and its saturation point occurs at larger n.

The performance difference between the two mechanisms can partially be at-
tributed to the smaller IFS of the DCF, which leaves more channel resources for
effective use. However, the dominant factor determining the better performance
of the DCF is the difference in bc decrement rules. The explanation of the perfor-
mance difference between DCF and EDCA, given below, has been confirmed by
other model variables (streak length and collision multiplicity) and by simulation
experiments in [6].

As the medium gets more heavily loaded, more and more of the generic slots
on the medium are busy slots. Since the EDCA does not need empty slots to
decrement its bc, stations typically do a transmission in a randomly chosen slot
within CWmin slots after the beacon generation. With the parameter setting used
in the experiments, beacons are mostly transmitted before the next beacon ar-
rives. As a result, the EDCA tends to spread its transmissions randomly and
evenly over all generic slots, and the system behaviour resembles slotted Aloha
behaviour at high load.

For the DCF, the behaviour at high load is different. Since the DCF is freez-
ing its bc in case of busy slots, it needs empty slots to move from backoff to
transmission. As a result, transmissions are done in streaks, where a streaks is
an empty slot followed by a number of busy slots (See Fig. 1). During the empty
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Fig. 9. Influence of λg and n on Ps for the DCF

slot, all stations in backoff will decrement their counter. A significant fraction of
those (on average 1/CWmin) will decrement to 0, and start transmission in the
first slot of a streak. Only a small subset of the stations is allowed to transmit in
the second slot of a streak. Those are the stations that were idle and generated
a new packet for transmission during the first slot, and have chosen 0 as the bc
value. Furthermore, stations that transmitted in the first slot of the streak, found
another packet in their queue, and have chosen 0 as bc value are also allowed
in the second slot. Similarly, even fewer stations are allowed to transmit in the
third slot of a streak, if any. As a result, in case of DCF, we can observe streaks
on a highly loaded medium, where on average many stations do a transmission in
the first slot of a streak, and relatively few do a transmission in successive slots
of the streak. Therefore, the first slot will most often yield a collision, whereas
subsequent slots have a much higher probability of success. This uneven distri-
bution of transmissions over time increases the probability that in an average
slot exactly one station transmits, and hence the success probability.

We now explore the joint effect of increasing the beacon generation rate, λg,
and the number of stations, n, on the success probability, Ps, for DCF (Fig. 9)
and EDCA (Fig. 10). We can observe that also if either λg or n is high, the DCF
gives a somewhat higher beacon success probability than the EDCA. However,
as can also be observed, for a large range of parameter values, the beaconing
performance of DCF and EDCA is very poor. It can be concluded that the
scalability of the IEEE 802.11 multiple access mechanisms towards high rate
beaconing and high node density is limited. Adapting the beaconing rate and/or
the number of stations in range (by reducing transmission power) as the medium
becomes heavily loaded, as for instance described in [7], is essential.

5 Related Work

IEEE 802.11 standards have been widely studied over the past fifteen years.
Bianchi introduced a foundational model of the IEEE 802.11 DFC [4], [8], [9]
which focuses on saturation throughput for the Basic Access mechanism and
RTS/CTS in the DCF under ideal channel conditions for the 802.11b Medium
Access Control (MAC). This sparked a whole family of models, each adding
protocol features or extracting different metrics. For example, [10] models the
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IEEE 802.11e EDCA based on [8], [9] and [11] and adds priority differentiation
with respect to contention window size and a finite retransmission limit.

In [12] the impact of the CA feature of the IEEE 802.11 DCF is evaluated
using a 2-dimensional Markov Chain, focusing on the state the MAC is in. The
IEEE 802.11 MAC is modelled as a gated system with no buffer; arrivals after
the beginning of the current contention period will not be served until the next
contention period. [13] adds bc freezing behaviour to Bianchi’s model by using
a separate DTMC to model the channel state. [14] explicitly models the queue
size in the third dimension of the Markov chain. As a consequence, all 802.11
DCF system characteristics can be obtained directly from the Markov model.

[15] extends the EDCA model by adding AIFS differentiation and modifying
for use in the whole saturation range, from non-saturated to fully saturated. In
addition, post-backoff behaviour is added, which finally ends up in an idle state.
Whether or not to exhibit saturation behaviour is governed by a probability ρ
that the queue contains another packet after transmission completes.

Yang et al. [16] identify that the EDCA brings difficulties and complexities to
the per-slot based Markov chain modelling techniques widely used for analysis of
the DCF. One problem is that, due to AIFS differentiation, it is no longer possible
to accurately define a common time scale across all nodes. This common time
scale is a fundamental property of many Markov-chain based models. To cope
with these problems, [16] uses a channel access cycle-based modelling approach
and adapt this for use in non-saturated conditions.

As opposed to IEEE 802.11 as used in WLAN situations where unicast domi-
nates, the large scale use of broadcast as envisioned in vehicular networks has re-
ceived little attention in the early modelling work. Chen et al. [17] analyse IEEE
802.11 broadcast performance using a one-dimensional Markov chain, modelling
the bc decrementing behaviour of the DCF under saturation conditions. Ma and
Chen [18] provide a model for broadcast in VANETs, including the presence of
hidden terminals. Their model always performs backoff, exhibiting saturation
behaviour without bc blocking. In [19], Vinel et al. address the trade-off between
generation rate and network performance using deterministic arrivals, assum-
ing backoff prior to transmission–also saturated behaviour. To the best of our
knowledge, there is no existing work that analytically models and compares the
performance of the DCF and EDCA for beaconing in vehicular networks.
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6 Conclusions and Future Work

In this article, we have identified differences in the backoff counter (bc) decre-
ment rules for the IEEE 802.11 DCF and EDCA. We have described analytical
performance models for both mechanisms and compared their performance. The
surprising result of our analysis is that the original DCF exhibits better scala-
bility than the EDCA, which is mandated for use in the IEEE 802.11p standard.
The explanation for this difference is the fact that DCF nodes need empty time-
slots in order to proceed with decrementing their bc, whereas EDCA nodes do
not. As a result, DCF transmissions occur in streaks, where towards the end of
the streak very few nodes are contending for the medium, yielding a relatively
high success probability. In EDCA, transmission attempts are spread out evenly,
leading to a relatively low success probability if many nodes are contending. It
can be concluded that in vehicular networks based on IEEE 802.11p, the ser-
vice differentiation probabilities of the EDCA come at the cost of a reduced
beaconing performance.

In future work, the interaction of hidden terminals with the described be-
haviour of both mechanisms needs to be taken studied. It is also important to
derive other performance metrics, e.g., related to delay and the freshness of bea-
cons from the presented models. Finally, the presented models can also be used
to make simulation models at the traffic (safety) application level more accurate,
yet computationally efficient. Incorporating approaches for congestion control by
means of reducing transmit power or beaconing rate in our models is another
important topic for future work.
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Abstract. This tool demonstration paper describes a new Graphical
User Interface for the interactive modeling and verification of GSPN sys-
tems with the stochastic logic CSLTA. The GUI provides a modern and
fully-featured environment designed around a complete modeling work-
flow: The user designs a GSPN model, a DTA (automaton describing
properties for the CSLTA logic), and can simulate the GSPN behavior
and the model checking process with an interactive simulation (a sort of
“joint token game”). The tool then supports CSLTA model-checking and
the computation of classical performance indices and qualitative proper-
ties. The aim is to provide a state-of-the-art integrated environment for
the quantitative and qualitative analysis of GSPNs with the support of
GreatSPN solvers and of the MC4CSLTA model checker.

Keywords: CSLTA stochastic logic, GreatSPN, GUI, GSPN editor.

1 Objectives and Contributions

Many concurrent formalisms, like Petri nets or Timed Automata, have a graph-
ical representation, that requires the availability of graphical editors to be able
to gain the full advantages. A graphic schema is usually simple to specify and
understand. Editors for these formalisms have flourished in the past, providing
a significant help in the adoption of these performance engineering techniques.

This paper introduces a new graphical editor for Generalized Stochastic Petri
Nets (GSPNs) and Deterministic Timed Automata (DTAs), integrated in the
GreatSPN framework. While there are a certain amount of editors for GSPNs,
this is (to the best of our knowledge) the first graphical editor for CSLTA DTAs.
The editor presents a complete workflow for modeling and verification, that al-
lows to edit models, simulate their behaviors, inspect their structural properties,
test them with numerical solvers and visualize the computed results. The ap-
plication is designed both to be an easy-to-use interface for the MC4CSLTA [2]
model checker, and to be integrated in the GreatSPN pipeline [3].

2 Graphical Modeling with the New GreatSPN GUI

Figure 1 shows the main application window, taken while editing a GSPN model.
The editor is designed around the idea of multi-page projects. Each project

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 170–173, 2014.
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Fig. 1. The interface of the application while editing a GSPN model

correspond to a file, and is made by several pages, listed in the upper-left panel.
In the current version of the editor, pages can be GSPN models, DTA models
or table of measures. New model formalisms or composition of models can be
added easily to the editor by specifying a new type of page. The property panel
on the lower-left shows the editable properties of the selected objects. The central
canvas shows the content of the selected page, that is in this case a GSPN.

Drawing GSPN Models. GSPNs are drawn with the usual graphical notation.
Transitions may be immediate (thin black bars), exponential (white rectangles)
or general (black rectangles). Names, arc multiplicities, transition delays, weights
and priorities are drawn as small movable labels near the corresponding GSPN
elements. Arcs may be “broken”, like the one from place End to transition ar-
rivals, so that only the endpoints of the arrow are shown. The editing process
supports all the common operations of interactive editors, like undo/redo of ev-
ery actions, cut/copy/paste of objects, drag selection of objects with the mouse,
single and multiple editing of selected objects, etc. Name labels for elements
(places, transitions, constants, etc) can be optionally substituted with a LATEX
string, allowing for more readable models that express better their meanings.

Drawing CSLTA DTAs. A DTA is a control automaton of the CSLTA stochas-
tic logic that measures the behavior of a GSPN. The CSLTA stochastic logic
works by measuring stochastic GSPN behaviors using a control automaton, a
DTA. A DTA is an automaton that reads the language of GSPN paths, and
separates accepted and rejected paths. The formal semantics of the DTA can be
found in [9] (single clock), and in [6] (with multiple clocks). The new GreatSPN
editor can also draw DTA models using their graphical formalism.
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3 Features of the Editor

Other than graphical model editing, the application implements these features:

Visualization of Place and Transition Invariants : the interface may show in-
teractively the structural invariants of a GSPN model. Figure 2(A) shows a
P-semiflow (a set of places where the weighted sum of tokens remains constant)
drawn in the GUI, with the flow multiplicities written inside the GSPN places.
The user selects the semi-flow that wants to visualize from a list, and the editor
highlights the involved places and transitions.

Interactive Simulation of GSPN Models : also known as “token game”, allows
the modeler to observe how the marking changes by clicking on the enabled
transitions, and the editor responds by moving the tokens from the input to the
output places. The reached marking is then shown, and the user can continue
firing new transitions.

Interactive CSLTA Simulation: An interactive simulation of the path probability
operator of the CSLTA logic is, roughly speaking, a system where GSPN firings
are checked by DTA edges. Each GSPN transition firing has to be matched by
a corresponding DTA edge, otherwise the path is rejected. Figure 2(B) shows
the GUI window for the joint simulation of a GSPN and a DTA. The user may
advance the simulation by clicking the enabled GSPN transitions or DTA edges.

Definition of Batches of Measures : The user can define batches of measures in
multiple languages (CTL, CSL, CSLTA, basic performance indexes), and the tool
implements the invocation of the supported solvers and the interactive visual-
ization of the results.
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Fig. 2. Some features of the new GreatSPN editor

The application is cross platform and runs on Windows, MacOSX and Linux.
Numerical solvers are all written in C/C++, and are invoked in pipeline as exter-
nal processes. The new GreatSPN interface is freely available at http://www.di.
unito.it/~greatspn/index.html, in the “New Java GUI” section.

http://www.di.unito.it/~greatspn/index.html
http://www.di.unito.it/~greatspn/index.html
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4 Related Work and Conclusions

While we believe that this new tool provides a solid base for quantitative/
qualitative analysis of models in the GSPN formalism, there are other GUIs
that provide similar features. The Moebius tool [8] has similar aims, integrating
multiple formalisms, multiple solvers, and providing a complete analysis work-
flow, from design to verification. However, the main formalism is different (SAN
network) and there is no support for DTAs. The tool Snoopy [10] also provides a
unified editor for GSPN models, with support for hierarchical composition and
multiple solvers, but does not support DTAs. The editor Coloane [7] supports
both Petri net and Timed Automata, but (at the time of writing) is not focused
on stochastic models. Other GSPN editors exist, with different approaches to the
modeling workflow. The DTA editing and the CSLTA stochastic logic support is,
to the best of our knowledge, a unique feature of the new GreatSPN GUI.

We plan to extend the tool in various directions. First of all, the Petri net
formalism can be augmented to support various extensions, such as colors, fluid
models, compositional formalisms like Kronecker partitioning [5], and others.
Similarly, DTAs can be extended to cover statistical control automata, like Linear
Hybrid Automata [4]. Work is ongoing to integrate the tool RGMEDD, which
supports CTL model checking and counterexample generation[1].
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Abstract. Queueing Networks are a widely used performance modeling
tool that has been successfully applied to evaluate many kind of systems.
In this paper we describe the queueing package, a collection of numerical
solution algorithms for Queueing Networks and Markov chains written
in GNU Octave (an interpreted language for numerical computations).
The queueing package allows users to compute steady-state performance
measures for product-form and some types of non product-form Queueing
Networks. Additionally, the package provides functions to analyze single
station queueing systems and Markov chains. Therefore, the queueing

package can be used for reliability analysis, capacity planning and general
systems modeling and evaluation.

1 Introduction

Queueing Networks (QNs) are a powerful modeling notation that can be used for
capacity planning, bottleneck analysis and performance evaluation of many kinds
of systems. In its basic form, a QN consists of K service centers, each containing
one or more servers sharing a common queue. Requests circulate through the
system, joining the queues from which they are extracted according to a queueing
policy, e.g. First-Come First-Served (FCFS), to receive service from one of the
associated servers. After service completion, a request may join another queue
or, for open queueing networks, leave the system. Many extensions to this basic
model have been proposed in the literature (e.g., networks with multiple request
classes, jobs with priorities, passive queues, finite capacity regions and so on).

Despite the vast literature on numerical solution techniques for QN models
(see [1] and references therein), there is a shortage of software packages for QN
analysis1. To this aim, we developed the queueing package for GNU Octave [4],
an interpreted language for numerical computations. The queueing package im-
plements numerical algorithms for stationary analysis of product-form queueing
models; open, closed and mixed networks with different classes of customers are
supported. Furthermore, the package allows transient and steady-state analysis
of discrete and continuous-time Markov chains (e.g., state occupancy probabili-
ties, first passage times, mean time to absorption).

1 A list of tools is available at http://web2.uwindsor.ca/math/hlynka/qsoft.html,
although many links are broken as packages disappear.

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 174–177, 2014.
c© Springer International Publishing Switzerland 2014
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2 Design Principles

queueing is a collection of Octave functions for computing various transient
and steady-state performance measures of queueing models and Markov chains.
The Octave interactive environment provides the glue which allows complex
models to be built and evaluated programmatically. This can be useful, e.g., to
do parametric evaluation of complex models, or to perform ad-hoc analysis not
already covered by one of the functions provided. While this allows the greater
degree of flexibility, it imposes a steep learning curve.

The following usage scenarios for queueing can be identified: (i) Incremen-
tal model development: the queueing package and GNU Octave can be used
for rapid prototyping and iterative refinement of QN models. (ii) Modeling
environment: large and complex performance studies can be done quickly,
since models involving repetitive or embedded structure can be easily defined.
(iii) Queueing Network research: new algorithms can be programmed and
tested against existing ones. The Octave language is well suited for implementing
numerical algorithms which operate on arrays or matrices; QN algorithms fall
in this category. (iv) Reference implementations: as observed in [2], some
large research communities (e.g., linear algebra and parallel computing) have a
long history of sharing implementations of standard algorithms. The queueing

package aims at providing reference implementations of core QN algorithms.
(v) Teaching: queueing is being used in some Universities to teach performance
modeling courses. Since the package implements many textbook QN algorithms,
students can immediately put those algorithms at work to solve practical prob-
lems, encouraging “learning by doing”.

Special care has been put to make queueing a useful tool for research, educa-
tion of practical use. The documentation of each function can be accessed using
the help() Octave command (e.g., help(ctmc) prints the usage documentation
of the ctmc() function, that computes the transient or stationary probability of
a continuous-time Markov chain). Usage demos are available as well, and can be
accessed using the demo() command, e.g., demo("ctmc") displays and executes
all demo blocks for the ctmc() function.

One important issue of numerical software is to make sure that the computed
results can be relied upon. Most of the functions included in the queueing pack-
age embed unit tests as specially-formatted comments inside the source code.
These tests can be executed automatically to check the results against known
values. When reference results are not available, cross-validation may be pos-
sible by executing two different functions on the same model and comparing
the results. For example, the same closed network can be analyzed by Mean
Value Analysis (MVA), or using the convolution algorithm. Finally, results can
be compared with those produced by different tools.

3 Usage Example

The model depicted in Figure 1, taken from [3], shows a three-tier enterprise
system with K = 6 service centers. The first tier contains the Web server (node
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Class 2
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# Name Class 1 Class 2

1 Web Server 12 2
2 App. Server 1 14 20
3 App. Server 2 23 14
4 DB Server 1 20 90
5 DB Server 2 80 30
6 DB Server 3 31 33

Fig. 1. Three-tier enterprise system model from [3]

1), which is responsible for generating Web pages and transmitting them to
clients. The application logic is implemented by nodes 2 and 3, and the storage
tier is made of nodes 4–6. The system is subject to two workload classes, both
represented as closed populations of N1 and N2 requests, respectively. Let Dc,k

denote the service demand of class c requests at center k. We use the parameter
values given in [3] and reported on Figure 1.

We set the total number of requests N = N1 +N2 to 100, and we study how
different population mixes (N1, N2) affect the system throughput and response
time. Let β1 ∈ (0, 1) denote the fraction of class 1 requests: N1 = β1N , N2 =
(1 − β1)N . The following Octave code defines the model for β1 = 0.1:

N = 100; beta1 = 0.1;

S = [12 14 23 20 80 31; 2 20 14 90 30 33 ];

V = ones(size(S));

pop = [fix(beta1*N) N-fix(beta1*N)];

[U R Q X] = qncmmva(pop, S, V);

The qncmmva(pop, S, V) function uses the multiclass MVA algorithm to
compute per-class utilizations Uc,k, response times Rc,k, mean queue lengthsQc,k

and throughputs Xc,k at each service center k, given a population vector pop,
mean service times S and visit ratios V. Since we are given the service demands
Dc,k = Sc,kVc,k, but function qncmmva() requires separate service times and
visit ratios, we set the service times equal to the demands, and all visit ratios
equal to one. Overall class and system throughputs and response times can be
computed as [5]:

X1 = X(1,1) / V(1,1); X2 = X(2,1) / V(2,1);

XX = X1 + X2; # system throughput

R1 = dot(R(1,:), V(1,:)); R2 = dot(R(2,:), V(2,:));

RR = N / XX; # system resp. time

For β1 = 0.1 we get X1 = 0.0044219, X2 = 0.010128, XX = 0.014550, R1 =
2261.5, R2 = 8885.9, RR = 6872.7. We can iterate the computations above for
various values of β1 to obtain the results shown in Figure 2.
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Fig. 2. Throughput and Response Times as a function of the population mix β

4 Conclusions

In this paper we presented the queueing package for GNU Octave. The queueing
package is available from http://octave.sourceforge.net/ and can be freely
used under the terms of the GNU General Public License (GPL) version 3.
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Abstract. In this paper we show how to construct an algorithm to
sample the stationary distribution of a random walk over {1, . . . , N}d
with forbidden arcs. This algorithm combines the rejection method and
coupling from the past of a set of trajectories of the Markov chain that
generalizes the classical sandwich approach. We also provide a complexity
analysis of this approach in several cases showing a coupling time in
O(N2d log d) when no arc is forbidden and an experimental study of its
performance.

Keywords: Perfect simulation, Markov chain, random walks.

1 Introduction

Random walks are well studied in the literature on Markov chains (see for ex-
ample [Aldous and Fill, 2002]). Several fundamental questions in Markov chains
such as hitting time (the first time a state is reached) and the mixing time (the
time it takes for the measure of a chain to be close to its stationary measure)
are of particular interest for random walks.

In this paper, we consider the problem of sampling from the stationary dis-
tribution of a random walk over a multidimensional grid. To the best of our
knowledge, this problem has not been studied before, neither at the theoretical
nor at the algorithmic level.

This problem can be approached using Monte-Carlo simulation, which only
converges asymptotically. Instead here, we use a perfect sampling approach that
provides a perfect sample in finite time. The efficiency of Monte-Carlo simulation
is given by the mixing time of the chain. However, for perfect sampling, the
time complexity is given by the coupling time of the chain (the duration until
two coupled chains, starting from any two states, coalesce). To our knowledge,
coupling times (or coalescence times) of random walks have not been studied
� This work was partially supported by ANR Marmote project ANR-12-MONU-0019.

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 178–193, 2014.
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before and must be evaluated to estimate the number of steps needed by a
perfect sampler.

Furthermore, two additional difficulties must be solved to design an effective
perfect sampling algorithm that can handle large state spaces.

The first difficulty is the design of a constructive definition of the Markov
chain of the form Xn+1 = φ(Xn, Un+1) (where Un+1 is a uniform random vari-
able on [0, 1]). Using this construction by starting in all possible positions in
the grid defines a grand coupling of the random walk, using the terminology
of [Levin et al., 2008]. We propose one solution in Section 3.1 where the discrete
time random walk is transformed into a continuous time Markov chain, for which
a grand coupling can be constructed. The bias introduced by this transformation
is removed using a rejection method.

The second difficulty comes from the fact that the random walk (dis-
crete or continuous) with forbidden arcs is not monotone so that classi-
cal perfect sampling techniques based on the simulation of extreme points
[Propp and Wilson, 1996] are not valid here. Furthermore, specific techniques
for non-monotone chains based on upper and lower bounds of all trajectories
(often called the sandwich method [Kendall and Møller, 2000]) are not possible
here either, because such bounds will not coalesce in most cases. This second
problem is solved by introducing a more sophisticated version of the bounds/split
paradigm of [Bušić et al., 2008], presented in Section 3.3. We construct a tight
superset of all trajectories of the random walk starting from all possible states.
This superset is made of a set of isolated points and one interval (given by its
two extreme points). While the number of isolated points increases during the
simulation, we show that this increase remains moderate (logarithmic in the
size of the state space) and does not hamper the applicability of the algorithm
even for large state spaces, at least when the number of forbidden arcs remains
reasonably small (see the complexity Section 4).

Finally, we are able to analyse the time and space complexity of our Algorithm.
Its time complexity (equal to the coalescence time of the chain, up to a factor 4)
is shown to be logarithmic in the size of the state space without forbidden arcs.
Experimental results show that this complexity remains of the same order when
random forbidden arcs are added. We also make sure that the space complexity
of the algorithm remains linear in the number of forbidden arcs.

Here is the structure of the paper. Section 2 shows several domains where
random walks in high dimensions are useful objects. Section 3 presents the con-
struction of the sampling algorithm based on two original ideas: first we explain
how rejection can be used in this context, then we introduce the generalization
of sandwich simulation using intervals and isolated points. In Section 4 we ana-
lyze the time and space complexity of our algorithm and we report experimental
studies in Section 5. A long version of this paper with detailed proofs and some
extensions is available on-line as a research report [Durand et al., 2014].
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2 Random Walks in �d

2.1 Definitions and Notations

Let us consider a random walk over a finite grid in dimension d, S def
= {1, . . . , N}d,

where both the span N of the grid and its dimension d are large.
The set S is equipped with the componentwise order: For any x,y ∈ S, x � y

if xi � yi for all i = 1, .., d. For this order, the smallest point is 1 = (1, 1, . . . , 1)
and the largest point is N = (N, ..., N). The interval [a,b] denotes the set of
points larger than a and smaller than b: [a,b] def

= {x ∈ S, s.t. a � x � b}. Let
ei

def
= (0, ..., 1, ..., 0) with 1 in the i-th position. From position x, the walker can

move uniformly to x ± ei unless this is a forbidden arc or takes him out of the
grid.An example in dimension 2 is given in Figure 1.

(3, 3)

(1, 1)

(2, 2)

Fig. 1. Random walk over {1, 2, 3, 4}2, with
two forbidden arcs. The forbidden arcs are
displayed with arrows like one-way roads on
road-maps. Here a move to the right from
point (2, 2) is forbidden as well as a move
up from point (3, 3).

The position of the walker after n steps is denoted by X(n) and forms a
discrete time Markov chain with state space S. If the state space is strongly
connected (we assume this is true in the rest of the paper), this random walk
has a unique stationary measure ν. This paper is devoted to the construction
of an efficient algorithm that provides a point in S distributed according to the
stationary measure of X(n).

It should be clear that as soon as the random walk contains one forbidden arc,
it is not reversible in general and computing its stationary measure ν becomes
difficult. To our knowledge, the best way to compute ν is then to solve the
balance equations ν = νP . The complexity of this approach is in O(N3d) in
time and O(N2d) in space, unusable even for reasonable values of N and d.
Here, we develop an algorithm that samples according to ν in logarithmic time
and space.

2.2 Potential Applications

Random walks have be used in several domains, ranging from statistical physics
to models of parallel systems.

Percolation over a Finite Graph. Random walks with forbidden arcs
are well studied in the literature. Percolation theory has been studied in-
tensively by mathematicians and physicists since the early seminal work in
[Broadbent and Hammersley, 1957].
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In general, in percolation theory, the forbidden edges have random positions
(arcs in both directions on the edge are forbidden): each edge is forbidden with
a given probability p. Note that in that case, the random walk is a reversible
Markov chain. Even though it is not reversible, percolation in directed graphs
has also been studied, see for example [Schwartz et al., 2002].

Here, we study the case where the state space is finite so the classical question
of escape to infinity is not relevant. Instead we analyze the effect of the forbidden
arcs on the coupling time of the chain, and therefore on the difficulty to sample
from the stationary distribution.

Interacting Particles. The random walk in dimension d = DM can also be
used to model the movements of M particles moving in a space of dimension D,
with asynchronous movements of the particles. The random walk then consists
of the concatenation of the coordinates of all particles. In that context, the
forbidden arcs correspond to the fact that certain types of movements of some
particles in space, are not allowed due to the current positions of the other
particles.

The example of two particles moving on the discrete line (dimension 1) that
cannot occupy the same location can be seen as a Markov chain in dimension 2,
with forbidden arcs preventing the walker to reach the diagonal (see Figure 2).
Of course, in this particular example the two particles cannot cross each other
so the Markov chain is not irreducible. However, as soon as the particles evolve
in dimension D higher than 1, this problem disappears. In the remainder of the
paper we will assume that the Markov chain is irreducible. The forbidden states
on diagonal hyperplanes can simply be removed from the state space to ensure
irreducibility.

Fig. 2. Two particles moving a discrete fi-
nite line as a random walk in dimension 2.
Forbidden arcs prevent the walker (the two
particles) to reach the diagonal (occupy the
same position).

Our analysis (see Section 4) will show that the sampling time of the corre-
sponding Markov chain grows in the number of particles in an acceptable way
(O(M logM)) in the case with no forbidden arcs. While this may be unaccept-
able when studying a system comprising a very large number of particles, we
believe this approach is suitable for the study of a moderate number of particles
whose interactions are very complex.
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Stochastic Automata Networks. Stochastic Automata Networks (SANs)
have been shown to be a powerful approach to model parallel systems with
a small degree of synchronization [Plateau and Stewart, 1997]. In the simple
case where each automaton is a birth and death process and synchronizations
correspond to blocking transitions, SANs are random walks with forbidden arcs
as studied here, where forbidden arcs correspond to synchronization constraints.

As an illustration, let us consider the famous dining philosophers. This is a
random walk where the dimension d is the number of philosophers and the span
is {0, 1} (states of one philosopher). The arcs from (a1, . . . , ai−1, 0, ai+1, . . . , ad)
to (a1, . . . , ai−1, 1, ai+1, . . . , ad) are forbidden if ai−1 or ai+1 is equal to one.

3 Perfect Sampling Algorithm

This section is devoted to the construction of a perfect sampling algorithm of a
random walk X(n) over S where certain arcs are forbidden.

This construction is done in several steps and the final algorithm is provided
in pseudo-code (Algorithm 1).

3.1 Grand Coupling and Rejection

The random walk over a grid with forbidden arcs is an irreducible, finite, dis-
crete time Markov chain over a finite state space S denoted by X(n)n∈�, with
transition matrix P . By definition, for any position a and any non-forbidden
direction m = ±ei, Pa,a+m = 1

qa
where qa is the number of possible moves from

a. Otherwise, Pa,a+m = 0.
From X(n)n∈�, one can construct a continuous time Markov chain Y (t)t∈�

over the same state space in the following way. The generator Q of Y is obtained
by multiplying each line a in P by qa and defining the diagonal element Qa,a as
Qaa = −

∑
b qaPab. Therefore, the rates from a to any non-forbidden a+m are

all equal to one: Qa,a+m = 1.
From Y (t), it is possible to extract a new discrete time Markov chain, Y (n)n∈�

by uniformization. Its transition matrix is Id+ Λ−1Q, where Λ (uniformization
constant) is any positive real number larger than all qa’s. Since the total rate
out of any state in Y is bounded by 2d, it can be uniformized by Λ = 2d.

While it can be difficult to construct a grand coupling for chain X , such a
construction is easy and natural for the chain Y since the rates are all equal. To
couple the walks starting from all states, just pick one move uniformly among
the 2d possibilities and make every walk take this move. The walks where the
move is forbidden stay still.

This yields the following constructive definition of the chain Y (n) in the form
Y (n+ 1) = φ(Y (n),mn+1) with the following definition for the function φ.
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Definition 1 (of constructive function φ). In any state y ∈ S, and for any
direction m among the 2d possibilities ±e1, . . . ,±ed (chosen uniformly) then

φ(y,m) =

{
y+m if the move is valid
y otherwise.

This coupling makes the chain Y more attractive for perfect sampling. Unfor-
tunately, the chain Y and the initial chain X do not have the same stationary
probability distribution. However it is possible to construct a procedure that
generates a stationary sample of the initial chain X , from a stationary sample
of the chain Y . This procedure (given in Algorithm 1) is based on a rejection
method.

Let us consider that the construction of Y (n) is given by

Y (n+ 1) = φ(Y (n),mn+1),

where φ is the deterministic function given above and mn+1 a uniform random
variable among {±e1, . . . ,±ed}. If Y can be sampled efficiently (using an algo-
rithm PSAY that will be described later) then X can also be sampled efficiently
provided rejection is unlikely.

Algorithm 1. Sampling algorithm of X(n) (PSAX)
Data: Algorithm PSAY sampling Y perfectly; a random move m1.
Result: A state sampled from the stationary distribution of X

1 begin
2 repeat
3 Sample Y (0) with stationary distribution (using Algo. PSAY )
4 Simulate one step: Y (1) := φ(Y (0),m1);
5 until Y (1) �= Y (0) //reject if Y (1) = Y (0);
6 return Y (0)

Theorem 1. If the algorithm PSAY samples Y under its stationary distribu-
tion, then the rejection Algorithm PSAX gives a sample distributed according to
the stationary distribution of X(n).

Proof. Let us call μi the stationary probability of state i for the uniformized
(as well as for the continuous time) chain Y and νi the stationary probability
of state i for original Markov chain X(n). By construction, the original Markov
chain X(n) is the embedded chain at jump times of the continuous time version
Y (t). It is well known [Brémaud, 1998] that qiμi ∝ νi where qi is the rate out of
state i. Let us compute the probability that the output of the rejection algorithm
is i. Let T be the first time when the sample Y (0)T is not rejected:

P(Y (0)T = i) =

∞∑
t=1

P(T = t, Y (0)t = i) =

∞∑
t=1

Rt−1μi
qi
Λ
,



184 S. Durand et al.

where the probability of rejection R of the t-th sample does not depend on t and
is equal to R =

∑
j μj

Λ−qj
Λ . This implies that P(Y (0)T = i) = 1

1−Rμi
qi
Λ .

Therefore, P(Y (0)T = i) ∝ μiqi, so that it has to be equal to νi. ��

3.2 Coupling from the Past for Y (n)

The algorithm to sample Y (n) is based on a procedure simulate(E,m) whose
arguments are E a set of states, and one move m in {±e1, . . . ,±ed}. simulate
outputs a set of states F (=simulate(E,m)) such that φ(E,m) ⊂ F .

Once the elementary procedure simulate is known, the perfect sampling can
be achieved, using coupling from the past. This is done in Algorithm 2. It was
shown in [Propp and Wilson, 1996] that if this algorithm (called PSAY ) termi-
nates, then its output is distributed according to the stationary distribution of
Y (n).

Lemma 1 ( [Propp and Wilson, 1996]). Under the foregoing assumptions,
the output of Algorithm PSAY is distributed according to the stationary distri-
bution of Y (n), if the algorithm terminates.

Algorithm 2. Sampling algorithm of Y (n) (PSAY )
Data: Function simulate
Result: A state F sampled from the stationary distribution of Y

1 begin
2 t := 1;
3 generate event m0;
4 repeat
5 E := S ;
6 for i = t− 1 downto 0 do
7 E := simulate(E,m−i);

8 t := 2t;
9 generate events m−t+1, . . . ,m−t/2;

10 until coalescence (E is reduced to a unique state);
11 return E;

A naive implementation of the function simulate(E,m) consists in comput-
ing the function φ(x,m) for all x ∈ E. However, its time and space complexity
is in O(|E|). Since the size of E is Nd at the start, when E = S, this will be
unacceptable, so that compact ways to construct the procedure simulate are
needed if we want the perfect sampling algorithm to be effective.

3.3 Non-monotonicity and Intervals

If there are no forbidden arcs, then the Markov chain Y is monotone in the
following sense. Using the previous coupling, Y1(n) � Y2(n) implies Y1(n+1) �
Y2(n+ 1).
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The random walk with forbidden arcs is not monotone as shown by the fol-
lowing example. Consider two coupled random walks Y 1 and Y 2, with starting
states Y 1(0) = y and Y 2(0) = y − e1 respectively. Consider the case where the
arc from y to y + e2 is forbidden, then if the next random move happens to be
e2, then Y 1(1) = y and Y 2(1) = y−e1+e2 respectively. So that Y 2(0) � Y 1(0)
but Y 1(1) and Y 2(1) are not comparable.

When the Markov chain is not monotone, one classical way to sample its sta-
tionary distribution is to simulate upper and lower bounds of all the trajectories
of the chain instead of its extreme states. Such upper and lower bounds form
intervals of S.

In [Bušić et al., 2008], the authors show how such intervals can be built it-
eratively considering a non-monotone Markov chain defined by Y (n + 1) =
φ(Y (n), U(n + 1)) over a state space equipped with a complete lattice struc-
ture.

Given an interval E = [a,b], then the next interval can be defined as[
inf

z∈[a,b]
φ(z,m) , sup

z∈[a,b]

φ(z,m)
]
.

This approach does not work here because intervals may never collapse. One
such case is presented in Figure 3.

(5, 5)

(1, 1)

(2, 2)

Fig. 3. No contraction of upper and lower bounds,
in the presence of forbidden arcs

In this case, starting from the extreme points (1, 1) and (5, 5), and under any
sequence of moves, the lower bound will never go over (2, 2) and the upper bound
will never depart from (5, 5).

One way to solve this problem is to replace intervals with more complex data
structures that still capture all trajectories but remain compact and coalesce
with probability one. Here, the structure we choose is composed by one interval
and a set of isolated points.

Suppose the set E is made of one interval I = [x1,x2] and a set of isolated
points y1, ...,yk. Then, the execution of simulate(E,m) transforms E in the
following manner (with m ∈ {±e1, . . . ,±ed}):

1. The new interval I ′ = [x′
1,x

′
2] is such that x′

1 = (x1 + m) ∧ N ∨ 1, x′
2 =

(x2 +m) ∧N ∨ 1 (forbidden arcs are not taken into account)1.
1 The symbol ∧ (resp. ∨) stands for point-wise minimum (resp. maximum).
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2. For all the isolated points, φ is applied (forbidden arcs are taken into ac-
count): ∀1 � j � k, y′

j = φ(yj ,m)
3. Finally, new isolated points are created: If move ei is forbidden in a point

y ∈ I − I ′, then y becomes a new isolated point.

I ′

(1, 1)

(5, 5)

e1

y

I

Fig. 4. Executing simulate over a set E composed
of one interval I under move e1 creates a new interval
I ′ and one isolated point y

This construction is illustrated in Figure 4, where one isolated point is created
by moving the interval to the right.

Theorem 2. Algorithm 2 terminates with probability one and outputs a sample
of the chain Y (t) under its stationary distribution.

Proof. Using the foregoing notations, consider E′ =simulate(E,m), where E =
I∪{y1, ...,yk}. For all isolated points, y′

j = φ(yj ,m) ∈ E′ by construction. As for
the points x ∈ I, two cases can occur. If the move from x to x+ei is possible, then
φ(x,m) = (x+m)∧N∨1 ∈ I ′ by monotonicity. Else, if the move from x to x+ei
is forbidden, then φ(x,m) = x and if x �∈ I ′, it becomes a new isolated point.
In all cases, φ(E,m) ⊂ E′ and from Lemma 1, Algorithm 2 outputs a sample of
the chain Y (t) under its stationary distribution whenever it terminates. To prove
termination, let us consider the evolution over time of the set E. It comprises one
interval and a set of points. The evolution of the interval does not depend on the
forbidden arcs. Under the sequence of moves: e1, . . . , e1, e2 . . . , e2, . . . , ed, . . . , ed
(where each move is repeated N times) the initial interval I = [1,N] collapses
in point N. Using the Borel-Cantelli Lemma, this proves that the interval will
collapse with probability one into a single point. From this collapse time on, the
set E will comprise a set of isolated points that will coalesce with probability
one by irreducibility of the chain. (see [Durand et al., 2014] for the details). This
part of the proof is illustrated by Figure 5. ��

A detailed implementation of procedure simulate is given in Algorithm 3.
It is based on a dual point of view. The main loop in Algorithm 3 iterates
through the list of forbidden arcs instead of iterating through the list of isolated
points in E as suggested by the previous description. Using hash tables and a
representation of the interval using relative coordinates instead of absolute ones,
its time complexity is independent of the number of isolated points and its space
complexity is linear in Nk (k is the number of forbidden arcs). See Lemmas 4
and 5.
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Coalescence
of all trajectories

1

N

Interval I

New isolated point

Collapse
of I

Fig. 5. Illustration of the two phases
of coalescence using simulate. First,
new isolated points are created until
the interval collapses. After the col-
lapse of the interval, the points merge
up to global coalescence.

4 Coalescence and Complexity Analysis

We will use the O(.·) notation with several variables with the following meaning:
x(N, k, d) = O (f(N, k, d)) means

∃β ∈ R, ∀N, k, d ∈ N, d ≤ N ⇒ x(N, k, d) ≤ βf(N, k, d).

4.1 Coalescence Time without Forbidden Arcs

The goal of this part is to bound the execution time of our algorithms. We first
analyze the coalescence time without forbidden arcs (that also corresponds to
the collapse time of the interval in E), then the complexity of the related part
of the algorithms before giving both space and time complexity in the general
case.

We will call C the coalescence time in a grid of dimension 1. This is the
number of iterations of the function φ needed for all the Markov chains starting
from all the points in [1, N ] to coalesce in a single point.

Although the following result concerns a simple random walk on the line, we
have not been able to find a similar asymptotic formula in the literature. The
best bound we could find is based on hitting times and involves the spectral
gap. It is of the order O

(
1 − 1

N3

)T (see [Aldous and Fill, 2002]). This is not
good enough to assert the complexity of our algorithms, given below.

Lemma 2 (Coalescence in dimension 1)
For any T > 0, P(C > T ) � cosT

(
π

N+1

) (
1 +O( 1

N2 )
)
.

Proof. The proof is technical and is based on the spectral decomposition of the
transition matrix. ��

The case of the random walk in dimension d follows. Let Cd be the coalescence
time in dimension d. The expectation of Cd can be estimated, based on Lemma
2. This also provides the time complexity of Algorithm 2.

Lemma 3 (Coalescence in dimension d). Let us consider a random walk in
a grid with no forbidden arcs. Let Cd be its coalescence time.
(i) The sampling time τY of Algorithm PSAY (number of calls to simulate) is
smaller than 4Cd.
(ii) The expected coalescence time satisfies E[Cd] = O

(
N2d log d

)
.
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Proof. (i) The fact that τY � 4Cd follows from the doubling period trick used
in Algorithm 2. Indeed, τY = 1 + 2 + · · ·+ 2c where 2c is the smallest power of
2 larger than Cd. This implies that τY � 4Cd.
(ii) The order of magnitude of E[Cd] can be computed as follows. The coales-
cence in dimension d exactly occurs when coalescence occurs in each dimension,
each of them being independent once the number of steps in each dimension is
given. Each dimension is chosen with probability 1/d at each step. Therefore,
E[Cd] = dE[max(C(1), . . . , C(d))] where C(i) denotes the coalescence time in the
i-th dimension. By independence,

P(max(C(1), . . . , C(d)) > T ) = 1 − P(max(C(1), . . . , C(d)) � T )

= 1 − (1 − P(C(1) > T ))d,

E[Cd] = d

∞∑
T=0

P(max(C(1), . . . , C(d)) > T ) = d

∞∑
T=0

(
1 − (1 − P(C(1) > T ))d

)
.

Using Lemma 2, E[Cd] � d
∑∞

T=0(1 − (1 − hT )d) + ε, where h = cos( π
N+1)

and ε is negligible with respect to the first term. From this point, one can show
using classical calculus that

E[Cd] � d+
d log d

− logh
+ ε.

Since log h ≈ −π2

N2 , we get E[Cd] = O
(
N2d log d

)
. ��

4.2 Number of Rejections, without Forbidden Arcs

Let us now focus on the sampling algorithm for X , PSAX . The reject probability
is the probability that the next move cannot be taken by the walker who is in a
stationary state (of Y ). In all states, this probability is bounded by 1

d (the bound
is reached if the walker is in a corner of the grid). Therefore, the expected number
of rejections is always bounded by d. However this bound is very loose. By using
the fact that the stationary measure of Y is uniform over all states, then the
probability pR that the next move is blocked can be computed by considering
each dimension independently:

pR =
2d∑
i=1

1

2d
P(move blocked | move i chosen ) =

2d∑
i=1

1

2d

1

N
=

1

N
.

Therefore, the number of runs R up to the first non-rejection is geometrically
distributed and E[R] = N

N−1 .
This allows us to state our main result in the case where no arc is forbidden.

Actually, as numerical experiments suggest, we believe this complexity is true
as long as the random walk has a large connectivity degree.

Theorem 3. With no forbidden arcs, the expected sampling time E[τX ] for Al-
gorithm PSAX (Algorithm 1) is such that E[τX ] = O(N2d log d).
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Proof. The sampling time for Algorithm PSAX is τX =
∑R

i=1 τY (i), where τY (i)
is the sampling time of the i-th run of Algorithm PSAY . It satisfies the following
assumptions: The sampling times τY (i) form an iid sequence of positive random
variables with finite expectations, and the number of runs, R, is a stopping time
of the filtration generated by the sampling algorithm. Using Wald’s equation,
the expected sampling time is E[τX ] = E[R] E[τY ] = O(N2d log d), by Lemma
3. ��

4.3 Complexity with Forbidden Arcs

For the general case, the coalescence time is harder to estimate analytically
because it does not only depend on the number of forbidden arcs but also on their
actual configuration. For example, using only 2d forbidden arcs, it is possible to
cut the state space into several disconnected components, in which case the
coalescence time of the algorithm will be infinite.

Even if it is not possible to give tight bounds for the coalescence time of
Algorithm 2, one can still use Lemma 3 to bound the memory space used by the
algorithm. Also note that the time complexity (number of calls to simulate up
to coalescence of the interval) is the same as without forbidden arcs.

Let |E| denote the number of isolated points composing the sets E used by
simulate(E, ·) in Algorithm 2. This size can be bounded as a function of the
number k of forbidden arcs.

Lemma 4. If forbidden arcs are chosen randomly, uniformly among all arcs in
the grid and if k is the expected number of forbidden arcs, then the maximal size
|E| of the set E, is bounded in expectation: E[ |E| ] ≤ kN

π2 +O(kd + kN
d ).

Proof. The proof is based of a combinatorial argument to bound the number of
isolated points created at each execution of simulate. ��

The inner loop in Algorithms 1 and 2 uses the procedure simulate that is
therefore the main component in the time and space complexity. A detailed
version of the procedure simulate is given in Algorithm 3.

The main idea is to replace the iteration through all isolated points (see Sec.
3.3, item 2) by an iteration through all the forbidden arcs (Algorithm 3 line 2).

We use two hash tables H and A to store, access and merge isolated points in
constant time: H for the forbidden arcs and A for each border. They are treated
as sets in the algorithm.

Finally, we use relative coordinates so that we do not have to access every
element at each move, only those encountering the forbidden arcs. More precisely,
we have a reference point r moving freely on �d (in fact on [−N, 2N ]d), and all
the other points are coded by their coordinates relative to it ( in [−N,N ]d). This
allows us to virtually move the isolated points as blocks, without recalculating
every hash of coordinates.

In the details, the loop in line 2 searches for obstacles (i.e. forbidden moves
and border) and tests if they block an isolated point (lines 3 and 4) or if they
separate an element from the interval (lines 6 and 7). Line 6 implies that k exits
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Algorithm 3. Procedure simulate (detailed)
Data:

1. Forbidden arcs, coded by their head point sorted in 2d sets K0≤i<2d by
their direction.

2. An initially empty waiting list W
3. The move m = +ei (the case m = −ei is obtained by replacing N by 1 and

b by a in lines 1-17)
4. The interval, I = [a,b] (initialized at t = 1 to a = 1 and b = N)
5. A reference point r (initialized at t = 1 to r = 1)
6. A hash table H coding the relative positions of the isolated points
7. Arrays A1�i�d, storing the relative positions of the isolated points on the

border in each dimension, modulo N .
1 begin
2 foreach k ∈ Km do
3 if k ∈ H(k− r) then
4 remove k from H and from A, and add to W //blocked isolated
5 //points

6 if ki = ai then
7 insert k in W //creation of a new isolated point if k exits [a,b]

8 foreach s ∈ Ai[N − ri] do
9 remove s from H and from A, and add to W //isolated points blocked

10 //by the border

11 if bi = (N − ri) then
12 b ← b−m //compensate for the update of r

13 r ← r+m
14 foreach x ∈ W do
15 x ← x−m
16 if xi �= bi then
17 insert x in H and A //only keep isolated points outside interval

[a,b]. More precisely, the head of the forbidden arc is in the interval before the
move and not after.

The loop in line 8 concerns the isolated points that hit the border. Because
of the relative notation, we can obtain them by checking the set of indexes
(i, N − ri) containing every element with a relative ith coordinate of N − r[i],
hence an absolute one equal to N , at the border. We do the same for the interval.

In line 13 the reference point is moved along m. The last loop (lines 14 to 17)
inserts each extracted point in the hash tables after having taken into account
the global move, if it has not merged with the interval.

Lemma 5. Let k be the number of forbidden arcs in the grid. Each execution of
simulate(E,m) takes time O(d+k) and is independent of the number of isolated
points in E. Its space complexity is O(dN +E[ |E| ]), hence O(dN + kN) in the
random case.
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Proof. The extraction (line 2) is done by a search of the forbidden arcs and the
border aligned against the move. The former contains an average (depending on
the direction chosen) of k

2d forbidden arcs. It will make (1 + k
d ) tests and add

at most 1 + k
d elements to the waiting list. Each test can be done in time O(d),

and hash tables access times in O(d). Hence the time taken by this step is in
O(d+ k).

Updates and reinsertions are similar to the first step : at most O(1 + k
d )

elements with operations costing O(d) in time. The third step hence takes a
time O(|W|) = O(d+ k). Overall, the global time cost is O(d + k).

As for the space complexity, one hash table with at most |E| element and d
arrays of size N need total space of O(|E| + d N) in memory. The only other
variable with a non fixed size is the waiting list; its size is bounded by maxKd+
1 < k + 1, which is below |E|. ��

5 Numerical Experiments

We have implemented Algorithm 1 in C++ (700 lines of code) to validate the
approach and test the actual sampling time under several values of the param-
eters N (the span of the state space), d (the dimension of the state space) and
k (the number of forbidden arcs).

To assert the performance of the algorithm with forbidden arcs, for each fixed
value of k, we generated 20 random grids, choosing the forbidden arcs uniformly.
Then, we ran PSAX 50 times over each grid. The 95 % confidence intervals are
reported in all the following figures. They all remain very small, confirming a
small variance in the performance of the algorithm. Finally, in most experiments,
the state space is greater than 1020 (a number of states that is challenging for
current hardware). However each sample was obtained within a few seconds
(with N � 100, d � 10) on a desktop PC (2.3 GHz Intel Core I7, with 16 Gb of
memory).

We have shown in Sec. 4.1 that the coalescence time of Algorithm 1 is in
O(N2d log d) in the absence of forbidden arcs. We show in Fig. 6(a) that the
presence of forbidden arcs does not increase coalescence time, which suggests
that Theorem 3 generalizes to (strongly connected) random graphs with for-
bidden arcs. Actually, further experiments, reported in the long version of this
paper [Durand et al., 2014], show that the forbidden arcs do not affect the co-
alescence time as long as less than 20% of the arcs are forbidden. When more
arcs are forbidden, then the coalescence time variance increases and coalescence
depends heavily on the position of the forbidden arcs. This observation empiri-
cally justifies the computation of the coalescence time without forbidden arcs as
one measure of complexity in Sec. 4 as long as the proportion of forbidden arcs
is small. This is further corroborated by another measurement: the number of
isolated points at the collapse time of the interval averaged 1.2, and very rarely
exceeded 2. This means that when the interval collapses, all the isolated points
that have been created have also merged in most cases. The second phase of
coalescence is therefore very short. It is null when all the points have already
merged (majority of the cases) and remains short when a few points are left.
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Fig.6(a). Coupling time independent Fig.6(b). CPU time for one sample
of number of forbidden arcs, k. grows linearly with k.
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Fig.6(c). Number of isolated points Fig.6(d). CPU time for one sample
grows linearly with k. is a convex function of d.

The coalescence time is not the only factor that affects the complexity of
Algorithm 1. We have executed the program on a standard PC. Figure 6(b)
shows that the actual sampling time (CPU time, measured with ctime library)
grows almost linearly with the number k of forbidden arcs, as predicted by our
complexity analysis. Indeed, as detailed in Lemma 5, the procedure simulate
iterates over a set Km of forbidden arcs in a given direction m (line 2 of Algorithm
3). On average there are k

2d forbidden arcs in each direction, which explains the
linear complexity in k. The super-linearity trend for small values of k may come
from hidden negligible factors in the complexity.

Figure 6(c) reports the number of isolated points created during the execution
as a function of k. As predicted by Lemma 4, this number also grows linearly
with k, and has a very small variance over the executions.

Finally, Figure 6(d) reports the execution time (in seconds) to obtain one sta-
tionary sample over a grid of size 100d, with 1000 forbidden arcs, as a function
of d. This performance metric is important with application to interacting parti-
cles in mind, because d/3 represents the number of particles in the 3-dimensional
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space that are simulated. Our complexity analysis gives an asymptotic com-
plexity bounded by O(d2 log d) while the measured complexity seems to have a
super-linear but sub-quadratic behavior.

6 Conclusion

This paper presents an algorithm to sample the stationary distribution of a
uniform random walk in a grid of size Nd with forbidden arcs. Its time and
space complexity are logarithmic in the size of the grid when forbidden arcs are
uniformly distributed. Therefore, this algorithm enables the exact sampling of
large grids arising in applications such as particle interactions and stochastic
automata networks with many pieces. This algorithm can be easily extended to
general non-uniform random walks on the grid. However, the time and space
complexity in the general case remains a challenging problem.
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Abstract. Distributed NoSQL datastores have been developed to cater
for the usage scenarios of Web 2.0 applications. These systems provide
high availability through the replication of data across different machines
and data centers. The performance characteristics of NoSQL datastores
are determined by the degree of data replication and the consistency
guarantees required by the application. This paper presents a novel per-
formance study of the Cassandra NoSQL datastore deployed on the Ama-
zon EC2 cloud platform. We show that a queueing Petri net model can
scale to represent the characteristics of read workloads for different repli-
cation strategies and cluster sizes. We benchmark one Cassandra node
and predict response times and throughput for these configurations. We
study the relationship between cluster size and consistency guarantees
on cluster performance and identify the effect that node capacity and
configuration has on the overall performance of the cluster.

1 Introduction

Scalable NoSQL datastores have been developed for simple read/write opera-
tions that mainly characterize distributed Web 2.0 applications [20]. They have
been designed for horizontal scalability and high availability and thus are more
suitable for elastic cloud deployment than traditional databases. High availably
is achieved through the replication of data across different machines and differ-
ent data centers. Replication of data is asynchronous, in which updates/writes
are written to replicas in the background allowing for faster response times,
albeit with a weaker guarantee of data consistency [4] in comparison to tra-
ditional databases. Current web applications and services require low response
times, with high latency having a direct impact on revenue for large service
providers [13,14,19]. The trade-off between response time and consistency in
NoSQL data stores means that providers need to be able to strike a balance
between these two factors.

To improve system deployment and user satisfaction performance predication
techniques are needed to estimate NoSQL datastore response times given a con-
sistency level guarantee. Performance prediction techniques would give service
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providers the ability to test the resilience, scalability and latency of a config-
uration for different workloads and hardware environments. With pay for use
cloud hosting, providers would be able to deploy the correct amount of servers
for their configurations to meet service level agreements.

Performance modelling has mostly concentrated on traditional databases [18]
with queueing networks being the main modelling formalism. Other forms of
quorum systems have been modelled in [16,21]. In this paper, we present a
novel performance modelling study of the Cassandra [12] NoSQL datastore using
queueing Petri nets (QPNs) [2]. Queueing Petri nets have been applied in the
performance evaluation of distributed systems [10,9,11], grid environments [15]
and relational database concurrency control [17,6]. This work contributes a sim-
ple QPN model that is parameterized by benchmarking one Cassandra node. We
show that the model can scale to represent the performance of read workloads
for different replication strategies and cluster sizes and predict response times
and throughput for these configurations. The relationship between cluster size
and consistency guarantees is identified for scaled and non-scaled workloads. In
addition, we identify the effect of node capacity on the overall performance of
the cluster.

The rest of this paper is organized as follows. Section 2 gives an introduction
to replication in Cassandra. Section 3 presents the specification of the QPN
model for a Cassandra cluster. Experimental results and analysis are in Section
4. Finally, Section 5 concludes the paper and provides directions for future work.

2 Replication in Cassandra

Apache Cassandra is a distributed extensible column store [20,4] originally devel-
oped at Facebook [12] to provide high scalability and availability with no single
point of failure. To guarantee even distribution of data across the cluster, the
key value space is mapped onto a ring. The ring is divided into ranges, in which
each node is assigned one or more random ranges on the ring. A node can only
store keys that fall within its assigned range and thus the node becomes the co-
ordinator node for these key values. Cassandra supports multi-master replication
with configurable quorum style read and write consistency [20,4]. Multi-master
consistency means that a client can contact any node, irrespective of whether it
stores/replicates the requested key.

For a cluster of N nodes, the replication factor (RF) is the number of times a
key is replicated across the cluster. Each coordinator node is in charge of storing
its data locally and replicating it to RF − 1 nodes. Hence, a node will store
RF/N% of the key ranges. The consistency level (CL) is the number of replicas
in which the read/write operation must succeed before returning a success to
the client. The effect of the consistency level is different for reads and writes [7].
For the purpose of this paper, we will explain replication for read operations.

Each node in a Cassandra cluster has local information about the key ranges
stored at other nodes. For read requests, a coordinator node will forward requests
to CL of the RF replicas of a key for requests not stored locally and to CL− 1
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replicas for locally stored requests. The coordinator forwards the key requests
to the replica nodes that are responding the fastest.

Figure 1 shows a cluster with six nodes, a replication factor of 3 and a consis-
tency level of 2. A client contacts node 5 with a read request for key A, which is
replicated on nodes 1, 2 & 3. Therefore, node 5 will act as the coordinator node
for the client and send a read request for key A to 2 of the 3 replicas, i.e., the
configured consistency level. The client’s request will be blocked until both of
the contacted replicas reply with their locally stored values for key A. Node 5
will compare the returned values and relay the most recent value of key A to the
client.

 

2

35 

6 

4 

1 

client 

A

A

A

Fig. 1. Example of a read operation on a 6 node Cassandra cluster with replication
factor 3 and consistency level 2

3 QPN Model of a Cassandra Node

To model a node in a Cassandra cluster, we need to represent (1) the scheduling
of requests processed by a node, (2) the synchronization and blocking of requests
at the coordinator node that need to be fulfilled by remote nodes and (3) the
routing of replica requests based on the replication factor and consistency level.
To model scheduling and processing of requests, a queueing station is the most
suitable formalism. For synchronization between nodes and blocking of requests
Petri nets are more suitable. Our modelling approach is based on queueing Petri
nets [2], an extension of coloured stochastic Petri nets, which provide a natural
formalism in combining scheduling and synchronization in one model.

In queueing Petri nets, queueing places consist of two components: the queue,
and the depository. Tokens enter the queueing place through the firing of in-
put transitions, as in other Petri nets; however, as the entry place is a queue,
they are placed in the queue according to the scheduling strategy of the queue’s
server. When a token has been serviced it is placed in the depository where it can
be used in further transitions. Timed queueing places have variable scheduling
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strategies and service distributions; while immediate queueing places impose a
scheduling discipline on arriving tokens without a service delay. Due to space
limitations, we refer the reader to [2] for a more detailed description of QPNs.

Figure 2 represents the QPN model of a Cassandra cluster showing two nodes.
The bordered area highlights the parts of the model representing one node. We
refer to an arbitrary node in the cluster by nodei. As all nodes are similar in
the cluster, we will describe our QPN model by referring to nodei. The token
colours used in the model are summarized in Table 1.

 

Fig. 2. A queueing Petri Net model of a Cassandra cluster

In the QPN model of Figure 2, the clients are represented by a timed queue-
ing place with an infinite-server queue and an exponentially distributed think
time. The client place is initialized with the number of client read requests sent
to the cluster. Read requests are represented by read tokens. The enter-cluster
immediate transition distributes the incoming requests randomly between the
different nodes in the cluster by depositing read tokens in the enter-nodei im-
mediate queueing place of each node. This ensures that all nodes are equal in
receiving requests, similar to Cassandra’s multi-master architecture.

The default configuration of Cassandra restricts the number of concurrent
read operations to 32 [7]. This is modelled using the ordinary place, threadsi,
which is initialized to 32 tokens. Incoming requests queue in FIFO order in the
enter-nodei place and the immediate transition process-requestsi fires, providing
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Table 1. Token Colours

Token Color Description Place

T thread token (initialized to 32) threadsi
local-read local incoming read request nodei
read remote read request enter-nodei & nodei

blocked reads blockedi

client incoming and returning requests client & exit-cluster
readi forwarded read request from nodei enter-nodej & nodej ,

where j �= i
R replication responses between nodes replica-responsei

access to the processor when there is at least one token in the threadsi place. The
immediate transition process-requestsi determines the proportion of local and
remote requests entering nodei based on the replication factor. This is discussed
below. The processing at nodei is represented by nodei, a timed queueing place,
representing an −/M/1− PS queue.

Non-Local Requests. A non-local or remote request is a request for a key
that is not stored at nodei. The probability of a non-local request entering nodei
is equal to 1 − RF/N . When the immediate transition process-requestsi fires
producing a non-local request, it removes a read token from the enter-nodei
place and deposits a read token in the nodei timed queueing place. For simplicity,
we assume that the mean service time of a remote read request is similar to that
of a local read request. However, we note that a remote request does not use
thread tokens, thus not affecting a node’s ability to accept local reads. After
processing, a remote request is blocked awaiting replies from replica nodes.

To synchronize replica requests between the coordinator nodei and replica
nodes, nodei blocks remote read requests awaiting replies by firing the immediate
transition distribute-requestsi. This is executed by placing a read token in the
blockedi ordinary place and a token of color readi in the enter-nodej place of
nodej , where j �= i & the total number of contacted nodes is equal to CL. The
choice of nodej depends on the consistency level and replication factor (discussed
in Section 3.1). The color readi distinguishes forwarded replica requests by node
index so that the reply can be returned back to the correct coordinator.

Any nodej receiving a token readi in the enter-nodej place will process it
similarly to a local-request (see below). When a readi token leaves nodej the im-
mediate transition distribute-requestsj will return a thread token to the threadsj
place and notify nodei of the arrival of the request by depositing a token in
the corresponding replica-responsei place of nodei. This will enable the unblocki
immediate transition, which will fire when the number of tokens in the replica-
responsei place is equal to the consistency level, i.e., the required nodes have
responded. One read token (representing the blocked read request) is removed
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from the blockedi place and CL tokens are removed from the replica-responsei
place and one read token is deposited in the exit-cluster place. The read request
is then transferred back to the client.

Local Requests. A local request is a request for a key that is stored at nodei.
The probability of a local request entering nodei is equal to RF/N . For a lo-
cal request, when the immediate transition process-requestsi is enabled, it will
remove a read token from the enter-nodei place and a thread token from the
threadsi place and deposit a local-read token in the nodei timed queueing place.
In addition, a read token is deposited in the blockedi place so that the functional-
ity of the release of a blocked read request is the same for both local and remote
requests when CL > 1.

After processing the local request, the distribute-requestsi transition is enabled
and the thread token is returned and one token is deposited in the replica-
responsei place, representing the completion of one request. If CL > 1, then the
distribute-requestsi transition will deposit a readi token in the enter-nodej place
of CL−1 replica nodes. The contacted replica nodes will process the readi tokens
in the same manner described in the previous section for non-local requests.

The unblocki transition will fire when the number of tokens in the replica-
responsei place is equal to the consistency level, i.e. all the required nodes have
responded (this includes the token deposited by nodei). In the case when CL = 1,
the unblocki transition will be immediately enabled. Similar to non-local re-
quests, one read token (representing the blocked read request) is removed from
blockedi and CL number of tokens is removed from the replica-responsei place
and one read token is deposited in the exit-cluster place. Finally, the read request
is transferred back to the client.

3.1 Forwarding to Replicas

To model replica forwarding, we assume that the coordinator contacts the replica
nodes randomly. The probability of a replica nodej receiving a request from nodei
is modelled as the probability of the firing of the arc connecting the distribute-
requesti immediate transition with the enter-nodej place of nodej . We describe
this below.

Figure 3 illustrates a token ring for an N node cluster. Assume that a node’s
index represents its position on the virtual range ring and hence the key space
is divided into N ranges. A node will replicate its assigned keys by moving
clockwise on the ring.1 Therefore, when RF > 1, nodei replicates its key range
on the subsequent RF − 1 nodes on the ring, i.e. nodes of indices:

S = [(i mod N) + 1, ((i+RF − 2) mod N) + 1] . (1)

In addition, nodei is a replica node for the preceding RF − 1 nodes, i.e., it
stores a replica for the key values of nodes:

1 This is the default method used by Cassandra1.2.
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P = [((i − RF ) mod N) + 1, ((i − 2) mod N) + 1] . (2)

When nodei receives a local key request and CL > 1, it randomly chooses a
key value, k, from the local key range:

L = P ∪ {i} = [ ((i − RF ) mod N) + 1, i ] . (3)

Nodei will identify the RF − 1 replica nodes of k and randomly choose
CL − 1 nodes in which to forward a replica key request. The number of ran-
dom node combinations is

(
RF

CL−1

)
, thus forming a collection of sets, Fl, where

l = 1, . . . ,
(

RF
CL−1

)
, and for any nodej ∈ Fl, j ∈ L & j �= i. Each set in Fl repre-

sents a set of connections/arcs between the distribute-requesti immediate transi-
tion of nodei and the enter-nodej place of all nodes in Fl. When the distribute-
requesti transition is enabled it will randomly fire one set of connections/arcs
and CL − 1 downstream nodes will receive tokens simultaneously. Algorithm 1
details the method for identifying the connections between the distribute-requesti
immediate transition and the enter-nodej places. Figure 4 illustrates an example
of the different combinations for the incidence function of the distribute-requesti
immediate transition when RF = 4 and CL = 3. In general, if CL = RF , then
nodei will send the request to all replica nodes and await all their replies. If
CL = 2, it will choose one node randomly.

