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Abstract A binary span n sequence generated by an n-stage nonlinear feedback
shift register (NLFSR) is in a one-to-one correspondence with a de Bruijn sequence
and has the following randomness properties: period 2n � 1, balance, and ideal
n-tuple distribution. A span n sequence may have a high linear span. However, how
to find a nonlinear feedback function that generates such a sequence constitutes a
long-standing challenging problem for about 5 decades since Golomb’s pioneering
book, Shift Register Sequences, published in the middle of the 1960s. In hopes
of finding good span n sequences with large linear span, in this chapter we study
the generation of span n sequences using orthogonal functions in polynomial
representation as nonlinear feedback in a nonlinear feedback shift register. Our
empirical study shows that the success probability of obtaining a span n sequence
in this technique is better than that of obtaining a span n sequence in a random span
n sequence generation method. Moreover, we analyze the linear span of new span
n sequences, and the linear span of a new sequence lies between 2n � 2 � 3n (near
optimal) and 2n � 2 (optimal). Two conjectures on the linear span of new sequences
are presented and are valid for n � 20.

1 Introduction

Nonlinear feedback shift registers (NLFSRs) are used to design many cryptographic
primitives such as pseudorandom sequence generators (PRSGs), stream ciphers
[11], and lightweight block ciphers [7] for providing security and privacy in com-
munication systems. Ciphers based on NLFSRs are of great practical importance in
many constrained environments, for instance, RFID tags and sensor networks due
to their need for efficient hardware implementation and high throughput. In general,
an arbitrary NLFSR cannot be used for generating keystreams in stream ciphers
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because the randomness properties including the period of a sequence generated by
that NLFSR are unknown and hard to determine.

A binary de Bruijn sequence is a binary sequence with period 2n which satisfies
the property that all n-tuples occur exactly once in one period. De Bruijn sequences
have known randomness properties, namely, maximum period, balance property,
ideal n-tuple distribution, and large linear span [3, 21, 34]. A modified de Bruijn
sequence or span n sequence with period 2n � 1 is a pseudorandom sequence
where each nonzero n-tuple occurs exactly once in one period of the sequence. This
property is referred to as the span n property [21]. Often, de Bruijn sequences as
well as span n sequences are generated recursively by an n-stage nonlinear feedback
shift register. Only, m-sequences are a class of span n sequences generated by linear
feedback shift registers.

A span n sequence can be constructed from a de Bruijn sequence by removing
any one zero from the run of zeros of length n, and similarly, a de Bruijn sequence
can be formed from a span n sequence by adding one zero to the run of zeros of
length n � 1. The linear span or linear complexity of a sequence is the length of the
shortest LFSR that produces the given sequence. We remember that “linear span”
and “span n” are two different properties of a span n sequence. Note that by adding
an extra zero to the run of zeros of length n � 1 to an m-sequence, the linear span
of the resultant de Bruijn sequence varies between 2n�1 C n and 2n � 1 [3], but
by removing any one zero from the run of zeros of length n from the resultant
de Bruijn sequence, it becomes an m-sequence or a span n sequence with linear
complexity n. So the lower bound of the linear span of the span n sequence drops to
n [23]. This phenomenon suggests to study the randomness properties, particularly,
the linear span property of span n sequences instead of de Bruijn sequences for
cryptographic usages. Until recently, there is no known general construction of a
nonlinear feedback function which generates a span n sequence, and this is open
since the last 5 decades. Therefore, the generation of span n sequences by NLFSRs
is a challenging problem.

Our objective is to produce span n/de Bruijn sequences using orthogonal
functions as feedback functions in nonlinear feedback shift registers. An orthogonal
feedback function has a trace representation and is composed of three parameters,
namely, a decimation number, a primitive polynomial, and a t-tap position (5 � t �
n � 1). In an NLFSR, a class of feedback functions is constituted by varying the
decimation numbers and the polynomial bases of the finite fields. Finding span n

sequences by using this class of feedback functions and all possible tap positions of
the feedback functions is called a structured search. We show that a number of new
span n sequences with a moderate n can be produced through the structured search.
For n � 10, all the feedback functions of degree greater than or equal to two cannot
be employed to search span n sequences. Using the structure search, on the other
hand, one can employ a number of feedback functions with different degrees and a
variable number of terms.

In this chapter, we present some new theoretical results on generating span n

sequences and experimental results on finding the number of new span n sequences.
The chapter is organized as follows. In Sect. 2, we provide some basic definitions
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of shift register sequences and their properties. Section 2.2 recalls the definitions of
known orthogonal functions, and Sect. 3 introduces some known constructions of de
Bruijn sequences. In Sect. 4, we describe the span n sequence generation technique
using orthogonal functions and develop some properties of this technique, including
an estimation of the number of orthogonal feedback functions used in this technique.
Sections 5 and 6 present the experimental results on the number of span n sequences
produced using orthogonal functions, and Sect. 7 presents an empirical success
probability comparison of obtaining span n sequences using orthogonal functions.
In Sect. 8, we analyze the linear span of newly produced span n sequences by the
aforementioned orthogonal functions and present two conjectures on the linear span
of the span n sequences produced by the orthogonal functions. Our empirical results
show that the success probability of obtaining a span n sequence in the structured
search is larger than that of generating a span n sequence in a random search. Our
results show that the linear span of a new span n sequence lies in the range of
2n � 2 � 3n (near optimal) and 2n � 2 (optimal). In Sect. 9, some applications of
new span n sequences are shown, and in the section “Conclusions”, we conclude
the chapter.

2 Preliminaries

In this section, we define and explain the terms and mathematical functions that will
be used in this chapter to produce span n sequences.

– F2 D f0; 1g : the Galois field with two elements.
– F2t D f.x0; x1; : : : ; xt�1/ j xi 2 F2g—an extension field that is defined by a

primitive element ˛ with p.˛/ D 0, where p.x/ D c0 Cc1xC� � �Cct�1x
t�1 Cxt

is a primitive polynomial of degree t .� 2/ over F2.
– Tr.x/ D x C x2 C � � � C x2t�1

: the trace function mapping from F2t to F2.
– Dt D fd W d is a coset leader with gcd.d; 2t � 1/ D 1g. The cardinality of Dt ,

denoted as jDt j, is given by �.2t �1/

t
, where �.�/ is the Euler phi function.

2.1 Basic Definitions and Properties of Feedback Shift
Registers

Usually, an n-stage linear or nonlinear feedback shift register is used to generate a
periodic binary sequence a D faig, and the recurrence relation for the (N)LFSR is
defined as [20]

anCk D ak ˚ g.akC1; : : : ; akCn�1/; ai 2 F2; k � 0
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where .a0; a1; : : : ; an�1/ is the initial state of the shift register, g is a Boolean
function in .n�1/ variables, and ˚ is the addition operation over F2. If the function
g is an affine function, then the sequence a is called an LFSR sequence; otherwise,
it is called an NLFSR sequence. The above recurrence relation is also known as a
nonsingular recurrence relation.

The complementary binary sequence of binary sequence b D fbigi�0, denoted
as Nb, is defined by f Nbigi�0, where Nbi D bi ˚ 1: The linear span or linear complexity
of a sequence is the length of the shortest LFSR that produces the sequence.

Definition 1 ([22]) The autocorrelation of a binary sequence fai g with period N is
defined as

C.�/ D
N �1X

iD0

.�1/aiC� Cai :

Moreover, if N D 2n � 1, the sequence fai g has 2-level autocorrelation if

C.�/ D
�

2n � 1 if � � 0 (mod 2n � 1)
�1 if � 6� 0 (mod 2n � 1).

Property 1 The linear span of a de Bruijn sequence, denoted as LSdb, is bounded
by [3]

2n�1 C n � LSdb � 2n � 1: (1)

On the other hand, the linear span of a span n sequence that is generated by an
NLFSR, denoted as LSs , is bounded by

2n < LSs � 2n � 2: (2)

From this property, we say that a span n sequence has the optimal linear span if
its linear span is equal to 2n � 2.

2.2 Review of the Trace Representation of 2-level
Autocorrelation Sequences

An orthogonal function from F2t to F2 is in one-to-one correspondence with a
binary sequence with (ideal) 2-level autocorrelation function, 2-level autocorrela-
tion sequence in short. There are only very few known constructions on 2-level
autocorrelation sequences, which constitutes another challenge problem for years.
Interestingly, those functions possess good cryptographic properties. The reader is
referred to Golomb and Gong’s book [22] for the details about the constructions
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of 2-level autocorrelation sequences and their related cryptographic properties. In
the following, for easy reference, we formally provide the definition of orthogonal
functions and their known constructions from corresponding trace representation of
2-level autocorrelation sequences.

Definition 2 A function, say, f .x/, from F2t to F2 is called an orthogonal function
if
P

x2F2t
.�1/f .�x/Cf .x/ D 0 for all (1 ¤/� 2 F2t .

Let ˛ be a primitive element of F2t and let ai D f .˛i / where the binary sequence
fai g is called an evaluation of f .x/ and f .x/, the trace representation of fai g.

Property 2 With the above notation:

1. f .x/ is orthogonal if and only if its evaluation has 2-level autocorrelation.
2. If f .x/ is orthogonal, then f .xr / is orthogonal for all r with .r; 2t � 1/ D 1.

Let C D fr; 2r; : : : ; 2nr �1rg where nr is the smallest number such that r2nr �
r mod 2t � 1. Then C is called a (cyclotomic) coset consisting r modulo 2t �1, and
the smallest number in C is called the coset leaders of C . Let I consist of all coset
leaders modulo 2t � 1.

2.2.1 Number Theory-Based Constructions

This type of the constructions includes Legendre sequences and Hall sextic residue
sequences. Let p D 2t � 1 be a prime number, u be a primitive element in Fp , and
c D 2t �2

t
.

Orthogonal Functions from Legendre Sequences (A1) Let

f .x/ D
c=2�1X

iD0;i2I

Tr.xu2i

/; x 2 F2t :

Or equivalently,

f .x/ D
X

i2I0

Tr.xi /; x 2 F2t

where I0 � I consist of all quadratic coset leaders modulo 2t � 1. Then f .x/ is
an orthogonal function from F2t to F2 whose evaluation gives a Legendre sequence
with 2-level autocorrelation.

Hall’s “Sextic Residue Sequence” (A2) Additional to the Legendre sequences,
p D 4t � 1 D 4a2 C 27. Let

f .x/ D
c=6�1X

iD0;i2I

Tr.xu6i

/; x 2 F2t :
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Then f .x/ is an orthogonal function from F2t to F2 whose evaluation gives a Hall’s
“sextic residue sequence” with 2-level autocorrelation function.

2.2.2 Finite Fields-Based Constructions

There are four types of constructions for 2-level autocorrelation sequences: m-
sequences, hyperoval constructions, Welch–Gong transformation construction, and
Kasami power function construction including three-term and five-term sequences.

Orthogonal Functions from m-Sequences Let

f .x/ D Tr.x/; x 2 F2t ;

then f .x/ is an orthogonal function whose evaluation gives an m-sequence with
period 2t � 1, and the other m-sequences are given by Tr.xd / where gcd.d; 2t �
1/ D 1.

Orthogonal Functions from Hyperoval Sequences There are three monomial
hyperoval sequences with 2-level autocorrelation, namely, Segre type and Glynn
type 1 and type 2. Except for Segre hyperoval sequences, the trace representation is
not represented in a formula. Instead, it is described in terms of some relation which
needs to be computed for different t .

Let .1/l denote a string of l consecutive 1s. Let A denote the set consisting of all
strings of the form .1/4aC10 or a � 0 and .1/4b , b � 0. Let A� denote the set of
all strings obtained by concatenating zero, one or more strings from A. Let t be a
prime and

01(string in A�)0.1/2s; s � 0 or
011(string in A�)11

: (3)

The trace representation of a Segre hyperoval sequence of period 2t � 1, t odd, is
given by

f .x/ D
X

i2TSegre

Tr.xi /; x 2 F2t

where TSegre � I which are the collections of coset leaders of the all binary numbers
given by (3) [5].

Let TGlynn � I be the collections of the coset leaders of solutions to

w.j / C w..k � 1/j � w.kj/ D 1; j D 1; : : : ; 2t � 1
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where w.x/ is the Hamming weight of binary number x. Then the trace representa-
tion of a Glynn hyperoval sequence of period 2t � 1, t odd, is given by

f .x/ D
X

i2TGlynn

Tr.xi /; x 2 F2t

where k D � C � for Glynn type 1 and k D 3� C 4 for Glynn type 2 where
� D 2.tC1/=2 and � D 2.3tC1/=4 [13].

Orthogonal Functions from Three-Term, Five-Term, and Welch–Gong Trans-
formation Constructions In [38], it was conjectured that three-term and five-term
sequences have 2-level autocorrelation as well as Welch–Gong transformation
sequences discovered by Golomb, Gong, and Gaal. The validity of those conjectures
is established later on by Dillon and Dobbertin in [8, 9].

Let t D 2k � 1 for some positive integer k and t � 5. Let

f .x/ D Tr.x C x2kC1 C x2k �1/; x 2 F2t :

Then its evaluation gives three-term 2-level autocorrelation sequences.
Let t be a positive integer with t mod 3 6� 0 and 3k � 1 mod t for some integer

k. We define the function h from F2t to F2t by

h.x/ D x C xq1 C xq2 C xq3 C xq4

where

q1 D 2k C 1; q2 D 22k C 2k C 1; q3 D 22k � 2k C 1; q4 D 22k C 2k � 1:

(Note that h.x/ is a permutation over F2t [8].) Let

g.x/ D Tr.h.x// and f .x/ D Tr.h.x C 1/ C 1/

where f .x/ is known as the WG transformation. The evaluations of g.x/ and f .x/

yield five-term sequences and WG transformation sequences.

Orthogonal Functions from Kasami Power Function Construction Let
gcd.k; t/ D 1, k < t , kk0 � 1, and

f .x/ D Tr.R.x//; x 2 F2t
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where R.x/ is given by

R.x/ D
k0X

iD1

Ai.x/ C Vk0.x/

where Ai and Vi are iteratively defined by

A1.x/ D x

A2.x/ D x2k C1

AiC2.x/ D x2.iC1/k

AiC1.x/ C x2.iC1/k�2ik

Ai .x/; i � 1

and

V1.x/ D 0

V2.x/ D x2k�1

ViC2.x/ D x2.iC1/k

ViC1.x/ C x2.iC1/k�2ik

Vi .x/; i � 1:

Orthogonal Functions from Subfield Constructions Let 1 < m j t , m ¤ t , and
g.x/ be any orthogonal function from F2m to F2, listed in the above subsections,
and let

f .x/ D Trt
m.g.x//; x 2 F2t

where Trt
m.x/ is the trace function from F2t to F2m , i.e.,

Trt
m.x/ D x C x2m C � � � C x2.l�1/m

; x 2 F2t ; l D t=m:

Then f .x/ is an orthogonal function from F2t to F2, and its evaluation is called
a subfield 2-level autocorrelation sequences which includes GMW sequence for
g.x/ D Trm

1 .xd / where Tr.x/ is the trace function from F2m to F2 and gcd.d; 2m �
1/ D 1 and generalized GMW sequences for the rest of g.x/. Here we shorten them
as GMW sequences.

2.2.3 Orthogonal Functions for Small Fields

In the following, we give the exponents explicitly for all known orthogonal functions
of the form f .x/ D P

i2I Tr.xi / from F2t to F2 for 5 � t � 11 in Tables 1, 2 and
3 where the monomial function Tr.x/ is not listed.
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Table 1 Exponents in the orthogonal functions over F2t ; 5 � t � 9

Orthogonal functions Trace spectra # of terms

t D 5

T3 1, 3, 5 3

t D 7

T3 1, 9, 13 3

T5 1, 5, 21, 13, 29 5

WG 1, 3, 7, 19, 29 5

QR 3, 5, 7, 23, 27, 29, 43, 55, 63 9

Hall 5, 27, 63 3

t D 8

GMW 7, 13, 37, 11 4

T5 1, 9, 37, 29, 39 5

WG 13, 19, 21, 29, 39 5

t D 9

T3 1, 17, 25 3

GMW 3, 17, 129 3

Segre 1,5,7, 9, 19, 25, 37, 77, 117 9

Glynn 1 1, 5, 9, 13, 19, 37, 43 7

Glynn 2 17, 23, 37, 43, 45, 75, 87 7

Table 2 Exponents in the orthogonal functions over F2t ; t D 10

Orthogonal functions Trace spectra # of terms

T5 1, 9, 57, 73, 121 5

WG 1, 3, 5, 7, 11, 13, 15, 35, 69, 71, 89, 105, 121 13

GMW1 3, 17 2

GMW2 5, 9 2

GMW3 7, 19, 25, 69 4

GMW4 11, 13, 21, 73 4

GMW5 1, 5, 7, 9, 19, 25, 69 7

GMW6 15, 23, 27, 29, 77, 85, 89, 147 8

GMW7 3, 7, 11, 13, 15, 21, 23, 27, 29, 73, 77, 85, 89, 147 14

We define the following set:

D�
t D fd W d 2 Dt and fd .�/; is nonlinear and fd .x/ ¤ fd1 .x/; d ¤ d1.2 D�

t /g:

For all decimation numbers in D�
t , we take into account all distinct orthogonal

functions obtained from an orthogonal function using decimations.
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Table 3 Exponents in the orthogonal functions over F2t ; t D 11

Orthogonal functions Trace spectra # of terms

T3 1, 33, 49 3

T5 1, 17, 121, 137, 143 5

WG 21, 23, 29, 35, 37, 41, 71, 89, 139, 165, 213, 307, 415 13

Segre D B2 1,5, 13, 21, 53, 77, 85, 205, 213, 309, 333, 341, 413, 15

423, 469

Glynn 1 1, 5, 9, 13, 19, 37, 43, 67, 69, 137, 163, 211, 293 13

Glynn 2 1, 5, 13, 17, 29, 37, 49, 61, 69, 81, 93, 101, 113, 21

125, 139, 147, 151, 157, 171, 173, 183

B3 1, 5, 7, 9, 19, 25, 81, 169, 295 9

3 Review of Known Constructions of (Modified) de Bruijn
Sequences

There is a one-to-one correspondence between a de Bruijn sequence and a modified
de Bruijn/span n sequence. When the construction of a feedback function that
generates a span n sequence is known, the construction of a de Bruijn sequence
can be known and vice versa. In this section, we provide some known de Bruijn and
span n sequence generation techniques.