Request for keys not stored on nodei will be key ranges assigned to the re-
maining nodes on the ring. Assume the set of all N nodes in the ring is A, then
the remaining nodes on the ring are:

O = A \ L = A \ [ ((i − RF ) mod N) + 1, i ] . (4)

When nodei receives a remote key request, it randomly chooses a key value
from the nonlocal key range O and identifies its RF replica nodes, then randomly
chooses CL nodes to forward a replica request. Similar to local requests, the
number of random node combinations is

(
RF
CL

)
, which represents the number of

connection/arc sets between the distribute-requesti immediate transition of nodei
and the enter-nodej places, where j ∈ O & j �= i. Algorithm 2 describes the
method for identifying the nonlocal replica forwarding connections between the
distribute-requesti immediate transition and the enter-nodej places. In general,
if CL = RF , then nodei will send the request to all replica nodes and await all
their replies. If CL = 1, it will choose one node randomly.

4 Experimental Results

4.1 Experimental Setup

For our experiments, we use Cassandra version 1.2, Datastax distribution [7].
The loading and benchmarking of the Cassandra cluster was conducted using
the Cassandra-stress tool [3], a Java-based stress testing utility included with
the Cassandra Datastax distribution. The nodes of the Cassandra cluster used
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Fig. 3. A token ring of a cluster of N nodes. S represents the replica nodes for nodei’s
assigned key range. P represents the RF − 1 predecessors to nodei and O are the
coordinator nodes for key ranges not stored on nodei.

 

nodei 

enter_nodeR2 

enter_nodeR3 

enter_nodeR4 
distribute-requesti 

Fig. 4. The combination of connections for the distribute-requesti transition when
RF = 4 and CL = 3 on processing a local read request at nodei. For each firing
one connection set is chosen randomly.
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Algorithm 1. Replica Request Forwarding: Local Requests

Require: N : cluster size, RF : replication factor, CL: consistency level where RF > 1
& 1 < CL ≤ RF & i: index of current node

� define local key range
1: key begin = ((i−RF ) mod N) + 1)
2: key end = i

3: for k = key begin → key end do

� calculate RF − 1 replica indices, excluding nodei
4: replica range = {k} ∪ [(k mod N) + 1, ((k +RF − 2) mod N) + 1] \ {i}
5: Define array of replica sets replica sets[counter, nodes[ ] ]

� calculate and store the
(
replica range

CL−1

)
combinations

6: replica sets[counter][ ] = the CL− 1 combinations of nodes of replica range

7: for j = 1 → |replica sets.counter| do � iterate over all combinations

8: for l = 1 → |replica sets[j].nodes[ ]| do
� iterate over the nodes of combination j

9: Create connection between distribute-requesti transition
10: and entry node place of replica sets[j].nodes[l]

� connections are enabled when a local read token leaves nodei

11: end for
12: end for
13: end for

Algorithm 2. Replica Request Forwarding: NonLocal Request

Require: N : cluster size, RF : replication factor, CL: consistency level where RF > 1
& 1 ≤ CL ≤ RF , A: set of the indices of the N nodes & i: index of current node

� define nonlocal key range
1: Let O = A \ [(i−RF ) mod N) + 1, i ]
2: key begin = min{j ∈ O}; key end = max{j ∈ O}
3: for k = key begin → key end do

� calculate RF replica indices
4: replica range = {k} ∪ [(k mod N) + 1, ((k +RF − 2) mod N) + 1]

5: Define array of replica sets replica sets[counter, nodes[ ] ]

� calculate and store the
(
replica range

CL

)
combinations

6: replica sets[counter][ ] = the CL combinations of nodes of replica range

7: for j = 1 → |replica sets.counter| do � iterate over all combinations

8: for l = 1 → |replica sets[j].nodes[ ]| do
� iterate over the nodes of combination j

9: Create connection between distribute-requesti transition
10: and entry node place of replica sets[j].nodes[l]

� connections are enabled when a read token leaves nodei

11: end for
12: end for
13: end for
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in the experiments were hosted on the Amazon EC2 cloud environment [1].
More specifically, each machine hosting a Cassandra node was an instance of
the m1.xlarge1 AMI type. Since we were not investigating the impact of multi-
core processing we disabled one of the virtual cores of the instance. Hence, each
node behaved as a single core CPU with all the available cache capacity at its
disposal.2

Cassandra 1.2 was set up using the default configuration, except for the
read repair chance value that was set to 0 in order to avoid possible interfer-
ences by the random automatic updating of data across the cluster. The stress
tool used the default configurations, which included the default keyspace op-
tions. To control the number of requests entering the cluster we modified the
default number of threads of the stress tool to represent different request rates.
The client machine hosting the Cassandra-stress tool was external to the cluster
(similar to Figure 1) and hosted on the Amazon EC2 cloud environment using
the same configurations as the Cassandra nodes, except with both cores active
to avoid becoming the bottleneck in the system. The stress tool randomly sent
requests to each of the nodes on the cluster.

All the experiments discussed in the following Section focused on read repli-
cation. For each experiment, the Cassandra cluster had a specific configuration
in terms of number of nodes, replication factor and consistency level. This was
controlled by the Cassandra-stress tool, in which each experiment specified the
replication factor and the consistency level (see [3] for details). During each test
two million keys were written to the cluster, and then separate runs would read
these keys while varying the number of concurrent threads used by the stress
tool for each run.

The QPN models in this paper were developed and solved using QPME2.0 [8].
QPME2.0 (Queueing Petri net Modeling Environment) is an open source per-
formance modelling tool based on the QPN modelling formalism. QPME2.0 is
composed of two components, a QPN editor (QPE) and a simulator for QPNs
(SimQPN). All our simulation runs used the method of non-overlapping batch
means (with the default settings) to estimate the steady state mean token resi-
dence times with 95% confidence intervals.

To parameterize the queueing Petri net models, we setup a Cassandra cluster
with one node and ran the Cassandra-stress tool with concurrent threads rang-
ing from 1 to 60 threads. The number of concurrent threads run by the stress
tool corresponds to the number of jobs entering the system. We noticed that
the throughput of the node stabilized at 5 and more threads, with an average
throughput of 4.37 requests per ms. We used the mean request response time
for five threads to approximate the response time for one thread, and thus the
service rate of one read request. We have found the service rate of a read request
to be 4.6 requests/ms. To calculate the client (thread) think time, we used the

1 Specification of a m1.xlarge instance (as of January 2014): 4 ECU, 2 cores, 7.6 GB
RAM, 8GB HD.

2 The cores of physical processors used by Amazon for the m1.xlarge instance share
the L1 and L2 caches.
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utilization law. We measured the mean utilization for the client when running
the stress tool, in addition to the mean throughput arriving at the client. From
that we calculated the mean client think time as 0.074 ms.

4.2 Results

As described in the previous Section, the Cassandra-stress tool was deployed
on a client node and a set of experiments on different sized Cassandra clusters
was conducted. Each experiment had n nodes, RF replication factor and CL
consistency level, where n = 2 to 4, RF = 1 to n and CL = 1 to RF . We refer
to each configuration using a triple: (a-b-c), where a represents the number of
nodes, b represents the replication factor and c represents the consistency level.
This convention will be used throughout to discuss our results. Figure 5 shows
the measured and predicted mean response times and mean throughput for a 4
node cluster for different RF and CL configurations. The results for clusters of
size 2 and 3 exhibit similar behaviour as that of a 4 node cluster and have been
omitted due to space restrictions. Measured and predicted mean response times
for 1, 2, 3 and 4 node clusters for 20, 40 and 60 threads are shown in Table 2.

Response Time and Throughput. From Figure 5 and Table 2, when the
cluster size is fixed, in this case 4 nodes, the read request response time in-
creases linearly as the workload intensity increases. This linear increase within
a fixed RF and CL is due to the increase in job queueing time as jobs wait for
free processing threads at each node. This effect is evident in the mean through-
put of the cluster, which increases and then reaches its maximum at about 40
jobs/threads for the 4 node cluster. Increasing the RF and CL within a fixed
cluster size, decreases the performance of the system. This is due to increased
inter-node traffic due to increased replica request forwarding between nodes,
thus leading to a sharper linear increase as shown in Figure 5.

The QPN model accurately predicts the linear increase in response times for
all cluster sizes and configurations, as it accurately reflects the blocking, queueing
and processing of the requests. However, the model generally underestimates the
response time as the model does not represent the effect of network delay and
the increased synchronization processing between the nodes which will increase
response times and lower throughput. The QPNmodel gives excellent predictions
for the 2 node configurations. For the 3 node and 4 node configurations, the
predictions have an average error ranging from 2% to 20% for the majority of
configurations for both mean response times and throughput.

However, for the (4-3-1) & (4-4-2) configurations the mean prediction error
for response time and throughput are 25% and 30% respectively. For (3-3-1)
configuration the mean error for response time and throughput is 30% & 28%,
for (3-3-2) it is 35% & 35% and for (4-4-1) it is 40% & 60%. When conducting
the experiments we noticed that as the replication factor approached the clus-
ter size, the stability of the cluster and its performance was affected. This can
be due to the high synchronization between the nodes, increasing the inter-node
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traffic as the consistency level increased. In addition, as the clusters are hosted
on virtual machines, it is probable that the increased incoming requests to each
node affected the ability of the virtual processors. Moreover, the instability of the
4 node cluster was evident with high variability in comparison to the 2 and 3 node
clusters. The accuracy of the model was not affected by this instability at higher
consistency levels. The increased inter-node traffic increased request queueing
time for processing threads; which becomes more dominant in overall response
times in comparison to other factors. Previous studies have shown that CPU
intensive workloads on the Amazon EC2 environment have unstable response

mean response time mean throughput
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Fig. 5. Measured and predicted mean response times and throughput for a 4 node
cluster for different configurations
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times with up to 25% variance [5]. Within this range, the model predictions
are reliable for capacity planning, giving the upper bounds on performance and
throughput of the clusters based on benchmarking the performance of one node.
This is clear from the absolute difference between measured and predicted values
presented in Table 2.

Replication and Consistency. Higher replication levels increase the likeli-
hood of faster request responses. This is closely tied to the consistency level.
From the results (and intuitively), given the same consistency level and cluster
size, increasing the replication factor gives better performance. In contrast, for
the same cluster size and replication factor, increasing the consistency level will
worsen performance due to the increased waiting time for the extra requests to
be routed back to the original node. Both hold irrespective of workload (e.g.
Figure 5) and cluster size.

When increasing the cluster size, the replication factor and consistency level
dictate the amount of inter-node traffic, therefore a larger cluster size with more
replication and a higher consistency level may mean longer response times. Com-
paring different configurations, given that the replication factor and consistency
level are fixed, performance improves with the increase in cluster size when job
queueing time starts to dominate response time. Thus, we see improved per-
formance with the increase in cluster size and a linear increase in throughput.
From Table 2, this holds for workloads of 30 and more threads (this holds for
the predicted results irrespective of workload), e.g., at 40 threads/jobs (4-2-1)
exhibits better performance than (3-2-1) and (2-2-1). However, we notice that
this does not hold for (3-2-x) in comparison to (2-2-x), as the 2 node cluster has
the advantage of full replication.

Our original experiments considered workloads that do not scale with cluster
size. To mitigate the differences in request queueing between clusters of different
sizes, we investigated the effect of replication and consistency level when scaling
the workload by cluster size. Figure 6 gives one example of the effect of scaled
workload on the mean response times and throughput for number of threads
(jobs) t: when t = n × 10 and t = n × 20, in comparison to the non-scaled
workload t = 40 for (n-1-1) configurations. For a fixed consistency level and
replication factor, increasing the cluster size increases response time in compar-
ison to the non-scaled workload. However, the throughput level is sustained for
the scaled and non-scaled workloads and increases linearly with cluster size. In
this scenario, all nodes experience the same number of incoming jobs irrespective
of cluster size. Therefore, increasing the cluster size increases the detrimental ef-
fect on performance of inter-node communication, synchronization and request
blocking. These aspects have minimal impact on throughput, as the number of
jobs processed at each node is bounded by the number of available processing
threads, irrespective of cluster size.
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Fig. 6. Measured and predicted mean (a) respone times and (b) throughput for (n-1-1)
configurations comparing scaled and non-scaled workloads

5 Conclusions and Future Work

This paper presents a generic QPN model of a Cassandra multi-master cluster
under different read workload intensities and consistency configurations. Given
the performance measures of one Cassandra node the model was able to predict
response times and throughput for different configurations for Cassandra clusters
running on the Amazon EC2 cloud platform. This work detailed the relationship
between cluster size, replication factor and consistency level on response time
and throughput for scaled and non-scaled workloads. Moreover, our experiments
identified the effect that node capacity and configuration has on the overall
performance of the cluster. The model presented can be applied to other NoSQL
datastores that share a similar replication model with Cassandra.

The results presented are based on random access to keys; skewed access can
be modelled by modifying Algorithms 1 & 2 through setting the connection
probabilities of different node set combinations. We plan to extend the QPN
model to model write and mixed workloads and explicitly represent network
delays. Furthermore, as the QPN simulation time increases with cluster size, we
will investigate deriving analytical formulas based on the cluster size, replication
factor, consistency level and node capacity to determine the trade-off between
different configurations. This would require further experimentation with larger
clusters and increased runs to mitigate the effect of virtualization.
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Abstract. This paper analyzes a single-server discrete-time queueing
model with general independent arrivals, where the service process of the
server is characterized in two steps. Specifically, the model assumes that
(i) each customer represents a random, arbitrarily distributed, amount
of work for the server, the service demand, and (ii) the server disposes of
a fixed number of work units that can be executed per slot, the service
capacity.

For this non-classical queueing model, we obtain explicit closed-form
results for the probability generating functions (pgf’s) of the unfinished
work in the system and the queueing delay of an arbitrary customer.
The pgf of the number of customers is derived explicitly in case of ei-
ther geometrically distributed service demands, and/or for a geometric
arrival distribution. The analysis is complemented by several numerical
examples.

Keywords: queueing, discrete-time, independent arrivals, general ser-
vice requirements, fixed service capacity.

1 Introduction

A queueing phenomenon occurs when some kind of customers require some kind
of service from a given service facility, usually with finite resources. In particular,
queues arise when the customers arrive randomly at the service facility and/or
the time required to serve the customers is nondeterministic. Classical queueing
models characterize the random nature of arrivals and services by modelling the
interarrival times (or, alternatively, the number of arrivals in given time inter-
vals) and the service times as random variables [11,2]. In particular, this means
that the service time is considered as the fundamental quantity that character-
izes the speed of the service process: it expresses the time the service facility
needs to process exactly one customer. In reality, however, the service time of
a customer is the synthesis of two different aspects of the service process: the
service requirement or service demand of the customer and the service capacity
of the service facility.

In this paper, we introduce the term work unit to model both aspects sepa-
rately. On the one hand, the service demand of each customer is expressed as
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an integer number of work units. On the other hand, the service capacity of the
service facility is expressed as an integer number of work units that the service
facility is able to execute in one time unit (“time slot”). More specifically, we
consider a model in which the service demands of the consecutive customers
are random and arbitrarily distributed, and where the service capacity of the
system is constant from time slot to time slot. Customers demanding variable
amounts of work enter the system according to a general independent arrival
process (numbers of arrivals are independent from slot to slot) and are served
in First-Come-First-Served (FCFS) order, i.e., during each slot the service fa-
cility executes as many work units as possible with respect to the service of
the customers present in the system, in accordance with their order of arrival.
The service of a next customer is only started when the previous customer has
received complete service.

Some literature exists on similar models in which the number of work units
that can be performed per slot is variable. E.g., in [10,9,7,1,12], a discrete-time
queueing model is examined with deterministic “service times” of 1 slot each and
a constant number (say, m) of servers, of which a variable number is available
from slot to slot. In terms of our present model, this comes down to assuming
that the service demand of each customer represents exactly one work unit and
the service-capacity distribution has finite support. For this model, the number
of customers in the system (equivalent to the amount of work, in this case) is
examined for m = 1 in [10] (at arbitrary slot boundaries) and in [9] (at service-
completion times), and for arbitrary m ≥ 1 in [7] and [1]. For the latter (most
general) model, the delay analysis was performed in [12]. Although these papers
consider nondeterministic service-capacity distributions, they are not really more
general than the present study: the analysis in all these papers relies heavily on
the deterministic (single-slot) nature of the service times (a severe restriction
that the present model does not have). In fact, the current paper is more related
to [3], in which a model with general service-demand distribution and geomet-
rically distributed service capacities was examined. The geometric (and, hence,
memoryless) nature of the service-capacity distribution simplified the analysis
considerably in that case, but is undoubtedly less realistic than the deterministic
counterpart considered in the current paper. Nevertheless, as we shall see, the
fixed service capacity also allows for a nearly completely analytic solution of the
model.

Although this paper is quite generic and does not focus on a specific applica-
tion, the model we study is relevant in a wide variety of application areas. The
fixed service capacity could model, for instance, the available bandwidth on a
communication link [13], the printing capacity of a high-speed printer printing
a fixed number of pages per time unit, the capacity of immigration desks, the
capacity of a border checkpoint [8], the number of nurses or operating room time
slots [4] in a hospital, or the number of dockers in a port or a shipyard [14], the
number of workers in a building company, the production capacity of a plant [5],
etc.
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The structure of the paper is as follows. Section 2 introduces the mathematical
model. Section 3 presents the analysis of the (steady-state) unfinished work in the
system. In section 4, we derive the pgf of the (steady-state) delay of an arbitrary
customer from the pgf of the unfinished work. In section 5 we show that, in
general, the derivation of the pgf of the (steady-state) system content is much
harder. Therefore, we confine ourselves to the special case where the service-
demand distribution is geometric in section 6. Section 7 presents the analysis for
the special case of a geometric arrival process. In section 8, we discuss our main
results and provide a number of instructive numerical examples.

2 Mathematical Model

We consider a discrete-time queueing system with infinite waiting room and
a service facility (henceforth also referred to as the “server” of the system)
which can deliver a fixed amount of service per time unit. As in all discrete-time
models, the time axis is divided into fixed-length intervals referred to as (time)
slots. New customers may enter the system at any given (continuous) point on
the time axis, but services are synchronized to (i.e., can only start and end at)
slot boundaries. Specifically, we assume that the service of a customer can start
no earlier than during the slot following his arrival slot, i.e., we adopt a late-
arrival-with-delayed-access convention with respect to the sequence of events at
slot boundaries.

The arrival process of new customers in the system is characterized by means
of a sequence of independent and identically distributed (i.i.d.) nonnegative dis-
crete random variables with common probability mass function (pmf) a(n) and
common probability generating function (pgf) A(z) respectively. More specif-
ically, a(n) � Prob[ n customer arrivals in one slot ], with n ≥ 0. The corre-
sponding pgf and mean number of customer arrivals per slot are given by

A(z) �
∞∑
n=0

a(n) zn , λ � A′(1) .

The latter is referred to as (mean) arrival rate in the following.
The service process of the customers is described in two steps. First, we char-

acterize the demand that customers place upon the resources of the system,
by attaching to each customer a corresponding service requirement or service
demand, which indicates the number of work units required to give complete
service to the customer at hand. The service demands of consecutive customers
arriving at the system are modelled as a sequence of i.i.d. positive discrete ran-
dom variables with common pmf s(n) and common pgf S(z) respectively. More
specifically, s(n) � Prob[ service demand equals n work units ], with n ≥ 1. The
corresponding pgf and mean service demand of the customers are given by

S(z) �
∞∑

n=1

s(n) zn ,
1

σ
� S′(1) .
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Next, we describe the resources of the server, by attaching to each time slot a
corresponding service capacity, which indicates the number of work units that
the server is capable of delivering in that slot. In this paper, we assume that
the service capacity is fixed from slot to slot and given by r work units per slot.
Note that the term service time, used in traditional queueing models to indicate
the total time the service facility needs to serve one customer, is not used in this
paper. Instead, it is replaced by its two components, the service demand and
the service capacity, which are usually left implicit in classical models.

The operation of the queueing system is as follows. Customers arrive in the
system according to an independent arrival process, characterized by the pgf
A(z), and take place in the queue in their order of arrival. The amount of service
required by each customer (expressed in work units) is given by their correspond-
ing service demand, described by the pgf S(z). The server serves customers from
the queue sequentially in FCFS order, spending no more than r work units in
each slot. If, at the start of a slot, the remaining service demand of the cus-
tomer in service is less than r work units, the server completes the service of this
customer and immediately (during the same slot) starts the service of the next
customer in the queue (if any) – using the remaining part of its service capacity
– or (otherwise) becomes idle. If a customer whose service is initiated in a slot
requires more work units than the server has left in that slot, the service of that
customer continues in the next slot.

3 Unfinished Work

Investigating the time evolution of the total amount of work in the system, we
first define a number of relevant random variables. Specifically, let ak indicate
the number of customers entering the system during slot k (with known pgf
A(z)), let sk,i denote the service demand (with pgf S(z)) of the i-th of these
customers and let uk (with pgf Uk(z)) represent the unfinished work, i.e., the
total number of work units “present in” the system, at the beginning of slot k.
Then, the following recursive system equation can be established:

uk+1 =

ak∑
i=1

sk,i + (uk − r)
+

, (1)

where (x)+ denotes the quantity max(0, x). In terms of pgf’s, this equation is

Uk+1(z) = E
[
z
∑ak

i=1 sk,i

]
·E
[
z(uk−r)+

]
, (2)

where E[x] denotes the expected value of the random variable x. This recursive
equation is well-known in discrete-time queueing analysis, and was analyzed in
[2] (analysis of the GI-D-c model). There, a steady-state solution was obtained
under the condition that the system is stable. Here, we also assume that the
system is stable, with the mean number of work units entering the system per
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slot, given byA′(1)S′(1) = λ/σ, strictly smaller than the per-slot service capacity
r, i.e., if and only if

λ

σ
< r . (3)

Moving to steady state, we let the time parameter k go to infinity. Then, both
functions Uk(z) and Uk+1(z) in (2) converge to a common limit function U(z),
which denotes the pgf of the unfinished work at the beginning of an arbitrary slot
in steady state. As shown in [2], following expression for U(z) can be derived,

U(z) =

(
r − λ

σ

)
(z − 1)A(S(z))

zr − A(S(z))

r−1∏
j=1

z − zj
1 − zj

, (4)

where the quantities {zj | 1 ≤ j ≤ r − 1} are the r − 1 complex zeroes of
zr−A(S(z)) strictly inside the complex unit disk. As soon as the zeroes {zj | 1 ≤
j ≤ r− 1} have been determined (numerically), equation (4) represents a known
function of z. Closed-form expressions for the moments of the unfinished work
can be easily obtained from this by computing derivatives of U(z) at z = 1.
Further, note that in some special cases, the computation of the zeroes inside
the unit disk can be circumvented, and just one zero outside the unit disk has
to be determined instead. An example of this approach is treated in section 7.

4 Customer Delay

In this section, we analyze the delay customers incur in the system. Specifically,
let C denote an arbitrary (“tagged”) customer entering the system in steady
state, and let J denote the arrival slot of C. We define the (discrete) delay d
of C as the total number of (full) slots between the arrival instant of C in the
system and the departure time of C from the system, i.e., d indicates the number
of slots between the end of slot J and the end of the slot during which the last
work unit of the service demand of C is being executed. Owing to the FCFS
queueing discipline, the delay d of C is equal to the time needed to execute the
unfinished work present in the system just after slot J , but to be performed
before or during the service of C. In this section, we first compute the pgf of this
amount of work. Next, from this, we derive the pgf of d.

Let ũ denote the unfinished work at the beginning of slot J and f the number
of customers entering the system during slot J but to be served before C. Then,
the total amount of work to be performed before or during the service of C, still
“present in” the system just after slot J , is given by

v = (ũ − r)+ +

f∑
i=1

s̃i + sC , (5)

where s̃i refers to the service demand of the i-th customer entering the system
during slot J , but to be served before C, and sC represents the service demand
of C.



On Queues with General Service Demands and Constant Service Capacity 215

It is well-known from previous papers (e.g. [12]) that the random variable f
has as pgf

F (z) � E
[
zf
]
=

A(z) − 1

λ(z − 1)
. (6)

On the other hand, the independent nature of the arrival process implies that
the probability distribution of ũ, i.e., the unfinished work at the beginning of
the arrival slot of C, is identical to the probability distribution of the unfinished
work at the beginning of an arbitrary slot in the steady state. This implies that
the pgf of ũ is equal to U(z) (see equation (4)). For the same reason, the random
variables f and ũ are mutually independent. Putting all these elements together,
we conclude that the pgf of v can be obtained as

V (z) � E[zv] = E
[
z(ũ−r̃)+

]
· E
[
z
∑f

i=1 s̃i
]
· E[zsC ] =

U(z)

A(S(z))
· F (S(z)) · S(z) ,

where, in the last step, we have used the steady-state version of equation (2),
i.e., equation (2) for k → ∞.

Using (4) and (6), we can derive from the above result the following explicit
expression for V (z):

V (z) =

(
r − λ

σ

)
(z − 1)S(z)[A(S(z))− 1]

λ[S(z) − 1][zr − A(S(z))]

r−1∏
j=1

z − zj
1 − zj

. (7)

As explained before, the delay d of customer C is given by the number of slots
the service facility needs to perform v work units. Owing to the constant service
capacity of r work units per slot in the system at hand, we can therefore simply
express d as

d =
⌈v
r

⌉
, (8)

where the so-called ceiling of x, denoted �x�, is equal to the smallest integer
larger than or equal to the (real) quantity x. Deriving the pgf D(z) of d from
the known pgf V (z) of v thus amounts to determining the pgf of the quotient
(d) of a division by an integer (r) from the known pgf of the dividend (v). From
[2] it therefore follows that an explicit expression for D(zr) can be obtained as
follows:

D(zr) =
1 − zr

r

r−1∑
j=0

V (θjz)

1 − θjz
, (9)

where, as before, θ � exp( ı2πr ) is the complex r-th root of 1. Although not very
transparent, equations (9) and (7) provide explicit results for the pgf of the
customer delay. In particular, by computing derivatives at z = 1, explicit closed-
form expressions can be derived from (9) and (7) for the moments of the customer
delay. Although such expressions contain various complex numbers, such as the
zeroes zj and the powers of θ, the results they deliver are all real-valued.
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5 System Content

The system content is defined as the number of customers present in the system.
In this paper, we denote the system content at the beginning of the k-th slot
as bk; the steady-state system content is denoted as b. We note that the mean
system content can always be derived from the mean delay, by applying (the
discrete-time version of) Little’s result [6]:

E[b] = λE[d] .

In this section, however, we try to find an expression for the whole pgf of the
system content from the results obtained above, i.e., either for the unfinished
work or for the delay.

First, we examine the connection between system content and unfinished work.
The following relationships can be established between the system content bk and
the unfinished work uk, defined in section 3:

uk = 0 , if bk = 0 ,

uk = ŝ1 + s2 + . . .+ sbk , if bk > 0 ,
(10)

where ŝ1 indicates the remaining service demand of the customer in service at
the beginning of slot k and s2, . . . , sbk denote the (full) service demands of
the other bk − 1 customers in the system at the beginning of slot k. It is not
straightforward to derive from the above equations a relationship between the
pgf’s of the unfinished work and the system content. There are two main reasons
for this. First, it is not obvious how to find the distribution (or pgf) of the random
variable ŝ1: the classical results from renewal theory [15,2] on the distribution of
the residual lifetime in a sequence of i.i.d. random variables are not applicable
here, as the remaining service demand of an ongoing service does not simply
decrease by one unit per slot in the system under study. Second, the random
variables ŝ1 and bk, appearing in equation (10), are not necessarily independent,
as both are connected to the elapsed service demand of the customer in service.
In the next section, however, we shall see that these obstacles do not exist if the
service demands have a geometric distribution, and we shall be able to determine
the pgf of the system content completely in that case.

Next, we try to relate the system content to the customer delay. In order to
do so, we exploit the FCFS nature of the service discipline. This implies that the
customers left behind in the system by a departing customer are exactly those
customers that have entered the system during the sojourn time of the departing
customer in the system. As before, let C indicate an arbitrary tagged customer
visiting the system in the steady state, with J the arrival slot of C, b the system
content at the beginning of slot J , and d the delay of C. Furthermore, let ba and
bd denote the system content as seen by C just before its arrival and just after
its departure respectively. It is well-known [11] that the quantities ba (with pgf
Ba(z)) and bd (with pgf Bd(z)) have the same (steady-state) distributions. In
terms of pgf’s this translates into
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Ba(z) = Bd(z) . (11)

It is also easily seen that ba = b+ f , which implies

Ba(z) = B(z)F (z) , (12)

where F (z) is given by (6). Finally, the FCFS nature of the service process entails

bd = g +

d∑
k=1

ãk , (13)

where g denotes the number of customers arriving during slot J but to be served
after C, and ãk indicates the number of arrivals during the k-th slot of C’s delay.
Note that the random variable g can be expressed as

g = ã − f − 1 , (14)

where ã is the total number of customers arriving during slot J . The problem
with equation (13) is that the quantities g and d appearing in it are not neces-
sarily independent, as both are connected to f , as can be clearly concluded from
equations (14), (5) and (8). It is clear, however, that g and d are independent
if f and g are independent. In order to examine when this is the case, let us
compute the joint pgf of f and g:

P (x, y) � E
[
xfyg

]
=

∞∑
n=1

Prob[ã = n]E
[
xfyg|ã = n

]
. (15)

As known, for instance from [12], Prob[ã = n] is given by

Prob[ã = n] =
na(n)

λ
, (16)

whereas the expectation in the right hand side of equation (15) follows from the
fact that customer C is an arbitrary customer among the customers entering the
system during slot J :

E
[
xfyg|ã = n

]
=

1

n

n−1∑
i=0

xiyn−1−i . (17)

Combining (15)-(17) then leads to

P (x, y) =
1

λ

∞∑
n=1

a(n)
xn − yn

x− y
=

A(x) − A(y)

λ(x − y)
. (18)

In accordance with (6) (for f), the marginal pgf’s of f and g are given by

F (z) = P (z, 1) =
A(z) − 1

λ(z − 1)
, G(z) = P (1, z) =

A(z) − 1

λ(z − 1)
= F (z) ,
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which shows that f and g are identically distributed, which is intuitively accept-
able for reasons of symmetry. The point is, however, that, in general, f and g
are not independent unless P (x, y) = F (x)F (y), for all values of x and y. This
condition is only fulfilled for specific choices of the arrival process, e.g. for geo-
metric arrivals, as we shall discuss in section 7. If f and g are independent, then
(13) implies

Bd(z) = G(z)D(A(z)) = F (z)D(A(z)) . (19)

In these circumstances, it follows from (11), (12) and (19) that the pgf B(z) of
the system content can indeed be derived from the pgf D(z) of the customer
delay through the simple equation

B(z) = D(A(z)) . (20)

6 Geometric Service Demands

So far, we have made no specific assumptions as to the precise nature of the
service-demand distribution, i.e., the pgf S(z) was arbitrary. In this section, we
explore the special case where the service demands are geometrically distributed
with mean value 1/σ, such that

s(n) = σ(1 − σ)n−1 , n ≥ 1 , S(z) =
σz

1 − (1 − σ)z
. (21)

The pgf of the unfinished work is obtained by using (21) in equation (4). Like-
wise, the pgf of the customer delay is determined by equations (9) and (7), using
the same substitution. In both cases, the assumption of geometric service de-
mands does not simplify the analysis or the results very much. In the analysis
of the system content, however, the assumption of geometric service demands
brings about very substantial simplifications. The main reason for this lies in
the memoryless nature of the geometric distribution [15,16], which implies that,
in (10), the distribution of the remaining service demand (ŝ1) is identical to the
distribution of a full service demand (such as s2, . . . , sbk). Also, the distribu-
tion of ŝ1 is not influenced by the value of bk in this case: although bk may be
correlated with the received amount of service of the customer in service (at
the beginning of slot k), this does not affect in any way the distribution of the
remaining service demand. As a consequence, equations (10) are equivalent to

uk =

bk∑
i=1

si ,

where the si’s are i.i.d. random variables with geometric distribution (with mean
1/σ), which, in addition, are independent of the random variable bk. It then
simply follows that the (steady-state) pgf of uk is given by

U(z) = B

(
σz

1 − (1 − σ)z

)
� B(ẑ) . (22)
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The relationship ẑ = σz/(1− (1−σ)z) introduced in (22) can be easily inverted
so that equation (22) leads to B(ẑ) = U(ẑ/(σ + (1 − σ)ẑ)). Replacing ẑ by z
again and using equation (4), we then get the following explicit expression for
the pgf of the system content:

B(z) =
(rσ − λ)(z − 1)A(z)

zr − [σ + (1 − σ)z]rA(z)

r−1∏
j=1

z − ẑj
1 − ẑj

, (23)

where the quantity ẑj is defined as

ẑj �
σzj

1 − (1 − σ)zj
. (24)

It is interesting to observe that, in this special case of geometric service de-
mands, the pgf of the system content can also be derived directly, without requir-
ing the pgf of the unfinished work as an intermediate result. In order to show
this, we first compute the pgf of the number of customers (rather than work
units) that can be completed in the k-th slot. As the service facility disposes of
exactly r work units in slot k and σ corresponds to the probability that slot k is
the last slot of some customer’s service demand (owing to the geometric distri-
bution of the service demands), the number of customers (ck) that can complete
their service in slot k has a binomial distribution with parameters r and σ, i.e.,

Prob[ck = n] =
r!

n!(r − n)!
σn(1 − σ)r−n , 1 ≤ n ≤ r ,

with corresponding pgf C(z) = (1 − σ + σz)r.
The system content can then be analyzed by means of an equivalent (classical)

discrete-time queueing model with deterministic service times equal to 1 slot,
a general independent arrival process, characterized by pgf A(z), and r servers,
each of which is subject to server interruptions, such that the number of available
servers per slot is characterized by pgf C(z). The result can be retrieved from
e.g. [1] as

B(z) =
[C′(1) − A′(1)](z − 1)A(z)

zr − zrC(1/z)A(z)

r−1∏
j=1

z − ẑj
1 − ẑj

=
(rσ − λ)(z − 1)A(z)

zr − [σ + (1 − σ)z]rA(z)

r−1∏
j=1

z − ẑj
1 − ẑj

,

(25)

where the quantities {ẑj | 1 ≤ j ≤ r − 1} indicate the r − 1 complex zeroes of
the denominator zr − [σ + (1 − σ)z]rA(z) strictly inside the complex unit disk.

It is clear that the expressions in (23) and (25) are identical, provided we can
prove that the quantities {ẑj | 1 ≤ j ≤ r − 1}, defined by (24), are zeroes of
zr − [σ + (1 − σ)z]rA(z), as soon as the quantities {zj | 1 ≤ j ≤ r − 1} are
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zeroes of zr −A(S(z)). This is indeed the case. First, we invert (24), in order to
express zj in terms of ẑj . Now, as zj is a zero of zr − A(S(z)), it follows that

zrj = A

(
σzj

1 − (1 − σ)zj

)
,

or, using (24), (
ẑj

σ + (1 − σ)ẑj

)r

= A(ẑj) ,

which shows that ẑj is a zero of zr − [σ + (1 − σ)z]rA(z).

7 Geometric Arrivals and Geometric Service Demands

The analysis in this paper did not assume any specific form for the distribu-
tion of the number of arrivals per slot. In this section, we treat the special
case of geometric arrivals, defined by A(z) = 1/(1 + λ − λz). It turns out that
considerable simplifications of the results are possible, especially under the as-
sumption of a geometric distribution for the service demands. First, we observe
that for geometric arrivals the joint pgf P (x, y), defined in (15), factorizes as
P (x, y) = F (x)F (y), implying that the simple relationship (20) is valid. Indeed,
in view of the expression for A(z),

P (x, y) =
A(x) − A(y)

λ(x − y)
=

1

1 + λ − λx
· 1

1 + λ − λy
.

Now, introducing A(z) = 1/(1 + λ − λz) and S(z) = σz/(1 − (1 − σ)z) in
equation (4), we obtain the following result for the pgf of the unfinished work:

U(z) =

(
r − λ

σ

)
(z − 1)[1 − (1 − σ)z]

[zr(1 + λ) − 1][1 − (1 − σ)z]− λσzr+1

r−1∏
j=1

z − zj
1 − zj

, (26)

where the zj’s are the zeroes of the denominator of (26) – which is now a simple
polynomial of degree r + 1 – inside the closed complex unit disk. By cancelling
out common factors in the numerator and the denominator of (26), we therefore
obtain

U(z) =
1 − (1 − σ)z

σ
· 1 − zu
z − zu

, (27)

where zu is the only zero of [zr(1 + λ) − 1][1 − (1 − σ)z] − λσzr+1 outside the
complex unit disk. It simply follows that the pmf of the unfinished work can be
expressed as

u(0) =
1

σ

(
1 − 1

zu

)
,

u(i) =
1 + (σ − 1)zu

σ

(
1 − 1

zu

)(
1

zu

)i

, i ≥ 1 ,

(28)
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while the mean unfinished work is given by

E[u] =
zu

zu − 1
− 1

σ
. (29)

Along the same lines, it is easily seen that the pgf V (z), given in general by
(7), reduces to

V (z) =
(1 − zu)z

z − zu
,

such that the pmf of the random variable v is simply given by

v(n) =

(
1 − 1

zu

)(
1

zu

)n−1

, n ≥ 1 ,

i.e., the random variable v is geometrically distributed with parameter 1/zu
in this case. The delay distribution can be derived from this, departing from
equation (8):

d(k) � Prob[d = k] =
r−1∑
j=0

v((k − 1)r + 1 + j) =

(
1− 1

zu

)(
1

zu

)(k−1)r r−1∑
j=0

(
1

zu

)j

.

Resulting, the pmf d(k) is simply given by

d(k) =

(
1 − 1

zur

)(
1

zur

)k−1

, k ≥ 1 , (30)

and the pgf D(z) reads

D(z) =

∞∑
k=1

d(k)zk =
(1 − zu

r)z

z − zur
. (31)

The distribution of the delay turns out to be (positive) geometric with parameter
1/zu

r = 1/A(S(zu)) and mean value

E[d] =
zu

r

zur − 1
. (32)

Finally, the pgf of the system content, resulting from equation (20) is given
by

B(z) = D

(
1

1 + λ − λz

)
=

1 − zu
r

1 − zur(1 + λ− λz)
, (33)

which can be easily inverted into

b(j) =
zu

r − 1

zur(1 + λ) − 1

(
λzu

r

(1 + λ)zur − 1

)j

, j ≥ 0 . (34)
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In other words, the system content is geometrically distributed with parameter

λzu
r

(1 + λ)zur − 1
=

1− (1 − σ)zu
σzu

= 1/S(zu)

in this case. The mean system content is given by

E[b] =
λzu

r

zur − 1
. (35)

We note that our results are in accordance with Little’s result. Finally, note that
introducing A(z) = 1/(1 + λ − λz) in (25) equally allows to derive expression
(33), as required.

8 Discussion of Results

8.1 General Discussion

In this paper, we have obtained a large number of explicit expressions for the
main performance measures of a single-server discrete-time queueing model with
FCFS queueing discipline and a fixed service capacity per slot. More specifically,
we have derived generic results for the pgf’s of the unfinished work in the system
and the customer delay. The pgf of the system content could not be obtained
explicitly in general. However, for geometric service demands and/or geometric
arrivals, we also succeeded in deriving a closed-form expression for this function.

Finally, we have shown that in case a geometric service-demand distribution
is combined with geometric arrivals, we are able to obtain explicit closed-form
results for the pgf, the pmf and the expected value of the unfinished work, the
delay and the system content, in terms of the parameters of the model on the
one hand and just one single zero (zu) of a complex function outside the complex
unit disk.

In section 7, we have observed that the relevant probability distributions have
geometric tails, i.e., the tail distributions of the unfinished work, the customer
delay and the system content all take the form

Prob[x > n] = Cαx
n , n > 0 , (36)

where the random variable x may be either u, d or b. The decay rate αx, in
general, turns out to be given by

αu = 1/zu , αd = 1/zu
r = 1/A(S(zu)) , αb = 1/S(zu) , (37)

where zu is the only root of the equation zr = A(S(z)) outside the complex
unit disk. Although these results were obtained exclusively for the combination
of geometric service demands with geometric arrivals, we are tempted to believe
that, at least for sufficiently large values of n, the tail probabilities Prob[x > n]
can be derived with formulas similar to (36) and (37), where zu denotes the dom-
inant pole of the pgf of u, in much more general circumstances. This, however,
is subject to further research.
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Fig. 1. Mean customer delay and mean system content versus service capacity r, for
fixed mean service demand 1/σ = 20 and various values of the load ρ = λ/rσ, keeping
the ratio λ/r fixed

8.2 Numerical Examples

We now discuss a number of numerical examples. Specifically, we illustrate the
explicit results obtained in section 7 for geometric arrivals and geometric service
demands. In this case, the system is completely determined by just three pa-
rameters: the arrival rate λ, the mean service demand 1/σ and the fixed service
capacity r. The global load of the system is given by

ρ = λ/rσ (38)

and the stability condition (3) requires ρ < 1.
In figures 1a and 1b, we show the mean customer delay E[d] and the mean

system content E[b] as functions of the service capacity r, while keeping the
ratio λ/r fixed, i.e., as the value of the service capacity r on the horizontal axis
increases, so does the mean arrival rate λ. The mean service requirement of the
customers is kept fixed at 1/σ = 20 work units, and various values of the global
load ρ are considered. Figure 1a shows that the mean delay of the customers
reduces considerably when the service capacity r is increased from its lowest
value r = 1 to about r = 20 = 1/σ; for yet larger values of r, the mean delay
basically becomes independent of r (and, hence, λ) and converges to a relatively
small value. An intuitive explanation of this behavior could be the fact that as
soon as the service capacity per slot is (much) larger than the average service
demand of the customers, multiple customers can be handled in one slot and
delays are inherently limited, whereas for low values of the service capacity, the
service of one customer already requires multiple slots and therefore also the
delays get higher. Figure 1b shows a completely different picture for the mean
system content, which appears to increase more or less linearly with the service
capacity r (and the arrival rate λ).
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Fig. 2. Mean customer delay and mean system content versus service capacity r, for
fixed mean arrival rate λ = 0.2 and various values of the load ρ = λ/rσ, keeping the
ratio 1/σ versus r fixed

In figures 2a and 2b, we have again plotted the mean customer delay E[d]
and the mean system content E[b] as functions of the service capacity r. In this
case, however, we keep the ratio of the average service demand per customer
(1/σ) versus the service capacity per slot (r) fixed, i.e., the mean number of
slots required to serve one customer basically remains unchanged, but as the
value of the service capacity r on the horizontal axis increases, so does the mean
service requirement 1/σ. The mean arrival rate is kept fixed at λ = 0.2 customers
per slot, and again various values of the global load ρ are considered. It is easily
seen that each value of ρ corresponds to a given value of the mean “service
time” of the customers in the classical sense of the word: ρ = 0.2/0.4/0.6/0.8 is
equivalent to a mean service time of 1/2/3/4 slots, respectively. We note that,
in this case, both figures 2a and 2b are very similar, which can be explained by
the simple observation that λ is fixed and the mean system content is therefore
proportional with the mean delay by virtue of Little’s result: E[b] = λE[d] =
0.2E[d]. Both figures show that, in these circumstances, the effect of varying
the service capacity r (and the mean service demand 1/σ accordingly) on mean
delay and mean system content is extremely limited: only for very low values
of r, the mean delay and the mean system content are somewhat lower than
for all other values of r. A possible conclusion could be that classical queueing
models, in which the notion of “service time” is used instead of its two more basic
components “service demand” and “service capacity”, are basically adequate in
case the value of r (and hence also the value of the mean service demand 1/σ)
is not too small, at least within the limits of the examples considered in this
section (i.e., geometric arrivals and geometric service demands).
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Simulation Debugging and Visualization

in the Möbius Modeling Framework
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Abstract. Large and complex models can be difficult to analyze using
static analysis results from current tools, including the Möbius modeling
framework, which provides a powerful, formalism-independent, discrete-
event simulator that outputs static results such as execution traces. The
Möbius Simulation Debugger and Visualization (MSDV) feature adds
user interaction to running simulations to provide a more transparent
view into the dynamics of the models under consideration. This paper
discusses the details of the design and implementation of the feature in
the Möbius modeling environment. Also, a case study is presented to
demonstrate the new abilities provided by the feature.

Keywords: discrete-event simulation, simulation visualization, model
debugging, multi-formalism modeling.

1 Introduction

Because of its high flexibility and relative simplicity, discrete-event simulation
remains a popular technique for complex analysis in many technical disciplines,
as it is used in applications that range from availability assessments in computer
science [1], to environmental impact assessments [2], to disease propagation as-
sessments [3]. Despite its powerful benefits, acquisition of appropriate parame-
ters and design of correct models of systems can be quite complicated because
of the multitude of uncertainties inherent to the complex systems under study.
Currently employed discrete-event simulation tools, such as Möbius [4], Simul8
[5], and Vensim [6], require complete models coupled with complete simulation
runs to return any useful results; tweaking of model and simulation parameters
can become time-consuming and error-prone, as human operators must complete
each modeling workflow from beginning to end. We address that problem by in-
troducing the Möbius Simulation Debugger and Visualization (MSDV) feature,
an extension of the discrete-event simulator available in the Möbius modeling
framework [7][8], which adds user interaction and visibility to running simula-
tions.

The goal of the MSDV feature is to provide the analyst with a highly transpar-
ent view of the running simulation, rather than simply provide results
at the end of the simulation. While other discrete event simulators, such as OM-
NeT++ [9], SAS/OR [10], and AnyLogic [11], also offer visualizations of running
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discrete-event simulations, the MSDV feature extends this functionality by pro-
viding the analyst with full leverage to modify and pause any running discrete-
event simulation in the Möbius tool. The transparency resulting from both the
visualization and model state modification functionalities can aid analysts in
designing correct, complete models of the complex systems under consideration.
The additional functionality effectively increases the ease, speed, and reliability
of the model validation and verification phases of the overall simulation analysis.

In section 2, we present an overview of the Möbius discrete-event simulation.
In section 3, we detail the functionality provided by the MSDV feature. In section
4, we examine how it is implemented in the Möbius modeling framework. In
section 5, we consider a case study that reveals the utility of the new features.
Finally, in section 6, we provide concluding remarks.

2 Möbius Discrete-Event Simulator Overview

Each solver in the Möbius modeling framework, including the Möbius discrete-
event simulator, executes modeling-formalism-independent solution techniques
by decoupling the solution technique used from the specific modeling formal-
ism of the model under consideration. That powerful feature makes it possible
to solve a large subset of modeling formalisms, as well as to easily combine
submodels created in different modeling formalisms within this subset. To ac-
complish such independence in the solution technique, the Möbius modeling
framework utilizes the Abstract Functional Interface (AFI), a general modeling
formalism that leverages the two overarching modeling characteristics shared by
many modeling formalisms: the model state and the transition system [12].

In the AFI, a state variable is a basic modeling element that represents
the state of a component within the model [13]. For example, when a queue is
being modeled, a state variable can represent the number of items currently in
the queue. Then, the full model state can be represented as the set of all state
variables’ values.

Also, in the AFI, an action is a basic modeling element that changes the
model state [13]. Each action is associated with a timing distribution (e.g., ex-
ponential or Weibull) that determines when it will fire, thus changing the model
state. Each action is also associated with a Boolean “enabled” status to deter-
mine whether it is currently eligible to fire. That status is determined by certain
specified conditions of the model state. For example, in the queue model men-
tioned in the previous paragraph, an action can represent the popping of an item
from the front of the queue. The action could be defined as exponential with a
rate of 1.0, where it is only “enabled” when there is at least one item in the
queue. Therefore, the full transition system of the model can be represented as
the set of all actions in the model.

In addition to representing the model, the Möbius discrete-event simulator
also employs a future event list to determine the specific sequence of events
in the given simulation batch [7]. In the list, each event couples an action with
a deterministic simulation time at which it will fire. The list contains one event
item per “enabled” action.
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3 Features

In order to achieve the desired transparency and usability, we first had to consider
the additional interface features needed for our simulation tool. We needed a way
to access the model state during the simulation, a way to modify the model state
during the simulation, a way to pause the progress of the running simulation,
and a way for users to interact with the simulation. For the first requirement,
we implemented the functionality of model state analysis. For the second, we
implemented a reliable way to effectively modify the model state. For the third,
we implemented a way to apply explicitly defined breakpoints to the running
simulation and a way to implicitly step through the simulation. Finally, for the
last requirement, we implemented a graphical user interface for the model that
provides access to all those new features. The new features are discussed in the
following sections.

3.1 Model State Analysis

In the Möbius modeling framework, the model state is composed of both the
culmination of the values of the state variables [13] and the contents of the
future event list [7]. The contents of the state variables are stored in a contiguous
memory block, and the contents of the future event list can be accessed in a
straightforward manner. The values must be serialized into a message and sent
to the Möbius visualization front-end over the communication layer, as discussed
in Section 4.2.

3.2 Model State Modification

Model state modification is more complicated than model state analysis in the
Möbius modeling framework. Its added complexity is a result of the dependencies
between the elements of the model state. For example, modifying the value of a
single state variable could result in a change to the “enabling” status of an action,
thus affecting the contents of the future event list. To address those dependencies,
we use the built-in dependency mechanisms of the Möbius modeling framework.

Those dependency mechanisms, as presented in [7], operate by associating
state variables with actions by declaring the state variables to be either enabling
or affecting with respect to the actions. If a state variable is marked as
enabling to an action, then modifying that given state variable would require
that given action to reevaluate its enabled status. If an action is marked as
affecting a state variable, then when that action fires, the state variable value
may be altered by the firing event.

For example, consider the simple AFI model derived from [7], pictured in
Figure 1. The model shows the enabled and affected relationships between
the state variables and actions. As can be seen, an enabling relationship exists
between state variable P2 and action A2, since the enabled status of A2 depends
on the value of P2. Also, an affected relationship exists between the action A2

and the two state variables P2 and P3, since the firing of A2 could result in a
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Fig. 1. Connectivity List Example

change in the values of both state variables. Use of those relationships simplifies
the modification of the model state, as only affected state variables must be
reevaluated.

Since the model state modifications available through this feature only include
modifying state variables and the firing times of the events in the future events
list, the only model state relationships we need to examine are the enabling

relationships.

3.3 Breakpoints

To access or modify the model state at a given simulation time t, the user
must have a way to pause a running simulation at that given simulation time t.
One method of pausing the simulation is through user-defined simulation break-
points. Those breakpoints allow the user to explicitly define conditions in which
the simulation should pause. There are three types of breakpoints: simulation
time breakpoints, action breakpoints, and state variable breakpoints. Each type
returns a Boolean value, allowing the user to easily create combinations of the
three types using the Boolean logical operators AND, OR, and NOT.

Simulation Time Breakpoints. A simulation time breakpoint allows the user
to pause the simulation at a certain simulation time t. For example, if the user
wants to run the simulation until simulation time t = 5.5, the simulation would
pause at simulation time t = 5.5, allowing the user to access and modify the
resulting model state at this simulation time.

Action Breakpoint. An action breakpoint allows the user to pause the sim-
ulation at a certain action event of a specific action. Currently, available ac-
tion events include OnFired, OnStatusToEnabled, and OnStatusToDisabled.
Respectively, the breakpoints are triggers at the simulation times immediately
following firing of actions, switching of an action from disabled status to enabled
status, and switching of an action from enabled status to disabled status. This
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breakpoint can be used if the user wants to run a simulation until a certain
event has fired. This functionality can be useful during examination of actions
that rarely fire.

State Variable Breakpoint. A state variable breakpoint allows a user to
pause the simulation when certain conditions concerning state variable values
have been met. Specifically, arithmetic combinations of state variable values and
literal values are compared using standard comparison operators: {<, >, =}.
For example, if a user wants to pause a simulation when a certain state variable
value is greater than another state variable value by 7.5 or more, the user can
specify the breakpoint sv1 > sv2 + 7.5. This functionality is useful during the
examination of the quantitative relationships between state variables.

3.4 Simulation Stepping

In addition to breakpoints, the MSDV feature provides simulation stepping as
another means of pausing a running simulation. Whereas breakpoints are ex-
plicitly defined by users, simulation stepping is an implicitly defined operation
that runs the simulation until the next action fires. Since the model state of
a discrete-event simulation does not change until an action is fired, simulation
stepping gives users a way to easily examine all of the successive model states
of a running simulation in chronological order. The examination can occur from
any given paused state, including the initial model state, a state reached through
the use of breakpoints, or a state reached through previous stepping. This func-
tionality is useful for examining the fine-grained details of the operation of a
running simulation from a given simulation time t.

3.5 Model State Visualization

To effectively access the functionality of the previously discussed features, the
user requires a powerful and intuitive interface to control and view the running
simulation. After considering potential designs for this interface, we decided that
the most useful interface would be one already familiar to the user. Thus, we
implemented the user interface to mimic the specific modeling formalism with
which the user had specified the model. For example, if the initial model is defined
as a stochastic activity network (SAN) model [14], then the user interface should
display a SAN-like presentation of the model. Specifically, the user interface will
display the model state as a combination of SAN elements identical to the SAN
elements of the original model. Thus, the visualization interface becomes an
effortless way to bring the user’s model to life, rather than a complicated and
unfamiliar tool that the user must painstakingly learn.

Although this design decision simplifies the use of the tool, it would be imprac-
tical to create a different user interface for every different modeling formalism,
not only because of the large number of existing formalisms, but also because
of the constant introduction of new modeling formalisms. To address the issue,
we leveraged the underlying Abstract Functional Interface (AFI) of the Möbius
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modeling framework [12]. The model-level Möbius AFI is a modeling formalism
that is the base of all other modeling formalisms in Möbius. Since all of the
specific modeling formalisms are forms of their parent AFI modeling formalism,
each can be represented as an AFI model. Therefore, we started by implement-
ing the user interface in AFI. We then continued to develop user interfaces for
specific modeling formalisms. The idea is that if the user interface for a spe-
cific modeling formalism has not yet been implemented (e.g., a newly developed
modeling formalism is being used), then the MSDV tool will default to the AFI
visualization and user interface. Although the general AFI visualization and user
interface will not be as familiar to a user as a modeling-formalism-specific version
would have, it still provides the same power as formalism-specific visualizations
and editing interfaces in MSDV. Currently, the MSDV feature supports the AFI,
SAN, ADVISE, and Rep/Join modeling formalisms.

4 Implementation

The implementation of the MSDV tool in the Möbius modeling framework relies
on its integration into the currently existing discrete-event simulator, which is
composed of three different layers [7], pictured in Figure 2. 1) The back-end
Möbius simulation processes, implemented in C++, execute the actual simula-
tion, leveraging the power and speed available when running natively on the
host machine. 2) The communication layer provides the medium for the commu-
nication between the back-end Möbius simulation processes and the front-end
visualization interface. 3) The front-end visualization interface, implemented in
Java, allows users to control and receive feedback from the back-end Möbius sim-
ulation processes. The implementation of the MSDV tool with respect to those
three simulator layers is discussed in the following sections.

4.1 Back-End Möbius Simulation

The back-end Möbius simulation processes are responsible for executing the
actual simulation of the model. This layer must be modified to allow model
state analysis, model state modification, and simulation pausing through the
use of breakpoints and stepping functionality.

Model State Analysis. So that we could add the functionality of model state
analysis, we needed for the back-end Möbius simulation processes to have the
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ability to forward the model state to the front-end visualization interface to be
interpreted by the end user. We decided to meet this requirement by making
it possible to serialize the model state at a particular simulation time t into
a message that can be forwarded through the communication layer. Therefore,
we designed the MSDV back-end to serialize the state variable data and future
event list into a char array message, as discussed in Section 4.2. The char

array is forwarded to the front-end visualization interface to be interpreted and
displayed.

Model State Modification. Because of the dependencies between elements
of the model state, model state modification, as discussed in Section 3.2, is not
as trivial as model state analysis. To simplify its implementation, the user is
restricted to modifying only one state variable primitive value, or only one firing
time of an event in the future event list, at once. That does not mean that the
user could not modify multiple model state elements at one paused point in
the simulation. It simply means that the entire model state must adjust to a
single modification before the user can specify another change. The restriction
simplifies model state modification since the elements of the model state that
rely on enabling relationships with the modified model state element only need
to adjust to a single change in the model state at a time. Affecting relationships
do not need to be considered in this context since they only affect the model
state when an action is directly modified, a feature that is not available through
the MSDV feature.

To modify the model state, the MSDV back-end receives a model state mod-
ification message from the front-end visualization interface. It specifies a state
variable primitive and its new value. The MSDV back-end updates the speci-
fied state variable with the new value, and reevaluates the status of each of the
actions with which the state variable shares an enabling relationship. Conse-
quently, if the status of an action switches from enabled to disabled, then the
associated event in the future event list is removed from the list. Similarly, if
the status of an action switches from disabled to enabled, then the timing dis-
tribution of the action is sampled, and it is added to the future event list. If
the status of the action does not change, then it does not modify its associated
event, or lack thereof, in the future event list.

Note that when an action’s associated event is added to the future event list,
its timing distribution is sampled. Consequently, if the modification of a state
variable results in the removal of the action’s event from the future event list,
then even if the state variable is modified back to its original value, the overall
model state is unlikely to return to the same state. Since the timing of events is
based on the statistically random distribution of the actions, the event will be
added back to the future event list with a different associated time. However,
the firing time for events in the event list may also be changed through MSDV,
so the old firing time can be restored if desired.

In addition to modifying state variables, the MSDV tool also allows users
to directly modify the firing times of the events in the future event list in the
simulation time interval t ≥ currentSimulationTime. Since those event times
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are independent of the rest of the model state, no further consideration must be
paid by the MSDV back-end.

Although model state modification is a helpful feature in analysis of running
simulations, it is important to note that any modifications to a running simu-
lation could result in statistical differences to runs without modification. Thus,
simulation batches utilizing model state modification should not be considered
the final results of a system model analysis. Rather, they should be used to
help the analyst determine more appropriate parameters and model designs for
a complete model that better describes the complex system under consideration.

Breakpoints and Stepping. As described in Sections 3.3 and 3.4, the
simulation-pausing capabilities are provided through breakpoints and simulation
stepping. The back-end MSDV contributes to this capability by determining the
point at which to stop, and by waiting for further instructions from the front-end
visualization interface. The evaluation of both explicit and implicit (stepping)
breakpoints occurs in the back-end, rather than the front-end, to eliminate the
need to forward the entire model state to the front-end after the firing of each
event. Thus, the simulation can proceed at near-optimal solution speed until a
breakpoint is hit. Both breakpoint and simulation-stepping messages are dis-
cussed in Section 4.2.

4.2 Communication Layer

The communication layer of the Möbius simulator is responsible for providing
the medium between the back-end Möbius simulation processes and the front-
end visualization interface. This layer operates by forwarding TCP/IP messages
between the Unix domain sockets of each of these end layers. Each of these
message is represented as a raw byte string, and is parsed by the receiving end
layer. The several message types available in the MSDV feature are discussed
throughout this section.

Model State Message. The model state message contains a serialized repre-
sentation of the entire current model state to be forwarded from the back-end
Möbius simulation processes to the front-end visualization interface. This mes-
sage contains both the values of all of the state variables and the contents of the
future event list.

Modify State Variable Message. The modify state variable message allows
the user to modify specified state variable primitive values. This message, which
is forwarded from the front-end visualization interface to the back-end simulation
processes, contains the unique index of the state variable under consideration,
the memory offset of the primitive value in the contiguous memory representing
the entire state variable value, the type of the primitive value to be modified,
and the new desired value of the state variable primitive value.
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Modify Future Event List Message The modify future event list message
allows the user to modify the firing time of an event in the future event list to
a simulation time in the interval t ≥ currentSimulationTime. This message
contains the index of the event in the future event list, and the new desired time
at which the event will fire.

Breakpoint Message. The breakpoint message allows the user to specify ex-
plicit breakpoint conditions for a running simulation. This message, which is
forwarded from the front-end visualization interface to the back-end Möbius
simulation processes, is specified as shown in the UML diagram in Figure 3. As
described in Section 3.3, breakpoints are logical combinations of simulation time
breakpoints, action breakpoints, and state variable breakpoints. Breakpoint mes-
sages can be imagined as serialized versions of a tree data structure containing
these breakpoint conditions. For example, consider the tree-like representation of
a breakpoint message in Figure 4. This breakpoint message representation speci-
fies that the simulation will pause when the simulation time reaches t = 4.25, the
condition that the value of sv1 < 7+ sv2 after the simulation reaches t = 3.1 is
false, or action[1] fires. Serialization of this tree-like representation results in
the message listed in Table 1. Such messages are then parsed and interpreted by
the back-end Möbius simulation process to determine when to pause the running
simulation.

Step Message. The step message allows a user to continue a simulation until
immediately after the next event in the future event list fires. This simple message
type, which is forwarded from the front-end visualization interface to the back-
end Möbius simulation processes, contains no additional parameters. Although
this message could be represented explicitly as a breakpoint message combining
all action fire events with the OR logical operator, this implicit message type
is simpler to use and requires less communication overhead to accomplish this
frequently useful operation.

Table 1. Breakpoint Message Example

Message Byte String

3 BPs 0x00 0x00 0x00 0x03

off[1] 0x00 0x00 0x00 0x09

off[2] 0x00 0x00 0x00 0x3a

ST 4.25 0x06 0x40 0x11 0x00 0x00 0x00 0x00 0x00 0x00

NOT 0x03 0x00

AND 0x04 0x00 0x00 0x00 0x00 0x09

ST 3.1 0x06 0x40 0x08 0xcc 0xcc 0xcc 0xcc 0xcc 0xcd

< 0x08 0x02 0x00 0x00 0x00 0x09

sv[2][5] 0x0c 0x01 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x05

+ 0x0a 0x00 0x00 0x00 0x00 0x09

7 0x0b 0x40 0x1c 0x00 0x00 0x00 0x00 0x00 0x00

sv[1][4] 0x0c 0x03 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x04

a[3].fire 0x07 0x00 0x00 0x00 0x00 0x02
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Fig. 3. Breakpoint Message Protocol UML

; ( Breakpo in tL i s t OR
( SimTimeBreakpoint 4 . 25 )
( UnaryOperator NOT

( BinaryOperator AND
( SimTimeBreakpoint 3 . 1 )
( S tat eVar iab l eBreakpo int <

( StateVar iab leValue shor t 1)
( ArithmeticOperator +

( L i t e ra lVa lue 7)
( StateVar iab leValue double 2)

)
)

)
)
( ActionBreakpoint OnFired 1)

; )

Fig. 4. Breakpoint Message Protocol OCL
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4.3 Front-End Visualization

As discussed in Section 3.5, the front-end visualization interface is designed to
replicate the interface of the specific modeling formalism used to create the
original model under consideration. For example, if the original model under
consideration was created using the SAN modeling formalism, then the MSDV
visualization interface should display the running simulation through the SAN
model elements of that original model. If the specific modeling formalism has
not yet been implemented in the MSDV tool, then the front-end visualization
interface should default to the visualization of its parent modeling formalism in
the Möbius modeling framework: AFI. In this section, we first discuss the front-
end visualization interface of the AFI modeling formalism. Then, we discuss the
implementation of the specific modeling formalism SAN to demonstrate how to
apply our design paradigm to additional specific modeling formalisms.

Abstract Functional Interface. The AFI, as described in Section 2, is a
network of state variables and actions that are connected by enabling and
affecting relationships. To simplify the representation of elements in the MSDV
tool, we define them through the UML diagram and the OCL specification in
Figures 5 and 6, respectively. In this representation, the visible elements include
the DefaultStateVariable, the CustomStateVariable, the TimedAction, the
InstantaneousAction, and the Arc elements. The StateVariable and Action

classes have been split into more specific elements to assist in the specific model-
ing formalism implementation process. The Arc elements represent the enabling
and affecting relationships between the source and target elements.

To provide useful visual feedback to the user, MSDV can expand an AFI
representation to an AFI debugging representation while retaining all infor-
mation from the parent AFI representation. In a debugging representation,
1) StateVariable classes contain the avgMark, minMark, and maxMark fields,
which respectively represent the average, minimum, and maximum mark val-
ues of the state variable primitive values in the simulation time interval t =
[0, currentSimulationTime]; 2) the AFIModel class contains the simTime field,
which represents the current simulation time, t; and 3) Action classes contain the
isEnabled, timeToFire, isNextToFire, wasLastToFire, and numTimesFired

fields. isEnabled indicates whether the action is enabled; timeToFire is the
simulation time t of the associated event in the future event list. isNextToFire
indicates whether the associated event is the first element in the future event list.
wasLastToFire indicates whether the associated event was the last to fire. Fi-
nally, numTimesFired is the number of times the action fired in the time interval
t = [0, currentSimulationTime]. In the corresponding visualization interface,
all of those fields are readonly, except for the mark field of the StateVariable
classes (for modifying state variable values) and the timeToFire field of the
Action classes (for modifying the event firing times of the future event list).