3.1 Known Constructions for de Bruijn Sequences

Problem of generating a de Bruijn sequence is easy to understand, but providing a
solution for generating a de Bruijn sequence efficiently is a challenging problem.
This problem is studied from algorithmic, graph theoretic, and algebraic technique
points of view in the literature. In particular, generating a de Bruijn sequence using
a feedback shift register is an algebraic technique, which exploits properties of a
feedback function. In the following, we present some well-known approaches of
constructing de Bruijn sequences.

3.1.1 Lempel’s D-Morphism-Based Techniques for de Bruijn Sequences

Lempel in [26] proposed the concept of generating a de Bruijn sequence of period
2nC1 by first computing two D-morphic preimages of a de Bruijn sequence of
period 2n and then concatenating these two preimages at a conjugate pair. In this
construction, it is assumed that the construction of the de Bruijn sequence of
period 2n is known. Later on, Annexstein in [1] and Chang et al. in [6] proposed
two algorithms based on Lempel’s D-homomorphism for producing de Bruijn
sequences of long period. Games [18] proposed a generalized construction of
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Lempel’s construction in which a de Bruijn sequence of period 2nC1 is constructed
from two different de Bruijn sequences of period 2n using Lempel’s conjugate.

In [36], Mykkeltveit et al. presented Lempel’s construction in the form of a
composited recurrence relation. Following Mykkeltveit et al.’s construction, Mandal
and Gong in [28] refined and studied the composited construction, for producing
strong composited de Bruijn sequences of arbitrarily long period from a span n

sequence. For the properties and cycle structures of composited recurrence relations,
see [27, 36]. Note that, in the composited construction, the feedback function of
a de Bruijn sequence is a bit complicated, which contains a number of sum-of-
product terms. Recently, Mandal and Gong in [29] analyzed composited de Bruijn
sequences from D-morphic point of view and presented an iterative technique for
computing the nonlinear feedback function of a composited de Bruijn sequence.
In the composited construction one needs to know the construction of a feedback
function of a span n sequence in order to generate a de Bruijn sequence of long
period.

3.1.2 Algorithms for de Bruijn Sequence Generation

Fredricksen and Kessler in [16] proposed an algorithm based on lexicographic
compositions for constructing de Bruijn sequences of period 2n, and the amount
of storage required in implementing the algorithm is linear in n. Fredricksen and
Maiorana in [17] presented an algorithm for generating necklaces of length n in k

colors, and a k-ary de Bruijn sequence of period kn is produced by juxtaposing in
order the periodic reductions of the necklaces.

Fredricksen [14] developed an algorithm to generate nonlinear de Bruijn
sequences, and the algorithm requires 3n units of storage and outputs one bit
in around n units of time. Fredricksen also exhibited that new de Bruijn sequences
can be obtained from a de Bruijn sequence by cross-joining, and the number of such
new de Bruijn sequences is 22n�5. The storage requirement for implementing the
method is about 6n units. When this method is compared with Mandal and Gong’s
iterative technique (MG iterative technique) for composited de Bruijn sequences,
MG iterative technique for the composited feedback function requires less amount
of time as well as memory.

Etzion and Lempel [12] developed a construction of de Bruijn sequences with
linear complexity .2n�1 C n/ for all n � 3. A detailed survey by Fredricksen of
many other de Bruijn sequence generation techniques can be found in [15].

3.1.3 Cycle Joining Techniques for de Bruijn Sequence Generation

Cycle joining technique is one of the well-known methods of generating a de Bruijn
sequence in which a de Bruijn sequence is constructed by joining a finite number
of cycles produced by a feedback shift register. In this technique, first a feedback
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function of a nonsingular feedback shift register is chosen, and then a different
feedback function for a de Bruijn sequence is constructed from the first feedback
function based on its cycle decomposition.

Jansen et al. [25] presented a cycle joining algorithm for generating de Bruijn
sequences where the feedback function of a de Bruijn sequence is the sum of
two functions; one function is the feedback function itself, and another function
is constructed from the feedback function for joining cycles. In [25], it is shown

that O.2
2n

log.2n/ / de Bruijn sequences of period 2n can be produced when all
irreducible polynomials of degree n is taken in a feedback shift register. The storage
requirement for this method is 3n bits, and 4n-unit of time is required to generate
each bit of a de Bruijn sequence. A storage-time comparison between this algorithm
and the MG iterative technique can be found in [6].

Yang and Dai in [40] proposed a construction of an m-ary de Bruijn sequence
based on joining the cycles using modification sets of a feedback function f . In the
construction, a nonlinear feedback function F of a de Bruijn sequence is constructed
from the feedback function f using the modification sets of f . The authors showed

that, when a circulating register is chosen, at least 2. mn

n �mn/ feedback functions
that generate de Bruijn sequences can be constructed. However, this method is not
efficient for large values of n, since the method requires the cycles decomposition
of f to construct the function F , and for a large n, it is very hard to obtain the cycle
decomposition of f . Moreover, the feedback function would contain many product
terms for joining of the cycles.

Hauge and Helleseth [24] proposed a technique based on an irreducible polyno-
mial and its adjacency graph to generate de Bruijn sequences. In this technique, a de
Bruijn sequence is obtained as maximum spanning trees from the adjacency graph of
a feedback function corresponding to an irreducible polynomial. The lower bound
for the number of de Bruijn sequences is determined in terms of the cyclotomic
numbers.

3.2 Known Techniques for Generating Modified de Bruijn
Sequences

Most of the research efforts devoted on span n sequences have been concerned
about the number of span n sequences and the characteristics of nonlinear feedback
functions [21, 33, 34] including the number of terms in the feedback functions
[33, 35] and the weight of truth tables of the feedback functions [32, 33]. Mayhew
and Golomb reported the number of span n sequences for different values of the
linear span of span n sequences and for different values of the number of terms in
the feedback functions (4 � n � 6) [34, 35]. Mayhew reported the number of span
n sequences for different weight classes of the truth tables of the feedback functions
for n D 6 [33]. However, the task of finding the number of span n sequences for
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different weight classes and for different values of the linear span is an unsolved
problem for n � 7.

In [4], Chan et al. have considered the generation of quadratic m-sequence that
uses very simple quadratic functions as the feedback function, which is the sum
of a linear function in n variables and a quadratic term for any two variables and
reported the number of span n sequences for 5 � n � 12. Dubrova in [10] and
Rachwalik et al. in [39] found a few quadratic m-sequences, i.e., span n sequence
generated using quadratic feedback functions for 4 � n � 24 and 25 � n � 27,
respectively. Gammel et al. have searched span n sequences while designing stream
cipher Achterban:128/80 based on nonlinear feedback shift registers [19].

Note that the feedback functions of an NLFSR in [10, 19, 39] contain only a few
terms and are of low algebraic degree. All the methods for finding the number of
span n sequences and verifying the span n property of a sequence use an exhaustive
search method which is an exponential time algorithm in n.

4 A New Construction

In this section we first describe the recurrence relation of nonlinear feedback shift
registers whose feedback functions are orthogonal functions. In an n-stage NLFSR,
the feedback function can also be regarded as a Boolean function in t variables
where 5 < t � n � 1: Our considered orthogonal feedback functions in t variables
are balanced as the evaluation of the feedback function has 2-level autocorrelation
and have even Hamming weight 2t�1. Thus, the new span n sequences generated by
a class of feedback functions belong to the weight class 2n�2. Then we calculate the
approximate number of feedback functions used in the structured search.

4.1 Description of Span n Sequence Generation Using
Orthogonal Function

Let a D fai g be a binary sequence generated by an n-stage NLFSR whose nonlinear
recurrence relation is defined as

anCk D ak ˚ fd .xk/; xk D .ar1Ck; ar2Ck; : : : ; art Ck/ 2 F2t ; d 2 D�
t ;

0 < t < n; k � 0 (4)

where .r1; r2; : : : ; rt / with 0 < r1 < r2 < � � � < rt � n � 1 is called a t-tap
position of the NLFSR, fd .x/ D f .xd /, f .x/ is an orthogonal function, and ˚
is the addition over F2. For a proper selection of a t-tap position and a feedback
function fd .x/, the binary sequence a can be a span n sequence. We note that for
any choice of a t-tap position and a feedback function fd .x/, the binary sequence



140 K. Mandal and G. Gong

may not be a span n sequence. The reason for choosing t � .n � 1/ is to involve a
small number of state variables in the feedback functions, which is benefited to the
implementation of the NLFSR as well as the production of more feedback functions.