Stochastic Activity Network. The SAN visualization interface extends the
functionality of the AFI visualization interface to represent the data in the
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Fig. 5. AFI UML

context Arc inv : s ou rce . oclIsTypeOf ( S tat eVar iab l e ) <>
t a r g e t . oclIsTypeOf ( S tat eVar iab l e )

context Arc inv : s ou rce . oclIsTypeOf ( Action ) <>
t a r g e t . oclIsTypeOf ( Action )

context Defau l tS tat eVar iab l e inv : CanParseAsShort (mark )
context CustomStateVariable inv :

CanParseAs<customMarkType . toType ()>(mark )

Fig. 6. AFI OCL

form of the SAN elements of which the original model is composed. Specifi-
cally, the SAN visualization interface is composed of Place, ExtendedPlace,
TimedActivity, InstantaneousActivity, Arc, InputGate, and OutputGate el-
ements, the first five of which are directly inherited from the AFI
DefaultStateVariable, CustomStateVariable, TimedAction,
InstantaneousAction, and Arc elements, respectively. Although the last two
SAN elements, InputGate and OutputGate, affect the model during simulation,
they themselves are static elements that do not change during the simulation.
Therefore, they can be displayed to the user as static elements, allowing the
SAN visualization interface to rely on the AFI parent methods to perform the
majority of the necessary functionality.

In addition to representing the model state data as text, the SAN visualiza-
tion interface also includes the option to display each SAN model element as a
visual representation of its current contents. For example, the size of a Place

visual element is associated with the number of tokens currently contained by
the associated Place element, increasing as it gains more tokens. Also, each
Activity visual element is highlighted with a different color if it was the last
Activity to fire or will be the next Activity to fire.
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Fig. 7. SAN Model of an Attack on an AMI Meter

5 Case Study of an Attack on an AMI Network

To examine the utility of the additional functionality provided by the MSDV
tool, we explored a SAN representation of an attack on an Advanced Metering
Infrastructure (AMI) smart meter (Figure 7) [15]-[18]. In this model, each in-
trusion detection sensor (IDS) in the system is represented as a token residing
in either the WorkingSensors or BrokenSensors place, depending on whether
the given IDS is currently operational. Tokens alternate between the two states
through the Failure and Repair activities, which have exponential rates of 0.05
and 0.95, respectively. The SharedAttack place is initialized with a single token
that represents an attack on the AMI network. The token causes a race condi-
tion between the NoCoverage and Coverage activities, which indicate whether
the attack occured outside or inside the coverage area of the IDS network. If
the NoCoverage activity fires before the Coverage activity, then the attack to-
ken moves directly to the UndetectedAttack place, indicating that the attack
was not detected by the IDS network. If the Coverage activity fires before the
NoCoverage activity, then the attack token moves to the Attack place to be
evaluated by the IDS network. If the attack type is not recognizable to the IDS
network, then the attack token moves directly through the UncoveredAttack

instantaneous activity to the UndetectedAttack place. Otherwise, a race condi-
tion between the MissAttack and DetectAttack activities occurs; each of those
activities has an exponential distribution whose rate relies on the number of to-
kens currently in the WorkingSensors place. If the MissAttack activity occurs
first, signifying that the IDSs in the coverage area are currently broken, then
the attack token moves to the UndetectedAttack place. If the DetectAttack

activity occurs first, then the attack token moves to the DetectedAttack place,
indicating that the attack was detected by at least one of the operational IDSs.

First, consider the case in which the rate of the NoCoverage activity is sig-
nificantly higher than the rate of the Coverage activity. In that case, the attack
token will immediately move to the UndetectedAttack place in most simulation
batches, leaving the rest of the model unexplored. One way to move the token to
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( BinaryOperator AND
( ActionBreakpoint OnFired 5) ; MissAttack−>index=5
( SimTimeBreakpoint 3 . 0 )

)

Fig. 8. Case Study Breakpoint Example

the Attack place without changing the model, is to modify the event associated
with the Coverage activity so that it occurs before the event associated with the
NoCoverage activity in the future event list. That will force the token to move
from the SharedAttack place to the Attack place to allow the user to examine
the rest of the model.

Also, consider the case in which the modeler wants to quickly examine the
effects of different numbers of sensors without building a complete model for each
test. The modeler can send model state modification messages to the running
simulation to update the Attack place to contain multiple attacks, and to update
the WorkingSensors and BrokenSensors places to contain different numbers of
sensors. The user can then step through the simulation, updating the number of
sensors as desired.

For another example, imagine that the modeler would like to examine the
numbers of working and broken sensors when the MissAttack activity fires after
a certain threshold time t = 3.0. The modeler would simply define a breakpoint
composed of those two conditions, as shown in Figure 8. After the simulation
has run, it will continue until the breakpoint condition occurs, allowing the user
to examine the entire model state at that simulation time.

6 Conclusion

In this paper, we discuss the benefits of including debugging and visualization
capabilities within discrete-event simulations, instead of simply applying them to
the original model or final results. We also describe the specific implementation
of those capabilities that we enabled by expanding the Möbius discrete-event
simulator with the MSDV tool. After introducing the new tool, we describe its
usefulness in the context of attack detection in AMI networks.
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Abstract. Analyzing the scalability and quality of service of large scale
distributed systems, such as cloud based services, requires a systematic
benchmarking framework that is at least as scalable to sufficiently stress
the system under test. This paper summarizes Scalar, our distributed,
extensible load testing tool that can generate high request volumes us-
ing multiple coordinated nodes. It has support for communication and
synchronization between user threads, and built-in node monitoring to
detect resource bottlenecks in the benchmark framework deployment it-
self. Furthermore, it offers highly scalable results analysis that exploits
data locality and characterizes the overall system scalability in terms of
the Universal Scalability Law.

1 Introduction and Problem Statement

Over the last decade, both the scale of online systems and the degree to which
we depend on them has increased tremendously. This makes software qualities
such as availability, scalability and performance essential. However, as the scale
of a system increases in number of users and complexity, assessing its actual
capacity and future scalability potential becomes even harder. The problem is
twofold: We need to simulate ever more complex work flows while generating
large enough loads to sufficiently stress the system under test.

Workflows become more complex due to the user fulfilling more actions or fol-
lowing more involved business processes. They often also depend on the collab-
oration of multiple users, which requires inter-user communication and synchro-
nisation in the load generation and benchmarking platform. Similarly, complex
workflowsmight require out of band data processing and a high volume data stor-
age capacity. As the computational overhead increases, care must be taken that
the load generator itself does not become the bottleneck. This makes increasing
workflow complexity and generating sufficient loads a compound problem.

To solve the problem, the ideal scalability analysis tool would realise the
following requirements. First, it needs to explicitly support multiple concurrent
usage scenarios, and provide statistical breakdowns per scenario. Some distinct
usage scenarios are not independent, and users that execute one scenario depend
on the actions performed by users in another scenario. Therefore, second, the tool
should explicitly support inter user communication and data exchange. Third, as
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the complexity of interdependent usage scenarios and the number of simulated
users increase, the tools should also support synchronisation.

Scalability and performance are two crucial qualities for our ideal scalability
analysis tool. Clearly, in order to analyze large scale systems, scalability anal-
ysis tools should be highly scalable themselves. This includes both horizontal
scalability (i.e., deploying more instances in parallel), as well as vertical scala-
bility (i.e., extensibility by means of plug-ins). As load tests of the envisioned
distributed setups easily involve hundreds of thousands of requests per minute,
tools should support intelligent results processing that takes data locality into
account. When scaling up, care must be taken that the load generation itself is
performant enough to not become the bottleneck. To facilitate this, we would
need at least a warning mechanism when the tool cannot handle the required
load, a way to offload computationally intensive tasks, and a way to find how
far the tool can scale on the underlying hardware.

Many load testing tools exist, ranging from load tests embedded in integrated
development environments (such as Microsoft Visual Studio) to web testing
frameworks with support for distribution (such as The Grinder [1] and Apache
JMeter [2]). However, many are lacking inter-user communication and synchro-
nisation facilities, built-in analytics and bottleneck detection, or both. For in-
stance, JMeter has no inter machine communication facility, except for passing
static data in configuration files. And although it is fully extensible by means
of plug-ins, there is no default support for scalability analysis (e.g., by means
of applying the Universal Scalability Law [3]). Similarly, while The Grinder has
distributed agents that collate the data and send it back to the coordinator,
it does not offer default built-in support for scalability analysis. In the next
section, we document Scalar, a highly scalable distributed load generation and
benchmarking platform that is developed specifically to support these features.

2 Scalar Architecture

Scalar (https://distrinet.cs.kuleuven.be/software/scalar/) is a fully
distributed system implemented in Java, and consists of multiple individual,
collaborating Scalar instances. Scalar instances automatically discover others,
and perform master election. The master coordinates the start of an experiment
(i.e., a scalability analysis), which consists of a number of individual runs (i.e.,
single load tests). A run consists of a lower load warm-up phase, followed by a
gradual ramp up to full load, the peak load phase during which statistics are
collected, a ramp down phase, and finally another lower load cool down phase.
The master collates the results and publishes a scalability report consisting of
a quantification of the relative throughput of the system under test in function
of user load, as characterized by the Universal Scalability Law, and a statistical
breakdown of request residence times and their results.

Representative user behaviour against which the system is to be tested, is
encoded in one or more specific user and request types. The abstract User class
represents individual simulated users that follow a business flow which encodes

https://distrinet.cs.kuleuven.be/software/scalar/
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the anticipated way in which the system will be used. All scalability analysis
results are relative towards that behaviour. Inter-user communication is imple-
mented by means of the blackboard architectural pattern: There is one central
data repository, implemented by the DataProvider abstraction, which allows
user objects to store and retrieve arbitrary objects. The interface of a Dat-
aProvider is similar to that of a map. This abstraction allows for many flexible
data provider implementations to be used interchangeably. The default data
provider, HazelCastProvider, leverages the underlying HazelCast distributed in-
memory database [4], which allows inter-machine communication.

Synchronization is also built on top of the data provider abstraction. A data
provider offers both lock(key) and unlock(key) operations, which allows syn-
chronisation of both Scalar instances and user objects on specific key values; the
HazelcastProvider leverages the underlying distributed Hazelcast locking mech-
anisms. As the overall Scalar functionality (including master election, instance
discovery, experimental synchronization and results exchange) is built on top
of this abstraction, fine tuning the Scalar cluster behavior can be achieved by
selecting a correct underlying data provider implementation.

The overall functionality of the Scalar platform can be modified and extended
by means of plug-ins. A plug-in is notified of different system events via callback
methods: When it is loaded and destroyed, and when the different load testing
phases (i.e., warm-up, ramp up, peak load, ramp down, and cool down) take
place. This allows plug-ins to perform platform wide initialisation tasks, such as
populating the data provider with certain transactions to be executed, configur-
ing the server under test, etc. Similarly, plug-ins can clean up the platform state
in between different runs. Plug-ins can also be used to inspect requests—every
plug-in receives a call-back for every request that has been executed. This allows
plug-ins to perform real-time request analysis and reporting. Plug-ins can use
the underlying data providers to store results.

Scalar comes with a number of domain independent plug-ins, such as moni-
toring the underlying platform resources and visualising results in real time on a
web-based dashboard. The most important plug-in for large scale analyses is the
ExperimentalResultsPublisher, which handles distributed processing of request
data and quantifies the scalability of the system under test in two dimensions.
First, it calculates statistics per request type, and provides an overview of the
distribution of request type residence times. That allows experimenters to cal-
culate the residence time density function, which provides answers to questions
such as “How many requests were handled within 10ms?”. Second, the plug-in
computes the relative capacity of the system under test for various user loads,
and fits the relative capacity data to the Universal Scalability Law. That allows
experimenters to extrapolate how many users the system under test would be
able to handle under different circumstances. It additionally allows pinpointing of
the optimal load point, and provides a precise characterisation of the coherency
and serial fraction parameters of that system, as per [3]. Scalar exploits data
locality by making every node responsible for calculating aggregate statistics on
raw data, and only exchanging these aggregate values with the master node.
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3 Discussion and Conclusion

We have presented Scalar, a distributed platform for scalability analysis of large
distributed systems. The platform is developed specifically to support complex
workflows that involve both intra- and inter-machine communication and syn-
chronisation, and is fully extensible by means of plug-ins. Built-in functionality
includes monitoring of the underlying load generating platform, support for data
aggregation and analysis by means of the Universal Scalability Law, real-time
visualisation via a web based dashboard, and time synchronisation over NTP.

Scalar inherits the scalability of the underlying DataProvider system. In the
case of the HazelcastProvider, the underlying system is explicitly designed to
scale up to clusters of hundreds of nodes. However, in specialized contexts (e.g.,
a real-time or embedded domain), it is fairly straightforward to plug in a different
communication and synchronisation layer, as the dependency on Hazelcast is not
hard coded. Similarly, the distributed statistics aggregation enables longer, high
volume experiments involving many Scalar instances.

Scalability analysis is rife with pitfalls. The most common one is that the
bottleneck is not the system under test, but the load generation process itself.
In order to avoid this, Scalar comes with a number of built-in protection features.
First, the tool contains various domain independent test user implementations
that can be used to perform a scalability analysis of a Scalar deployment itself, to
detect problems early. Second, Scalar will automatically generate warnings when
scheduled requests exceed the inter-request waiting time (i.e., the ‘think time’)
by more than 5%. Experience shows that that is a good indicator for detecting
bottlenecks internal to the load generation process. Third, the tool comes with
built-in resource monitoring of the underlying platform.

Scalar has already been applied successfully to a number of in-house projects,
as well as commercial systems. We conclude that it is capable of characterizing
both the scalability and quality of service of complex, distributed services. Future
work involves automating the instantiation of Scalar for very large cloud-based
deployments. That would allow us to achieve scalability analysis as a service.

Acknowledgment. This research is partially funded by the Research Fund KU
Leuven.

References

1. Aston, P.: The Grinder, http://htmlunit.sourceforge.net/ (accessed March 6,
2014)

2. The Apache Software Foundation: Apache JMeter, http://jmeter.apache.org/

(accessed February 17, 2014)
3. Gunther, N.J.: Guerrilla capacity planning - a tactical approach to planning for

highly scalable applications and services. Springer (2007)
4. Hazelcast, Inc.: The Hazelcast Open Source In-Memory Data Grid,

http://www.hazelcast.org/ (accessed March 6, 2014)

http://htmlunit.sourceforge.net/
http://jmeter.apache.org/
http://www.hazelcast.org/


Non-intrusive Scalable Memory Access Tracer

Nobuyuki Ohba, Seiji Munetoh, Atsuya Okazaki, and Yasunao Katayama

IBM Research - Tokyo, Kawasaki 2120032, Japan
{ooba,munetoh,a2ya,yasunaok}@jp.ibm.com

Abstract. Memory access tracing is one of the widely used methods to
evaluate, analyze, and optimize hardware and software designs. We are
developing a non-intrusive, scalable, full-address-range memory tracer.
The tracer hardware board is compliant with the JEDEC DDR3 DIMM
form factor, and fits in a DIMM slot. It is so compact that we can
populate up to 16 tracer boards in a 4-CPU server chassis, and record the
commands and addresses of all the memory accesses. Each board drives
four SSDs to record the memory access addresses without a break until
the SSDs are full. For example, we can make a trace of a full SPECjbb
2005 run, which lasts 26 minutes and generates over 11TB trace data.
In addition to recording memory accesses, it collects various types of
statistical data, such as a large number of segmented read/write statistics
and DRAM bank utilization rates, and displays them on the control
dashboard in real time.

Keywords: memory trace, memory system, performance measurement.

1 Introduction

Memory access tracing has been widely used to analyze, evaluate, and optimize
memory systems [1]. Memory tracing by snooping DIMM signals was studied
by Ban et al. [2]. Many recent servers have two or more CPUs in a chassis, and
each CPU has multiple memory channels. It is important to capture all of the
memory accesses generated by all of the CPUs for the comprehensive analysis of
a memory system. In addition, the tracer should be non-intrusive and have no
affect on the target system.

Recently, memory systems using non-volatile memory devices have appeared
[3–5]. Non-volatile memory devices have advantages, such as lower per-bit costs,
space requirements, and power consumption, but they have different character-
istics than DRAM. Some of them need to be erased before they can be written.
Some have lower endurance than DRAM, and need wear-leveling. Some take
more time to write data. Therefore, it is important to understand how the mem-
ory system is accessed to make best use of the advantages of non-volatile memory.
More precisely, the access address, frequency, timing, and spatial/time locality
are essential information in designing memory systems. Although software simu-
lators that imitate CPUs and memory systems can be used for evaluations, they
are too slow to run practical benchmark programs that run longer than a few
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minutes on real machines. Trace data obtained by running real applications and
OSes on real servers are crucial to obtaining deep insight into memory systems.

We are developing a non-intrusive, scalable, full-address-range memory tracer
for comprehensive analyses of memory systems. This is one of the tools of a
memory system analyzer we are currently developing, as shown in Fig. 1. This
paper presents the hardware and software tools of the tracer.

Fig. 1. Conceptual view of the memory system analyzer

2 Hardware

To implement a non-intrusive, scalable, full-address-range memory tracer, we
focused on the ease of hardware installation and high link bandwidth from the
tracer board to external storage. The tracer hardware uses the JEDEC DDR3
DIMM form factor, and acts like a standard 16GB 1333MHz DDR3 memory
module. It consists of a base board and a power module, as shown in the left
side of Fig. 2. The base board has a Xilinx FPGA, 18 8-Gb DDR3 DRAMs, and
auxiliary components, such as crystal oscillators and an FPGA configuration
PROM. The power module, which is piggybacked on the base board, generates
all of the power lines for the FPGA and auxiliary components from the standard
1.5-V power supply available at the DIMM edge connector.

The FPGA on the board probes the DRAM command and address signals,
adds timestamps at the DDR clock resolution, and directly stores the trace data
to four SSDs via a custom-made flexible SATA cable. To sustain the SSD’s
maximum write speed, the trace data are always recorded sequentially in the
SSDs, which are configured using sector-level striping (RAID0). To minimize
the file management overhead, the set of trace data from each run is stored in
an individual partition managed by a GUID Partition Table (GPT) [6].
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Fig. 2. (a) Front and back views of the base board and power module, (b) Tracer board
with custom flexible cable

The board has an I2C port, with which we control the tracing operations,
such as starting or stopping traces. The I2C port is also used to collect real-time
statistical data. We can install up to 16 tracer boards in a 4-CPU server chassis,
and simultaneously start and stop the tracing operations by using broadcast
commands on the I2C bus. The maximum skew of the start and stop times
among 16 tracer boards is 20 x DDR clocks.

3 Software Tools

The tracer software tools are Control dashboard, Real time monitor, and Data
analyzer, as shown in Fig. 1. Control Dashboard is an HTML5 based GUI, with
which the user can start/stop the trace, monitor the status of the system (e.g.,
temperature and voltage), and manage the trace data stored in the SSDs. Real
time monitoring allows the user to see various statistical data, such as a large
number of segmented read/write statistics and the number of active DRAM
banks, in real time. Data analyzer is an off-line tool, which reads the trace data
stored in the SSDs and analyzes it. Fig. 3 is an example of the off-line analysis
results obtained by running SPECjbb [7] warehouse 8 on a 2-CPU CentOS-6.4
server with 112GB of memory. The figure shows the numbers of read and write
accesses per DRAM page on the first memory channel of the first CPU during
the 63 second run. In the figure there are several sharp peaks, which indicate
that the memory accesses have a great deal of time and spatial locality, and
therefore we have to track the wear of the memory cells if non-volatile memory
is used for the main memory.
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Fig. 3. Memory access counts per DRAM page

4 Summary and Future Work

We devised a memory tracer that allows us to capture full memory access traces
from real applications running on a real OS. We are collecting traces in various
situations and analyzing them for the design of future memory systems. The
integration of the tracer with conventional tools is continuing.

Acknowledgments. We would like to express our special thanks to Tadayuki
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Abstract. Formal modelling languages such as process algebras are
widespread and effective tools in computational modelling. However,
handling data and uncertainty in a statistically meaningful way is an
open problem in formal modelling, severely hampering the usefulness of
these elegant tools in many real world applications. Here we introduce
ProPPA, a process algebra which incorporates uncertainty in the model
description, allowing the use of Machine Learning techniques to incorpo-
rate observational information in the modelling. We define the semantics
of the language by introducing a quantitative generalisation of Constraint
Markov Chains. We present results from a prototype implementation of
the language, demonstrating its usefulness in performing inference in a
non-trivial example.

1 Introduction

Stochastic process algebras are an established tool for modelling and analysing
the behaviour of dynamical systems, combining theoretical elegance with a range
of attractive and practically useful features — compositionality, formal interpre-
tation of models and the ability to verify their behaviour using model-checking,
to list a few. The starting point for process algebras, as for many other formal
modelling methods, is a full specification of the system being modelled, both in
terms of interaction structure and of parameters quantifying the (infinitesimal)
dynamics of the system. It is increasingly clear, however, that such complete
knowledge is seldom achieved, and unattainable in a number of important appli-
cation domains. This problem is particularly acute in the biomedical field, where
parameters such as reaction rates are estimated from noisy measurements which
are often highly sensitive to the experimental conditions. How to quantify and
propagate this uncertainty in formal models is an open problem of fundamental
importance in any scientific application.

Constraining models from empirical observations is a very large and active re-
search field in machine learning and signal processing; however, these fields usu-
ally work directly with low-level mathematical descriptions of the system, which
negate some of the major advantages of formal languages. Within the process
algebra community, attempts to address this problem have mostly used greedy
optimisation methods — the Evolving Process Algebra framework ([17,18]), for
instance, uses evolutionary computation algorithms to fit the parameters and
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structure of a process algebra model. While this and similar approaches (further
discussed in Section 7) are valuable contributions, they do present practical and
conceptual limitations. First and foremost, the optimization methods used lack a
statistical framework, and hence cannot quantify the uncertainty associated with
their predictions. In general, optimisation methods return a single optimal value
of the parameters: this implies an assumption that measurements are sufficient
to completely remove uncertainty, clearly an untenable assumption. Secondly,
the learning and the modelling take place on separate levels, since the modelling
language itself does not really include the uncertainty about the system. Thus,
the model does not reflect our understanding, and inference is done in an ad
hoc manner, independently from the modelling. While this orthogonality may
appear attractive, it introduces a degree of conceptual dissonance between what
we try to capture and the way we represent it.

In this paper we aim to address these problems by introducing a formal mod-
elling language which directly incorporates observations (and the associated un-
certainty) and can leverage cutting-edge statistical machine learning tools to
perform inference and quantify uncertainty. We are inspired by recent progress
in probabilistic programming languages, which aim to perform inference by pro-
gramming; however, current probabilistic programming languages are all rela-
tively low-level. We introduce ProPPA, a Probabilistic Programming Process
Algebra; to our knowledge, this is the first time the probabilistic programming
paradigm is extended to a higher-level, formal system description language like
a process algebra. Note that the ability to perform inference from data qualita-
tively distinguishes our approach from general stochastic modelling methodolo-
gies such as stochastic process algebras, which simply incorporate uncertainty
in model evolution through the use of random variables to determine rates.

ProPPA is based on the stochastic process algebra Bio-PEPA [8], and inherits
many of its qualities. We show how to include uncertainty in the definition
of the language (Section 3), and propose an appropriate semantic model for
uncertain models (Sections 4 and 5). We adopt a modular approach to construct
our language, so that the core language is capable of adopting different machine
learning methodologies to perform inference from possibly very different types
of data. We demonstrate the power of this approach by performing inference in
a nontrivial example in Section 6.

2 Background

This section gives some information on the language on which ProPPA is based,
the frameworks and mathematical objects used for the definition of its semantics,
and the field of probabilistic programming from which we draw inspiration.

2.1 Process Algebras and Bio-PEPA

Process algebras are a family of languages first used to model concurrent systems,
by specifying the system’s components and the actions that these may perform.
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The formal nature of the languages allow one to reason about the behaviour of
the modelled system, such as verifying that undesirable states (configurations
of the system) are avoided or that simple properties hold. The sub-family of
stochastic process algebras (e.g. PEPA [15], IMC [14], EMPA [1]) extend this
framework by introducing time into the system and assuming that the time for a
transition to occur is an exponentially distributed random variable. The param-
eter of the distribution is called the rate of the transition, and, when multiple
transitions are possible, the probability of choosing a particular transition is
proportional to its rate. This is formalized through the concept of a Continuous
Time Markov Chain (CTMC), a mathematical description of the possible states
of the system and the transitions between them.

The description of a system in a process algebra can be used to implicitly
generate its state space, in the form of a labelled transition system (LTS). A
LTS is a graph whose nodes are the system’s states and whose edges are the
possible transitions between states, labelled with some information (e.g. what
reaction causes the transition or at what rate the transition occurs). Analysing
the LTS can give important insights into the behaviour of the system, such
as whether a state is reachable under certain conditions or within a specified
time frame. Verifying whether a system description satisfies such properties is
the subject of model checking algorithms and tools, with the properties to be
checked often being expressed in a temporal logic, such as CSL [2] or CTL [9].

Bio-PEPA [8] is a stochastic process algebra based on PEPA but designed for
the modelling of biological processes. In Bio-PEPA, system components (termed
species) are defined through their behaviour, that is, how they interact with each
other, reflecting a reagent-centric modelling style. The definition of a species
takes the form

A = (α1, k1)op1 + · · ·+ (αn, kn)opn where opi =↓, ↑,⊕,' or (

which means that species A takes part in reaction αi with stoichiometry ki.
The different options for opi correspond to different roles of A in αi: reactant,
product, catalyst, inhibitor or generic modifier, respectively. These definitions
are composed using the choice operator (+) to describe species that can take
part in multiple reactions.

Each reaction has an associated rate law, which can be specified either as a for-
mula or using a predefined law (such as mass-action or Hill kinetics). Parameters
can be defined and used, for example, in kinetic laws or as initial concentrations,
but their values must be specified and are considered fixed. The language results
in a modular or compositional approach, wherein the behaviour of the system
emerges as a direct consequence of the behaviour of the species (without the
need to, for instance, explicitly write out ODEs or chemical equations for reac-
tions, as they can be automatically computed). This means modifications to the
model can be performed by changes to the “local” species definitions.

Formally, a Bio-PEPA system is defined as a tuple 〈V ,N ,K,FR, Comp, P 〉,
where V is the set of compartments (locations) in the system; N is a set of quan-
tities associated with each species, such as its maximum concentration; K is the
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set of parameters; FR is the set of rate laws; Comp is the set of sequential com-
ponents (species definitions); and P is the model component, which describes
how the various species cooperate with each other as well as their initial concen-
trations. An example of a model component comprising three species Ai with
initial quantities li is

A1[l1] ��∗ A2[l2] ��∗ A3[l3]

2.2 FuTS

The FuTS (state-to-function transition system) framework [20] is a way of de-
scribing semantics of process algebras. In a FuTS, the possible transitions from

a state s can be represented collectively as s
α

)→ f , where f is called the con-
tinuation and is a function over states. The value of f(s′) then gives some in-

formation (such as the rate) about the transition s
α−→ s′. Depending on the

codomain of the continuation functions, FuTS can represent different kinds of
behaviour and their associated information, such as non-determinism (continu-
ations take boolean values to denote possible next states), discrete time systems
(values in [0, 1] give transition probabilities) or continuous time systems (values
in R to denote transition rates). The notation [s1 �→ v1, s2 �→ v2, . . . , sn �→ vn]
is shorthand for a function f such that f(si) = vi, i = 1 . . . n and f(s) takes
the zero value of its codomain (0 for real values, false for boolean etc.) for all
states besides the specified si. As ProPPA represents uncertainty using proba-
bility distributions, the FuTS style, which already makes use of functions, seems
a natural fit for expressing its semantics.

2.3 Constraint Markov Chains

Constraint Markov Chains (CMCs, [6]) are a generalisation of Discrete Time
Markov Chains in which the probability of transitioning from a given state to
another does not have a fixed value. Instead, the CMC specifies a constraint
that the values of the various transition probabilities must obey or, equivalently,
a set of acceptable values for them. Formally, a Constraint Markov Chain is a
tuple 〈S, o, A, V, φ〉, where:

– S is the set of states, of cardinality k.
– o ∈ S is the initial state.
– A is a set of atomic propositions.

– V : S → 22
A

gives a set of acceptable labellings for each state.
– φ : S × [0, 1]

k → {0, 1} is the constraint function.

The constraint function indicates whether a given set of transition probabilities
satisfies the constraints: φ(i, r) = 1 if and only if r = (r1, r2, . . . , rk) is an
acceptable vector of transition rates from state i.

As explained in [24], there are two ways of interpreting the uncertainty in the
transition probabilities, which give rise to different behaviours when simulating a
CMC. One way is to assume that the transition probabilities can change during
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the run of the system, so that each time we visit a state we must choose new
values for them. This is referred to as Markov Decision Process (MDP) semantics.
Alternatively, under the Uncertain Markov Chain (UMC) semantics, we assume
that each probability has a constant (but unknown) value. In this case, the values
are fixed before the simulation and maintained throughout.

2.4 Probabilistic Programming

Probabilistic programming is a framework for reasoning about uncertain pro-
cesses in a statistically consistent manner. In a probabilistic program, uncertain
aspects of the system, such as unknown parameters, are treated as random vari-
ables and can be assigned probability distributions that express this uncertainty.
Additionally, one can specify observations of the system, from which informa-
tion about the unobserved aspects can be gleaned. In other words, the program
specifies a probability distribution, which can be viewed in two ways: one can
sample from it, essentially simulating the system; or, if one has additional in-
formation about the system, one can condition the distribution on this data,
inferring an updated distribution over the unknown variables that takes into ac-
count this new knowledge. Probabilistic programming offers an elegant approach
for treating uncertain systems in these two ways, automating the process to a
degree and eliminating the need for bespoke inference solutions, as the inference
algorithm can be configured and executed automatically based on the structure
of the program.

Previous work has focused mainly on integrating the paradigm into traditional
programming languages, giving rise to frameworks like Church [13], IBAL [21]
and Infer.NET [19]. These languages, however, describe systems at a low level:
one must explicitly specify all the statistical dependences between the different
variables, yielding potentially large descriptions which are difficult to manage.
This limits the range of systems that can be modelled, with continuous-time
dynamical systems being particularly hard or even impossible to deal with. We
therefore advocate combining the principle of probabilistic programming with
a formal language like a process algebra, for a flexible, high-level framework in
which to model and analyse complex systems with uncertain aspects.

3 A Probabilistic Programming Process Algebra

The ProPPA syntax is based on Bio-PEPA, with the addition of two key fea-
tures that introduce aspects of probabilistic programming. The first concerns the
representation of uncertainty in the system. We should note that we are only
considering uncertainty in the kinetics, and assume that we fully know what
reactions each species can take part in. In Bio-PEPA, parameters can be used in
the definition of kinetic rate functions, but their values must be fixed. With this
in mind, we allow uncertain parameters, whose values are given as probability
distributions rather than concrete numbers. The second feature is a way of incor-
porating information about the behaviour of the system into the model. These
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will be the observations, which may take the form of actual partial observations
of the state of the system (as a time series) or, more generally, could be any
observed function of the specific trajectory of the system (specified through a
temporal logic formula, for instance).

On a formal level, we will need to modify the definition of a Bio-PEPA sys-
tem (given previously in Section 2.1), mainly by reconsidering the role of the set
of parameters K. We extend the system definition in two ways, corresponding
to the two features described above. Firstly, since the uncertain quantities are
represented as parameters in the model, we extend the definition of a parameter
to include a distribution rather than a concrete value. These are the prior distri-
butions or priors over parameters, which express our belief about a parameter’s
values before seeing any data. The set of parameters K is then partitioned into
two subsets: Kc comprises the concrete parameters, while Ku contains the un-
certain ones, along with the priors associated with them. We write (k ∼ μ) ∈ Ku

if the parameter k is drawn a priori from the distribution μ. Importantly, the
functional rates FR can refer to any parameter in Ku as well as those in Kc; in
this sense, a functional rate can represent a family of functions.

Secondly, we add a new component O representing the observations. These
impose restrictions on the acceptable parameter values and modify our belief
about their distribution, as described in more detail in Section 5.4. Extending
the syntax to accommodate these features is straightforward. A ProPPA system
is therefore a tuple 〈V ,N ,Kc,Ku,FR,O, Comp, P 〉, with the other components
retaining the meaning they have in Bio-PEPA. Following the terminology of [11],
we will also write a system as 〈T , P 〉 where T = 〈V ,N ,Kc,Ku,FR,O, Comp〉 is
called the context.

3.1 A Rumour Spreading Example

As an example of a ProPPA model, we will consider a population CTMC model
of rumour spreading over a network [10]; this consists of three types of agents
(Figure 1). A spreader (S) is someone who has already encountered the rumour
and is actively trying to spread it. When an ignorant (I) meets a spreader, the
ignorant also becomes a spreader. When two spreaders meet, one of them stops
spreading and becomes a blocker (R), reflecting the idea that only new rumours
are worth spreading. A blocker can then convert spreaders into other blockers.
The dynamics of the system can exhibit qualitatively different behaviours de-
pending on the parameter values: in particular, two possible steady state regimes
exist, where all agents are in blocker state, or where a blocker and an ignorant
population coexist.

I RSI S S

R

Fig. 1. State transitions of a rumour-spreading agent. The arrow labels indicate the
type of agent that must be encountered for the corresponding transition to take place.
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k_s = Uniform(0,1);1

k_r = Uniform(0,1);2

3

kineticLawOf spread : k_s * I * S;4

kineticLawOf stop1 : k_r * S * S;5

kineticLawOf stop2 : k_r * S * R;6

7

I = (spread,1) ↓ ;8

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;9

R = (stop1,1) ↑ + (stop2,1) ↑ ;10

11

I[10] ��∗ S[5] ��∗ R[0]12

13

observe(’trace’)14

infer(’ABC’)15

Fig. 2. ProPPA model of the rumour spreading example

Figure 2 shows the description of the system in ProPPA for an initial popula-
tion of 15 agents. The behaviour of the different agents is described in lines 8-10:
line 8 says that the count of ignorants is decreased by 1 when the spread interac-
tion occurs, and the other types of agents are similarly defined by the changes to
their count through the various interactions. Line 12 shows the initial population
of each kind of agent; the cooperation ��∗ means that the agents synchronise
on all shared reactions. We assume that these interactions happen at rates that
obey mass-action kinetics, i.e. they are proportional to the count of the agents
involved. We also assume that the rate constants for the spreader-spreader and
spreader-blocker interactions are the same (kr), while the spreader-ignorant in-
teraction has a rate constant ks; this is shown in lines 4-6. The definition of ks
and kr as uniformly distributed (lines 1-2) reflects our prior belief that, without
seeing any data, they are not biased towards any value in their domain, which
in this case we chose to be [0, 1]. We will use this model as a running example
for the rest of this paper; lines 14-15 are discussed in Section 5.4.

4 Probabilistic Constraint Markov Chains

As mentioned earlier, Bio-PEPAmodels can be mapped to CTMCs. In a CTMC,
every transition between states has a concrete rate, making this interpretation
unsuitable for a language with uncertainty, such as ProPPA. We must therefore
use a different object to define the semantics of our language, one that is more
suited to describing uncertain models, such as a CMC.

The way CMCs were first proposed (shown in Section 2.3) presents two limita-
tions. Firstly, they have been defined only for discrete-time systems, whereas we
are interested in modelling in continuous time. Their definition can be adapted
to the continuous-time domain through simple alterations which are presented
below. Secondly, while a CMC defines the set of possible values for a rate, it
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gives no information on the relative likelihood of those values. We would like to
move from a purely non-deterministic to a probabilistic setting, where, instead
of a binary decision, we have quantitative information about our belief in the
plausibility of a value.

Based on the original definition, we can define a Probabilistic Constraint
Markov Chain as a tuple 〈S, o, A, V, φ〉, where:

– S is the set of states, of cardinality k.
– o ∈ S is the initial state.
– A is a set of atomic propositions.

– V : S → 22
A

gives a set of acceptable labellings for each state.
– φ : S × [0,∞)

k → [0,∞) is the constraint function.

The changes concern the constraint function and address the limitations de-
scribed. The constraints are now on rates rather than transition probabilities,
reflecting the shift to continuous time. Additionally, φ now describes a proba-
bility density function, therefore it takes values in R+ instead of {0, 1}, with
the additional restriction that

∫∞
0

· · ·
∫∞
0

φ(i, r)dr = 1 for every i ∈ {1, k}. The
resulting object is richer, and the additional information it can capture means
we can use Probabilistic CMCs to define the semantics of ProPPA models, as
explained in the next section.

5 ProPPA Semantics

We now describe the semantics of a ProPPA model, eventually mapping to a
Probabilistic CMC. The semantics of Bio-PEPA are given in terms of two re-
lations. The capability relation describes what transitions may occur between
states, without giving any quantitative information about the rates — in other
words, it gives the structure of the transition system. The stochastic relation uses
that information, as well as the definition of the kinetic functions, to provide the
rates of the transitions, thus completing the labelling of the transition system.

We have kept this two-step approach, and have in fact found the separation of
the two steps to be useful for our extension. Since there is no uncertainty in the
qualitative behaviour of the species, the capability relation remains unchanged
by our additions. We present both the existing capability and the new stochastic
relation in a uniform way using the FuTS framework.

5.1 Capability Relation

To consider the capability relation as a FuTS, we use boolean-valued continu-

ations: P
l

)→c f means that P can transition to those states Q for which f(Q)
is true. For simple terms, there is at most one reachable state for any reaction,
as described by the rules below, where op is one of the modifier operators ⊕, '
and (, and N is the maximum count for the species S:
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PrefixReac (a, k) ↓ S(l)
(a,[S:↓(l,k)])
−−−−−−−→c [S(l − k) �→ true ] k ≤ l ≤ N

PrefixProd (a, k) ↑ S(l)
(a,[S:↑(l,k)])
−−−−−−−→c [S(l + k) �→ true ] 0 ≤ l ≤ N − k

PrefixMod (a, k) op S(l)
(a,[S:op(l,k)])
−−−−−−−−→c [S(l) �→ true ]

{
k < l ≤ N if op = ⊕
k ≤ l ≤ N otherwise

The label (α,w) records two kinds of information: α is the reaction name,
while w is a list of roles, indicating how a species takes part in a reaction,
with what stoichiometry and at what initial count. The rules for the choice and
cooperation operators are simple:

P1

(a,w)
−−→c f

Choice1

P1 + P2

(a,w)
−−→c f

P2

(a,w)
−−→c f

Choice2

P1 + P2

(a,w)
−−→c f

P1

(a,w)
−−→c f1 a /∈ L

Coop1

P1 ��L P2

(a,w)
−−→c g1

P2

(a,w)
−−→c f2 a /∈ L

Coop2

P1 ��L P2

(a,w)
−−→c g2

P1

(a,w1)−−−→c f1 P2

(a,w2)−−−→c f2 a ∈ L
Coop3

P1 ��L P2

(a,w1::w2)−−−−−−→c g

where :: indicates concatenation of lists and we make the usual distinction ac-
cording to whether the reaction in question is shared between the cooperating
components. The functions g1, g2 and g are as follows:

g1(Q) =

{
f1(Q1) if Q = Q1 ��L P2

false otherwise
g2(Q) =

{
f2(Q2) if Q = P1 ��L Q2

false otherwise

g1(Q) =

{
f1(Q1) ∧ f2(Q2) if Q = Q1 ��L Q2

false otherwise

Finally, for completeness, we have a rule for named species definition:

P
(a,w)
−−→c f Q

def
= P

Constant

Q
(a,w[P→Q])
−−−−−−−→c f

where w[P → Q] means renaming all instances of P in w to Q.
For example, in the rumour-spreading network (Figure 2), we have that

S(2)
(stop2,[S:↓(2,1)])
)−−−−−−−−−−→c [S(1) �→ true] and R(1)

(stop2,[R:↑(1,1)])
)−−−−−−−−−−→c [R(2) �→ true]

from the prefix rules. By applying the cooperation rules, we can infer that

I(0)��∗ S(2)��∗ R(1)
(stop2,w)
)−−−−−→c

[
I(0)��∗ S(1)��∗ R(2) �→ true

]
where w = [S :↓ (2, 1), R :↑ (1, 1)].



258 A. Georgoulas et al.

5.2 Stochastic Relation

The capability relation is defined, as above, between species. The stochastic
relation, in contrast, is between whole systems and gives information on the rate
of transitioning from one system to another. In Bio-PEPA, the reaction rates
depend on the model’s parameters, and this dependence is also true in ProPPA.
This means that any uncertainty about the values of the parameters must lead
to uncertainty about the rates. The ProPPA stochastic relation, therefore, gives
a distribution over possible rates instead of a single value. If all the parameters
on which a particular rate depends are concrete, this will simply be a Dirac δ
distribution, i.e. one where all the probability mass is assigned to a single value.

When building the stochastic relation, we use both the capability relation,
which indicates if a state is reachable, as well as the system’s context T (see
Section 3), which holds information related to the reaction rates. The context
provides two pieces of information we require: the kinetic law for the reaction,
and the distribution of the uncertain parameters involved in that law. As the
rate normally depends on the concentrations of the species involved, we also need
this information, which is contained in the roles w, in the label of the capability
relation. The stochastic relation is defined by the rule:

P
(a,w)
−−→c g

〈T , P 〉
a

→s hg,w,T

As described above, the function h maps systems to distributions of rates:

hg,w,T (〈T ′, s′〉) =

⎧⎪⎨⎪⎩
δ(0) if T ′ �= T
δ(0) if g(s′) = false

μ otherwise

According to this, transitions to systems with a different context or where the
species is not reachable can only occur at zero rate, i.e. never. We now show how
to derive the distribution over rates (μ above) in the non-trivial cases.

Assume the rate Y of a reaction depends on a parameter Θ and let Y = T (Θ)
express this dependence. We know, from the context, that Θ is distributed ac-
cording to a probability density function (pdf) fΘ. Y , being a transformation of
Θ, will also follow a distribution, whose pdf we denote fY . If the function T is
strictly monotonic, fY can be obtained through a simple change of variable:

fY (y) =

∣∣∣∣dT−1(Y )

dY

∣∣∣∣
Y =y

fΘ(T
−1(y)) (1)

where T−1(y) is the (unique) value of the parameter Θ for which the rate is y.
To see why this is valid, let us first consider the case where T is strictly

increasing, which implies that the inverse function T−1 is well-defined and is
also increasing. The cumulative distribution function of Y is then:

FY (y) = P (Y ≤ y) = P (T (Θ) ≤ y) = P
(
Θ ≤ T−1(y)

)
= FΘ

(
T−1(y)

)
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and the corresponding pdf is:

fY (y) =
dFY (y)

dY

∣∣∣∣
Y=y

=
dFΘ

(
T−1(Y )

)
dY

∣∣∣∣∣
Y=y

= fΘ
(
T−1(y)

) dT−1(Y )

dY

∣∣∣∣
Y =y

Considering the case where T is decreasing leads to the general result (1).
Once the stochastic relation has been constructed, it is then easy to build

a Probabilistic CMC that captures its behaviour by appropriately defining the
constraint function. To do so, we need the probability density of a vector of
rates, which can be obtained as the product of the densities for each individual
rate. The latter are given directly by the stochastic relation. Note that there can
be more than one reaction that leads to the same transition in the state space;
the total transition rate is then the sum of the rates of the individual reactions,
and the pdf of the sum of random variables is the convolution of their individual
pdfs. For a system with k states, then, the constraint function φ over the rates
rij of transitioning from state i to state j is given by:

φ(i, (ri1, ri2, . . . , rik)) =

k∏
j=1

fj(rij)

where 〈T , i〉
α

)→s fα and fj =
⊗

α fα(〈T , j〉) is the convolution described above.

5.3 Concretization

We now describe how the choice of UMC or MDP interpretation (discussed in
Section 2.3) affects the behaviour of the system. Essentially, in the UMC setting
we replace the prior distribution over each parameter with a Dirac δ distribution,
to reflect the fact that a value is chosen only once and remains fixed thereafter.
First we note that the concretization procedure only affects the context of a
system, so the corresponding transition relation will have the form T )→ gx(T ),
where T is a context (as before) and x can be umc or mdp. The corresponding
continuation functions for each scenario are defined as:

gumc(〈V ,N ,Kc,Ku,FR,O, Comp〉)(T ′) =⎧⎨⎩
∏
i

fi(vi) if T ′ = 〈V ,N ,Kc, {ki ∼ δ(vi)},FR,O, Comp〉

0 otherwise

and

gmdp(T )(T ′) =

{
1 if T ′ = T
0 otherwise
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5.4 Observations and Inference

We have shown (Section 5.2) how the prior beliefs about the parameters in-
duce a distribution over rates, but we have so far assumed that no observations
are present. Observations represent new information which can affect our belief
about how likely different values are. Inference can then be thought of as a trans-
formation of the context, which takes the observations into account and updates
the distributions of the uncertain parameters accordingly. From a probabilistic
point of view, this corresponds to conditioning the prior distribution P (θ) on
the observed data D, obtaining the posterior distribution P (θ | D). The relation
between these quantities is given by Bayes’ Theorem:

P (θ | D) ∝ P (θ)P (D | θ)

where P (D | θ) is the likelihood of the data, a measure of how likely we are to
see these observations for a particular assignment of values to the parameters.

This view does not give any information on how to perform inference, however.
Indeed, it is generally not possible to calculate the likelihood or the posterior
analytically, so approximations must be used. The specification of the language
allows for some freedom in the inference implementation; this approach creates
a modular framework that can employ different algorithms, some examples of
which are given in the next section. The choice may depend in part on the type
of observations available, and here we focus on two possible ways of specifying
those: a time-series of measurements of the species in the system, or a set of
temporal logic formulae, which describe properties of the system’s behaviour. A
statement of the form infer(algorithm) in the model sets the desired inference
algorithm.

In line 14 of Figure 2, the observe statement refers to an external file which
holds our observations of the system. Line 15 specifies what inference algorithm
will be used.

6 Inference

In this section, we illustrate the capabilities of the language by showing some
ways we can perform inference on the model of Figure 2.

6.1 Inference from Time-Series Observations

We first assume that our observations are measurements of the species at dif-
ferent times during a run of the system. We can use an Approximate Bayesian
Computation (ABC) [25] algorithm that takes into account both the prior be-
liefs and the data to obtain the posterior distribution over parameter values.
ABC provides an efficient way of exploring the parameter space and keeping
those values which better fit the data, and is particularly useful in cases where
the likelihood is unknown or intractable to calculate. The algorithm returns an
approximation to the posterior distribution as a (multi)set of parameter samples.
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Fig. 3. Results from the two inference methods: (a) accepted samples after running
ABC; (b) contours of the Laplace approximation of the posterior when using formulae
as inputs (the outer ring corresponds to the 98th quantile). The dots show the true
values.

For this experiment, we simulated the system with ks = 0.5, kr = 0.1, and used
ten points from the resulting trajectory as the input time-series. We gathered
100,000 parameter samples using ABC in approximately 20 seconds, plotted in
Figure 3a. We can see the distribution of kr is centred on its true value. It is also
narrower than that of ks, indicating that the behaviour of the system is not as
sensitive to the latter. Simulating the system for values of ks in [0.3, 1.0] shows
that its behaviour does not change much in this range, validating our results.
Even with this wide variance, however, the posterior differs from the prior in
that it assigns little or no probability to values of ks under 0.3, which produce
significantly different behaviour to the one in the input observations.

6.2 Inference from Specification

We now examine the possibility of inference from specification in the form of
logical constraints, rather than quantitative observations in the form of time-
series. In many cases detailed quantitative information is not readily available,
whereas we have an idea of how the model should behave with respect to certain
properties. We follow the framework of Bortolussi & Sanguinetti [4], in which
observations are satisfaction values of formulae specified in a suitable temporal
logic (e.g. MiTL). This method yields an estimate for the parameter value that
optimises the posterior distribution (Section 5.4); we can then use this to ap-
proximate the whole posterior with a Gaussian distribution by employing the
Laplace approximation.

We have considered the following three properties, expressed in MiTL:

– G[3,5](I > 0): There are still ignorants at all time points between time 3 and
5, i.e. the rumour has not reached everyone in the population.
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– G[0.5,1](R ≥ S): Between time 0.5 and 1, the blockers are always more than
the spreaders.

– (F[0,1](S ≥ 7.5))∧ (G[1,2](S ≤ 3.75)): The proportion of spreaders reaches or
exceeds 50% of the population before time 1, and between time 1 and 2 the
spreaders are always less than or equal to 25% of the population.

In order to produce the input specification data, we simulated the system 100
times after fixing ks = 0.5, kr = 0.1 as previously. After running the optimisation
algorithm using this input and the priors from the model, we obtained estimates
of 0.5236 and 0.1098 for ks and kr respectively. Figure 3b depicts the contours
of the posterior Gaussian distribution over the parameters, given via Laplace
approximation. Similarly to the previous section, the model appears to be less
sensitive to ks compared to kr. This is reflected in their standard deviations, as
given by the Laplace approximation; these are 0.0288 and 0.0199 respectively,
meaning that the approximate distribution captures the increased uncertainty
regarding ks.

7 Related Work

Some previous work has explored parameter estimation methods for formal mod-
els. The Evolving Process Algebra [17] framework uses genetic algorithms to
find parametrizations of models written in the PEPA language, such that the
behaviour of the model matches an observed time-series. It has been further ap-
plied to optimising the structure of Bio-PEPA models, going beyond parameter
search [18]. The work in [23] deals with parameter estimation for the Calculus
of Wrapped Components, employing a different search algorithm. The problem
has also been considered in the case of BIOCHAM in [7], where the space of
possible parameters is searched exhaustively to find values giving a good fit.

The somewhat related problem of reasoning about the behaviour of incom-
pletely specified process algebra models, rather than inferring their parameters,
is dealt with in [3]. Brim et al. [5] propose a method of approximating quanti-
tative model checking results over an entire parameter space as an alternative
to parameter estimation. Although not directly relevant to inference, the work
in [16] is another example of combining machine learning with formal modelling,
presenting a Bayesian approach to statistical model checking.

With regards to probabilistic programming, as mentioned previously, lan-
guages like Church [13], IBAL [21] and Infer.NET [19] are not particularly suited
to modelling complex dynamical systems. A language for describing continuous-
time systems has been proposed in [22], but still lacks the formal features of
a process algebra. An initial attempt to apply probabilistic programming to
continuous-time models of biological systems also used a lower-level description
language [12].

8 Conclusions

We have presented a process algebra that incorporates elements of probabilistic
programming, the first such attempt at combining the two fields. This approach
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integrates uncertainty and observations into the system description, allowing us
to model systems for which we have incomplete knowledge and giving us access
to techniques from machine learning for inferring the unknown parameters.

The new features, while affecting the syntax of the language only minimally,
significantly extend its expressivity. Additionally, our system is modular and flex-
ible in the choice of inference algorithm. The application of two such algorithms
on an example gives promising results for the effectiveness of our approach.

An interesting question for future work is whether the observations can be
further integrated into the semantics of the language — for instance, whether
the specification of a system can let us reject some transitions when building
the underlying transition system. We are also interested in examining other
benefits afforded by the use of a formal language, such as the description of
equivalences and how they can be adapted to this probabilistic programming-
like setting. Furthermore, we plan to explore more inference algorithms and test
our framework on larger systems.
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Abstract. We present a novel stochastic process algebra that allows the
expression of models representing systems comprised of populations of
agents distributed over space, where the relative positions of agents influ-
ence their interaction. This language, PALOMA, is given both discrete and
continuous semantics and it captures multi-class, multi-message Marko-
vian agent models (M2MAM). Here we present the definition of the lan-
guage and both forms of semantics, and demonstrate the use of the
language to model a flu epidemic under various quarantine regimes.

1 Introduction

Collective systems, comprised of many communicating entities and without cen-
tralised control, are becoming pervasive. Without any global knowledge, entities
interact locally to create a system with discernible characteristics at the global
level; a phenomenon sometimes termed emergence.

The notion of locality has spatial relationship implicit within it, and thus
to faithfully capture these systems we have to be able to represent the spatial
arrangement of entities and the constraints that this places on their commu-
nication. For example, interactions may only be allowed for entities which are
co-located or within a certain physical distance of each other, or space may be
segmented in such a way that even physically close entities are unable to com-
municate. Furthermore movement can be a crucial aspect of the behaviour of
entities within the system. Therefore it becomes essential to develop modelling
formalisms in which space is captured explicitly, and in which the same entity in
different locations can be distinguished. Meanwhile, given the scale of collective
systems, which often rely on large populations of entities in order to meet their
objectives, we must also find efficient mechanisms both to express and to analyse
the developed models.

Multi-class Multi-message Markovian Agents Models (M2MAM) have recently
been proposed by Cerrotti et al. as a suitable framework for modelling collective
systems comprised of populations of agents which are spatially distributed [1].
Several case studies [2–4] demonstrated that this is a powerful and useful frame-
work. However the model specification is in terms of matrices which capture the
possible interactions and influences between agents. This form of specification
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is highly demanding on the modeller and prone to error. In this paper we pro-
pose a process algebra to capture models within the M2MAM framework and
circumvent the rather cumbersome matrix specification. The process algebra,
PALOMA, is equipped with both discrete event and differential semantics. This
high-level specification is human-readable, less error-prone, amenable to auto-
mated checking and supports automated derivation of the executable models
defined by the semantics. More specifically, the discrete semantics provides the
theoretical foundation for discrete event simulation whilst the differential se-
mantics allows us to automatically derive the matrices, and thus the underlying
mean-field model of the M2MAM in the form of initial value problems.

The paper is structured as follows. We briefly introduce the concepts of
M2MAMs in the next section. Section 3 presents the syntax and discrete se-
mantics of PALOMA. This is followed by the differential semantics in Section 4.
In Section 5, a case study in which we apply PALOMA to the modelling of the
spread of flu in a multi-community society is presented. Finally, Sections 6 and
7 discuss related work, future research and draw final conclusions.

2 M2MAM

In this section, we briefly introduce the key concepts of M2MAMs, originally
presented by Cerrotti et al. in [1]. M2MAMs consist of a collection of Markov
agents (MAs) distributed over space, which is represented by a finite set of
locations. Each MA has a location attribute and can be denoted by a finite
state machine in which two types of transitions can happen: local transitions
and induced transitions. Local transitions occur whenever the MA changes its
state spontaneously with a delay governed by an exponential distribution. Local
transitions can also possibly emit messages that can cause the occurrence of
induced transitions in MAs at the same or other locations. This enables location-
based asynchronous interaction between MAs. The reception of a message is
governed by the perception function, which depends on both the location and
state of the sender and receiver MAs. When a MA receives a message, it can
either ignore or accept it. In the latter case, the agent will change its state
immediately by performing an induced transition.

Following [1], we use MAc(�) to denote a MA of class c in location �. A MAc(�)
can be defined as a tuple {Qc(�), Λc(�), Gc(�,m), Ac(�,m), πc

0(�)}, in which:

– Qc(�) = [qcij(�)] is a nc×nc matrix, in which each element qcij(�) represents the

rate of the local transition from state i to state j, with qcii(�) = −
∑nc

j �=i q
c
ij(�)

where nc is the number of states of a MA of class c.
– Λc(�) = [λc

i (�)] is a vector, in which each element λc
i (�) denotes the rate of a

self-jump transition which reenters the same state i, for a MA of class c.
– Gc(�,m) = [gcij(�,m)] is a nc × nc matrix in which each element gcij(�,m)

describes the probability of MAc(�) generating a message of type m during
a local transition from state i to state j.

– Ac(�,m) = [acij(�,m)] is a nc×nc matrix, in which each element acij(�,m) (i �=
j) describes the acceptance probability of message type m for the MAc(�),
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with induced transition from state i to state j whereas acii(�,m) denotes the
probability of dropping this message, and acii(�,m) = 1 −

∑
j �=i a

c
ij(�,m).

– πc
0(�) is the initial state probability distribution of an agent of class c in

location �.

2.1 Model Analysis

The density of agents of class c in state i, in location � at time t is denoted
pci(�, t). In M2MAMs, the density of agents of each class in a location is assumed
to remain constant, i.e. the value of

∑nc

i=1 p
c
i (�, t) = P c(�) is invariant. We use

a vector pc(�, t) = [pci(�, t)] to denote the state density distribution of agents
of class c in location � and at time t. The analysis of interest is the transient
evolution of pc(�, t). It can be computed by solving a set of coupled ODEs.

First of all, the total rate at which messages of type m are generated by a
MA of class c in state j and location � can be computed by:

βc
j (�,m) = λc

j(�)g
c
jj(�,m) +

∑
k �=j

qcjk(�)g
c
jk(�,m) (1)

where the first term on the right hand side of the above equation gives the rate
at which messages of type m are generated by the MA in state j by a self-jump
transition, whereas the second term denotes the rate of message generation by
the MA during a local transition from state j to another state.

With βc
j (�,m), we can compute γc

ii(�,m, t), the total reception rate of messages
of type m by a MA of class c in state i and location �, at time t. The rate
γc
ii(�,m, t) is contributed to by all the messages of type m generated by MAs of

all classes in all states and all locations, as long as they can be perceived by the
receiver MA. Thus, γc

ii(�,m, t) is obtained by the following equation:

γc
ii(�,m, t) =

∑
�′∈V

C∑
c′=1

nc′∑
j=1

um(�, c, i, �′, c′, j)βc′
j (�′,m)pc

′
j (�

′, t) (2)

where C = {1, . . . , C} is the set of agent classes in the model, V is the location set
um(�, c, i, �′, c′, j) is the perception function of messagem, whose value represents
the probability that an agent of class c, in state i, and in location � perceives a
message m sent by an agent of class c′ in state j and in position �′.

Finally, we use a diagonal matrix, Γ c(�,m, t) = diag(γc
ii(�,m, t)) to collect

the rates in Equation (2), and the infinitesimal generator matrix Kc(�, t) for the
population CTMC of agents of class c in location � at time t can be obtained by:

Kc(�, t) = Qc(�) +
∑
m

Γ c(�,m, t)[Ac(�,m)− I] (3)

where I is the identity matrix, the first term on the right hand side of (3) is the
infinitesimal generator matrix of the CTMC for local transitions, and the second
term gives the infinitesimal generator matrix for induced transitions which uses
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the averaged effect to approximate the effect of all other agents’ interactions
with an agent of class c in location � at time t.

Shifting to a mean field view, the transient evolution of pc(�, t) is captured
by standard Kolmogorov equations with initial conditions pc(�, t0) = P c(�)πc

0(�)
for all � and c:

dpc(�, t)

dt
= pc(�, t)Kc(�, t) ∀(�, c) (4)

3 PALOMA

PALOMA, the Process Algebra of Located Markovian Agents, is intended to
provide a simple process algebra-based formalism which can be used to generate
models in the M2MAM framework. M2MAM is used to generate a mean field
model, but being based on Markovian agents it is also amenable to a discrete
interpretation. As mentioned previously, PALOMA is equipped with both dis-
crete and differential semantics. In this section, we first introduce the discrete
interpretation, considering individual agents. We will then make the shift to
population CTMC and ultimately a mean field model in the next section.

3.1 Syntax

In keeping with the M2MAM framework, in PALOMA each agent is a finite
state machine and the language is conservative in the sense that no agents are
spawned or destroyed during the evolution of a model (although they can cease
to change state). Thus the language has a two level grammar:

X(�) ::=!(α, r).X(�) | ?(α, p).X(�) | X(�) +X(�) P ::= X(�) | P ‖ P

Agents are parameterised by a location, here denoted by �. Agents can un-
dertake two types of actions, spontaneous actions, denoted !(α, r), and induced
actions, denoted ?(α, p). When an agent performs a spontaneous action, it does
so with a given rate r, which is taken to be the parameter of an exponential
distribution, where 1/r is the expected duration of the action. Spontaneous ac-
tions are broadcast to the entire system, and can induce change in any other
agent which enables an induced action with the matching type α. An induced
action has an associated probability p, which records the probability that the
agent responds to a spontaneous action of the same type. In the style of the
Calculus of Broadcasting Systems [5], this can be thought of as the probability
that the agent listens as opposed to simply hearing. Alternative behaviours are
represented by the standard choice operator, +. A choice between spontaneous
actions is resolved via the race policy, based on their corresponding rates. We
assume that there is never a choice between induced actions of the same type.

A model, P , consists of a number of agents composed in parallel. There is no
direct communication between agents, for example in the style of shared actions
in PEPA [6]. Instead, all interaction is via spontaneous/induced actions. When
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an action is induced in an agent the extent of its impact is specified by a percep-
tion function, u(α, �,X, �′, X ′)1. This is a further probability which, given the
locations of the two agents, their current states and action type involved, deter-
mines the likelihood that the induced action occurs. For example, the perception
function might have value 1 when the two agents are within a communication
radius r of each other, but a value of 0 whenever the distance between them is
greater than r. Obviously this gives a rich set of possible styles of interaction,
but note that each agent with an induced action chooses independently whether
to respond or not.

3.2 Semantics

The semantics proceeds in sequences of alternating steps. This can be regarded
as a semi-Markov process: the first step, corresponding to the spontaneous ac-
tion, determines a delay, whilst the second step is probabilistic and determines
what the next state will be, as each possible induced action makes the choice
of whether to respond, based both on its inherent probability of “listening” and
the perception function. Since each agent makes such a decision independently,
the probabilities can be multiplied to obtain the overall probability of a given
next state. Correspondingly we define two transition relations −→ and −→P .
These are shown in Figures 1 and 2 respectively.

In order to keep track of which agents have ”heard” the messages which are
broadcast by spontaneous actions we associate an ether element with the system,
which provides the environment for all agents. This has a distinguished empty
state E0. As shown in rule SpA, a spontaneous action can only be initiated if
the ether is currently empty, and no probabilistic transitions are enabled (→P/ ).
The resulting local state records that the ether contains the message α which
originated with rate r at location � from the state !(α, r).X(�), and that the con-
tinuation is subject to a probabilistic resolution. Any state awaiting probabilistic
resolution is denoted SP . Note that SP states will not be in the CTMC.

If the ether contains a message α then an agent enabling an induced α action
may progress to a probabilistic state in which, with probability p, the continu-
ation X(�) is chosen, and with probability 1 − p, the continuation ?(α, p).X(�)
is chosen (rule InA). For other agents, their spontaneous actions are blocked un-
til the current one has been fully broadcast and probabilistically resolved (rule
NoSp). If the ether contains a message of type α then an agent enabling a spon-
taneous action of any type (including α) witnesses the ongoing action, enters a
probabilistic state and awaits resolution. This ensures that only one spontaneous
action can be in progress at a time. Note that there is no possibility of an agent
“sharing” the α action as would be possible in a language such as CSP or PEPA.
Similarly, if the ether contains a message of type α then an agent that enables an
induced message of any other type simply witnesses the ongoing action, enters a
probabilistic state and awaits resolution (rule NoIn). In some cases a spontaneous

1 Here we do not need to explicitly specify the class of sender and receiver agents as
it can be deduced by the state and the location attributes.
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SpA E0, !(α, r).X(	)
(α,r)−−−→ [α, r, 	,X], X(	)P (→P/ )

InA [α, r, 	′, X ′], ?(α, p).X(	)
(α,r)−−−→ [α, r, 	′, X ′], (?(α, p).X(	) +p X(	))P

NoSp [α, r, 	′, X ′], !(β, s).X(	)
(α,r)−−−→ [α, r, 	′, X ′], !(β, s).X(	)P

NoIn [α, r, 	′, X ′], ?(β, p).X(	)
(α,r)−−−→ [α, r, 	′, X ′], ?(β, p).X(	)P (β �= α)

E,X1(	)
(α,r)−−−→ E′, X ′

1(	
′)P

Ch1
E,X1(	)+X2(	)

(α,r)−−−→E′, X ′
1(	

′)P

E,X2(	)
(α,r)−−−→ E′, X ′

2(	
′)P

Ch2
E,X1(	)+X2(	)

(α,r)−−−→E′, X ′
2(	

′)P

E1, X1(	1)
(α,r)−−−→ E′, X ′

1(	
′
1)

P E2, X2(	2)
(α,r)−−−→ E′, X ′

2(	
′
2)

P

Par
(E1, X1(	1)) ‖ (E2, X2(	2))

(a,r)−−−→ E′, (X ′
1(	

′
1) ‖ X ′

2(	
′
2))

P

Fig. 1. The delay transition relation for PALOMA

action may not induce any actions in other agents. If this is the case the message
will propagate, without impacting any other agents, except to put them into the
trivial probabilistic state. Choice behaves as we would anticipate. We assume
that within a choice both elements are in the same location as they correspond
to a single agent. Parallel agents must agree on the single spontaneous action to
take place, and consequently update the ether in the same way. A spontaneous
action is deemed to be complete when all agents have moved to a probabilistic
state. In this case a probabilistic resolution must be made to determine the next
state. This is defined by the probabilistic transition relation, which will clear the
ether and create the opportunity for the next spontaneous message.

Probabilistic resolutions are determined by a second transition relation −→P ,
shown in Figure 2. The only probabilistic states which genuinely have different
possible outcomes are those which resulted from an induced action. In this case
there are two different resolutions according to whether the induced action is
“listened to” or simply “heard”. In either case the ether is emptied when the
probabilistic resolution is made (rule PR1). First, a choice is made whether
to hear the message or not, but secondly, if the message is heard, its impact
is adjusted according to the perception function. This is consistent with the
M2MAM formalism. For other states the probabilistic resolution will simply
clear the ether and return the agent to an active state again (rule PR2). Parallel
agents undergo probabilistic resolution independently and their probabilities are
multiplied (rule ParP).