Let b D fbig be a binary sequence generated by the following recurrence relation

bnCk D 1 ˚ bk ˚ fd .xk/; xk D .br1Ck; : : : ; brt Ck/ 2 F2t ; d 2 D�
t ;

0 < t < n; k � 0: (5)

Similarly, for a proper selection of a t-tap position and a feedback function fd .x/,
the complementary binary sequence Nb of b can be a span n sequence, but the
sequence b is not a span n sequence since it contains the all-zero state.

If the number of terms in the algebraic normal form representation of the function
fd is even, then the recurrence relations (4) and (5) cannot generate a span n

sequence for any choice of a t-tap position, since for the all-one state, recurrence
relation (4) generates the all-one sequence, and recurrence relation (5) contains the
all-one n-tuple.

Proposition 1 If fd .x/ D 0 for x D .1; 1; : : : ; 1/ 2 F2t , then recurrence
relations (4) and (5) cannot generate span n sequences.

In the recurrence relations (4) and (5), by varying three parameters, namely,
the primitive polynomial p.x/, the decimation number d , and the t-tap position
.r1; r2; : : : ; rt /, a number of new span n sequences can be produced, and that number
mainly depends on the length n of the NLFSR and the number t of inputs to the
function fd . We call this searching technique a structured search, where an NLFSR
has a compact representation in terms of feedback functions and tap positions. Note
that we may not always obtain a span n sequence for a fixed value of t and for any
length n of the NLFSR. A special case of the recurrence relation (4) with the trace
function in .n � 1/ variables as the feedback function is defined in [37].

A periodic reverse binary sequence is defined as follows [32, 35]: for a binary
sequence fa0; a1; : : : ; a2n�2g with period 2n � 1, the reverse sequence of the binary
sequence is defined by fa2n�2; a2n�3; : : : ; a1; a0g. A reverse sequence of a span n

sequence is also a span n sequence, which is not shift equivalent to the original one,
and the reverse span n sequence can be generated by the same function but with a
different t-tap position.

Proposition 2 ([32]) Let g.x0; x1; : : : ; xn�1/ D x0 ˚ f .x1; : : : ; xn�1/ generates
a span n sequence with period 2n � 1. Then the function h.x0; xn�1; : : : ; x1/ D
x0 ˚ f .xn�1; : : : ; x1/ generates a reverse span n sequence.

Our span n sequences generated by recurrence relations (4) and (5) with a fixed
P.x/ are uniquely determined by the following three parameters:

1. the decimation number d ,
2. the primitive polynomial p.x/,
3. the t-tap position .r1; r2; : : : ; rt /.
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Similarly, the reverse span n sequence of a span n sequence with parameters
d; p.x/; and .r1; r2; : : : ; rt / is represented by the same decimation number d and
the same primitive polynomial p.x/, but with a different t-tap position .n � r1; n �
r2; : : : ; n � rt /. For a fixed function fd .x/, a span n sequence generated by fd .x/

is different if the t-tap position is different. We now describe the span n sequence
generation by the above structured search in the following example.

Example 1 The following example describes our span n sequence generation
procedure for t D 5.

The WG transformation over F25 is given by

f .x/ D Tr.x C .x C 1/5 C .x C 1/13 C .x C 1/19 C .x C 1/21/:

After simplification, f .x/ can be written as

f .x/ D Tr.x19/; x 2 F25 ;

which is degenerated into an m-sequence. For t D 5, the set of coset leaders is given
by Dt D f1; 3; 5; 7; 11; 15g; and the coset leaders for which fd .x/ is nonlinear is
given by D�

t D f1; 3; 7; 11; 15g, since for d D 5, the function fd .x/ is linear. The
d -th decimation of f .x/ is given by

fd .x/ D f .xd / D Tr.xd 0

/; d 0 D .19 � d/ mod 2t � 1; d 2 D�
t :

The n-stage nonlinear recurrence relation with a t-tap position is given by

anCk D ak ˚ fd .xk/; xk D .ar1Ck; : : : ; ar5Ck/ 2 F25 ; k � 0:

The Boolean representation of f .x/ D Tr.x19/ with defining polynomial p.x/ D
1 C x C x2 C x4 C x5 of F25 is as follows:

f .x0; : : : ; x4/ D x0 C x3 C x0x1 C x0x2 C x0x3 C x0x4 C x1x2 C x1x3 C x1x4

C x2x4 C x0x1x3 C x0x1x4 C x0x2x3 C x0x3x4 C x1x2x4:

For the span n sequence with parameters d D 1, p.x/ D 1 C x C x2 C x4 C x5,
.r1; r2; r3; r4; r5/ D .1; 2; 3; 4; 5/ in Table 4, the above recurrence relation can be
written as

a7Ck D ak C a1Ck C a4Ck C a1Cka2Ck C a1Cka3Ck C a1Cka4Ck C a1Cka5Ck

C a2Cka3Ck C a2Cka4Ca C a2Ca5Ck C a3Cka5Ck C a1Cka2Cka4Ck

C a1Cka2Cka5Ck C a1Cka3Cka4Ck C a1Cka4Cka5Ck C a2Cka3Cka5Ck;

ak 2 F2; k � 0:
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Table 4 Span n sequences
generated using WG5 for
n D 7

Decimation Polynomial t -tap position

By recurrence relation (4)

d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

1 1 1 1 0 1 1 2 3 4 5

1 1 1 0 1 1 1 3 4 5 6

7 1 0 0 1 0 1 2 3 4 6

7 1 0 1 0 0 1 2 4 5 6

7 1 0 1 1 1 2 3 4 5 6

11 1 0 0 1 0 1 2 4 5 6

11 1 1 1 1 0 1 2 4 5 6

11 1 1 1 0 1 1 2 4 5 6

15 1 1 1 1 0 1 2 4 5 6

By recurrence relation (5)

1 1 1 1 1 0 1 2 3 4 5

1 1 1 1 0 1 1 3 4 5 6

1 1 0 1 0 0 1 3 4 5 6

7 1 0 1 1 1 1 2 3 4 5

7 1 0 1 0 0 1 2 3 4 5

7 1 1 0 1 1 1 2 3 5 6

15 1 1 1 1 0 1 2 3 4 5

The above generates the following span n sequence of period 27 � 1

111111100011100100010000011011000000100101101110101110000101111

0110101011001010000111100110001010100100111110100110100011001110:

For n D 7, all the span n sequences produced by recurrence relations (4) and (5) are
presented in Table 4.

4.2 Approximate Number of Functions in the Search Space

Note that three parameters, namely, a decimation number d , a primitive polynomial
p.x/, and a t-tap position, determine a nonlinear recurrence relation or a feedback
function that may generate a span n sequence. In other words, each feedback
function can be considered as a candidate span n sequence. For a fixed value of n

and t , a search space is formed by including all possible combinations of these three
parameters. In order to find span n sequences, an exhaustive search is performed
over this search space. We determine the size of the search space or the number of
candidate span n sequences in terms of n and t in the following proposition.
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Proposition 3 For any n > t � 6, the number of feedback functions in the search

space of recurrence relations (4) and (5) is given by C D
�

�.2t �1/

t

�2 �
n�1

t

�
if jD�

t j D
�.2t �1/

t
.

Proof As in the recurrence relations, the first position is fixed for the sequence to
be periodic, and any t-tap position is chosen from n � 1 positions .n � 6/ to form a
t-tap position; the number of distinct t-tap positions is given by T D �

n�1
t

�
. Again,

the total number of nonlinear feedback functions is given by np � jD�
t j, where np D

�.2t �1/

t
is the number of t degree primitive polynomials over F2 and jD�

t j is the
number of decimation numbers for which the feedback function is nonlinear. Hence,
for fixed n and t , the number of feedback functions in the search space is

C D np � jD�
t j � T D

�
�.2t � 1/

t

�2
 

n � 1

t

!
if jD�

t j D �.2t � 1/

t
:

�

Proposition 4 A feedback shift register defined by recurrence relations (4) and (5)
produces the maximum number of span n sequences when about half the length of
the shift register tap positions participate in the feedback functions.

Proof Without loss generality, we assume that the number of terms in a feedback
function is even. In a feedback shift register, the feedback functions are different for
different t-tap positions. Thus, for a particular value of n and t and for a feedback
function in t variables, the number of different feedback functions in n variables
is equal to Nn;t D �

n�1
t

�
and Nn;t is maximum when t D ˙

n
2

	
(for linear feedback

functions, t is always odd and t � ˙
n
2

	
). If the feedback functions in n variables that

are candidate span n sequences are uniformly distributed over the set of all Boolean
functions, then the FSR generates the maximum number of span n sequences when
t � ˙

n
2

	
. Hence, the assertion is established. �

We note that an LFSR also produces the maximum number of span n sequences
when t � ˙

n
2

	
(see Table 20). This property is also satisfied by the nonlinearly

generated span n sequences using recurrence relations (4) and (5) (see Tables 6,
7, 8, 9, 10, 11, and 12). We now estimate the number of feedback functions in the
search space for finding the maximum number of span n sequences. Assume that we
use NLFSRs defined by recurrence relations (4) and (5) for t D ˙

n
2

	
. Let N denote

the number of span n sequences (including reverse span n sequences) obtained by
recurrence relations (4) and (5). Then we have the following theorem.

Theorem 1 An approximate number of candidate span n sequences or feedback
functions in recurrence relations (4) and (5) is given by C0, where C0 ��

�.2d n
2 e�1/

d n
2 e

�2

� 2n�1p
� � n�1

2

and C0 � 22n�1�2
3n
2 C1p

� �.d n
2 e/5=2 ; if 2t � 1 is a Mersenne prime, and

the success probability of obtaining such a span n sequence is given by N
C0

.
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Proof We recall that the size of the search space is

C D
�

�.2t � 1/

t

�2
 

n � 1

t

!
; for jD�

t j D �.2t � 1/

t
:

Putting t D ˙
n
2

	
in the above formula, then we get

C0 D
 

�.2d n
2 e � 1/˙
n
2

	
!2

�
 

n � 1˙
n
2

	
!

D
 

�.2d n
2 e � 1/˙
n
2

	
!2

�
 

n � 1

n�1

2

˘C 1

!
; for positive n

D
 

�.2d n
2 e � 1/˙
n
2

	
!2

�
.n � 


n�1
2

˘ � 1/ � � n�1b n�1
2 c
�

.



n�1
2

˘C 1/
:

By Stirling’s formula

 
m

m
2

˘
!

	 2m

p
�m=2

;

the above equation can be written as

C0 	
 

�.2d n
2 e � 1/˙
n
2

	
!2

�



n�1
2

˘ � 2n�1

.



n�1
2

˘C 1/ �
q

� � n�1
2

	
 

�.2d n
2 e � 1/˙
n
2

	
!2

� 2n�1

q
� � n�1

2

:

� 22n�1 � 2
3n
2 C1

p
� � .d n

2
e/5=2

; if 2t � 1 is a Mersenne prime:

Thus, the success probability of obtaining a span n sequence is equal to N
C0

: Hence,
the result is proved. �



Generating Good Span n Sequences Using Orthogonal Functions 145

5 Experimental Results on Span n Sequence Generation
Using WG Transformations

In this section, we report the number of new span n sequences generated using
WG transformations. We also present a heuristic method for searching WG span
n sequences of long length. Table 5 provides a summary of the list of orthogonal
functions used to produce span n sequences.

5.1 WG Span n Sequences

WG span n sequences are obtained by putting the WG transformation in recurrence
relations (4) and (5) for different t and n. The span n sequences are generated
by computer simulations. We consider the WG transformations over the field F2t

for t D 5; 7; 8; 10; and 11. We denote by WG-t the WG transformations over
the field F2t . Table 6 presents the number of new span n sequences (new reverse
span n sequences are not taken into account) produced by recurrence relations (4)
and (5) for 6 � n � 20. However, this method can be applied to generate span
n sequences of long length. In Table 6, “
” denotes the recurrence relations that
are not defined for such values of n and t , and 	 represents those cases wherein
the number of span n sequences is not yet determined. We present some instances
of new span n sequences in the Appendix and all span n sequences in http://www.
comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html.

A graphical representation of the number of new span n sequences is provided in
Fig. 1, which shows that for different t the distribution of the number of new span
n sequences has the following property: the number of span n sequences increases
as n increases, and it reaches the maximum for some value of n, and thereafter the
number of span n sequences decreases as n increases. At a quick glance, we can
observe that the number of span n sequences is maximal close to n D 2t , which
follows from the fact that the size of the search space is a multiple of a binomial
coefficient (see Proposition 4). This fact reveals that there exists a trade off between
n and t for obtaining the maximum number of span n sequences.

Table 5 Orthogonal
functions used in the
structured search

Parameter t Orthogonal functions

t D 5 T1, T3

t D 7 T1, T3, T5, WG, Hall, QR

t D 8 T5, WG, GMW

t D 9 T1, T3, GMW, Segre, Glynn 1

t D 10 T1, T5, WG, GMWi , i D 1 : : : 7

t D 11 T1, T3, T5, WG, Segre, Glynn 1, Glynn 2, B3

http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
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Table 6 Number of WG span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 0 9 7 14 8 11 17 11 13 10 3 7 7 0 1

7 � � 3 25 42 63 108 138 138 125 126 111 83 86 63

8 � � � 3 9 18 34 76 96 104 106 108 110 90 79

10 � � � � � 5 40 107 246 373 627 819 999 � �
11 � � � � � � 31 204 574 1313 2539 4079 � � �
Total 0 9 10 42 59 97 230 536 1067 1925 3401 5124 – – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 1 7 7 10 16 18 10 8 4 10 2 1 3 1 0

7 � � 4 25 47 59 121 122 137 125 123 98 74 84 54

8 � � � 1 6 35 33 75 73 91 123 115 106 99 77

10 � � � � � 4 47 118 270 401 680 863 � � �
11 � � � � � � 33 186 576 1350 2522 4010 � � �
Total 1 7 11 36 69 116 244 509 1060 1977 3450 5087 – – –
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Fig. 1 Distribution of the number of span n sequences

Remark 1 There exist many span n sequences whose t-tap positions and the bases
of the finite fields are the same, but their decimation numbers are different.
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5.2 The Search Complexity Reduction for WG Span
n Sequences

It is worth noticing that as t increases, the number of feedback functions in the
search space increases exponentially. For large t , it is hard to find span n sequences
by considering all functions in the search space. Thus, for large n and t , a search
in a restricted search space can be performed to find span n sequences by imposing
restrictions over decimation numbers and t-tap positions. Below we list a type of
decimation numbers and t-tap positions that are observed for WG span n sequences.
In some cases, we may not find any span n sequence. However, according to our
observations, it is possible to obtain many span n sequences.

5.2.1 Observations on Decimation Numbers

We have performed a search on the following type of decimation numbers for
different n

Ddec D fd W d 2 D�
t and d D 2i � 1; i D 1; 2; : : : ; t � 1g

for t D 7, 8, and 10, and the result shows that there exist many span n sequences
whose decimation numbers in the recurrence relations (4) and (5) are of the above
type. For this type of decimation numbers in the recurrence relations, the size of the
search space is given by

Cdec D �.2t � 1/

t
.t � 1/

 
n � 1

t

!
� �.2t � 1/

 
n � 1

t

!
:

Obviously, the reduced complexity Cdec is less than the original complexity C .

5.2.2 Observations on t-Tap Positions

Likewise, a search in the search space can be performed according to some pattern of
t-tap positions for finding long period span n sequences. Assume that it is possible
to fix, say, k tap positions (1 � k � t). Then, the total number of fixed tap positions
in the recurrence relations is .k C 1/, and we only need to choose .t � k/ positions
out of .n � 1 � k/ positions. So, for k fixed choices of tap positions, the search
complexity is

Ctap D
�

�.2t � 1/

t

�2
 

n � 1 � k

t � k

!
:
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Based on our observations on the t-tap positions for t D 7; 8; and 10, the
following types of t-tap positions are effective when the slope of the curves in
Fig. 1 increases gradually. For example, when t D 7, n D 11; 12; 13; and 14

and t D 8, n D 13; 14; 15; 16; 17; and 18, the t-tap positions are given by:
f1; 2; 3; 4; : : :g; f1; 2; 3; : : :; n � 1g; f1; 2; : : :; n � 2; n � 1g; f1; : : :; n � 3; n �
2; n � 1g; where the numbers in the tap positions represent fixed positions in the
t-tap positions (i.e., k D 4 fixed positions) and “: : :” represents a combination of
.n � k � 1/ tap positions. We performed a search according to the first pattern of
t-tap position; the following span n sequence generated by a WG transformation
has been found for t D 13 and n D 24.

Decimation Polynomial t -tap position

d .c0; c1; c2; : : : ; c11; c12/ .r1; r2; : : : ; r12; r13/

1207 .1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 0/ .1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 13; 15; 22/

6 Experimental Results on Span n Sequences Generated
by Other Orthogonal Functions

This section reports the number of span n sequences produced using three-term,
five-term, monomial, Hall, quadratic residue, Glynn, Segre, GMW, and Kasami
power functions. Explicit representations of these function are provided in Tables 1,
2, and 3.