4 Differential Semantics of PALOMA Models

Obtaining performance metrics via discrete event simulation can become very
expensive or even infeasible for PALOMAmodels when there is a large number of
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PR1 [α, r, 	′, X ′], (?(α, p).X(	) +p X(	))P

⎧⎪⎨
⎪⎩

(α,p×u(α,�,X,�′,X′))−−−−−−−−−−−−−−→P E0, X(	)

(α,1−p×u(α,�,X,�′,X′))−−−−−−−−−−−−−−−→P E0, ?(α, p).X(	)

PR2 [α, r, 	′, X ′], X(	)P
(α,1)−−−→P E0, X(	)

E,X1(	1)
P (α,p)−−−→P E0, X

′
1(	

′
1) E,X2(	2)

P (α,q)−−−→P E0, X
′
2(	

′
2)

ParP
E, (X1(	1) ‖ X2(	2))

P (α,p×q)−−−−−→P (E0, X
′
1(	

′
1)) ‖ (E0, X

′
2(	

′
2))

Fig. 2. The probabilistic transition relation for PALOMA

agents in the model. Thus, it is advantageous to define the differential semantics
for PALOMA which can automatically derive the mean-field model in the form
of initial value problems (a set of coupled ODEs with initial values) as done
for M2MAM. As solving the mean-field model is independent of the number
of agents in the system, this enables scalable analysis of PALOMA models. In
this section, we introduce the differential semantics of PALOMA models, first
developing a population-based structured operational semantics which lifts the
individual-based PALOMA model to a population-level view. This serves as an
intermediate tool for the generation of the mean-field model.

4.1 Population-Based Structured Operational Semantics

In PALOMA, as agents in the same state and location are identical, it is advanta-
geous to use a population-based state vector to represent the state of the model
in which symmetric states are aggregated to mitigate the well-known state space
explosion problem. For example, consider the following simple two-location SIS
model in PALOMA, which we refer to as Example 1:

S(	) = ?(contact, p).I(	)+!(move, q).S(	′)

I(	) = !(contact, β).I(	)+!(recover, γ).S(	)+!(move, q).I(	′)

S(	′) = ?(contact, p).I(	′)+!(move′, q′).S(	)

I(	′) = !(contact, β).I(	′)+!(recover, γ).S(	′)+!(move′, q′).I(	)

u(contact, 	,X, 	′, X ′) ==

⎧⎨
⎩

1

S� + I�
if (	 = 	′ ∧X = S)

0 otherwise

S(	)[NS(�)] ‖ I(	)[NI(�)] ‖ S(	′)[NS(�′)] ‖ I(	′)[NI(�′)]

The model captures a disease spread scenario, in which an infective agent (I)
makes a contact action spontaneously at the rate β. A susceptible agent (S) gets
infected by accepting a contact message with the probability p. The perception
function of the contact message can be explained as follows. If the message is
received by a susceptible agent in the same location as the message sender, it
can be perceived with probability 1

S�+I�
, where X� denotes the number of agents

in state X in location �. Otherwise, the message cannot be perceived. Intuitively,
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the perception function of message contact means that an infective agent contact
one arbitrary agent in its current location. Thus, a susceptible agent in the same
location as the infective agent can perceive the contact message with probability
1/N�, where N� = S� + I� is the total number of agents in the location.

Agents in location � move to location �′ by performing a spontaneous action
move at the rate q, and move back by a spontaneous action move′ at the rate q′.
The spontaneous actionsmove andmove′ do not have any corresponding induced
actions and so can be thought of as not emitting a message. An infective agent
can also do a recover action spontaneously without message emission at rate γ.

Lastly, the final equation gives the initial populations of agents, where for
example, S(�)[NS(�)] denotes NS(�) agents in the state S(�) in parallel. This is
syntactic sugar to ease the definition of large population models.

Now suppose we use a counting abstraction, constructing a state vector X =
(x1, x2, x3, x4) to represent the current state of the model, in which x1 denotes
the number of agents in state S(�), x2, the number of agents in state I(�), x3, the
number of agents in state S(�′) and x4, the number of agents in state I(�′). Then
the size of the state space is reduced from O(4N ) to O(N4), where N =

∑
xi.

Using this notation, the x2 enabled transitions caused by the spontaneous
actions contact made by the x2 agents in state I(�) can be aggregated to a
population-level transition as follows:

E0,X
(contact,β×x2)−−−−−−−−−−→ [contact, β × x2, �, I],X

P →P/ (5)

The probabilistic resolutions following from this transition can be aggregated:

[contact, βx2, 	, I ],X
P

⎧⎪⎨
⎪⎩

. . .
(contact,(x1

i )×(pu)i×(1−pu)x1−i)
−−−−−−−−−−−−−−−−−−−−−−−→P E0,X+ (−i, i, 0, 0)

. . .

(6)

where i = (0, 1, ..., x1), u is the value of the perception function. Note that(
x1

i

)
× (pu)i × (1 − pu)x1−i is the probability that there are i out of x1 induced

transitions of the form S(�) =?(contact, p).I(�) actually fired, where (−i, i, 0, 0)
is the associated net change on the state vector caused by these transitions.

Furthermore, as the probabilistic resolutions occur immediately and finish
instantaneously after a spontaneous transition fired, we can use a new transition
relation −→∗, which we call the population-based transition relation to form the
following transitions to represent the transitions in equations (5) and (6):

X
(τ,β×x2)−−−−−−→∗ X+ (0, 0, 0, 0) (7)

X

⎧⎪⎨
⎪⎩

. . .
(τi,β×x2×(x1

i )×(pu)i×(1−pu)x1−i)
−−−−−−−−−−−−−−−−−−−−−−−−→∗ X+ (−i, i, 0, 0)

. . .

(8)

where τ , τi are the transition names, β×x2, β×x2×
(
x1

i

)
×(pu)i×(1−pu)x1−i are

the rates of the transitions, (0, 0, 0, 0) and (−i, i, 0, 0) are the net change of the
elements in the state vector caused by the transitions. Note that in population-
based transitions, induced transitions have rates derived from the spontaneous
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E0, !(α, r).X(	)
(α,r)−−−→ [α, r, 	,X], X(	)P →P/

PbSp
X

(τ,X[i1]×r)−−−−−−−→∗ X′{X′[i1] = X[i1]− 1,X′[i2] = X[i2] + 1}
X[i1] > 0

[α, r, 	,X], (?(α, p).X ′(	′) +p X ′(	′))
P
{

(α,p×u)−−−−−→P E0, X
′(	′)

(α,1−p×u)−−−−−−−→P E0, ?(α, p).X
′(	′)

PbIn

X

⎧⎪⎨
⎪⎩

. . .
(τk,rτk )
−−−−−→∗ X′{X′[i2] = X[i2]− k,X′[i3] = X[i3] + k}

. . .

with X[i1] > 0, k = (0, ...,X[i2]), rτk = X[i1]× r ×
(
X[i2]

k

)
× (pu)k × (1− pu)X[i2]−k

Fig. 3. The Population-based Structured Operational Semantics

transitions. By doing this, we can analyse the influence of the spontaneous tran-
sitions and induced transitions on the population level dynamics of the model
separately. This simplifies the analysis of PALOMA models at the population
level because there are now no probabilistic transitions at this level.

We formally define the population-based structured operational semantics with
rules for population-based transitions for PALOMA in Figure 3. The premises of
these two rules describe the behaviour of single agents whereas the conclusions
gives the collective dynamics of the populations of agents. More specifically, the
rule PbSp infers a population-based transition from a spontaneous transition of a
single agent, in whichX andX′ are the state vectors representing the states of the
model before and after the transition. i1, i2 are the indexes of count variables in
the state vector for agents in states !(α, r).X(�) and X(�) respectively. We do not
need to explicitly specify the count of agents in other states because they remain
invariant after the transition in the premise of rule PbSp. The rule PbIn infers a
set of population-based transitions from a transition of a single agent induced by
a sptontaneous action α fired at the rate r which is performed by an agent in state
X and in location �. i1, i2, i3 are the indexes of count variables in the state vector
for agents in states X(�), ?(α, p).X ′(�′) and X ′(�′) respectively.

4.2 Population-Based CTMC Model for PALOMA

With the above state aggregation and population-based structured operational
semantics, we can define the population-based CTMC model for PALOMA. For-
mally, the population-based CTMC model for PALOMA is defined as a tuple
P = (X,D, T ,x0), where:

– X = (x1, ..., xn) is a state vector format, where each vector element is the
count variable of agents in a specific state and location.

– Each xi takes a value in a finite domain Di ⊂ Z+. Thus, D = D1 × ...× Dn

is the state space of the model.
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– T (X) = {τ1, ..., τm} is the set of population-based transitions enabled in
state X, of the form τi = (r(X),d), where:

1. r : D → R≥0 is the rate function which depends on the current state of
the system.

2. d ∈ Zn, is the update vector which gives the net change on each element
of X caused by the transition.

– x0 is the initial state of the model.

4.3 The Mean-Field Model

The population-based CTMC model for PALOMA is used to extract ODEs for
the mean-field model similarly to [7]. We will explain how this can be done in
this subsection. Firstly, if we are interested in the mean behaviour of the system
dynamics, the set of population-based transitions in the conclusion of the rule
PbIn can be aggregated by a single transition as:

X
(τ,X[i1]×r)−−−−−−−→∗ X+ dτ (9)

where dτ [i2] = −pu × X[i2], dτ [i3] = pu × X[i2] and for j /∈ {i2, i3}, dτ [j] = 0.
Specifically, X[i1] × r is the rate at which the spontaneous transition α in the
premise of PbIn occurs, and it is also treated as the rate of the above aggregated

transition.
(
X[i2]
k

)
×(pu)k×(1−pu)X[i2]−k is the probability that there are k out of

X[i2] enabled induced transitions actually fired in the probabilistic resolutions of
the spontaneous transition, and in this case the net change in the count variables
for agents in state ?(α, p).X ′(�′) and X ′(�′) is (−k, k). Thus, by summing up the
product of all the possible net changes and their associated probabilities, we can
get the expected net change in the population level of agents in these two states
caused by the transitions induced by the α action performed by the agents in
state X(�) as follows:

Ed[i2,i3] =

X[i2]∑
k=0

(
X[i2]

k

)
(pu)k × (1− pu)X[i2]−k × (−k, k) = (−pu×X[i2], pu×X[i2])

Now, consider a population-based CTMC model for PALOMA (in which all the
population-based transitions in the conclusion of the rule PbIn are aggregated
in the style of Equation (9)) which is currently in state X with an enabled
transition τ . This means that in every 1/rτ time units on average, a change
in the population level of some agents denoted by X′ = X + dτ occurs. If we
approximate such a discrete change in a continuous fashion, then the change in
the population level of the agents over a finite time interval Δt is:

X(t+Δt) = X(t) + rτ × dτ × Δt

Rearranging the above equation and taking the limit Δt → 0, we obtain the
ODE which describes the (approximated) transient evolution of the population

level of the agents in the system caused by transition τ as: dX(t)
dt = rτ × dτ
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Taking all enabled transitionsT (X) = {τ1, ..., τm} into account, theODEwhich
describes the (approximated) transient evolution of the complete population-level
system dynamics, has initial condition X(0) = x0 and is defined as:

dX(t)

dt
=

m∑
i=1

rτi × dτi .

The Motivating Example. We use Example 1 to illustrate our approach.
From the induced transitions in each location �̂ ∈ {�, �′}:

S(�̂) =?(contact, p).I(�̂) induced by I(�̂) =!(contact, β).I(�̂)

we obtain τ1 = (βx2, (−pux1, pux1, 0, 0)) and τ2 = (βx4, (0, 0,−pu′x3, pu
′x3))

respectively, where u =
1

x1 + x2
and u′ =

1

x3 + x4
.

From the following spontaneous transitions:

S(�) =!(move, q).S(�′) S(�′) =!(move′, q′).S(�) I(�) =!(move, q).I(�′)

I(�′) =!(move′, q′).I(�) I(�) =!(recover, γ).S(�) I(�′) =!(recover, γ).S(�′)

I(�) =!(contact, β).I(�) I(�′) =!(contact, β).I(�′)

We get the following corresponding population-based transitions:

τ3 = (qx1, (−1, 0, 1, 0)) τ4 = (q′x3, (1, 0,−1, 0)) τ5 = (qx2, (0,−1, 0, 1))

τ6 = (q′x4, (0, 1, 0,−1)) τ7 = (γx2, (1,−1, 0, 0)) τ8 = (γx4, (0, 0, 1,−1))

τ9 = (βx2, (0, 0, 0, 0)) τ10 = (βx4, (0, 0, 0, 0))

Therefore, the mean-field model for Example 1 is dX(t)
dt =

∑i=10
i=1 rτi × dτi .

The associated ODE model for each state count variable is:

dx1(t)

dt
= −β × x2 × p× u × x1 − q × x1 + q′ × x3 + γ × x2

dx2(t)

dt
= β × x2 × p× u × x1 − q × x2 + q′ × x4 − γ × x2

dx3(t)

dt
= −β × x4 × p× u′ × x3 + q × x1 − q′ × x3 + γ × x4

dx4(t)

dt
= β × x4 × p× u′ × x3 + q × x2 − q′ × x4 − γ × x4

The mean-field model matches our intuition from the M2MAM definition.

5 Case Study: Modelling the Spread of Flu

In this section, we extend the PALOMAmodel in Example 1 to model the spread
of flu in a multi-community society. The model captures a simplified scenario
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of the 1918-1919 flu epidemic in central Canada, which was originally described
in [8]. Consider an isolated society which consists of m communities. Q is the
rate matrix in which each element qij is the rate at which a resident travels
from community i to community j. We use βi to denote the number of contacts
per person per day in community i. For various reasons, the number of contacts
per person per day is not the same in all communities. For example, suppose
community i is the business centre of the society, then the number of contacts
per person per day in community i should be higher than other communities.

In the epidemic model, a resident has three states: State S for susceptible,
I for infected and R for recovered. When a susceptible resident makes contact
with an infected resident, he will be infected by the flu with the probability p.
On average, it takes about 1/γ days for an infected resident to recover from the
flu. Once a resident recovers, he will not be infected again. We are interested in
how many residents are infected by the flu from the beginning to the end of the
outbreak. This can be captured by the following PALOMA model:

S(	i) = ?(contact, p).I(	i) +
m∑
j �=i

!(moveij , qij).S(	j)

I(	i) = !(contact, βi).I(	i)+!(recover, γ).R(	i) +
m∑
j �=i

!(moveij , qij).I(	j)

R(	i) =
m∑
j �=i

!(moveij , qij).R(	j)

u(contact, 	,X, 	′, X ′) ==

⎧⎨
⎩

1

S� + I� +R�
if (	 = 	′ ∧X = S)

0 otherwise

S(	1)[NS(�1)] ‖ I(	1)[II(�1)] ‖ . . . ‖ S(	m)[NS(�m)] ‖ I(	m)[II(�m)]

where the perception function of message contact also means that an infected
resident can make contact with an arbitrary resident in their current community.
Thus, a susceptible resident in the same location as the infective agent can
perceive the contact message with probability 1/N�, where N� = S� + I� +R� is
the total number of residents in the community �.

5.1 Investigate the Effect of Quarantine on the Spread of the Flu

In this subsection we present the results of some experiments run on the model
to investigate the effect of different quarantine policies on the spread of the
flu. For example, quarantine may be applied to a whole community which is
believed to be the source of the outbreak, reducing the likelihood of travel to
other communities. Alternatively, individuals who develop flu in any community
may be individually isolated and prevented from travelling.

Community-Level Quarantine: Here we assume that the flu originates from
community i. We model the effect of community-level quarantine by adding a
quarantine factor 0 < σ < 1 to the rate at which residents travel into and out of
community i. More specifically, the value of Q(i, j) and Q(j, i) becomes qij × σ
and qji × σ repectively.
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Individual-Level Quarantine: Alternatively the focus may be on the indi-
viduals with the disease. Suppose that on average, an infected person exhibits
symptoms 1/η days after infection. Once an infected person is discovered, they
will be isolated immediately until recovery. To model this, we introduce a new
state ISO(�i), which represents an isolated infected resident currently in com-
munity i. Note that not all infected individuals will exhibit symptoms. The
modifications to the PALOMA model with individual-level quarantine are given
as follows:

I(	i) = !(contact, βi).I(	i)+!(recover, γ).R(	i)+!(discovered, η).ISO(	i)

+
m∑
j �=i

!(moveij , qij).I(	j)

ISO(	i) = !(recover, γ).R(	i)

u(contact, 	,X, 	′, X ′) ==

⎧⎨
⎩

1

S� + I� +R�
if (	 = 	′ ∧X = S)

0 otherwise

Note that an isolated resident cannot travel out of their current community or
contact other residents. As a result, an agent in state ISO(�i) can only do a
spontaneous action recover and go to the state R(�i). Moreover, ISO� is not
included in the perception function of contact which also reflects that isolated
residents do not have chances to contact other residents.

Model Analysis. We consider five communities located in a star topology as
illustrated in Figure 4(d): we assume community 1 is the business centre of the
society and the flu also originates in Community 1. Thus, the community-level
quarantine is imposed on Community 1. We assume that there are 300 residents
of Community 1, 10 of whom are infected at the start of the study; 150 residents
of Community 2, 140 residents of Community 3, 100 residents of Community 4
and 100 residents of Community 5, all of whom are susceptible at the start of
the study. The values of parameters used in our simulation are given in Table 1.

Our simulation tool can parse PALOMA models and run discrete event sim-
ulations. The corresponding mean-field model is automatically generated in the
form of Matlab scripts when the model is parsed, and can be run directly in
Matlab. Figure 4(a), 4(b), 4(c) show our simulation results with 95% confidence
interval in three different senarios. The results generated by the discrete event
simulation (taking the average of 100 simulation runs) match well with the re-
sults of the mean-field model. The run time of a discrete event simulation for this
model is about 70 seconds on a dual CORE i5 machine whereas the mean-field
model can generate results instantly.

The results also give us some interesting information. It can be seen that
community-level quarantine only reduces the number of infected residents to a

Table 1. Parameters used in the simulation

p = 0.5 β1 = 1 βi = 0.5 (i �= 1) γ = 0.2 η = 0.25 σ = 0.1 q12 = 0.1

q13 = 0.12 q14 = 0.13 q15 = 0.11 q21 = 0.4 q31 = 0.4 q41 = 0.3 q51 = 0.35



278 C. Feng and J. Hillston

(a) No quarantine. (b) Community-level quarantine.

(c) Individual-level quarantine.

1

3

2 4

5

q12

q13

q14

q15

q21

q31
q41

q51

(d) The topology of the 5 commu-
nities in the simulation.

Fig. 4. The simulation result and the community topology of the flu spread model

limited extent whereas individual-level quarantine has a more profound effect on
controlling the spread of the flu.

6 Related Work

There have been many previous process algebras which encompass some spatial
modelling, ranging from very abstract space and mobility in the π-calculus [9] to
Cardelli and Gardner’s elegant process algebra based around affine geometry [10].
Some also incorporate stochastic behaviour, such as stochastic π-calculus [11],
Bio-PEPA [12], stochastic Bio-Ambients [13] and stochastic bigraphs [14]. But
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in each of these space is abstractly represented and most focus on a containment
relationship between locations.

Closer to our work are the process algebras PALPS [15] and MASSPA [16].
PALPS, the Process Algebra with Location for Population Systems, is designed
for building ecological models, and offers language primitives targeted at this
application domain. Moreover, only an individual-based semantics is developed,
severely restricting the scalability of the models which can be developed. Like
PALOMA, MASSPA, the Markovian Agent Spatial Stochastic Process Algebra,
takes the M2MAM framework as its starting point. MASSPA emulates message
broadcast by allowing each spontaneous action to emit a number of messages,
loosely based on the likelihood that the single spontaneous action will trigger that
number of induced actions. This multiplication of actions affects the dynamics of
the system and no individual-based semantics is established. Instead MASSPA
models are translated into systems of chemical reactions and population-level
discrete event simulation based on mass action dynamics is developed. In con-
trast, PALOMA is equipped with both individual- and population-based seman-
tics, supports dynamic perception functions (i.e. based on the current system
state), which enables PALOMA to model adaptive behaviour. Furthermore, we
slightly extend M2MAM to allow agents to move between locations. The original
M2MAM framework requires the number of agents in each location to remain
constant because the derived ODEs describe the evolution of the state density
distribution of agents in each location over time, and then use that to derive
the number of agents in different states. However, in the differential semantics
of PALOMA, we use the ODEs to directly describe the evolution of number of
agents in different states in different locations. Thus we are able to allow agents
to move in PALOMA models, as demonstrated in the case study.

In [17] the authors apply mean-field models with locations (or classes more
generally), which are close to the mean-field models developed in this paper, to
the performance evaluation of network systems. PALOMA high-level language
to define models of this kind.

7 Conclusion

PALOMA is a novel stochastic process algebra which treats location as a pri-
mary feature of each agent, and allows the interaction of agents to be adapted
according to their locations. Location is just one possible interpretation of this
parameter, and more generally, PALOMA can be seen as supporting attribute-
based communication. This style of communication has previously been investi-
gated in languages such as SCEL [18], but in that context has not been amenable
to scalable analysis. Here we demonstrate how PALOMA may be equipped with
scalable analysis through both discrete event and mean field interpretations. Fu-
ture work will consider suitable notions of equivalence and logic, e.g. it could be
useful to consider agents which exert influence of the same type over an analo-
gous region of space, to be equivalent even though their exact locations differ.
We will also investigate abstractions of space within PALOMA models.
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Abstract. Testing equivalences have been deeply investigated on fully
nondeterministic processes, as well as on processes featuring probabil-
ities and internal nondeterminism. This is not the case with reactive
probabilistic processes, for which it is only known that the discrimi-
nating power of probabilistic bisimilarity is achieved when admitting a
copying capability within tests. In this paper, we introduce for reactive
probabilistic processes three testing equivalences without copying, which
are respectively based on reactive probabilistic tests, fully nondetermin-
istic tests, and nondeterministic and probabilistic tests. We show that
the three testing equivalences are strictly finer than probabilistic failure-
trace equivalence, and that the one based on nondeterministic and prob-
abilistic tests is strictly finer than the other two, which are incomparable
with each other. Moreover, we provide a number of facts that lead us
to conjecture that (i) may testing and must testing coincide on reactive
probabilistic processes and (ii) nondeterministic and probabilistic tests
reach the same discriminating power as probabilistic bisimilarity.

1 Introduction

Many relations have been defined in concurrency theory to capture the notion of
“same behavior”. They range from branching-time relations like (bi)simulations,
which are very sensitive to branching points, to linear-time relations based on
(decorated) traces, which in contrast abstract to different extents from those
points. Most of these relations can be characterized in terms of testing scenarios.
Two processes are testing equivalent if, when interacting with them by means
of tests encompassing a success predicate, they result in the observation of the
same outcomes. By varying the power of tests, it is possible to recover different
behavioral relations in the linear-time/branching-time spectrum [15].

The formalization of testing equivalence that we consider in this paper was
first introduced in [32] and then revisited in [20]. It is very general, in the sense
that it is defined on processes featuring both internal nondeterminism and prob-
abilities. We will describe such processes through a nondeterministic and proba-
bilistic extension of labeled transition systems (LTS) [22], which we call NPLTS,
where the target of each transition is a probability distribution over the set of
states – in the style of [24,29] – rather than a single state.
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The idea at the basis of this probabilistic testing equivalence, which we denote
by ∼PTe-��, is as follows. The interaction system, resulting from an NPLTS
process under test and an NPLTS observer, does not have a unique probability
of succeeding, but several success probabilities, one for each maximal resolution
of nondeterminism. Only the supremum (�) and the infimum (�) of these success
probabilities are taken into account in [32,20], so that two processes are deemed
equivalent if they result, for each possible test, in the same suprema and infima.
Following the terminology of classical testing equivalence [10], the constraint on
suprema (resp. infima) – yielding ∼PTe-� (resp. ∼PTe-�) – represents the may
(resp. must) part; we know from [12] that ∼PTe-� is strictly finer than ∼PTe-� in
the absence of divergence, i.e., infinite computations whose steps are all invisible.

The relation ∼PTe-�� of [32,20] coincides, over processes and tests resulting in
interaction systems with finitely many maximal resolutions, with a slightly finer
variant comparing success probabilities of individual maximal resolutions, for
which several characterizations were given. In [31], it was shown that ∼PTe-�
coincides with the coarsest congruence contained in the probabilistic trace-
distribution equivalence of [30] and ∼PTe-� coincides with the coarsest congru-
ence contained in a probabilistic failure-distribution equivalence.1 Besides pro-
viding logical and equational characterizations, in [11] it was later shown that
∼PTe-� coincides with a probabilistic simulation equivalence akin to that of [25]
and ∼PTe-� coincides with a novel probabilistic failure-simulation equivalence.
Such characterizations of ∼PTe-��, together with its position in the spectrum of
NPLTS behavioral equivalences studied in [4], reveals that this equivalence has
a higher discriminating power with respect to the fully nondeterministic case.

When both the processes and the tests are fully nondeterministic, i.e., LTS
models, ∼PTe-�� boils down to the classical testing equivalence of [10]. In this
case, as shown in [9] ∼PTe-� coincides with trace equivalence and, in the absence
of divergence, ∼PTe-� coincides with failure equivalence [8]. Several subsequent
works addressed how to make classical testing equivalence more powerful. In [27],
a higher discriminating power – the one of failure-trace equivalence [15] – was
reached by equipping tests with the possibility of expressing the refusal of per-
forming certain actions (refusal testing). Then, it was illustrated in [1] that
the discriminating power of bisimulation equivalence [26] can be achieved if, in
addition to refusals, two further ingredients are introduced: making copies of
intermediate states of the processes under test (copying capability) and enumer-
ating all computations at some point inside a test and combining the related
information (global testing). As later observed in [18,12,3], an alternative way
of enhancing the discriminating power of classical testing equivalence consists of
including probabilities within tests.

Unlike the NPLTS case and the LTS case, very little is known about the dis-
criminating power of the relation ∼PTe-�� of [32,20] over NPLTS models not
admitting internal nondeterminism, i.e., Markov decision processes (MDP) [28]
or, equivalently, reactive probabilistic labeled transition systems (RPLTS) [16].

1 In [31], countably many different success actions are admitted but, as shown in [13],
the single standard one suffices in the case of finitary processes and tests.
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An analogous relation was investigated only in [23] for possibly replicated deter-
ministic tests applied to RPLTS models extended with a form of internal choice;
this relation is strictly coarser than the probabilistic bisimilarity of [24].

A testing approach for RPLTS models not concerned with extremal success
probabilities was studied in [24,7]. It is based on tests formalized through a
nonprobabilistic testing language, which allows a tuple of tests to be performed
independently on as many copies of the current state of the process under test.
The copying capability turns out to be sufficient for the resulting testing equiva-
lence to coincide with the probabilistic bisimilarity of [24], as two RPLTS models
that are not probabilistic bisimilar can be distinguished by some such test with
probability arbitrarily close to one. As noticed in [6], this statistical approach
cannot be exploited for classical bisimilarity, because there are bisimilar LTS
models for which no pair of computable probabilizations in the form of RPLTS
models renders them indistinguishable with respect to the considered tests.

The purpose of this paper is to examine the discriminating power of the
relation ∼PTe-�� of [32,20] when the processes under test are RPLTS models.
On the observer side, we consider three different classes of tests: RPLTS, LTS,
and NPLTS. In all the three cases,∼PTe-�� will turn out to be strictly finer than a
probabilistic extension of failure-trace equivalence, thereby confirming the power
of the interplay between probabilities and nondeterminism discussed in [18,12,3]
even when testing RPLTS processes.We then show that the discriminating power
of LTS tests and the discriminating power of RPLTS tests are not only below the
discriminating power of NPLTS tests, but also incomparable with each other.

Finally, in the setting of testing RPLTS processes, we bring up two problems
whose solution seems far from being trivial. The first one refers to may testing
and must testing; while the latter is known to be strictly finer than the former
for divergence-free LTS or NPLTS processes, we conjecture that they coincide in
the case of RPLTS processes. The second one refers to the discriminating power
of ∼PTe-�� under NPLTS tests; although no copying capability is admitted, we
conjecture that the same identification power as the probabilistic bisimilarity
of [24] is achieved. Our conjectures will be substantiated by a number of facts.

Some preliminary results for RPLTS testing are contained in [5]. However, that
paper focusses on higher-order languages and addresses, for RPLTS processes,
only the case of LTS-based tests generated by CCS-like calculi [26] with and
without refusal. In contrast, here we systematically investigate the discriminating
power of testing equivalence ∼PTe-�� when applied to RPLTS processes under
each of the three classes of tests: RPLTS, LTS, and NPLTS.

This paper is organized as follows. In Sect. 2, we introduce the various LTS-
like models that will be used throughout the paper. In Sect. 3, we present the
spectrum of behavioral equivalences for RPLTS models by extending results
over fully probabilistic processes proved in [21,17]. In Sect. 4, we define the
three variants of ∼PTe-��. In Sect. 5, we place the three variants in the RPLTS
spectrum and relate their respective discriminating powers. Finally, in Sect. 6 we
discuss the two open problems mentioned above and motivate our conjectures
about their solution.
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2 Background

In this section, we provide definitions and notations for the various LTS-like
models used in the paper to formalize processes, tests, and interaction systems.

2.1 Nondeterministic and Probabilistic Processes

The most expressive model that we need is the one that will be used to represent
interaction systems, as well as the most powerful observers that we consider.
Since it may contain both internal nondeterminism and probabilities, we start
by defining it as a slight variation of simple probabilistic automata [29]. In the
next two subsections, we derive the submodels employed to represent processes
under test, as well as less powerful observers.

Definition 1. A nondeterministic and probabilistic labeled transition system,
NPLTS for short, is a triple (S,A,−→) where S is an at most countable set
of states, A is a countable set of transition-labeling actions, and −→ ⊆ S ×
A × Distr(S) is a transition relation, with Distr(S) being the set of discrete
probability distributions over S.

A transition (s, a,Δ) is written s
a−→Δ. State s′ ∈ S is not reachable from s

via that a-transition if Δ(s′) = 0, otherwise it is reachable with probability
p = Δ(s′). The reachable states form the support of Δ, i.e., supp(Δ) = {s′ ∈ S |
Δ(s′) > 0}. The choice among all the outgoing transitions of s is nondetermin-
istic and can be influenced by the external environment, while the choice of the
target state for a specific transition is probabilistic and made internally.

In this setting, a computation is a sequence of state-to-state steps, each de-

noted by s
a

−�→ s′ and derived from a state-to-distribution transition s
a−→Δ.

Definition 2. Let L = (S,A,−→) be an NPLTS and s, s′ ∈ S. A sequence c:

s0
a1−�→ s1

a2−�→ s2 . . . sn−1

an−�→ sn
is a computation of L of length n from s = s0 to s′ = sn iff for all i = 1, . . . , n
there exists a transition si−1

ai−→Δi such that si ∈ supp(Δi), with Δi(si) be-

ing the execution probability of step si−1

ai−�→ si conditioned on the selection of

transition si−1
ai−→Δi of L at state si−1. Computation c is maximal iff it is

not a proper prefix of any other computation. We denote by Cfin(s) the set of
finite-length computations from s.

A resolution of a state s of an NPLTS L is the result of a possible way of
resolving nondeterminism starting from s. A resolution is a tree-like structure,
whose branching points are probabilistic choices corresponding to target distri-
butions of transitions. This is obtained by unfolding from s the graph structure
of L and by selecting at each reached state at most one of its outgoing transitions.

Definition 3. Let L = (S,A,−→L) be an NPLTS and s ∈ S. An NPLTS Z =
(Z,A,−→Z) is a resolution of s iff there exists a state correspondence function
corrZ : Z → S such that s = corrZ(zs) for some zs ∈ Z, and for all z ∈ Z it
holds that:
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– If z
a−→Z Δ, then corrZ(z)

a−→L Δ′ with corrZ being injective over supp(Δ)
and Δ(z′) = Δ′(corrZ(z

′)) for all z′ ∈ supp(Δ).

– If z
a1−→Z Δ1 and z

a2−→Z Δ2, then a1 = a2 and Δ1 = Δ2.

Resolution Z is maximal iff, for all z ∈ Z, whenever z has no outgoing transi-
tions, then corrZ(z) has no outgoing transitions either. We respectively denote
by Res(s) and Resmax(s) the sets of resolutions and maximal resolutions of s.

Since Z ∈ Res(s) is fully probabilistic in that each of its states has at most
one outgoing transition, the probability prob(c) of executing c ∈ Cfin(zs) can be
computed as the product of the (no longer conditional) execution probabilities
of the individual steps of c. This notion is lifted to C ⊆ Cfin(zs) by letting
prob(C) =

∑
c∈C prob(c) whenever none of the computations in C is a proper

prefix of one of the others.

2.2 Reactive Probabilistic Processes

A reactive probabilistic process can be described as an RPLTS. This is an NPLTS
(S,A,−→) in which, for all s ∈ S and a ∈ A, whenever s

a−→Δ1 and s
a−→Δ2,

then Δ1 = Δ2. This means that internal nondeterminism is not admitted.
Given a state s ∈ S and a trace α ∈ A∗, if no resolution of s contains computa-

tions labeled with α, then the probability of executing α from s is 0. Otherwise,
due to the absence of internal nondeterminism, there exists a resolution of s
containing the set C(s, α) of all the computations from s labeled with α, in
which case the probability of executing α from s is assumed to be the value
prob(C(s, α)) computed in any of these resolutions containing C(s, α).

2.3 Fully Nondeterministic Processes

The behavior of a fully nondeterministic process is usually represented through
an LTS, which can be viewed as an NPLTS (S,A,−→) in which every transi-
tion leads to a Dirac distribution, i.e., a distribution that concentrates all the
probability mass into a single target state. Formally, a Dirac transition s

a−→ δs′

fulfills δs′(s
′) = 1 and δs′(s

′′) = 0 for all s′′ ∈ S \{s′}. In these processes without
probabilities, resolutions reduce to computations.

3 The Spectrum of Equivalences for RPLTS Processes

We know from [21,17,19] that the linear-time/branching-time spectrum of be-
havioral equivalences for fully probabilistic processes is narrower than the one for
fully nondeterministic processes [15] as in the former many equivalences coincide.
This is the case also with reactive probabilistic processes, as we now show.

Let L = (S,A,−→) be an RPLTS and s, s1, s2 ∈ S. We introduce probabilistic
trace-based equivalences on L as follows by analogy with [21,17]:
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– C(s, α) is the set of computations from s labeled with trace α ∈ A∗.
s1 ∼PTr s2 iff prob(C(s1, α)) = prob(C(s2, α)) for all α ∈ A∗.

– CC(s, α) is the set of completed computations from s labeled with α∈A∗.
s1 ∼PCTr s2 iff s1∼PTr s2 and prob(CC(s1, α))=prob(CC(s2, α)) for all α∈A∗.

– FC(s, ϕ), where ϕ = (α, F ) is a failure pair, is the set of computations from s
labeled with α such that the last state of each computation cannot perform
any action in F .
s1 ∼PF s2 iff prob(FC(s1, ϕ)) = prob(FC(s2, ϕ)) for all ϕ ∈ A∗ × 2A.

– RC(s, �), where � = (α,R) is a ready pair, is the set of computations from s
labeled with α such that the set of actions that can be performed by the last
state of each computation is precisely R.
s1 ∼PR s2 iff prob(RC(s1, �)) = prob(RC(s2, �)) for all � ∈ A∗ × 2A.

– FT C(s, φ), where φ = (a1, F1) . . . (an, Fn) is a failure trace, is the set of
computations from s labeled with a1 . . . an such that the state reached by
each computation after the i-th step, 1 ≤ i ≤ n, cannot perform any action
in Fi.
s1 ∼PFTr s2 iff prob(FT C(s1, φ)) = prob(FT C(s2, φ)) for all φ ∈ (A × 2A)∗.

– RT C(s, ρ), where ρ = (a1, R1) . . . (an, Rn) is a ready trace, is the set of
computations from s labeled with a1 . . . an such that the set of actions that
can be performed by the state reached by each computation after the i-th
step, 1 ≤ i ≤ n, is precisely Ri.
s1 ∼PRTr s2 iff prob(RT C(s1, ρ)) = prob(RT C(s2, ρ)) for all ρ ∈ (A × 2A)∗.

Probabilistic bisimilarity ∼PB for RPLTS processes was defined in [24], while
probabilistic similarity ∼PS can be introduced as follows by analogy with [19].
Given a binary relation R over S, its lifting Rd to Distr(S) is defined by letting
(Δ1, Δ2) ∈ Rd iff there exists a function w : S × S → R[0,1] such that:

– w(s1, s2) > 0 =⇒ (s1, s2) ∈ R for all s1, s2 ∈ S;
– Δ1(s1) =

∑
s′∈S w(s1, s

′) for all s1 ∈ S;
– Δ2(s2) =

∑
s′∈S w(s′, s2) for all s2 ∈ S.

A binary relation R on S is a probabilistic simulation iff, whenever (s1, s2) ∈ R,

then for all a ∈ A it holds that s1
a−→Δ1 implies s2

a−→Δ2 with (Δ1, Δ2) ∈ Rd;
the equivalence ∼PS is the kernel of the largest probabilistic simulation. Relation
R is a probabilistic bisimulation iff it is a symmetric probabilistic simulation;
the equivalence ∼PB is the largest probabilistic bisimulation.

It was shown in [2] that ∼PB and ∼PS coincide, hence the variants in between
(ready similarity, failure similarity, completed similarity) collapse too. More-
over, the proofs of the results in [21,17] for fully probabilistic processes can be
smoothly adapted to the RPLTS case, and also extended to deal with ∼PRTr and
∼PFTr. As a consequence, we have the following spectrum under the assumption
that every state has finitely many outgoing transitions.

Proposition 1. On finitely-branching RPLTS processes, it holds that:
∼PB = ∼PS � ∼PRTr = ∼PFTr � ∼PR = ∼PF � ∼PCTr = ∼PTr
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Fig. 1. Processes illustrating the strictness of the inclusions in Prop. 1

The strictness of all the inclusions above is witnessed by the counterexam-
ples in Fig. 1. The graphical conventions for process descriptions are as follows.
Vertices represent states and action-labeled edges represent action-labeled tran-
sitions. Given a transition s

a−→Δ, the corresponding a-labeled edge goes from
the vertex for state s to a set of vertices linked by a dashed line, each of which
represents a state s′ ∈ supp(Δ) and is labeled with Δ(s′). The label Δ(s′) is
omitted when it is equal to 1, i.e., when Δ is the Dirac distribution δs′ .

4 Testing Equivalences for RPLTS Processes

In this section, we define a probabilistic testing equivalence for RPLTS processes
under three different classes of observers respectively formalized as RPLTS, LTS,
and NPLTS tests.

Given an RPLTS, we assume that the elements of its action set A are all visi-
ble. The action set of each considered test will be Ā∪{ω}, where Ā = {ā | a ∈ A}
is the set of coactions for A and ω /∈ A is a distinguished action denoting success.
Every coaction must synchronize with the corresponding action; when this hap-
pens, the invisible action τ /∈ A is produced. Therefore, the resulting interaction
system is an NPLTS with action set {τ, ω}, whose transition relation −→ is de-
rived from the transition relation −→1 of the RPLTS process under test and the
transition relation −→2 of the observer, through the following two rules:

s
a−→1 Δ1 o

ā−→2 Δ2

(s, o)
τ−→Δ1 � Δ2

o
ω−→2 Δ2

(s, o)
ω−→ δs � Δ2

where (Δ � Γ )(s′, o′) = Δ(s′) · Γ (o′).
A finite-length computation from the initial state (s, o) of the interaction sys-

tem is successful iff its last state can perform ω, and no preceding state can per-
form ω. Given a resolution Z of (s, o), we denote by SC(zs,o) the set of successful
computations from the state zs,o of Z corresponding to (s, o). We respectively de-
note by � and � the supremum and the infimum of the set of probability values
prob(SC(zs,o)) computed in the various resolutions of the interaction system.
To avoid infima to be trivially zero, in the next definition, which is inspired
by [32,20,23], we restrict ourselves to maximal resolutions.
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Definition 4. Let L = (S,A,−→L) be an RPLTS. We say that s1, s2 ∈ S
are probabilistic ��-testing equivalent, written s1 ∼PTe-�� s2, iff for every test
T = (O,A,−→T ) with initial state o ∈ O it holds that:⊔

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
⊔

Z2∈Resmax(s2,o)

prob(SC(zs2,o))
�

Z1∈Resmax(s1,o)

prob(SC(zs1,o)) =
�

Z2∈Resmax(s2,o)

prob(SC(zs2,o))

The equivalence is respectively denoted by ∼PTe-��,rp, ∼PTe-��,nd, or ∼PTe-��,np

depending on whether the considered tests are all reactive probabilistic, fully non-
deterministic, or nondeterministic and probabilistic.

We assume tests to be finite, i.e., finite state, finitely branching, and loop free.
On the one hand, this entails that interaction systems will have finitely many
maximal resolutions, thus ensuring the validity of our results also for a slightly
finer variant of ∼PTe-�� that we could define following [31,11]. On the other
hand, this restriction will be exploited in the proofs of some results.

5 Properties of the RPLTS Testing Equivalences

5.1 Placing the Testing Equivalences in the RPLTS Spectrum

Our first result is that the three relations ∼PTe-��,rp, ∼PTe-��,nd, and ∼PTe-��,np

are comprised between ∼PFTr and ∼PB. This confirms the power of the interplay
between probabilities and nondeterminism for discriminating purposes, which
was already noticed in the testing theory for NPLTS processes [18,12,3].

The proof that each of the three equivalences is strictly finer than ∼PFTr ben-
efits from an analogous result with respect to ∼PF. Both proofs focus on tests
that are deterministic LTS models (DLTS for short) as they admit neither in-
ternal nondeterminism nor probabilities. Since these tests constitute a submodel
common to RPLTS, LTS, and NPLTS tests, the inclusion proofs relying on them
scale to the three more expressive families of tests.

Lemma 1. On RPLTS processes, for all ∗ ∈ {rp, nd, np} it holds that:
∼PTe-��,∗ � ∼PF

Theorem 1. On RPLTS processes, for all ∗ ∈ {rp, nd, np} it holds that:
∼PTe-��,∗ � ∼PFTr

The inclusions in ∼PFTr are strict as shown by the two RPLTS processes, the
DLTS test, and the two NPLTS interaction systems in Fig. 2, because we have
� = 1 and � = 0 in the first system and � = � = 0.5 in the second one.

The proof that ∼PB is included in each of the three testing equivalences ex-
ploits the fact that ∼PB is a congruence with respect to parallel composition.
Inclusion stems from showing that, under ∼PB, for each maximal resolution of
any of the two interaction systems, there exists a maximal resolution of the other
interaction system, such that the two resolutions have the same success proba-
bility. The maximal resolutions to consider are those arising from randomized
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Fig. 2. Processes and test illustrating the strictness of the inclusions of Thm. 1

schedulers, as opposed to the deterministic ones used so far, which means that a
convex combination of equally labeled transitions can be selected at each state.
Formally, the first clause of Def. 3 changes by requiring that, if z

a−→Z Δ, then
there exist n ∈ N≥1, (pi ∈ R]0,1] | 1 ≤ i ≤ n), and (corrZ(z)

a−→L Δi | 1 ≤ i ≤ n)
such that

∑n
i=1 pi = 1 and Δ(z′) =

∑n
i=1 pi ·Δi(corrZ(z

′)) for all z′ ∈ supp(Δ).

Given s ∈ S, we denote by Resrndmax(s) the set of maximal resolutions of s origi-
nated from randomized schedulers.

Lemma 2. Let L = (S,A,−→L) be an RPLTS and s1, s2 ∈ S. If s1 ∼PB s2,
then for every test T = (O,A,−→T ) with initial state o ∈ O it holds that:

– For each Z1 ∈ Resrndmax(s1, o) there exists Z2 ∈ Resrndmax(s2, o) such that:
prob(SC(zs1,o)) = prob(SC(zs2,o))

– For each Z2 ∈ Resrndmax(s2, o) there exists Z1 ∈ Resrndmax(s1, o) such that:
prob(SC(zs2,o)) = prob(SC(zs1,o))

Theorem 2. On RPLTS processes, for all ∗ ∈ {rp, nd, np} it holds that:
∼PB ⊆ ∼PTe-��,∗

5.2 Relationships among the RPLTS Testing Equivalences

Our second result is concerned with the relationships among the discriminating
powers of ∼PTe-��,rp, ∼PTe-��,nd, and ∼PTe-��,np, which will help us investigat-
ing the strictness of the inclusions of Thm. 2.

First of all, we observe that ∼PTe-��,np is included both in ∼PTe-��,rp and
in ∼PTe-��,nd, because RPLTS tests and LTS tests are special cases of NPLTS
tests. Both inclusions are strict, as shown in the upper part of Fig. 3, where the
NPLTS test yields � = 0.75 and � = 0.25 in the first interaction system and
� = � = 0.5 in the second one. We remark the need of both internal nondeter-
minism and probabilities in the distinguishing test. A linear test succeeding after
performing ā, b̄, and c̄ would not be able to tell apart s3 and s4. Likewise, those
two states would not be distinguishable by a test obtained from the previous one
by replacing the c̄-transition with a probabilistic choice between that transition
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Fig. 3. Processes and tests illustrating the strictness of the inclusions of Thm. 3/Cor. 1

and a terminal/success state, or introducing a nondeterministic choice through
a further b̄-transition to a terminal/success state after the ā-transition.

Secondly, it turns out that, in general, ∼PTe-��,rp and ∼PTe-��,nd are incom-
parable with each other. For instance, in the middle part of Fig. 3 we have that
s5 ∼PTe-��,rp s6, while s5 �∼PTe-��,nd s6 because the LTS test yields � = 1 and
� = 0 in the first interaction system and � = � = 0.5 in the second one. Notice
the necessity of internal nondeterminism in the distinguishing test. In contrast,
in the lower part of Fig. 3 we have that s7 ∼PTe-��,nd s8, while s7 �∼PTe-��,rp s8
because the RPLTS test yields � = 0.75 and � = 0.25 in the first interaction
system and � = � = 0.5 in the second one. Unlike the upper part of Fig. 3, here
internal nondeterminism is not necessary in the distinguishing test.

Thirdly, if ∼PTe-��,rp admitted only restricted RPLTS tests, then it would
include ∼PTe-��,nd, with the inclusion being strict as shown in the middle part
of Fig. 3. A restricted RPLTS (RRPLTS for short) test is such that its prob-
abilistic choices, i.e., its non-Dirac transitions, are not preceded by nondeter-
ministic choices. The proof of this fact is based on the deprobabilization of an
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RRPLTS test. This is an algorithm that performs a top-down traversal of the test
until a set of DLTS subtests is generated, which preserves the extremal success
probabilities induced by the original test.

When encountering a non-Dirac transition in the top-down traversal of the
RRPLTS test, as shown in Fig. 4 the algorithm replaces the test with as many
RRPLTS subtests – which are DLTS subtests in the final steps – as there are
ways of resolving the probabilistic choice. For simplicity, only the non-Dirac
transition, labeled with ā, originating the probabilistic choice is depicted in the
figure, but in general it could be the last transition in a computation – traversing
states where no nondeterministic choices occur – going from the initial state o of
the test to the probabilistic choice. Given a state s of the process under test, the
two formulas in Fig. 4 witness that the two convex combinations of the extremal
success probabilities induced by the n subtests respectively coincide with the
two extremal success probabilities induced by the original test.

Should a nondeterministic choice precede the considered probabilistic choice,
it would not be appropriate to generate subtests by resolving both choices. The
reason is that it would then be natural to focus on the maximum and the mini-
mum of the extremal success probabilities induced by the various subtests arising
from the resolution of the nondeterministic choice. This certainly works when
the nondeterministic choice is originated from the initial state of the test, or
from the state reached by a Dirac transition of the test that synchronizes with
a Dirac transition of the process under test. However, the synchronization of a
Dirac transition of the test with a non-Dirac transition of the process results in a
non-Dirac transition in the interaction system, for which a convex combination
(as opposed to maximum and minimum) of the extremal success probabilities of
the various subtests needs to be computed.

Fourthly, if ∼PTe-��,nd admitted only DLTS tests, then it would include
∼PTe-��,rp, with the inclusion being strict as shown in the lower part of Fig. 3.
The reason is that a DLTS test is a special case of RPLTS test in which there
are no probabilistic choices. In conclusion, we have:

Theorem 3. On RPLTS processes, it holds that:

1. ∼PTe-��,np � ∼PTe-��,nd and ∼PTe-��,np � ∼PTe-��,rp.
2. ∼PTe-��,nd and ∼PTe-��,rp are incomparable with each other.
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3. ∼PTe-��,nd �∼PTe-��,rp if only RRPLTS tests were admitted by ∼PTe-��,rp.
4. ∼PTe-��,rp � ∼PTe-��,nd if only DLTS tests were admitted by ∼PTe-��,nd.

Corollary 1. On RPLTS processes, for all ∗ ∈ {rp, nd} it holds that:
∼PB � ∼PTe-��,∗

6 Open Problems and Conjectures

In this section, we address further issues related to testing equivalences for
RPLTS processes. Rather than proving new results, the value of this section
consists of highlighting two problems that have not received attention in the
literature so far, and then proposing two conjectures for them sustained by var-
ious arguments. We hope that these discussions will help other people finding
solutions to the conjectures. We expect that their proof (or their refutation) will
shed light on the subtle interplay between probabilities and nondeterminism.

6.1 May Testing vs. Must Testing

In the case of testing LTS or NPLTS processes, it is known that must testing
equivalence is strictly finer than may testing equivalence in the absence of di-
vergence, otherwise the two equivalences are incomparable [9,12]. When testing
RPLTS processes, the relationships between ∼PTe-� (may testing) and ∼PTe-�
(must testing) are not clear, even if we restrict ourselves to NPLTS tests and we
admit τ -actions within them.

In that case, we could derive that ∼PTe-�,np ⊆ ∼PTe-�,np by exploiting the
construction used in [12] for proving an analogous result on NPLTS processes.
The purpose of that construction is to build from a given NPLTS test a dual
one, which generates all complementary success probabilities in the interaction
system. The idea is to transform every state of the test having an outgoing
ω-transition into a terminal state, and to add to any other state a τ -transition
followed by an ω-transition.

The absence of internal nondeterminism within RPLTS processes would how-
ever prevent us from concluding that the above inclusion is strict. Indeed, the
typical counterexample made out of a test succeeding after performing ā followed
by b̄, which distinguishes a process that can perform either a followed by b, or
a followed by c, from a process that can perform a and then has a choice between
b and c, is not applicable because the first process is not an RPLTS.

Such considerations lead us to conjecture that, for each of the three variants
of ∼PTe-��, its may part ∼PTe-� coincides with its must part ∼PTe-�, and hence
both coincide with ∼PTe-�� by virtue of the definition of the latter. This is
certainly true when restricting attention to fully probabilistic tests – as they
yield, when interacting with an RPLTS process, a single maximal resolution, in
which � and � necessarily coincide – or tests having exactly one nondeterministic
choice that occurs in the initial state – as can be easily proved by induction on
the number of maximal resolutions of each such test.
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Conjecture 1. On RPLTS processes, for all ∗ ∈ {rp, nd, np} it holds that:
∼PTe-�,∗ = ∼PTe-�,∗ = ∼PTe-��,∗

6.2 Characterizing RPLTS Testing Equivalences

Our findings in Sect. 5 leave open the question whether ∼PB is strictly finer
than ∼PTe-��,np or coincides with it. In the latter case, we would have that, in
the RPLTS setting, testing equivalence reaches the same discriminating power
as bisimilarity not only in the presence of an explicit copying capability within
tests [24], but also in the absence of it, provided that tests are equipped with
both internal nondeterminism and probabilities. We point out that this would
be a peculiarity of RPLTS processes, because it is known that NPLTS tests are
less powerful than bisimilarity in the case of NPLTS processes [4]. The numerous
examples of RPLTS processes that we have examined lead us to the following:

Conjecture 2. On RPLTS processes, it holds that ∼PTe-��,np = ∼PB.

As a consequence of Thm. 2, it suffices to prove that ∼PTe-��,np is included in
∼PB. This is equivalent to show that, given two states s1 and s2 of an RPLTS, if
s1 �∼PB s2, then s1 �∼PTe-��,np s2. The idea is to build a distinguishing NPLTS
test from a distinguishing formula of PML, the modal logic characterizing ∼PB

on RPLTS processes [24]. In its minimal form [14], PML comprises the constant
true, logical conjunction ·∧·, and the diamond operator 〈a〉p· where a is an action
and p is a probability lower bound. Formula 〈a〉pφ is satisfied by an RPLTS state
if an a-labeled transition is possible from that state, after which a set of states
satisfying φ is reached with probability at least p.

The proof of the conjecture appears far from being trivial. The connection
between PML and the testing approach of [24] is intuitively clear, as multiplying
the success probabilities resulting from the application of independent choice-free
tests to as many copies of the current state under test is analogous to taking
the logical conjunction of a number of formulas each starting with a suitably
decorated diamond. In contrast, our tests follow the classical theory of [10],
hence do not admit any copying capability and, most importantly, may contain
choices, which fit well together with logical disjunction rather than conjunction.

Nevertheless, on the basis of the examined examples, we have developed a
procedure that, given an appropriate PML formula φ that is satisfied by s1
but not s2, builds an NPLTS test T (φ) that should tell apart s1 and s2 (see
Fig. 5). By appropriate PML formula, we mean that φ possesses the following
three properties. First, among all the PML formulas distinguishing s1 from s2,
φ is one of those with the minimum depth, where the depth of a formula is the
maximum number of nested diamond operators occurring in the formula itself.
Second, among all the distinguishing PML formulas of minimum depth, φ is one
of those with the minimum number of conjunctions. Third, all the probability
lower bounds in φ are maximal, in the sense that, as soon as one of them is
increased, s1 no longer satisfies the resulting formula.

If depth(φ) = 1, then φ = 〈a〉1 true in our RPLTS setting, and hence T (φ)
simply has an ā-transition followed by an ω-transition. If depth(φ) ≥ 2, then
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Fig. 5. Construction of the presumably distinguishing test T (φ) based on T ′(φ′)

φ = 〈a〉p φ′ because the initial state of an RPLTS has a nondeterministic choice
among differently labeled transitions. As a consequence, T (φ) has an ā-transition
to the initial state of T ′(φ′), which is recursively built as follows.

If depth(φ′) = 1, then φ′ =
∧

1≤i≤n〈bi〉1 true, where n ∈ N≥1 and bi1 �= bi2
for i1 �= i2. In this case, T ′(φ′) has a nondeterministic choice among n transi-
tions respectively labeled with b̄1, b̄2, . . . , b̄n, each followed by an ω-transition.
If depth(φ′) ≥ 2, then φ′ =

∧
1≤i≤n(

∧
1≤j≤ki

〈bi〉pi,j φ
′
i,j), where n ∈ N≥1,

bi1 �= bi2 for i1 �= i2, and ki ∈ N≥1 for all i = 1, . . . , n with ki > 1 implying
that φ′

i,j �= true for all j = 1, . . . , ki. In this case, T ′(φ′) has a nondeterminis-

tic choice among n transitions respectively labeled with b̄1, b̄2, . . . , b̄n, with the
i-th transition reaching a distribution Δi that, for each j = 1, . . . , ki, assigns
probability pi,j to the initial state of T ′(φ′

i,j); whenever the various probabilities
pi,j do not sum up to 1, the residual probability is assigned by Δi to a terminal
state. Test T ′(φ′

i,j) simply has an ω-transition when φ′
i,j = true.

As far as the capability of discriminating s1 and s2 is concerned, there are
two critical points in the construction of T (φ). One of them is the last but one
diamond operator occurring within each subformula of φ. Due to the minimality
of φ with respect to diamond nesting depth, this is precisely a point in which
a source of non-bisimilarity arises. Thus, when depth(φ′) = 2, we add to T ′(φ′)
a transition labeled with b̄i for some subformula (

∧
1≤j≤ki

〈bi〉pi,j φ
′
i,j) having

depth 2; the transition reaches with a suitable probability q a success state (i.e.,
a state having an ω-transition) and with probability 1 − q a terminal state.

To explain the role of this additional transition, consider the two ∼PB-
inequivalent states s3 and s4 in the upper part of Fig. 3. The conjunction-free
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PML formula φ = 〈a〉0.5 〈b〉1 〈c〉1 true is satisfied by s3 but not s4. However, as
argued at the beginning of Sect. 5.2, an additional transition that introduces
both internal nondeterminism and a probabilistic choice between a success state
and a terminal one is needed in the test to be able to distinguish s3 and s4.

The other critical point is any diamond operator, preceding the last but one,
which is decorated with a probability lower bound less than 1. Due to the max-
imality of φ with respect to probability lower bounds, this is again a point in
which a source of non-bisimilarity arises. Thus, when depth(φ′) ≥ 3 and the di-
amond operator immediately preceding φ′ is decorated with a probability lower
bound less than 1, we add to T ′(φ′) a transition labeled with b̄i for some sub-
formula (

∧
1≤j≤ki

〈bi〉pi,j φ
′
i,j) having depth at least 3; as before, the transition

reaches with a suitable probability q a state equipped with an ω-transition and
with probability 1− q a terminal state.

We conclude by mentioning that an alternative proof strategy for Conj. 2 may
exploit Prop. 1 (∼PB=∼PS), Conj. 1, and the characterization of may testing
via simulation provided by [11]. However, we recall that in [11] τ -actions are
admitted, the considered probabilistic simulation is not the standard one, and
the focus is on preorders rather than equivalences.
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Abstract. In this paper we investigate distance functions on finite state
Markov processes that measure the behavioural similarity of non-bisimilar
processes. We consider both probabilistic bisimilarity metrics, and trace-
based distances derived from standard Lp and Kullback-Leibler distances.
Two desirable continuity properties for such distances are identified. We
then establish a number of results that show that these two properties are
in conflict, and not simultaneously fulfilled by any of our candidate natural
distance functions. An impossibility result is derived that explains to some
extent the fundamental difficulty we encounter.

1 Introduction

Markov processes are widely used as formal system models in the presence of un-
certainty. In the formal analysis of such models, notions of equivalence tradition-
ally play a key role [9]. However, there is an increasing interest in approximate
models, such as simplified models obtained by model abstraction, or models that
are automatically learned by statistical inference from empirical data [12,10].
When analysing the relationship between a true model and its approximation,
then equivalence clearly is too strong a criterion. Therefore, concepts of approx-
imate equivalence that generalize probabilistic bisimulation equivalence via the
introduction of bisimulation distances have received some attention [5,18,17,3,1].

It turns out however, that some of these distances violate some natural prop-
erties one would expect from a distance function that in a meaningful sense
measures the quality of approximation. As an example, consider the automaton
Mε shown in Figure 1 representing a process where a biased (ε �= 0) or unbiased
(ε = 0) coin is tossed repeatedly. For a small ε > 0 the model Mε would be
considered a good approximation of the model M0, and if a distance measure d
represents quality of approximation, then d(M0,Mε) should go to zero as ε → 0.
This property, which we will formalize as parameter continuity, is not satisfied
by the original bisimulation distances (though it turns out to be satisfied by the
discounted versions of these distances).

Parameter continuity is not the only requirement we have on a distance func-
tion. It should also be the case that when one model is a good approximation of
another model according to a given distance function, then some upper bounds
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are implied on the error incurred by using the approximation instead of the
real model. We can, thus, formulate two high-level objectives for the design of a
distance function:

O1 If (Mn)n is a sequence of approximations for a target model M, and for
increasing n, Mn is obtained by applying an increasing amount of resources
to obtain a good approximation, then d(M,Mn) → 0.

O2 In a particular use scenario for an approximate model M′, an upper distance
bound d(M,M′) < δ between M′ and the correct model M should imply
an upper bound on the error, or loss, incurred when using M′ instead of M
in the given scenario.

We here have formulated these two objectives in a deliberately vague manner
in order to emphasize that they can give rise to a variety of more concrete,
formal conditions. One aspect of objective O1 will be captured by the parameter
continuity condition illustrated by Figure 1, and formally defined in Section 4.1
below. Parameter continuity matches the informal description of O1 in the sense
that if the correct model is M0, then models obtained by an increasing amount
of approximation effort (e.g., learned or constructed from an increasing amount
of empirical data) will be of the form Mε with decreasing ε.

Objective O2 was the main design criterion in the development of the proba-
bilistic bisimulation metrics: a bound on the probabilistic bisimulation distance
implies the same bound on the difference in probability for all properties de-
finable in certain formal languages. We follow the same approach, and partly
capture the broad objective O2 by a formal condition we will call property con-
tinuity.

O1 and O2 are conflicting objectives. Each one, individually, has a trivial so-
lution: O1 will be satisfied by a “minimal” distance that is constant zero (we
will allow distances that are not metrics, and where non-identical models can
have distance zero). O2, on the other hand, is satisfied by any “maximal” dis-
tance, where any two non-identical models have the maximal possible distance,
typically 1 or ∞. The challenge, then, is to find distances that in a meaningful
manner balance O1 and O2.

In this paper we investigate how a number of different distance functions per-
form with regard to the criteria of parameter and property continuity. Besides
the existing bisimulation distances, our main interest is with trace-based dis-
tances that measure the distance between automata only as a function of the

0.5− ε

0.5− ε

0.5 + ε

0.5 + ε

H T

qinit

Fig. 1. Biased coin model Mε
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probability distributions over infinite sequences defined by the automata. We
here study several constructions of distance measures derived from the standard
Lp and Kullback-Leibler distances. It will turn out that the conflict between O1
and O2 is not fully resolved by any of our candidate distance measures, and we
will derive an impossibility result that explains to some extent the fundamental
difficulty we encounter.

2 Preliminaries

Throughout, Σ denotes a finite alphabet; Σn, Σ∗, Σω denote the sets of all
strings of length n, all finite strings, and all infinite strings, respectively. A
finite string w ∈ Σ∗ defines the cylinder set wΣω ⊆ Σω. This is just the set
of all infinite strings with prefix w. Let Cyl denote the set of all cylinder sets.
Cyl is the basis of the standard topology O(Σω) on Σω, i.e., open sets in this
topology are just unions of cylinder sets. Furthermore, the cylinder sets generate
the σ-algebra A(Σω) on Σω.

The basic automaton model we use in this work is that of a Labeled Markov
Chain, or, more specifically, state-labelled, discrete time Markov chain.

Definition 1. LMC A labeled Markov chain (LMC) over Σ is a tuple M =
〈Q,Σ,Π, π, L〉, where

– Q is a finite set of states,
– Π : Q → [0, 1] is an initial probability distribution with

∑
q∈Q Π(q) = 1,

– π : Q × Q → [0, 1] is the transition probability function such that for all
q ∈ Q,

∑
q′∈Q π(q, q′) = 1.

– L : Q → Σ is a labeling function

If Π(qinit) = 1 for some unique initial state qinit of Q, then we denote M also as
〈Q,Σ, qinit, π, L〉. In contexts where the initial distribution Π does not matter,
we also simply consider the structure 〈Q,Σ, π, L〉 as a LMC.

An LMC is deterministic if a state qinit ∈ Q as described above exists, and
for all q ∈ Q, σ ∈ Σ there exists at most one state q′ ∈ Q with π(q, q′) > 0 and
L(q′) = σ.

According to the preceding definition, we assume that each state is labelled
with a unique symbol from Σ, not by a subset of a set of atomic propositions
AP, as, e.g., in [2]. Clearly, by taking Σ = 2AP , Definition 1 also accommodates
this alternative view of labeled Markov chains.

An LMC defines for each n a probability distribution over Qn, which induces
via the mapping qi1 . . . qin �→ L(qi1) . . . L(qin) a probability distribution on Σn.
Via standard measure-theoretic constructions, these distributions define a unique
distribution on A(Σω), which we denote by PM. When the initial distribution
Π of M is re-defined to assign probability one to q ∈ Q, then we denote the
distribution defined by the resulting LMC by PM,q. This can be simplified to
Pq, when the underlying structure 〈Q,Σ, ·, π, L〉 is clear from the context.
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Linear-time properties related to traces of the model can be expressed in
linear-time temporal logic (LTL) enriched also with the derived temporal opera-
tors � (always) and ♦ (eventually). The fragment of LTL obtained by omitting
the until operator ϕ1Uϕ2 is called bounded LTL (BLTL).

3 From Equivalence to Distance

The most fundamental approach to comparing system models is by means of
concepts of system equivalence. For non-probabilistic system models, the ba-
sic tools here are bisimulation and trace equivalence. Adapted to probabilistic
system models, this gives rise to the following two notions of equivalence.

Definition 2 (Probabilistic Bisimulation [9]). Let M = 〈Q,Σ,Π, π, L〉 be
an LMC. A probabilistic bisimulation on M is an equivalence relation R on Q
such that for all states (q1, q2) ∈ R:

– L(q1) = L(q2).
– π(q1, C) = π(q2, C) for each equivalence class C ∈ Q/R.

States q1 and q2 are bisimulation-equivalent (or bisimilar), denoted q1 ∼ q2, if
there exists a bisimulation R on M such that (q1, q2) ∈ R.

Definition 3 (Probabilistic Trace Equivalence). Two states q1 ∈ M1, q2 ∈
M2 are probabilistic trace equivalent, denoted q1

T∼ q2, if PM1,q1 = PM2,q2 .