6.1 Three-Term and Five-Term and Monomial Span
n Sequences

Considering three-term and five-term functions in recurrence relations (4) and (5),
a number of span n sequences can be obtained by the structured search. Tables 7
and 8 present the number of span n sequences for three-term functions and five-term
functions, respectively. When t D 5, three-term functions and five-term functions
degenerate to the same functions, as a result, the number of span n sequences
obtained by three-term functions and five-term function are the same.

Table 9 presents the number of span n sequences produced using monomial
functions for 6 � n � 20. In tables, 
 denotes that the recurrence relation is not
defined by the parameters t and n, and 	 denotes that the cases are incomplete
due to a huge number of functions in the search space. When t D 5, the WG
transformations and monomial functions degenerate to the same functions.
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Table 7 Number of three-term span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17

5 1 3 9 8 9 8 4 3 5 2 3 1

7 � � 6 25 51 89 103 150 131 128 127 123

9 � � � � 8 52 104 223 391 549 710 770

11 � � � � � � 35 190 624 1323 2580 4056

Total 1 3 15 33 68 149 246 566 1151 2002 3420 4950

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17

5 1 2 2 5 10 5 6 5 3 1 3 5

7 � � 4 24 44 84 98 122 133 146 128 111

9 � � � � 12 47 109 237 361 553 694 823

11 � � � � � � 34 186 578 1416 2554 4007

Total 1 3 6 29 66 136 247 550 1075 2116 3379 4946

Table 8 Number of five-term span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 3 9 8 9 8 4 4 5 2 3 1 0 1

7 � � 5 22 44 66 118 131 115 135 124 118 99 90

8 � � � 1 9 18 37 56 88 101 104 86 92 90

10 � � � � � 9 37 116 246 411 621 797 943 �
11 � � � � � � 25 171 590 1443 2618 4194 � �
Total 1 3 14 31 62 101 221 478 1044 2092 3470 5196 – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 2 2 5 10 5 6 5 3 1 3 5 0 1

7 � � 8 19 43 74 108 138 138 127 117 102 84 91

8 � � � 0 6 22 38 54 66 116 89 106 83 93

10 � � � � � 7 47 119 223 443 627 861 � �
11 � � � � � � 20 172 609 1397 2558 4062 � �
Total 1 2 10 24 59 108 219 488 1039 2084 3394 5136 – –

6.2 Hall, QR, Segre, Glynn, and GMW Span n Sequences

In this section, we present the number of span n sequences produced by Hall, QR,
Segre, Glynn, and GMW functions for 7 � n � 20. We use the functions defined in
Tables 1, 2, and 3 for Hall, quadratic residue, Glynn, Segre, and GMW functions in
recurrence relations (4) and (5).
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Table 9 Number of span n sequences generated by monomial functions

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 0 9 7 14 8 11 17 11 13 10 3 7 7 0

7 � � 6 17 41 76 79 118 108 99 125 78 88 72

9 � � � � 10 43 120 258 410 519 662 788 � �
11 � � � � � � 26 188 604 1423 2491 4056 � �
Total 0 9 13 31 59 130 242 575 1135 2051 3281 4929 – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 7 7 10 16 18 10 8 4 10 2 1 3 1

7 � � 4 25 45 60 98 117 114 104 116 96 86 77

9 � � � � 6 37 131 239 367 558 740 860 � �
11 � � � � � � 32 184 596 1403 2547 4074 � �
Total 1 7 11 35 67 115 271 548 1081 2075 3405 5031 – –

Table 10 Number of span n sequences generated by Hall functions and QR functions

By recurrence relation (4)

n

t OF 8 9 10 11 12 13 14 15 16 17 18 19 20

7 Hall 2 9 19 21 41 38 35 45 28 34 30 30 –

7 QR 0 4 4 5 14 27 16 9 18 14 12 6 6

By recurrence relation (5)

t OF 8 9 10 11 12 13 14 15 16 17 18 19 20

7 Hall 1 6 20 25 37 48 36 44 46 24 39 – –

7 QR 0 3 6 7 13 12 13 18 16 13 14 10 8

For the range 7 � t � 11, the Hall and QR functions with trace representations
exist only for t D 7. Table 10 presents the number of span n sequences produced
using recurrence relations (4) and (5) with Hall and QR functions for 8 � n � 20.
When all the decimated QR functions are considered, the class of 18 QR functions
degenerates to two distinct QR orthogonal functions, and similarly, the class of 18

Hall functions degenerates to six distinct Hall orthogonal functions. Due to this
reason, the number of span n sequences in Table 10 is smaller compared to other
cases for n D 7.

When all the decimations are considered, Glynn 1 functions and Glynn 2
functions over F29 degenerate to the same class of orthogonal functions. Therefore,
the number of span n sequences for Glynn 1 and Glynn 2 functions are the same
in the structured search. However, for t D 11, the Glynn 1 class of functions and
Glynn 2 class of functions are different. We provide the number of span n sequences
produced by Glynn functions in Table 11, which also contains the number of span n

sequences generated by Segre functions for t D 9 and 11. In Tables 10, 11, and 12,
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Table 11 Number of span n sequences generated by Segre and Glynn functions

By recurrence relation (4)

n

t OF 10 11 12 13 14 15 16 17 18

9 Segre 15 51 131 245 418 528 706 783 –

11 Segre � � 34 172 586 1413 2564 – –

9 Glynn 1 11 52 129 253 415 584 673 790 –

11 Glynn 1 � � 28 177 587 1418 2553 – –

11 Glynn 2 � � 30 185 595 1320 2646 – –

By recurrence relation (5)

t OF-t 10 11 12 13 14 15 16 17 18

9 Segre 7 48 108 264 371 521 692 – –

11 Segre � � 37 153 627 1372 – – –

9 Glynn 1 6 49 126 248 397 529 709 – –

11 Glynn 1 � � 26 185 562 1351 – – –

11 Glynn 2 � � 28 183 598 1340 – – –

Table 12 Number of span n sequences generated by GMW functions

By recurrence relation (4)

n

t OF 9 10 11 12 13 14 15 16 17 18 # of terms

8 GMW 1 11 13 50 75 71 99 97 117 78 4

9 GMW � 15 45 128 223 382 – – – – 3

10 GMW1 � � 7 37 114 236 424 606 810 – 2

10 GMW2 � � 6 51 97 247 405 – – – 2

10 GMW3 � � 5 33 119 255 415 672 865 – 4

10 GMW4 � � 7 36 110 248 405 – – – 4

10 GMW5 � � 10 39 147 261 411 645 853 – 7

10 GMW6 � � 5 39 113 234 440 654 816 – 8

10 GMW7 � � 10 39 118 236 422 664 888 – 14

By recurrence relation (5)

t OF 9 10 11 12 13 14 15 16 17 18 # of terms

8 GMW 1 5 21 45 77 80 90 107 116 111 4

9 GMW � 11 44 140 247 414 559 716 – – 3

10 GMW1 � � 7 34 117 257 414 609 – – 2

10 GMW2 � � 8 41 126 243 409 – – – 2

10 GMW3 � � 7 44 122 257 411 641 – – 4

10 GMW4 � � 4 35 130 257 424 – – – 4

10 GMW5 � � 6 43 113 239 407 638 – – 7

10 GMW6 � � 2 42 113 247 455 630 – – 8

10 GMW7 � � 5 51 133 258 429 643 – – 14
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“�” denotes the computation for the number of span n sequences is in progress and
will be finished soon.

Table 12 presents the number of span n sequences produced by GMW functions
in the structured search for t D 8; 9; and 10 and 9 � n � 19. For the GMW
functions over F28 and F29 , there exists only one class of GMW functions. On
the other hand, for the GMW functions over F210 , there exist total seven distinct
classes of orthogonal GMW functions with different number of terms in the trace
representation. GMW span n sequences with 9 � n � 18 are generated using
recurrence relations (4) and (5) with GMWi functions, 1 � i � 7. In Table 12, the
term “# of terms” denotes the number of terms in the trace representation of a GMW
function.

Remark 2 For a class of orthogonal functions in recurrence relations (4) and (5),
each span n sequence is uniquely determined by a decimation number, a primitive
polynomial, and a t-tap position. Unfortunately, we could not find any relation
among these three parameters.