Equivalence often is too strong a condition when comparing system models.
We therefore also need quantitative measures that allow us to determine whether
one system very closely resembles another system, without being completely
indistinguishable in the sense of an equivalence relation. We study such measures
given in the form of distance functions, where small distance indicates similarity,
and zero distance means equivalence.

Thus, we consider distance functions d that map pairs of states to non-negative
numbers: d : (q1, q2) → R≥0∪{∞}. The only condition we always require is that
d(q, q) = 0. If d < ∞, d is symmetric and satisfies the triangle inequality, then d
is called a pseudo-metric. If also q1 �= q2 ⇒ d(q1, q2) > 0, then d is a metric. We
note that as a measure of approximation quality, non-symmetric distances can
be quite natural, because here the two arguments of the distance function can
have distinct roles: one being the approximation, and one being the “real” model
that is approximated. For example, if φ expresses a crucial safety property, and
M1,M2 are LMCs with PM1(¬φ) = 0 and PM2(¬φ) = 10−5, then M2 may be
considered a good (i.e., safe) approximation of M1, but not vice-versa.

A distance function d is consistent with bisimilarity if d(q1, q2) = 0 ⇔ q1 ∼ q2;

it is consistent with trace equivalence if d(q1, q2) = 0 ⇔ q1
T∼ q2. If a distance is

consistent with trace equivalence, then the implication q1 ∼ q2 ⇒ d(q1, q2) = 0
still holds, but not the converse.

We next introduce two types of distance functions. First we consider distance
functions that are quantitative extensions of bisimulation equivalence, and then
distance functions that extend trace equivalence.
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3.1 Probabilistic Bisimilarity Metric

The bisimilarity pseudometric was originally introduced by means of logical ex-
pressions that are evaluated to real numbers at system states according to a
functional semantics [5,18]. The distance of two states then is defined as the
supremum over all logical expressions of the differences of function values. Al-
ternative characterizations as the fixedpoint of monotone operators on pseudo-
metrics have been developed in [17,3,1].

However, there are some differences in the assumed underlying system models
in these papers, and the literature does not fully establish an equivalence of all
available versions of bisimilarity distance for the LMC models we here use. In
the following we therefore review one particular formalization of the bisimilarity
pseudometrics in terms of couplings.

The definitions below follow the style traditionally used in the bisimulation
context in that a distance is defined between states q1, q2 in a single underlying
model M. There is just a minor conceptual difference with no technical impli-
cations between this perspective, and the view that each qi is embedded in its
own model Mi.

Given two probability measures μ, ν on Q, we use the notation J(μ, ν) to
denote the set of all probability measures on Q × Q that have μ and ν as the
marginals on the first, respectively second, component.

Definition 4 (Coupling). Let M = 〈Q,Σ, π, L〉 be a finite LMC. The Markov
chain C = 〈Q×Q,Σ ×Σ,ω, L〉 is called a coupling for M if, for all q1, q2 ∈ Q,

1. ω((q1, q2), ·) ∈ J(π(q1, ·), π(q2, ·)), and
2. L(q1, q2) = (L(q1), L(q2)).

A coupling for M can be seen as a probabilistic pairing of two copies of M
running synchronously, although not necessarily independently.

Given a coupling C for M, and a discount factor λ ≤ 1, we define Γ C
λ : [0, 1]Q×Q

→ [0, 1]Q×Q for d : Q× Q → [0, 1] and q1, q2 ∈ Q, as follows:

Γ C
λ (d)(q1, q2) =

⎧⎨⎩1 if L(q1) �= L(q2)

λ ·
∑

u,v∈Q

d(u, v) · ω((q1, q2), (u, v)) if L(q1) = L(q2)

The operator Γ C
λ has a unique least fixedpoint [1], which we denote by γC

λ .
Each γC

λ is a distance function on Q. The bisimulation distance is obtained by
taking the minimum over all possible couplings:

db,λ := min{γC
λ | C coupling for M}. (1)

The minimum here is taken pointwise at each argument (q1, q2). It is shown
in [1] that db,λ is well-defined, as the minimum on the right of (1) is attained.
Furthermore, there is a coupling that minimizes γC

λ(q1, q2) simultaneously for all
(q1, q2). We here use the extra subscript b to distinguish this bisimilarity distance
more clearly from other distance functions we will also consider in the sequel.
db,λ is consistent with probabilistic bisimilarity.
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3.2 Trace-Based Distances

A distance d is trace-based, if d(q1, q2) is a function only of Pq1 and Pq2 . The
measure-theoretic construction of distributions Pq on Σω is essentially a limit of
finite-dimensional distributions on Σn (n ∈ N). In a similar manner, it is natural
to construct distances between distributions on Σω as a limit of distances on
distributions on Σn. There are, however, several possible ways of doing this.
We consider the following three canonical constructions. If d(n) is a distance
function for distributions on Σn (n ∈ N), we define induced distance functions
for distributions on Σω as

– (limit) d∞ := limn→∞ d(n)

– (per-symbol distance; limit average) dps := limn
1
nd

(n)

– (discounted sum) dλ :=
∑

n≥1 λ
nd(n) (λ < 1)

For all three constructions it holds that symmetry and triangle inequality are
preserved, i.e., if all the d(n) possess these properties, then so do dλ, d∞, and
dps (provided the limits exist).

The limit and the per-symbol distances are opposite in nature to the dis-
counted sum distances: the latter emphasizes the differences in the distribution
of initial segments w ∈ Σn of s = ws′ ∈ Σω, whereas the first two are most
sensitive to the distribution of the infinite tail s′.

In the following P1, P2 always denote probability distributions on Σω. We are
mostly concerned with distributions Pi that are defined by states qi in LMCs
Mi, i.e., Pi = Pqi . However, many of our general considerations also apply to
arbitrary distributions Pi. If Pi is of the form Pqi for some qi ∈ Mi, then we say
that Pi is generated by an LMC.

Pi induces for each n ∈ N a distribution P
(n)
i on Σn. In order to avoid

notational clutter, we suppress the superscript (n) to distinguish P
(n)
i from Pi.

Which probability space we assume for Pi in a given context will be implicit
from the arguments of Pi().

In this paper, we consider the following standard distance functions between
distributions P1, P2 on Σn:

– (Kullback-Leibler distance) d
(n)
KL(P1, P2) :=

∑
w∈Σn P1(w) log

P1(w)
P2(w)

– (Lp-distance) d
(n)
Lp

(q1, q2) := (
∑

w∈Σn | P1(w) − P2(w) |p)1/p

For Lp-distances we focus our attention on p = 1 (total variation distance),
p = 2 (Euclidean distance), and p = ∞ (Maximum distance). The distance dpsKL

is well-known in information theory, and there usually called the divergence-rate.
An important tool in the analysis of the Kullback-Leibler distance is an ad-

ditivity property [8, Chapter 2], which adapted to our context can be stated as:

d
(n+1)
KL (P1, P2) = d

(n)
KL(P1, P2) +

∑
w∈Σn

P1(w)
∑
σ∈Σ

P1(σ|w) log
P1(σ|w)
P2(σ|w)

. (2)
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Also important is the following relationship between dKL and dL1 :

d
(n)
KL ≥

(d
(n)
L1

)2

2
. (3)

(see [16] for this and further, sharper, bounds). A direct implication is that for
all A ⊆ Σn

|P1(A) − P2(A) |≤
√
d
(n)
KL(P1, P2)/2. (4)

For all definitions of distances as limits one needs to verify that the limits
actually exist in order to ensure that the distances are well-defined. The following
table summarizes some relevant facts:

KL L1 L2 L∞
dλ Lemma 1 < ∞ < ∞ < ∞
d∞ Lemma 1 < ∞ ? ?
dps Prop. 1 ≡ 0 ≡ 0 ≡ 0

Here ’< ∞’ means that the distance is well defined and finite. For the dλLp

distances this is the case because the d
(n)
Lp

are bounded by a common constant

for all n. For L1 one furthermore has that d
(n)
L1

is monotonically increasing in n,

which entails d∞L1
< ∞. d

(n)
L2

and d
(n)
L∞ are not monotone in n. From Proposition 2

below it follows that d∞L2
, d∞L∞ will be not very useful even if guaranteed to be

well-defined. We therefore do not analyse their exact status further.

The d
(n)
Lp

being bounded, it is also immediate that the dpsLp
are identically zero,

denoted ≡ 0 in the table. We will not consider these distances further.
We now turn to the limiting behavior of d

(n)
KL, where the situation is a little

more intricate.

Lemma 1. (i) d
(n)
KL(P1, P2) is monotonically increasing for all P1, P2.

If P1, P2 are generated by LMCs, then one of the following cases holds:

(iia) There exists an n > 0 and w ∈ Σn with 0 = P2(w) < P1(w), so that

d
(m)
KL (P1, P2) = ∞ for all m ≥ n.

(iib) d
(n)
KL(P1, P2) ∈ O(n)

From this Lemma it follows that dλKL and d∞KL are well-defined, but possibly
infinite.1 Furthermore, if case (iib) holds, then dλKL is finite.

Turning to the per-symbol distance, we first obtain from Lemma 1 that if the
Pi are generated by LMCs, and case (iia) of the lemma does not hold, then

0 ≤ lim inf
n

1

n
d
(n)
KL(P1, P2) ≤ lim sup

n

1

n
d
(n)
KL(P1, P2) < ∞.

To ensure that dpsKL is well-defined, one has to establish that the lim inf and
lim sup are equal in this equation. The question of this equality, i.e., the problem

1 The proof of this lemma and subsequent results can be found in the online appendices
for this paper available at people.cs.aau.dk/~jaeger/publications.html

people.cs.aau.dk/~jaeger/publications.html
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of the existence of the divergence rate, is non-trivial, and has received consid-
erable attention in the literature. [13] gives examples of stochastic processes for
which the divergence rate does not exist, but also states that it exists when
P1, P2 are generated by Hidden Markov Models (HMMs). Since LMCs are a
special type of Hidden Markov Models, this would provide the solution to our
problem. However, no proof of this statement is given in [13]. Positive results on
the existence of the divergence rate for several classes of Markov processes can be
found in [11] and [7, Chapter 10]. These results do not cover the case of HMMs
or LMCs, however. In contrast, [6,14] specifically consider the class of HMMs,
but the results of [6] applied to our problem will only lead to the trivial bound

lim supn
1
nd

(n)
KL(P1, P2) ≤ ∞, and [14] is concerned with models with continuous

observation spaces.
We will not solve the question of the existence of dpsKL in full generality here.

In the following, we only consider the case of deterministic LMCs. This case not
only greatly facilitates the theoretical analysis, but the proof of the following
Proposition also leads to an efficient way of computing dpsKL.

2

Proposition 1. Let P1, P2 be defined by deterministic LMCs M1,M2. Then

limn 1/n d
(n)
KL(P1, P2) exists.

In light of [13] it is strongly conjectured that the existence of dpsKL(P1, P2)
also holds for nondeterministic LMCs. In the following, all statements relating
to dpsKL are implicitly restricted to those cases where dpsKL is well-defined.

Having defined several candidate trace-based distances, we first check which
ones are consistent with trace equivalence.

Proposition 2. Distances are or are not consistent with trace equivalence, as
indicated by y (yes), respectively n (no), in the following table:

KL L1 L2 L∞
dλ y y y y
d∞ y y n n
dps n

For d∞L2
and d∞L∞ the proposition is shown by considering the automata of

Figure 1: denote by qε the initial state of automaton Mε. Then one obtains
that for all ε d∞L2

(M0,Mε) = d∞L∞(M0,Mε) = 0. Not being able to measure
any distance between different Mε models makes these distance measure clearly
unsuitable for our purpose, and we will not consider them any further.

According to Proposition 2, also dpsKL is not consistent with trace equivalence.
An example illustrating this point is given by Figure 2. It shows a (deterministic)
LMC Mk,p parameterized by k (length of an initial sequence of a-labeled states),

2 We note that the efficient computability of the finite-dimensional d
(n)
KL , as well as the

limits d∞KL and dpsKL is a different problem than the computation of relative entropies
for probabilistic automata, as investigated by [4]. The automata investigated in
this latter work define probability distributions over Σ∗, and the Kullback-Leibler
distance therefore becomes the infinite sum

∑
w∈Σ∗ P1(w) log(P1(w)/P2(w)).
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Fig. 2. The automata Mk,p

and p (the indicated transition probability). Consider the case k = 1. Let p �= p′,
and q, q′ the initial states of M1,p and M1,p′ , respectively. Then one obtains

that d
(n)
KL(q, q

′) = p log(p/p′) + (1 − p) log((1 − p)/(1 − p′)) is constant for all n,
so that dpsKL(q, q

′) = 0.
Even though dpsKL here also fails to distinguish different models Mk,p and

Mk,p′ , this failure is much less significant than the failure of d∞L2
and d∞L∞ for the

models Mε. The Mk,p are indeed only distinguishable by their initial behavior,
but indistinguishable in their infinitary, ergodic behavior. If one is primarily
concerned with the limiting behavior of systems, then d(q, q′) = 0 is appropriate.
For M0 and Mε of Figure 1 the ergodic behaviors are characterized by a different
frequency of H and T , and dpsKL(q0, qε) = 0.5 log(0.5/(0.5+ε))+0.5 log(0.5/(0.5−
ε)) appropriately reflects this.

We therefore still consider dpsKL as a meaningful distance. Even if we insist on
consistency with trace equivalence as a necessary property for a distance, dpsKL

remains relevant for the following reason: if d is a distance that is consistent
with trace equivalence, then any mixture αd + (1 − α)d′ (0 < α < 1) of d
with another distance d′ still is consistent with trace equivalence. Thus, even if
dpsKL may not satisfy our demands for a stand-alone distance, it can still be a
very useful component in a distance defined as a mixture. We will return to the
construction of distances as mixtures in Section 6.

We here have considered constructions of distance functions for distributions
on Σω from distance functions on Σn. Of course, one may also directly define
distances on Σω using integrals rather than sums. For example, one may define

dKL(P1, P2) =

∫
Σω

f1(s) log
f1(s)

f2(s)
dμ(s),

where the fi are density functions for Pi relative to the reference measure μ.
For this, however, according to the Radon-Nikodym theorem, we first need a
reference measure μ, so that the Pqi are both absolutely continuous with respect
to μ. In general, it will be impossible to find a natural μ that serves this pur-
pose for all relevant Pi. However, one can work around this problem by letting
μ = 1/2(P1 + P2). Distances defined in this manner, however, will fail our first
desirable property, introduced in the following section.
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4 Main Properties

4.1 Parameter Continuity

We begin by giving a general formalization of the intuition that as ε → 0 in
Figure 1, the distance between the corresponding states of M0 and Mε should
go to zero.

Let π be a transition probability function on a state set Q. A sequence (πn)n
of transition probability functions on Q s-converges against π, denoted πn

s→ π,
if

(i) ∀n∀q, q′ ∈ Q : πn(q, q
′) = 0 ⇔ π(q, q′) = 0

(ii) ∀q, q′ ∈ Q : πn(q, q
′) → π(q, q′) (n → ∞)

We call this s-convergence, because condition (i) requires that the functions
in the sequence (πn) all have the same set of support as π. In other words, we
do not allow a sequence of non-zero transition probabilities to converge to zero.

Definition 5. A distance function d is parameter continuous, if for any labeled
Markov chain M = 〈Q,Σ, qinit, π, L〉, and any sequence πn

s→ π the following
holds: for Mn := 〈Q,Σ, qinit, πn, L〉, P := PM,qinit , and Pn := PMn,qinit it holds
that limn→∞ d(Pn, P ) = limn→∞ d(P, Pn) = 0.

Note that we are considering potentially non-symmetric distance functions,
which is why we have the requirements both for the limit of d(Pn, P ) and
d(P, Pn).

Parameter continuity in the sense of this definition captures an important as-
pect of the informal objective O1 from Section 1. We only consider s-convergent
sequences of transition probabilities in this definition, because a stronger require-
ment that also applies to sequences of transition probabilities εn → 0 would be
immediately inconsistent with objective O2, as formalized by LTL-continuity
below: consider the coin model of Figure 1, but now let the transition proba-
bilities into the H state be 1 − ε, and the transition probabilities into T be ε.
For the LTL property ♦T we then have P (♦T ) = 1 in all Mε with ε > 0, and
P (♦T ) = 0 in M0. Thus, if we required that d(Mε,M0) → 0 as ε → 0, then an
upper bound on the distance between models could not imply an upper bound
on the probability difference for LTL formulas.

The following Proposition summarizes parameter continuity properties of se-
lected distances. We do not consider any more those trace-based distances that
from Proposition 2 turned out to be uninteresting.

Proposition 3. Distances are or are not parameter continuous, as indicated by
y (yes), respectively n (no), in the following tables:

KL L1 L2 L∞
dλ y y y y
d∞ n n
dps y

db,λ
λ = 1 n
λ < 1 y
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The negative result for db,1 is obtained from a characterization of db,1 in terms
of the reachability probability in couplings C of a state (q1, q2) with L(q1) �=
L(q2) [3,1]. Applied to the models Mε of Figure 1, this characterization shows
that db,1(q0, qε) = 1 for all ε > 0.

The negative results for d∞KL and d∞L1
are also obtained by considering the

models Mε, where one again obtains that distances between M0 and Mε are
given by the maximal possible values: for all ε > 0 d∞KL(q0, qε) = ∞, d∞L1

(q0, qε) =
2.

4.2 Property Continuity

In the following, we call any measurable subset ϕ ⊆ Σω a property. Thus, “prop-
erty” is the same as “event” in standard probability theoretic language. We
prefer the term property here, because in the present context we view ϕ rather
as a property of a system behavior than as an observed event, and it will later
be more natural to speak about LTL-definable properties, than LTL-definable
events.

Definition 6 (Φ-continuity). Let ϕ ⊆ Σω be a property. A distance d is
ϕ-continuous, if

∀ε > 0 ∃δ > 0 ∀P1, P2 : d(P1, P2) ≤ δ ⇒ |P1(ϕ) − P2(ϕ)| ≤ ε. (5)

If Φ ⊂ 2Σ
ω

is a class of properties, then d is Φ-continuous, if d is ϕ-continuous
for all ϕ ∈ Φ.

If d is Φ-continuous, then the δ-bound on d(P1, P2) needed to ensure that
|P1(ϕ) − P2(ϕ)| ≤ ε will depend on ϕ. In the following definition these bounds
are required to be uniform for all ϕ.

Definition 7 (Uniform Φ-continuity). Let Φ ⊂ 2Σ
ω

be a class of properties.
A distance d is uniformly Φ-continuous, if

∀ε > 0 ∃δ > 0 ∀ϕ ∈ Φ, ∀P1, P2 : d(P1, P2) ≤ δ ⇒ |P1(ϕ) − P2(ϕ)| ≤ ε. (6)

The following lemma is a straightforward, but useful observation.

Lemma 2. Let d1, d2 be two distance function, such that there exists a contin-
uous function f with f(0) = 0, and d1 ≤ f(d2). Then, for any Φ: (uniform)
Φ-continuity of d1 implies (uniform) Φ-continuity of d2.

According to (3) Lemma 2 applies to d1 = d
(n)
L1

and d2 = d
(n)
KL with f(x) =√

2x. Since f does not depend on n, the same also is true for d1 = d∞L1
and

d2 = d∞KL. Thus, proving (uniform) Φ-continuity for d∞L1
is sufficient to also

prove it for d∞KL.

Lemma 3. A BLTL-definable property φ ⊆ Σω is a finite union of cylinder
sets. A distance d is (uniformly) BLTL continuous iff it is (uniformly) Cyl-
continuous.
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The first statement in this lemma follows from a straightforward induction
on BLTL formulas. The second statement then is a direct consequence of the
definitions. Combining Lemma 3 with the fact that measures on Σω are uniquely
defined by the measures of cylinder sets, one obtains:

Lemma 4. BLTL-continuity implies consistency with trace equivalence.

We now formulate our main results on property continuity.

Proposition 4. Distances are or are not uniformly BLTL continuous, BLTL
continuous, or not BLTL continuous as indicated by uy, y, respectively n, in the
following tables:

KL L1 L2 L∞
dλ y y y y
d∞ uy uy
dps n

db,λ
λ = 1 uy
λ < 1 y

Proposition 5. Distances are or are not uniformly LTL continuous, LTL con-
tinuous, or not LTL continuous, as indicated by uy, y, respectively n, in the
following tables:

KL L1 L2 L∞
dλ n n n n
d∞ uy uy
dps n

db,λ
λ = 1 uy
λ < 1 n

The negative results for the dλ distances are established by again considering
the automata Mk,p of Figure 2, and the LTL sentence ♦b. Let p1 �= p2, and
Pk,i the distribution defined by Mk,pi (i = 1, 2) Then, for all k: | Pk,1(♦b) −
Pk,2(♦b) |= | p1 − p2 |. On the other hand, for all discounted distances, and all
δ > 0, there exists a k such that d(Pk,1, Pk,2) < δ.

According to Proposition 5, d∞KL, d
∞
L1

and db,1 have very strong property con-
tinuity characteristics. However, according to Proposition 3, this comes at the
price of not fulfilling objective O1.

Comparison of Propositions 3 and 5 shows that so far we have failed to con-
struct a distance function implementing both our objectives. In the following
section we will see that to some extent this is due to a fundamental limitation.

5 Impossibility Results

The proofs of the positive results expressed by Propositions 4 and 5 are not based
on the concrete logical characterizations of property classes LTL and BLTL, but
on the underlying topological and measure-theoretic structure of these proper-
ties. This is not surprising, since the definitions of the distance measures we have
been considering also are based on general measure-theoretic concepts, without
reference to linear temporal logic.
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It is therefore tempting to try to construct on a slightly broader topological
basis also a distance measure that is both parameter- and LTL-continuous. This
approach also suggests itself because of the fact that LTL-definable properties
still have a quite simple topological structure: any LTL-definable set A ⊆ Σω is
a Boolean combination of Gδ-sets, where a Gδ-set is a countable intersection of
open sets [15, Theorem 5.2]. From this it follows that for LTL-continuity of d it
would be enough to show that d is continuous for Gδ-sets.

However, as we now show, it is even impossible to obtain continuity for all
open sets in conjunction with parameter continuity.

Proposition 6. There exists an open set O, such that there does not exist a
distance function d that is parameter continuous and O-continuous.

The open set O constructed in the proof of the preceding theorem is not LTL-
definable. The theorem, therefore, only delimits the possibilities of obtaining
parameter continuous and LTL-continuous distance functions by purely topo-
logical and measure-theoretic constructions. However, the proof of Proposition 6
also directly leads to the following:

Proposition 7. There does not exist a distance function d that is parameter
continuous and uniformly BLTL-continuous.

Thus, we find that uniform (B)LTL-continuity is inconsistent with parameter
continuity. However, uniform continuity is a very strong demand to begin with,
so the main objective of combining parameter continuity and LTL-continuity still
could be feasible. In the next section we show that this is indeed the case. Before
we give a concrete example, we establish some general results about mixtures of
distance functions.

6 Mixture Constructions

In Section 3 we justified our continued interest in the dpsKL distance in spite of
the fact that it is not consistent with trace equivalence by its possible use as a
component in a mixture of distances.

Definition 8. Let n ∈ N∪{∞}, and for i = 1, . . . , n: αi ∈ [0, 1] with
∑

i αi = 1,
and di a distance function. Then d :=

∑
i αidi is called a mixture of the di. If

n < ∞, then d is a finite mixture.

It is well-known that mixtures of distances preserve essential metric properties
such as symmetry and the triangle-inequality. In the following we summarize
to what extent the distance properties we are studying are preserved. We say
that a property of a distance is preserved under mixtures, if a mixture d has the
property whenever all its constituent di have the property. A property is strongly
preserved if d has the property whenever at least one di has the property. The
following Lemma summarizes the relevant preservation properties.

Lemma 5. The following properties are preserved under mixtures:
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– The left to right direction d(P1, P2) = 0 ⇐ q1 ≡ q2 (≡∈ {∼,
T∼}) of consis-

tency with bisimulation- or trace-equivalence.

– Parameter continuity

The following properties are strongly preserved under mixtures:

– The right to left direction d(P1, P2) = 0 ⇒ q1 ≡ q2 (≡∈ {∼,
T∼}) of consis-

tency with bisimulation- or trace-equivalence.
– Φ-continuity and uniform Φ-continuity.

We next investigate two different distances that are constructed as mixtures.

6.1 Expected LTL Distance

Definition 9. For φ ∈ LTL define

dφ(P1, P2) := |P1(φ) − P2(φ)|.

Let φ1, φ2, . . . be an enumeration of LTL, αi ∈ (0, 1) with
∑

i αi = 1, and define

dQ :=
∑
i

αidφi .

dQ(P1, P2) can be interpreted as the expected difference |P1(φ) − P2(φ)| for
LTL formulas that are randomly generated according to probabilities αi. As an
empirical evaluation measure for how well a learned system model approximates
the LTL properties of a true system model M1, this distance was used in [10].
The following proposition now states that with dQ we have the first distance
that satisfies both of our main objectives.

Proposition 8. dQ is parameter and LTL continuous.

Even though dQ satisfies our main objectives, it clearly still has some signif-
icant shortcomings. First, the concrete values of dQ(P1, P2) depend very much
on the coefficients αi. When the αi are just more or less arbitrarily set in a
synthetic construction of dQ, then the actual values of dQ will lack a mean-
ingful interpretation. If, however, αi represents a meaningful probability of φi

(for example, the expected frequency with which φi will be checked in a given
application context), then dQ(P1, P2) is interpretable as the expected deviation
between LTL-probabilities computed in M1 and M2.

Second, dQ poses computational problems. The only currently available ap-
proach to (approximately) computing dQ is to compute dφi for a sample i =
i1, . . . , ik. If αi can be computed for a given φi, and the φij in the sample are all

distinct, then dQ is bounded by [
∑k

j=1 αijdφij
,
∑k

j=1 αijdφij
+ (1 −

∑k
j=1 αij )].

If the αi are only implicitly given by a random generator for LTL formulas, then
dQ can be estimated by the empirical distance 1/k

∑k
j=1 dφij

.
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6.2 KL Mixture

A second mixture construction we consider is

dmix
KL := αdλKL + (1 − α)dpsKL.

The motivation for dmix
KL is that it combines a distance function that is mostly

sensitive to differences in the initial behavior of a system (dλKL), and a distance
that measures differences in the long-run, ergodic behavior (dpsKL).

dmix
KL is consistent with trace-equivalence, parameter continuous, and inherits

the BLTL-continuity of dλKL. However, d
mix
KL is not LTL continuous (as expected

from Proposition 6, since dmix
KL is a purely measure theoretic construction). Con-

cretely, dmix
KL still is subject to the counterexample described for the dλ in con-

nection with Proposition 5.

7 Conclusion

In this paper we have investigated a number of distances on finite state Markov
Processes, which measure the behavioural similarity of non-bisimilar processes.
We have considered both bisimulation distances and trace-based distances. In
particular, we focused on several constructions derived from the standard Lp

and Kullback-Leibler distances. The continuity aspects for which we have tested
the distances are natural properties one would expect from a distance that in
a meaningful sense measures the relationship between a true model and its ap-
proximations. On one hand we study the parameter continuity, which guarantees
that the distances are continuous in the transition probabilities. On the other
hand we analyzed the concept of a good approximation of a system in the light
of a given distance function. We expect from a good distance to provide us some
bounds on the error incurred by using the approximation of a model instead of
the real model in given contexts.

We demonstrated that none of the considered distances fully respects the
continuity properties that we considered. This failure is partially explained by
an impossibility result that reveals to some extent the fundamental difficulties
that one encounters when trying to achieve such complex goals.
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Abstract. We consider reachability objectives on an extension of
stochastic timed automata (STA) with nondeterminism. Decision
stochastic timed automata (DSTA) are Markov decision processes based
on timed automata where delays are chosen randomly and choices be-
tween enabled edges are nondeterministic. Given a reachability objective,
the value 1 problem asks whether a target can be reached with probabil-
ity arbitrary close to 1. Simple examples show that the value can be 1 and
yet no strategy ensures reaching the target with probability 1. In this pa-
per, we prove that, the value 1 problem is decidable for single clock DSTA
by non-trivial reduction to a simple almost-sure reachability problem on
a finite Markov decision process. The ε-optimal strategies are involved:
the precise probability distributions, even if they do not change the win-
ning nature of a state, impact the timings at which ε-optimal strategies
must change their decisions, and more surprisingly these timings cannot
be chosen uniformly over the set of regions.

1 Introduction

Stochastic timed automata (STA) were originally defined in [2,3] as a proba-
bilistic semantics for timed automata, with the motivation to rule out ‘unreal-
istic’ paths in timed automata, and therefore alleviate some drawbacks of the
mathematical model such as infinite precision of the clocks and instantaneous
events. Of course, STA also form a new stochastic timed model, interesting on
its own. Informally, the semantics of a stochastic timed automaton consists of
an infinite-state infinitely-branching Markov chain whose underlying graph is
the timed transition system associated with a timed automaton. The transitions
between states are governed by the following: first, a delay is sampled randomly
among possible delays, and second, an enabled transition is chosen randomly
among enabled ones.
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Several models combining dense-time, continuous probabilities, and nondeter-
minism have been studied [7,8,11] and most result focus on qualitative questions,
such as deciding the existence of a strategy ensuring a reachability objective with
probability 1 (see the related work section).

A model that extends stochastic timed automata with nondeterminism was
defined in [5]: the delays are random, but the choice between enabled transi-
tions is nondeterministic. For this model, optimal strategies always exist for the
time-bounded reachability problem. Yet, a simple example also shows that opti-
mal strategies do not always exist for the reachability problem: there might be
strategies to ensure a probability arbitrary close to 1 to reach a target location,
and no strategy achieving probability 1.

More generally, the value 1 problem asks whether for every ε > 0 there exists
a strategy ensuring a given objective with probability at least 1 − ε. It can be
defined in various game-like contexts, ranging from probabilistic finite automata
(PFA) to concurrent games. In most models where the agent has full information,
the value 1 problem coincides with the almost-sure problem, that is, whether
there exists a strategy to ensure a given objective with probability 1. For partial
observation models however, the value 1 problem and the almost-sure problem
often differ: for concurrent games, both are decidable [12,9], whereas the value 1
problem is undecidable for PFA [14], and decidable only for subclasses [13,10].

In this paper, we consider a probabilistic and nondeterministic version of
stochastic timed automata, called decision stochastic timed automata (DSTA),
in which delays are random but edges are selected by the player. Contrary to
most existing frameworks on stochastic and timed models, we do not assume
the distributions over delays to be exponential. We consider (time-unbounded)
reachability objectives on DSTA with a single clock. The restriction to 1-clock
DSTA derives from the fact that even for purely stochastic models without
decisions (i.e. STA), the decidability of the almost-sure reachability problem is
open, for models with at least two clocks. Using the classical region abstraction
we show that the existence of an almost-surely winning strategy is decidable for
reachability objectives on 1-clock DSTA. Interestingly, in our context, the value
1 problem does not coincide with the almost-sure problem, although the agent
has full information. The main contribution of the paper is then to prove that the
value 1 problem is decidable too. To do so, we build an ad hoc abstraction based
on a refinement of regions, and reduce to an almost-sure reachability question in
the derived finite-state Markov decision process (MDP). The correctness proof is
complex, and ε-optimal strategies are involved: first they are not uniform within
a region as actions they dictate depend on the comparison of the precise clock
value with some cutpoint. Second, and more surprisingly, these cutpoints cannot
be chosen uniformly over the set of regions.

Related Work

In stochastic timed games [7], locations are partitioned into locations owned by
three players, a reachability player (who has a time-bounded reachability ob-
jective), a safety player (who has the opposite objective), and an environment
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player (who makes random moves). In a location of the reachability or safety
player, the respective player decides both the sojourn time and the edge to fire,
whereas in the environment’s locations, the delay as well as the edge are cho-
sen randomly. For this model, it was shown that, assuming there is a single
player and the underlying timed automaton has only one clock, the existence
of a strategy for a reachability goal almost-surely (resp. with positive proba-
bility) is PTIME-complete (resp. NLOGSPACE-complete). For two-player games,
quantitative questions are undecidable. Simple examples show that even for one
player and 1-clock timed automata, the value 1 and probability 1 problems differ.
This is due to strict inequalities in guards, that prevent the player to choose an
optimal delay. We believe that our proof techniques can be adapted to solve the
value 1 problem in 1-player stochastic timed games over 1-clock timed automata.

In stochastic real-time games [8], environment nodes (in which the behaviour
is similar to continuous time Markov decision processes (CTMDPs)) and control
nodes (where players choose a distribution over actions) induce a probability dis-
tribution on runs. The objective for player 0 is to maximise the probability that
a run satisfies a specification given by a deterministic timed automaton (DTA).
The main result states that if player 0 has an almost-sure winning strategy, then
she also has a simple one which can be described by a DTA.

Markovian timed automata (MTA) consist in an extension of timed automata
with exponentially distributed sojourn time. Optimal probabilities can be ap-
proximated for time-(un)bounded reachability properties in MTA [11].

2 Definitions and Problem Statement

2.1 Timed Automata

Timed automata [1] were introduced in the early nineties. We recall the definition
and semantics of one-clock timed automata. Given a clock x, a guard is a finite
conjunction of expressions of the form x ∼ c where c ∈ N is an integer, and ∼
is one of the symbols {<,≤,=,≥, >}. We denote by G(x) the set of guards over
clock x. Often, for g ∈ G(x) a guard and t a clock value, we will write t ∈ g to
express that t satisfies the constraints expressed in g.

Definition 1. A one-clock timed automaton is a tuple (L, �0, E, I) such that: L
is a finite set of locations, �0 ∈ L is the initial location, E ⊆ L×G(x)× 2{x}×L
is a finite set of edges, and I : L → G(x) assigns an invariant to each location.

In the following, we assume all timed automata to be well-formed : for every lo-
cation � ∈ L, I(�) = ⋃

(�,g,a,r,�′)∈E g, that is, the invariant in a location coincides
with the union of the guards on its outgoing edges. This implies in particular
that the union of guards outgoing a location is an interval.

The semantics of a one-clock timed automaton (L, �0, E, I) is a timed transi-
tion system T = (S, s0, δ) where S = L × R≥0, s0 = (�0, 0) and the transition
function δ ⊆ S × (R≥0 ∪ E)× S is composed of

– Delay transitions:
(
(�, t), τ, (�, t+ τ)

)
∈ δ whenever [t, t+ τ ] ⊆ I(�)
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– Discrete transitions:
(
(�, t), e, (�′, t′)

)
∈ δ as soon as the edge e = (�, g, r, �′) ∈

E satisfies t ∈ g and if r = {x}, t′ = 0 else t′ = t.

When convenient, we will use the alternative notations (�, t)
τ−→ (�, t + τ) and

(�, t)
e−→ (�′, t′). Edge e is said enabled in state s = (�, t), whenever there exists

s′ ∈ S such that s
e−→ s′.

2.2 Decision Stochastic Timed Automata

We now introduce the concept of decision stochastic timed automaton (DSTA).
Roughly speaking, a decision stochastic timed automaton is a one-clock timed
automaton equipped with probability distributions over delays. The semantics
of DSTA is provided by an infinite-state MDP, in the spirit of [5].

In the following, given X ⊆ R≥0, we denote by Dist(X) the set of probability
distributions on X .

Definition 2. A decision stochastic timed automaton is a tuple A =
(L, �0, E, I, μ) where (L, �0, E, I) is a one-clock timed automaton and μ = (μ�,t)
is a family of distributions, one for each state (�, t) ∈ L × R≥0, and such that
μ�,t ∈ Dist(I(�) ∩ [t,+∞[).

Intuitively, for every state (�, t) ∈ S, for every interval I ⊆ R≥0, μ�,t(I) is the
probability that from (�, t) a delay d0, such that t+ d0 ∈ I, is chosen by μ.

We make some reasonable assumptions on the distributions. For every location
�, the function must satisfy the following sanity conditions:

(c1) for every t ∈ I(�), and any non-punctual interval I ⊆ I(�) ∩ [t,+∞[,
μ�,t(I) > 0; also if [t,+∞[∩I(�) �= {t}, then for any a ∈ R≥0, μ�,t({a}) = 0;

(c2) for every t < t′ ∈ I(�), and I ⊆ [t′,+∞[, μ�,t(I) ≤ μ�,t′(I);
(c3) if |I(�)| = ∞, then for every t, t′ ∈ I(�), for every a, b ∈ R≥0, μ�,t([t+a, t+

b]) = μ�,t′(t
′ + a, t′ + b);

if |I(�)| < ∞, and m = sup{t | t ∈ I(�)}, then for every t, t′ ∈ I(�), for
every a, b ∈ R≥0, μ�,t(t+

a
m−t , t+

b
m−t ) = μ�,t′(t

′ + a
m−t′ , t

′ + b
m−t′ ).

Let us comment on these conditions. First, (c1) states that the distributions are
equivalent to the Lebesgue measure: they do not assign 0 measure to interval
with non-empty interior, and do not assign positive probability to points. Then,
(c2) is a monotonicity condition: the higher the clock value, the more likely a
fixed interval is to be sampled. Last, with (c3) one assumes that distributions
depend only on the location, not on the precise clock value. More precisely, in
case the invariant is not bounded, the distributions should be equal in all states;
and if the invariant is bounded, they should coincide up to normalisation. It is
important to notice the classical exponential and uniform distributions satisfy
these three hypotheses.

Notice that stochastic timed automata (STA) [2,3] and DSTA share the
same syntax, and only differ in their semantics: STA are interpreted as purely
stochastic system whereas DSTA are interpreted as stochastic and nondetermin-
istic systems. Let A be a decision stochastic timed automaton. Its semantics is
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given in terms of an infinite state MDP (or equivalently a 1-1/2 player game),
based on the timed transition system T of the underlying timed automaton.
The set of states is composed of two copies S� and S� of S: stochastic states
S� = {〈s〉 | s ∈ S} and player states S� = {[s] | s ∈ S}. The transitions are of
the form:

– stochastic transition: 〈s〉 τ−→ [s′] if (s, τ, s′) ∈ δ;

– player transition: [s]
e−→ 〈s′〉 if (s, e, s′) ∈ δ.

The result of each transition is thus deterministic. However stochastic transi-
tions are not played in an arbitrary way, but follow the family of probability
distributions (μ�,t). Precisely, for I ⊆ R≥0 an interval, the probability from 〈�, t〉
to reach a clock value in I is given by P(〈�, t〉 τ−→ [�, t′] ∧ t′ ∈ I) = μ�,t(I).

Decisions of the nondeterministic player are specified through the notion of
strategy. A history is a finite path in the MDP, ending in a player state: 〈s0〉

τ0−→
[s′0]

e0−→ 〈s1〉
τ1−→ [s′1] · · · 〈sn〉

τn−→ [s′n]. The set of all histories is denoted Hist. A
strategy dictates the decision in states of S�, given the history so far. Formally,
a strategy is a function σ : Hist → E such that σ(〈s0〉

τ0−→ [s′0]
e0−→ 〈s1〉

τ1−→
[s′1] · · · 〈sn〉

τn−→ [s′n]) is enabled in s′n.
As pointed out in [16] in the context of continuous-time Markov decision

processes, not all strategies are meaningful. The same phenomenon appears for
DSTA, and in the following we thus restrict to so-called measurable strategies
that induce measurable sets of runs for reachability objectives.

For a fixed measurable strategy σ, and an initial state s0 ∈ S� ∪ S�, the
decision stochastic timed automaton A gives rise to a stochastic process. For a
measurable event E , we write PA

σ

(
s0 |= E

)
for the probability of E starting from

s0 and under strategy σ. Given a target set F ⊆ S� ∪S� in the DSTA, the event�F , denotes the set of paths that eventually visit F .

2.3 Problem Definition

Let A be a decision stochastic timed automaton, Goal ⊆ L and s ∈ S� ∪S�. We
define F = {〈�, t〉 | � ∈ Goal}. The value of s, with respect to the objective Goal,
is the supremum, over all strategies, of the probability from s to reach F .

Definition 3. The value of state s is valA(s) = supσ P
A
σ

(
s |= �F

)
.

The value 1 problem asks, given a decision stochastic timed automaton A, a
target set Goal ⊆ L and an initial state s ∈ S� ∪ S�, whether valA(s) = 1.
F is said limit-surely reachable from s if valA(s) = 1.

Notice that this definition is different from the almost-sure reachability problem,
which asks whether there exists a strategy σ such that PA

σ

(
s |= �F

)
= 1. From a

state with value 1, for every ε, there exists a strategy achieving probability 1− ε
to reach F , yet it does not imply that some strategy realises the objective with
probability 1. For finite-state Markov decision processes, and in many simple
frameworks, value 1 and probability 1 coincide. However, this is untrue for DSTA,
as shown in the example below.
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	0

x ≤ 1

unif

	1

exp(1) �
�

e2

e3, x ≥ 1

e4, x ≤ 1

e1, x := 0

e5

e6

Fig. 1. A simple example of decision stochastic timed automaton

Example 1. Figure 1 shows a basic example of a DSTA, where the distributions
μ are uniform in �0 and exponential with rate 1 in location �1. The smiley
location is limit-surely reachable from the initial location �0 with clock value 0.
Indeed, the idea, in order to ensure a high probability 1 − ε to reach the target
is to loop on �0 until a player state [�0, 1 − τ ] is reached (this happens almost
surely) for a small τ , and then to move to location �1. Now, the probability
from 〈�1, 1 − τ〉 to reach the target converges to 1 as τ converges to 0. Yet, no
strategy can ensure to reach the target with probability 1. This is thus a simple
example where limit-sure reachability and almost-sure reachability differ. Such
phenomena are not due to invariants, and already occur in DSTA where only
exponential distributions are allowed. Indeed, one can adapt the above example
and consider an exponential distribution in �0, while transferring the invariant
x ≤ 1 to the guard of e2.

2.4 Limit Corner-Point MDP

As an extension of timed automata, DSTA have infinitely many states, because of
continuous time. The usual technique to deal with this issue for timed automata,
is to resort to the region abstraction [1], which we recall here. For one-clock
timed automata, the number of regions is linear [15]: they all are intervals,
either punctual {c}, open and bounded (c, d), or open and unbounded (c,+∞),
for c, d ∈ N.

We write R for the set of such regions, and r denotes a typical element of R.
Beyond these classical regions, we will use pointed regions, similar to the notion

introduced for the corner-point abstraction by [6]: every bounded open region
(c, d) is duplicated into (c, d) and (c, d), with the intuitive meaning of being close
to the left limit, or to the right limit of the interval. Other regions (unbounded or
punctual) are kept as is. When a timed automaton is fixed, R denotes the set of
pointed regions, with r a typical element, and it is partitioned into: Rright (resp.
Rleft) for the set of pointed regions of the form (c, d) (resp. (c, d)), and Rplain for
punctual regions or the unbounded region. Pointed regions are equipped with a
natural total order <; for example {0} < (0, 1) < (0, 1). We say that pointed
region r′ is a successor of r if r < r′. The immediate open successor of r is the
least region r′, for the order <, that is different from r and open. The set of all
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successors of a region r is denoted −→r . A pointed region r′ is said negligible with
respect to location � and region r, if r′ ∈ −→r , r′ is punctual and I(�) ∩−→r is not.

We now define the limit corner-point MDP associated with a DSTA.

Definition 4. Given A = (L, �0, E, I, μ) a DSTA, its limit corner-point MDP
is Acp = (S, s0,Act, Δ), where

– S = S� ∪ S� is partitioned into player states and stochastic states:
S� = {[�, r] | � ∈ L, r ∈ R} and S� = {〈�, r〉 | � ∈ L, r ∈ R};

– s0 = 〈�0, {0}〉;
– Act = E ∪ E limit, where E limit is a copy of E;

– Δ consists of the following transitions:

• 〈�, r〉 τ−→ [�, r′] as soon as r′ ≥ r and r′ is not negligible w.r.t. �, and the
probabilities are uniform over all τ-successors;

• [�, r]
e−→ 〈�′, {0}〉 as soon as e = (�, g, {x}, �′) ∈ E, and r |= g;

• [�, r]
e−→ 〈�′, r〉 as soon as e = (�, g, ∅, �′) ∈ E, and r |= g;

• [�, r]
elimit

−−→ 〈�′, r′〉 as soon as r ∈ Rright, e = (�, g, ∅, �′) ∈ E, r |= g, r′ is
the immediate open successor of r, and r′ |= I(�′).

With the exception of limit-edges, the definition of the limit corner-point MDP
is natural since it mimics the behaviour of the DSTA, at the region level and
abstracting precise probabilities. Limit-edges are particular to the value 1 prob-
lem. Roughly speaking, they offer the player, from region [�, r], the possibility to
play as if the clock value was arbitrarily close to the right border of r, therefore
as if it was in r′ the immediate open successor of r. In particular, there cannot
be two consecutive transitions starting with a limit edge and staying in the same

pointed region [�, r]
elimit

−−→ τ−→ [�′, r].

Example 2. Let us illustrate Definition 4 on the example of Fig. 2 below. Its limit
corner-point MDP is represented in Fig. 3. For readability reasons we only rep-
resented states with left-pointed region for (1, 2), since the behaviour is exactly
the same from right-pointed regions.

	0 	1 	2

�
�

e0, x < 1
x := 0

e1, 0 < x < 1

e2, 1 < x < 2
x := 0

e3, 0 < x < 1 e4,
0 <

x < 1

e5 , 1 ≤ x < 2

Fig. 2. The first illustrating example
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	0, (0, 1)

	0, (0, 1)

	1, (1, 2)

	1, (0, 1)

	1, (0, 1)

	2, (1, 2)

	2, (0, 1)

	2, (0, 1)

	0, 0

	1, (0, 1)

	1, (1, 2)

	1, (0, 1)

	2, (0, 1)

	2, (1, 2)

	2, (0, 1)

�
�e1

e1

elimit
1

e3

e3

elimit
3

e4

e4

e5
e2

e0

e0

Fig. 3. The limit corner-point MDP for the example from Fig. 2

We let F = {[�, r] | � ∈ Goal} in the rest of the paper. Acp is a finite MDP,
and one can define strategies in the usual way. In the following, for s a state of

Acp, and F ⊆ S we write P
Acp
max(s |= �F) for the maximum probability, over all

strategies, to reach F from s.
Last, we introduce some notations: First, for any region r ∈ R, we define

•r ∈ Rleft ∪Rplain (resp. r• ∈ Rright ∪Rplain) with: •(c, d) = (c, d) (resp. (c, d)• =
(c, d)), •{c} = {c} = {c}• and •(c,+∞) = (c,+∞) = (c,+∞)•. Now, given
t ∈ R≥0, rleft(t) (resp. rright(t)) represents the left (resp. right) pointed region t
belongs to: if t ∈ r, then rleft(t) = •r (resp. rright(t) = r•).

3 Main Results

We now state the main results of our paper. We start with an expected result:

Proposition 1. The almost-sure reachability problem is decidable in PTIME for
DSTA.

Proposition 1 is not a consequence of the decidability result in [7]. Although our
model of DSTA can be encoded into the stochastic timed games of [7], the naive
encoding requires an additional clock, in order to prevent players from letting
time elapse. Since their decidability result applies only to stochastic timed games
with a single clock, this simple reduction is of no help here. We believe their
techniques can be adapted though. An alternative, which we take here, is to use
the region abstraction, in order to solve the almost sure reachability problem.
Details are provided Section 5.

As value 1 and probability 1 do not coincide for DSTA, the following theorem
is non trivial, and is the main contribution of this paper.

Theorem 1. The value 1 problem is decidable in PTIME for DSTA.

To obtain Theorem 1, we reduce the value 1 problem for DSTA to the almost-sure
reachability problem in the limit corner-point abstraction.
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Proposition 2. Let A be a decision stochastic timed automaton, Acp its limit
corner point abstraction, and � ∈ L a location, and t ∈ R≥0 a clock value. Then

valA([�, t]) = 1 ⇐⇒ PAcp
max([�, rleft(t)]) |= �F) = 1 and

valA(〈�, t〉) = 1 ⇐⇒ PAcp
max(〈�, rleft(t)〉) |= �F) = 1 .

Example 3. Let us illustrate the result of Proposition 2 on the example of Fig. 2,
whose limit corner-point MDP is represented on Fig. 3. Bold edges give a win-
ning strategy in the MDP for the almost-sure reachability of the smiley state.
According to Proposition 2, the set of states with value 1 for the target � in the
stochastic timed automaton, is thus (�0, [0, 1))∪(�1, [1, 2))∪(�2, [1, 2)). (Here, we
use brackets as a short-cut, rather than square brackets or angle brackets, not to
distinguish stochastic and player states.) Intuitively, an ε-optimal strategy from
〈�0, 0〉 to reach � is the following: stay in �0 until a large clock value is sampled,
then move to �1; if then the sampled clock value is above 1, move back to �0 and
iterate the same process, otherwise, proceed to �2; finally, reach � or � from �2
depending on the last sampled clock value.

Theorem 1 is a consequence of Proposition 2. To obtain a polynomial-time
algorithm, one exploits that for 1-clock decision stochastic timed automaton,
the number of regions, and thus the number of states in the limit corner-point
MDP is linear [15], and almost-sure reachability properties can be checked in
polynomial-time for finite MDP.

In order to show Proposition 2 we proceed in two steps: first, we prove it for
player states [�, t] ∈ S�. This suffices to prove it as well for stochastic states
〈�, t〉 ∈ S� thanks to the structure of the limit corner-point MDP. Given Acp,
we write W ⊆ S for the set of states from which there exists an almost-sure
winning strategy for the reachability objective. We now detail what having left
and/or right pointed region winning in the limit corner-point MDP abstraction
implies:

Proposition 3. Let r ∈ R be a region and � ∈ L a location.

– If [�, •r] ∈ W, then [�, r•] ∈ W.
– If [�, •r] ∈ W, then for every t ∈ r, valA([�, t]) = 1;
– Else, if [�, r•] ∈ W, then for every t ∈ r, valA([�, t]) < 1;
– Else, there exists ε > 0 such that for every t ∈ r, valA([�, t]) ≤ 1 − ε.

The first item is a simple observation: for every location � and region r ∈ R, any
winning strategy from [�, •r] can be mimicked from [�, r•], and is also winning
from there. Section 4 is devoted to the rest of the proof of Proposition 3.

Proposition 3 suffices to prove Proposition 2, in the case of player states.
Indeed, the second item (whose proof is in Section 4.2) shows the right-to-left
implication of Proposition 2, and the third and fourth items show the other
implication by contraposition (the proof is in Section 4.1). Remark that we can
be more specific in the third case and state: when [�, •r] /∈ W and [�, r•] ∈ W ,
then supt∈r valA([�, t]) = 1. This explains the difference between the third and
fourth items.
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Before moving to the proofs, we show an example where ε-optimal strategies
need to be conceptually complex: the cutpoint inside regions where the strategy
changes decision cannot be chosen independently of the location.

	0 	1 	2 	3

��
e1, x ≤ 1 e2, 1 ≤ x ≤ 2

x := 0

e3, x ≤ 1

e4
, x

≤ 1e
5 , x ≤

1

e7, x ≤ 1

e6, 1 ≤ x ≤ 2
e0, x ≤ 1

Fig. 4. An example where non-uniform strategies are needed

Consider the example from Fig. 4, where the implicit probability distributions
over delays are all uniformly distributed. Decisions can only be taken in locations
�0 and �2, where transitions with overlapping guards are possible. Intuitively,
from �0 to reach �, transition e1 needs to be taken, with a risk that once �1
is reached, transition e5 is triggered. Let t0 be the cutpoint in �0 such that if
t0 < t < 1, the player decides to take e1 from (�0, t). In the same way, let
t2 ∈ (0, 1) be the cutpoint in �2 such that if t2 < t < 1, the player decides to
take e3 from (�2, t). To reach a contradiction, we assume t0 = t2, and write τ
for this value. From [�2, t] with 1 − τ < t < 1, a simple calculation shows that
the probability to lose is pTlose(�2, t) = (1− t)/(2− t). Also, from [�0, t], the losing
probability is lower bounded by the probability to lose in two steps, directly
from �1, hence pTlose(�0, t) ≥ (1 − t)/(2 − t). Moreover, pTwin(�0, t) ≤ pTwin(�1, t) ≤
(1− t)pTwin(�3, t) ≤ (1− t). Hence, pTlose(�0, t) > pTwin(�0, t)/2 for all t > 1− τ , that
is PT (〈�0, t〉 |= �F ) < 2/3. This shows that F is not limit-surely reachable under
simple strategies, defined by constant mappings. Yet, the �-state is limit-surely
reachable from [�0, 0]. However, to achieve this, t0 needs to be set to a much
lower value than t2, e.g. t2 = τ and t0 = τ2.

4 Deciding the Value 1 Problem

The goal of this section is to provide a proof of Proposition 3 (and thus of
Proposition 2 and of Theorem 1). For the sake of completeness, we recall the
algorithm to compute the set of states of an MDP from which there exists a
strategy to reach a target set F almost-surely (see e.g. [4]). We denote by W the
winning states for this objective, and W� the subset of winning player states.
The algorithm that computes W computes at the same time for every player
state w ∈ W�, the largest set of safe actions Safe(w), i.e. the set of all actions
that ensure staying in W .
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– Initially: L = ∅, and for every s ∈ S�, Safe(s) = {e ∈ E ∪ E limit | ∃s e−→ s′}.
– Perform steps 1 and 2 until convergence.

• Step 1: Move to L every [�, r] from which there is no path to F via states
in S \ L only.

• Step 2: Remove from Safe([�, r]) any e such that if [�, r]
e−→ 〈�′, r′〉, there

exists [�′, r′′] ∈ L with 〈�′, r′〉 → [�′, r′′].
Move to L every [�, r] such that Safe([�, r]) = ∅.

– Return (W = S \ L, Safe).

The rest of the section is organised as follows. Subsection 4.1 establishes the
third and fourth items of Proposition 3: states whose left region is not winning
in the limit corner-point MDP, do not have value 1 in the decision stochastic
timed automaton. Then, Subsection 4.2 shows its second item: states whose left
region is winning in the limit corner-point MDP do have value 1 in the decision
stochastic timed automaton.

4.1 Non Limit-Surely Winning States

We first aim at showing the right-to-left implication in Proposition 2, by contra-

position: P
Acp
max((�, rleft(t)) |= �F) < 1 implies valA([�, t]) < 1. This corresponds

to proving the third and fourth items of Proposition 3.

Lemma 1. Let � ∈ L be a location and r ∈ R a region.

– If [�, r•] ∈ L, then there exists ε�,r > 0 such that for every t ∈ r, valA([�, t]) ≤
1 − ε�,r;

– If [�, •r] ∈ L, then for every t ∈ r, there exists ε�,t > 0 such that valA([�, t]) ≤
1− ε�,t; Moreover, one can pick non-increasing values for the ε�,t’s, that is,
ε�,t ≤ ε�,t′ as soon as t ≥ t′.

Proof (Sketch). The proof is by induction on the moment in the MDP algorithm
at which [�, r] has been moved to L. We thus define ∅ = L0 ⊆ L1 ⊆ · · · Ln = L
to describe the evolution of L during time with |Li| = i. Notice that this decom-
position is finer than steps (this is important for step 2 of the MDP algorithm).

We show one important subcase here. Assume [�, (a, b)] ∈ L because of step
2. Every transition e in the DSTA are associated with a transition e in the
MDP which leads from [�, (a, b)] to 〈�′, r′〉, and there exists 〈�′, r′〉 τ−→ [�′, r′′]
with [�′, r′′] ∈ Li. The hardest case is when r′′ = r′ = r = (a, b). Other cases
are actually easier to treat and lead to a uniform bound ε over t. Let ν�,t =
μ�,t(t, (t+ b)/2) for every t ∈ (a, b). Observe that ν�,t > 0 and is non increasing
with t ∈ (a, b), by assumption (c3) on the measure functions μ. We then set
ε�,te = ν�,t · ε�′,(t+b)/2 > 0 for all t ∈ (a, b). Note that ε�,te depends upon t. Last,

we define ε�,t = mine ε
�,t
e , the minimum over all transitions e outgoing from

[�, t]. So defined, ε�,t is positive and non increasing because ν�,t and ε′�′,(t+b)/2

are positive and non increasing. ��
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4.2 Limit-Surely Winning States

We now prove that P
Acp
max((�, rleft(t)) |= �F) = 1 implies valA([�, t]) = 1. This

amounts to show the second item of Proposition 3.

Covering Forest and Golden Paths. Let A be a decision stochastic timed
automaton, and Acp the associated limit corner-point MDP. From the almost
sure winning set of states and actions (W , Safe) of Acp, we extract a covering
forest whose roots are elements of F . Each edge of the forest from a player
state w ∈ W� to its unique parent is a transition of Acp, labelled with action
sel(w) ∈ Safe(w). Globally, for every w ∈ W�, the unique path to a root of the
forest w′

n ∈ F is a path in Acp: there are w1 · · ·wn ∈ W� and w′
1 · · ·w′

n ∈ W�
with

w
sel(w)−−−−→ w′ τ−→ w1

sel(w1)−−−−−→ w′
1 · · ·wn+1

sel(wn)−−−−−→ w′
n ,

and such a path is called a golden path in the following. Notice that many edges
emanating from stochastic states do not appear in this forest. They may lead
to states that are further from F . The intuition is that this forest represents
the ideal situation. Even if it is not guaranteed to take these ideal edges from
stochastic states, there is a chance to follow the forest towards F , and we will
show it is sufficient.

Example 4. Fig. 5 represents the covering forest, here a tree, on our running
example from Fig. 2. Remark here that e0 is selected in [�0, (0, 1)] and e1 in
[�0, (0, 1)]. The fact that they differ reflects that the decision for an optimal
strategy should not be uniform within region (0, 1) in location �0.

	1, (1, 2)

	0, (0, 1)

	0, (0, 1) 	1, (0, 1) 	2, (1, 2)	0, 0 	1, (0, 1) 	2, (1, 2) �e0

e2

e1 elimit
3 e5

Fig. 5. The covering forest on our running example

Assume now that F is almost-surely reachable from (�, rleft(t)) in the limit
corner-point Acp, and let us exhibit a family of ε-optimal strategies, showing
that F is limit-surely reachable from 〈�, t〉 in A. More precisely, these ε-optimal
strategies are positional but not region uniform: for every location � and bounded
open region r = (c, d), there can be a cut-point c + τ ∈ (c, d) such that the
decisions in the left part of r, (c, c+τ) and in its right part (c+τ, d) differ, but are
uniform over each of these sub-intervals. These cut-points can be defined through
a mapping T : L × R → R≥0. When T is fixed, we write leftT (�, r) for the sub-
region of (�, r), to the left of its cutpoint T (�, r). Similarly, rightT (�, r) denotes
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the states to the right of the cutpoint. For t ∈ r, we write rT ([�, t]) = [�, rleft(t)]
if t ∈ leftT (�, r), and rT ([�, t]) = [�, rright(t)] if t ∈ rightT (�, r). We will abuse the
notation and call a path s1 · · · sn in the DSTA A a golden path if for (�i, ri) the
golden path associated with rT (s1), we have rT (s2i+1) = [�2i+1, r2i+1] for all i
(if a limit edge is played, it is not possible to agree on the stochastic state).

Based on the covering forest of selected actions, we build a family of strategies
(σT )T :L×R→R≥0

, parametrised by a cutpoint function T : L × R → R≥0: if
s ∈ leftT (�, (c, d)), then σT (s) = sel((�, (c, d))), else s ∈ rightT (�, (c, d)) and
σT (s) = sel((�, (c, d))). In short, when T is fixed, σT (s) = sel(rT (s)). Since
limit edges do not exist in the DSTA, by σT (s) = elimit, we implicitly mean
σT (s) = e, where e ∈ E is the unique edge associated with elimit ∈ E limit.

We define the following subset of states in the DSTA A: Swin = {[�, t] ∈ S� |
[�, rleft(t)] ∈ W}. We show that all states in Swin have value 1 for the reachability

objective in A. Further, Sright
T = {[�, t] ∈ S� | rT ([�, t]) = [�, rright(t)] ∈ W} is the

set of states belonging to the right-part (as specified by the cut-point function

T ) of limit winning bounded open regions; Note that Sright
T and Swin are not

necessarily disjoint. Our objective is to show that for every ε > 0, there exists a
mapping T such that, from any state s ∈ Swin, the probability to reach F under
σT is at least 1 − ε.

Lemma 2. For every s ∈ Swin, P
A
σT

(s |= �(F ∪ Sright
T )) = 1.

When the mapping T is fixed, we let �W�T = {s | rT (s) ∈ W}, that is, states
whose pointed-region (relatively to T ) is winning in the limit corner point. Notice

that �W�T = Sright
T ∪ Swin. We show that the probability to leave �W�T can be

made arbitrarily small.

Lemma 3. For every ε > 0, there exists a function T : L×R → R≥0 such that,
writing © for the next-step operator, for every s ∈ �W�T
– if σT (s) ∈ E limit then Ps

σT
(©�W�T ) ≥ 1 − ε,

– else Ps
σT

(©�W�T ) = 1.

Taking a limit edge in the limit corner-point MDP is the only case where
a losing state can be reached in the concrete DSTA. However, staying in the
current region when the decision in the abstraction was a limit-edge may not
necessarily lead to a losing state. Actually, limit-edges are not always the best
choice: the only way to reach F might be to stay in the current region (and
therefore avoid limit-edges) even if the probability to stay there is very small.
This is illustrated on the example from Fig. 3 in which from [�0, (0, 1)], in order
to eventually reach F , one should pick e1 rather than elimit

1 .
We now explain that the probability to follow the covering forest towards F ,

although small, will be arbitrarily bigger than the probability to follow the forest
until reaching a losing state.
Given T a mapping assigning cut-points to each bounded open region, and [�, t]
a player state in �W�T , we write pTwin(�, t) for the probability, from [�, t] and
under σT , to execute a golden path (which therefore reach F ). Also, pTlose(�, t)
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is the probability to execute a golden path until a losing state in S \ �W�T is
reached. If from a stochastic state, a golden path is not executed, and yet L is
not immediately reached either (this corresponds to behaviours not “counted”
in pTlose and pTwin), then a winning region will be reached, possibly further away
from F .

Lemma 4. For every ε > 0, there exists a function T : L×R → R≥0 such that
for every [�, t] ∈ �W�T

pTwin(�, t) · ε ≥ pTlose(�, t) .

Given a tolerance ε, the proof of Lemma 4 details how to define a mapping,
denoted T (ε) to make the dependency explicit, under which the probability
to reach F by progressing in the covering forest is arbitrarily bigger than the
probability to reach a losing state. The definition of T (ε) is non trivial and is
done by induction on the distance to F in the covering forest. Recall that once a
cut-point mapping T is fixed, the strategy σT is perfectly defined. It now remains
to justify that, the strategies (σT (ε)) form a family of limit-sure strategies.

Lemma 5. For every s ∈ Swin, P
A
σT (ε)

(s |= �F ) ≥ 1 − ε.

Proof. Let ε > 0, T (ε) : L × R → (0, 1) the mapping as defined in Lemma 4,
and σT (ε) the corresponding strategy. To establish Lemma 5 we provide a lower
bound on the probability, under σT (ε) to reach F from winning states.

To do so, we consider the set X of runs under σT (ε) that stay forever in
�W�T \ F . Such runs never reach the target, and also stay away from the losing
states. We will show that PA

σT (ε)
(s |= X) = 0. To do so, we again partition X into

three categories:X1 gathers runs with infinitely many resets; X2 consists of runs
with finitely many resets and ending in the unbounded clock region (M,∞); and
X3 is the set of runs with finitely many resets eventually staying in a bounded
region (c, d).
Let us first consider X1. Runs in X1 necessarily visit some some state (�0, 0)
infinitely often. Since, at each visit of (�0, 0), there is a strictly positive prob-
ability to execute a golden path and thus reach F , we reach a contradiction.
Thus PA

σT (ε)
(s |= X1) = 0. We now consider runs in X2, that ultimately stay in

the unbounded region. As explained earlier, almost surely F will be reached, a
contradiction: PA

σT (ε)
(s |= X2) = 0.

Last, for runs inX3, that ultimately stay in a bounded region (c, d), the reasoning
is exactly the same as for runs of X2. Thus, P

A
σT (ε)

(s |= X3) = 0.

We now exploit Lemma 4 to conclude. Since almost all runs leave �W�T \ F ,
it must be that either a losing states or F is reached, and it suffices to compare
the probabilities in each case. Thanks to Lemma 4, for all states in �W�T , it is
much more likely to reach F than to reach a losing state. More precisely,

pTwin(�, t)

pTwin(�, t) + pTlose(�, t)
≥ pTwin(�, t)

pTwin(�, t) + pTwin(�, t) · ε ≥ 1

1 + ε
≥ 1 − ε .

As a consequence PA
σT (ε)

(s |= �F ) ≥ (1 − ε). ��

This ends the proof of the left-to-right implication in Proposition 2.
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5 Deciding the Probability 1 Problem

If one wants to solve the probability 1 problem, rather than the more difficult
value 1 problem, it suffices to consider the region MDP AR. This MDP AR

is equivalent to the fragment of Acp restricted to left and plain regions, and
hence without limit edges. As for the value 1 problem, the decidability of the
probability 1 problem is given thanks to the following reduction:

Lemma 6. Let A be a decision stochastic timed automaton, AR its region MDP,
r ∈ R a region, and � ∈ L a location and t ∈ R≥0 a clock value with t ∈ r. Then

∃σ, PA
σ ([�, t] |= �F ) = 1 ⇐⇒ PAR

max([�, r] |= �F) = 1 and

∃σ, PA
σ (〈�, t〉 |= �F ) = 1 ⇐⇒ PAR

max(〈�, r〉 |= �F) = 1 .

Proof. The proof is not different for player and stochastic states, so we treat
them indistinctly, and use brackets in place of square or angle brackets.

Let (�, t) with t ∈ R, be a state of A such that PAR
max((�, r) |= �F) < 1. One can

easily adapt the inductive proof of Lemma 1, showing that if (�, r) is losing in the
MDP AR, then for every t ∈ r, there exists ε�,t with PA

σ ((�, t) |= �F ) < 1 − ε�,t
whatever the strategy σ.
For the other implication, it suffices to mimic faithfully in A the positional win-
ning strategy σAR from AR. For every (�, r) a winning state in the region MDP
AR, for every t ∈ r, we let σ(�, t) = σAR(�, r). Now that the strategy is fixed, we
recover the purely probabilistic framework of Stochastic Timed Automata, and
can apply the results of [3] to conclude that PA

σ ((�, t) |= �F ) = 1. Alternatively,
partitioning runs into three categories, as we did for the proofs of Lemmas 2 and
5, allows one to conclude that σ is almost-surely winning in A. ��

Lemma 6, and precisely its right-to-left implication, does not hold in DSTA with
at least two clocks. We emphasise here again that the decomposition of runs we
use is only valid for 1-clock timed automata.

As an immediate consequence, we obtain the decidability in PTIME of the
probability 1 problem for reachability objectives in DSTA (see Proposition 1).

6 Conclusion

This paper shows the decidability in PTIME of the probability 1 and value 1
problems for reachability objectives on an extension of 1-clock timed automata
with random delays, and in which edges are chosen according to a strategy. It
would be natural to allow for more general objectives (e.g. Büchi or parity).
We could also investigate the extension of our framework to 2 players, taking
decisions in turn or concurrently. Moving to more quantitative questions, such as
computing the value would probably require a finer abstraction than the limit
corner-point MDP. Last, the class of 1-clock DSTA can seem restrictive, and
it is definitely a challenge to tackle already stochastic timed automata without
decisions, for which the almost-sure model checking of reachability properties is
still open.
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Abstract. Given a PFA A and a cut-point λ, the isolation problem
asks if there is a bound ε > 0 such that the acceptance probability of
every word is bounded away from λ by ε. In this paper we show that
the isolation problem for PFAs with a unary input alphabet is (a) coNP-
complete, if the cut-point is 0 or 1, and (b) is in coNPRP and coNP-hard,
if the cut-point is in (0, 1). We also show that the language containment
problem, language equivalence problem, the emptiness problem and the
universality problem for unary PFAs with limit isolated cut-points is in
the fourth level of counting hierarchy C4P (and hence in PSPACE).

1 Introduction

Probabilistic finite automata (PFA), introduced by Rabin [18], are a generaliza-
tion of deterministic finite automata that model finite state, randomized algo-
rithms that process an input string one-way. Given a cut-point λ ∈ [0, 1], an input
string w is accepted by a PFA A iff the probability of reaching a final/accept
state of A on input w from the initial state is > λ, and L>λ(A) denotes the
collection of all strings accepted by A with cut-point λ. The emptiness problem
for PFAs is not only an important mathematical problem, but it has applica-
tions in verifying useful properties of open, probabilistic, reactive systems like
sensor networks, biochemical reactions, and software [14,15,13,1]. For example,
checking emptiness is equivalent to checking if drug concentrations in certain
organs is always below toxicity levels [13]. In such contexts, one would, in fact,
like to ensure a stronger property, namely, that the drug concentrations are well
below acceptable levels, and not just barely acceptable.

Checking such “robust” properties of a system is closely related to another
important problem of PFAs, namely, the isolation problem. A cut-point λ is
said to be isolated for an automaton A if there is an ε > 0 (called a degree
of isolation) such that A’s probability of reaching an accepting state on any
word is either > λ + ε or is < λ − ε. PFAs with isolated cut-points enjoy many
nice properties. First, they represent algorithms with bounded error, for which,
the error probability can be driven down below a fixed level using repeated
experiments [18]. Second, λ being isolated ensures that L>λ(A) is regular; note,
if λ is not isolated then L>λ(A) may not be regular [25,18] (even for unary
alphabet [17,20]). Finally, certain PFAs with isolated cut-points are stable, in
that small changes to the transition probabilities don’t change the language
with respect to cut-point λ [18].

G. Norman and W. Sanders (Eds.): QEST 2014, LNCS 8657, pp. 329–344, 2014.
c© Springer International Publishing Switzerland 2014
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Even though the emptiness and isolation problems have important practical
applications, these problems have been shown to be computationally very hard.
The emptiness problem is co-r.e.-complete [17,6] and the isolation problem is
Σ0

2 -complete [4,9,5]. However, these lower bounds only apply when the input
alphabet of the PFA has at least two symbols. The decidability of the isola-
tion problem for PFAs over the unary input alphabet was claimed to be true
in Bertoni’s original paper [4] but was not proved. Furthermore, there was no
complexity analysis for the isolation problem. The decidability of the emptiness
problem for PFAs over the unary alphabet is a long-standing open problem.

In this paper we consider these decision problems for PFAs over a unary input
alphabet. Unary PFAs are nothing but (finite state) Markov chains, which are a
standard model to define the semantics of probabilistic systems, and have been
used in a number of contexts. Our main result is about the complexity of the
isolation problem for unary PFAs. When λ ∈ (0, 1), we show that the isolation
problem is decidable and is in coNPRP.1 Note that since RP is contained in NP
(see [3]), this implies that the problem of checking isolation when λ ∈ (0, 1) is in
the second level of polynomial hierarchy. Furthermore, given that RP is believed
to be P, this would imply the problem to be in coNP which matches the lower
bound of coNP-hardness mentioned ahead. Our procedure also gives a way to
compute a degree of isolation if the PFA is isolated. Our result is proved as
follows. Let us call a PFA A isolated in the limit if there is a n0 > 0 such that
the probability of accepting any string an, with n > n0 is bounded away from λ.
Thus λ is an isolated cut-point for a PFA A iff A is isolated in the limit and the
probability of accepting any “short” string (i.e., one whose length is less than
n0) is bounded away from λ. We first prove that the problem of checking if A is
isolated in the limit is in coNP. Next, we show that if A is isolated in the limit,
then the bound n0 is “small”. More precisely, we show that this number n0 can
be represented in binary using polynomially (in the size of A) many bits. Using
this observation, we can conclude that if a PFA A is isolated in the limit, then
λ is not isolated if there is some string (of exponential length) that is accepted
with probability λ. The check of whether a string of length � is accepted with
probability λ can be reduced to checking if a straight-line program of length
� using addition, multiplication, and subtraction computes a real number that
is equal to 0. Based on this observation, and results on the complexity of the
EquSLP problem [21], we conclude that checking the isolation of a PFA over
the unary alphabet is in coNPRP. Next, we show that if the cut-point λ is either
0 or 1 the isolation problem is easier. We show that for these extremal cut-
points, the isolation problem is in coNP. The proof uses observations about the
complexity of the universality problem for NFAs [24]. We also show that the
isolation problem is coNP-hard.

Our techniques for checking isolation for unary PFAs have a few consequences.
One can show that if A and B are limit isolated PFAs then the problem of
checking L>λ(A) ⊆ L>λ(B) is in coNPC3P. The complexity class coNPC3P lies in

1 RP is the set of decision problems that can be decided by randomized polynomial-
time Turing Machines with one-sided error (see Section 2.3).
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the fourth level of counting hierarchy and hence in PSPACE [27]. That means that
the language equivalence problem, the emptiness problem and the universality
problem for limit isolated PFAs are decidable in coNPC3P and hence in PSPACE.
These results need to be contrasted with the fact that the decidability of the
emptiness problem for unary PFAs (when λ is not necessarily isolated) is still
open. Similarly, the decidability of the emptiness problem for PFAs with isolated
cut-points, with input alphabet having at least 2 symbols, is also open.

The rest of the paper is organized as follows. We discuss preliminary def-
initions and results in Section 2. Our results on complexity of checking limit
isolation and isolation for unary PFAs are discussed in Section 3 and Section 4.
We discuss the problems of language emptiness, containment and universality for
limit isolated unary PFAs in Section 5. We present our conclusions in Section 6.

Related Work. As pointed out in the introduction, the undecidability of the
emptiness and isolation problems for PFAs was established in [17,6,4,9,5]. The
efficient decidability of bisimulation for probabilistic systems can be exploited to
efficiently check a strong version of equivalence of PFAs [26,7,11,12] — here PFAs
A and B are said to be equivalent if the acceptance probability of each input
string is the same in both A and B. The decidability of language equivalence is
a consequence of a more general result on minimizing weighted automata [22].
Model checking of Markov chains with respect to PCTL properties is a mature
technology [19]. However, such tools cannot answer emptiness, containment, and
language equivalence of unary PFAs because such properties are not expressible
in PCTL. Convergence properties of Markov chains have been widely studied
(see [8,16]) but questions of complexity of isolation pertain to both transient and
asymptotic behavior of Markov chains which, to the best of our knowledge, has
not been studied. The decidability of checking emptiness for isolated unary PFAs
can also be derived as a consequence of the results in [5] which establishes that
the problem of checking emptiness of isolated eventually weakly ergodic PFAs is
decidable. However, [5] does not contain any complexity analysis. Furthermore,
our results on complexity of emptiness checking applies to limit isolated unary
PFAs which are a strict super-set of isolated unary PFAs.

2 Preliminaries

We introduce some notation and recall some standard notation. We will fix some
notational conventions used in this paper. We will assume that for any finite S
of k elements, we have a fixed enumeration {1, 2, . . . , k} of the elements of S.
We will identify elements of S with the corresponding numeral.

2.1 Distributions, Stochastic Matrices and Markov Chains

Distributions. Given a finite set S, a distribution over S is any function μ :
S �→ [0, 1] such that

∑
s∈S μ(s) = 1. Since S is finite, μ can be thought of as a

vector with |S| coordinates. The set of all distributions over S is represented by
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dist(S). For a set S′ ⊆ S, we write μ(S′) =
∑

i∈S′ μ(i). For any two distributions
μ, ν ∈ dist(S) the distance between them is defined as

d(μ, ν) =
∑
i∈S

|μ(i) − ν(i)|
2

= max
S′⊆S

|μ(S′) − ν(S′)|.

The distance d is a metric.

Stochastic matrices. A stochastic matrix δ is a square matrix with non-negative
entries such that each row of the matrix sums up to one. This distance between
n× n matrices δ1,δ2 is defined as:

d(δ1, δ2) = max
i

∑
j

|δ1(i, j) − δ2(i, j)|.

We use δ(; , j) to represent the jth column of the matrix δ. We use σt(δ) to

denote the sequence of matrices δt, δ2t, δ3t, . . . and use δ̂t to denote the limit
limr→∞ δrt if it exists. When clear from the context, we shall drop δ from σt(δ)
and just write σt. A stochastic matrix δ is called positive if all of its entries are
strictly positive.

A stochastic matrix of dimension n×n can be represented as a directed graph
with n vertices, and an edge from i to j if δ(i, j) > 0. A maximally strongly
connected component is called a Bottom Strongly Connected Component (BSCC)
if it has no outgoing edges. A transient state is a state which is not in a BSCC,
and a terminal state is one which is within a BSCC. δ is said to be irreducible
if it has only one BSCC and no transient states. The collection of all BSCCs of
a δ will be represented by Cδ. The set of all transient states of δ will be denoted
by Tδ. Lower case cδ will be used to denote individual BSCCs. When clear from
the context, we shall drop the subscript δ.

The period of a vertex is defined as the g.c.d (greatest common divisor) of
all the cycle lengths going through the vertex. For a SCC, the periods of all the
vertices in that component will be the same and will be defined as the period of
that component. A component is called aperiodic if its period is 1. δ is said to be
aperiodic if all vertices have period 1. The ultimate period of δ is the l.c.m (least
common multiple) of the periods of its BSCCs. Since BSCCs and their related
periods can be computed in polynomial time we have the following:

Proposition 1. The ultimate period of a n × n matrix δ can be computed in
polynomial time and is a number with O(n log n) bits.

The following Lemma is proved in [23]

Lemma 1. For any n×n stochastic matrix δ, if δ is an aperiodic and irreducible
stochastic matrix then δn

2

is positive.

A stochastic matrix γ with dimensions n×n is called a contraction map with
contracting factor α < 1 if for all distributions μ and ν of dimension n it is the
case that d(μγ, νγ) < αd(μ, ν).
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Proposition 2. For any n × n stochastic matrix δ if δ is positive then δ is
contracting with contracting factor 1 − nmini,j δ(i, j).

Proof. Let s be mini,j δ(i, j). Observe that s ≤ 1
n .

2d(μδ, νδ) =
∑
j

∣∣μδ(j)− νδ(j)
∣∣ = ∑

j

∣∣∑
i

(
μ(i)δ(i, j)− ν(i)δ(i, j)

)∣∣
=

∑
j

∣∣∑
i

(
μ(i)(δ(i, j)− s)− ν(i)(δ(i, j) − s) + s(μ(i)− ν(i))

)∣∣
=

∑
j

∣∣∑
i

(
μ(i)(δ(i, j)− s)− ν(i)(δ(i, j) − s)

)
+ s

(∑
i

μ(i)−
∑
i

ν(i)
)∣∣

=
∑
j

∣∣∑
i

(
(μ(i)− ν(i))(δ(i, j) − s)

)
+ s(1− 1)

∣∣
≤

∑
j

∑
i

∣∣(μ(i)− ν(i))
∣∣(δ(i, j)− s) =

∑
i

∑
j

∣∣(μ(i)− ν(i))
∣∣(δ(i, j) − s)

≤
∑
i

∣∣(μ(i)− ν(i))
∣∣∑

j

(δ(i, j)− s) =
∑
i

∣∣(μ(i) − ν(i))
∣∣(1− ns)

≤ 2(1− ns)d(μ, ν).

��

Markov Chains. A Markov chain M is a tuple (Q, δ, μ0) where Q is a finite
set of states, δ is stochastic matrix of dimension |Q| × |Q| and μ0 ∈ dist(Q).
δ is referred to as the transition matrix and μ0 denotes the initial distribution.
The Markov chain represents an infinite sequence of distributions μ0, μ1, .. where
μi = μ0δ

i.

2.2 Probabilistic Finite Automata

A PFA [18] is like a deterministic automaton except that the transition on an
input symbol is probabilistic.

Definition 1. A Probabilistic Finite Automaton (PFA) A is a tuple (Q,Σ,
(δσ)σ∈Σ , μ0, QF ), where Q is a finite set of states, Σ is a finite alphabet, μ0 ∈
dist(Q) is the initial distribution, QF ⊆ Q is the set of final states, and (δσ)σ∈Σ

is an indexed set of stochastic matrices with dimension |Q| × |Q|.

For a symbol a, δa(s, t) represents the probability of going from state s to t on
input symbol a. For any input word w ∈ Σ∗ of length n the probability of going
from s to t along w = a1a2 · · · an is then given by δw(s, t) where δw is the matrix
(δa1 · δa2 · · · δan). The distribution reached on input w ∈ Σ∗ in A is then given
by μ0δw.

Definition 2. The acceptance probability of a word w ∈ Σ∗ on PFA A is given
by
∑

q∈QF
μ0δw(q) or μ0δwηF where ηF is the column vector such that ηF (j) = 1

if j ∈ QF and ηF (j) = 0 otherwise.
We will say that ηF is the vector corresponding to QF .
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Languages defined by PFAs need not be regular (even over unary alphabet
[17][20]). Emptiness checking turns out to be undecidable in general [6] but
is still open for the unary case.

Since this paper only considers PFAs over a unary alphabet, the remaining
definitions only apply to unary PFAs.

We will assume that the unique letter in the unary alphabet is a, and we
will drop the index a in the transition δa. Thus, the probability of accepting the
string of length a� is given by μ0δ

�ηF . We will often use μk to denote μ0δ
k. A

unary PFA is essentially a Markov chain with a subset of the states designated
as final states. The language of PFA is defined with respect to a cut-point λ:

Definition 3. Given a cut-point λ ∈ [0, 1] the language accepted by a unary
PFA A with respect to λ denoted by L>λ(A) is

{an | μ0δ
nηF > λ}.

We are interested in special kinds of cut-points, called isolated cut-points [18].
A cut-point λ is isolated for a PFA A if the acceptance probabilities of all the
words are bounded away from λ.

A cut-point is said to be extremal if it is either 0 or 1, and non-extremal if it
is the open interval (0, 1).

Definition 4. The cut-point λ is said to be isolated for A if there exists an ε > 0
such that for all n > 0,

|μ0δ
nηF − λ| > ε.

ε is known as a degree of isolation.

When λ is isolated, the language recognized L>λ(A) is known to be regular
[18]. We introduce the notion of limit isolation, which generalizes the notion of
isolated cut-points. We say that a cut-point is limit isolated if it is isolated for
asymptotically large inputs. Formally,

Definition 5. The cut-point λ is said to be limit isolated for A if there exists
ε > 0 and n0 > 0 and such that for all n > n0,

|μ0δ
nηF − λ| > ε.

ε is known as a degree of limit isolation.

Note 1. A PFA A is isolated at λ iff it is limit isolated at λ and there is no
word that is accepted with probability exactly λ. It is also easy to see that the
language recognized L>λ(A) is regular if λ is limit isolated.

The two definitions lead us to the problems of checking if a given rational
cut-point is limit isolated or isolated, which we will tackle in sections 3 and 4
respectively.

The following proposition implies that checking whether 0 is isolated (limit
isolated, respectively) is as hard as checking if 1 is isolated (limit isolated, re-
spectively ) and vice-versa.
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Proposition 3. For any PFA A, there is another PFA B such that 0 is an iso-
lated (limit isolated respectively) cut-point of A iff 1 is an isolated (limit isolated
respectively) cut-point of B.

Proof. We just need to interchange final and non-final states. That is if A =
(Q,Σ, (δσ)σ∈Σ , μ0, QF ) then we can take B = (Q,Σ, (δσ)σ∈Σ , μ0, Q \ QF ).

2.3 Complexity

The complexity class RP consists of problems which can be solved using a ran-
domized polynomial time algorithm that always returns “yes” on yes-instances,
and returns “no” with probablity at least 1

2 on no-instances. We know that RP
is contained in NP.

The counting hierarchy CH is a class of decision problems contained within
PSPACE, which was introduced by Wagner [27]. The 0-th level, C0P, is defined as
P. The k-th level of the hierarchy is denoted by CkP and is defined recursively as
Ck+1P = PPCkP. Here PP denotes the class of decision problems for which there
are polynomial time randomized algorithms which answer “yes” with probability
> 1

2 on yes-instances, and answer “no” with probability ≥ 1
2 on no-instances.

The whole counting hierarchy is contained in PSPACE.
In this paper we will assume every rational number is represented as p

q where
p and q are integers in binary. So, when we say a rational r can be computed
in polynomial time given rationals r1, . . . , rk, it implies that r can also be rep-
resented using polynomially many bits in the inputs r1, . . . , rk.

2.4 Straight Line Programs

We will use straight line programs (SLP) to represent the computation of quan-
tities such as acceptance probability of a word. A SLP over a set of variables
V is a sequence of statements of the form x := E where x ∈ V ; E is either a
constant in {0, 1}, a variable in V , or an expression of the form e1 ◦ e2 where the
operator ◦ ∈ {+,−, ∗} and ei ∈ {0, 1} ∪ V . Furthermore, each variable occur-
ring on the right hand side of an assignment must occur in the left hand side of
(some) earlier assignment. The value of a SLP is defined as the value assigned
in its last statement. EquSLP is the problem of deciding if the value returned
by the SLP is 0. PosSLP is defined as the problem of determining whether the
value of the given SLP is positive. EquSLP was shown to be in coRP in [21].
A recent result [2] shows that PosSLP is in PC3P and hence in the 4-th level of
counting hierarchy.

3 Limit Isolation

We prove that the problem of checking if a cut-point (extremal or non-extremal)
is limit-isolated for a unary PFA is coNP-complete. In order to prove these
results, we recall some standard facts about Markov chains. The proofs of these
facts can be found in [8] and hence are omitted.
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Theorem 1. Let c ∈ C be a BSCC of a Markov Chain M = (Q, δ, μ0), p be the
period of c, then for any state j in c:

1. If i is a transient state of M then lim
r→∞

δpr(i, j) exists and can be calculated

in time polynomial in the size of δ.
2. If i is in c, then lim

r→∞
δpr(i, j) exists and can be calculated in time polynomial

in the size of δ.
3. If i is neither a transient state of M nor in c then lim

r→∞
δpr(i, j) = 0 (in fact

δ�(i, j) = 0 for all �).

This leads to the following corollary (recall that the ultimate period of δ is the
l.c.m of the period of its BSCCs).

Corollary 1. For any stochastic matrix δ, with ultimate period p, δ̂p = lim
r→∞

δpr

exists.

We are ready to show that limit isolation is coNP-complete.

Theorem 2. The problem of checking given a unary PFA A and a rational
cut-point λ whether λ is limit-isolated for A is coNP-complete.

Proof. (Upper Bound). Let A = (Q,Σ, δ, μ0, QF ) and let p be the ultimate
period of δ. According to Corollary 1, there are possibly p different limits towards
which the Markov chain approaches in a cyclic manner. That is for each 0 ≤ k <
p, we have that limr→∞ δk+pr exists.

If λ is not a limit isolated cut-point then it is easy to see that there is a
0 ≤ k < p such that limr→∞ μ0δ

k+prηF is λ. The witness for a no answer to our
problem is therefore going to be this number k which requires only n logn bits
to be represented.

The result will follow if we can compute the distribution μk δ̂p =
limr→∞ μ0δ

k+pr in polynomial time. This can be achieved as follows. Note that
μk δ̂p(i) = 0 for any transient state i. We only have to compute μkδ̂p(i) for
terminal states i.

Consider a BSCC ci of δ. Let its period be pi, let ki be k mod pi. Note that
p can be exponentially large but each of the pis at most n. Although σpi =
δpi , δ2pi , . . . need not converge, it follows from Theorem 1 that the columns

corresponding to ci do converge to a limit. Now δ̂pi(; , j) = δ̂p(; , j) for any

state j ∈ ci because σp is a subsequence of σpi . So the entire matrix δ̂p can be

calculated in polynomial time. Essentially the jth column of δ̂p is identical to

the jth column of δ̂pi . In order to calculate δk δ̂p observe that its jth column

δk δ̂p(; , j) = δkδ̂pi(; , j) = δki δ̂pi(; , j) where again pi is the period of the BSCC
ci that contains j. Note that Now ki < pi ≤ n and so δki can be calculated in
polynomial time. The upper bound follows.

(Lower Bound). In order to prove hardness we use the reduction in [10,24]
which is used to show coNP-hardness of the universality problem for unary non-
deterministic finite automata (NFA). We briefly describe the salient features
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of the reduction; for further details the reader should refer to [10]. The original
reduction is from 3SAT to non-universality of unary NFA. Given a 3SAT formula
φ with n variables andm clauses, [10] constructs a NFA Nφ as a union ofm cyclic
automata. Intuitively, each cycle corresponds to a clause, has an initial state
and a cycle accepts if and only if the input encodes an assignment that does not
satisfy that clause. So Nφ accepts every input iff φ is unsatisfiable. The only non-
determinism in Nφ is from having to choose a cycle at the beginning, so we can
transform it into a PFA Pφ by choosing amongst the cycles uniformly at random.
Since there are only m cycles any word that is accepted by Nφ is accepted by
Pφ with probability at least 1

m ; otherwise it is accepted with probability 0. So 0
is an isolated cut-point for Pφ iff φ is unsatisfiable. Finally we observe that Pφ

is isolated at 0 iff it is limit isolated at 0, which proves that 0 is a limit-isolated
cut-point for Pφ iff φ is unsatsifiable. We have already observed that if a cut-
point is isolated then it is also limit-isolated. For the converse observe that the
constructed unary NFA Nφ is a disjoint union of cycles. Let d be the lcm of all
the cycles of Nφ. Now it is easy to see that for each j, the probability distribution
on the states of the unary PFA Pφ on input aj is the same as the probability
distribution on input aj mod d. So if there is some word aj that is accepted with
0 probability then 0 cannot be a limit-isolated cut-point. ��

Remark 1. Please note that the lower bound proof of Theorem 2 can be modified
if the cut-point λ is not extremal; simply add an additional state with a self loop,
which you choose initially with probability λ. Also, we could have taken the cut-
point to be 1 thanks to Proposition 3. Thus, complexity of limit-isolation does
not depend on whether the cut-point is extremal or not. Also, note that the
lower bound proof also establishes the coNP-hardness of the isolation problem.

4 Complexity of Isolation Checking

We will prove that the problem of checking whether λ is isolated is in coNPRP

(see Theorem 3). For extremal cut-points, i.e., when λ is 0 or 1, we will show
the problem to be coNP-complete (see Theorem 4). We start by discussing non-
extremal cut-points.

Non-Extremal Cut-Points. Broadly speaking, the proof for showing that
isolation is in coNPRP is as follows:

• We can use Theorem 2 to check if the cut-point λ is limit isolated for A. If
it is not limit-isolated then we know that the cut-point is not isolated.

• If it is limit isolated, then λ will be isolated iff there is no word a� accepted
with probability λ. We will show that that this word cannot be too long (see
Lemma 3).

• We can then guess this word, construct a straight-line program such that
its value is 0 iff the probability of accepting this word is λ, and check if it
evaluates to 0 or not (see Lemma 2).
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We start by showing that the problem of deciding given a PFA A and a
number n in binary, whether a word an is accepted with probability =λ is in
coRP and > λ is in the counting hierarchy.

Lemma 2. Given unary PFA A, a non-negative integer n in binary and a ra-
tional number λ, the problem of checking:

1. if an is accepted with probability equal to λ is in coRP.
2. if an is accepted with probability greater than λ lies in PC3P.

Proof. The word an is accepted with probability μ0δ
nηF where μ0 is the initial

distribution, δ the transition matrix and ηF the vector corresponding to the final
states. In order to find out if this quantity is equal to λ, one can write a straight
line program p that calculates μ0δ

nηF − λ. The program is the usual square-
and-multiply algorithm for exponentiation and it is going to be O(log2 n) long
because the number of iterations in the algorithm is equal to the number of bits
required to represent n. The value of the program p is equal to (greater than) 0
iff an is accepted with probability exactly (greater than) λ. Now, we can check
if val(p) = 0 in coRP [21] and val(p) > 0 in PC3P [2]. The result follows. ��

We will now show that if a limit isolated PFA accepts a word with probability
exactly λ then this word cannot be too long. This fact is proved in Lemma 3
with the help of auxiliary Propositions 4, 5 and 6. We start by proving a result

about irreducible stochastic matrices. Recall that δ̂t is used to denote the limit
of the sequence lim

r→∞
δrt.

Proposition 4. Given an irreducible stochastic matrix δ with period p and ra-
tional ε ∈ (0, 1) there exists a number k, computable in polynomial time, such

that for all � ≥ k : d(δp�, δ̂p) ≤ ε.

Proof. A stochastic matrix γ with all positive entries acts as a contraction map
on the set of distributions. The associated contraction factor α is (1−ns) where
s is the smallest entry in γ (see Proposition 2). So we have

d(μγi, μγ̂) = lim
j→∞

d(μγi, μγj) ≤ lim
j→∞

j−1∑
i′=i

d(μγi′ , μγi′+1)

≤ lim
j→∞

j−1∑
i′=i

αi′d(μ, μγ) ≤ αi

1 − α
=

(1 − ns)i

ns
≤ e−nsi

ns
.

Choosing i > 1
ns log

2
nsε will give us d(μγ

i, μγ̂) ≤ ε
2 and because the μ is arbitrary

we also have d(γi, γ̂) ≤ ε.
Coming back to δ, the graph of δp consists of p disjoint irreducible and aperi-

odic components. It is enough to show the above bound on each of the individual
components (because the distance between the matrices takes maximum across
rows), so consider δp to be irreducible and aperiodic. From Lemma 1, we know

that δpn
2

has all positive entries. The smallest entry of δpn
2

, say s, requires only



Decidable Problems for Unary PFAs 339

polynomially many bits to be represented. According to the above observation,
for i ≥ 1

ns log
2

nsε we have d(δpn
2i, δ̂p) ≤ ε. If 1

nsε = x
y , and j represents the

number of bits of y then we can choose k = �n
s (j + 1)�, which is computable in

polynomial time. ��

We now bound the number of steps required so that the probability of being
in a transient state is small.

Proposition 5. Given a stochastic matrix δ and rational ε ∈ (0, 1) there exists
a number k, computable in polynomial time such that for all � ≥ k it is the case
that for all distributions μ0,

∑
j∈Tδ

μ0δ
�(j) ≤ ε where Tδ is the set of transient

states of δ.

Proof. Here we are required to show that after k steps the probability of being
in a transient state is small. Every transient state has a path of length at most
n to at least one terminal state, so choose one for each transient state. Let u be
the minimum probability associated with any of those paths. So after every n
steps each transient state loses at least u fraction of its probability to a terminal
state, or in other words the probability of being in any transient state reduces by
a factor of u. Hence after k′n steps the probability of being in a transient state
is at most (1− u)k

′
, and choosing k′ ≥ 1

u log 1
ε makes (1− u)k

′ ≤ ε. So choosing
k to be a number bigger then n

u log 1
ε we have our required number. ��

We now bound the length of input needed to be close to the limit distribution
μδ̂p where p is the ultimate period of δ.

Proposition 6. Given a stochastic matrix δ, a distribution μ and rational ε ∈
(0, 1) there exists a k, computable in polynomial time such that for all � ≥ k:

d(μδp�, μδ̂p) ≤ ε where p is the ultimate period of δ.

Proof. (Sketch.) First we use Proposition 5 to get a k1 such that it suffices to take
k1 steps to get to a distribution where the probability of being in any transient
state is less than ε

4 . This ensures that for l ≥ k1, the probability of being in any
BSCC c after pl steps is at least 1− ε

4 . This means that taking any more steps
beyond k1 can only perturb the probability in terminal states by a small amount
which adds up to ε

4 across all BSCCs. Let us focus on one BSCC c. Taking, k2
steps beyond the k1 will do two things to c:
i) bring in more probability from the transient states
ii) distribute the probability already present in c (i.e., the probability of being

in c) at step k1 according to μc, the stationary distribution of c.

The first effect can only result in pumping at most a small probability into c,
which adds at most ε

4 to the distance. The probability already present in c after
k1 steps is close to the limiting probability, and hence the contribution of the
second effect into the distance can be made small by choosing k2 according to
Proposition 4 for the BSCC c with the bound ε

4 . Instead of choosing k2 for a
particular c, we can choose it to be the maximum across all c which will give us
the desired result. We formalize these ideas in the calculations included in the
Appendix. ��
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We can prove a similar result about the matrix products as well.

Lemma 3. Given a stochastic matrix δ and a rational ε ∈ (0, 1), there exists a

number k, computable in polynomial time, such that for all � ≥ k : d(δp�, δ̂p) ≤ ε
where p is the ultimate period of δ.

Proof. The distance between the matrices can be broken into

d(δp�, δ̂p) = max
i

∑
j

|δp�(i, j) − δ̂p(i, j)| = max
i

∑
j

|νiδp�(j) − νiδ̂p(j)|

= max
i

(2d(νiδ
p�, νiδ̂p)). Here νi represents the distribution with

probability 1 at state i

Proposition 6 tells us we can choose a k of appropriate size such that for any μ,
the distance d(μδp�, μδ̂p) for � ≥ k is below ε

2 . ��

We are ready to establish the complexity of the problem of checking if λ is an
isolated cut-point for a unary PFA A.

Theorem 3. Given a unary PFA A and a rational λ, the problem of checking
if A is isolated at λ is in coNPRP and is coNP-hard.

Proof. The lower bound follows from the proof of Theorem 2. For the coNPRP

upper bound, let us consider the complement of the problem where A is not
limit isolated at λ. In this case either λ is not a limited isolated cut-point or
there is some string which is accepted with probability λ. If the given PFA is
not limit isolated then we guess this fact and check if it is true in NP (Thanks
to Theorem 2). So assume that the PFA is limit isolated. We now need to check
if there is any “short” string accepted with probability λ.

Let A = (Q,Σ, δ, μ0, QF ) and let p be the ultimate period of A. Let δ̂p =
lim
t→∞

δpt. For each r > 0, let μr = μ0δ
r.

Consider εr = |μr δ̂pη−λ|. Since any μr δ̂p can be computed in polynomial time
(see proof of Theorem 2), it is the case that εr can be computed in polynomial
time (given μ0, δ, r). Suppose the length of the string accepted with probability λ
is �. Let � = pq + r where r = � mod p. According to Lemma 3, there exists a kr
(computable in polynomial time) such that if q > kr then d(μrδ

pq, μr δ̂p) ≤ εr
2 .

Since d(μrδ
pq, μrδ̂p) ≥ |μrδ

pqη−μr δ̂pη|, we get that a� will not be accepted with
probability λ if q > kr.

Now, the decision procedure for checking non-isolation proceeds as follows. It
first guesses 0 ≤ r < p, then it computes εr and subsequently computes kr. Now,
it guesses q ≤ kr and then it computes � = pq + r. � requires only polynomially
many bits (because kr is computable in polynomial time from r). Hence we
can use the procedure of Lemma 2 as an oracle to check if a� is accepted with
probability exactly λ. Note that this final check is done by a coRP algorithm and
hence the non-isolation is in NPcoRP. Note that NPcoRP is exactly the class NPRP

since we can always switch the yes/no answer from the oracle-calls. This results
in a coNPRP upper bound for the limit isolation problem in the non-extremal
case. ��
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Extremal cut-points. For extremal cut-points, the upper bound matches the
lower bound.

Theorem 4. Given a unary PFA A, the problem of checking if 0 is isolated is
coNP-complete. Similarly checking if 1 is isolated is also coNP-complete.

Proof. The lower bound follows from the proof of Theorem 2. For upper bound,
first thing to note is that the coNP upper bound for limit isolation proved in
Theorem 2 also holds for the cut-point 0. So in case it is limit isolated, we
need to check if there is a string accepted with probability 0. If μ0 is the initial
distribution, let QI = {q|μ0(q) > 0}. A word is accepted by A with probability
0 iff it has no path from a state in QI to a final state. So checking if 0 is isolated
reduces to the universality checking of unary NFA which is known to be in
coNP [24]. ��

5 Other Decidable Problems

In this section, we observe that the problems of language containment, equality,
emptiness, and universality are all in counting hierarchy for unary PFAs with
limit isolated cut-points. We need one proposition.

Proposition 7. Given a PFA A with ultimate period p, a number 0 ≤ r < p
and a rational cut-point λ such that λ is limit isolated for A, there is a number k
computable in polynomial time s.t ∀q ≥ k, apq+r ∈ L>λ(A) iff apk+r ∈ L>λ(A).

Proof. Let A = (Q,Σ, (δσ)σ∈Σ , μ0, QF ). Let μr = μ0δ
r, let δ̂p = limt→∞ δpt

and let ηF be the vector corresponding to F. Consider εr = |μrδ̂pηF − λ|. εr
can be computed in polynomial time (see proof of Theorem 2). According to
Lemma 3, there is a k computable in polynomial time such that if q > k then
d(μrδ

pq, μr δ̂p) ≤ εr
2 . Since d(μrδ

pq, μrδ̂p) ≥ |μrδ
pq(Qf )−μrδ̂p(Qf )|, we get that

apq+r has acceptance probability > λ iff apk+r has acceptance probability > λ.

Theorem 5. Given two unary PFAs A and B and rational cut-points λ1 and
λ2, such that λ1 and λ2 are limit isolated for A and B respectively, the following
problems are in coNPC3P.

1. L>λ1(A) ⊆ L>λ2(B).
2. L>λ1(A) = L>λ2(B).

3. L>λ1(A) = ∅.
4. L>λ1(A) = Σ∗.

Proof. Without loss of generality, we can assume that the ultimate periods of
A and B are the same (since we can always add unreachable cycles). Let the
ultimate period be p. The algorithm for checking containment proceeds as fol-
lows. The algorithm is going to guess a number � such that a� is accepted by A
and rejected by B. Note, � can be written as � = pq + r where q = � div p and
r = � mod p. Hence we have to guess q and r. First, the algorithm guesses the
offset 0 ≤ r < p which is a polynomial-sized number.

Thanks to Proposition 7, there is a kA such for all qA ≥ kA, a
pqA+r is accepted

by A iff the string apkA+r is accepted. Furthermore, kA can be computed in
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polynomial time from A and r. Similarly, there is a kB such that for all qB ≥ kB ,
apqB+r is accepted by B iff the string apkB+r is accepted. Let k = max(kA, kB).

By construction, we can conclude that if a� with � = pq+ r is in the language
of A but not in the language of B then we can take q ≤ k. So, now the algorithm
guesses q ≤ k and then checks that i) a� ∈ L>λ1(A) and ii) a� /∈ L>λ2(B). These
checks can be carried out by PC3P algorithms as in Lemma 2 and the result
follows. The other problems of language equality, emptiness, and universality
follow immediately from the result for language containment. ��

6 Conclusions

In this paper we established the complexity of a variety of decision problems
for unary PFAs. In particular, we showed that the isolation problem is in coNP-
complete, when the cut-point is extremal, and is in coNPRP when the cut-point
is not extremal. We also show that limit isolation of unary PFAs allows us to
conclude that language, containment, equality, emptiness, and universality are
decidable within PSPACE.
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Appendix

Calculations from Proposition 6: A sub-distribution over a finite set S is
a function μ : S �→ [0, 1] such that

∑
s∈S μ(s) ≤ 1. The distance between sub-

distributions can be defined in the same way we do for distributions.
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We first describe the notation we will use in the following calcualtions: μT and
μC denote the sub-distributions on the transient states and the BSCCs after pk1
steps. For any (sub-)distribution μ , μ � c denotes the vector with the entries
in the states in c alone. The matrix δ restricted to the states of c is written
as δc. Starting from μ, and having taken pk1 steps, the probability of being in
component c is denoted by πpk1

c , and the relative distribution on a component c
is given by μpk1

c , i.e for any i ∈ c, μpk1
c (i) = μδpk1(i)/πpk1

c . Starting from μ the
probability of being in c in the limit is given by π̂c and the relative distribution
on c in the limit is give by μ̂c. Now we are ready to proceed.

d
(
μδp�, μδ̂p

)
= d

(
μδpk1δpk2 , μδ̂p

)
= d

(
(μT + μC)δ

pk2 , μδ̂p
)

=d
(
μT δ

pk2 + μCδ
pk2 , μδ̂p

)
≤
∑

j μT δ
pk2(j)
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Apply Prop 5

+d
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μCδ
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)
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(
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We have (μCδ
pk2)�c = πpk1

c μpk1
c δpk2

c because when we start from μC there is no
probability of being in any transient state, so we can ignore the transient states,
and then the BSCCs cannot communicate so they evolve independently.
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Abstract. We present models and metrics for the survivability assess-
ment of distribution power grid networks accounting for the impact of
multiple failures due to large storms. The analytical models used to com-
pute the proposed metrics are built on top of three design principles:
state space factorization, state aggregation, and initial state condition-
ing. Using these principles, we build scalable models that are amenable
to analytical treatment and efficient numerical solution. Our models cap-
ture the impact of using reclosers and tie switches to enable faster service
restoration after large storms. We have evaluated the presented models
using data from a real power distribution grid impacted by a large storm:
Hurricane Sandy. Our empirical results demonstrate that our models are
able to efficiently evaluate the impact of storm hardening investment al-
ternatives on customer affecting metrics such as the expected energy not
supplied until complete system recovery.

Keywords: Survivability, cyber-physical systems, smart-grid.

1 Introduction

In this paper, we introduce a new approach to the modeling and analysis of
large power distribution networks, with the goal of supporting the evaluation of
investment alternatives for storm hardening of overhead transmission facilities.
Specifically, the focus of this work is on the modeling and analysis of US North-
east power distribution network outages that result from mid-Atlantic hurricanes
and tropical storms.

Hurricane Sandy hit the US northeast overhead power distribution network
with strong winds on October 29 and 30, 2012. The impact on the overhead
power network in New York City and Westchester county was so severe that
about 70% of the 868,347 non-network customers (i.e., customers served by over-
head lines) in these areas were interrupted. In Westchester county alone 320,926
customer outages were reported [11]. The total number of interruptions of non-
network customers in the Con Edison territory was 1,115,294. These customer
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outages were a consequence of the loss of nearly 1,000 utility poles and over 900
transformers. In the Bronx/Westchester area, 699 poles and 718 transformers
were replaced [11]. One of the most important reported causes of these customer
outages in Westchester county was the fall-down of trees and branches due to
the co-habitation of power distribution with Westchester county’s forests [26].
Therefore, over 1,000 roads in Westchester county were blocked by trees and
branches after Hurricane Sandy.

As a result of the damage to overhead power distribution network caused
by Hurricane Sandy, a study was commissioned by the City of New York to
assess the feasibility of undergrounding parts of the overhead network [27]. The
total cost of replacement of the overhead network in the Bronx/Westchester
county is estimated at $27.2 billion. A total replacement covering all of New
York City and Westchester county is estimated at $42.9 billion. In [12] a list of
the storm hardening initiatives for the electric overhead distribution system was
presented. These initiatives include, among others, the use of additional reclosers
and sectionalizer switches, tree trimming, and selective undergrounding [12].

The utility uses a coarse grained risk model to identify the relationship be-
tween the required capital investment for storm hardening of a specific asset and
the risk reduction achieved in terms of asset outage durations using wind dam-
age probabilities [12]. Unfortunately, the coarse grain risk assessment approach
is not detailed enough to assess the customer impact of large storms. The risk
assessment approach used by the utility can be improved by using a metric that
captures the evolution of the repair process (both automated and manual), and
the energy not supplied from the start of the outage event to the completion of
all required repairs. Therefore, there is a need to improve the utility risk pri-
oritization of storm hardening investment approaches by modeling the impact
of sectionalizing, undergrounding, and tree trimming on a metric of interest to
the utility. We call this metric the customer affecting metric. In this paper,
the customer affecting metric used is the average energy not supplied from the
time of the emergency to full restoration of service to all customers. The level
of accuracy required in the power grid model needs to be sufficient to compare
design alternatives; the model has to be accurate enough to properly distinguish
between the investment options.

We model the impact of using reclosers and tie switches to enable faster ser-
vice restoration after large storms. The use of reclosers and tie switches provides
the following benefits to the power utility: (1) enables sectionalization of cus-
tomers reducing the impact of outages, (2) reduces the number of energized
down wires, and (3) enables the automated and remote reconfiguration of the
overhead distribution network during the several phases of the storm emergency
(preparation and restoration) [11].

Survivability is the ability of the system to continue functioning during and
after a failure or disturbance event [18]. In our previous work, we developed sur-
vivability models accounting for single failures in distribution automation power
grids [21,24,1]. The analytical models used to compute the proposed metrics
are built on top of three design principles: state space factorization, state
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aggregation, and initial state conditioning. In [2], we extended the survivability
model to account for multiple-failures.

The main contributions of this paper are the following.

– A scalable model to assess survivability related metrics of smart power-grids.
The model allows us to efficiently compute survivability related metrics in
networks consisting of hundreds of loops. The model captures the smart-
grid/cyber-physical interconnection as well as automatic restoration/manual
restoration, and allows for general distributions for the automatic and man-
ual restoration, adopting recently proposed techniques of non-Markovian
analysis.

– A characterization of hurricanes, which accounts for historical data and can
make use of geographical information. Each hurricane is characterized by a
hurricane model, which indicates the wind strength in knots at each section
of the grid. The hurricane model is then used to obtain a global survivability
related metric for the whole network as a function of the network topology
and the hurricane pattern.

– What-if analysis, which allows to quickly identify the impact of different
strategies for power grid storm hardening, such as distributed generation,
tree trimming, and moving lines underground. This analysis can be used for
planning and optimization purposes.

We illustrate the practicality of our approach by evaluating the impact of
Hurricane Sandy on a model of a overhead distribution network of the scale of
the Con Edison overhead distribution network in New York, which serves the
areas of Staten Island, the Bronx, Brooklyn, Queens, and Westchester county.

The remainder of this paper is organized as follows. In Section 2, we describe
the cyber-physical system under study. Section 3 and 4 present the failure model
used for hurricane characterization and an overview of the survivability model,
respectively. In Section 5, we present the evaluation of the survivability model for
the cyber-physical system. In Section 6, we give a brief summary of related work.
Section 7 contains our conclusions and suggestions for further research.

2 Modeled Power Grid Topology

In this section, we first introduce terminology (Section 2.1) and describe the
key features of the smart-grid topology that are used to derive the proposed
survivability model (Section 4). In addition, we also introduce storm hardening
strategies whose effect is evaluated quantitatively in Section 5.

2.1 Terminology

For the sake of clarity, we define here the key terms used throughout this paper.
– Wind gust. The wind gust is measured in knots and classified in small,

medium, large and catastrophic.
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Fig. 1. Physical and logical diagrams of the network topology after the hurricane.
Note that in the logical diagram we represent two substations at the two ends of the
loop, irrespective of whether they are the same physical substation or different physical
substations. In autoloops, as autoloops 1 and 3 in the figure, the two ends of the loop
are connected to the same substation. In loop 2, in contrast, the two ends of the loop
are connected to different substations.

– Incidence matrix. Given a physical smart-grid topology, different factors
such as the geography of the terrain and the distance from the sea will affect
the probability that a given storm will directly hit a section, resulting in the
need of manual repair. The incidence matrix characterizes, for each section,
the wind gust at that section after the occurrence of a storm of a given type.

– Loop. The power grid topology is divided in loops, which consist of sections.
Each loop is connected to a substation at each of its ends.

– Autoloop. An autoloop is a special loop that is connected to the same
substation at each of its ends. For all practical purposes, in this paper we do
not distinguish between loops and autoloops, as the logical network diagrams
that are built on top of the physical network diagram are the same for loops
and autoloops (see Figure 1). Therefore, we use the terms loop and autoloop
indistinguishably.

– Legs. Each loop comprises two legs, which are separated by a tie switch.
Each leg is a set of contiguous sections: the first section in the leg is directly
connected to the substation, and the last section is directly connected to the
tie switch. The leg under study is referred to as the primary leg and the
additional leg of the loop is referred to as the secondary leg (the distinction
being clear from the context).

– Tie switch. The tie switch is a switch that controls the flow of energy in a
loop. When open, the two separate legs in a loop are fed with energy that
flows from the substation up to the tie switch. When the tie switch is closed,
the substation feeds energy to the loop through one of its legs, which then
relays energy to the other leg.
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– Isolated sections. The sections in a loop are indexed based on their distance
from the substation. After a storm, the set of contiguous sections in a leg
between the first and last failed sections are referred to as isolated sections
(which include the first and last failed sections). The isolated sections will
be restored after manual repair.

– Upstream sections. The upstream sections are the set of contiguous sec-
tions farther from the substation, which are not damaged but might be
indirectly affected by the storm due to loss of connectivity. The sections in
this set are amenable to automatic restoration after the isolated sections are
set aside if either (1) distributed generation is available to supply them, or
(2) there exists a secondary path from the substation up to the upstream
sections, making use of the secondary leg.

– Downstream sections. The downstream sections are a set of contiguous
sections closer to the substation, which are not affected by the storm. The
sections in this set are automatically fed by the substation after the isolated
sections are set aside.

– Phased recovery model. The phased recovery model associated with a
given leg of a loop is a state machine that characterizes the dynamic state
of the leg, from a failure up to full recovery. The transition rates between
states, as well as the reward rates associated with each state, depend on
the distribution of isolated sections, which in turn depends on the incidence
matrix. Although the reward rates and the transition rates of the phased
recovery model may vary across legs, the number of states and the possible
transitions between states in the phased recovery model are assumed to be
fixed. Fixing the structure of the phased recovery model allows us to pre-
compute solutions in a scalable fashion.

– Reward table. We associate a set of reward rates with each state of the
phased recovery model characterizing a given leg. The reward table char-
acterizes the expected reward rate (e.g., energy not supplied per time unit)
associated with each state for each leg. The expected reward rate depends on
the distribution of isolated sections, which in turn depends on the incidence
matrix. Note that we use the term reward rate even if the corresponding
metric of interest represents a cost that should be minimized.

2.2 Con Edison Overhead System in New York

The cyber-physical system under study is based on the Con Edison overhead dis-
tribution power grid in New York City and Westchester county, covering an area
of 604 square miles. The overhead network consists of 37,000 miles of overhead
cable lines that supply power to Westchester County, Staten Island, and parts of
the Bronx, Brooklyn, and Queens [27]. The considered power grid includes 154
auto-loops with 219 substations. The 154 auto-loop line feeders are supported
structurally by about 284,000 poles and use 47,119 overhead transformers to
convert medium voltage (33kV–4kV) to low voltage (120V–240V) supplied to
customers [11].
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Fig. 2. Wind gust values in knots for Hur-
ricane Sandy. The parts of the Con Edison
network that consist of overhead lines are
taken from [27].

Table 1. Interval of measured maxi-
mum wind gust for locations close to
the Con Edison overhead power grid,
per county. Maximum wind gust val-
ues of sections are sampled from these
intervals.

County

Maximum wind gust

intervals (knots)

Brooklyn [57, 68]
Queens [60, 74]
Bronx [57, 62]
Westchester County [56, 64]
Staten Island [59, 64]

2.3 Hurricane or Tropical Storm Event

Our work is concerned with power distribution network outages that result from
a typical hurricane or tropical storm event. We used Hurricane Sandy wind data
reported by the U.S. Government National Hurricane Center [13]. Figure 2 shows
the maximum wind gusts measured at different locations in New York City and
Westchester County, as reported in [13, p.55 et seqq.]. The parts of the Con Edi-
son network that consist of overhead lines are taken from [27] and are shown
in light gray. For example, the east and south-east of Queens is predominantly
fed by overhead lines, while Manhattan is completely served by an underground
network (and thus not considered in this paper).

From this data, we approximate the maximum wind gust at each section
required for our model as follows. We derive an interval of observed maximum
wind gust for each of the different counties served by the Con Edison overhead
network and report these intervals in Table 1. To sample the maximum wind gust
at a section, we randomly draw a maximum wind gust speed from the interval
associated with the corresponding county.

2.4 Storm Hardening Strategies

The main vulnerability of an overhead distribution system during a typical storm
event is wind and tree damage to power distribution and support equipment
(e.g., poles, wires, transformers). The storm hardening strategies considered in
our model are: (1) undergrounding certain sections of the overhead system, and
(2) tree trimming. The utility is deploying several other strategies (e.g., pole
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hardening) that are out of scope of this work [12]. The overhead distribution
system resilience can be improved by replacing portions of the power line with
underground equipment. However, due to high cost of undergrounding, the cost
effectiveness of the approach needs to be evaluated. The phased recovery model
introduced in Section 4 can be used to support such evaluations and to include
other less expensive alternatives such as tree trimming.

2.5 Input Data for the Analysis of the Cyber-Physical System

We model the Con Edison overhead distribution power grid by extracting its
most important properties as necessary to evaluate the impact of storm events.
We model each autoloop as a sequence of sections and we associate each section s
(where s = 1, 2, . . . , 1542) with its (1) average load �s, (2) distributed generation
capacity gs, and (3) maximum wind gust, as shown in Table 1. We allocated to
each county a number of loops proportional to the length of overhead distribu-
tion power lines in that county (from [27]). The loads in different sections were
set based on the load profile benchmark proposed by Rudion et al. [29]. The
aggregated input data is presented in Table 2.

Table 2 shows that the 154 auto-loops are supplied with 2,276 MW. We as-
sume the distribution of the load among the counties as indicated in the last
column of the table. In addition to being supplied by the substations, we addi-
tionally assume that the auto-loops are also fed by distributed generation from
two different renewable energy sources: solar and biomass power systems. For
solar, we assume that roughly 30% of the load can be provided by solar genera-
tion and distributed irregularly over the sections. For biomass, we assume that
4 biomass generators are available, each producing 20 MW.

Table 2. Model of the Con Edison distribution power grid, including all 154 auto-loops.
Each auto-loop comprises a minimum of 8 and a maximum of 12 sections. Net load is
the average load minus the load amenable to reduction due to Distributed Generation
(DG): the average net load per section (sixth column) is obtained after subtracting
the average DG per sections (fifth column) from the average load per section (fourth
column).

County Loops Sections
Average load

per section (kW)
Average DG

per section (kW)
Average net load
per section (kW)

Total net
load (kW)

Brooklyn 16 158 1,479.33 525.32 954.01 150,734.58
Queens 32 317 1,452.16 375.39 1,076.77 341,335.60
Bronx 12 117 1,500.63 559.83 940.80 110,073.20
Westchester 62 634 1,472.39 435.75 1,036.64 658,267.96
Staten Island 32 317 1,488.01 374.45 1,113.56 352,998.18

3 Failure Model

The damage caused by a hurricane at a given section depends on the suscepti-
bility of the section, characterized by the incidence matrix, and the hurricane



352 A. Avritzer et al.

strength. The susceptibility of the section depends on a number of adjustment
factors such as whether the section is underground and trees were trimmed (Ta-
ble 3). The hurricane strength depends on the geography (see Table 4).

Table 3. Adjustment factor θ

Storm hardening Factor θ

Underground 0.0
Trees trimmed 0.8

Table 4. Probability of failure ψ(w) as
a function of wind strength w

w Classification Knots ψ(w)

1 Small < 34 0.1
2 Medium [34, 64) 0.3
3 Large [64, 74) 0.7
4 Catastrophic � 74 1.0

Let Ws be a discrete random variable that characterizes the wind strength
level at section s. Table 4 shows the different wind strength levels considered in
this paper and the corresponding probabilities of failure ψ(w) as a function of
wind strength w. At each section, the probability of failure must be adjusted to
account for the fact that sections are underground and/or trees were trimmed.
Let θs be the adjustment factor corresponding to section s. The adjustment
factors considered in this paper are presented in Table 3.

Let Ds be the random variable that characterizes the state of section s ∈ S
immediately after a failure in leg S. If section s has failed, Ds = 1. Otherwise,
Ds = 0. Then, P (Ds = 1) denotes the probability that s has been damaged by
the hurricane and P (Ds = 0) = 1− P (Ds = 1) denotes the probability that s is
still operational. The probability that a section s is directly affected by a storm
is given by

P (Ds = 1|Ws = w) = θsψ(w) . (1)

Given the distribution of wind strengths, we obtain the probability P (Ds = 1)
that section s is affected as

P (Ds = 1) =

4∑
w=1

P (Ds = 1|Ws = w)P (Ws = w) . (2)

Equations (1) and (2) are used in Section 4 to derive key parameters of the
survivability model.

4 Survivability Model Overview

In this section, we characterize the principles that have guided the formalization
of the recovery procedure, we introduce the assumptions made at design stage,
and we present the Markovian and non-Markovian version of the phased recovery
model, discussing its properties.
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4.1 Modeling Principles

The modeling principles are discussed with reference to the physical and logical
diagrams of the network topology after the hurricane passage, which are shown
in Figure 1.

State space factorization into legs of loops. We consider the system sectionalized
into legs of loops, where each loop is divided into two legs. Each leg is composed
of a set of sections, which are separated by reclosers; a leg starts at a substation,
and ends at a tie switch.

State aggregation. We aggregate the sections around a failure into upstream sec-
tions and downstream sections. The downstream sections are still served through
the primary leg. Conversely, the upstream sections are served by the secondary
leg, if reachable, or by the distributed generation sources, if available.

Initial state conditioning. We condition the initial state to be a failure state.
This allows to avoid dealing with different time scales and characterizing the
failure rate.

4.2 Model Properties

The principles followed in the modeling phase as well as the assumptions made
on failures and their effects permit to develop a separate survivability model for
each loop, sharing the same structure while exposing different parameter values.
In so doing, the model structure turns out to be independent of the topology of
the power distribution grid, guaranteeing not only simplicity and flexibility of
modeling, but also scalability of the overall approach. Moreover, the initial state
conditioning permits to characterize the recovery actions given the occurrence
of a failure, thus making the model independent of the failure rate.

4.3 Phased Recovery Model

Markovian model. The phased recovery model is characterized by the follow-
ing states and events. After a section failure, the model is initially in state 0.
The sojourn time in state 0 corresponds to the time required for the recloser to
isolate the section, which takes an average of 1/ε time units. A recloser isolates
a section within 10-50 ms after a failure, so in the remainder of this paper we
assume ε = ∞. Let p be the probability that the communication network is
still operational after a section failure, and q be the probability that there is a
secondary path to supply energy for sections i+. After the isolation of section i
is completed, the model transitions to one of following three states:

1. With probability pq the model transitions to state 1, where the distribution
network is amenable to automatic restoration.

2. With probability p(1 − q) the model transitions to state 3, where the effec-
tiveness of distributed generation will determine if the system is amenable
to automatic restoration.
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3. With probability 1− p, the model transitions to state 4, where the commu-
nication system requires manual repair, which occurs with rate γ.
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Fig. 3. Markovian phased recovery model

In state 3, distributed generation is activated after a period of time with
average duration 1/β. Let r be the probability that distributed generation can
effectively be used. In this case, the model transitions from state 3 to state 2
with rate βr. When the model is in states 1 or 2, the distribution network is
amenable to automatic restoration, which occurs after a period of time with
average duration 1/α and 1/α′, respectively. A manual repair of section i takes
on average 1/δ units of time (and can occur while the system is in states 1-5).
After a manual repair, the model transitions to state 6, which corresponds to a
fully repaired system.

Non-Markovian Model. The phased recovery procedure is modeled through a
stochastic Time Petri Net (sTPN) [31,7], which extends Time Petri Nets (TPN)
[25] by associating each transition with a Probability Density Function (PDF)
supported over its static firing interval and with a weight used to resolve random
switches.

A transition is enabled if each of its input places contains a token and none of
its inhibitor places contains any tokens. Each enabled transition takes a time-to-
fire sampled according to its PDF. We provide here a straightforward description
of the sTPN phased recovery model shown in Figure 4, and refer the reader
to [31,7] for a formal treatment of sTPN syntax and semantics. The specific
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Fig. 4. Non-Markovian phased recovery model. IMM and GEN transitions are repre-
sented by thin bars and thick black bars, respectively.

distributions associated with model transitions refer to the case study analyzed
in the experiments.

The immediate (IMM) transition start represents the beginning of the recov-
ery procedure (IMM transitions fire in zero time). Its firing enables:

1. The general (GEN) transition manual repair, modeling manual restoration
of a set of sections.

2. The IMM transition comm ok, with probability p, accounting for the cases
where the communication network is working after a section failure. With
probability 1 − p the communication network is not working after a section
failure, which triggers the IMM transition comm ko. When the transition
comm ko fires, it enables the GEN transition comm repair, which character-
izes the time for restoration of the communication system. After the restora-
tion of the communication system, a token is added to comm working.

3. The IMM transition sp ok, with probability q, accounting for the cases where
backup power is sufficient to supply energy to the upstream sections. With
probability 1− q the backup power does not suffice, which triggers the IMM
transition sp ko.

Automatic restoration of upstream sections occurs if the communication net-
work is working and either (1) there is a secondary path to supply for the
upstream sections (which fires the sp ok transition, then placing a token in
sp or backup), or (2) distributed generation suffices to supply the upstream sec-
tions (which fires the dg ok transition, then placing a token in sp or backup). In
any of these two cases, there will be a token in place sp or backup and the GEN
transition automatic restore will be enabled. After automatic restoration of
the upstream sections occurs, the remaining isolated sections must be manually
repaired.
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Note that the firing of dg needed removes and adds a token to place comm
working so as to maintain a token in that place if communication is available, and
thus distinguish logical states where communication is up from those where it is
down. For the same reason, the firing of automatic restore removes and adds a to-
ken to places comm working and sp or backup. Inhibitor arcs from sp or backup
to dg needed and from upstream section restored to automatic restore are used
to prevent multiple firings of dg needed and automatic restore. All GEN transi-
tions are associated with uniform distributions preserving the mean value of the
corresponding EXP distributions in the Markovian model of Figure 3.

The model includes concurrent transitions associated with non-Markovian
distributions over possibly bounded supports, which motivates the use of the
solution technique proposed in [19] to perform transient stochastic analysis. The
approach builds an embedded chain that samples the underlying stochastic pro-
cess after each firing, maintaining an additional timer that evaluates the time
elapsed since the failure event. In Section 5 we use the techniques proposed in
[19] and the model presented in Figure 4 to assess storm impact accounting for
general residence time distributions in the phased recovery model.

4.4 Parameterization of the Phased Recovery Model

In this section, we characterize the effects of the hurricane on the infrastructure
under consideration, which depends on its topology as well as on the characteris-
tics and strength of the hurricane. Together, the infrastructure and the hurricane
strength will determine the model parameters p, q, and r.

Disrupted Sections. Each leg of the smart grid infrastructure consists of n
sections s1, . . . , sn. As mentioned in Section 2.1, we consider three regions in an
affected leg S: downstream sections, failed sections, and upstream sections. These
regions are characterized by the first failed section sf (section 4 in Figure 1) and
the last failed section sl (section 6 in Figure 1) with 1 ≤ f ≤ l ≤ n. If no section
fails, we set f = l = 0.

Probability of Available Communication. At each loop, the probability
of available communication between a substation and the tie switch after the
hurricane depends on whether the communication is established through radio,
wire, or through the power lines. The value of p depends on the technology
adopted for communication, and to capture the different levels of investment we
vary p between 0 and 1 in our numerical experiments.

Probability of Secondary Path Available. The probability that a secondary
path to restore energy to the upstream sections is available depends on many
factors, including the recovery of failed sections. Let Γ ′ be the indicator random
variable that characterizes if the secondary leg is operational. Then,
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Definition 1. The probability that there exists a secondary path to provide en-
ergy for the upstream sections after a failure is

q = P (Γ ′ = 1) . (3)

Leg S includes n sections, i.e., n = |S|. Recall thatDs is the random variable that
characterizes the state of section s ∈ S immediately after a failure in leg S for
s = 1, 2, . . . , n. If section s has failed, Ds = 1; otherwise, Ds = 0 (see Section 3).
Furthermore, let S′ be the other leg (secondary path) in the current loop, with
n′ sections, that might be used to provide energy for the upstream sections of
S. In this paper, to simplify the presentation, we assume that all sections fail
independently. This is clearly a simplifying assumption, which can be relaxed
without compromising the general methodology presented in this work.

Then, the probability that the secondary path to the failed region in S is
operational is

q =
∏

s′∈S′
P (Ds′ = 0) . (4)

Table 5 summarizes the notation used throughout this paper.

Table 5. Table of notation. All variables are a function of the leg under study, which
must be clear from the context.

Variable Description

p probability that communication is working after failure
q probability that there is a secondary path to upstream sections
r probability that distributed generation suffices to provide for upstream

Su average energy supplied per time-unit at state u of the phased recovery model

F index of the first failed section
L index of the last failed section
n number of sections in primary leg, n = |S|
S set of sections in primary leg
S′ set of sections in secondary leg
Γ ′ indicator random variable, equals 1 if secondary path is available

I set of contiguous sections between first and last failed section (including them)
I+ set of upstream sections
I− set of downstream sections

Dj indicator random variable, equals 1 if section j failed
	j load at section j
gj distributed generation at section j

U(l) upstream surplus when last failed section is section l

Characterizing Isolated Sections. Next, our goal is to characterize the set of
sections that are isolated from the network due to failures. We order the sections
in a leg increasingly as a function of their distance from the substation. In what
follows, we refer to the first and last failed sections in a leg with respect to that
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order. Let F be the index of the first failed section in S (see Figure 1). Then,
the probability that the first failed section is section f is given by

P (F = f) =

{
P (Df = 1)

∏f−1
j=1 P (Dj = 0) if f > 0,∏n

j=1 P (Dj = 0) if f = 0.
(5)

Equation (5) indicates that section f is the first failed section in the leg if it
is damaged (Df = 1) and the sections before section f have not been affected
(Dj = 0 for j = 1, . . . , f−1). Note that if the hurricane did not affect any section
in the leg, F = 0, which occurs when Dj = 0 for j = 1, . . . , n.