7 The Success Probability Comparison

In this section, an empirical success probability of obtaining a span n sequence
using a orthogonal feedback function is presented. Note that the success probability
of obtaining a randomly generated span n sequence is 1

2n�3 [33], where a random
span n sequence is generated by randomly choosing a feedback function from the
set of all Boolean functions in n variables and checking the condition for a span n

sequence.
We compared the success probability of obtaining a span n sequence using

WG transformations (including reverse sequences) in the structured search with
a random span n sequence generation method for t D 5; 7; 8 ( for t � ˙

n
2

	
),

10; and 11 .for 13 � n � 17/, and the comparison shows that in the structured
search, one can produce a span n sequence with a better success probability than
that of a random span n sequence generation method. A comparison of success
probability for t D 5; 7; and 8 is provided in Table 13. Furthermore, we compared
the success probability of obtaining a span n sequences using three-term, five-
term, and monomial functions in Table 13 for t D 5; 7; 8; 9. Table 13 illustrates
that a span n sequence can be produced using any of three-term, five-term, and
monomial functions with a better success probability. Our empirical comparisons
also show that the success probability of obtaining a span n sequence using Hall,
QR, Segre, Glynn, and GMW functions is greater than that of a random span n

sequence generation method. We don’t provide the success probability values due
to the large number of cases.
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Table 13 The success
probability comparison for
WG, three-term, five-term,
and monomial span n

sequences

WG span n sequences

n D 2t Our approach Randomly chosen

WG-5 10 1
26:56

1
27

WG-7 14 1
29:98

1
211

WG-8 16 1
211:81

1
213

Three-term span n sequences

n 	 2t Our approach Randomly chosen

T3-5 10 1
26:89

1
27

T3-7 14 1
210:04

1
211

T3-9 17 1
213:04

1
214

Five-term span n sequences

n D 2t Our approach Randomly chosen

T5-5 10 1
26:89

1
27

T5-7 14 1
210:10

1
211

T5-8 16 1
212:02

1
213

Monomial span n sequences

n 	 2t Our approach Randomly chosen

T1-5 10 1
26:88

1
27

T1-7 14 1
210:29

1
211

T1-9 17 1
212:96

1
214

8 Linear Span of New Span n Sequences

In this section, we analyze the linear span of new span n sequences produced by
orthogonal functions and present two conjectures on linear span of span n sequences
produced by orthogonal functions.

We study the linear span of new span n sequences generated using orthogonal
functions. The linear span of a sequence is an important randomness property that
is considered as an upper bound on sequence unpredictability because using only
twice-linear span consecutive bits one can certainly predict the remaining bits of
the sequence by the Berlekamp–Massey algorithm [2, 31]. Sequences with optimal
linear complexity are of practical interests, since an attacker requires the whole
sequence to decrypt the message in a stream cipher. There is no theoretical result on
the linear span of span n sequences generated by a nonlinear feedback shift register.
What we know is the bounds presented in Property 1 in Sect. 2.

We compute the linear span of new span n sequences by the Berlekamp–Massey
algorithm, and our computational results show that the linear span of a new sequence
lies in the range of .2n � 2 � 3n/ (near optimal) and .2n � 2/ (optimal). Table 14
presents a summary of the linear spans of WG span n sequences generated by
the recurrence relations (4) and (5), respectively. Moreover, Tables 15, 16, and 17
exhibit a summary of the linear spans of the span n sequences generated by
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Table 14 The bounds of the
linear span of WG span n

sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 20 5 2n � 2 2n � 2 � 2n

8 � n � 20 7 2n � 2 2n � 2 � 2n

9 � n � 20 8 2n � 2 2n � 2 � 3n

11 � n � 17 10 2n � 2 2n � 2 � 3n

12 � n � 17 11 2n � 2 2n � 2 � 2n

By recurrence relation (5)

7 � n � 20 5 2n � 2 2n � 2 � 2n

8 � n � 20 7 2n � 2 2n � 2 � 3n

9 � n � 20 8 2n � 2 2n � 2 � 3n

11 � n � 17 10 2n � 2 2n � 2 � 3n

12 � n � 16 11 2n � 2 2n � 2 � 3n

Table 15 The bounds of the
linear span of monomial span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 19 5 2n � 2 2n � 2 � 2n

8 � n � 19 7 2n � 2 2n � 2 � 3n

8 � n � 17 9 2n � 2 2n � 2 � 3n

12 � n � 16 11 2n � 2 2n � 2 � 3n

By recurrence relation (5)

7 � n � 19 5 2n � 2 2n � 2 � 2n

8 � n � 19 7 2n � 2 2n � 2 � 3n

8 � n � 17 9 2n � 2 2n � 2 � 3n

12 � n � 16 11 2n � 2 2n � 2 � 3n

Table 16 The bounds of the
linear span of three-term span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 17 5 2n � 2 2n � 2 � 2n

8 � n � 17 7 2n � 2 2n � 2 � 3n

8 � n � 17 9 2n � 2 2n � 2 � 3n

12 � n � 17 11 2n � 2 2n � 2 � 3n

By recurrence relation (5)

7 � n � 17 5 2n � 2 2n � 2 � 2n

8 � n � 17 7 2n � 2 2n � 2 � 2n

8 � n � 17 9 2n � 2 2n � 2 � 3n

12 � n � 17 11 2n � 2 2n � 2 � 2n

monomial functions, three-term functions, and five-term functions, respectively, for
different values of t , and Table 18 presents a summary of the linear span of span n

sequences produced by other orthogonal functions. Our computational results also
show that most of new sequences obtain the optimal linear span .2n � 2/, only very
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Table 17 The bounds of the
linear span of five-term span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 19 5 2n � 2 2n � 2 � 2n

8 � n � 19 7 2n � 2 2n � 2 � 2n

9 � n � 19 8 2n � 2 2n � 2 � 3n

11 � n � 17 10 2n � 2 2n � 2 � 3n

12 � n � 16 11 2n � 2 2n � 2 � 2n

By recurrence relation (5)

7 � n � 20 5 2n � 2 2n � 2 � 2n

8 � n � 20 7 2n � 2 2n � 2 � 3n

9 � n � 20 8 2n � 2 2n � 2 � 3n

11 � n � 17 10 2n � 2 2n � 2 � 2n

12 � n � 16 11 2n � 2 2n � 2 � 3n

Table 18 The upper and
lower bounds of the linear
span of Hall, QR, GMW,
Segre, and Glynn span n

sequences

By recurrence relations (4) and (5)

t Function Range on n Upper bound Lower bound

7 Hall 8 � n � 19 2n � 2 2n � 2 � 2n

QR 8 � n � 20 2n � 2 2n � 2 � 3n

8 GMW 9 � n � 18 2n � 2 2n � 2 � 2n

9 Segre 10 � n � 16 2n � 2 2n � 2 � 3n

Glynn 10 � n � 16 2n � 2 2n � 2 � 3n

GMW 10 � n � 16 2n � 2 2n � 2 � 3n

10 GMW 11 � n � 17 2n � 2 2n � 2 � 3n

11 Segre 12 � n � 16 2n � 2 2n � 2 � 3n

Glynn 12 � n � 16 2n � 2 > 2n � 2 � 3n

few span n sequences obtain the linear span .2n � 2 � 3n/, and in some cases all the
linear spans are greater than .2n � 2 � 3n/.

Based on our observation on the linear span of new span n sequences produced by
orthogonal functions, we have the following two conjectures. These two conjectures
are valid and verified by our computational results for n � 20.

Conjecture 1 Let the function g be an orthogonal function and s D fsi g be a binary
sequence generated by an n-stage NLFSR with n > m whose feedback function is
given by

f .x0; x1; : : : ; xn�1/ D c ˚ x0 ˚ g.y/

where c D 0=1 and y D .xr1 ; xr2 ; : : : ; xrm/; y 2 F2m ; and 0 < r1 < r2 < � � � <

rm < n: If s or Ns is a span n sequence, then the linear span of s, denoted as LSs , is
bounded by

.2n � 2 � 3n/ � LSs � .2n � 2/:
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Conjecture 2 For a prime length of an NLFSR, the linear span of a span n sequence
produced by the above feedback function with an orthogonal function takes one of
the following three values f2n � 2 � 2n; 2n � 2 � n; 2n � 2g.

9 Applications

Our span n sequences and span n sequences produced by the structured search in this
chapter can be used in the following scenarios. In [28], Mandal and Gong analyzed
the composited construction based on a span n sequence for generating long and
strong de Bruijn sequences. Based on their analysis, the span n sequence to be used
in the construction must have high linear span in order to produce strong de Bruijn
sequences. Since our span sequences have optimal or near-optimal linear span, these
span n sequences can be used in the composited construction for producing long and
strong de Bruijn sequences. Mandal et al. [30] designed Warbler, a pseudorandom
number generator for EPC C1 Gen2 RFID tags using NLFSRs where two span n

sequences with optimal linear span are used to promise the randomness properties
such as period and linear span of an output sequence. Our span n sequences or span
n sequences produced by the structured search can be used to design lightweight
pseudorandom number generators and stream ciphers. Thus, our span n sequences
have an immediate application in cryptography, which can be found in [28, 30].