Let L be the index of the last failed section in S. Then, the probability that
the last failed section is section l is given by

P (L = l) =

n∑
f=0

P (L = l|F = f)P (F = f) (6)

where

P (L = l|F = f) =

⎧⎪⎪⎨⎪⎪⎩
P (Dl = 1)

∏n
j=l+1 P (Dj = 0) if f > 0 and l > f,∏n

j=l+1 P (Dj = 0) if f > 0 and l = f,

1 if f = l = 0,
0 otherwise,

(7)

with the convention that
∏n

j=m P (Dj = 0) = 1 if m > n. According to Eq. (7),
section l is the last failed section in the leg if it is damaged (Dl = 1) and the
sections after section l have not been affected (Dj = 0 for j = l + 1, . . . , n). If
the hurricane affects only section f in the leg, then F = L = f , which occurs
if section f is the first failed section and the sections afterwards have not been
affected (Dj = 0 for j = l + 1, . . . , n). Note that, if the hurricane did not affect
any section in the leg, F = 0, which implies that L = 0.

Rewards. Let �s denote the average load at section s. Next, our goal is to
determine the average energy not supplied after a failure.

States 1, 2, 3, 4. Let Su be the energy supplied per time unit when the phased
recovery model is in state u, 1 ≤ u ≤ 4. Then, the expected energy supplied per
unit time, in state u, is given by

E[Su] =

n∑
f=0

E[Su|F = f ]P (F = f) (8)

where, for 1 ≤ u ≤ 4,

E[Su|F = f ] =

{∑
1≤j<f �j if f > 0,∑
1≤j≤n �j if f = 0.

(9)

Equation (9) indicates that the expected energy supplied at states 1-4 is the total
load supplied to the downstream sections in case failures occur (see Figure 1),
and is the total demanded load otherwise.
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State 5. Next, our goal is to compute the expected energy supplied in state 5
of the phased recovery model. To this aim, we consider two cases, depending
on whether the secondary leg is operational. Recall that q = P (Γ ′ = 1) is the
probability that the secondary leg is operational. Then, conditioning on whether
the secondary leg is operational in state 5 of the phased recovery model, the
expected energy supplied per time unit is given by

E[S5] = E[S5|Γ ′ = 1] q + E[S5|Γ ′ = 0] (1− q) . (10)

In what follows, we compute E[S5|Γ ′ = 1] and E[S5|Γ ′ = 0]. The expected
energy supplied in state 5 of the phased recovery model, given that a secondary
path is available, is given by

E[S5|Γ ′
= 1] =

∑
0≤f≤n

∑
0≤l≤n

E[S5|F = f, L = l, Γ
′
= 1]P (L = l|F = f, Γ

′
= 1)P (F = f |Γ ′

= 1)

(11)

where P (L = l|F = f, Γ ′ = 1) and P (F = f |Γ ′ = 1) are given by Eqs. (7) and
(5), respectively, and E[S5|F = f, L = l, Γ ′ = 1] is given by

E[S5|F = f, L = l, Γ ′ = 1] =
∑

1≤j<f

�j +
∑

l<j≤n

�j . (12)

Next, we compute E[S5|Γ ′ = 0]. Let gs denote the average distributed energy
generated at section s.

Definition 2. Let U(l) be the surplus generation at the upstream of the current
leg when L = l,

U(l) =
∑

l<j≤n

(gj − �j) . (13)

Once a storm hits a leg of a loop, we assume that the leg is broken into isolated
sections, upstream sections and downstream sections (see Section 3). The isolated
sections are restored through manual repair, and energy is supplied to them only
after manual repair concludes. Upstream sections, in contrast, are amenable to
automatic restoration through Distributed Generation (DG) or making use of
a secondary path (secondary leg). We do not consider isolated restoration of
sections within the failed region, i.e., we assume that either there is enough
backup energy from distributed generation to supply to the upstream sections
(in which case they will be automatically recovered), or distributed generation
will not be used. In addition, we only consider distributed generation capacities
up to the tie switch.

If the surplus generation is zero or positive, the upstream sections can be
restored using distributed generation, even if the secondary leg is not operational.

Definition 3. The probability r of whether DG can restore the isolated upstream
sections is

r =
∑

1<l≤n

1U(l)>0P (L = l) (14)

where

1U(l)>0 =

{
1 if U(l) > 0,
0 otherwise.

(15)
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The expected energy supplied in state 5 of the phased recovery model, given
that a secondary path is not available, is given by

E[S5|Γ ′ = 0] =
∑

1<l≤n

P (L = l|Γ ′ = 0)E[S5|L = l, Γ ′ = 0] (16)

where

E[S5|L = l, Γ ′ = 0] =

{∑
l<j≤n �j if U(l) ≥ 0,

0 otherwise.
(17)

Equation (17) indicates that the expected energy supplied, given that a sec-
ondary path is not available, is equal to the energy load of the upstream sections
in case DG suffices. Replacing Eqs. (11) and (16) into Eq. (10), we obtain the
expected energy supplied in state 5 of the phased recovery model. To simplify the
presentation, in the remainder of this paper, when evaluating Eq. (16) we will
additionally assume that the probability P (L = l) that l is the last failed section
in the primary leg is independent of whether the secondary leg is available, i.e.,
P (L = l|Γ ′ = 0) = P (L = l).

State 6. In state 6, the expected energy supplied equals the total system load,
and is given by

E[S6] =
∑

1≤j≤|S|
�j . (18)

Summary. Table 6 summarizes the results presented in this section. It shows
how the probabilities and reward rates of different states of the phased recovery
model are computed, and their meaning.

Table 6. Summary of probabilities and reward rate semantics and expressions

State Reward rate Equations

1-4 Energy supplied per unit time to downstream sections (8)–(9)
5 Energy supplied per unit time to downstream and upstream sections (10)–(17)
6 Energy supplied per unit time to whole system (18)

Variable Event probability Equations

q There is a secondary path to upstream sections (3)–(4)
r Distributed generation suffices for upstream (14)–(15)

5 Evaluation

In this section, we present the results from the analysis of the Con Edison net-
work described in Section 2. Section 5.1 illustrates the investment options under
evaluation, the experimental setup, and information on the execution. Section 5.2
presents the results of Markovian and non-Markovian analysis.
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5.1 Setup and Execution

To analyze the survivability of the Con Edison network N , we both derive the
parameters and solve the survivability models described in Section 4 separately
for each autoloop S ∈ N . The survivability models yield the expected energy
not supplied at each point in time for each autoloop. To aggregate the results,
we sum up the expected energy not supplied at each point in time over all
considered autoloops. As an additional metric, we consider the Accumulated
Expected Energy Not Supplied (AEENS) until system recovery.

In order to evaluate the ability of the proposed approach to quantify storm
hardening strategies, we consider three different investment strategies and quan-
tify their effect on the expected energy not supplied:

1. Investment strategy 1 (INV1): Trim the trees along all sections. Under this
investment strategy, we multiply the failure probability of each section by
the “trees trimmed” adjustment factor θ = 0.8 (see Table 3).

2. Investment strategy 2 (INV2): For each autoloop, place the first section and
the last section underground. Under this investment strategy, we set the
failure probability of each section neighboring the substation to zero (ad-
justment factor θ = 0, see Table 3).

3. Investment strategy 3 (INV3): Combine strategies 1 and 2. Under this in-
vestment strategy, we set the probability of each section neighboring the
substation to zero and multiply the failure probability of the remaining sec-
tions by the “trees trimmed” adjustment factor θ = 0.8.

All investment options in place reduce the failure probability of some or
all sections and thus affect the rewards of the model as well as the probabil-
ities q and r. In the base model, we expect 575 sections to fail as a result of∑

S∈N

∑
s∈S P (Ds = 1). For the investment options, the expected number of

failed sections is reduced to 460 (INV1), 458 (INV2), and 366 (INV3).
Table 7 shows the average rewards for each state over all autoloops. Note that

this is averaged over all autoloops, while we actually solve the model separately
for each autoloop. Thus, the different states of the models are not reached at the
same time for different autoloops. Table 8 characterizes the parameters r and q
over all legs of all autoloops. We use expert knowledge to set the different model

Table 7. Rewards in kW averaged over all legs of all autoloops, for each investment
option

Investment State 1 State 2 State 3 State 4 State 5 State 6

None 7.4936 7.4936 7.4936 7.4936 6.6600 0
INV1 6.5089 6.5089 6.5089 6.5089 5.2990 0
INV2 6.3918 6.3918 6.3918 6.3918 5.1499 0
INV3 5.5224 5.5224 5.5224 5.5224 3.9104 0
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Table 8. For parameters r and q and each investment option, the number of sections
with parameter equal to zero, greater than zero, and the average value over sections
with parameter greater than zero

Investment
Sections

with r = 0
Sections

with r > 0
Average of r over
sections with r > 0

Sections
with q = 0

Sections
with q > 0

Average of q over
sections with q > 0

None 298 14 0.159 18 294 0.094
INV1 296 16 0.157 0 312 0.139
INV2 298 14 0.186 20 292 0.140
INV3 296 16 0.183 0 312 0.190

parameters. We let the mean manual repair time be 4 hours (δ = 1/4) and the
mean automatic repair time be 2 minutes (α = α′ = 30). Distributed generation
takes an average of 15 minutes to be activated (β = 4) and communication
takes an average of 1 hour to be repaired (γ = 1). Throughout the evaluation,
we let p = 0.5. We implemented the reward calculations and the calculation of
parameters q and r in Matlab as described in Section 4.4.

Deriving the rewards for the case study setup takes about 5 seconds on a
commercial off-the-shelf machine. The solution of the Markovian model was im-
plemented in Matlab as well, and solving the Markovian phased recovery model
takes about 10 seconds. Using the recent release of the ORIS Tool based on the
Sirio framework [8,9,6], regenerative transient analysis of the non-Markovian
phased recovery model up to time 16 h can be performed in nearly 3 seconds
with a time step of 0.1 h. Evaluating the EENS of the non-Markovian model
takes roughly 15 minutes for each investment option.

We assumed an infinite number of repair trucks and repair teams, i.e., we
assumed that the mean manual repair time 1/δ of each autoloop is independent
of the number of overall failures. This is a simplifying assumption that we will
relax in future work.

Note that loops operate autonomously from each other as far as distribu-
tion automation features are concerned. There might be dependencies between
loop repair times due to geographical closeness, global availability of required
resources, and so on. The geographical closeness was taken into account by an-
alyzing the wind gusts per location. Nevertheless, the analysis of manual repair
times as a function of geographical closeness and number of trucks available is
out of scope of the paper.

5.2 Evaluation Results

Table 9 shows the accumulated EENS until the complete system recovery for
the base network and the three investment options.

Figure 5 shows the results for the EENS over time for the base network with
no investment (red) and the three networks resulting from the three investment
strategies (blue, green, black). The first four curves in the figure key are the
results of the Markovian analysis and have the typical exponential form. The fifth
to eighth curves are the results of the non-Markovian analysis; the EENS value at
time zero is the same as in Markovian analysis. With both solution approaches,
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Table 9. Accumulated EENS in gigawatt (GW) until complete system recovery for
different investment options

Investment option

None INV1 INV2 INV3

4.5862 3.7915 3.8762 3.1268
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Fig. 5. Expected energy not supplied over time: base network and different investment
options

the base model has the highest EENS at all points in time. Investment strategy 2
(some sections underground) performs slightly better than investment strategy 1
(trim trees) for the considered setup. Combining the two strategies, i.e., strategy
3, yields the best results.

Comparing the behavior of the EENS over time, we observe that the non-
Markovian EENS results have a different behavior, exactly reaching a null value
at time 6 h; this corresponds to the completion of the manual repair, which
is uniformly distributed over the bounded support [2, 6] h. Before time 2 h,
the decrease of the EENS rate is due to the repair of upstream sections; given
the low probability that distributed generation is sufficient to provide energy
to upstream sections (r parameter), the expected reduction is limited and the
overall dynamics is dominated by the manual recovery operation. Different in-
vestment options are distinguished more significantly by guaranteeing different
initial EENS immediately after a failure.

The results demonstrate how our models can be used to quantitatively assess
investment options for storm hardening of distribution grids. Note that the nu-
merical results of our analysis are by no means general recipes for the suitability
of storm hardening strategies. Instead, for each power network under study, each
considered storm scenario, and each set of storm hardening investment options,
the input data (cf. Section 2) has to be determined and fed into our tool chain to
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quantify the effects of storm hardening strategies. Then, the calculation of the
survivability parametrization and the solution of the survivability models can be
done automatically by our tools.

6 Related Work

Survivability models of distribution automation power grids were first introduced
in [2,21,24,1]. These models were solved analytically using multiple techniques,
such as transient analysis of Markov chains, state aggregation, and hierarchical
modeling.

In [1], a Continuous Time Markov Chain (CTMC) is used to model the ac-
tions taken in reaction to a failure in a telecommunication network, evaluating
an extension of the System Average Interruption Duration Index (SAIDI) that
accounts for variations of energy demand and supply during a multi-step re-
covery process. The approach is extended in [2] to quantify the Energy Not
Supplied (ENS) in the presence of multiple failures under specific independence
assumptions. Stochastic Activity Networks (SANs) [30] are used in [3] to model
the operation of large critical infrastructures, encompassing interdependencies
among them and applying Monte Carlo simulation to evaluate the distribution of
cascade sizes. Hierarchical composition is exploited in [23] to merge the expres-
siveness of state-based Markov reward models with the computational efficiency
of combinatorial methods, deriving transient availability and performability mea-
sures for telecommunication systems.

Unit commitment scheduling for coordination of energy demand and supply
is studied in [5]. The authors model renewable energy resources through Hidden
Markov Models (HMMs) [28] and power demand loads as a Markov-Modulated
Poisson Process (MMPP) [14]. The problem is formulated as a partially observ-
able Markov decision process and a distributed scheme is presented such that the
most suitable generation unit is dynamically scheduled based on system param-
eters including demand loads, utility costs, reliability, and pollution emissions
of generation units. In [10], a probabilistic model checker based on the PRISM
tool [22] is developed and used to evaluate demand-side management in micro-
grids. The authors consider a decentralized infrastructure which allows users to
oversee demand while dissuading them from abuse and incentivizing coopera-
tion among them. The approach leverages the model of turn-based stochastic
multi-player games, where players can either collaborate or compete to achieve
a specific goal, and is used to detect potential weaknesses and unexpected be-
haviors in smart energy management algorithms.

The approach of [16,17] discusses elementary mechanisms for distributed run-
time control of power grids with a substantial share of renewable energy sources
(especially photovoltaic power generators), which make electric power produc-
tion much more subject to unpredictable and significant fluctuations. To this
end, non-Markovian models specified in MODEST [4] are used to evaluate pro-
duction control algorithms and demand-side mechanisms, especially in terms of
stability, availability, quality of service, and fairness.
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Heegaard and Trivedi [18] study the survivability of the Internet and com-
puter networks. Similarities between the operation of the Internet and the work-
ing principles of future power grids are leveraged in [15] to support design of
distributed and decentralized power grid control appliances. Keshav and Rosen-
berg [20] also point out how concepts pioneered by the Internet are applicable
to the design of smart grids.

The papers mentioned above are related to ours as they consider the surviv-
ability of critical infrastructures. Nonetheless, the work presented here signifi-
cantly differs from previous work as we (1) combine the survivability model with
a model to characterize a hurricane, (2) propose a scalable way to assess the
survivability of large infrastructures, and (3) consider and compare investment
options that have not been analyzed before using survivability models.

7 Conclusion

In this paper, we have introduced an innovative approach to model failures and
recoveries resulting from large hurricanes. To this end, a scalable survivability
model has been developed to assess the evolution of the failure recovery process
on a real distribution automation network. More specifically, we have used as a
case study Hurricane Sandy impacts on the overhead distribution of New York
metropolitan region.

We have created a scalable survivability model based on a phase-recovery
Markov chain with rewards. The reward rates characterize metrics such as the
expected energy not supplied per time unit. They are parameterized using
information about the geography and the network topology. Our model can be
evaluated efficiently because each distribution loop is modeled independently by a
separate phased recoveryMarkov chain. We have also developed a non-Markovian
phased recoverymodel that allowed us to better approximate repair distributions.
We have presented evaluations of the Markovian and non-Markovian phased re-
covery models and we are encouraged by the efficiency at which we obtained our
initial results.

As topics for further research, we envision the development of heuristics to
evaluate investment alternatives for distribution automation reliability improve-
ment, by assessing customer affecting metrics such as energy not supplied up
to full system recovery. The validation to specific environments requires engage-
ment of the target utilities and possible model refinements. The proposed model
is general enough to allow for topology generalizations and to incorporate his-
torical data from different environments.
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Abstract. In the min-entropy approach to quantitative information
flow, the leakage is defined in terms of a minimization problem, which,
in case of large systems, can be computationally rather heavy. The same
happens for the recently proposed generalization called g-vulnerability.
In this paper we study the case in which the channel associated to the sys-
tem can be decomposed into simpler channels, which typically happens
when the observables consist of several components. Our main contribu-
tion is the derivation of bounds on the g-leakage of the whole system in
terms of the g-leakages of its components.

1 Introduction

The problem of preventing confidential information from being leaked is a fun-
damental concern in the modern society, where the pervasive use of automatized
devices makes it hard to predict and control the information flow. While early
research focussed on trying to achieve non-interference (i.e., no leakage), it is
nowadays recognized that, in practical situations, some amount of leakage is un-
avoidable. Therefore an active area of research on information flow is dedicated
to the development of theories to quantify the amount of leakage, and of methods
to minimize it. See, for instance, [15,5,20,18,10,11,25,6].

Among these theories, min-entropy leakage [25,7] has become quite popular,
partly due to its clear operational interpretation in terms of one-try attacks.
This quite basic setting has been recently extended to the g-leakage framework
[2]. The main novelty consists in the introduction of gain functions, that permit
to quantify the vulnerability of a secret in terms of the gain of the adversary,
thus allowing to model a wide variety of operational scenarios.

While g-leakage is appealing for its generality and flexible operational interpre-
tation, its computation is not trivial. Like most of the quantitative approaches,
its definition is based on the probabilistic correlation between the secrets and
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Table 1. Computation of information leakage measures in various scenarios

Kinds of systems small systems large systems large unknown systems
Input distribution π known known known
Component channels Ci known known approx. statistically
Leakage of Ci with πi computable computable approx. statistically

Composed channel C computable unfeasible unfeasible
Leakage of C with π computable unfeasible unfeasible

the observables. Such correlation is usually expressed in terms of an information-
theoretic channel, where the secrets constitute the input and the observables the
output. The channel is characterized by the channel matrix, namely the condi-
tional probabilities of each output for any given input. The computation of the
channel matrix from the system can be performed via model checking (see, e.g.,
[3]), if a system is completely specified and it is not too complicated. Once the
matrix is known, the computation of the g-leakage involves solving an optimiza-
tion problem. This can be quite costly when the matrix is large.

Worse yet, in many cases it is not possible to compute the channel matrix
exactly, for instance because the system may be too complicated, or because
the conditional probabilities are partially determined by unknown factors. For-
tunately, there are statistical methods that allow to approximate the channel
matrix and the leakage [9,12]. There is also a tool, leakiEst [14], which allows
to estimate min-entropy leakage from a set of trial runs [13]. However, if the
cardinality of secrets and observables is large, such estimation becomes compu-
tationally heavy, due to the huge amount of trial runs that need to be performed.

In this paper we determined bounds on g-leakages in compositional terms.
More precisely, we consider the parallel composition of channels, defined on the
cross-products of the inputs and of the outputs. Then, we derive lower and upper
bounds on the g-leakage of the whole channel in terms of the g-leakages of the
components. Since the size of the whole channel is the product of the sizes of the
components, there is an evident benefit in terms of computational cost. Table 1
illustrates the situation for the various kinds of channel matrices (small, large,
unknown): the first three rows characterize the situation, and the last three
express the feasibility of computing the leakage of the components, the matrix
of the whole system, and the leakage of the whole system, respectively. This
computation is meant to be exact in the first two columns, and statistical in the
last one. The number of components is assumed to be huge. Note that the size of
the whole channel increases exponentially with the number of the components.

We evaluate our compositionality results on randomly generated channels and
on Crowds, a protocol for anonymous communication, run on top of a mobile
ad-hoc network (MANET). In such a network users are mobile, can commu-
nicate only with nearby nodes, and the network topology changes frequently.
As a result, Crowds routes can become invalid forcing the user to re-execute
the protocol to establish a new route. These protocol repetitions, modeled by
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Fig. 1. The two kinds of parallel compositions on channels, × and ‖

the composition of the corresponding channels, lead to more information being
leaked. Although the composed channel quickly becomes too big to compute the
leakage directly, our compositionality results allow to obtain bounds on it.

The rest of the paper is organized as follows: Section 2 introduces basic notions
of information theory, defines compositions of channels, and presents information
leakage measures. Section 3 presents lower/upper bounds for g-leakages in com-
positional terms. Section 4 instantiates these results to min-entropy leakages.
Section 5 introduces a transformation technique which improves the precision of
our method. Section 6 evaluates our results by experiments.

All proofs can be found in the report version [17] of this paper.

2 Preliminaries

In this section we recall the notion of information-theoretic channels, define
channel compositions, and recall some information leakage measures.

2.1 Channels

A discrete channel is a triple (X ,Y, C) consisting of a finite set X of secret input
values, a finite set Y of observable output values, and an |X |×|Y| matrix C, called
channel matrix, where each element C[x, y] represents the conditional probability
p(y|x) of obtaining the output y ∈ Y given the input x ∈ X . The input values
have a probability distribution, called input distribution or prior. Given a prior
π on X , the joint distribution for X and Y is defined by p(x, y) = π[x]C[x, y].
The output distribution is given by p(y) =

∑
x∈X π[x]C[x, y].

2.2 Composition of Channels

We now introduce the two kinds of composition which will be considered in the
paper. We assume that the channels are independent, in the sense that, given the
respective inputs, the outcome of one channel does not influence the outcome
of the other. We start with defining parallel composition with separate inputs
× (parallel composition for short). Note that the term “parallel” here does not
carry a temporal meaning: the actual execution of the corresponding systems
could take place simultaneously or in any order.
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Definition 1 (Parallel composition (with distinct inputs)). Given two
discrete channels (X1,Y1, C1) and (X2,Y2, C2), their parallel composition (with
distinct inputs) is the discrete channel (X1×X2,Y1×Y2, C1×C2) where C1×C2

is the (|X1| · |X2|) × (|Y1| · |Y2|) matrix such that (C1 × C2)[(x1, x2), (y1, y2)] =
C1[x1, y1] · C2[x2, y2] for each x1 ∈ X1, x2 ∈ X2, y1 ∈ Y1 and y2 ∈ Y2.

The condition (C1 × C2)[(x1, x2), (y1, y2)] = C1[x1, y1] · C2[x2, y2] is what
we mean by “the channels are independent”. Note that, although the output
distributions Y1 and Y2 may be correlated, they are conditionally independent,
in the sense that p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2).

Next, we define the parallel composition with shared input ‖.
Definition 2 (Parallel composition with shared input). Given two dis-
crete channels (X ,Y1, C1) and (X ,Y2, C2), their parallel composition with shared
input is the discrete channel (X ,Y1 × Y2, C1 ‖ C2) where C1 ‖ C2 is the |X | ×
(|Y1| · |Y2|) matrix such that (C1 ‖ C2)[x, (y1, y2)] = C1[x, y1] · C2[x, y2] for each
x ∈ X , y1 ∈ Y1 and y2 ∈ Y2.

Note that ‖ is a special case of ×. In fact, (C1 ‖ C2)[x, (y1, y2)] = C1[x, y1] ·
C2[x, y2] = (C1 × C2)[(x, x), (y1, y2)].

Fig. 1 illustrates these definitions. These two kinds of compositions are used
to represent different situations. For example, in the Crowds protocol (explained
in Section 6.1) repeated executions of the protocol with different senders are
described by the parallel composition (×), while repeated executions with the
same sender are described by the parallel composition with shared input (‖).

2.3 Quantitative Information Leakage Measures

The information leakage of a channel is measured as the difference between the
prior uncertainty about the secret value of the channel’s input and the posterior
uncertainty of the input after observing the channel’s output. The uncertainty
is defined in terms of an attacker’s operational scenario. In this paper we will
focus on min-entropy leakage, in which such measure, min-entropy, represents
the difficulty for an attacker to guess the secret inputs in a single attempt.

Definition 3. Given a prior π on X and a channel (X ,Y, C), the prior vulner-
ability and the the posterior vulnerability are defined respectively as

V (π) = max
x∈X

π[x] and V (π,C) =
∑
y∈Y

max
x∈X

π[x]C[x, y].

Definition 4. Given a prior π on X and a channel (X ,Y, C), the min-entropy
H∞(π) and conditional min-entropy H∞(π,C) are defined by:

H∞(π)= − logV (π) and H∞(π,C) = − logV (π,C)

and the min-entropy leakage I∞(π,C) and min-capacity C∞(C) are defined by:

I∞(π,C)= H∞(π) − H∞(π,C) and C∞(C) = sup
π′

I∞(π′, C).



372 Y. Kawamoto, K. Chatzikokolakis, and C. Palamidessi

Min-entropy leakage has been generalized by g-leakage [2], which allows a wide
variety of operational scenarios. These are modeled using a set W of possible
guesses, and a gain function g : W × X → [0, 1] such that g(w, x) represents the
gain of the attacker when the secret value is x and he makes a guess w on x.

Then g-vulnerability is defined as the maximum expected gain of the attacker:

Definition 5. Given a prior π on X and a channel (X ,Y, C), the prior g-
vulnerability and the posterior g-vulnerability are defined respectively by

Vg(π) = max
w∈W

∑
x∈X

π[x]g(w, x) and Vg(π,C) =
∑
y∈Y

max
w∈W

∑
x∈X

π[x]C[x, y]g(w, x).

We now extend Definition 4 to the g-setting:

Definition 6. Given a prior π on X and a channel (X ,Y, C), the g-entropy
Hg(π), conditional g-entropy Hg(π,C), g-leakage Ig(π,C) and g-capacity Cg(C)
are defined by: Hg(π)=− logVg(π), Hg(π,C)=− logVg(π,C), Ig(π,C)=Hg(π)−
Hg(π,C), Cg(C)=sup

π′
Ig(π

′, C).

The min-entropy notions are particular cases of the g-entropy ones, obtained
by instantiating g to the identity function gid defined as gid(w, x) = 1 if w = x
and gid(w, x) = 0 otherwise. Then we have H∞ = Hgid , I∞ = Igid and C∞ =
Cgid .

3 Compositionality Results on g-Leakage

In this section we introduce joint gain functions for composed channels and
present compositionality results for g-leakage.

3.1 Joint Gain Functions for Composed Channels

To formalize the g-leakages of composed channels, we need to know in advance
a joint gain function g that is defined as a function from (W1 ×W2)× (X1 ×X2)
to [0, 1]. When a joint secret input is (x1, x2) ∈ X1 × X2 and the attacker’s
joint guess is (w1, w2) ∈ W1 × W2, the attacker’s joint gain from the guesses is
represented by g((w1, w2), (x1, x2)).

For the sake of generality, we do not assume any relation between g and the
two gain functions g1 and g2, except for the following: a joint guess is worthless iff
at least one of the single guesses is worthless. Formally: g((w1, w2), (x1, x2)) = 0
iff g1(w1, x1)g2(w2, x2) = 0. 1

We say that g1 and g2 are independent if g((w1, w2), (x1, x2)) = g1(w1, x1)
g2(w2, x2) for all x1, x2, w1 and w2.

1 This property holds, for example, when g, g1, g2 are the identity gain functions.
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3.2 Jointly Supported Input Distributions

Given a joint prior π on X1 × X2, the marginal distribution π1 on X1 is defined
as π1[x1] =

∑
x2∈X2

π[x1, x2] for all x1 ∈ X1. The marginal distribution π2 on X2

is defined analogously. Note that π1[x1] · π2[x2] = 0 implies π[x1, x2] = 0 . The
converse does not hold in general, but occasionally we will assume it:

Definition 7. A prior π on X1 × X2 is jointly supported if, for all x1 ∈ X1 and
x2 ∈ X2, π1[x1] · π2[x2] �= 0 implies π[x1, x2] �= 0.

Essentially, this condition rules out all the distributions in which there exist
two events that happen with a non-zero probability, but that never happen
together, i.e., events that are incompatible with each other.

If π1 and π2 are independent, i.e., π[x1, x2] = π1[x1] · π2[x2] for all x1 ∈ X1

and x2 ∈ X2, then we denote π by π1×π2. Note that π1×π2 is jointly supported.

3.3 The g-Leakage of Parallel Composition

In this section we present a lower and an upper bound for the g-leakage of C1×C2

in terms of the g-leakages of C1 and C2. We first introduce some notation.

Definition 8. Let π be a prior onX1×X2, and g : (W1×W2)×(X1×X2) → [0, 1]
be a joint gain function. For w1 ∈ W1 and w2 ∈ W2, their support with respect to g
is defined as: Sw1,w2 = {(x1, x2) ∈ X1 × X2 |π[x1, x2] · g((w1, w2), (x1, x2)) �= 0} .

The lower and the upper bounds are based on the following two measures.

Definition 9. Let g be a joint gain function from (W1 × W2) × (X1 × X2) to
[0, 1]. Let g1, g2 be two gain functions from W1 × X1 to [0, 1] and from W2 × X2

to [0, 1] respectively. Given a prior π on X1 × X2, we define Mmin
π and Mmax

π :

Mmin
π = minw1∈W1,w2∈W2min(x1,x2)∈Sw1,w2

π1[x1]g1(w1,x1)·π2[x2]g2(w2,x2)
π[x1,x2]·g((w1,w2),(x1,x2))

Mmax
π = maxw1∈W1,w2∈W2

∑
(x1,x2)∈Sw1,w2

π1[x1]g1(w1,x1)·π2[x2]g2(w2,x2)
π[x1,x2]·g((w1,w2),(x1,x2))

.

When π1 and π2 are independent and g1 and g2 are independent, Mmin
π =

Mmax
π = 1. In addition, for any prior π, Mmin

π is strictly positive.

We now show compositionality results for generalized information measures.

Posterior g-Entropy of Parallel Composition

Lemma 1. For any prior π on X1 × X2 with marginals π1 and π2, and two
channels (X1,Y1, C1), (X2,Y2, C2),

– Hg(π,C1 × C2) ≥ Hg1(π1, C1) +Hg2(π2, C2) + logMmin
π

– if π is jointly supported, then Hg(π,C1 × C2) ≤ Hg1(π1, C1) +Hg2(π2, C2) +
logMmax

π .

The equalities hold if the priors and the gain functions are independent:

Corollary 1. If g((w1, w2), (x1, x2)) = g1(w1, x1)g2(w2, x2) for all x1, x2, w1

and w2, then, for any π1 and π2, Hg(π1×π2, C1×C2) = Hg1(π1, C1)+Hg2(π2, C2).
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The g-Leakage of Parallel Composition

Theorem 1. Let π be a jointly supported prior on X1 × X2 with marginals π1

and π2. Let (X1,Y1, C1), (X2,Y2, C2) be two channels. Then:

Ig1(π1,C1)+ Ig2(π2,C2)− log
Mmax

π

Mmin
π

≤Ig(π,C1 ×C2)≤Ig1(π1,C1)+ Ig2(π2,C2)+ log
Mmax

π

Mmin
π

Again, the equality holds if the priors and the gain functions are independent:

Corollary 2. If g1 and g2 are independent, then Ig(π1 × π2, C1 ×C2) = Ig1 (π1,
C1) + Ig2 (π2, C2).

These results can be naturally extended to the composition of n channels; this
extension can be found in the report version of this paper [17].

3.4 The g-Leakage of Parallel Composition with Shared Input

In this section we present compositionality results for g-leakage when two chan-
nels share the same input value.

The parallel composition with shared input corresponds to the parallel compo-
sition with two identical inputs values: (C1‖C2)[x, (y1, y2)] = C1[x, y1]C2[x, y2] =
(C1×C2)[(x, x), (y1, y2)]. To give the same input value x to both C1 and C2, the
prior π† on X × X is defined from a prior π on X by:

π†[x, x′] =

{
π[x] if x = x′

0 otherwise

Then Hg(π,C1 ‖ C2) = Hg(π
†, C1 × C2). In addition, π†

1[x] = π†
2[x] = π[x].

As we see in the definition, the attacker’s gain is determined solely from a
secret input x and his guess w on x (and independently of channels that receive
x as input). Let g be a gain function from W × X to [0, 1]. Since C1 and C2

receive input from the same domain X , we use the same gain function g to
calculate both the g-leakages of C1 and C2. Since an identical input value x is
given to C1 and C2 in the composed channel C1 ‖ C2 and the attacker makes
a single guess w on the secret x, we define the joint gain function g† : W ×
W × X × X → [0, 1] from g by: g†((w,w′), (x, x′)) = g(w, x) if w = w′ and
x = x′ and g†((w,w′), (x, x′)) = 0 otherwise. If π†[x, x′] · g†((w,w′), (x, x′)) �= 0,
then w = w′ and x = x′. Let (W × X )+ = { (w, x) ∈ W × X | π[x]g(w, x) �=
0 }. By π†

1[x] = π†
2[x] = π[x], Mmin(π†) = min(w,x)∈(W×X )+ π[x]g(w, x) and

Mmax(π†) = maxw∈W
∑

x∈X π[x]g(w, x). Then Hg(π) = − logMmax(π†).
To describe compositionality results, we introduce the following notation.

Definition 10. For any prior π on X and any gain function g, we defineHmin
g (π)

by: Hmin
g (π) = − logmin {π[x]g(w, x) : x ∈ X , w ∈ W , π[x]g(w, x) �= 0}.

Then, for any prior π, Hmin
g (π) = − logMmin(π†) and Hmin

g (π) ≥ Hg(π).

Since π† is not jointly supported, we can instantiate compositionality results
in the previous sections only on a lower bound for the posterior g-entropy and
upper bounds for g-leakage and g-capacity.
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The posterior g-entropy Hg(π,C1 ‖ C2) of a channel composed in parallel
with shared inputs is lower-bounded by the summation of logHmin

g (π) and the
posterior g-entropies of its two components:

Theorem 2. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

Hg(π,C1 ‖ C2) ≥ Hg(π,C1) +Hg(π,C2)− Hmin
g (π).

An upper bound of the g-leakage Ig(π,C1 ‖C2) of a channel composed in par-
allel with shared inputs is described using the g-leakages of its two components:

Theorem 3. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

Ig(π,C1 ‖ C2) ≤ Ig(π,C1) + Ig(π,C2) +Hmin
g (π) − Hg(π).

We emphasize this result holds for any prior. Note that in the right-hand side
of the above inequality, Hmin

g (π)−Hg(π) is necessary as the following illustrates.

Example 1. Let us consider the channel (X ,Y, C) where X = Y = { 0, 1 } and C
is the 2× 2 matrix defined by C[0, 0] = C[1, 1] = 0.9 and C[0, 1] = C[1, 0] = 0.1.
Let g be the identity gain function gid and π be the prior on X such that
π[0] = 0.1 and π[1] = 0.9. Then Hg(π) = Hg(π,C) = − log 0.9, Hg(π,C ‖ C) =
− log 0.972. Therefore Ig(π,C ‖ C) = log 1.08 > 0 = Ig(π,C) + Ig(π,C).

Note that the inequality of Theorem 3 does not give a useful upper bound
when the prior π is far from the uniform distribution. In this example, by
Hmin

g (π) − Hg(π) = log 9, the left-hand side is log 1.08 ≈ 0.111 while the right-
hand side is log 9 ≈ 3.170.

These compositionality results are naturally extended to n channels composed
in parallel; the extension can be found in the report version of this paper [17].
On the other hand, the result may not hold when the composition of channels
is done in a dependent way (i.e., it is not a parallel composition). The following
is a counterexample:

Example 2. Let X = Y1 = Y2 = {0, 1}, π be the uniform distribution on X and
g be the identity gain function. We consider the channel that, given an input
x ∈ X , outputs a bit y1 uniformly drawn from Y1 and the exclusive OR y2 of x
and y1. Then the g-leakage of the channel is 1 while both of the g-leakages from
X to Y1 and from X to Y2 are 0 and Hmin

g (π) −Hg(π) = 0. Hence the property
expressed by Theorem 3 in general does not hold if we replace ‖ with some other
kind of composition.

4 Compositionality Results on Min-Entropy Leakage

In this section we present compositionality results for min-entropy leakage, which
yield compositionality theorems for min-capacity.
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4.1 Leakage of Parallel Composition

In this section we derive bounds for min-entropy, which, we recall, is a particular
case of g-leakage obtained when g is the identity gain function.

We start by remarking that, when the gain functions are identity gain func-
tions, Mmin

π and Mmax
π reduce to Mmin

∞,π and Mmax
∞,π defined as:

Mmin
∞,π = min(x1,x2)∈(X1×X2)+

π1[x1]·π2[x2]
π[x1,x2]

, Mmax
∞,π = max(x1,x2)∈(X1×X2)+

π1[x1]·π2[x2]
π[x1,x2]

The next results are consequences of the results of Section 3:

Corollary 3. For any prior π on X1×X2 and channels (X1,Y1, C1), (X2,Y2, C2),

– H∞(π,C1 × C2) ≥ H∞(π1, C1) +H∞(π2, C2) + logMmin
∞,π.

– If π is jointly supported, H∞(π,C1×C2)≤H∞(π1, C1)+H∞(π2, C2)+logMmax
∞,π .

– If π = π1 × π2, then H∞(π1 × π2, C1 × C2) = H∞(π1, C1) +H∞(π2, C2).

Corollary 4. For a jointly supported prior π on X1×X2, channels (X1,Y1, C1),

(X2,Y2, C2) and F = log
Mmax

∞,π

Mmin∞,π
,

– I∞(π1, C1)+I∞(π2, C2) − F ≤ I∞(π,C1 × C2) ≤ I∞(π1, C1)+I∞(π2, C2) + F
– If π = π1 × π2, then I∞(π1 × π2, C1 × C2) = I∞(π1, C1) + I∞(π2, C2).

The min-entropy leakage coincides with the min-capacity when the prior π is
uniform. Thus we re-obtain the following result from the literature [4]: C∞(C1×
C2)=C∞(C1) + C∞(C2).

4.2 Leakage of Parallel Composition with Shared Input

As corollaries of Theorems 2 and 3 we obtain the compositionality results for the
posterior min-entropy and the min-entropy leakage by taking g as the identity
gain function gid. For any prior π on X , let Hmin(π) = − logmin{π[x] | x ∈
X , π[x] �= 0}. Then Hmin(π) ≥ log |X | ≥ H∞(π).

Corollary 5. For any prior π on X and channels (X ,Y1, C1) and (X ,Y2, C2),

– H∞(π,C1)+H∞(π,C2)−Hmin(π)≤H∞(π,C1‖C2)≤min{H∞(π,C1), H∞(π,C2)}
– max{I∞(π,C1), I∞(π,C2)} ≤ I∞(π,C1 ‖ C2) ≤ I∞(π,C1) + I∞(π,C2) +

Hmin(π) − H∞(π).

The min-entropy leakage coincides with the min-capacity when the prior π
is uniform. If π is uniform we have Hmin(π) = H∞(π). Thus we re-obtain the
following result from the literature [16]: C∞(C1 ‖ C2)≤C∞(C1) + C∞(C2).

The following is an example of the above inequality.

Example 3. Consider the channel (X ,Y, C) shown in Example 1. Let π be the
uniform prior on X . Then H∞(π) = 1, H∞(π,C) = H∞(π,C ‖C) ≈ 0.152. Hence
C∞(C ‖ C) = H∞(π) − H∞(π,C ‖ C) ≈ 0.848 while C∞(C) + C∞(C) ≈ 1.696.
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5 Improving Leakage Bounds by Input Approximation

The compositionality results for g-leakage shown in a previous section may not
give good bounds when the prior is far from the uniform distribution, as illus-
trated in Example 1. In particular, probabilities that are closer to 0 in priors
make our leakage bounds much worse. Since such small probabilities do not af-
fect true g-leakage values much, they can be removed from the priors while this
may cause little error on g-leakage values. In the following we present a way
of improving bad g-leakage bounds by removing small probabilities. We call it
input approximation technique. We will only consider the case of min-entropy
leakage, i.e., when g is the identity gain function.

The idea of removing small entropies is reminiscent of the notion of smooth
entropy [8], although the motivation and technicalities are different.

5.1 Bounds for Known Channels

We first consider the case in which the channel components are known. Let π be a
prior on X . Let X ′ be a non-empty proper subset of X such that maxx′∈X ′ π[x′] ≤
minx∈X\X ′ π[x]. Then maxx∈X\X ′ π[x] = maxx∈X π[x]. Let ε =

∑
x′∈X ′ π[x′]. We

define a function π|X\X ′ from X to [0, 1] by:

π|X\X ′[x] =

{
0 if x ∈ X ′

π[x] otherwise

Then π|X\X ′ is not a probability distribution, as it does not sum up to 1; i.e.,∑
x∈X π|X\X ′[x] < 1. However, the results in previous sections do not require π

to be a probability distribution, and neither do the definitions of entropy and
leakage. Errors caused by the above input approximation are bounded as follows:

Theorem 4. For any prior π on X and channel (X ,Y, C),

I∞(π|X\X ′, C) ≤ I∞(π,C) ≤ I∞(π|X\X ′, C) + log(1 + ε
V (π|X\X′ ,C)).

So, the idea is to remove very small probabilities in priors and then apply our
compositional approach to derive bounds illustrated in a previous section. This
will allow to obtain better bounds, as small probabilities affect dramatically the
precision of our approach, while removing them produces only relatively small
errors as shown in Theorem 4.

More precisely, the technique works as follows. Consider a channel C composed
of C1 and C2 in parallel and a joint prior π on X1 ×X2. We take X1 ×X2 as X in
the input approximation procedure and Theorem 4. Recall that the prior must
be jointly supported in order to apply our compositional approach, therefore
we take a X ′ ⊆ X1 × X2 so that π|X\X ′ is jointly supported. Then we apply
Corollary 4 to obtain a lower and an upper bound for I∞(π|X\X ′ , C). Finally we
apply Theorem 4 to obtain bounds for the original I∞(π,C).



378 Y. Kawamoto, K. Chatzikokolakis, and C. Palamidessi

Example 4. Consider the channel (X ,Y, C) for X = {x0, x1, x2}, Y = {y0, y1, y2}

y0 y1 y2

x0 0.50 0.23 0.27
x1 0.20 0.40 0.40
x2 0.21 0.43 0.36

Fig. 2. Channel matrix

and C is given in Fig. 2. We assume the prior π such that
π(x0) = 0.01, π(x1) = 0.49 and π(x1) = 0.50, is shared
among channels. Then the min-entropy leakage of the
channel C10 composed of ten C’s in parallel is 0.1319,
while our upper bound is 0.7444 when ε = 0.01. On
the other hand, the upper bound obtained using min-
capacity [4] is 4.114, which is much larger than ours.

5.2 Bounds for Channels Composed of Unknown Channels

In some situations an analyst may not know the channel matrices C1, C2 and
therefore cannot calculate I∞(π|X\X ′ , Ci) or V (π|X\X ′ , Ci) (necessary to ap-
ply Corollary 4), while he may know the information leakages I∞(π1, C1) and
I∞(π2, C2). Our input approximation technique allows us to obtain bounds also
in this case, although less precise than in the case of known channels. Hereafter
we let π′ = π|X\X ′. From Theorem 4:

Theorem 5. I∞(π1, C1)+I∞(π2, C2)−log
Mmax

∞,π′
Mmin

∞,π′
−log V (π1,C1)

V (π1,C1)−ε−log V (π2,C2)
V (π2,C2)−ε

≤ I∞(π,C1×C2)≤I∞(π1, C1)+I∞(π2, C2)+log
Mmax

∞,π′
Mmin

∞,π′
+log max(V (π1,C1),V (π2,C2)

max(V (π1,C1),V (π2,C2))−ε .

Theorem 6. I∞(π,C1‖C2)≤I∞(π1, C1)+I∞(π2, C2)+log max(V (π1,C1),V (π2,C2))
max(V (π1,C1),V (π2,C2))−ε

+Hmin(π′)− H∞(π′).

When ε = 0 these theorems coincide with Corollaries 4 and 5.
Note that V (π1, C1) and V (π2, C2) are calculated from V (π1), V (π2), I∞(π1,

C1) and I∞(π2, C2). So it is sufficient for an analyst to know only π, I∞(π1, C1)
and I∞(π2, C2) to calculate the above leakage bounds.

It is easy to see that these bounds are not as good as those in Section 5.1. Also
they are more sensitive to the choice of ε. If we take a very small ε, the input

approximation does not improve substantially, as neither
Mmax

∞,π′
Mmin

∞,π′
nor Hmin(π′)−

H∞(π′) decreases much. If we take a very large ε, then the error caused by the

input approximation is also very large, while
Mmax

∞,π′
Mmin

∞,π′
and Hmin(π′)−H∞(π′) are

close to 0. We will later present experiments on the input approximation and
illustrate that we should take ε as a value less than max{V (π1, C1), V (π2, C2)}.

The input approximation techniques illustrated in Sections 5.1 and 5.2 can be
extended to n-ary channel parallel composition. We refer to [17] for the details.

6 Experimental Evaluation

In this section we evaluate our bounds in two use-cases: first, on the Crowds
protocol for anonymous communication, running on a mobile ad-hoc network
(MANET), and second, on randomly generated channels.
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6.1 Crowds Protocol on a MANET

Crowds [22] is a protocol for anonymous communication, in which participants
achieve anonymity by forwarding messages through other users. A group of n
users, called the Crowd, participate in the protocol, and one of them, called the
initiator decides to send a message to some arbitrary recipient in the network,
called the server. The protocol works as follows: first the initiator selects ran-
domly (with uniform distribution) a member of the crowd, called the forwarder,
and forwards the message to him. A forwarder, upon receiving a message, throws
a (biased) probabilistic coin: with probability pf (a parameter of the system) he
randomly selects a new forwarder and advances the message to him, and with
probability 1 − pf he delivers the message directly to the server. Replies from
the server follow the inverse path to arrive to the initiator and future requests
use the already established route, to avoid repeating the protocol.

The goal of the protocol is to provide sender anonymity w.r.t. an attacker
who does not control the whole network, but controls only some of the nodes
and can only see traffic passing through them. Still, if the attacker controls some
members of the crowd, strong anonymity is not satisfied. A forwarding request
from user i is evidence that i is the initiator of the message. However, some
anonymity is still provided since user i can always claim that he was in fact only
forwarding a message from user j. If the number of corrupted users is relatively
small, it is more likely that i is innocent (i.e. the initiator is user j �= i) than
guilty, offering a notion of anonymity called probable innocence [22].

In this section we consider an instance of Crowds running on a mobile ad-hoc
network, in which users are mobile and can communicate only to neighbour-
ing nodes hence the network topology changes frequently. Due to the network
changes, routes become invalid and the initiator needs to rerun the protocol
to establish a new route, which causes further information leakage. Our goal is
to measure how quickly the leakage increases as a function of the number of
re-executions. Concerning the attacker model, we assume that the attacker (i)
knows the network topology (this could be achieved using known protocols for
MANETs, e.g. [21]), (ii) controls some members of the crowd and (iii) controls
the server. For a given network topology, the system is modeled by a channel
with inputs initi, meaning that user i is the initiator. The observable events
are forwj,k, meaning that user j forwarded the message to the corrupted node
k (possibly the destination server). A matrix element C[initi, forwj,k] gives the
probability that forwj,k happens when i is the initiator. Finally, for channels
C1, C2 modeling the protocol under different network topologies, the repetition
of the protocol is modeled as C1 ‖ C2.

As anonymity metric, we use g-leakage with the 2-tries gain function gW2 ,
modeling an attacker who can guess the initiator twice. Formally, W2 is the set
of all subsets of X with #X = 2, and gW2(w, x) is 1 if x ∈ w and 0 otherwise.

We evaluate our compositionality results on a Crowds instance with 25 users,
of which one is corrupted, and with pf = 0.7. The network topology is generated
by randomly adding a connection between any two users with probability 0.4.
For a given topology, the matrix is computed by the PRISM model checker [19],
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using a model similar to one of [24]. Although executions in Crowds can be
infinite, a finite state model can be employed, keeping track of only the current
forwarder instead of the full route. Then each element of the channel matrix can
be computed by PRISM as the probability of reaching the corresponding state.
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The g-leakage of a single exe-
cution can be directly computed
from the channel; however, for
multiple executions, the channel
quickly becomes too big to be of
practical use (already at 5 rep-
etitions). On the other hand, g-
leakage can be bounded using the
results in Section 4. The obtained
bounds for up to 9 protocol repe-
titions are shown in Fig. 3. Three
variations are given in which the
topology changes every 2 execu-
tions, every 3 executions or always
stays the same. All bounds are computed using a uniform prior and some ran-
domly generated channels. The experiments show that the compositionality tech-
nique allows us to obtain meaningful bounds when the system is too big to
compute exact values.

Note that the assumption of uniformly chosen forwarders is standard for the
Crowds protocol, however it would be interesting to study how our results would
change if we considered non-uniform distributions. For instance, we could have a
non-uniform distribution if the possible forwarders were equipped with a notion
of trust, like in [23]. We leave this for future work.

6.2 Evaluation on Randomly Generated Channels

In this section we evaluate our bounds on min-entropy leakage using randomly
generated channels. In particular, we evaluate the improvement on the bounds
due to the input approximation technique, and the efficiency of our approach,
which we have implemented as a library in leakiEst version 1.3 [1].

We first compare the exact leakage values with their upper bounds calculated
using the input approximation technique in the case of shared input. Fig. 4 shows
the average upper bounds obtained from Theorem 4, that can be applied when
we know the channel matrix. Fig. 5 shows those obtained from Theorem 6 that
we can apply when we do not know it. For both experiments we use randomly
generated 10 × 10 channel matrices C and a prior π that contains some input
with very small probabilities. We set ε = 0.1 in the first case and ε = V (π,C)/3
in the second one. We calculated the min-entropy leakage I∞(π,C ‖C ‖ C ‖C ‖
C ‖C) (composition of six C’s), and its lower and upper bounds, using the n-ary
generalizations of Theorems 4 and 6 (see [17] for the precise formulations.)

These cases give similar upper bounds as shown in Figs. 4 and 5. The x-
axis represents noise levels of randomly generated matrices, which we define as
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the maximum values (over rows of C) of the summations of the differences of
probabilities from the uniform distributions. For instance, when the noise level
is 0.10, the average upper bound is 1.699 in the first case (Fig. 4) while it is
1.701 in the second (Fig. 5).

These upper bounds depend on how we choose the parameter ε for the input
approximation technique. In particular upper bounds strongly depend on ε in
the case of unknown channels. In Fig. 5 we chose ε = V (π,C)/3 which gives a
relatively good upper bound. On the other hand, if we choose an ε too large we
may obtain useless bounds. Indeed, if we set for instance ε = 0.2, then we obtain
upper bounds above the maximum possible leakage, which is the min-entropy,
and is always log 10 ≈ 3.322 (as shown in Fig. 6) since the input is shared.

Fig. 7 shows average upper bounds of min-entropy leakages of randomly gen-
erated 100 × 100 channels, with randomly generated priors, noise level 0.1, and
ε = 0.005. As we can see from the figure, the gap between the lower and upper
bounds increases with the number of components.

Finally we evaluate the efficiency of our method. We consider here the min-
entropy leakage. Fig. 8 shows the execution time on a laptop (1.8 GHz Intel
Core i5) for leakiEst to compute the exact min-entropy leakages of the channels
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composed of randomly generated 10 × 10 component channels, in comparison
with the time to compute their upper bounds. To compute the exact leakages,
we used leakiEst with an option that calculates the leakages from exact matrices.
As we can see, the execution time for the exact values increases rapidly. In
fact, the size of composed channel increases exponentially with the number of
components, so the complexity of this computation is at least exponential.

For a large number of components, the time to calculate upper bounds in-
creases linearly as shown in Fig. 9. As for the computation of the exact values
with leakiEst, we expected an exponential blow-up, but we could not check it
since we run out of memory because of the size of the matrices.

7 Conclusion and Future Work

We have investigated compositional methods to derive bounds on g-leakage. To
improve the precision of the bounds, we have proposed a technique based on the
idea of approximating priors by removing small probabilities up to a parameter
ε. From our experimental results we have found that the dependency of the
precision on ε is not straightforward. We leave for future work the problem of
determining optimal values for ε. We also want to explore a possible relation
between our technique and the notion of smooth entropies from the information
theory literature [8]. This could allow us to develop a more principled approach
to the input approximation technique.
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Abstract. We present CyberSAGE, a Cyber Security Argument Graph
Evaluation tool for cyber-physical systems. Specifically, CyberSAGE sup-
ports the automatic generation of security argument graphs, a graphical
formalism that integrates diverse inputs—including workflow informa-
tion for processes executed in the system, physical network topology,
and attacker models—to argue about the level of security for the target
system. Based on the generated graphs, CyberSAGE can combine nu-
merical information to compute quantitative security assessment results.
We illustrate the use of CyberSAGE through a power grid case study.

1 Introduction

Assessing the security of cyber-physical systems (CPS) in a holistic manner is
challenging, since the results depend on a wide range of heterogeneous inputs:
how the system is used, its network topology, which types of possible attacks
one should consider, etc. In our previous work [1], we proposed a CPS security
assessment framework that uses workflow—describing how a system provides its
intended functionality—as a pillar for organizing different inputs. As shown in
Figure 1a, our proposed framework suggests to first use the information about a
security goal and the related workflow description to generate a high-level goal
graph calledG-graph, which can then be be used to generate a GS-graph by incor-
porating system information and finally a GSA-graph by further adding attacker
information. We call the generated structures security argument graphs—they
provide a graphical formalism that integrates diverse pieces of security-related
inputs to argue about the security of the target system (more details in [2]). The
graphs also support the combination of different pieces of numerical evidence
(associated with different inputs) to produce quantitative assessment results.

While it is easy to explain the intuition behind the process, the manual
construction of a holistic security argument graph for a complex CPS can be
costly and error-prone. To better deal with the complexity, we have developed
CyberSAGE, a Cyber Security Argument Graph Evaluation tool for CPS secu-
rity assessment. Though still in its prototype stage, CyberSAGE can already
automatically generate security argument graphs by putting together different
types of inputs according to our methodology. It also supports a combinatorial
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Argument Graph
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Fig. 1. The assessment framework implemented by CyberSAGE and its snapshot

approach to compute quantitative metrics over the graph. Figure 1b shows a
snapshot of CyberSAGE. The rest of this paper will describe its main function-
alities and illustrates its use in an example case study. More information about
CyberSAGE can be found at our tool website [3].

2 Use of CyberSAGE

CyberSAGE can automatically evaluate a security goal that relates to the avail-
ability of specific processes. Those processes model the intended physical, cyber,
and human interactions in the target CPS, and are provided to CyberSAGE
as XML-based specifications. CyberSAGE converts the XML-based input into
internal data structures and uses them to generate a security argument graph
based on predefined extension templates. These templates are described in more
details in [2], together with their definition and a set of CPS-specific templates.
CyberSAGE performs the overall evaluation process in the following stages:

1) Goal and workflow information input stage. This stage loads the workflow for
which the availability will be assessed. Since the workflow is typically mod-
eled using UML activity diagrams, CyberSAGE supports XMI format inputs,
as produced by UML modeling tools like Enterprise Architect1.

2) System information input stage. This stage collects information about the
deployed system. Currently, CyberSAGE can parse the topology information
about a network, where each device plays one or more roles corresponding
to the actors in the workflows. Devices are associated with properties such
as availability, vulnerabilities, etc, according to their classes. CyberSAGE
supports system inputs in an XML dialect used by the CSET tool [4].

3) Attacker information input stage. The next stage involves modeling potential
threats to the system. Our attacker model contains a list of potential attack
actions for different device classes and properties, and the required attacker
properties to perform those actions. Currently, CyberSAGE has modeled

1 http://www.sparxsystems.com/products/ea/
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Fig. 2. The workflow input (a) and generated security argument graph in CyberSAGE
(b, partially shown) for the example use case

attack actions that are targeted at the availability of software or hardware
components in the system, via either remote or local access to the devices.

4) Argument graph generation stage. CyberSAGE then generates the argument
graph using a built-in set of CPS-specific extension templates as defined
in [2]. Users can inspect the generated argument graph and return to previous
stages to change inputs and subsets of extension templates.

5) Evaluation stage. This stage performs a quantitative evaluation of the con-
structed security argument graph. Currently, CyberSAGE supports the la-
beling of the vertices by numerical evidence including component availability
(when not under attack) and attack success probability, as well as the AND,
OR, NEGATION operations for combining evidence. It then invokes the external
libDAI [5] with a transformed form of the graph to compute the availability
of the concerned process through Bayesian evaluation.

Example Use Case. We have used CyberSAGE in multiple use cases to assess
the availability property of various CPS under attack. Due to space limitations,
we focus on a concrete distributed energy resources control example (as adapted
from [6]).

In the use case, the considered workflow (Figure 2a) captures the interactions
among three main actors: a distribution management system (DMS) that man-
ages the power quality and stability of a power grid; distributed energy resources
(DER), such as solar power generators, that can adapt power generation based
on the request from DMS; and a power quality sensor (PQS) that measures var-
ious power quality indicators, e.g., the voltage, and reports them to DMS. On
a high level, the DMS controls the power generation output of DER based on
the measurements from PQS. These three actors are implemented by distributed
physical components, e.g., remote terminal units (RTU), that are not directly
connected to each other. The system topology input captures the connectivity
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between the different physical components. Finally, we consider different types
of attacks on different components and assign numerical evidence for the attack
probability and component availability.

CyberSAGE applies a set of predefined extension templates [2] to incorporate
the above inputs and generate a security argument graph, which consists of 42
vertices, as (partially) shown in Figure 2b. To interpret the graph, its root shows
the security goal, and each vertex is expanded to one or several other vertices
that it depends on. Based on the graph and numerical information provided at
its vertices, CyberSAGE computes the availability of the modelled process. The
runtime needed for generating the graph and evaluating the result is about 40ms.

We also tested other use cases with CyberSAGE, where the largest case had a
security argument graph of 163 vertices and incurred a runtime of around 200ms.
Since a security argument graph is meant to be human-readable (hence likely has
no more than a few hundreds of vertices), we do not expect CyberSAGE to have
performance issues for its graph generation and combinatorial computation.

3 Conclusion and Acknowledgements

In this paper, we introduced CyberSAGE, a tool that implements our workflow-
oriented security assessment framework [1]. CyberSAGE supports automatic
generation of security argument graphs and quantitative security assessment
of CPS based on the generated graphs. We demonstrate how to use CyberSAGE
to conduct an automatic security assessment for an electrical power grid use
case.

This work is supported by Singapore’s Agency for Science, Technology, and
Research (A*STAR) under the Human Sixth Sense Programme (HSSP). We
thank QEST reviewers and our shepherd David Parker for useful feedback, and
William Temple, Sumeet Jauhar, and William Sanders for helpful discussions.
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Abstract. We present a novel technique to analyze the bounded reach-
ability probability problem for large Markov chains. The essential idea is
to incrementally search for sets of paths that lead to the goal region and
to choose the sets in a way that allows us to easily determine the prob-
ability mass they represent. To effectively analyze the system dynamics
using an SMT solver, we employ a finite-precision abstraction on the
Markov chain and a custom quantifier elimination strategy. Through ex-
perimental evaluation on PRISM benchmark models we demonstrate the
feasibility of the approach on models that are out of reach for previous
methods.

1 Introduction

Probabilistic model checking is used in a wide array of applications, e.g., in
reliability analysis, analysis of randomized algorithms, but also for analysis of
system models that arise from the natural sciences like in computational biol-
ogy [1]. Especially in the sciences, there has always been a large interest in the
analysis of probabilistic models, as testified by countless applications of Markov
chains, Markov decision process, and their associated analysis procedures. Versa-
tile logics, such as PCTL [2], offer a flexible framework for specifying properties
of probabilistic systems. We consider one of the main building blocks for the
analysis of PCTL specifications: the bounded reachability probability problem.
It asks for the probability that a given event, characterized by a set of states
(the goal region), occurs within a given number of steps of the model.

The general area of probabilistic model checking has received increased in-
terest recently, which is to a large degree due to advances made both in the-
ory and in practical analysis tools, e.g., in model checkers like PRISM [3] and
MRMC [4]. Like all model checkers, these tools face the state-space explosion
problem, though the challenge of dealing with probabilities makes the analysis of
even moderate size systems very difficult. Various strategies have been developed
to manage the size of the state-space, including techniques like abstraction re-
finement (e.g., [5]), Stochastic SAT (SSAT) and Stochastic SMT (SSMT) [6, 7],
generalized Craig interpolation [8], symmetry reduction [9], as well as bisimu-
lation minimization [10, 11]. Other techniques use SAT-based path search to
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1 module p1
2 x : [ 0 . . 9 9 ] i n i t 0 ;
3 [ ] x<50 −> 0 . 5 : ( x ’=x+1) + 0 . 5 : ( x ’=2∗x) ;
4 [ ] x=50 −> ( x ’=x) ;
5 endmodule

Fig. 1. A symbolic DTMC in simplified PRISM syntax with one integer variable x
with domain [0, 99] and initial value 0. The first action is enabled if x < 50 and it
offers 2 probabilistic choices: With probability 0.5, x is incremented or it is doubled.
The second action is enabled when x = 50 and idles.

enumerate paths (possibly with cycles) that lead to the goal region [12, 13] and
add up their probabilities; this approach was recently enhanced to enumerat-
ing path fragments in a BDD-representation [14]. Even though these approaches
scale to models that cannot be solved by explicit state methods (i.e. numerical
approaches), the number of states in these models is still fairly small compared
to other symbolic techniques in automated (program) verification.

In this paper we present a new approach to approximate the bounded reach-
ability probability in large Markov chains using solvers for satisfiability modulo
theories (SMT-solvers). The approach starts with a new problem representation:
Instead of focusing on probability distributions over states, we consider the whole
probability space of sequences of random decisions up to the given step bound.
We then iteratively approximate the bounded reachability probability through
the SMT-based search for sets of paths that lead to the goal region.

Example. Consider the example system of Fig. 1. What is the probability that x
is smaller than 20 after 8 steps? For example, the set of paths executing (x’=2*x)
in the first 3 steps and anything in the 5 steps thereafter ensures that x is smaller
than 20 until step 8 and it has a probability of 2−3. A second set of paths starting
with one execution of (x’=x+1), then four unrestricted steps, followed by three
executions of (x’=x+1) is disjoint to the first set and also ensures to stay below
20. Hence its probability of 2−4 can be counted separately from the first set.

Organization. In Section 2 we characterize the probabilistic transition relation
of a Markov chain given in a symbolic representation via an integral over a
propositional formula, which enables a conceptually simple characterization of
the bounded reachability probability. Next, we present the iterative approach to
the approximation of the bounded reachability probability by searching for sets
of paths that lead to the goal region. We choose the shape of sets in a way that
allows us to easily determine their probability mass (Section 3). To effectively
solve the resulting formulas, we discuss a finite-precision abstraction (Section 4)
to obtain a purely discrete problem that we can effectively solve using SMT-
based methods. To enhance the efficiency, we present a specialized quantifier
elimination strategy that makes use of the convexity of the sets we search for
(Section 5). In Section 6 we report on an experimental evaluation on a set of
common benchmark models and discuss the findings. Section 7 discusses related
work.
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2 Preliminaries

We assume familiarity with the basic concepts of probability spaces and distri-
butions and we start directly with the definition of the system model:

Definition 1 (Markov chain). A (discrete-time) Markov chain (S, sinit , P )
consists of a finite set of states S, an initial state sinit ∈ S, and a probabilistic
transition function P : S → Dist(S) assigning each state s ∈ S a probability
distribution over successor states.

An execution of a Markov chain is an infinite sequence of states. Although it is
intuitively clear what the behavior of Markov chains is, we need to construct the
probability space over executions carefully. We employ the theorem of Ionescu-
Tulcea [15, Thm. 2.7.2] to build this probability space out of the infinite sequence
of random experiments (random variables). Recursively, we define a random
variable Xi over the sequences of states of length i as

Xi(s0 . . . si) =
∑

si−1∈S

P (si−1)(si) · Xi−1(s0 . . . si−1) ,

and we define X0 to assign probability 1 to sinit . The fact that each Xi, for
i ≥ 0, is a random variable, is easily verified.

This construction defines a σ-algebra over cylindrical sets of executions, i.e.
sets of executions that are defined via a common prefix, and it yields a unique
Borel-measurable probability space over the infinite executions of the Markov
chain. For a given Markov chain M we denote this measure on executions (and
on their prefixes) as PrM , mapping Borel-measurable sets of finite and infinite
executions to probabilities.

2.1 Bounded Reachability Probability

The analysis problem we consider in this paper is to determine the probability
to reach a specified set of final states in a given number of steps. This problem
is motivated by encodings of practical problems into Markov chains, where steps
correspond to steps in time in the original system. To ask for the probability to
reach the final states in a given number of steps is, therefore, often equivalent
to asking what the probability is that a certain event happens at a certain time.
The time bounded reachability probability problem is also a basic building block
for model checking logics like PCTL [2].

Formally, for a given Markov chain M = (S, sinit , P ), a set of final states
F ⊆ S, and a step number k we define the problem as computing

PrM (F, k) = PrM
(
{s0s1 . . . sk . . . ∈ Sω | s0 = sinit ∧ sk ∈ F}

)
.

Note that this formulation of the problem asks for the probability of reaching F
after exactly k steps. The computation of the probability of reaching F in k or
fewer steps is a variation of the problem requiring ∃i. si ∈ F instead of sk ∈ F .
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2.2 Symbolic Markov Chains

We aim to analyze systems with large state spaces. Hence we begin with a
symbolic encoding of the state space and the probabilistic transition function.
Figure 1 shows an example system. The state space is described by variables
v1, v2, . . . , vn with specified finite domains. The transition function is defined by
a list of actions, each of them describing a probability distribution over successor
states. Actions have the following form:

(guard) → p1 : (update1) + · · ·+ pm : (updatem) ;

The guard : S → B is a predicate on states that indicates whether the action is
enabled. If the system has multiple actions, their guards need to partition the
(reachable) state space. Thus, whenever a guard holds in a state, it is executed.

Intuitively, when executing an action, one of its probabilistic choices, which are
separated by the symbol +, is selected at random. The probability distribution
over the probabilistic choices is defined by the expressions p1, . . . , pm : S →
[0, 1] ∩ Q. Each action a and probabilistic choice p entails a unique successor
state given by an update function updatea,p : S × S → B with updatea,p(s, s

′) ∧
updatea,p(s, s

′′) =⇒ s′ = s′′.
The description of Markov chains in terms of actions is inspired by the PRISM

input language [3], as it proved to be flexible enough for a wide range of appli-
cation areas, such as distributed algorithms, communication protocols, security,
dependability, and biology. The PRISM input language supports additional fea-
tures, like the parallel composition of multiple modules, but for the sake of
simplicity, we restrict the discussion to the features described above. Our imple-
mentation presented in Section 6 does support modules, however.

2.3 The Markov Chain Entailed by a Symbolic Markov Chain

The state space of the Markov chain entailed by a symbolic Markov chain is
simply the cross product of the domains of the variables v1, v2, . . . , vn. The initial
state sinit is fixed by an expression in the symbolic model. To construct the
transition relation, we first consider the execution of a particular action a in a
state s. The probabilistic choices of a with their probabilities p1(s), . . . , pm(s),
respectively, define a partitioning of the interval [0, 1] into the sub-intervals

Ia,pi(s) =

⎡⎣i−1∑
j=1

pj(s),

i∑
j=1

pj(s)

⎞⎠
for i < m and Ia,pm =

[∑
j<m pj , 1

]
. To execute a step in the model, we draw a

value r from the interval [0, 1] uniformly at random and then proceed according
to the deterministic transition relation. For a pair of states s and s′ and a given
random value r ∈ [0, 1], the transition relation is defined as

T (s, s′, r) =
∧

1≤j≤n

⎡
⎣guardaj

(s) =⇒
∧

1≤i≤m

(
r ∈ Iaj,pi(s) =⇒ updateaj,pi

(s, s′)
)⎤⎦ .
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That is, we determine which action a is enabled and then apply the update
function of the probabilistic choice belonging to the sub-interval the random
number r falls in.

The probabilistic transition function of the entailed Markov chain, is thus

P (s, s′) =

∫ 1

0

T (s, s′, r) dr , (1)

where T (s, s′, r) is interpreted as 1 iff it holds true.
Other works in the area (e.g. [7, Definition 5.2]) define the probabilistic tran-

sition relation as a sum of the probabilities of all probabilistic choices that result
in the specified state. Our definition untangles the possible system behaviors and
the measure. This allows us to formulate a conceptually simple approximation
algorithm (Section 3). Of course, both approaches to define the entailed Markov
chain result in the same system behavior.

3 Incremental Symbolic Approximation

In this section, we present a method to incrementally approximate the bounded
reachability probability for a given (symbolic) Markov chain. It is based on a
characterization of the bounded reachability probability as an integral over a
propositional formula, similar to the formulation for the one-step probabilistic
transition given in Subsection 2.3.

We begin by characterizing executions of length k, that is legal combinations of
execution prefixes s̄ = s0s1 . . . sk of sequences of random decisions r̄ = r1r2 . . . rk;
we define

T k(s̄, r̄) =
(
s0 = sinit ∧

∧
0≤i≤k−1 T (si, si+1, ri+1)

)
. (2)

Note that for all sequences r̄ there is exactly one sequence of states that fulfills
this condition. We are interested in all sequences of random decisions that lead
to a given goal region F , i.e.,

T k(r̄, F ) = ∃s̄ ∈ Sk+1. T k(s̄, r̄) ∧ sk ∈ F .

Proposition 1. Let M be a DTMC entailed by a symbolic Markov chain. For
the bounded reachability probability for a given goal region F and step number k
it holds that

PrM (F, k) =

∫ 1

0

. . .

∫ 1

0

T k(r0 . . . rk, F ) dr0 . . . drk .

3.1 Identifying Cubes in the Probability Space

Proposition 1 leads to a new view on the problem. Instead of considering how
the probability distributions over the state space evolve over time, we consider
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the probability space over all sequences of random decisions. This ‘state-less ’
representation of the problem helps to attack the problem for models beyond the
scale at which their state space can be represented explicitely or via (MT)BDDs.

We propose to exploit the additivity of the probability measure at the level of
traces, i.e., to search for subsets R1, . . . , Rn ⊆ [0, 1]k with ∀i∀r̄ ∈ Ri. T

k(r̄, F )
and then to count them separately:

PrM (F, k) =
∑
i

(∫
Ri

1 dr̄

)
+

∫ 1

0

. . .

∫ 1

0

T k(r̄, F ) ∧
∧
i

r̄ /∈ Ri dr̄ .

It is important to pick sets Ri that are easy to integrate. By choosing them to
be disjoint (closed and/or open) rectangles in [0, 1]k, we are able to obtain an
arbitrarily close approximation and it is easy to determine the volume of each
Ri. To see this, note that the space T k(r̄, F ) is the finite disjoint union of the sets
R(s̄) = {r̄ ∈ [0, 1]k | T k(s̄, r̄)} with sk ∈ F . The sets R(s̄) are in general closed
and open rectangles, as in each dimension they are defined by an upper bound
and a lower bound given by the expressions pi(s) in the system description.

In practice it is of course desirable to find larger rectangles. Our proposal is
essentially a greedy algorithm that searches for the next largest rectangle in a
system: Check, for increasing rectangle sizes x, whether a rectangle of that size
still exists; which translates to

∃l̄, ū ∈ [0, 1]k. x ≤
∏

1≤i≤k ui − li ∧
∀r̄ ∈ [0, 1]k.

(∧
1≤i≤k li ≤ ri ≤ ui

)
=⇒ T k(r̄, F ) ∧

∧
i r̄ /∈ Ri

(3)
Whenever we find a rectangle that satisfies the conditions above, we add it to
the set of rectangles Ri and repeat the process. If no rectangle exists, we reduce
the size of the rectangle to search for. It is clear that we can stop the process at

any time and obtain an under-approximation, i.e.,
∑

i

(∫
Ri

1 dr̄
)

≤ PrM (F, k).

Note that this method has an advantage over enumerating paths through the
system, if there are multiple probabilistic choices that do not change the fact
that the executions reach the goal region with the same probabilistic choices in
other steps—the sequence of states visited may be different though.

4 A Finite-Precision Abstraction

Our problem formulation of Section 3 is not very amenable to efficient solving
with automatic methods; to achieve this goal, we employ a layer of automatic
abstraction refinement, where each abstraction is obtained by bounding the pre-
cision of the analysis. In practice, we encode each of the sub-problems in the
SMT theory of uninterpreted functions and bit-vectors (SMT UFBV) as this
theory offers an efficient quantifier elimination/instantiation strategy [16].

To encode the problem in this purely discrete theory, we discretize the ran-
dom variables according to a precision parameter h. We propose a symbolic
discretization technique on the level of the formula T k(s̄, r̄) that maintains the



394 M.N. Rabe et al.

conciseness of the representation. That is, we do not need to consider every
state or transition of the entailed DTMC, but the technique works directly on
the symbolic description. This discretization preserves the probability measure
up to an arbitrarily small error.

First, we replace the real valued variables r ∈ [0, 1] by discrete variables
r ∈

{
0, . . . , 2h − 1

}
, where each of the discretization levels now corresponds to

a small portion ( 1
2h
) of the probability mass. Second, for every action of the

symbolic Markov chain with m probabilistic choices, we discretize the intervals
Ia,i introduced in Section 2.3 according to a precision parameter h:

⌈
Iaj ,pi

⌉
h
(s) =

⎡⎣⎢⎢⎢⎣2h ·
i−1∑
j=1

pj(s)

⎥⎥⎥⎦,
⎡⎢⎢⎢2h ·

i∑
j=1

pj(s)

⎤⎥⎥⎥
⎞⎠ ,

for i < m and
⌈
Iaj ,pm

⌉
h
=
[⌊
2h ·

∑m
j=1 pj(s)

⌋
, 2h − 1

]
.

This simplifies the encoding of the one-step transition relation T (s, s′, r) to∧
1≤j≤n

guardaj
(s) =⇒

∧
1≤i≤m

(
r ∈

⌈
Iaj ,pi

⌉
h
(s) =⇒ updateaj ,pi

(s, s′)
)
,

which is a formula over a purely discrete space. The probability of a particular
probabilistic choice now approximately corresponds to the number of values for
r for which the transition relation holds true and shows this choice.

Due to the overlapping intervals
⌈
Iaj ,pi

⌉
h
, some of the discretization levels

are assigned to multiple intervals, but otherwise this transformation maintains a
clear correspondence of the values of r. Thus, the approximated transition rela-
tion now represents an over-approximation of the original transition relation, or,

in other words, the formula T k
h (s̄, r̄) =

(
s0 = sinit ∧

∧
0≤i≤k−1 T (si, si+1, ri+1)

)
is a relaxation of T k(s̄, r̄) and we define T k

h (r̄, F ) to be {r̄ ∈ [0, 1]k | ∃s̄ ∈
Sk+1. T k

h (s̄, -r̄ · 2h.) ∧ sk ∈ F} ⊇ T k(r̄, F ).
Replacing T k(r̄, F ) by T k

h (r̄, F ) in Equation 3 does not result in the desired
approximation, as for the incremental symbolic search for under-approximations
of the probability, we are interested in an under-approximation of the transition
relation. We use the duality of the search for F and its complement F̄ (that
is PrM (F, k) = 1 − PrM (F̄ , k)) to derive an under-approximation: we replace
T k(r̄, F ) by ¬T k

h (r̄, F̄ ). The reason for not starting with an under-approximation
right away is to avoid the additional quantifier alternation that lures in the set
T k(r̄, F ). In this way, the discretized version of Equation 3 has only one quantifier
alternation from an existential quantifier to a universal quantifier.

4.1 Precision

The total probability mass affected by this approximation within one step of the
transition relation, is the probability of the union of all ambiguous discretization
levels. For a given action with m probabilistic choices, there can be at most
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m − 1 ambiguous discretization levels, hence the quality of the approximation
for executing action a is m−1

2h
. The affected probability mass in one step of the

system is easily obtained by considering the action with the maximal number of
probabilistic choices.

When considering k steps, an obvious upper bound of the probability mass
affected by the approximation is

∑
0<i≤k

m−1
2h · (1 − m−1

2h )i−1 , which is smaller

than k · m−1
2h . As we are free to choose the parameter h, it is feasible to keep

the amount of affected probability mass arbitrarily small, because we have
limh→∞ PrMh

(F, k) = PrM (F, k).

Proposition 2. For a given symbolic Markov chain M , its discretized variant
Mh, a step number k, and a goal region F , we have

PrMh
(F, k) ≤ PrM (F, k) and

PrMh
(F, k) + k · (m−1

2h
) ≥ PrMh

(F ∪ {s∗}, k) .

As a consequence, the finite-precision abstraction of an under-approximation of
the bounded reachability probability as discussed in Section 3 is still an under-
approximation of the bounded reachability probability.

5 Implementation and Optimizations

We implemented our technique in a prototype model checker named pZ3 to
evaluate its practical efficacy. We use the Z3 theorem prover (specifically its
theory for SMT UFBV [16]) as a back-end to solve the generated SMT instances.
The input to the tool is a PRISM model file, a predicate F on the state space
that represents the goal region, a step number k ∈ N, and a target probability
p∗ ∈ [0, 1]. The tool then determines whether the probability to reach a state
satisfying F is larger than or equal to p∗.

5.1 The Basic Encoding

By the basic encoding, we refer to the direct encoding of Eq. 3 in the theory
of bit-vectors with quantifiers, using the finite-precision abstraction presented
in Section 4. Thereby we completely rely on the SMT solver’s ability to handle
the quantifiers. We chose the theory of bit-vectors over a pure SAT encoding to
make use of the word-level reasoning and optimizations of the SMT solver.

We omit the details of the translation of Eq. 3 into bit-vectors as it is straight-
forward. However, it is interesting to note that the size of the generated SMT
instance is (1) logarithmic in the domains of the variables, and (2) linear in the
number of variables, the number of actions, the precision parameter h, number
of updates, and the number of steps.

Note that the PRISM language supports modules that can perform actions
jointly via a synchronization mechanism. We encode such synchronized actions
of multiple modules compactly to avoid enumerating the exponential number of
synchronizations actions.



396 M.N. Rabe et al.

This basic encoding, while correct, challenges the current state-of-the-art in
SMT-solving as it produces large and complex quantified formulas that cannot
be quickly solved. In the following, we discuss optimizations, first and foremost
a custom quantifier elimination strategy, that enables checking Eq. 3 effectively
for large Markov chains.

5.2 Custom Quantifier Elimination

To improve the performance of the SMT solver, we implemented a customized
quantifier elimination procedure that relies on the notions of example paths and
close counter-examples. The idea is to not search for a sufficiently large rectangle
directly, but instead we pick a local environment by fixing an example path that
leads to the goal region and only search for rectangles that contain this path,
such that we find the largest rectangle containing at least this path. Abstractly,
we pick candidate rectangles and check whether they are valid rectangles by
searching for a path inside the rectangle that does not lead to the goal region,
i.e., a counter-example. If we find such a counter-example, we remember it and
generate a new candidate rectangle. This procedure is similar to what a strategy
like model-based quantifier instantiation [16, 17] does with a problem like Eq. 3.

However, we may have to perform many queries to find a rectangle that does
not contain a counter-example (i.e., a rectangle only containing paths that lead to
the goal region). So, when searching for counter-examples, it is highly beneficial
to rule out as many candidate rectangles as possible. Here, we exploit the fact
that the rectangles we are looking for are convex. Therefore, counter-examples
that are ‘closer’ to the example path rule out more candidate rectangles than
those that are strictly further away. As a measure of distance between paths, we
use the Hamming distance of the bit-strings that represent the random choices,
as follows: Instead of encoding the random choices of each step by a bit-vector of
length h, we consider these as h independent Boolean variables, such that we are
able to compute the Hamming distance between two different instantiations of
those variables. This entails a change of view from a k-dimensional space where
each dimension has 2h values, to a k · h-dimensional space with Boolean values
and it slightly changes the notion of rectangles: A rectangle in the bit-vector
representation is not necessarily a rectangle in the Boolean representation, and
vice versa. (Rectangles in the Boolean space are also called cubes.) Currently, we
only support this restricted notion of shapes, but in general any type of convex
polygonal shape can be used.

Using these definitions, we search for those counter-examples that are closest
to the example path. We call these counter-examples close counter-examples. Fi-
nally, we provide a sketch of the process in Algorithm 1, which uses the following
functions:

findPath: Yields a path that starts with the initial state, follows the k-step
transition relation and ends up in a state satisfying F . Paths that were already
counted in previous runs of the outer loop are excluded by ¬rectangles . This
is essentially an SMT-based bounded model checking query. We utilize both
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Data: Initial states I , k-step transition relation T k, goal states F , target
probability p∗

Result: true if the probability to reach F from I via T k is at least p∗, false
otherwise.

rectangles := ∅ ;
p := 0 ;
while p < p∗ do

path := findPath (I , T k, F , ¬rectangles) ;
if path �= ∅ then

closeCEs := ∅ ;
rectangleFound := false;
while not rectangleFound do

rectangle := findCandidateRectangle(path, closeCEs);

closeCE := findClosestCE(rectangle, path, I , T k, ¬F );
if closeCE �= ∅ then

closeCEs := closeCEs ∪ { closeCE };
else

p := p + computeVolume(rectangle, rectangles);
rectangles := rectangles ∪ { rectangle } ;
rectangleFound := true;

end

end

else
return false;

end

end
return true;

Algorithm 1. Quantifier elimination based on close counter-examples

under- and over-approximations as described in Section 4. Searching for paths
in the over-approximation results in example paths that share their sequence of
random decisions with a second path that does not lead to the goal region. As
an optimization, we also search for example paths in the under-approximation
of the transition relation that does not allow for overlapping intervals.

findCandidateRectangle: Finds a rectangle that contains the example path and
avoids all counter-examples. Note that this check is completely agnostic to the
transition relation.

findClosestCE: This function iteratively searches for counter-examples of in-
creasing Hamming distance, starting with distance 0. Finding close counter-
examples seems to be a hard task for SMT solvers—in many models this is
harder than finding a path that is not related by distance to the original path.
Typically our tool spends over half of its run time in this routine.

Note that, while we require example paths to not be covered by any of the
identified rectangles, we do not require the rectangles to be intersection-free. This
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is an optimization that tries to avoid the fragmentation of the remaining parts
of the probability space. The function computeVolume(. . . ) finally computes the
volume that the new rectangle adds to the union of all rectangles.

6 Experimental Evaluation

We conducted a set of experiments to evaluate our technique and to determine
its effectiveness in verifying the bounded reachability probability problem and
its performance in relation to existing approaches.

Models. To obtain a benchmark set that is not biased toward our tool, we chose
to consider all Markov chain models in the benchmark set that is delivered with
the PRISM model checker. Out of those, we picked all models that come with
a bounded reachability specification. This set comprises the Bounded retrans-
mission protocol (BRP) [18], the Crowds protocol (CROWDS) [19], a contract
signing protocol (EGL) [20], the self-stabilization protocol (HERMAN) [21], a
model of von Neumann’s NAND multiplexing [22], and a synchronous leader elec-
tion protocol (LEADER) [23].1 For each of these models, we considered multiple
parameter settings, that, for example, control the number of participants in the
protocol or the minimal probability that must be proven. Most of the instances
considered satisfy the specified probability bounds. The full list of experiments
can be found in the accompanying technical report [24].

Experimental Setup. All experiments were performed on machines with two Intel
Xeon L5420 quad core processors (2.5GHz, 16GB RAM). All tools were limited
to 2GB of memory and the time limit was set to 2 hours (7200s).

Comparison to the PRISM model checker. For the comparison, we configured
PRISM to use its symbolic MTBDD engine and we extended the available mem-
ory of PRISM’s BDD library to 2GB. Figure 2 summarizes the comparison of
pZ3 to PRISM. From this plot it is evident that pZ3 solves many of the large
problem instances, for which PRISM runs out of time or memory. On Markov
chains that are small or of moderate size, however, PRISM has a clear advantage.
Especially for the models of the leader election protocol, the bounded retrans-
mission protocol and the self-stabilization protocol, we observe that scaling the
model parameters has little effect on the run time of pZ3, whereas PRISM ex-
ceeds the time or memory limits. For the models LEADER and HERMAN, all
reachable states can be reached within the considered step bound (> 1012 states
in case of the HERMAN model), suggesting that the advantage of pZ3 is due
to its use of a symbolic reasoning engine rather than a variant of state space
enumeration.

1 These models and a detailed description for each of them can be found at
http://www.prismmodelchecker.org/casestudies/

http://www.prismmodelchecker.org/casestudies/
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Fig. 2. The performance of PRISM vs the performance of pZ3 on all models and
parameter settings. The size of the circles around datapoints indicate the logarithm
of the size of the state space. For the full list of experiments, see the accompanying
technical report [24].

Scalability in the target probability. Figure 3a displays the scalability in the target
probability. As expected for an incremental method, the run time increases when
we specify a target probability close to the actual bound. The approximation
quality that can be achieved varies greatly for the different models: While for
the model of the leader election protocol 99% of the probability mass is found in
acceptable time, in other models only a fraction of the actual probability mass
is found by pZ3.

Scalability in the precision parameter. In theory, the precision parameter h plays
an important role in the quality of the results as presented in Section 4. The
probabilities computed by our approach are always sound under-approximations
of the bounded reachability probability; regardless of the precision parameter.
For the models in the PRISM benchmark suite, small values of the precision
parameters, between h = 1 and h = 8, are often enough to verify many models.
Nevertheless, for some models the precision might be an issue. Figure 3b shows
the sensitivity or our approach with respect to h on the leader election protocol
with 4 participants and 11 probabilistic alternatives each, where it has only
a moderate effect on the run time. The choice of 11 probabilistic alternatives
ensures that increasing the precision parameter actually increases the maximal
probability that can be detected by our approach.

7 Related Work

The first formulation of the bounded reachability problem for MDPs goes back
to Bellman [25] and Shapley [26]. These are the foundation of the numerical



400 M.N. Rabe et al.

1

10

100

1k

T/O

M/O

1e-9 1e-8 1e-7 1e-6 1e-5 1e-4

p
Z
3
[s
ec
]

Probability

++++++++++++++
+
+

+

+++

(a)

1

10

100

1k

T/O

M/O

5 10 15 20

p
Z
3
[s
ec
]

Precision h

+++++
++

++++
+
+++

+
+

(b)

Fig. 3. Run time of pZ3 for increasing (a) target probability on the BRP model with
parameters N = 16 and MAX = 2 and (b) precision on the leader election model with
parameters N = 4 and K = 11

methods included in MRMC [4], IscasMC[27], and Murphi [28] and enable precise
model checking, but consider states and transition probabilities explicitly and so
do not scale to problem sizes where the state space is not efficiently enumerable.
Simulation based techniques and statistical model checking are well suited to
explore the likelihood of relatively likely events in large executable systems.
However, when the events are very unlikely, simulation based techniques struggle
to produce results with small margins of error.

The first symbolic approach to analysis of MDPs is based on MTBDDs [29].
Experiments with the (MTBDD-based) tool PRISM show that the approach is
limited to fairly small state spaces, compared to other symbolic techniques in
general automated (program) verification.

Abstract interpretation [30] and general static analysis are widely employed
techniques for approximate analysis of systems, but existing frameworks based
thereupon are often limited to software-specific behavior (like numerical anal-
ysis) and their precisions strongly depends on the choice of abstract domains.
Esparza and Gaiser [31], basing their work upon that of Hermanns et al. [5] and
Kattenbelt et al. [32], as well as Monniaux [33] give a first taste of how abstract
interpretation can be employed effectively in the probabilistic setting.

Fränzle et al. [34] proposed to encode the bounded reachability problem
of Markov chains and Markov decision processes into Stochastic SAT (SSAT)
Stochastic SMT (SSMT), hoping to replicate the tremendous progress SAT and
SMT solvers brought to other fields. The proposed algorithms for SSAT and
SSMT branch over the probabilistic decisions and recursively add up the reach-
ability probability of the individual branches. This requires the exploration of
an exponential number of probabilistic branches and hence the number of steps
we can explore with this approach is limited, even for small models (cf. [7, Sec-
tion 6.7]). SSAT and SSMT-based analysis of Markov chains is similar to our
approach, but our method does not try do develop a specialized algorithm to
solve SSAT instances; it instead builds upon general purpose SMT solvers. We
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make use of quantified theories to search for sets of paths that lead to the goal
region.

Counterexample generation is a closely related branch of research [35, 36]. It
is concerned with generating proof objects or counter-examples to the bounded
reachability problem (or alternatively reward problems) that are—in principle—
human readable. Also symbolic approaches have been explored for generating
counter-examples for Markov chains [12–14]. Similar to the approach discussed
here, these works present methods to iteratively find evidence for the probability
of a given event in probabilistic systems. These methods mostly enumerate single
paths (possibly with cycles [12] or fragments of paths [14]) such that they require
a large number of calls to a SAT or SMT solver. In contrast, our method detects
large sets of paths with few calls to a solver and builds on a fundamentally
different representation: Instead of considering paths as sequences of states of
the Markov chain, we consider paths to be sequences of random decisions.

Since the presented technique is not the first symbolic approach able to solve
the bounded reachability probability problem in Markov chains, a comparison
of all approaches would be in order. However, to the best of our knowledge
there is no tool besides PRISM that (1) symbolically analyzes Markov chains
(2) is publicly available and (3) is able to parse PRISM files. A first impression
of the relative performance of recent counter-example generation techniques to
the technique presented here can be obtained through the data presented in
this work and in [14] (see also the accompanying technical report [24]). Both
works consider the same models, though the model parameters in this work are
often considerably higher. For example the leader election protocol seems to
be not amendable to enumerating paths, whereas the search for sets of paths
performs well. For the crowds protocol, however, enumerating paths (potentially
with cycles and path fragments) by many SAT or SMT calls seems considerably
faster than searching for sets of paths. This raises the question on combinations
or generalizations of the methods to combine the best of both worlds.

8 Conclusion

We present a novel approach to iteratively approximate the bounded reachability
probability in large Markov chains, which is based on a novel problem encoding
in quantified SMT theories. We employ a finite-precision abstraction to obtain a
discrete problem encoding. A specialized quantifier elimination strategy is given
to effectively dispatch the encoded formulas. We demonstrate the feasibility of
the approach on the set of benchmark models of the PRISM model checker.
Especially for large models our tool is able to outperform PRISM, suggesting
that our method is a suitable, complementary approach in cases where existing
methods do not scale.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
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In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 134–151.
Springer, Heidelberg (2013)
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Abstract. We present a novel method for computing reachability proba-
bilities of parametric discrete-time Markov chains whose transition proba-
bilities are fractions of polynomials over a set of parameters. Our algorithm
is based on two key ingredients: a graph decomposition into strongly con-
nected subgraphs combined with a novel factorization strategy for polyno-
mials. Experimental evaluations show that these approaches can lead to
a speed-up of up to several orders of magnitude in comparison to existing
approaches.

1 Introduction

Discrete-time Markov chains (DTMCs) are a widely used modeling formalism
for systems exhibiting probabilistic behavior. Their applicability ranges from dis-
tributed computing to security and systems biology. Efficient algorithms exist to
compute measures like: “What is the probability that our communication proto-
col terminates successfully if messages are lost with probability 0.05?”. However,
often actual system parameters like costs, faultiness, reliability and so on are not
given explicitly. For the design of systems incorporating random behavior, this
might even not be possible at an early design stage. In model-based performance
analysis, the research field of fitting [1], where—intuitively—probability distri-
butions are generated from experimental measurements, mirrors the difficulties
in obtaining such concrete values.

This calls for treating probabilities as parameters and motivates to consider
parametric DTMCs (PDTMCs), where transition probabilities are (rational)
functions in terms of the system’s parameters. Using these functions, one can,
e. g., find appropriate values of the parameters such that certain properties are
satisfied or analyze the sensitivity of reachability probabilities to small changes
in the parameters. Computing reachability probabilities for DTMCs is typically
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done by solving linear equation systems. This is not feasible for PDTMCs, since
the resulting equation system is non-linear. Instead, approaches based on state
elimination have been proposed [2,3]. The idea is to replace states and their
incident transitions by direct transitions from the predecessors to the successors.
Eliminating states iteratively leads to a model having only initial and absorbing
states, where transitions between these states carry—as rational functions over
the model parameters—the probability of reaching the absorbing states from the
initial states. The efficiency of such methods strongly depends on the order in
which states are eliminated and on the representation of rational functions.

Related work. The idea of constructing a regular expression representing a
DTMC’s behavior originates from Daws [2]. He uses state elimination to generate
regular expressions describing the paths from the initial states to the absorbing
states of a DTMC. Hahn et al. [3] apply this idea to PDTMCs to obtain ra-
tional functions for reachability and expected reward properties. They improve
the efficiency of the construction by common heuristics for the generation of
regular expressions [4] to guide the elimination of states. Additionally, they sim-
plify the rational functions. These ideas have been extended to Markov decision
processes [5]. The main problem is that the reachability probabilities depend
on the chosen scheduler to resolve the nondeterminism. When maximizing or
minimizing these probabilities, the optimal scheduler generally depends on the
values of the parameters. These concepts are implemented in PARAM [6] and
recently also in PRISM [7], which are—to the best of our knowledge—the only
available tools for computing reachability probabilities of PDTMCs.

Several authors have considered the related problem of parameter synthe-
sis: for which parameter instances does a given (LTL or PCTL) formula hold?
For instance, Han et al. [8] considered this problem for timed reachability in
continuous-time Markov chains, Pugelli et al. [9] for Markov decision processes,
and Benedikt et al. [10] for ω-regular properties of interval Markov chains.

Contributions of this paper. In this paper we improve the computation of reach-
ability probabilities for PDTMCs [2,3] in two important ways. First, we intro-
duce a state elimination strategy based on a recursive graph decomposition of
the PDTMC into strongly connected subgraphs. Each (sub-)SCC is replaced
by abstract transitions that lead from its ingoing states to its outgoing states.
The resulting rational functions describe exactly the probability of entering the
SCC and leaving it eventually. Secondly, we give a novel method to perform arith-
metic operations directly on a factorization of polynomials. As many benchmarks
have a symmetric structure, identical polynomials occur very often; therefore a
maintenance of partial factorizations often speeds up the cancelation of ratio-
nal functions. Although presented in the context of parametric Markov chains,
this constitutes a generic method for representing and manipulating polynomials
and rational functions or is well-suited for other applications as well. The exper-
iments show that using our techniques yields a speed-up of up to three orders of
magnitude compared to [3] on many benchmarks.

An extended version of this paper including all proofs can be found in [11].
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2 Preliminaries

Definition 1 (Discrete-time Markov chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, I, P ) with a non-empty finite set S of states, an
initial distribution I : S → [0, 1] ⊆ R with

∑
s∈S I(s) = 1, and a transition

probability matrix P : S × S → [0, 1] ⊆ R with
∑

s′∈S P (s, s′) = 1 for all s ∈ S.

The states SI = {sI ∈ S | I(sI) > 0} are called initial states. A transition leads
from a state s ∈ S to a state s′ ∈ S iff P (s, s′) > 0. The set of successor states
of s ∈ S is succ(s) = {s′ ∈ S |P (s, s′) > 0}. A path of D is a finite sequence
π = s0s1 . . . sn of states si ∈ S such that P (si, si+1) > 0 for all 0 ≤ i < n.
The set PathsD contains all paths of D, PathsD(s) those starting in s ∈ S,
and PathsD(s, t) those starting in s and ending in t. We generalize this to sets
S′, S′′ ⊆ S of states by PathsD(S′, S′′) =

⋃
s′∈S′

⋃
s′′∈S′′ Paths

D(s′, s′′). A state

t is reachable from s iff PathsD(s, t) �= ∅.
The probability measure PrD for paths satisfies

PrD(s0. . .sn) =
n−1∏
i=0

P (si, si+1)

and PrD
(
{π1, π2}

)
= PrD(π1)+PrD(π2) for all π1, π2 ∈ PathsD not being the pre-

fix of each other. In general, for R ⊆ PathsD we have PrD(R) =
∑

π∈R′ Pr
D(π)

with R′ = {π ∈ R | ∀π′ ∈ R. π′ is not a proper prefix of π}. We often omit the
superscript D if it is clear from the context. For more details see, e. g., [12].

For a DTMC D = (S, I, P ) and some K ⊆ S we define the set of input states
of K by Inp(K) = {s ∈ K | I(s) > 0∨ ∃s′ ∈ S \K. P (s′, s) > 0}, i. e., the states
insideK that have an incoming transition from outsideK. Analogously, we define
the set of output states of K by Out(K) = {s ∈ S \ K | ∃s′ ∈ K. P (s′, s) > 0},
i. e., the states outside K that have an incoming transition from a state inside
K. The set of inner states of K is given by K \ Inp(K).

We call a state set S′ ⊆ S absorbing iff there is a state s′ ∈ S′ from which
no state outside S′ is reachable in D, i. e., iff PathsD({s′}, S \ S′) = ∅. A state
s ∈ S is absorbing if {s} is absorbing.

A set S′ ⊆ S induces a strongly connected subgraph (SCS) of D iff for all
s, t ∈ S′ there is a path from s to t visiting only states from S′. A strongly
connected component (SCC) of D is a maximal (w. r. t. ⊆) SCS of S. An SCC S′

is called bottom if Out(S′) = ∅ holds. The probability of eventually reaching a
bottom SCC in a finite DTMC is always 1 [12, Chap. 10.1].

We consider probabilistic reachability properties, putting bounds on the proba-
bility

∑
sI∈SI

I(sI) ·PrD
(
PathsD(sI, T )

)
to eventually reach a set T ⊆ S of states

from the initial states. It is well-known that this suffices for checking arbitrary
ω-regular properties, see [12, Chap. 10.3] for the details.
The probability of reaching a bottom SCC equals the probability of reaching
one of its input states. Therefore, we can make all input states of bottom SCCs
absorbing, without loss of information. Furthermore, if we are interested in the
probability to reach a given state, also this state can be made absorbing without
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modifying the reachability probability of interest. Therefore, in the following we
consider only models whose bottom SCCs are single absorbing states forming
the set T of target states, whose reachability probabilities are of interest.

2.1 Parametric Markov Chains

To add parameters to DTMCs, we allow arbitrary rational functions in the defi-
nition of probability distributions [6].

Definition 2 (Polynomial and rational function). Let V = {x1, . . . , xn}
be a finite set of variables with domain R. A polynomial g over V is a sum of
monomials, which are products of variables in V and a coefficient in Z:

g = a1 · xe1,1
1 · . . . · xe1,n

n + · · · + am · xem,1

1 · . . . · xem,n
n ,

where ei,j ∈ N0 = N ∪ {0} and ai ∈ Z for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Z[x1, . . . , xn] denotes the set of polynomials over V = {x1, . . . , xn}. A rational
function over V is a quotient f = g1

g2
of two polynomials g1, g2 over V with

g2 �= 01. We use FV =
{

g1
g2

| g1, g2 ∈ Z[x1, . . . , xn] ∧ g2 �= 0
}
to denote the set of

rational functions over V .

Definition 3 (PDTMC). A parametric discrete-time Markov chain (PDTMC)
is a tuple M = (S, V , I, P ) with a finite set of states S, a finite set of parameters
V = {x1, . . . , xn} with domain R, an initial distribution I : S → FV , and a
parametric transition probability matrix P : S × S → FV .

The underlying graph GM = (S,DP ) of a (P)DTMC M = (S, V , I, P ) is given
by DP =

{
(s, s′) ∈ S × S

∣∣P (s, s′) �= 0
}
. As for DTMCs, we assume that all

bottom SCCs of considered PDTMCs are single absorbing states.

Definition 4 (Evaluated PDTMC). An evaluation u of V is a function
u : V → R. The evaluation g[u] of a polynomial g ∈ Z[x1, . . . , xn] under u : V →
R substitutes each x ∈ V by u(x), using the standard semantics for + and ·. For
f = g1

g2
∈ FV we define f [u] = g1[u]

g2[u]
∈ R if g2[u] �= 0.

For a PDTMC M = (S, V , I, P ) and an evaluation u, the evaluated PDTMC
is the DTMC D = (Su, Iu, Pu) given by Su = S and for all s, s′ ∈ Su, Iu(s) =
I(s)[u] and Pu(s, s

′) = P (s, s′)[u] if the evaluations are defined and 0 otherwise.

An evaluation u substitutes the parameters by real numbers. Well-defined prob-
ability measures are induced under the following conditions:

Definition 5 (Well-defined evaluation). An evaluation u is well-defined for
a PDTMC M = (S, V , I, P ) if for the evaluated PDTMC D = (Su, Iu, Pu) it
holds that

– Iu : Su → [0, 1] with
∑

s∈Su
Iu(s) = 1, and

– Pu : Su × Su → [0, 1] with
∑

s′∈Su
Pu(s, s

′) = 1 for all s ∈ Su.

1 g2 �= 0 means that g2 cannot be simplified to 0.
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Fig. 1. The concept of PDTMC abstraction

An evaluation u is called graph preserving if is well-defined and it holds that

∀s, s′ ∈ S : P (s, s′) �= 0 =⇒ P (s, s′)[u] > 0.

Note that P (s, s′)[u] > 0 implies that no division by 0 will occur, which will be
ensured during the model checking algorithm by requiring a graph preserving
evaluation u, i. e., GM = GMu . This is necessary, otherwise altering the graph
could make reachable states unreachable, thereby changing reachability proba-
bilities.

Definition 6. Given a PDTMC M = (S, V , I, P ) with absorbing states T ⊆ S,
the parametric probabilistic model checking problem is to find for each initial
state sI ∈ SI and each t ∈ T a rational function fsI,t ∈ FV such that for all graph-
preserving evaluations u : V → R and the evaluated PDTMC D = (Su, Iu, Pu) it
holds that fsI,t[u] = PrMu

(
PathsMu(sI, t)

)
.

Given the functions fsI,t for sI ∈ SI and t ∈ T , the probability of reaching a

state in T from an initial state is
∑

sI∈SI
I(sI) ·

(∑
t∈T fsI,t

)
.

3 Parametric Model Checking by SCC Decomposition

In this section we present our algorithmic approach to apply model checking to
PDTMCs. Let M = (S, V , I, P ) be a PDTMC with absorbing state set T ⊆ S.
For each initial state sI ∈ SI and each target state t ∈ T we compute a rational
function fsI,t over the parameters V which describes the probability of reaching t
from sI. We do this using hierarchical graph decomposition, inspired by a method
for computing reachability probabilities in the non-parametric case [13].

3.1 PDTMC Abstraction

The basic concept of our model checking approach is to replace a non-absorbing
subset K ⊆ S of states and all transitions between them by transitions directly



Accelerating Parametric Probabilistic Verification 409

s1

s2 s3

s4 s5

s6 s7

s8 s9

0.4

0.2

0.4

0.8

0.2

1
q

1− q
1

0.2

0.8
0.2

0.5

0.3 p

1− p
1

S1

S1.1

S1.2
S1.2.1

Fig. 2. Example PDTMC and its SCC decomposition

leading from the input states Inp(K) of K to the output states Out(K) of K,
carrying the accumulated probabilities of all paths between the given input and
output states in K. This concept is illustrated in Figure 1: In 1(a), K has one
input state sI and two output states s1out, s

2
out. The abstraction in 1(c) hides

every state of K except for sI; all transitions are directly leading to the output
states.

As we need a probability measure for arbitrary subsets of states, we first define
sub-PDTMCs induced by such subsets.

Definition 7 (Induced PDTMC). Given a PDTMC M = (S, V , I, P ) and
a non-absorbing subset K ⊆ S of states, the PDTMC induced by M and K is
given by MK = (SK , V K , IK , PK) with SK = K ∪ Out(K), V K = V , and for
all s, s′ ∈ SK , IK(s) �= 0 ⇐⇒ s ∈ Inp(K) and

PK(s, s′) =

⎧⎪⎨⎪⎩
P (s, s′), if s ∈ K, s′ ∈ SK ,

1, if s = s′ ∈ Out(K),

0, otherwise.

Intuitively, all incoming and outgoing transitions are preserved for inner states
of K while the output states are made absorbing. We allow an arbitrary input
distribution IK with the only constraint that IK(s) �= 0 iff s is an input state of
K.

Example 1. Consider the PDTMC M in Figure 2 and the state set K = {s7, s8}
with input states Inp(K) = {s7} and output states Out(K) = {s5, s6, s9}. The
PDTMC MK = (SK , V K , IK , PK) induced by M and K is shown in Fig-
ure 3(a).

Note that, since K is non-absorbing, the probability of eventually reaching one
of the output states is 1. The probability of reaching an output state t from an
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Fig. 3. PDTMC Abstraction

input state s is determined by the accumulated probability of all paths Paths(s, t)
from s to t. Those paths are composed by a (possibly empty) prefix looping on s
and a postfix leading from s to t without returning back to s. In our abstraction
this is reflected by representing the prefixes by an abstract self-loop on s with
probability fs,s and the postfixes by abstract transitions from the input states
s to the output states t with probability fs,t (see Figure 1(b)). If all loops in K
are loops on s then fs,t can be easily computed as the sum of the probabilities
of all loop-free paths from s to t. In the final abstraction shown in Figure 1(c),
we make use of the fact that all paths from s to t can be extended with the same
loops on s as a prefix. Therefore we do not need to compute the probability of
looping on s, but can scale the probabilities fs,t such that they sum up to 1.

Definition 8 (Abstract PDTMC). Let M = (S, V , I, P ) be a PDTMC with
absorbing states T ⊆ S. The abstract PDTMC Mabs = (Sabs, Vabs, Iabs, Pabs) is
given by Sabs = {s ∈ S | I(s) �= 0 ∨ s ∈ T }, Vabs = V , and for all s, s′ ∈ Sabs we
define Iabs(s) = I(s) and

Pabs(s, s
′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pMabs(s, s

′)∑
s′′∈T pMabs(s, s

′′)
, if I(s) > 0 ∧ s′ ∈ T ,

1, if s = s′ ∈ T ,

0, otherwise.

with

pMabs(s, s
′) = PrM

(
{π = s0 . . . sn ∈ PathsM(s, s′) | si �= s ∧ si �= s′, 0 < i < n}

)
.

Example 2. Consider the PDTMC M′ = (S′, V ′, I ′, P ′) of Figure 3(a) with ini-
tial state s7 and target states T ′ = {s5, s6, s9}. The first abstraction step for the
probabilities pMabs(s, s

′) is depicted in Figure 3(b) with the following probabilities:
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fs7,s5 = pM
′

abs(s7, s5) = 0.2 fs7,s6 = pM
′

abs(s7, s6) = 0.5

fs7,s7 = pM
′

abs(s7, s7) = 0.3 · p fs7,s9 = pM
′

abs(s7, s9) = 0.3 · (1 − p)

The total probabilities of reaching the output states in M′
abs are given by paths

which first use the loop on s7 arbitrarily many times (including zero times) and
then take a transition to an output state. For example, using the geometric series,
the probability of the set of paths leading from s7 to s5 is given by

∞∑
i=0

(fs7,s7)
i · fs7,s5 =

1

1 − fs7,s7
· fs7,s5 .

As the probability of finally reaching the set of absorbing states in M′ is 1, we
can directly scale the probabilities of the outgoing edges such that their sum is
equal to 1: We divide each of these probabilities by the sum of all probabilities
of outgoing edges, fout = 0.2 + 0.5 + 0.3 · (1 − p) = 1 − 0.3p.

Thus the abstract PDTMC M′
abs = (S′

abs, V
′
abs, I

′
abs, P

′
abs) depicted in Fig-

ure 3(c) has the states S′
abs = {s5, s6, s7, s9} and edges from s7 to all other

states with the following probabilities:

f̂s7,s5 = 0.2 /fout f̂s7,s6 = 0.5 /fout

f̂s7,s9 =
(
0.3 · (1 − p)

)
/fout

Theorem 1. Assume a PDTMC M = (S, V , I, P ) with absorbing states T ⊆ S,
and let Mabs be the abstraction of M. Then for all sI ∈ SI and t ∈ T it holds
that

PrM
(
PathsM(sI, t)

)
= PrMabs

(
PathsMabs(sI, t)

)
.

It remains to define the substitution of subsets of states by their abstractions.
Intuitively, a subset of states is replaced by the abstraction as in Definition 8,
while incoming transitions of the initial states of the abstraction as well as out-
going transitions of the absorbing states of the abstraction remain unmodified.

Definition 9 (Substitution). Assume a PDTMC M = (S, V , I, P ), a non-
absorbing setK ⊆ S of states, the induced PDTMCMK = (SK , V K , IK , PK) and
the abstraction MK

abs = (SK
abs, V

K
abs, I

K
abs, P

K
abs). The substitution of MK by its ab-

straction MK
abs in M is given by MK �→abs = (SK �→abs, VK �→abs, IK �→abs, PK �→abs)

withSK �→abs = (S\K)∪SK
abs,VK �→abs = V and for all s, s′ ∈ SK �→abs, IK �→abs(s) =

I(s) and

PK �→abs(s, s
′) =

⎧⎪⎨⎪⎩
P (s, s′), if s /∈ K,

PK
abs(s, s

′), if s ∈ K ∧ s′ ∈ Out(K),

0, otherwise.

Due to Theorem 1, it directly follows that this substitution does not change reach-
ability properties from the initial states to the absorbing states of a PDTMC.
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Algorithm 1. Model Checking PDTMCs

abstract(PDTMC M)
begin

for all non-bottom SCCs K in MS\Inp(M) do (1)
MK

abs := abstract(MK) (2)
M := MK �→abs (3)

end for (4)
K := {non-absorbing states in M} (5)
M := MK �→abs (6)
return M (7)

end

model check(PDTMC M = (S, V , I, P ), T ⊆ {t ∈ S |P (t, t) = 1})
begin

Mabs = (Sabs, Vabs, Iabs, Pabs) := abstract(M) (8)

return
∑

sI∈SI

I(sI) ·
(∑
t∈T

Pabs(sI, t)
)

(9)

end

Corollary 1. Given a PDTMC M and a non-absorbing subset K ⊆ S of states,
it holds for all initial states sI ∈ SI and absorbing states t ∈ T that

PrM
(
PathsM(sI, t)

)
= PrMK �→abs

(
PathsMK �→abs(sI, t)

)
.

3.2 Model Checking Parametric Markov Chains

In the previous section we gave the theoretical background for our model check-
ing algorithm. Now we describe how to compute the abstractions efficiently. As
a heuristic for forming the sets of states to be abstracted, we choose an SCC-
based decomposition of the graph. Algorithmically, Tarjan’s algorithm [14] is
used to determine the SCC structure of the graph while we do not consider bot-
tom SCCs. Sub-SCCs inside the SCCs without their input states are determined
hierarchically, until no non-trivial sub-SCCs remain.

Example 3. In Figure 2, the dashed rectangles indicate the decomposition into
the SCC S1 = {1, 2, 3, 4, 6, 7, 8} and the sub-SCSs S1.1 = {2, 3, 4}, S1.2 =
{6, 7, 8}, and S1.2.1 = {7, 8} with S1.1 ⊂ S1 and S1.2.1 ⊂ S1.2 ⊂ S1.

The general model checking algorithm is depicted in Algorithm 1. The recur-
sive method abstract(PDTMC M) computes the abstraction Mabs by iterating
over all SCCs of the graph without the input states of M (Line 1). For each
SCC K, the abstraction MK

abs of the induced PDTMC MK is computed by a
recursive call (Line 2, Definitions 7,8). Afterwards, MK is substituted by its
abstraction in M (Line 3, Definition 9). Finally, the abstraction Mabs is com-
puted and returned (Line 7, Definition 8). The method abstract is called by
model check (Line 8) which yields the abstract system Mabs where transitions



Accelerating Parametric Probabilistic Verification 413

lead only from the initial states to the absorbing states. All transitions are labeled
with a rational function for the reachability probability, as in Definition 6. The
total probability is computed by building the sum of these transitions (Line 9).

For the computation of the abstract probabilities pMabs, we distinguish the cases
where the set K has one or multiple input states.

One input state Consider a PDTMC MK induced by K with one initial state
sI and the set of absorbing states T = {t1, . . . , tn}, such that K \ {sI} has no
non-trivial SCCs. If there is only one absorbing state, i. e., n = 1, we trivially

have pM
K

abs (sI, t
1) = 1. Otherwise we determine the probabilities pM

K

abs (sI, t
i) for

all 1 ≤ i ≤ n. As K \ {sI} has no non-trivial SCSs, the set of those paths from
sI to ti that do not return to sI consists of finitely many loop-free paths. The
probability is computed recursively for all s ∈ SK by:

pM
K

abs (s, ti) =

⎧⎨⎩1, if s = ti,∑
s′∈(succ(s)∩K)\Inp(K)

PK(s, s′) · pMK

abs (s′, ti), otherwise. (1)

These probabilities can also be computed by direct or indirect methods for solv-
ing linear equation systems2, see [15, Chapters 3,4], or state elimination as in [3].

The probabilities of the abstract PDTMC MK
abs = (Sabs, Vabs, Iabs, Pabs) as

in Definition 8 can now directly be computed, while an additional constraint is
added in order to avoid divisions by zero:

PMK

abs (sI, t
i) =

⎧⎨⎩
pMK

abs (sI,t
i)∑

n
j=1 pMK

abs (sI,tj)
, if

∑n
j=1 p

MK

abs (sI, t
j) �= 0,

0, otherwise.
(2)

Multiple input states Given a PDTMC MK with initial states SI = {s1I , . . . , smI }
such that IK(siI) > 0 for all 1 ≤ i ≤ m and absorbing states T = {t1, . . . , tn}.
The idea is to maintain a copy of MK for each initial state and handle the other
initial states as inner states in this copy. Then, the method as described in the
previous paragraph can be used. However, this would be expensive in terms of
both time and memory. Therefore, we first formulate the linear equation system

as in Equation (1). All variables pM
K

abs (s, ti) with s ∈ K \ Inp(K) are eliminated
from the equation system. Then for each initial state siI the equation system is

solved separately by eliminating all variables pM
K

abs (sjI , t
k), j �= i.

Algorithm 1 returns the rational functions PMK

abs (sI, t) for all sI ∈ SI and t ∈ T
as in Equation (2). To allow only graph-preserving evaluations of the parameters,
we perform preprocessing where conditions are collected according to Definition 5
as well as the ones from Equation (2). These constraints can be evaluated by a
SAT-modulo- theories (SMT ) solver for non-linear real arithmetic [16]. In case
the solver returns an evaluation which satisfies the resulting constraint set, the
reachability property is satisfied. Otherwise, the property is violated.

2 Note that these equation systems are solved by keeping the parameters as constants.
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4 Factorization of Polynomials

Both the SCC-based procedure as introduced in the last section as well as mere
state-elimination [3] build rational functions representing reachability probabili-
ties. These rational functions might grow rapidly in both algorithms and thereby
form one of the major bottlenecks of this methodology. As already argued in [3],
the best way to stem this blow-up is the cancellation of the rational functions in
every computation step, which involves—apart from addition, multiplication, and
division of rational functions as illustrated in Example 2—the rather expensive
calculation of the greatest common divisor (gcd) of two polynomials.

In this section we present a new way of handling this problem: Additional
maintenance and storage of (partial) polynomial factorizations can lead to re-
markable speed-ups in the gcd computation, especially when dealing with sym-
metrically structured benchmarks where many similar polynomials occur. We
present an optimized algorithm called gcd which operates on the (partial) factor-
izations of the polynomials to compute their gcd. During the calculations, the
factorizations are also refined. On this account we reformulate the arithmetic
operations on rational functions such that they preserve their numerator’s and
denominator’s factorizations, if it is possible with reasonable effort.

Factorizations. In the following we assume that polynomials are normalized, that
is they are of the form g = a1 · xe1,1

1 · . . . · xe1,n
n + · · · + am · xem,1

1 · . . . · xem,n
n

with (ej,1, . . . , ej,n) �= (ek,1, . . . , ek,n) for all j, k ∈ {1, . . . ,m} with j �= k and the
monomials are ordered, e. g., according to the reverse lexicographical ordering.

Definition 10 (Factorization). A factorization Fg = {ge11 , . . . , genn } of a poly-
nomial g �= 0 is a non-empty set3 of factors geii , where the bases gi are pairwise
different polynomials and the exponents are ei ∈ N such that g =

∏n
i=1 g

ei
i . We

additionally set F0 = ∅.

For polynomials g, h anda factorizationFg = {ge11 , . . . , genn } of g let bases(Fg) =
{g1, . . . , gn} and exp(h,Fg) be ei if gi = h and 0 if h /∈ bases(Fg). As the bases are
not required to be irreducible, factorizations are not unique.

We assume that bases and exponents are non-zero, F1 = {11}, and 1k /∈ Fg for
g �= 1. For Fg = {ge11 , . . . , genn }, this is expressed by the reduction F red

g = {11} if

n > 0 and gi = 1 or ei = 0 for all 1 ≤ i ≤ n, and F red
g = Fg\{geii | gi = 1∨ei = 0}

otherwise.

Operations on factorizations. Instead of applying arithmetic operations on two
polynomials g1 and g2 directly, we operate on their factorizations Fg1 and Fg2 .
We use the following operations on factorizations: Fg1 ∪F Fg2 factorizes a (not
necessarily least) common multiple of g1 and g2, Fg1 ∩F Fg2 a (not necessarily

3 We represent a factorization of a polynomial as a set; however, in the implementation
we use a more efficient binary search tree instead.
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greatest) common divisor, whereas the binary operations ·F , :F and +F corre-
spond to multiplication, division4 and addition, respectively. Due to space lim-
itations, we omit in the remaining of this paper the trivial cases involving F0.
Therefore we define

Fg1 ∪F Fg2 = {hmax(exp(h,Fg1),exp(h,Fg2)) | h ∈ bases(Fg1) ∪ bases(Fg2)}red
Fg1 ∩F Fg2 = {hmin(exp(h,Fg1),exp(h,Fg2)) | h=1 ∨ h∈bases(Fg1)∩bases(Fg2)}red
Fg1 ·F Fg2 = {hexp(h,Fg1)+exp(h,Fg2) | h ∈ bases(Fg1) ∪ bases(Fg2)}red
Fg1 :F Fg2 = {hmax(0,e−exp(h,Fg2)) | he ∈ Fg1}red

Fg1 +F Fg2 = D ·F
{(∏

g′
1∈(Fg1 :FD) g′1

)
+
(∏

g′
2∈(Fg2 :FD) g′2

)}red
where D = Fg1 ∩F Fg2 and max(a, b) (min(a, b)) equals a if a ≥ b (a ≤ b) and b
otherwise. Example 4 illustrates the application of the above operations.

Operations on rational functions. We represent a rational function g1
g2

by sepa-
rate factorizations Fg1 and Fg2 for the numerator g1 and the denominator g2,
respectively. For multiplication g1

g2
= h1

h2
· q1
q2
, we compute Fg1 = Fh1 ·F Fq1 and

Fg2 = Fh2 ·F Fq2 . Division is reduced to multiplication according to h1

h2
: q1

q2
=

h1

h2
· q2
q1
.

For the addition g1
g2

= h1

h2
+ q1

q2
, we compute g2 with Fg2 = Fh2 ∪F Fq2 as a

common multiple of h2 and q2, such that g2 = h2 · h′
2 with Fh′

2
= Fg2 :F Fh2 ,

and g2 = q2 · q′2 with Fq′2 = Fg2 :F Fq2 . For the numerator g1 we first determine
a common divisor d of h1 and q1 by Fd = Fh1 ∩F Fq1 , such that h1 = d · h′

1

with Fh′
1
= Fh1 :F Fd, and q1 = d · q′1 with Fq′1 = Fq1 :F Fd. The numerator g1

is d · (h′
1 · h′

2 + q′1 · q′2) with factorization Fd ·F (Fh′
1
·F Fh′

2
+F Fq′1 ·F Fq′2).

The rational function g1
g2

resulting from the addition is further simplified by

cancellation, i. e., dividing g1 and g2 by their greatest common divisor (gcd) g.
Given the factorizations Fg1 and Fg2 , Algorithm 2 calculates the factorizations
Fg, F g1

g
, and F g2

g
.

Intuitively, the algorithm maintains the fact that G ·F F1 ·F F ′
1 is a factoriza-

tion of g1, where G contains common factors of g1 and g2, F1 is going to be
checked whether it contains further common factors, and F ′

1 does not contain
any common factors. In the outer while-loop, an element re11 to be checked is
taken from F1. In the inner while-loop, a factorization G ·F F2 ·F F ′

2 of g2 is main-
tained such that F ′

2 does not contain any common factors with r1, and F2 is still
to be checked.

Now we explain the algorithm in more detail. Initially, a factorization G of a
common divisor of g1 and g2 is set to Fg1 ∩F Fg2 (Line 1). The remaining factors
of g1 and g2 are stored in F1 resp. F2. The sets F ′

1 and F ′
2 contain factors of g1

resp. g2 whose greatest common divisor is 1 (Line 2). The algorithm now itera-
tively adds further common divisors of g1 and g2 to G until it is a factorization
of their gcd. For this purpose, we consider for each factor in F1 all factors in F2

4 Fg1 :F Fg2 is a factorization of g1/g2 only if Fg1 and Fg2 are sufficiently refined and
g2 divides g1.
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Algorithm 2. gcd computation with factorization refinement

GCD(factorization Fg1 , factorization Fg2)
begin

G := (Fg1 ∩F Fg2) (1)
Fi := Fgi :F G and F ′

i := {11} for i = 1, 2 (2)
while exists re11 ∈ F1 with r1 �= 1 do (3)

F1 := F1 \ {re11 } (4)
while r1 �= 1 and exists re22 ∈ F2 with r2 �= 1 do (5)

F2 := F2 \ {re22 } (6)
if ¬irreducible(r1) ∨ ¬irreducible(r2) then g := gcd(r1, r2) (7)
else g := 1 (8)
if g = 1 then (9)

F ′
2 := F ′

2 ·F {re22 } (10)
else (11)

r1 := r1
g

(12)

Fi := Fi ·F {gei−min(e1,e2)} for i = 1, 2 (13)
F ′
2 := F ′

2 ·F {( r2
g
)e2} (14)

G := G ·F {gmin(e1,e2)} (15)
end if (16)

end while (17)
F ′
1 := F ′

1 ·F {re11 } (18)
F2 := F2 ·F F ′

2 (19)
F ′
2 := {11} (20)

end while (21)
return (F ′

1, F2, G) (22)
end

and calculate the gcd of their bases using standard gcd computation for polyno-
mials (Line 7). Note that the main concern of Algorithm 2 is to avoid the appli-
cation of this expensive operation as far as possible and to apply it to preferably
simple polynomials otherwise. Where the latter is entailed by the idea of using
factorizations, the former can be achieved by excluding pairs of factors for which
we can cheaply decide that both are irreducible, i. e., they have no non-trivial
divisors. If factors re11 ∈ F1 and re22 ∈ F2 with g := gcd(r1, r2) = 1 are found, we
just shift re22 from F2 to F ′

2 (Line 10). Otherwise, we can add gmin(e1,e2), which
is the gcd of re11 and re22 , to G and extend the factors F1 resp. F2, which could
still contain common divisors, by ge1−min(e1,e2) resp. ge2−min(e1,e2) (Line 12-15).
Furthermore, F ′

2 obtains the new factor ( r2g )
e2 , which has certainly no common

divisor with any factor in F ′
1. Finally, we set the basis r1 to r1

g , excluding the
just found common divisor. If all factors in F2 have been considered for com-
mon divisors with r1, we can add it to F ′

1 and continue with the next factor
in F1, for which we must reconsider all factors in F ′

2 and, therefore, shift them
to F2 (Line 18-20). The algorithm terminates, if the last factor of F1 has been
processed, returning the factorizations Fg, F g1

g
and F g2

g
, which we can use to

refine the factorizations of g1 and g2 via Fg1 := F g1
g

·F G and Fg2 := F g2
g

·F G.
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Example 4. Assume we want to apply Algorithm 2 to the factorizations Fxyz =
{(xyz)1} and Fxy = {(x)1, (y)1}. We initialize G = F ′

1 = F ′
2 = {(1)1}, F1 =

Fxyz and F2 = Fxy. First, we choose the factors (r1)
e1 = (xyz)1 and (x)1 and

remove them from F1 resp. F2. The gcd of their bases is x, hence we only update
r1 to (yz)1 and G to {(x)1}. Then we remove the next and last element (y)1

from F2. Its basis and r1 have the gcd y and we therefore update r1 to (z)1

and G to {(x)1, (y)1}. Finally, we add (z)1 to F ′
1 and return the expected

result ({(z)1}, {(1)1}, {(x)1, (y)1}). Using these results, we can also refine
Fxyz = F ′

1 ·F G = {(x)1, (y)1, (z)1} and Fxy = F2 ·F G = {(x)1, (y)1}.

Theorem 2. Let p1 and p2 be two polynomials with factorizations Fp1 resp.
Fp2 . Applying Algorithm 2 to these factorizations results in gcd(Fp1 , Fp2) =
(Fr1 , Fr2 , G) with G being a factorization of the greatest common divisor g of
p1 and p2, and Fr1 and Fr2 being factorizations of p1

g resp. p2

g .

5 Experiments

We developed a C++ prototype implementation of our approach using the arith-
metic library GiNaC [17]. The prototype is available on the project homepage5.
Moreover, we implemented the state-elimination approach used by PARAM [6]
using our optimized factorization approach to provide a more distinct compari-
son. All experiments were run on an Intel Core 2 Quad CPU 2.66 GHz with 4
GB of memory. We defined a timeout (TO) of 14 hours (50400 seconds) and a
memory bound (MO) of 4 GB. We report on three case studies; a more distinct
description and the specific instances we used are available at our homepage.

The bounded retransmission protocol (BRP) [18] models the sending of files
via an unreliable network, manifested in two lossy channels for sending and
acknowledging the reception. This model is parametrized in the probability of
reliability of those channels. The crowds protocol (CROWDS) [19] is designed
for anonymous network communication using random routing, parametrized in
how many members are “good” or “bad” and the probability if a good member
delivers a message or randomly routes it to another member. NAND multiplexing
(NAND) [20] models how reliable computations are obtained using unreliable
hardware by having a certain number of copies of a NAND unit all doing the same
job. Parameters are the probabilities of faultiness of the units and of erroneous
inputs. The experimental setting includes our SCC-based approach as described
in Section 3 using the optimized factorization of polynomials as in Section 4 (SCC
MC), the state elimination as in PARAM but also using the approach of Section 4
(STATE ELIM) and the PARAM tool itself.6 For all instances we list the number
of states and transitions; for each tool we give the running time in seconds and
the memory consumption in MB; the best time is boldfaced. Moreover, for our
approaches we list the number of polynomials which are intermediately stored.

5 http://goo.gl/nS378q
6 Note that no bisimulation reduction was applied to any of the input models, which
would improve the feasibility of all approaches likewise.

http://goo.gl/nS378q
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Graph SCC MC STATE ELIM PARAM

Model States Trans. Time Poly Mem Time Poly Mem Time Mem

BRP 3528 4611 29.05 3283 48.10 4.33 8179 61.17 98.99 32.90
BRP 4361 5763 511.50 4247 501.71 6.87 9520 78.49 191.52 58.43
BRP 7048 9219 548.73 6547 281.86 25.05 16435 216.05 988.28 142.66
BRP 10759 13827 147.31 9231 176.89 85.54 26807 682.24 3511.96 304.07
BRP 21511 27651 1602.53 18443 776.48 718.66 53687 3134.59 34322.60 1757.12
CROWDS 198201 348349 60.90 13483 140.15 243.07 27340 133.91 46380.00 227.66
CROWDS 482979 728677 35.06 35916 478.85 247.75 65966 297.40 TO —
CROWDS 726379 1283297 223.24 36649 515.61 1632.63 73704 477.10 TO —
CROWDS 961499 1452537 81.88 61299 1027.78 646.76 112452 589.21 TO —
CROWDS 1729494 2615272 172.59 97655 2372.35 1515.63 178885 1063.15 TO —
CROWDS 2888763 5127151 852.76 110078 2345.06 12326.80 224747 2123.96 TO —
NAND 7393 11207 8.35 15688 114.60 17.02 140057 255.13 5.00 10.67
NAND 14323 21567 39.71 25504 366.79 59.60 405069 926.33 15.26 16.89
NAND 21253 31927 100.32 35151 795.31 121.40 665584 2050.67 29.51 24.45
NAND 28183 42287 208.41 44799 1405.16 218.85 925324 3708.27 50.45 30.47
NAND 78334 121512 639.29 184799 3785.11 — — MO 1138.82 111.58

For BRP, STATE ELIM always outperforms PARAM and SCC MC by up to
two orders of magnitude. On larger instances, SCC MC is faster than PARAM
while on smaller ones PARAM is faster and has a smaller memory consumption.

In contrast, the crowds protocol always induces a nested SCC structure, which
is very hard for PARAM since many divisions of polynomials have to be carried
out. On larger benchmarks, it is therefore outperformed by more than three
orders of magnitude while SCC MC performs best. This is actually measured by
the timeout; using PARAM we could not retrieve results for larger instances.

To give an example where PARAM performs mostly better than our ap-
proaches, we consider NAND. Its graph is acyclic consisting mainly of single
paths leading to states that have a high number of outgoing edges, i. e., many
paths join at these states and diverge again. Together with a large number of
different probabilities, this involves the addition of many polynomials, whose
factorizations are completely stored. The SCC approach performs better here,
as for acyclic graphs just the linear equation system is solved, as described in
Section 3. This seems to be superior to the state elimination as implemented in
our tool. We don’t know about PARAM’s interior for these special cases. As a
solution, our implementation offers the possibility to limit the number of stored
polynomials, which decreases the memory consumption at the price of losing
information about the factorizations. However, an efficient strategy to manage
this bounded pool of polynomials is not yet implemented. Therefore, we refrain
from presenting experimental results for this scenario.

6 Conclusion and Future Work

We presented a new approach to verify parametric Markov chains together with
an improved factorization of polynomials. We were able to highly improve the
scalability in comparison to existing approaches. Future work will be dedicated to
the actual parameter synthesis. First, we want to incorporate interval constraint
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propagation [21] in order to provide reasonable intervals for the parameters where
properties are satisfied or violated. Moreover, we are going to investigate the
possibility of extending our approaches to models with costs.
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