Conclusion
In this chapter, we have studied the span n sequence generation using
orthogonal functions and presented some theoretical results on generating
span n sequences and experimental results about the number of span n

sequences produced by orthogonal functions. We used all known and well-
studied orthogonal functions as nonlinear feedback functions in an NLFSR
for 5 � t � 11 and presented the number of span n sequences produced using
orthogonal functions for 6 � n � 20. Finally, we analyzed the linear span
of new span n sequences produced by the orthogonal functions and gave a
summary of the bounds of the linear span for each class of span n sequences.
Interestingly, the linear span of a new span n sequence lies between the near
optimal .2n � 2 � 3n/ and optimal .2n � 2/. We observed that the majority
of span n sequences have an optimal linear span. According to our study,
it is possible to obtain span n sequences of high linear span with a better
probability of success using orthogonal feedback functions.
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Appendix: A Upper and Lower Bounds of Linear Span
of Span n Sequences

We present the upper and lower bounds of the linear span of new span n sequences
generated using orthogonal functions for different n and t and give all new span
n sequences generated using WG transformations for t D 5 (Tables 14, 15, 16,
17, 18, 19, 20, 21, and 22). All new span n sequences generated using WG
transformations with t D 7; 8; 10; and 11 can be found in http://www.comsec.
uwaterloo.ca/~kmandal/WG-Span-n/index.html.

Table 19 Span n sequences
generated using WG7

Length Decimation Polynomial t -tap position

n d .c0; c1; : : : ; c5; c6/ .r1; r2; : : : ; r6; r7/

8 5 1 1 0 0 0 0 0 1 2 3 4 5 6 7

9 1 1 0 1 1 1 1 1 1 2 3 4 5 6 7

10 27 1 1 1 1 0 1 1 1 2 3 4 5 6 7

11 1 1 1 1 1 0 1 1 1 2 3 5 8 9 10

12 1 1 0 1 1 1 0 0 1 2 4 5 8 10 11

13 9 1 1 0 0 1 0 1 1 2 3 4 5 6 8

14 43 1 1 1 0 1 1 1 1 2 3 4 5 6 7

15 31 1 1 0 0 0 0 0 1 2 3 4 7 12 14

16 27 1 1 1 1 0 1 1 1 2 3 5 6 8 14

17 1 1 0 1 1 1 0 0 1 2 3 4 7 9 13

18 1 1 0 1 1 1 0 0 1 2 3 4 6 9 16

19 3 1 1 1 1 1 1 0 1 2 3 5 7 15 17

20 31 1 1 1 1 1 1 0 1 2 3 7 8 12 15

Table 20 Tap-position distribution for an LFSR of length � 20

# of taps 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 4 – 2 2 2 – – – 6 – 6 2 – 2

4 4 4 10 12 16 20 44 18 66 42 82 52 152 72 158 100

6 – – 4 4 28 28 80 86 236 226 470 368 1050 718 1774 1104

8 – – – – 2 10 50 36 264 338 720 812 2674 2296 6696 4522

10 – – – – – – – 4 60 140 450 648 2696 2910 10238 8436

12 – – – – – – – – 4 12 66 156 1006 1470 6766 7000

14 – – – – – – – – – – 6 12 122 284 1772 2460

16 – – – – – – – – – – – – – 24 190 354

18 – – – – – – – – – – – – – – – 22

http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
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Table 21 WG span n

sequences generated using
rec. rel. (4)

Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

8 1 1 0 1 0 0 1 2 4 5 7

1 1 1 1 1 0 1 3 4 5 6

1 1 1 1 1 0 2 4 5 6 7

3 1 1 0 1 1 1 2 3 5 6

7 1 0 1 1 1 1 2 3 5 7

7 1 0 1 0 0 2 3 4 6 7

15 1 1 1 1 0 2 3 4 6 7

9 1 1 1 1 0 1 1 2 5 6 8

1 1 1 1 0 1 1 3 6 7 8

1 1 1 1 1 0 2 3 5 7 8

1 1 1 1 0 1 4 5 6 7 8

3 1 1 0 1 1 1 2 4 5 6

3 1 0 1 0 0 1 2 4 5 8

3 1 0 1 0 0 2 4 6 7 8

7 1 0 1 0 0 1 2 3 4 6

11 1 1 1 0 1 1 4 6 7 8

11 1 1 1 1 0 2 4 5 6 7

11 1 1 1 1 0 2 4 5 6 8

11 1 1 1 0 1 2 4 6 7 8

15 1 1 1 1 0 1 2 3 4 6

15 1 1 1 0 1 1 2 5 7 8

10 1 1 1 0 1 1 1 2 4 5 8

1 1 1 1 0 1 1 3 4 6 7

1 1 1 1 0 1 1 3 4 6 9

3 1 1 0 1 1 1 2 3 4 8

7 1 0 0 1 0 1 2 4 7 8

11 1 0 1 1 1 1 2 3 4 5

11 1 0 0 1 0 1 2 3 7 8

11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 1 0 1 1 2 7 8 10

1 1 1 1 1 0 3 4 5 8 10

1 1 1 1 0 1 6 7 8 9 10

7 1 0 1 1 1 1 2 3 6 7

7 1 0 0 1 0 1 3 7 8 10

7 1 0 1 1 1 2 3 4 7 10

7 1 1 0 1 1 2 3 7 9 10

7 1 0 0 1 0 2 4 5 6 10

7 1 1 0 1 1 3 4 5 8 9

11 1 1 1 1 0 1 2 4 5 8

11 1 1 1 0 1 1 3 4 6 10

(continued)
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Table 21 (continued) Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

12 1 1 1 1 1 0 2 3 4 5 6

1 1 0 1 0 0 2 3 4 5 8

1 1 1 1 0 1 2 3 5 7 9

1 1 0 1 0 0 2 3 6 9 10

1 1 1 1 0 1 4 6 9 10 11

3 1 1 0 1 1 1 2 3 4 5

3 1 1 0 1 1 2 5 7 8 10

3 1 0 1 0 0 4 5 6 9 11

7 1 0 1 0 0 1 2 4 7 8

7 1 1 0 1 1 1 2 5 6 8

11 1 0 0 1 0 1 3 4 6 10

11 1 1 1 0 1 1 3 4 9 11

11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 0 1 2 3 6 7 10

11 1 1 1 1 0 3 5 7 8 9

11 1 1 1 1 0 4 6 7 9 10

15 1 1 1 1 0 1 2 4 7 8

Table 22 WG span n

sequences generated using
rec. rel. (4)

Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

13 1 1 0 1 0 0 1 3 4 5 9

1 1 0 1 0 0 5 8 9 11 12

3 1 1 0 1 1 5 6 10 11 12

7 1 0 1 0 0 1 2 3 6 8

7 1 1 0 1 1 3 5 7 10 12

7 1 1 0 1 1 6 7 9 10 12

11 1 0 0 1 0 1 2 3 5 10

11 1 1 1 0 1 1 2 5 10 12

11 1 1 1 0 1 1 5 6 10 12

11 1 1 1 0 1 4 5 7 8 9

15 1 1 1 1 0 1 2 3 6 8

14 1 1 0 1 0 0 1 3 5 7 9

1 1 1 1 1 0 2 6 8 9 13

1 1 1 1 0 1 3 4 6 8 10

1 1 1 1 0 1 3 5 8 10 13

3 1 1 0 1 1 1 8 10 11 13

(continued)



160 K. Mandal and G. Gong

Table 22 (continued) Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

7 1 0 0 1 0 1 2 6 9 12

7 1 0 0 1 0 1 3 10 12 13

7 1 0 0 1 0 1 6 9 12 13

7 1 0 1 0 0 3 5 7 8 9

11 1 1 1 1 0 1 2 4 11 12

11 1 1 1 1 0 1 2 9 10 11

15 1 1 1 0 1 3 5 6 8 13

15 1 1 1 1 0 3 5 7 8 9

15 1 1 1 1 0 1 4 5 12 13 14

3 1 0 1 0 0 2 6 8 9 10

3 1 0 1 0 0 4 5 6 7 14

7 1 0 1 1 1 2 5 7 10 13

7 1 0 1 1 1 2 5 8 11 14

7 1 0 0 1 0 3 4 5 7 12

11 1 0 0 1 0 2 3 6 7 13

11 1 1 1 0 1 2 4 9 11 13

11 1 0 1 1 1 2 9 10 11 12

15 1 1 1 0 1 1 2 3 5 6

16 1 1 1 0 1 1 1 10 11 12 14

1 1 1 1 0 1 1 10 11 12 14

15 1 1 1 0 1 3 6 9 12 14

17 3 1 0 1 0 0 1 6 7 8 9

3 1 1 0 1 1 4 7 8 9 12

7 1 0 1 0 0 1 3 12 13 14

7 1 1 0 1 1 1 4 10 11 13

7 1 0 0 1 0 1 5 11 12 13

11 1 1 1 0 1 1 3 6 12 13

15 1 1 1 1 0 1 3 12 13 14

18 1 1 1 1 0 1 1 2 12 13 14

3 1 1 0 1 1 4 7 8 10 15

3 1 1 0 1 1 5 10 11 14 17

7 1 0 0 1 0 1 2 5 7 11

7 1 1 0 1 1 5 7 8 11 17

11 1 0 0 1 0 1 8 9 11 15

15 1 1 1 0 1 2 9 12 15 17

20 1 1 1 1 0 1 5 10 12 18 19
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